eb5fbebd693a48a212944049c15230b6b04376d3
[gcc.git] / gcc / tree-switch-conversion.c
1 /* Lower GIMPLE_SWITCH expressions to something more efficient than
2 a jump table.
3 Copyright (C) 2006-2014 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This file handles the lowering of GIMPLE_SWITCH to an indexed
23 load, or a series of bit-test-and-branch expressions. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "line-map.h"
30 #include "params.h"
31 #include "flags.h"
32 #include "tree.h"
33 #include "varasm.h"
34 #include "stor-layout.h"
35 #include "predict.h"
36 #include "vec.h"
37 #include "hashtab.h"
38 #include "hash-set.h"
39 #include "machmode.h"
40 #include "hard-reg-set.h"
41 #include "input.h"
42 #include "function.h"
43 #include "dominance.h"
44 #include "cfg.h"
45 #include "cfganal.h"
46 #include "basic-block.h"
47 #include "tree-ssa-alias.h"
48 #include "internal-fn.h"
49 #include "gimple-expr.h"
50 #include "is-a.h"
51 #include "gimple.h"
52 #include "gimplify.h"
53 #include "gimple-iterator.h"
54 #include "gimplify-me.h"
55 #include "gimple-ssa.h"
56 #include "hash-map.h"
57 #include "plugin-api.h"
58 #include "ipa-ref.h"
59 #include "cgraph.h"
60 #include "tree-cfg.h"
61 #include "tree-phinodes.h"
62 #include "stringpool.h"
63 #include "tree-ssanames.h"
64 #include "tree-pass.h"
65 #include "gimple-pretty-print.h"
66 #include "cfgloop.h"
67
68 /* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
69 type in the GIMPLE type system that is language-independent? */
70 #include "langhooks.h"
71
72 /* Need to include expr.h and optabs.h for lshift_cheap_p. */
73 #include "expr.h"
74 #include "insn-codes.h"
75 #include "optabs.h"
76 \f
77 /* Maximum number of case bit tests.
78 FIXME: This should be derived from PARAM_CASE_VALUES_THRESHOLD and
79 targetm.case_values_threshold(), or be its own param. */
80 #define MAX_CASE_BIT_TESTS 3
81
82 /* Split the basic block at the statement pointed to by GSIP, and insert
83 a branch to the target basic block of E_TRUE conditional on tree
84 expression COND.
85
86 It is assumed that there is already an edge from the to-be-split
87 basic block to E_TRUE->dest block. This edge is removed, and the
88 profile information on the edge is re-used for the new conditional
89 jump.
90
91 The CFG is updated. The dominator tree will not be valid after
92 this transformation, but the immediate dominators are updated if
93 UPDATE_DOMINATORS is true.
94
95 Returns the newly created basic block. */
96
97 static basic_block
98 hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
99 tree cond, edge e_true,
100 bool update_dominators)
101 {
102 tree tmp;
103 gcond *cond_stmt;
104 edge e_false;
105 basic_block new_bb, split_bb = gsi_bb (*gsip);
106 bool dominated_e_true = false;
107
108 gcc_assert (e_true->src == split_bb);
109
110 if (update_dominators
111 && get_immediate_dominator (CDI_DOMINATORS, e_true->dest) == split_bb)
112 dominated_e_true = true;
113
114 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
115 /*before=*/true, GSI_SAME_STMT);
116 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
117 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
118
119 e_false = split_block (split_bb, cond_stmt);
120 new_bb = e_false->dest;
121 redirect_edge_pred (e_true, split_bb);
122
123 e_true->flags &= ~EDGE_FALLTHRU;
124 e_true->flags |= EDGE_TRUE_VALUE;
125
126 e_false->flags &= ~EDGE_FALLTHRU;
127 e_false->flags |= EDGE_FALSE_VALUE;
128 e_false->probability = REG_BR_PROB_BASE - e_true->probability;
129 e_false->count = split_bb->count - e_true->count;
130 new_bb->count = e_false->count;
131
132 if (update_dominators)
133 {
134 if (dominated_e_true)
135 set_immediate_dominator (CDI_DOMINATORS, e_true->dest, split_bb);
136 set_immediate_dominator (CDI_DOMINATORS, e_false->dest, split_bb);
137 }
138
139 return new_bb;
140 }
141
142
143 /* Return true if a switch should be expanded as a bit test.
144 RANGE is the difference between highest and lowest case.
145 UNIQ is number of unique case node targets, not counting the default case.
146 COUNT is the number of comparisons needed, not counting the default case. */
147
148 static bool
149 expand_switch_using_bit_tests_p (tree range,
150 unsigned int uniq,
151 unsigned int count, bool speed_p)
152 {
153 return (((uniq == 1 && count >= 3)
154 || (uniq == 2 && count >= 5)
155 || (uniq == 3 && count >= 6))
156 && lshift_cheap_p (speed_p)
157 && compare_tree_int (range, GET_MODE_BITSIZE (word_mode)) < 0
158 && compare_tree_int (range, 0) > 0);
159 }
160 \f
161 /* Implement switch statements with bit tests
162
163 A GIMPLE switch statement can be expanded to a short sequence of bit-wise
164 comparisons. "switch(x)" is converted into "if ((1 << (x-MINVAL)) & CST)"
165 where CST and MINVAL are integer constants. This is better than a series
166 of compare-and-banch insns in some cases, e.g. we can implement:
167
168 if ((x==4) || (x==6) || (x==9) || (x==11))
169
170 as a single bit test:
171
172 if ((1<<x) & ((1<<4)|(1<<6)|(1<<9)|(1<<11)))
173
174 This transformation is only applied if the number of case targets is small,
175 if CST constains at least 3 bits, and "1 << x" is cheap. The bit tests are
176 performed in "word_mode".
177
178 The following example shows the code the transformation generates:
179
180 int bar(int x)
181 {
182 switch (x)
183 {
184 case '0': case '1': case '2': case '3': case '4':
185 case '5': case '6': case '7': case '8': case '9':
186 case 'A': case 'B': case 'C': case 'D': case 'E':
187 case 'F':
188 return 1;
189 }
190 return 0;
191 }
192
193 ==>
194
195 bar (int x)
196 {
197 tmp1 = x - 48;
198 if (tmp1 > (70 - 48)) goto L2;
199 tmp2 = 1 << tmp1;
200 tmp3 = 0b11111100000001111111111;
201 if ((tmp2 & tmp3) != 0) goto L1 ; else goto L2;
202 L1:
203 return 1;
204 L2:
205 return 0;
206 }
207
208 TODO: There are still some improvements to this transformation that could
209 be implemented:
210
211 * A narrower mode than word_mode could be used if that is cheaper, e.g.
