invoke.texi: Update -fopt-info documentation.
[gcc.git] / gcc / tree-switch-conversion.c
1 /* Lower GIMPLE_SWITCH expressions to something more efficient than
2 a jump table.
3 Copyright (C) 2006, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This file handles the lowering of GIMPLE_SWITCH to an indexed
24 load, or a series of bit-test-and-branch expressions. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "line-map.h"
31 #include "params.h"
32 #include "flags.h"
33 #include "tree.h"
34 #include "basic-block.h"
35 #include "tree-flow.h"
36 #include "tree-flow-inline.h"
37 #include "tree-ssa-operands.h"
38 #include "tree-pass.h"
39 #include "gimple-pretty-print.h"
40
41 /* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
42 type in the GIMPLE type system that is language-independent? */
43 #include "langhooks.h"
44
45 /* Need to include expr.h and optabs.h for lshift_cheap_p. */
46 #include "expr.h"
47 #include "optabs.h"
48 \f
49 /* Maximum number of case bit tests.
50 FIXME: This should be derived from PARAM_CASE_VALUES_THRESHOLD and
51 targetm.case_values_threshold(), or be its own param. */
52 #define MAX_CASE_BIT_TESTS 3
53
54 /* Split the basic block at the statement pointed to by GSIP, and insert
55 a branch to the target basic block of E_TRUE conditional on tree
56 expression COND.
57
58 It is assumed that there is already an edge from the to-be-split
59 basic block to E_TRUE->dest block. This edge is removed, and the
60 profile information on the edge is re-used for the new conditional
61 jump.
62
63 The CFG is updated. The dominator tree will not be valid after
64 this transformation, but the immediate dominators are updated if
65 UPDATE_DOMINATORS is true.
66
67 Returns the newly created basic block. */
68
69 static basic_block
70 hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
71 tree cond, edge e_true,
72 bool update_dominators)
73 {
74 tree tmp;
75 gimple cond_stmt;
76 edge e_false;
77 basic_block new_bb, split_bb = gsi_bb (*gsip);
78 bool dominated_e_true = false;
79
80 gcc_assert (e_true->src == split_bb);
81
82 if (update_dominators
83 && get_immediate_dominator (CDI_DOMINATORS, e_true->dest) == split_bb)
84 dominated_e_true = true;
85
86 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
87 /*before=*/true, GSI_SAME_STMT);
88 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
89 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
90
91 e_false = split_block (split_bb, cond_stmt);
92 new_bb = e_false->dest;
93 redirect_edge_pred (e_true, split_bb);
94
95 e_true->flags &= ~EDGE_FALLTHRU;
96 e_true->flags |= EDGE_TRUE_VALUE;
97
98 e_false->flags &= ~EDGE_FALLTHRU;
99 e_false->flags |= EDGE_FALSE_VALUE;
100 e_false->probability = REG_BR_PROB_BASE - e_true->probability;
101 e_false->count = split_bb->count - e_true->count;
102 new_bb->count = e_false->count;
103
104 if (update_dominators)
105 {
106 if (dominated_e_true)
107 set_immediate_dominator (CDI_DOMINATORS, e_true->dest, split_bb);
108 set_immediate_dominator (CDI_DOMINATORS, e_false->dest, split_bb);
109 }
110
111 return new_bb;
112 }
113
114
115 /* Determine whether "1 << x" is relatively cheap in word_mode. */
116 /* FIXME: This is the function that we need rtl.h and optabs.h for.
117 This function (and similar RTL-related cost code in e.g. IVOPTS) should
118 be moved to some kind of interface file for GIMPLE/RTL interactions. */
119 static bool
120 lshift_cheap_p (void)
121 {
122 /* FIXME: This should be made target dependent via this "this_target"
123 mechanism, similar to e.g. can_copy_init_p in gcse.c. */
124 static bool init[2] = {false, false};
125 static bool cheap[2] = {true, true};
126 bool speed_p;
127
128 /* If the targer has no lshift in word_mode, the operation will most
129 probably not be cheap. ??? Does GCC even work for such targets? */
130 if (optab_handler (ashl_optab, word_mode) == CODE_FOR_nothing)
131 return false;
132
133 speed_p = optimize_insn_for_speed_p ();
134
135 if (!init[speed_p])
136 {
137 rtx reg = gen_raw_REG (word_mode, 10000);
138 int cost = set_src_cost (gen_rtx_ASHIFT (word_mode, const1_rtx, reg),
139 speed_p);
140 cheap[speed_p] = cost < COSTS_N_INSNS (MAX_CASE_BIT_TESTS);
141 init[speed_p] = true;
142 }
143
144 return cheap[speed_p];
145 }
146
147 /* Return true if a switch should be expanded as a bit test.
