c92b3ea8bd8cbb70dca5165f3cf0d74964549eab
[gcc.git] / gcc / tree-switch-conversion.c
1 /* Lower GIMPLE_SWITCH expressions to something more efficient than
2 a jump table.
3 Copyright (C) 2006-2015 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This file handles the lowering of GIMPLE_SWITCH to an indexed
23 load, or a series of bit-test-and-branch expressions. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "line-map.h"
30 #include "params.h"
31 #include "flags.h"
32 #include "hash-set.h"
33 #include "vec.h"
34 #include "input.h"
35 #include "alias.h"
36 #include "symtab.h"
37 #include "inchash.h"
38 #include "tree.h"
39 #include "fold-const.h"
40 #include "varasm.h"
41 #include "stor-layout.h"
42 #include "predict.h"
43 #include "hard-reg-set.h"
44 #include "function.h"
45 #include "dominance.h"
46 #include "cfg.h"
47 #include "cfganal.h"
48 #include "basic-block.h"
49 #include "tree-ssa-alias.h"
50 #include "internal-fn.h"
51 #include "gimple-expr.h"
52 #include "is-a.h"
53 #include "gimple.h"
54 #include "gimplify.h"
55 #include "gimple-iterator.h"
56 #include "gimplify-me.h"
57 #include "gimple-ssa.h"
58 #include "hash-map.h"
59 #include "plugin-api.h"
60 #include "ipa-ref.h"
61 #include "cgraph.h"
62 #include "tree-cfg.h"
63 #include "tree-phinodes.h"
64 #include "stringpool.h"
65 #include "tree-ssanames.h"
66 #include "tree-pass.h"
67 #include "gimple-pretty-print.h"
68 #include "cfgloop.h"
69
70 /* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
71 type in the GIMPLE type system that is language-independent? */
72 #include "langhooks.h"
73
74 /* Need to include expr.h and optabs.h for lshift_cheap_p. */
75 #include "hashtab.h"
76 #include "rtl.h"
77 #include "statistics.h"
78 #include "insn-config.h"
79 #include "expmed.h"
80 #include "dojump.h"
81 #include "explow.h"
82 #include "calls.h"
83 #include "emit-rtl.h"
84 #include "stmt.h"
85 #include "expr.h"
86 #include "insn-codes.h"
87 #include "optabs.h"
88 \f
89 /* Maximum number of case bit tests.
90 FIXME: This should be derived from PARAM_CASE_VALUES_THRESHOLD and
91 targetm.case_values_threshold(), or be its own param. */
92 #define MAX_CASE_BIT_TESTS 3
93
94 /* Split the basic block at the statement pointed to by GSIP, and insert
95 a branch to the target basic block of E_TRUE conditional on tree
96 expression COND.
97
98 It is assumed that there is already an edge from the to-be-split
99 basic block to E_TRUE->dest block. This edge is removed, and the
100 profile information on the edge is re-used for the new conditional
101 jump.
102
103 The CFG is updated. The dominator tree will not be valid after
104 this transformation, but the immediate dominators are updated if
105 UPDATE_DOMINATORS is true.
106
107 Returns the newly created basic block. */
108
109 static basic_block
110 hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
111 tree cond, edge e_true,
112 bool update_dominators)
113 {
114 tree tmp;
115 gcond *cond_stmt;
116 edge e_false;
117 basic_block new_bb, split_bb = gsi_bb (*gsip);
118 bool dominated_e_true = false;
119
120 gcc_assert (e_true->src == split_bb);
121
122 if (update_dominators
123 && get_immediate_dominator (CDI_DOMINATORS, e_true->dest) == split_bb)
124 dominated_e_true = true;
125
126 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
127 /*before=*/true, GSI_SAME_STMT);
128 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
129 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
130
131 e_false = split_block (split_bb, cond_stmt);
132 new_bb = e_false->dest;
133 redirect_edge_pred (e_true, split_bb);
134
135 e_true->flags &= ~EDGE_FALLTHRU;
136 e_true->flags |= EDGE_TRUE_VALUE;
137
138 e_false->flags &= ~EDGE_FALLTHRU;
139 e_false->flags |= EDGE_FALSE_VALUE;
140 e_false->probability = REG_BR_PROB_BASE - e_true->probability;
141 e_false->count = split_bb->count - e_true->count;
142 new_bb->count = e_false->count;
143
144 if (update_dominators)
145 {
146 if (dominated_e_true)
147 set_immediate_dominator (CDI_DOMINATORS, e_true->dest, split_bb);
148 set_immediate_dominator (CDI_DOMINATORS, e_false->dest, split_bb);
149 }
150
151 return new_bb;
152 }
153
154
155 /* Return true if a switch should be expanded as a bit test.
156 RANGE is the difference between highest and lowest case.
157 UNIQ is number of unique case node targets, not counting the default case.
158 COUNT is the number of comparisons needed, not counting the default case. */
159
160 static bool
161 expand_switch_using_bit_tests_p (tree range,
162 unsigned int uniq,
163 unsigned int count, bool speed_p)
164 {
165 return (((uniq == 1 && count >= 3)
166 || (uniq == 2 && count >= 5)
167 || (uniq == 3 && count >= 6))
168 && lshift_cheap_p (speed_p)
169 && compare_tree_int (range, GET_MODE_BITSIZE (word_mode)) < 0
170 && compare_tree_int (range, 0) > 0);
171 }
172 \f
173 /* Implement switch statements with bit tests
174
175 A GIMPLE switch statement can be expanded to a short sequence of bit-wise
176 comparisons. "switch(x)" is converted into "if ((1 << (x-MINVAL)) & CST)"
177 where CST and MINVAL are integer constants. This is better than a series
178 of compare-and-banch insns in some cases, e.g. we can implement:
179
180 if ((x==4) || (x==6) || (x==9) || (x==11))
181
182 as a single bit test:
183
184 if ((1<<x) & ((1<<4)|(1<<6)|(1<<9)|(1<<11)))
185
186 This transformation is only applied if the number of case targets is small,
187 if CST constains at least 3 bits, and "1 << x" is cheap. The bit tests are
188 performed in "word_mode".