212 for x86_64 where a narrower-mode shift may result in smaller code.
213
214 * The compounded constant could be shifted rather than the one. The
215 test would be either on the sign bit or on the least significant bit,
216 depending on the direction of the shift. On some machines, the test
217 for the branch would be free if the bit to test is already set by the
218 shift operation.
219
220 This transformation was contributed by Roger Sayle, see this e-mail:
221 http://gcc.gnu.org/ml/gcc-patches/2003-01/msg01950.html
222 */
223
224 /* A case_bit_test represents a set of case nodes that may be
225 selected from using a bit-wise comparison. HI and LO hold
226 the integer to be tested against, TARGET_EDGE contains the
227 edge to the basic block to jump to upon success and BITS
228 counts the number of case nodes handled by this test,
229 typically the number of bits set in HI:LO. The LABEL field
230 is used to quickly identify all cases in this set without
231 looking at label_to_block for every case label. */
232
233 struct case_bit_test
234 {
235 wide_int mask;
236 edge target_edge;
237 tree label;
238 int bits;
239 };
240
241 /* Comparison function for qsort to order bit tests by decreasing
242 probability of execution. Our best guess comes from a measured
243 profile. If the profile counts are equal, break even on the
244 number of case nodes, i.e. the node with the most cases gets
245 tested first.
246
247 TODO: Actually this currently runs before a profile is available.
248 Therefore the case-as-bit-tests transformation should be done
249 later in the pass pipeline, or something along the lines of
250 "Efficient and effective branch reordering using profile data"
251 (Yang et. al., 2002) should be implemented (although, how good
252 is a paper is called "Efficient and effective ..." when the
253 latter is implied by the former, but oh well...). */
254
255 static int
256 case_bit_test_cmp (const void *p1, const void *p2)
257 {
258 const struct case_bit_test *const d1 = (const struct case_bit_test *) p1;
259 const struct case_bit_test *const d2 = (const struct case_bit_test *) p2;
260
261 if (d2->target_edge->count != d1->target_edge->count)
262 return d2->target_edge->count - d1->target_edge->count;
263 if (d2->bits != d1->bits)
264 return d2->bits - d1->bits;
265
266 /* Stabilize the sort. */
267 return LABEL_DECL_UID (d2->label) - LABEL_DECL_UID (d1->label);
268 }
269
270 /* Expand a switch statement by a short sequence of bit-wise
271 comparisons. "switch(x)" is effectively converted into
272 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
273 integer constants.
274
275 INDEX_EXPR is the value being switched on.
276
277 MINVAL is the lowest case value of in the case nodes,
278 and RANGE is highest value minus MINVAL. MINVAL and RANGE
279 are not guaranteed to be of the same type as INDEX_EXPR
280 (the gimplifier doesn't change the type of case label values,
281 and MINVAL and RANGE are derived from those values).
282 MAXVAL is MINVAL + RANGE.
283
284 There *MUST* be MAX_CASE_BIT_TESTS or less unique case
285 node targets. */
286
287 static void
288 emit_case_bit_tests (gswitch *swtch, tree index_expr,
289 tree minval, tree range, tree maxval)
290 {
291 struct case_bit_test test[MAX_CASE_BIT_TESTS];
292 unsigned int i, j, k;
293 unsigned int count;
294
295 basic_block switch_bb = gimple_bb (swtch);
296 basic_block default_bb, new_default_bb, new_bb;
297 edge default_edge;
298 bool update_dom = dom_info_available_p (CDI_DOMINATORS);
299
300 vec<basic_block> bbs_to_fix_dom = vNULL;
301
302 tree index_type = TREE_TYPE (index_expr);
303 tree unsigned_index_type = unsigned_type_for (index_type);
304 unsigned int branch_num = gimple_switch_num_labels (swtch);
305
306 gimple_stmt_iterator gsi;
307 gassign *shift_stmt;
308
309 tree idx, tmp, csui;
310 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
311 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
312 tree word_mode_one = fold_convert (word_type_node, integer_one_node);
313 int prec = TYPE_PRECISION (word_type_node);
314 wide_int wone = wi::one (prec);
315
316 memset (&test, 0, sizeof (test));
317
318 /* Get the edge for the default case. */
319 tmp = gimple_switch_default_label (swtch);
320 default_bb = label_to_block (CASE_LABEL (tmp));
321 default_edge = find_edge (switch_bb, default_bb);
322
323 /* Go through all case labels, and collect the case labels, profile
324 counts, and other information we need to build the branch tests. */
325 count = 0;
326 for (i = 1; i < branch_num; i++)
327 {
328 unsigned int lo, hi;
329 tree cs = gimple_switch_label (swtch, i);
330 tree label = CASE_LABEL (cs);
331 edge e = find_edge (switch_bb, label_to_block (label));
332 for (k = 0; k < count; k++)
333 if (e == test[k].target_edge)
334 break;
335
336 if (k == count)
337 {
338 gcc_checking_assert (count < MAX_CASE_BIT_TESTS);
339 test[k].mask = wi::zero (prec);
340 test[k].target_edge = e;
341 test[k].label = label;
342 test[k].bits = 1;
343 count++;
344 }
345 else
346 test[k].bits++;
347
348 lo = tree_to_uhwi (int_const_binop (MINUS_EXPR,
349 CASE_LOW (cs), minval));
350 if (CASE_HIGH (cs) == NULL_TREE)
351 hi = lo;
352 else
353 hi = tree_to_uhwi (int_const_binop (MINUS_EXPR,
354 CASE_HIGH (cs), minval));
355
356 for (j = lo; j <= hi; j++)
357 test[k].mask |= wi::lshift (wone, j);
358 }
359
360 qsort (test, count, sizeof (*test), case_bit_test_cmp);
361
362 /* If all values are in the 0 .. BITS_PER_WORD-1 range, we can get rid of
363 the minval subtractions, but it might make the mask constants more
364 expensive. So, compare the costs. */
365 if (compare_tree_int (minval, 0) > 0
366 && compare_tree_int (maxval, GET_MODE_BITSIZE (word_mode)) < 0)
367 {
368 int cost_diff;
369 HOST_WIDE_INT m = tree_to_uhwi (minval);
370 rtx reg = gen_raw_REG (word_mode, 10000);
371 bool speed_p = optimize_bb_for_speed_p (gimple_bb (swtch));
372 cost_diff = set_rtx_cost (gen_rtx_PLUS (word_mode, reg,
373 GEN_INT (-m)), speed_p);
374 for (i = 0; i < count; i++)
375 {
376 rtx r = immed_wide_int_const (test[i].mask, word_mode);
377 cost_diff += set_src_cost (gen_rtx_AND (word_mode, reg, r), speed_p);
378 r = immed_wide_int_const (wi::lshift (test[i].mask, m), word_mode);
379 cost_diff -= set_src_cost (gen_rtx_AND (word_mode, reg, r), speed_p);
380 }
381 if (cost_diff > 0)
382 {
383 for (i = 0; i < count; i++)
384 test[i].mask = wi::lshift (test[i].mask, m);
385 minval = build_zero_cst (TREE_TYPE (minval));
386 range = maxval;
387 }
388 }
389
390 /* We generate two jumps to the default case label.