148 RANGE is the difference between highest and lowest case.
149 UNIQ is number of unique case node targets, not counting the default case.
150 COUNT is the number of comparisons needed, not counting the default case. */
151
152 static bool
153 expand_switch_using_bit_tests_p (tree range,
154 unsigned int uniq,
155 unsigned int count)
156 {
157 return (((uniq == 1 && count >= 3)
158 || (uniq == 2 && count >= 5)
159 || (uniq == 3 && count >= 6))
160 && lshift_cheap_p ()
161 && compare_tree_int (range, GET_MODE_BITSIZE (word_mode)) < 0
162 && compare_tree_int (range, 0) > 0);
163 }
164 \f
165 /* Implement switch statements with bit tests
166
167 A GIMPLE switch statement can be expanded to a short sequence of bit-wise
168 comparisons. "switch(x)" is converted into "if ((1 << (x-MINVAL)) & CST)"
169 where CST and MINVAL are integer constants. This is better than a series
170 of compare-and-banch insns in some cases, e.g. we can implement:
171
172 if ((x==4) || (x==6) || (x==9) || (x==11))
173
174 as a single bit test:
175
176 if ((1<<x) & ((1<<4)|(1<<6)|(1<<9)|(1<<11)))
177
178 This transformation is only applied if the number of case targets is small,
179 if CST constains at least 3 bits, and "1 << x" is cheap. The bit tests are
180 performed in "word_mode".
181
182 The following example shows the code the transformation generates:
183
184 int bar(int x)
185 {
186 switch (x)
187 {
188 case '0': case '1': case '2': case '3': case '4':
189 case '5': case '6': case '7': case '8': case '9':
190 case 'A': case 'B': case 'C': case 'D': case 'E':
191 case 'F':
192 return 1;
193 }
194 return 0;
195 }
196
197 ==>
198
199 bar (int x)
200 {
201 tmp1 = x - 48;
202 if (tmp1 > (70 - 48)) goto L2;
203 tmp2 = 1 << tmp1;
204 tmp3 = 0b11111100000001111111111;
205 if ((tmp2 & tmp3) != 0) goto L1 ; else goto L2;
206 L1:
207 return 1;
208 L2:
209 return 0;
210 }
211
212 TODO: There are still some improvements to this transformation that could
213 be implemented:
214
215 * A narrower mode than word_mode could be used if that is cheaper, e.g.
216 for x86_64 where a narrower-mode shift may result in smaller code.
217
218 * The compounded constant could be shifted rather than the one. The
219 test would be either on the sign bit or on the least significant bit,
220 depending on the direction of the shift. On some machines, the test
221 for the branch would be free if the bit to test is already set by the
222 shift operation.
223
224 This transformation was contributed by Roger Sayle, see this e-mail:
225 http://gcc.gnu.org/ml/gcc-patches/2003-01/msg01950.html
226 */
227
228 /* A case_bit_test represents a set of case nodes that may be
229 selected from using a bit-wise comparison. HI and LO hold
230 the integer to be tested against, TARGET_EDGE contains the
231 edge to the basic block to jump to upon success and BITS
232 counts the number of case nodes handled by this test,
233 typically the number of bits set in HI:LO. The LABEL field
234 is used to quickly identify all cases in this set without
235 looking at label_to_block for every case label. */
236
237 struct case_bit_test
238 {
239 HOST_WIDE_INT hi;
240 HOST_WIDE_INT lo;
241 edge target_edge;
242 tree label;
243 int bits;
244 };
245
246 /* Comparison function for qsort to order bit tests by decreasing
247 probability of execution. Our best guess comes from a measured
248 profile. If the profile counts are equal, break even on the
249 number of case nodes, i.e. the node with the most cases gets
250 tested first.