189
190 The following example shows the code the transformation generates:
191
192 int bar(int x)
193 {
194 switch (x)
195 {
196 case '0': case '1': case '2': case '3': case '4':
197 case '5': case '6': case '7': case '8': case '9':
198 case 'A': case 'B': case 'C': case 'D': case 'E':
199 case 'F':
200 return 1;
201 }
202 return 0;
203 }
204
205 ==>
206
207 bar (int x)
208 {
209 tmp1 = x - 48;
210 if (tmp1 > (70 - 48)) goto L2;
211 tmp2 = 1 << tmp1;
212 tmp3 = 0b11111100000001111111111;
213 if ((tmp2 & tmp3) != 0) goto L1 ; else goto L2;
214 L1:
215 return 1;
216 L2:
217 return 0;
218 }
219
220 TODO: There are still some improvements to this transformation that could
221 be implemented:
222
223 * A narrower mode than word_mode could be used if that is cheaper, e.g.
224 for x86_64 where a narrower-mode shift may result in smaller code.
225
226 * The compounded constant could be shifted rather than the one. The
227 test would be either on the sign bit or on the least significant bit,
228 depending on the direction of the shift. On some machines, the test
229 for the branch would be free if the bit to test is already set by the
230 shift operation.
231
232 This transformation was contributed by Roger Sayle, see this e-mail:
233 http://gcc.gnu.org/ml/gcc-patches/2003-01/msg01950.html
234 */
235
236 /* A case_bit_test represents a set of case nodes that may be
237 selected from using a bit-wise comparison. HI and LO hold
238 the integer to be tested against, TARGET_EDGE contains the
239 edge to the basic block to jump to upon success and BITS
240 counts the number of case nodes handled by this test,
241 typically the number of bits set in HI:LO. The LABEL field
242 is used to quickly identify all cases in this set without
243 looking at label_to_block for every case label. */
244
245 struct case_bit_test
246 {
247 wide_int mask;
248 edge target_edge;
249 tree label;
250 int bits;
251 };
252
253 /* Comparison function for qsort to order bit tests by decreasing
254 probability of execution. Our best guess comes from a measured
255 profile. If the profile counts are equal, break even on the
256 number of case nodes, i.e. the node with the most cases gets
257 tested first.
258
259 TODO: Actually this currently runs before a profile is available.
260 Therefore the case-as-bit-tests transformation should be done
261 later in the pass pipeline, or something along the lines of
262 "Efficient and effective branch reordering using profile data"
263 (Yang et. al., 2002) should be implemented (although, how good
264 is a paper is called "Efficient and effective ..." when the
265 latter is implied by the former, but oh well...). */
266
267 static int
268 case_bit_test_cmp (const void *p1, const void *p2)
269 {
270 const struct case_bit_test *const d1 = (const struct case_bit_test *) p1;
271 const struct case_bit_test *const d2 = (const struct case_bit_test *) p2;
272
273 if (d2->target_edge->count != d1->target_edge->count)
274 return d2->target_edge->count - d1->target_edge->count;
275 if (d2->bits != d1->bits)
276 return d2->bits - d1->bits;
277
278 /* Stabilize the sort. */
279 return LABEL_DECL_UID (d2->label) - LABEL_DECL_UID (d1->label);
280 }
281
282 /* Expand a switch statement by a short sequence of bit-wise
283 comparisons. "switch(x)" is effectively converted into
284 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
285 integer constants.
286
287 INDEX_EXPR is the value being switched on.
288
289 MINVAL is the lowest case value of in the case nodes,
290 and RANGE is highest value minus MINVAL. MINVAL and RANGE
291 are not guaranteed to be of the same type as INDEX_EXPR
292 (the gimplifier doesn't change the type of case label values,
293 and MINVAL and RANGE are derived from those values).
294 MAXVAL is MINVAL + RANGE.
295
296 There *MUST* be MAX_CASE_BIT_TESTS or less unique case
297 node targets. */
298
299 static void
300 emit_case_bit_tests (gswitch *swtch, tree index_expr,
301 tree minval, tree range, tree maxval)
302 {
303 struct case_bit_test test[MAX_CASE_BIT_TESTS];
304 unsigned int i, j, k;
305 unsigned int count;
306
307 basic_block switch_bb = gimple_bb (swtch);
308 basic_block default_bb, new_default_bb, new_bb;
309 edge default_edge;
310 bool update_dom = dom_info_available_p (CDI_DOMINATORS);
311
312 vec<basic_block> bbs_to_fix_dom = vNULL;
313
314 tree index_type = TREE_TYPE (index_expr);
315 tree unsigned_index_type = unsigned_type_for (index_type);
316 unsigned int branch_num = gimple_switch_num_labels (swtch);
317
318 gimple_stmt_iterator gsi;
319 gassign *shift_stmt;
320
321 tree idx, tmp, csui;
322 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
323 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
324 tree word_mode_one = fold_convert (word_type_node, integer_one_node);
325 int prec = TYPE_PRECISION (word_type_node);
326 wide_int wone = wi::one (prec);
327
328 memset (&test, 0, sizeof (test));
329
330 /* Get the edge for the default case. */
331 tmp = gimple_switch_default_label (swtch);
332 default_bb = label_to_block (CASE_LABEL (tmp));
333 default_edge = find_edge (switch_bb, default_bb);
334
335 /* Go through all case labels, and collect the case labels, profile
336 counts, and other information we need to build the branch tests. */
337 count = 0;
338 for (i = 1; i < branch_num; i++)
339 {
340 unsigned int lo, hi;
341 tree cs = gimple_switch_label (swtch, i);
342 tree label = CASE_LABEL (cs);
343 edge e = find_edge (switch_bb, label_to_block (label));
344 for (k = 0; k < count; k++)
345 if (e == test[k].target_edge)
346 break;
347
348 if (k == count)
349 {
350 gcc_checking_assert (count < MAX_CASE_BIT_TESTS);
351 test[k].mask = wi::zero (prec);
352 test[k].target_edge = e;
353 test[k].label = label;
354 test[k].bits = 1;
355 count++;
356 }
357 else
358 test[k].bits++;
359
360 lo = tree_to_uhwi (int_const_binop (MINUS_EXPR,
361 CASE_LOW (cs), minval));
362 if (CASE_HIGH (cs) == NULL_TREE)
363 hi = lo;
364 else
365 hi = tree_to_uhwi (int_const_binop (MINUS_EXPR,
366 CASE_HIGH (cs), minval));
367
368 for (j = lo; j <= hi; j++)
369 test[k].mask |= wi::lshift (wone, j);
370 }
371
372 qsort (test, count, sizeof (*test), case_bit_test_cmp);
373
374 /* If all values are in the 0 .. BITS_PER_WORD-1 range, we can get rid of
375 the minval subtractions, but it might make the mask constants more
376 expensive. So, compare the costs. */
377 if (compare_tree_int (minval, 0) > 0
378 && compare_tree_int (maxval, GET_MODE_BITSIZE (word_mode)) < 0)
379 {
380 int cost_diff;
381 HOST_WIDE_INT m = tree_to_uhwi (minval);
382 rtx reg = gen_raw_REG (word_mode, 10000);
383 bool speed_p = optimize_bb_for_speed_p (gimple_bb (swtch));
384 cost_diff = set_rtx_cost (gen_rtx_PLUS (word_mode, reg,
385 GEN_INT (-m)), speed_p);
386 for (i = 0; i < count; i++)
387 {
388 rtx r = immed_wide_int_const (test[i].mask, word_mode);
389 cost_diff += set_src_cost (gen_rtx_AND (word_mode, reg, r), speed_p);
390 r = immed_wide_int_const (wi::lshift (test[i].mask, m), word_mode);
391 cost_diff -= set_src_cost (gen_rtx_AND (word_mode, reg, r), speed_p);
392 }
393 if (cost_diff > 0)
394 {
395 for (i = 0; i < count; i++)
396 test[i].mask = wi::lshift (test[i].mask, m);
397 minval = build_zero_cst (TREE_TYPE (minval));
398 range = maxval;
399 }
400 }
401
402 /* We generate two jumps to the default case label.