391 Split the default edge, so that we don't have to do any PHI node
392 updating. */
393 new_default_bb = split_edge (default_edge);
394
395 if (update_dom)
396 {
397 bbs_to_fix_dom.create (10);
398 bbs_to_fix_dom.quick_push (switch_bb);
399 bbs_to_fix_dom.quick_push (default_bb);
400 bbs_to_fix_dom.quick_push (new_default_bb);
401 }
402
403 /* Now build the test-and-branch code. */
404
405 gsi = gsi_last_bb (switch_bb);
406
407 /* idx = (unsigned)x - minval. */
408 idx = fold_convert (unsigned_index_type, index_expr);
409 idx = fold_build2 (MINUS_EXPR, unsigned_index_type, idx,
410 fold_convert (unsigned_index_type, minval));
411 idx = force_gimple_operand_gsi (&gsi, idx,
412 /*simple=*/true, NULL_TREE,
413 /*before=*/true, GSI_SAME_STMT);
414
415 /* if (idx > range) goto default */
416 range = force_gimple_operand_gsi (&gsi,
417 fold_convert (unsigned_index_type, range),
418 /*simple=*/true, NULL_TREE,
419 /*before=*/true, GSI_SAME_STMT);
420 tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
421 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, default_edge, update_dom);
422 if (update_dom)
423 bbs_to_fix_dom.quick_push (new_bb);
424 gcc_assert (gimple_bb (swtch) == new_bb);
425 gsi = gsi_last_bb (new_bb);
426
427 /* Any blocks dominated by the GIMPLE_SWITCH, but that are not successors
428 of NEW_BB, are still immediately dominated by SWITCH_BB. Make it so. */
429 if (update_dom)
430 {
431 vec<basic_block> dom_bbs;
432 basic_block dom_son;
433
434 dom_bbs = get_dominated_by (CDI_DOMINATORS, new_bb);
435 FOR_EACH_VEC_ELT (dom_bbs, i, dom_son)
436 {
437 edge e = find_edge (new_bb, dom_son);
438 if (e && single_pred_p (e->dest))
439 continue;
440 set_immediate_dominator (CDI_DOMINATORS, dom_son, switch_bb);
441 bbs_to_fix_dom.safe_push (dom_son);
442 }
443 dom_bbs.release ();
444 }
445
446 /* csui = (1 << (word_mode) idx) */
447 csui = make_ssa_name (word_type_node);
448 tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one,
449 fold_convert (word_type_node, idx));
450 tmp = force_gimple_operand_gsi (&gsi, tmp,
451 /*simple=*/false, NULL_TREE,
452 /*before=*/true, GSI_SAME_STMT);
453 shift_stmt = gimple_build_assign (csui, tmp);
454 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
455 update_stmt (shift_stmt);
456
457 /* for each unique set of cases:
458 if (const & csui) goto target */
459 for (k = 0; k < count; k++)
460 {
461 tmp = wide_int_to_tree (word_type_node, test[k].mask);
462 tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp);
463 tmp = force_gimple_operand_gsi (&gsi, tmp,
464 /*simple=*/true, NULL_TREE,
465 /*before=*/true, GSI_SAME_STMT);
466 tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero);
467 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_edge,
468 update_dom);
469 if (update_dom)
470 bbs_to_fix_dom.safe_push (new_bb);
471 gcc_assert (gimple_bb (swtch) == new_bb);
472 gsi = gsi_last_bb (new_bb);
473 }
474
475 /* We should have removed all edges now. */
476 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
477
478 /* If nothing matched, go to the default label. */
479 make_edge (gsi_bb (gsi), new_default_bb, EDGE_FALLTHRU);
480
481 /* The GIMPLE_SWITCH is now redundant. */
482 gsi_remove (&gsi, true);
483
484 if (update_dom)
485 {
486 /* Fix up the dominator tree. */
487 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
488 bbs_to_fix_dom.release ();
489 }
490 }
491 \f
492 /*
493 Switch initialization conversion
494
495 The following pass changes simple initializations of scalars in a switch
496 statement into initializations from a static array. Obviously, the values
497 must be constant and known at compile time and a default branch must be
498 provided. For example, the following code:
499
500 int a,b;
501
502 switch (argc)
503 {
504 case 1:
505 case 2:
506 a_1 = 8;
507 b_1 = 6;
508 break;
509 case 3:
510 a_2 = 9;
511 b_2 = 5;
512 break;
513 case 12:
514 a_3 = 10;
515 b_3 = 4;
516 break;
517 default:
518 a_4 = 16;
519 b_4 = 1;
520 break;
521 }
522 a_5 = PHI <a_1, a_2, a_3, a_4>
523 b_5 = PHI <b_1, b_2, b_3, b_4>
524
525
526 is changed into:
527
528 static const int = CSWTCH01[] = {6, 6, 5, 1, 1, 1, 1, 1, 1, 1, 1, 4};
529 static const int = CSWTCH02[] = {8, 8, 9, 16, 16, 16, 16, 16, 16, 16,
530 16, 16, 10};
531
532 if (((unsigned) argc) - 1 < 11)
533 {
534 a_6 = CSWTCH02[argc - 1];
535 b_6 = CSWTCH01[argc - 1];
536 }
537 else
538 {
539 a_7 = 16;
540 b_7 = 1;
541 }
542 a_5 = PHI <a_6, a_7>
543 b_b = PHI <b_6, b_7>
544
545 There are further constraints. Specifically, the range of values across all
546 case labels must not be bigger than SWITCH_CONVERSION_BRANCH_RATIO (default
547 eight) times the number of the actual switch branches.