251
252 TODO: Actually this currently runs before a profile is available.
253 Therefore the case-as-bit-tests transformation should be done
254 later in the pass pipeline, or something along the lines of
255 "Efficient and effective branch reordering using profile data"
256 (Yang et. al., 2002) should be implemented (although, how good
257 is a paper is called "Efficient and effective ..." when the
258 latter is implied by the former, but oh well...). */
259
260 static int
261 case_bit_test_cmp (const void *p1, const void *p2)
262 {
263 const struct case_bit_test *const d1 = (const struct case_bit_test *) p1;
264 const struct case_bit_test *const d2 = (const struct case_bit_test *) p2;
265
266 if (d2->target_edge->count != d1->target_edge->count)
267 return d2->target_edge->count - d1->target_edge->count;
268 if (d2->bits != d1->bits)
269 return d2->bits - d1->bits;
270
271 /* Stabilize the sort. */
272 return LABEL_DECL_UID (d2->label) - LABEL_DECL_UID (d1->label);
273 }
274
275 /* Expand a switch statement by a short sequence of bit-wise
276 comparisons. "switch(x)" is effectively converted into
277 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
278 integer constants.
279
280 INDEX_EXPR is the value being switched on.
281
282 MINVAL is the lowest case value of in the case nodes,
283 and RANGE is highest value minus MINVAL. MINVAL and RANGE
284 are not guaranteed to be of the same type as INDEX_EXPR
285 (the gimplifier doesn't change the type of case label values,
286 and MINVAL and RANGE are derived from those values).
287
288 There *MUST* be MAX_CASE_BIT_TESTS or less unique case
289 node targets. */
290
291 static void
292 emit_case_bit_tests (gimple swtch, tree index_expr,
293 tree minval, tree range)
294 {
295 struct case_bit_test test[MAX_CASE_BIT_TESTS];
296 unsigned int i, j, k;
297 unsigned int count;
298
299 basic_block switch_bb = gimple_bb (swtch);
300 basic_block default_bb, new_default_bb, new_bb;
301 edge default_edge;
302 bool update_dom = dom_info_available_p (CDI_DOMINATORS);
303
304 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
305
306 tree index_type = TREE_TYPE (index_expr);
307 tree unsigned_index_type = unsigned_type_for (index_type);
308 unsigned int branch_num = gimple_switch_num_labels (swtch);
309
310 gimple_stmt_iterator gsi;
311 gimple shift_stmt;
312
313 tree idx, tmp, csui;
314 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
315 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
316 tree word_mode_one = fold_convert (word_type_node, integer_one_node);
317
318 memset (&test, 0, sizeof (test));
319
320 /* Get the edge for the default case. */
321 tmp = gimple_switch_default_label (swtch);
322 default_bb = label_to_block (CASE_LABEL (tmp));
323 default_edge = find_edge (switch_bb, default_bb);
324
325 /* Go through all case labels, and collect the case labels, profile
326 counts, and other information we need to build the branch tests. */
327 count = 0;
328 for (i = 1; i < branch_num; i++)
329 {
330 unsigned int lo, hi;
331 tree cs = gimple_switch_label (swtch, i);
332 tree label = CASE_LABEL (cs);
333 edge e = find_edge (switch_bb, label_to_block (label));
334 for (k = 0; k < count; k++)
335 if (e == test[k].target_edge)
336 break;
337
338 if (k == count)
339 {
340 gcc_checking_assert (count < MAX_CASE_BIT_TESTS);
341 test[k].hi = 0;
342 test[k].lo = 0;
343 test[k].target_edge = e;
344 test[k].label = label;
345 test[k].bits = 1;
346 count++;
347 }
348 else
349 test[k].bits++;
350
351 lo = tree_low_cst (int_const_binop (MINUS_EXPR,
352 CASE_LOW (cs), minval),
353 1);
354 if (CASE_HIGH (cs) == NULL_TREE)
355 hi = lo;
356 else
357 hi = tree_low_cst (int_const_binop (MINUS_EXPR,
358 CASE_HIGH (cs), minval),
359 1);
360
361 for (j = lo; j <= hi; j++)
362 if (j >= HOST_BITS_PER_WIDE_INT)
363 test[k].hi |= (HOST_WIDE_INT) 1 << (j - HOST_BITS_PER_INT);
364 else
365 test[k].lo |= (HOST_WIDE_INT) 1 << j;
366 }
367
368 qsort (test, count, sizeof(*test), case_bit_test_cmp);
369
370 /* We generate two jumps to the default case label.