403 Split the default edge, so that we don't have to do any PHI node
404 updating. */
405 new_default_bb = split_edge (default_edge);
406
407 if (update_dom)
408 {
409 bbs_to_fix_dom.create (10);
410 bbs_to_fix_dom.quick_push (switch_bb);
411 bbs_to_fix_dom.quick_push (default_bb);
412 bbs_to_fix_dom.quick_push (new_default_bb);
413 }
414
415 /* Now build the test-and-branch code. */
416
417 gsi = gsi_last_bb (switch_bb);
418
419 /* idx = (unsigned)x - minval. */
420 idx = fold_convert (unsigned_index_type, index_expr);
421 idx = fold_build2 (MINUS_EXPR, unsigned_index_type, idx,
422 fold_convert (unsigned_index_type, minval));
423 idx = force_gimple_operand_gsi (&gsi, idx,
424 /*simple=*/true, NULL_TREE,
425 /*before=*/true, GSI_SAME_STMT);
426
427 /* if (idx > range) goto default */
428 range = force_gimple_operand_gsi (&gsi,
429 fold_convert (unsigned_index_type, range),
430 /*simple=*/true, NULL_TREE,
431 /*before=*/true, GSI_SAME_STMT);
432 tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
433 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, default_edge, update_dom);
434 if (update_dom)
435 bbs_to_fix_dom.quick_push (new_bb);
436 gcc_assert (gimple_bb (swtch) == new_bb);
437 gsi = gsi_last_bb (new_bb);
438
439 /* Any blocks dominated by the GIMPLE_SWITCH, but that are not successors
440 of NEW_BB, are still immediately dominated by SWITCH_BB. Make it so. */
441 if (update_dom)
442 {
443 vec<basic_block> dom_bbs;
444 basic_block dom_son;
445
446 dom_bbs = get_dominated_by (CDI_DOMINATORS, new_bb);
447 FOR_EACH_VEC_ELT (dom_bbs, i, dom_son)
448 {
449 edge e = find_edge (new_bb, dom_son);
450 if (e && single_pred_p (e->dest))
451 continue;
452 set_immediate_dominator (CDI_DOMINATORS, dom_son, switch_bb);
453 bbs_to_fix_dom.safe_push (dom_son);
454 }
455 dom_bbs.release ();
456 }
457
458 /* csui = (1 << (word_mode) idx) */
459 csui = make_ssa_name (word_type_node);
460 tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one,
461 fold_convert (word_type_node, idx));
462 tmp = force_gimple_operand_gsi (&gsi, tmp,
463 /*simple=*/false, NULL_TREE,
464 /*before=*/true, GSI_SAME_STMT);
465 shift_stmt = gimple_build_assign (csui, tmp);
466 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
467 update_stmt (shift_stmt);
468
469 /* for each unique set of cases:
470 if (const & csui) goto target */
471 for (k = 0; k < count; k++)
472 {
473 tmp = wide_int_to_tree (word_type_node, test[k].mask);
474 tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp);
475 tmp = force_gimple_operand_gsi (&gsi, tmp,
476 /*simple=*/true, NULL_TREE,
477 /*before=*/true, GSI_SAME_STMT);
478 tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero);
479 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_edge,
480 update_dom);
481 if (update_dom)
482 bbs_to_fix_dom.safe_push (new_bb);
483 gcc_assert (gimple_bb (swtch) == new_bb);
484 gsi = gsi_last_bb (new_bb);
485 }
486
487 /* We should have removed all edges now. */
488 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
489
490 /* If nothing matched, go to the default label. */
491 make_edge (gsi_bb (gsi), new_default_bb, EDGE_FALLTHRU);
492
493 /* The GIMPLE_SWITCH is now redundant. */
494 gsi_remove (&gsi, true);
495
496 if (update_dom)
497 {
498 /* Fix up the dominator tree. */
499 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
500 bbs_to_fix_dom.release ();
501 }
502 }
503 \f
504 /*
505 Switch initialization conversion
506
507 The following pass changes simple initializations of scalars in a switch
508 statement into initializations from a static array. Obviously, the values
509 must be constant and known at compile time and a default branch must be
510 provided. For example, the following code:
511
512 int a,b;
513
514 switch (argc)
515 {
516 case 1:
517 case 2:
518 a_1 = 8;
519 b_1 = 6;
520 break;
521 case 3:
522 a_2 = 9;
523 b_2 = 5;
524 break;
525 case 12:
526 a_3 = 10;
527 b_3 = 4;
528 break;
529 default:
530 a_4 = 16;
531 b_4 = 1;
532 break;
533 }
534 a_5 = PHI <a_1, a_2, a_3, a_4>
535 b_5 = PHI <b_1, b_2, b_3, b_4>
536
537
538 is changed into:
539
540 static const int = CSWTCH01[] = {6, 6, 5, 1, 1, 1, 1, 1, 1, 1, 1, 4};
541 static const int = CSWTCH02[] = {8, 8, 9, 16, 16, 16, 16, 16, 16, 16,
542 16, 16, 10};
543
544 if (((unsigned) argc) - 1 < 11)
545 {
546 a_6 = CSWTCH02[argc - 1];
547 b_6 = CSWTCH01[argc - 1];
548 }
549 else
550 {
551 a_7 = 16;
552 b_7 = 1;
553 }
554 a_5 = PHI <a_6, a_7>
555 b_b = PHI <b_6, b_7>
556
557 There are further constraints. Specifically, the range of values across all
558 case labels must not be bigger than SWITCH_CONVERSION_BRANCH_RATIO (default
559 eight) times the number of the actual switch branches.