548
549 This transformation was contributed by Martin Jambor, see this e-mail:
550 http://gcc.gnu.org/ml/gcc-patches/2008-07/msg00011.html */
551
552 /* The main structure of the pass. */
553 struct switch_conv_info
554 {
555 /* The expression used to decide the switch branch. */
556 tree index_expr;
557
558 /* The following integer constants store the minimum and maximum value
559 covered by the case labels. */
560 tree range_min;
561 tree range_max;
562
563 /* The difference between the above two numbers. Stored here because it
564 is used in all the conversion heuristics, as well as for some of the
565 transformation, and it is expensive to re-compute it all the time. */
566 tree range_size;
567
568 /* Basic block that contains the actual GIMPLE_SWITCH. */
569 basic_block switch_bb;
570
571 /* Basic block that is the target of the default case. */
572 basic_block default_bb;
573
574 /* The single successor block of all branches out of the GIMPLE_SWITCH,
575 if such a block exists. Otherwise NULL. */
576 basic_block final_bb;
577
578 /* The probability of the default edge in the replaced switch. */
579 int default_prob;
580
581 /* The count of the default edge in the replaced switch. */
582 gcov_type default_count;
583
584 /* Combined count of all other (non-default) edges in the replaced switch. */
585 gcov_type other_count;
586
587 /* Number of phi nodes in the final bb (that we'll be replacing). */
588 int phi_count;
589
590 /* Array of default values, in the same order as phi nodes. */
591 tree *default_values;
592
593 /* Constructors of new static arrays. */
594 vec<constructor_elt, va_gc> **constructors;
595
596 /* Array of ssa names that are initialized with a value from a new static
597 array. */
598 tree *target_inbound_names;
599
600 /* Array of ssa names that are initialized with the default value if the
601 switch expression is out of range. */
602 tree *target_outbound_names;
603
604 /* The first load statement that loads a temporary from a new static array.
605 */
606 gimple arr_ref_first;
607
608 /* The last load statement that loads a temporary from a new static array. */
609 gimple arr_ref_last;
610
611 /* String reason why the case wasn't a good candidate that is written to the
612 dump file, if there is one. */
613 const char *reason;
614
615 /* Parameters for expand_switch_using_bit_tests. Should be computed
616 the same way as in expand_case. */
617 unsigned int uniq;
618 unsigned int count;
619 };
620
621 /* Collect information about GIMPLE_SWITCH statement SWTCH into INFO. */
622
623 static void
624 collect_switch_conv_info (gswitch *swtch, struct switch_conv_info *info)
625 {
626 unsigned int branch_num = gimple_switch_num_labels (swtch);
627 tree min_case, max_case;
628 unsigned int count, i;
629 edge e, e_default;
630 edge_iterator ei;
631
632 memset (info, 0, sizeof (*info));
633
634 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
635 is a default label which is the first in the vector.
636 Collect the bits we can deduce from the CFG. */
637 info->index_expr = gimple_switch_index (swtch);
638 info->switch_bb = gimple_bb (swtch);
639 info->default_bb =
640 label_to_block (CASE_LABEL (gimple_switch_default_label (swtch)));
641 e_default = find_edge (info->switch_bb, info->default_bb);
642 info->default_prob = e_default->probability;
643 info->default_count = e_default->count;
644 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
645 if (e != e_default)
646 info->other_count += e->count;
647
648 /* See if there is one common successor block for all branch
649 targets. If it exists, record it in FINAL_BB.
650 Start with the destination of the default case as guess
651 or its destination in case it is a forwarder block. */
652 if (! single_pred_p (e_default->dest))
653 info->final_bb = e_default->dest;
654 else if (single_succ_p (e_default->dest)
655 && ! single_pred_p (single_succ (e_default->dest)))
656 info->final_bb = single_succ (e_default->dest);
657 /* Require that all switch destinations are either that common
658 FINAL_BB or a forwarder to it. */
659 if (info->final_bb)
660 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
661 {
662 if (e->dest == info->final_bb)
663 continue;
664
665 if (single_pred_p (e->dest)
666 && single_succ_p (e->dest)
667 && single_succ (e->dest) == info->final_bb)
668 continue;
669
670 info->final_bb = NULL;
671 break;
672 }
673
674 /* Get upper and lower bounds of case values, and the covered range. */
675 min_case = gimple_switch_label (swtch, 1);
676 max_case = gimple_switch_label (swtch, branch_num - 1);
677
678 info->range_min = CASE_LOW (min_case);
679 if (CASE_HIGH (max_case) != NULL_TREE)
680 info->range_max = CASE_HIGH (max_case);
681 else
682 info->range_max = CASE_LOW (max_case);
683
684 info->range_size =
685 int_const_binop (MINUS_EXPR, info->range_max, info->range_min);
686
687 /* Get a count of the number of case labels. Single-valued case labels
688 simply count as one, but a case range counts double, since it may
689 require two compares if it gets lowered as a branching tree. */
690 count = 0;
691 for (i = 1; i < branch_num; i++)
692 {
693 tree elt = gimple_switch_label (swtch, i);
694 count++;
695 if (CASE_HIGH (elt)
696 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
697 count++;
698 }
699 info->count = count;
700
701 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
702 block. Assume a CFG cleanup would have already removed degenerate
703 switch statements, this allows us to just use EDGE_COUNT. */
704 info->uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
705 }
706
707 /* Checks whether the range given by individual case statements of the SWTCH
708 switch statement isn't too big and whether the number of branches actually
709 satisfies the size of the new array. */
710
711 static bool
712 check_range (struct switch_conv_info *info)
713 {
714 gcc_assert (info->range_size);
715 if (!tree_fits_uhwi_p (info->range_size))
716 {
717 info->reason = "index range way too large or otherwise unusable";
718 return false;
719 }
720
721 if (tree_to_uhwi (info->range_size)
722 > ((unsigned) info->count * SWITCH_CONVERSION_BRANCH_RATIO))