371 Split the default edge, so that we don't have to do any PHI node
372 updating. */
373 new_default_bb = split_edge (default_edge);
374
375 if (update_dom)
376 {
377 bbs_to_fix_dom = VEC_alloc (basic_block, heap, 10);
378 VEC_quick_push (basic_block, bbs_to_fix_dom, switch_bb);
379 VEC_quick_push (basic_block, bbs_to_fix_dom, default_bb);
380 VEC_quick_push (basic_block, bbs_to_fix_dom, new_default_bb);
381 }
382
383 /* Now build the test-and-branch code. */
384
385 gsi = gsi_last_bb (switch_bb);
386
387 /* idx = (unsigned)x - minval. */
388 idx = fold_convert (unsigned_index_type, index_expr);
389 idx = fold_build2 (MINUS_EXPR, unsigned_index_type, idx,
390 fold_convert (unsigned_index_type, minval));
391 idx = force_gimple_operand_gsi (&gsi, idx,
392 /*simple=*/true, NULL_TREE,
393 /*before=*/true, GSI_SAME_STMT);
394
395 /* if (idx > range) goto default */
396 range = force_gimple_operand_gsi (&gsi,
397 fold_convert (unsigned_index_type, range),
398 /*simple=*/true, NULL_TREE,
399 /*before=*/true, GSI_SAME_STMT);
400 tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
401 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, default_edge, update_dom);
402 if (update_dom)
403 VEC_quick_push (basic_block, bbs_to_fix_dom, new_bb);
404 gcc_assert (gimple_bb (swtch) == new_bb);
405 gsi = gsi_last_bb (new_bb);
406
407 /* Any blocks dominated by the GIMPLE_SWITCH, but that are not successors
408 of NEW_BB, are still immediately dominated by SWITCH_BB. Make it so. */
409 if (update_dom)
410 {
411 VEC (basic_block, heap) *dom_bbs;
412 basic_block dom_son;
413
414 dom_bbs = get_dominated_by (CDI_DOMINATORS, new_bb);
415 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, dom_son)
416 {
417 edge e = find_edge (new_bb, dom_son);
418 if (e && single_pred_p (e->dest))
419 continue;
420 set_immediate_dominator (CDI_DOMINATORS, dom_son, switch_bb);
421 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dom_son);
422 }
423 VEC_free (basic_block, heap, dom_bbs);
424 }
425
426 /* csui = (1 << (word_mode) idx) */
427 csui = make_ssa_name (word_type_node, NULL);
428 tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one,
429 fold_convert (word_type_node, idx));
430 tmp = force_gimple_operand_gsi (&gsi, tmp,
431 /*simple=*/false, NULL_TREE,
432 /*before=*/true, GSI_SAME_STMT);
433 shift_stmt = gimple_build_assign (csui, tmp);
434 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
435 update_stmt (shift_stmt);
436
437 /* for each unique set of cases:
438 if (const & csui) goto target */
439 for (k = 0; k < count; k++)
440 {
441 tmp = build_int_cst_wide (word_type_node, test[k].lo, test[k].hi);
442 tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp);
443 tmp = force_gimple_operand_gsi (&gsi, tmp,
444 /*simple=*/true, NULL_TREE,
445 /*before=*/true, GSI_SAME_STMT);
446 tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero);
447 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_edge,
448 update_dom);
449 if (update_dom)
450 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, new_bb);
451 gcc_assert (gimple_bb (swtch) == new_bb);
452 gsi = gsi_last_bb (new_bb);
453 }
454
455 /* We should have removed all edges now. */
456 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
457
458 /* If nothing matched, go to the default label. */
459 make_edge (gsi_bb (gsi), new_default_bb, EDGE_FALLTHRU);
460
461 /* The GIMPLE_SWITCH is now redundant. */
462 gsi_remove (&gsi, true);
463
464 if (update_dom)
465 {
466 /* Fix up the dominator tree. */
467 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
468 VEC_free (basic_block, heap, bbs_to_fix_dom);
469 }
470 }
471 \f
472 /*
473 Switch initialization conversion
474
475 The following pass changes simple initializations of scalars in a switch
476 statement into initializations from a static array. Obviously, the values
477 must be constant and known at compile time and a default branch must be
478 provided. For example, the following code:
479
480 int a,b;
481
482 switch (argc)
483 {
484 case 1:
485 case 2:
486 a_1 = 8;
487 b_1 = 6;
488 break;
489 case 3:
490 a_2 = 9;
491 b_2 = 5;
492 break;
493 case 12:
494 a_3 = 10;
495 b_3 = 4;
496 break;
497 default:
498 a_4 = 16;
499 b_4 = 1;
500 break;
501 }
502 a_5 = PHI <a_1, a_2, a_3, a_4>
503 b_5 = PHI <b_1, b_2, b_3, b_4>
504
505
506 is changed into:
507
508 static const int = CSWTCH01[] = {6, 6, 5, 1, 1, 1, 1, 1, 1, 1, 1, 4};
509 static const int = CSWTCH02[] = {8, 8, 9, 16, 16, 16, 16, 16, 16, 16,
510 16, 16, 10};
511
512 if (((unsigned) argc) - 1 < 11)
513 {
514 a_6 = CSWTCH02[argc - 1];
515 b_6 = CSWTCH01[argc - 1];
516 }
517 else
518 {
519 a_7 = 16;
520 b_7 = 1;
521 }
522 a_5 = PHI <a_6, a_7>
523 b_b = PHI <b_6, b_7>
524
525 There are further constraints. Specifically, the range of values across all
526 case labels must not be bigger than SWITCH_CONVERSION_BRANCH_RATIO (default
527 eight) times the number of the actual switch branches.
528
529 This transformation was contributed by Martin Jambor, see this e-mail:
530 http://gcc.gnu.org/ml/gcc-patches/2008-07/msg00011.html */
531
532 /* The main structure of the pass. */
533 struct switch_conv_info
534 {
535 /* The expression used to decide the switch branch. */
536 tree index_expr;
537
538 /* The following integer constants store the minimum and maximum value
539 covered by the case labels. */
540 tree range_min;
541 tree range_max;
542
543 /* The difference between the above two numbers. Stored here because it
544 is used in all the conversion heuristics, as well as for some of the
545 transformation, and it is expensive to re-compute it all the time. */
546 tree range_size;
547
548 /* Basic block that contains the actual GIMPLE_SWITCH. */
549 basic_block switch_bb;
550
551 /* Basic block that is the target of the default case. */
552 basic_block default_bb;
553
554 /* The single successor block of all branches out of the GIMPLE_SWITCH,
555 if such a block exists. Otherwise NULL. */
556 basic_block final_bb;
557
558 /* The probability of the default edge in the replaced switch. */
559 int default_prob;
560
561 /* The count of the default edge in the replaced switch. */
562 gcov_type default_count;
563
564 /* Combined count of all other (non-default) edges in the replaced switch. */
565 gcov_type other_count;
566
567 /* Number of phi nodes in the final bb (that we'll be replacing). */
568 int phi_count;
569
570 /* Array of default values, in the same order as phi nodes. */
571 tree *default_values;
572
573 /* Constructors of new static arrays. */
574 VEC (constructor_elt, gc) **constructors;
575
576 /* Array of ssa names that are initialized with a value from a new static
577 array. */
578 tree *target_inbound_names;
579
580 /* Array of ssa names that are initialized with the default value if the
581 switch expression is out of range. */
582 tree *target_outbound_names;
583
584 /* The first load statement that loads a temporary from a new static array.
585 */
586 gimple arr_ref_first;
587
588 /* The last load statement that loads a temporary from a new static array. */
589 gimple arr_ref_last;
590
591 /* String reason why the case wasn't a good candidate that is written to the
592 dump file, if there is one. */
593 const char *reason;
594
595 /* Parameters for expand_switch_using_bit_tests. Should be computed
596 the same way as in expand_case. */
597 unsigned int uniq;
598 unsigned int count;
599 };
600
601 /* Collect information about GIMPLE_SWITCH statement SWTCH into INFO. */
602
603 static void
604 collect_switch_conv_info (gimple swtch, struct switch_conv_info *info)
605 {
606 unsigned int branch_num = gimple_switch_num_labels (swtch);
607 tree min_case, max_case;
608 unsigned int count, i;
609 edge e, e_default;
610 edge_iterator ei;
611
612 memset (info, 0, sizeof (*info));
613
614 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
615 is a default label which is the first in the vector.