560
561 This transformation was contributed by Martin Jambor, see this e-mail:
562 http://gcc.gnu.org/ml/gcc-patches/2008-07/msg00011.html */
563
564 /* The main structure of the pass. */
565 struct switch_conv_info
566 {
567 /* The expression used to decide the switch branch. */
568 tree index_expr;
569
570 /* The following integer constants store the minimum and maximum value
571 covered by the case labels. */
572 tree range_min;
573 tree range_max;
574
575 /* The difference between the above two numbers. Stored here because it
576 is used in all the conversion heuristics, as well as for some of the
577 transformation, and it is expensive to re-compute it all the time. */
578 tree range_size;
579
580 /* Basic block that contains the actual GIMPLE_SWITCH. */
581 basic_block switch_bb;
582
583 /* Basic block that is the target of the default case. */
584 basic_block default_bb;
585
586 /* The single successor block of all branches out of the GIMPLE_SWITCH,
587 if such a block exists. Otherwise NULL. */
588 basic_block final_bb;
589
590 /* The probability of the default edge in the replaced switch. */
591 int default_prob;
592
593 /* The count of the default edge in the replaced switch. */
594 gcov_type default_count;
595
596 /* Combined count of all other (non-default) edges in the replaced switch. */
597 gcov_type other_count;
598
599 /* Number of phi nodes in the final bb (that we'll be replacing). */
600 int phi_count;
601
602 /* Array of default values, in the same order as phi nodes. */
603 tree *default_values;
604
605 /* Constructors of new static arrays. */
606 vec<constructor_elt, va_gc> **constructors;
607
608 /* Array of ssa names that are initialized with a value from a new static
609 array. */
610 tree *target_inbound_names;
611
612 /* Array of ssa names that are initialized with the default value if the
613 switch expression is out of range. */
614 tree *target_outbound_names;
615
616 /* The first load statement that loads a temporary from a new static array.
617 */
618 gimple arr_ref_first;
619
620 /* The last load statement that loads a temporary from a new static array. */
621 gimple arr_ref_last;
622
623 /* String reason why the case wasn't a good candidate that is written to the
624 dump file, if there is one. */
625 const char *reason;
626
627 /* Parameters for expand_switch_using_bit_tests. Should be computed
628 the same way as in expand_case. */
629 unsigned int uniq;
630 unsigned int count;
631 };
632
633 /* Collect information about GIMPLE_SWITCH statement SWTCH into INFO. */
634
635 static void
636 collect_switch_conv_info (gswitch *swtch, struct switch_conv_info *info)
637 {
638 unsigned int branch_num = gimple_switch_num_labels (swtch);
639 tree min_case, max_case;
640 unsigned int count, i;
641 edge e, e_default;
642 edge_iterator ei;
643
644 memset (info, 0, sizeof (*info));
645
646 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
647 is a default label which is the first in the vector.
648 Collect the bits we can deduce from the CFG. */
649 info->index_expr = gimple_switch_index (swtch);
650 info->switch_bb = gimple_bb (swtch);
651 info->default_bb =
652 label_to_block (CASE_LABEL (gimple_switch_default_label (swtch)));
653 e_default = find_edge (info->switch_bb, info->default_bb);
654 info->default_prob = e_default->probability;
655 info->default_count = e_default->count;
656 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
657 if (e != e_default)
658 info->other_count += e->count;
659
660 /* See if there is one common successor block for all branch
661 targets. If it exists, record it in FINAL_BB.
662 Start with the destination of the default case as guess
663 or its destination in case it is a forwarder block. */
664 if (! single_pred_p (e_default->dest))
665 info->final_bb = e_default->dest;
666 else if (single_succ_p (e_default->dest)
667 && ! single_pred_p (single_succ (e_default->dest)))
668 info->final_bb = single_succ (e_default->dest);
669 /* Require that all switch destinations are either that common
670 FINAL_BB or a forwarder to it. */
671 if (info->final_bb)
672 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
673 {
674 if (e->dest == info->final_bb)
675 continue;
676
677 if (single_pred_p (e->dest)
678 && single_succ_p (e->dest)
679 && single_succ (e->dest) == info->final_bb)
680 continue;
681
682 info->final_bb = NULL;
683 break;
684 }
685
686 /* Get upper and lower bounds of case values, and the covered range. */
687 min_case = gimple_switch_label (swtch, 1);
688 max_case = gimple_switch_label (swtch, branch_num - 1);
689
690 info->range_min = CASE_LOW (min_case);
691 if (CASE_HIGH (max_case) != NULL_TREE)
692 info->range_max = CASE_HIGH (max_case);
693 else
694 info->range_max = CASE_LOW (max_case);
695
696 info->range_size =
697 int_const_binop (MINUS_EXPR, info->range_max, info->range_min);
698
699 /* Get a count of the number of case labels. Single-valued case labels
700 simply count as one, but a case range counts double, since it may
701 require two compares if it gets lowered as a branching tree. */
702 count = 0;
703 for (i = 1; i < branch_num; i++)
704 {
705 tree elt = gimple_switch_label (swtch, i);
706 count++;
707 if (CASE_HIGH (elt)
708 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
709 count++;
710 }
711 info->count = count;
712
713 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
714 block. Assume a CFG cleanup would have already removed degenerate
715 switch statements, this allows us to just use EDGE_COUNT. */
716 info->uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
717 }
718
719 /* Checks whether the range given by individual case statements of the SWTCH
720 switch statement isn't too big and whether the number of branches actually
721 satisfies the size of the new array. */
722
723 static bool
724 check_range (struct switch_conv_info *info)
725 {
726 gcc_assert (info->range_size);
727 if (!tree_fits_uhwi_p (info->range_size))
728 {
729 info->reason = "index range way too large or otherwise unusable";
730 return false;
731 }
732
733 if (tree_to_uhwi (info->range_size)
734 > ((unsigned) info->count * SWITCH_CONVERSION_BRANCH_RATIO))