723 {
724 info->reason = "the maximum range-branch ratio exceeded";
725 return false;
726 }
727
728 return true;
729 }
730
731 /* Checks whether all but the FINAL_BB basic blocks are empty. */
732
733 static bool
734 check_all_empty_except_final (struct switch_conv_info *info)
735 {
736 edge e;
737 edge_iterator ei;
738
739 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
740 {
741 if (e->dest == info->final_bb)
742 continue;
743
744 if (!empty_block_p (e->dest))
745 {
746 info->reason = "bad case - a non-final BB not empty";
747 return false;
748 }
749 }
750
751 return true;
752 }
753
754 /* This function checks whether all required values in phi nodes in final_bb
755 are constants. Required values are those that correspond to a basic block
756 which is a part of the examined switch statement. It returns true if the
757 phi nodes are OK, otherwise false. */
758
759 static bool
760 check_final_bb (struct switch_conv_info *info)
761 {
762 gphi_iterator gsi;
763
764 info->phi_count = 0;
765 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
766 {
767 gphi *phi = gsi.phi ();
768 unsigned int i;
769
770 info->phi_count++;
771
772 for (i = 0; i < gimple_phi_num_args (phi); i++)
773 {
774 basic_block bb = gimple_phi_arg_edge (phi, i)->src;
775
776 if (bb == info->switch_bb
777 || (single_pred_p (bb) && single_pred (bb) == info->switch_bb))
778 {
779 tree reloc, val;
780
781 val = gimple_phi_arg_def (phi, i);
782 if (!is_gimple_ip_invariant (val))
783 {
784 info->reason = "non-invariant value from a case";
785 return false; /* Non-invariant argument. */
786 }
787 reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
788 if ((flag_pic && reloc != null_pointer_node)
789 || (!flag_pic && reloc == NULL_TREE))
790 {
791 if (reloc)
792 info->reason
793 = "value from a case would need runtime relocations";
794 else
795 info->reason
796 = "value from a case is not a valid initializer";
797 return false;
798 }
799 }
800 }
801 }
802
803 return true;
804 }
805
806 /* The following function allocates default_values, target_{in,out}_names and
807 constructors arrays. The last one is also populated with pointers to
808 vectors that will become constructors of new arrays. */
809
810 static void
811 create_temp_arrays (struct switch_conv_info *info)
812 {
813 int i;
814
815 info->default_values = XCNEWVEC (tree, info->phi_count * 3);
816 /* ??? Macros do not support multi argument templates in their
817 argument list. We create a typedef to work around that problem. */
818 typedef vec<constructor_elt, va_gc> *vec_constructor_elt_gc;
819 info->constructors = XCNEWVEC (vec_constructor_elt_gc, info->phi_count);
820 info->target_inbound_names = info->default_values + info->phi_count;
821 info->target_outbound_names = info->target_inbound_names + info->phi_count;
822 for (i = 0; i < info->phi_count; i++)
823 vec_alloc (info->constructors[i], tree_to_uhwi (info->range_size) + 1);
824 }
825
826 /* Free the arrays created by create_temp_arrays(). The vectors that are
827 created by that function are not freed here, however, because they have
828 already become constructors and must be preserved. */
829
830 static void
831 free_temp_arrays (struct switch_conv_info *info)
832 {
833 XDELETEVEC (info->constructors);
834 XDELETEVEC (info->default_values);
835 }
836
837 /* Populate the array of default values in the order of phi nodes.
838 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch. */
839
840 static void
841 gather_default_values (tree default_case, struct switch_conv_info *info)
842 {
843 gphi_iterator gsi;
844 basic_block bb = label_to_block (CASE_LABEL (default_case));
845 edge e;
846 int i = 0;
847
848 gcc_assert (CASE_LOW (default_case) == NULL_TREE);
849
850 if (bb == info->final_bb)
851 e = find_edge (info->switch_bb, bb);
852 else
853 e = single_succ_edge (bb);
854
855 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
856 {
857 gphi *phi = gsi.phi ();
858 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
859 gcc_assert (val);
860 info->default_values[i++] = val;
861 }
862 }
863
864 /* The following function populates the vectors in the constructors array with
865 future contents of the static arrays. The vectors are populated in the
866 order of phi nodes. SWTCH is the switch statement being converted. */
867
868 static void
869 build_constructors (gswitch *swtch, struct switch_conv_info *info)
870 {
871 unsigned i, branch_num = gimple_switch_num_labels (swtch);
872 tree pos = info->range_min;
873
874 for (i = 1; i < branch_num; i++)
875 {
876 tree cs = gimple_switch_label (swtch, i);
877 basic_block bb = label_to_block (CASE_LABEL (cs));
878 edge e;
879 tree high;
880 gphi_iterator gsi;
881 int j;
882
883 if (bb == info->final_bb)
884 e = find_edge (info->switch_bb, bb);
885 else
886 e = single_succ_edge (bb);
887 gcc_assert (e);
888
889 while (tree_int_cst_lt (pos, CASE_LOW (cs)))
890 {
891 int k;
892 for (k = 0; k < info->phi_count; k++)
893 {
894 constructor_elt elt;
895
896 elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min);
897 elt.value
898 = unshare_expr_without_location (info->default_values[k]);
899 info->constructors[k]->quick_push (elt);
900 }
901
902 pos = int_const_binop (PLUS_EXPR, pos,
903 build_int_cst (TREE_TYPE (pos), 1));
904 }
905 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
906
907 j = 0;
908 if (CASE_HIGH (cs))
909 high = CASE_HIGH (cs);
910 else
911 high = CASE_LOW (cs);
912 for (gsi = gsi_start_phis (info->final_bb);
913 !gsi_end_p (gsi); gsi_next (&gsi))
914 {
915 gphi *phi = gsi.phi ();
916 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
917 tree low = CASE_LOW (cs);
918 pos = CASE_LOW (cs);
919
920 do
921 {
922 constructor_elt elt;
923
924 elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min);
925 elt.value = unshare_expr_without_location (val);
926 info->constructors[j]->quick_push (elt);
927
928 pos = int_const_binop (PLUS_EXPR, pos,
929 build_int_cst (TREE_TYPE (pos), 1));
930 } while (!tree_int_cst_lt (high, pos)
931 && tree_int_cst_lt (low, pos));
932 j++;
933 }
934 }
935 }
936
937 /* If all values in the constructor vector are the same, return the value.