735 {
736 info->reason = "the maximum range-branch ratio exceeded";
737 return false;
738 }
739
740 return true;
741 }
742
743 /* Checks whether all but the FINAL_BB basic blocks are empty. */
744
745 static bool
746 check_all_empty_except_final (struct switch_conv_info *info)
747 {
748 edge e;
749 edge_iterator ei;
750
751 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
752 {
753 if (e->dest == info->final_bb)
754 continue;
755
756 if (!empty_block_p (e->dest))
757 {
758 info->reason = "bad case - a non-final BB not empty";
759 return false;
760 }
761 }
762
763 return true;
764 }
765
766 /* This function checks whether all required values in phi nodes in final_bb
767 are constants. Required values are those that correspond to a basic block
768 which is a part of the examined switch statement. It returns true if the
769 phi nodes are OK, otherwise false. */
770
771 static bool
772 check_final_bb (struct switch_conv_info *info)
773 {
774 gphi_iterator gsi;
775
776 info->phi_count = 0;
777 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
778 {
779 gphi *phi = gsi.phi ();
780 unsigned int i;
781
782 info->phi_count++;
783
784 for (i = 0; i < gimple_phi_num_args (phi); i++)
785 {
786 basic_block bb = gimple_phi_arg_edge (phi, i)->src;
787
788 if (bb == info->switch_bb
789 || (single_pred_p (bb) && single_pred (bb) == info->switch_bb))
790 {
791 tree reloc, val;
792
793 val = gimple_phi_arg_def (phi, i);
794 if (!is_gimple_ip_invariant (val))
795 {
796 info->reason = "non-invariant value from a case";
797 return false; /* Non-invariant argument. */
798 }
799 reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
800 if ((flag_pic && reloc != null_pointer_node)
801 || (!flag_pic && reloc == NULL_TREE))
802 {
803 if (reloc)
804 info->reason
805 = "value from a case would need runtime relocations";
806 else
807 info->reason
808 = "value from a case is not a valid initializer";
809 return false;
810 }
811 }
812 }
813 }
814
815 return true;
816 }
817
818 /* The following function allocates default_values, target_{in,out}_names and
819 constructors arrays. The last one is also populated with pointers to
820 vectors that will become constructors of new arrays. */
821
822 static void
823 create_temp_arrays (struct switch_conv_info *info)
824 {
825 int i;
826
827 info->default_values = XCNEWVEC (tree, info->phi_count * 3);
828 /* ??? Macros do not support multi argument templates in their
829 argument list. We create a typedef to work around that problem. */
830 typedef vec<constructor_elt, va_gc> *vec_constructor_elt_gc;
831 info->constructors = XCNEWVEC (vec_constructor_elt_gc, info->phi_count);
832 info->target_inbound_names = info->default_values + info->phi_count;
833 info->target_outbound_names = info->target_inbound_names + info->phi_count;
834 for (i = 0; i < info->phi_count; i++)
835 vec_alloc (info->constructors[i], tree_to_uhwi (info->range_size) + 1);
836 }
837
838 /* Free the arrays created by create_temp_arrays(). The vectors that are
839 created by that function are not freed here, however, because they have
840 already become constructors and must be preserved. */
841
842 static void
843 free_temp_arrays (struct switch_conv_info *info)
844 {
845 XDELETEVEC (info->constructors);
846 XDELETEVEC (info->default_values);
847 }
848
849 /* Populate the array of default values in the order of phi nodes.
850 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch. */
851
852 static void
853 gather_default_values (tree default_case, struct switch_conv_info *info)
854 {
855 gphi_iterator gsi;
856 basic_block bb = label_to_block (CASE_LABEL (default_case));
857 edge e;
858 int i = 0;
859
860 gcc_assert (CASE_LOW (default_case) == NULL_TREE);
861
862 if (bb == info->final_bb)
863 e = find_edge (info->switch_bb, bb);
864 else
865 e = single_succ_edge (bb);
866
867 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
868 {
869 gphi *phi = gsi.phi ();
870 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
871 gcc_assert (val);
872 info->default_values[i++] = val;
873 }
874 }
875
876 /* The following function populates the vectors in the constructors array with
877 future contents of the static arrays. The vectors are populated in the
878 order of phi nodes. SWTCH is the switch statement being converted. */
879
880 static void
881 build_constructors (gswitch *swtch, struct switch_conv_info *info)
882 {
883 unsigned i, branch_num = gimple_switch_num_labels (swtch);
884 tree pos = info->range_min;
885
886 for (i = 1; i < branch_num; i++)
887 {
888 tree cs = gimple_switch_label (swtch, i);
889 basic_block bb = label_to_block (CASE_LABEL (cs));
890 edge e;
891 tree high;
892 gphi_iterator gsi;
893 int j;
894
895 if (bb == info->final_bb)
896 e = find_edge (info->switch_bb, bb);
897 else
898 e = single_succ_edge (bb);
899 gcc_assert (e);
900
901 while (tree_int_cst_lt (pos, CASE_LOW (cs)))
902 {
903 int k;
904 for (k = 0; k < info->phi_count; k++)
905 {
906 constructor_elt elt;
907
908 elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min);
909 elt.value
910 = unshare_expr_without_location (info->default_values[k]);
911 info->constructors[k]->quick_push (elt);
912 }
913
914 pos = int_const_binop (PLUS_EXPR, pos,
915 build_int_cst (TREE_TYPE (pos), 1));
916 }
917 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
918
919 j = 0;
920 if (CASE_HIGH (cs))
921 high = CASE_HIGH (cs);
922 else
923 high = CASE_LOW (cs);
924 for (gsi = gsi_start_phis (info->final_bb);
925 !gsi_end_p (gsi); gsi_next (&gsi))
926 {
927 gphi *phi = gsi.phi ();
928 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
929 tree low = CASE_LOW (cs);
930 pos = CASE_LOW (cs);
931
932 do
933 {
934 constructor_elt elt;
935
936 elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min);
937 elt.value = unshare_expr_without_location (val);
938 info->constructors[j]->quick_push (elt);
939
940 pos = int_const_binop (PLUS_EXPR, pos,
941 build_int_cst (TREE_TYPE (pos), 1));
942 } while (!tree_int_cst_lt (high, pos)
943 && tree_int_cst_lt (low, pos));
944 j++;
945 }
946 }
947 }
948
949 /* If all values in the constructor vector are the same, return the value.