938 Otherwise return NULL_TREE. Not supposed to be called for empty
939 vectors. */
940
941 static tree
942 constructor_contains_same_values_p (vec<constructor_elt, va_gc> *vec)
943 {
944 unsigned int i;
945 tree prev = NULL_TREE;
946 constructor_elt *elt;
947
948 FOR_EACH_VEC_SAFE_ELT (vec, i, elt)
949 {
950 if (!prev)
951 prev = elt->value;
952 else if (!operand_equal_p (elt->value, prev, OEP_ONLY_CONST))
953 return NULL_TREE;
954 }
955 return prev;
956 }
957
958 /* Return type which should be used for array elements, either TYPE,
959 or for integral type some smaller integral type that can still hold
960 all the constants. */
961
962 static tree
963 array_value_type (gswitch *swtch, tree type, int num,
964 struct switch_conv_info *info)
965 {
966 unsigned int i, len = vec_safe_length (info->constructors[num]);
967 constructor_elt *elt;
968 machine_mode mode;
969 int sign = 0;
970 tree smaller_type;
971
972 if (!INTEGRAL_TYPE_P (type))
973 return type;
974
975 mode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (TYPE_MODE (type)));
976 if (GET_MODE_SIZE (TYPE_MODE (type)) <= GET_MODE_SIZE (mode))
977 return type;
978
979 if (len < (optimize_bb_for_size_p (gimple_bb (swtch)) ? 2 : 32))
980 return type;
981
982 FOR_EACH_VEC_SAFE_ELT (info->constructors[num], i, elt)
983 {
984 wide_int cst;
985
986 if (TREE_CODE (elt->value) != INTEGER_CST)
987 return type;
988
989 cst = elt->value;
990 while (1)
991 {
992 unsigned int prec = GET_MODE_BITSIZE (mode);
993 if (prec > HOST_BITS_PER_WIDE_INT)
994 return type;
995
996 if (sign >= 0 && cst == wi::zext (cst, prec))
997 {
998 if (sign == 0 && cst == wi::sext (cst, prec))
999 break;
1000 sign = 1;
1001 break;
1002 }
1003 if (sign <= 0 && cst == wi::sext (cst, prec))
1004 {
1005 sign = -1;
1006 break;
1007 }
1008
1009 if (sign == 1)
1010 sign = 0;
1011
1012 mode = GET_MODE_WIDER_MODE (mode);
1013 if (mode == VOIDmode
1014 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (TYPE_MODE (type)))
1015 return type;
1016 }
1017 }
1018
1019 if (sign == 0)
1020 sign = TYPE_UNSIGNED (type) ? 1 : -1;
1021 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
1022 if (GET_MODE_SIZE (TYPE_MODE (type))
1023 <= GET_MODE_SIZE (TYPE_MODE (smaller_type)))
1024 return type;
1025
1026 return smaller_type;
1027 }
1028
1029 /* Create an appropriate array type and declaration and assemble a static array
1030 variable. Also create a load statement that initializes the variable in
1031 question with a value from the static array. SWTCH is the switch statement
1032 being converted, NUM is the index to arrays of constructors, default values
1033 and target SSA names for this particular array. ARR_INDEX_TYPE is the type
1034 of the index of the new array, PHI is the phi node of the final BB that
1035 corresponds to the value that will be loaded from the created array. TIDX
1036 is an ssa name of a temporary variable holding the index for loads from the
1037 new array. */
1038
1039 static void
1040 build_one_array (gswitch *swtch, int num, tree arr_index_type,
1041 gphi *phi, tree tidx, struct switch_conv_info *info)
1042 {
1043 tree name, cst;
1044 gimple load;
1045 gimple_stmt_iterator gsi = gsi_for_stmt (swtch);
1046 location_t loc = gimple_location (swtch);
1047
1048 gcc_assert (info->default_values[num]);
1049
1050 name = copy_ssa_name (PHI_RESULT (phi));
1051 info->target_inbound_names[num] = name;
1052
1053 cst = constructor_contains_same_values_p (info->constructors[num]);
1054 if (cst)
1055 load = gimple_build_assign (name, cst);
1056 else
1057 {
1058 tree array_type, ctor, decl, value_type, fetch, default_type;
1059
1060 default_type = TREE_TYPE (info->default_values[num]);
1061 value_type = array_value_type (swtch, default_type, num, info);
1062 array_type = build_array_type (value_type, arr_index_type);
1063 if (default_type != value_type)
1064 {
1065 unsigned int i;
1066 constructor_elt *elt;
1067
1068 FOR_EACH_VEC_SAFE_ELT (info->constructors[num], i, elt)
1069 elt->value = fold_convert (value_type, elt->value);
1070 }
1071 ctor = build_constructor (array_type, info->constructors[num]);
1072 TREE_CONSTANT (ctor) = true;
1073 TREE_STATIC (ctor) = true;
1074
1075 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
1076 TREE_STATIC (decl) = 1;
1077 DECL_INITIAL (decl) = ctor;
1078
1079 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
1080 DECL_ARTIFICIAL (decl) = 1;
1081 TREE_CONSTANT (decl) = 1;
1082 TREE_READONLY (decl) = 1;
1083 varpool_node::finalize_decl (decl);
1084
1085 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
1086 NULL_TREE);
1087 if (default_type != value_type)
1088 {
1089 fetch = fold_convert (default_type, fetch);
1090 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
1091 true, GSI_SAME_STMT);
1092 }
1093 load = gimple_build_assign (name, fetch);
1094 }
1095
1096 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1097 update_stmt (load);
1098 info->arr_ref_last = load;
1099 }
1100
1101 /* Builds and initializes static arrays initialized with values gathered from
1102 the SWTCH switch statement. Also creates statements that load values from
1103 them. */
1104
1105 static void
1106 build_arrays (gswitch *swtch, struct switch_conv_info *info)
1107 {
1108 tree arr_index_type;
1109 tree tidx, sub, utype;
1110 gimple stmt;
1111 gimple_stmt_iterator gsi;
1112 gphi_iterator gpi;
1113 int i;
1114 location_t loc = gimple_location (swtch);
1115
1116 gsi = gsi_for_stmt (swtch);
1117
1118 /* Make sure we do not generate arithmetics in a subrange. */
1119 utype = TREE_TYPE (info->index_expr);
1120 if (TREE_TYPE (utype))
1121 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
1122 else
1123 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
1124
1125 arr_index_type = build_index_type (info->range_size);
1126 tidx = make_ssa_name (utype);
1127 sub = fold_build2_loc (loc, MINUS_EXPR, utype,
1128 fold_convert_loc (loc, utype, info->index_expr),
1129 fold_convert_loc (loc, utype, info->range_min));
1130 sub = force_gimple_operand_gsi (&gsi, sub,
1131 false, NULL, true, GSI_SAME_STMT);
1132 stmt = gimple_build_assign (tidx, sub);
1133
1134 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1135 update_stmt (stmt);
1136 info->arr_ref_first = stmt;
1137
1138 for (gpi = gsi_start_phis (info->final_bb), i = 0;
1139 !gsi_end_p (gpi); gsi_next (&gpi), i++)
1140 build_one_array (swtch, i, arr_index_type, gpi.phi (), tidx, info);
1141 }
1142
1143 /* Generates and appropriately inserts loads of default values at the position
1144 given by BSI. Returns the last inserted statement. */
1145
1146 static gassign *
1147 gen_def_assigns (gimple_stmt_iterator *gsi, struct switch_conv_info *info)
1148 {
1149 int i;
1150 gassign *assign = NULL;
1151
1152 for (i = 0; i < info->phi_count; i++)
1153 {
1154 tree name = copy_ssa_name (info->target_inbound_names[i]);
1155 info->target_outbound_names[i] = name;
1156 assign = gimple_build_assign (name, info->default_values[i]);
1157 gsi_insert_before (gsi, assign, GSI_SAME_STMT);
1158 update_stmt (assign);
1159 }
1160 return assign;
1161 }
1162
1163 /* Deletes the unused bbs and edges that now contain the switch statement and
1164 its empty branch bbs. BBD is the now dead BB containing the original switch
1165 statement, FINAL is the last BB of the converted switch statement (in terms
1166 of succession). */
1167
1168 static void
1169 prune_bbs (basic_block bbd, basic_block final)
1170 {
1171 edge_iterator ei;
1172 edge e;
1173
1174 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
1175 {
1176 basic_block bb;
1177 bb = e->dest;
1178 remove_edge (e);
1179 if (bb != final)
1180 delete_basic_block (bb);
1181 }
1182 delete_basic_block (bbd);
1183 }
1184
1185 /* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
1186 from the basic block loading values from an array and E2F from the basic
1187 block loading default values. BBF is the last switch basic block (see the
1188 bbf description in the comment below). */
1189
1190 static void
1191 fix_phi_nodes (edge e1f, edge e2f, basic_block bbf,
1192 struct switch_conv_info *info)
1193 {
1194 gphi_iterator gsi;
1195 int i;
1196
1197 for (gsi = gsi_start_phis (bbf), i = 0;
1198 !gsi_end_p (gsi); gsi_next (&gsi), i++)
1199 {
1200 gphi *phi = gsi.phi ();
1201 add_phi_arg (phi, info->target_inbound_names[i], e1f, UNKNOWN_LOCATION);
1202 add_phi_arg (phi, info->target_outbound_names[i], e2f, UNKNOWN_LOCATION);
1203 }
1204 }
1205
1206 /* Creates a check whether the switch expression value actually falls into the
1207 range given by all the cases. If it does not, the temporaries are loaded
1208 with default values instead. SWTCH is the switch statement being converted.
1209
1210 bb0 is the bb with the switch statement, however, we'll end it with a
1211 condition instead.
1212
1213 bb1 is the bb to be used when the range check went ok. It is derived from
1214 the switch BB
1215
1216 bb2 is the bb taken when the expression evaluated outside of the range
1217 covered by the created arrays. It is populated by loads of default
1218 values.
1219
1220 bbF is a fall through for both bb1 and bb2 and contains exactly what
1221 originally followed the switch statement.
1222
1223 bbD contains the switch statement (in the end). It is unreachable but we
1224 still need to strip off its edges.
1225 */
1226
1227 static void
1228 gen_inbound_check (gswitch *swtch, struct switch_conv_info *info)
1229 {
1230 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
1231 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
1232 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
1233 glabel *label1, *label2, *label3;
1234 tree utype, tidx;
1235 tree bound;
1236
1237 gcond *cond_stmt;
1238
1239 gassign *last_assign;
1240 gimple_stmt_iterator gsi;
1241 basic_block bb0, bb1, bb2, bbf, bbd;
1242 edge e01, e02, e21, e1d, e1f, e2f;
1243 location_t loc = gimple_location (swtch);
1244
1245 gcc_assert (info->default_values);
1246
1247 bb0 = gimple_bb (swtch);
1248
1249 tidx = gimple_assign_lhs (info->arr_ref_first);
1250 utype = TREE_TYPE (tidx);
1251
1252 /* (end of) block 0 */
1253 gsi = gsi_for_stmt (info->arr_ref_first);
1254 gsi_next (&gsi);
1255
1256 bound = fold_convert_loc (loc, utype, info->range_size);
1257 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
1258 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
1259 update_stmt (cond_stmt);
1260
1261 /* block 2 */
1262 label2 = gimple_build_label (label_decl2);
1263 gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
1264 last_assign = gen_def_assigns (&gsi, info);
1265
1266 /* block 1 */
1267 label1 = gimple_build_label (label_decl1);
1268 gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
1269
1270 /* block F */
1271 gsi = gsi_start_bb (info->final_bb);
1272 label3 = gimple_build_label (label_decl3);
1273 gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
1274
1275 /* cfg fix */
1276 e02 = split_block (bb0, cond_stmt);
1277 bb2 = e02->dest;
1278
1279 e21 = split_block (bb2, last_assign);
1280 bb1 = e21->dest;
1281 remove_edge (e21);
1282
1283 e1d = split_block (bb1, info->arr_ref_last);
1284 bbd = e1d->dest;
1285 remove_edge (e1d);
1286
1287 /* flags and profiles of the edge for in-range values */
1288 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
1289 e01->probability = REG_BR_PROB_BASE - info->default_prob;
1290 e01->count = info->other_count;
1291
1292 /* flags and profiles of the edge taking care of out-of-range values */
1293 e02->flags &= ~EDGE_FALLTHRU;
1294 e02->flags |= EDGE_FALSE_VALUE;
1295 e02->probability = info->default_prob;
1296 e02->count = info->default_count;
1297
1298 bbf = info->final_bb;
1299
1300 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
1301 e1f->probability = REG_BR_PROB_BASE;
1302 e1f->count = info->other_count;
1303
1304 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
1305 e2f->probability = REG_BR_PROB_BASE;
1306 e2f->count = info->default_count;
1307
1308 /* frequencies of the new BBs */
1309 bb1->frequency = EDGE_FREQUENCY (e01);
1310 bb2->frequency = EDGE_FREQUENCY (e02);
1311 bbf->frequency = EDGE_FREQUENCY (e1f) + EDGE_FREQUENCY (e2f);
1312
1313 /* Tidy blocks that have become unreachable. */
1314 prune_bbs (bbd, info->final_bb);
1315
1316 /* Fixup the PHI nodes in bbF. */
1317 fix_phi_nodes (e1f, e2f, bbf, info);
1318
1319 /* Fix the dominator tree, if it is available. */
1320 if (dom_info_available_p (CDI_DOMINATORS))
1321 {
1322 vec<basic_block> bbs_to_fix_dom;
1323
1324 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
1325 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
1326 if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
1327 /* If bbD was the immediate dominator ... */
1328 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
1329
1330 bbs_to_fix_dom.create (4);
1331 bbs_to_fix_dom.quick_push (bb0);
1332 bbs_to_fix_dom.quick_push (bb1);
1333 bbs_to_fix_dom.quick_push (bb2);
1334 bbs_to_fix_dom.quick_push (bbf);
1335
1336 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
1337 bbs_to_fix_dom.release ();
1338 }
1339 }
1340
1341 /* The following function is invoked on every switch statement (the current one
1342 is given in SWTCH) and runs the individual phases of switch conversion on it
1343 one after another until one fails or the conversion is completed.