950 Otherwise return NULL_TREE. Not supposed to be called for empty
951 vectors. */
952
953 static tree
954 constructor_contains_same_values_p (vec<constructor_elt, va_gc> *vec)
955 {
956 unsigned int i;
957 tree prev = NULL_TREE;
958 constructor_elt *elt;
959
960 FOR_EACH_VEC_SAFE_ELT (vec, i, elt)
961 {
962 if (!prev)
963 prev = elt->value;
964 else if (!operand_equal_p (elt->value, prev, OEP_ONLY_CONST))
965 return NULL_TREE;
966 }
967 return prev;
968 }
969
970 /* Return type which should be used for array elements, either TYPE,
971 or for integral type some smaller integral type that can still hold
972 all the constants. */
973
974 static tree
975 array_value_type (gswitch *swtch, tree type, int num,
976 struct switch_conv_info *info)
977 {
978 unsigned int i, len = vec_safe_length (info->constructors[num]);
979 constructor_elt *elt;
980 machine_mode mode;
981 int sign = 0;
982 tree smaller_type;
983
984 if (!INTEGRAL_TYPE_P (type))
985 return type;
986
987 mode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (TYPE_MODE (type)));
988 if (GET_MODE_SIZE (TYPE_MODE (type)) <= GET_MODE_SIZE (mode))
989 return type;
990
991 if (len < (optimize_bb_for_size_p (gimple_bb (swtch)) ? 2 : 32))
992 return type;
993
994 FOR_EACH_VEC_SAFE_ELT (info->constructors[num], i, elt)
995 {
996 wide_int cst;
997
998 if (TREE_CODE (elt->value) != INTEGER_CST)
999 return type;
1000
1001 cst = elt->value;
1002 while (1)
1003 {
1004 unsigned int prec = GET_MODE_BITSIZE (mode);
1005 if (prec > HOST_BITS_PER_WIDE_INT)
1006 return type;
1007
1008 if (sign >= 0 && cst == wi::zext (cst, prec))
1009 {
1010 if (sign == 0 && cst == wi::sext (cst, prec))
1011 break;
1012 sign = 1;
1013 break;
1014 }
1015 if (sign <= 0 && cst == wi::sext (cst, prec))
1016 {
1017 sign = -1;
1018 break;
1019 }
1020
1021 if (sign == 1)
1022 sign = 0;
1023
1024 mode = GET_MODE_WIDER_MODE (mode);
1025 if (mode == VOIDmode
1026 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (TYPE_MODE (type)))
1027 return type;
1028 }
1029 }
1030
1031 if (sign == 0)
1032 sign = TYPE_UNSIGNED (type) ? 1 : -1;
1033 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
1034 if (GET_MODE_SIZE (TYPE_MODE (type))
1035 <= GET_MODE_SIZE (TYPE_MODE (smaller_type)))
1036 return type;
1037
1038 return smaller_type;
1039 }
1040
1041 /* Create an appropriate array type and declaration and assemble a static array
1042 variable. Also create a load statement that initializes the variable in
1043 question with a value from the static array. SWTCH is the switch statement
1044 being converted, NUM is the index to arrays of constructors, default values
1045 and target SSA names for this particular array. ARR_INDEX_TYPE is the type
1046 of the index of the new array, PHI is the phi node of the final BB that
1047 corresponds to the value that will be loaded from the created array. TIDX
1048 is an ssa name of a temporary variable holding the index for loads from the
1049 new array. */
1050
1051 static void
1052 build_one_array (gswitch *swtch, int num, tree arr_index_type,
1053 gphi *phi, tree tidx, struct switch_conv_info *info)
1054 {
1055 tree name, cst;
1056 gimple load;
1057 gimple_stmt_iterator gsi = gsi_for_stmt (swtch);
1058 location_t loc = gimple_location (swtch);
1059
1060 gcc_assert (info->default_values[num]);
1061
1062 name = copy_ssa_name (PHI_RESULT (phi));
1063 info->target_inbound_names[num] = name;
1064
1065 cst = constructor_contains_same_values_p (info->constructors[num]);
1066 if (cst)
1067 load = gimple_build_assign (name, cst);
1068 else
1069 {
1070 tree array_type, ctor, decl, value_type, fetch, default_type;
1071
1072 default_type = TREE_TYPE (info->default_values[num]);
1073 value_type = array_value_type (swtch, default_type, num, info);
1074 array_type = build_array_type (value_type, arr_index_type);
1075 if (default_type != value_type)
1076 {
1077 unsigned int i;
1078 constructor_elt *elt;
1079
1080 FOR_EACH_VEC_SAFE_ELT (info->constructors[num], i, elt)
1081 elt->value = fold_convert (value_type, elt->value);
1082 }
1083 ctor = build_constructor (array_type, info->constructors[num]);
1084 TREE_CONSTANT (ctor) = true;
1085 TREE_STATIC (ctor) = true;
1086
1087 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
1088 TREE_STATIC (decl) = 1;
1089 DECL_INITIAL (decl) = ctor;
1090
1091 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
1092 DECL_ARTIFICIAL (decl) = 1;
1093 DECL_IGNORED_P (decl) = 1;
1094 TREE_CONSTANT (decl) = 1;
1095 TREE_READONLY (decl) = 1;
1096 DECL_IGNORED_P (decl) = 1;
1097 varpool_node::finalize_decl (decl);
1098
1099 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
1100 NULL_TREE);
1101 if (default_type != value_type)
1102 {
1103 fetch = fold_convert (default_type, fetch);
1104 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
1105 true, GSI_SAME_STMT);
1106 }
1107 load = gimple_build_assign (name, fetch);
1108 }
1109
1110 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1111 update_stmt (load);
1112 info->arr_ref_last = load;
1113 }
1114
1115 /* Builds and initializes static arrays initialized with values gathered from
1116 the SWTCH switch statement. Also creates statements that load values from
1117 them. */
1118
1119 static void
1120 build_arrays (gswitch *swtch, struct switch_conv_info *info)
1121 {
1122 tree arr_index_type;
1123 tree tidx, sub, utype;
1124 gimple stmt;
1125 gimple_stmt_iterator gsi;
1126 gphi_iterator gpi;
1127 int i;
1128 location_t loc = gimple_location (swtch);
1129
1130 gsi = gsi_for_stmt (swtch);
1131
1132 /* Make sure we do not generate arithmetics in a subrange. */
1133 utype = TREE_TYPE (info->index_expr);
1134 if (TREE_TYPE (utype))
1135 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
1136 else
1137 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
1138
1139 arr_index_type = build_index_type (info->range_size);
1140 tidx = make_ssa_name (utype);
1141 sub = fold_build2_loc (loc, MINUS_EXPR, utype,
1142 fold_convert_loc (loc, utype, info->index_expr),
1143 fold_convert_loc (loc, utype, info->range_min));
1144 sub = force_gimple_operand_gsi (&gsi, sub,
1145 false, NULL, true, GSI_SAME_STMT);
1146 stmt = gimple_build_assign (tidx, sub);
1147
1148 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1149 update_stmt (stmt);
1150 info->arr_ref_first = stmt;
1151
1152 for (gpi = gsi_start_phis (info->final_bb), i = 0;
1153 !gsi_end_p (gpi); gsi_next (&gpi), i++)
1154 build_one_array (swtch, i, arr_index_type, gpi.phi (), tidx, info);
1155 }
1156
1157 /* Generates and appropriately inserts loads of default values at the position
1158 given by BSI. Returns the last inserted statement. */
1159
1160 static gassign *