1344 Returns NULL on success, or a pointer to a string with the reason why the
1345 conversion failed. */
1346
1347 static const char *
1348 process_switch (gswitch *swtch)
1349 {
1350 struct switch_conv_info info;
1351
1352 /* Group case labels so that we get the right results from the heuristics
1353 that decide on the code generation approach for this switch. */
1354 group_case_labels_stmt (swtch);
1355
1356 /* If this switch is now a degenerate case with only a default label,
1357 there is nothing left for us to do. */
1358 if (gimple_switch_num_labels (swtch) < 2)
1359 return "switch is a degenerate case";
1360
1361 collect_switch_conv_info (swtch, &info);
1362
1363 /* No error markers should reach here (they should be filtered out
1364 during gimplification). */
1365 gcc_checking_assert (TREE_TYPE (info.index_expr) != error_mark_node);
1366
1367 /* A switch on a constant should have been optimized in tree-cfg-cleanup. */
1368 gcc_checking_assert (! TREE_CONSTANT (info.index_expr));
1369
1370 if (info.uniq <= MAX_CASE_BIT_TESTS)
1371 {
1372 if (expand_switch_using_bit_tests_p (info.range_size,
1373 info.uniq, info.count,
1374 optimize_bb_for_speed_p
1375 (gimple_bb (swtch))))
1376 {
1377 if (dump_file)
1378 fputs (" expanding as bit test is preferable\n", dump_file);
1379 emit_case_bit_tests (swtch, info.index_expr, info.range_min,
1380 info.range_size, info.range_max);
1381 loops_state_set (LOOPS_NEED_FIXUP);
1382 return NULL;
1383 }
1384
1385 if (info.uniq <= 2)
1386 /* This will be expanded as a decision tree in stmt.c:expand_case. */
1387 return " expanding as jumps is preferable";
1388 }
1389
1390 /* If there is no common successor, we cannot do the transformation. */
1391 if (! info.final_bb)
1392 return "no common successor to all case label target blocks found";
1393
1394 /* Check the case label values are within reasonable range: */
1395 if (!check_range (&info))
1396 {
1397 gcc_assert (info.reason);
1398 return info.reason;
1399 }
1400
1401 /* For all the cases, see whether they are empty, the assignments they
1402 represent constant and so on... */
1403 if (! check_all_empty_except_final (&info))
1404 {
1405 gcc_assert (info.reason);
1406 return info.reason;
1407 }
1408 if (!check_final_bb (&info))
1409 {
1410 gcc_assert (info.reason);
1411 return info.reason;
1412 }
1413
1414 /* At this point all checks have passed and we can proceed with the
1415 transformation. */
1416
1417 create_temp_arrays (&info);
1418 gather_default_values (gimple_switch_default_label (swtch), &info);
1419 build_constructors (swtch, &info);
1420
1421 build_arrays (swtch, &info); /* Build the static arrays and assignments. */
1422 gen_inbound_check (swtch, &info); /* Build the bounds check. */
1423
1424 /* Cleanup: */
1425 free_temp_arrays (&info);
1426 return NULL;
1427 }
1428
1429 /* The main function of the pass scans statements for switches and invokes
1430 process_switch on them. */
1431
1432 namespace {
1433
1434 const pass_data pass_data_convert_switch =
1435 {
1436 GIMPLE_PASS, /* type */
1437 "switchconv", /* name */
1438 OPTGROUP_NONE, /* optinfo_flags */
1439 TV_TREE_SWITCH_CONVERSION, /* tv_id */
1440 ( PROP_cfg | PROP_ssa ), /* properties_required */
1441 0, /* properties_provided */
1442 0, /* properties_destroyed */
1443 0, /* todo_flags_start */
1444 TODO_update_ssa, /* todo_flags_finish */
1445 };
1446
1447 class pass_convert_switch : public gimple_opt_pass
1448 {
1449 public:
1450 pass_convert_switch (gcc::context *ctxt)
1451 : gimple_opt_pass (pass_data_convert_switch, ctxt)
1452 {}
1453
1454 /* opt_pass methods: */
1455 virtual bool gate (function *) { return flag_tree_switch_conversion != 0; }
1456 virtual unsigned int execute (function *);
1457
1458 }; // class pass_convert_switch
1459
1460 unsigned int
1461 pass_convert_switch::execute (function *fun)
1462 {
1463 basic_block bb;
1464
1465 FOR_EACH_BB_FN (bb, fun)
1466 {
1467 const char *failure_reason;
1468 gimple stmt = last_stmt (bb);
1469 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1470 {
1471 if (dump_file)
1472 {
1473 expanded_location loc = expand_location (gimple_location (stmt));
1474
1475 fprintf (dump_file, "beginning to process the following "
1476 "SWITCH statement (%s:%d) : ------- \n",
1477 loc.file, loc.line);
1478 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1479 putc ('\n', dump_file);
1480 }
1481
1482 failure_reason = process_switch (as_a <gswitch *> (stmt));
1483 if (! failure_reason)
1484 {
1485 if (dump_file)
1486 {
1487 fputs ("Switch converted\n", dump_file);
1488 fputs ("--------------------------------\n", dump_file);
1489 }
1490
1491 /* Make no effort to update the post-dominator tree. It is actually not
1492 that hard for the transformations we have performed, but it is not
1493 supported by iterate_fix_dominators. */
1494 free_dominance_info (CDI_POST_DOMINATORS);
1495 }
1496 else
1497 {
1498 if (dump_file)
1499 {
1500 fputs ("Bailing out - ", dump_file);
1501 fputs (failure_reason, dump_file);
1502 fputs ("\n--------------------------------\n", dump_file);
1503 }
1504 }
1505 }
1506 }
1507
1508 return 0;
1509 }
1510
1511 } // anon namespace
1512
1513 gimple_opt_pass *
1514 make_pass_convert_switch (gcc::context *ctxt)
1515 {
1516 return new pass_convert_switch (ctxt);
1517 }