1161 gen_def_assigns (gimple_stmt_iterator *gsi, struct switch_conv_info *info)
1162 {
1163 int i;
1164 gassign *assign = NULL;
1165
1166 for (i = 0; i < info->phi_count; i++)
1167 {
1168 tree name = copy_ssa_name (info->target_inbound_names[i]);
1169 info->target_outbound_names[i] = name;
1170 assign = gimple_build_assign (name, info->default_values[i]);
1171 gsi_insert_before (gsi, assign, GSI_SAME_STMT);
1172 update_stmt (assign);
1173 }
1174 return assign;
1175 }
1176
1177 /* Deletes the unused bbs and edges that now contain the switch statement and
1178 its empty branch bbs. BBD is the now dead BB containing the original switch
1179 statement, FINAL is the last BB of the converted switch statement (in terms
1180 of succession). */
1181
1182 static void
1183 prune_bbs (basic_block bbd, basic_block final)
1184 {
1185 edge_iterator ei;
1186 edge e;
1187
1188 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
1189 {
1190 basic_block bb;
1191 bb = e->dest;
1192 remove_edge (e);
1193 if (bb != final)
1194 delete_basic_block (bb);
1195 }
1196 delete_basic_block (bbd);
1197 }
1198
1199 /* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
1200 from the basic block loading values from an array and E2F from the basic
1201 block loading default values. BBF is the last switch basic block (see the
1202 bbf description in the comment below). */
1203
1204 static void
1205 fix_phi_nodes (edge e1f, edge e2f, basic_block bbf,
1206 struct switch_conv_info *info)
1207 {
1208 gphi_iterator gsi;
1209 int i;
1210
1211 for (gsi = gsi_start_phis (bbf), i = 0;
1212 !gsi_end_p (gsi); gsi_next (&gsi), i++)
1213 {
1214 gphi *phi = gsi.phi ();
1215 add_phi_arg (phi, info->target_inbound_names[i], e1f, UNKNOWN_LOCATION);
1216 add_phi_arg (phi, info->target_outbound_names[i], e2f, UNKNOWN_LOCATION);
1217 }
1218 }
1219
1220 /* Creates a check whether the switch expression value actually falls into the
1221 range given by all the cases. If it does not, the temporaries are loaded
1222 with default values instead. SWTCH is the switch statement being converted.
1223
1224 bb0 is the bb with the switch statement, however, we'll end it with a
1225 condition instead.
1226
1227 bb1 is the bb to be used when the range check went ok. It is derived from
1228 the switch BB
1229
1230 bb2 is the bb taken when the expression evaluated outside of the range
1231 covered by the created arrays. It is populated by loads of default
1232 values.
1233
1234 bbF is a fall through for both bb1 and bb2 and contains exactly what
1235 originally followed the switch statement.
1236
1237 bbD contains the switch statement (in the end). It is unreachable but we
1238 still need to strip off its edges.
1239 */
1240
1241 static void
1242 gen_inbound_check (gswitch *swtch, struct switch_conv_info *info)
1243 {
1244 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
1245 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
1246 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
1247 glabel *label1, *label2, *label3;
1248 tree utype, tidx;
1249 tree bound;
1250
1251 gcond *cond_stmt;
1252
1253 gassign *last_assign;
1254 gimple_stmt_iterator gsi;
1255 basic_block bb0, bb1, bb2, bbf, bbd;
1256 edge e01, e02, e21, e1d, e1f, e2f;
1257 location_t loc = gimple_location (swtch);
1258
1259 gcc_assert (info->default_values);
1260
1261 bb0 = gimple_bb (swtch);
1262
1263 tidx = gimple_assign_lhs (info->arr_ref_first);
1264 utype = TREE_TYPE (tidx);
1265
1266 /* (end of) block 0 */
1267 gsi = gsi_for_stmt (info->arr_ref_first);
1268 gsi_next (&gsi);
1269
1270 bound = fold_convert_loc (loc, utype, info->range_size);
1271 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
1272 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
1273 update_stmt (cond_stmt);
1274
1275 /* block 2 */
1276 label2 = gimple_build_label (label_decl2);
1277 gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
1278 last_assign = gen_def_assigns (&gsi, info);
1279
1280 /* block 1 */
1281 label1 = gimple_build_label (label_decl1);
1282 gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
1283
1284 /* block F */
1285 gsi = gsi_start_bb (info->final_bb);
1286 label3 = gimple_build_label (label_decl3);
1287 gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
1288
1289 /* cfg fix */
1290 e02 = split_block (bb0, cond_stmt);
1291 bb2 = e02->dest;
1292
1293 e21 = split_block (bb2, last_assign);
1294 bb1 = e21->dest;
1295 remove_edge (e21);
1296
1297 e1d = split_block (bb1, info->arr_ref_last);
1298 bbd = e1d->dest;
1299 remove_edge (e1d);
1300
1301 /* flags and profiles of the edge for in-range values */
1302 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
1303 e01->probability = REG_BR_PROB_BASE - info->default_prob;
1304 e01->count = info->other_count;
1305
1306 /* flags and profiles of the edge taking care of out-of-range values */
1307 e02->flags &= ~EDGE_FALLTHRU;
1308 e02->flags |= EDGE_FALSE_VALUE;
1309 e02->probability = info->default_prob;
1310 e02->count = info->default_count;
1311
1312 bbf = info->final_bb;
1313
1314 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
1315 e1f->probability = REG_BR_PROB_BASE;
1316 e1f->count = info->other_count;
1317
1318 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
1319 e2f->probability = REG_BR_PROB_BASE;
1320 e2f->count = info->default_count;
1321
1322 /* frequencies of the new BBs */
1323 bb1->frequency = EDGE_FREQUENCY (e01);
1324 bb2->frequency = EDGE_FREQUENCY (e02);
1325 bbf->frequency = EDGE_FREQUENCY (e1f) + EDGE_FREQUENCY (e2f);
1326
1327 /* Tidy blocks that have become unreachable. */
1328 prune_bbs (bbd, info->final_bb);
1329
1330 /* Fixup the PHI nodes in bbF. */
1331 fix_phi_nodes (e1f, e2f, bbf, info);
1332
1333 /* Fix the dominator tree, if it is available. */
1334 if (dom_info_available_p (CDI_DOMINATORS))
1335 {
1336 vec<basic_block> bbs_to_fix_dom;
1337
1338 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
1339 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
1340 if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
1341 /* If bbD was the immediate dominator ... */
1342 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
1343
1344 bbs_to_fix_dom.create (4);
1345 bbs_to_fix_dom.quick_push (bb0);
1346 bbs_to_fix_dom.quick_push (bb1);
1347 bbs_to_fix_dom.quick_push (bb2);
1348 bbs_to_fix_dom.quick_push (bbf);
1349
1350 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
1351 bbs_to_fix_dom.release ();
1352 }
1353 }
1354
1355 /* The following function is invoked on every switch statement (the current one
1356 is given in SWTCH) and runs the individual phases of switch conversion on it
1357 one after another until one fails or the conversion is completed.
1358 Returns NULL on success, or a pointer to a string with the reason why the
1359 conversion failed. */
1360
1361 static const char *
1362 process_switch (gswitch *swtch)
1363 {
1364 struct switch_conv_info info;
1365
1366 /* Group case labels so that we get the right results from the heuristics
1367 that decide on the code generation approach for this switch. */
1368 group_case_labels_stmt (swtch);
1369
1370 /* If this switch is now a degenerate case with only a default label,
1371 there is nothing left for us to do. */
1372 if (gimple_switch_num_labels (swtch) < 2)
1373 return "switch is a degenerate case";
1374
1375 collect_switch_conv_info (swtch, &info);
1376
1377 /* No error markers should reach here (they should be filtered out
1378 during gimplification). */
1379 gcc_checking_assert (TREE_TYPE (info.index_expr) != error_mark_node);
1380
1381 /* A switch on a constant should have been optimized in tree-cfg-cleanup. */
1382 gcc_checking_assert (! TREE_CONSTANT (info.index_expr));
1383
1384 if (info.uniq <= MAX_CASE_BIT_TESTS)
1385 {
1386 if (expand_switch_using_bit_tests_p (info.range_size,
1387 info.uniq, info.count,
1388 optimize_bb_for_speed_p
1389 (gimple_bb (swtch))))
1390 {
1391 if (dump_file)
1392 fputs (" expanding as bit test is preferable\n", dump_file);
1393 emit_case_bit_tests (swtch, info.index_expr, info.range_min,
1394 info.range_size, info.range_max);
1395 loops_state_set (LOOPS_NEED_FIXUP);
1396 return NULL;
1397 }
1398
1399 if (info.uniq <= 2)
1400 /* This will be expanded as a decision tree in stmt.c:expand_case. */
1401 return " expanding as jumps is preferable";
1402 }
1403
1404 /* If there is no common successor, we cannot do the transformation. */
1405 if (! info.final_bb)
1406 return "no common successor to all case label target blocks found";
1407
1408 /* Check the case label values are within reasonable range: */
1409 if (!check_range (&info))
1410 {
1411 gcc_assert (info.reason);
1412 return info.reason;
1413 }
1414
1415 /* For all the cases, see whether they are empty, the assignments they
1416 represent constant and so on... */
1417 if (! check_all_empty_except_final (&info))
1418 {
1419 gcc_assert (info.reason);
1420 return info.reason;
1421 }
1422 if (!check_final_bb (&info))
1423 {
1424 gcc_assert (info.reason);
1425 return info.reason;
1426 }
1427
1428 /* At this point all checks have passed and we can proceed with the
1429 transformation. */
1430
1431 create_temp_arrays (&info);
1432 gather_default_values (gimple_switch_default_label (swtch), &info);
1433 build_constructors (swtch, &info);
1434
1435 build_arrays (swtch, &info); /* Build the static arrays and assignments. */
1436 gen_inbound_check (swtch, &info); /* Build the bounds check. */
1437
1438 /* Cleanup: */
1439 free_temp_arrays (&info);
1440 return NULL;
1441 }
1442
1443 /* The main function of the pass scans statements for switches and invokes
1444 process_switch on them. */
1445
1446 namespace {
1447
1448 const pass_data pass_data_convert_switch =
1449 {
1450 GIMPLE_PASS, /* type */
1451 "switchconv", /* name */
1452 OPTGROUP_NONE, /* optinfo_flags */
1453 TV_TREE_SWITCH_CONVERSION, /* tv_id */
1454 ( PROP_cfg | PROP_ssa ), /* properties_required */
1455 0, /* properties_provided */
1456 0, /* properties_destroyed */
1457 0, /* todo_flags_start */
1458 TODO_update_ssa, /* todo_flags_finish */
1459 };
1460
1461 class pass_convert_switch : public gimple_opt_pass
1462 {
1463 public:
1464 pass_convert_switch (gcc::context *ctxt)
1465 : gimple_opt_pass (pass_data_convert_switch, ctxt)
1466 {}
1467
1468 /* opt_pass methods: */
1469 virtual bool gate (function *) { return flag_tree_switch_conversion != 0; }
1470 virtual unsigned int execute (function *);
1471
1472 }; // class pass_convert_switch
1473
1474 unsigned int
1475 pass_convert_switch::execute (function *fun)
1476 {
1477 basic_block bb;
1478
1479 FOR_EACH_BB_FN (bb, fun)
1480 {
1481 const char *failure_reason;
1482 gimple stmt = last_stmt (bb);
1483 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1484 {
1485 if (dump_file)
1486 {
1487 expanded_location loc = expand_location (gimple_location (stmt));
1488
1489 fprintf (dump_file, "beginning to process the following "
1490 "SWITCH statement (%s:%d) : ------- \n",
1491 loc.file, loc.line);
1492 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1493 putc ('\n', dump_file);
1494 }
1495
1496 failure_reason = process_switch (as_a <gswitch *> (stmt));
1497 if (! failure_reason)
1498 {
1499 if (dump_file)
1500 {
1501 fputs ("Switch converted\n", dump_file);
1502 fputs ("--------------------------------\n", dump_file);
1503 }
1504
1505 /* Make no effort to update the post-dominator tree. It is actually not
1506 that hard for the transformations we have performed, but it is not
1507 supported by iterate_fix_dominators. */
1508 free_dominance_info (CDI_POST_DOMINATORS);
1509 }
1510 else
1511 {
1512 if (dump_file)
1513 {
1514 fputs ("Bailing out - ", dump_file);
1515 fputs (failure_reason, dump_file);
1516 fputs ("\n--------------------------------\n", dump_file);
1517 }
1518 }
1519 }
1520 }
1521
1522 return 0;
1523 }
1524
1525 } // anon namespace
1526
1527 gimple_opt_pass *
1528 make_pass_convert_switch (gcc::context *ctxt)
1529 {
1530 return new pass_convert_switch (ctxt);
1531 }