616 Collect the bits we can deduce from the CFG. */
617 info->index_expr = gimple_switch_index (swtch);
618 info->switch_bb = gimple_bb (swtch);
619 info->default_bb =
620 label_to_block (CASE_LABEL (gimple_switch_default_label (swtch)));
621 e_default = find_edge (info->switch_bb, info->default_bb);
622 info->default_prob = e_default->probability;
623 info->default_count = e_default->count;
624 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
625 if (e != e_default)
626 info->other_count += e->count;
627
628 /* See if there is one common successor block for all branch
629 targets. If it exists, record it in FINAL_BB. */
630 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
631 {
632 if (! single_pred_p (e->dest))
633 {
634 info->final_bb = e->dest;
635 break;
636 }
637 }
638 if (info->final_bb)
639 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
640 {
641 if (e->dest == info->final_bb)
642 continue;
643
644 if (single_pred_p (e->dest)
645 && single_succ_p (e->dest)
646 && single_succ (e->dest) == info->final_bb)
647 continue;
648
649 info->final_bb = NULL;
650 break;
651 }
652
653 /* Get upper and lower bounds of case values, and the covered range. */
654 min_case = gimple_switch_label (swtch, 1);
655 max_case = gimple_switch_label (swtch, branch_num - 1);
656
657 info->range_min = CASE_LOW (min_case);
658 if (CASE_HIGH (max_case) != NULL_TREE)
659 info->range_max = CASE_HIGH (max_case);
660 else
661 info->range_max = CASE_LOW (max_case);
662
663 info->range_size =
664 int_const_binop (MINUS_EXPR, info->range_max, info->range_min);
665
666 /* Get a count of the number of case labels. Single-valued case labels
667 simply count as one, but a case range counts double, since it may
668 require two compares if it gets lowered as a branching tree. */
669 count = 0;
670 for (i = 1; i < branch_num; i++)
671 {
672 tree elt = gimple_switch_label (swtch, i);
673 count++;
674 if (CASE_HIGH (elt)
675 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
676 count++;
677 }
678 info->count = count;
679
680 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
681 block. Assume a CFG cleanup would have already removed degenerate
682 switch statements, this allows us to just use EDGE_COUNT. */
683 info->uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
684 }
685
686 /* Checks whether the range given by individual case statements of the SWTCH
687 switch statement isn't too big and whether the number of branches actually
688 satisfies the size of the new array. */
689
690 static bool
691 check_range (struct switch_conv_info *info)
692 {
693 gcc_assert (info->range_size);
694 if (!host_integerp (info->range_size, 1))
695 {
696 info->reason = "index range way too large or otherwise unusable";
697 return false;
698 }
699
700 if ((unsigned HOST_WIDE_INT) tree_low_cst (info->range_size, 1)
701 > ((unsigned) info->count * SWITCH_CONVERSION_BRANCH_RATIO))
702 {
703 info->reason = "the maximum range-branch ratio exceeded";
704 return false;
705 }
706
707 return true;
708 }
709
710 /* Checks whether all but the FINAL_BB basic blocks are empty. */
711
712 static bool
713 check_all_empty_except_final (struct switch_conv_info *info)
714 {
715 edge e;
716 edge_iterator ei;
717
718 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
719 {
720 if (e->dest == info->final_bb)
721 continue;
722
723 if (!empty_block_p (e->dest))
724 {
725 info->reason = "bad case - a non-final BB not empty";
726 return false;
727 }
728 }
729
730 return true;
731 }
732
733 /* This function checks whether all required values in phi nodes in final_bb
734 are constants. Required values are those that correspond to a basic block
735 which is a part of the examined switch statement. It returns true if the
736 phi nodes are OK, otherwise false. */
737
738 static bool
739 check_final_bb (struct switch_conv_info *info)
740 {
741 gimple_stmt_iterator gsi;
742
743 info->phi_count = 0;
744 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
745 {
746 gimple phi = gsi_stmt (gsi);
747 unsigned int i;
748
749 info->phi_count++;
750
751 for (i = 0; i < gimple_phi_num_args (phi); i++)
752 {
753 basic_block bb = gimple_phi_arg_edge (phi, i)->src;
754
755 if (bb == info->switch_bb
756 || (single_pred_p (bb) && single_pred (bb) == info->switch_bb))
757 {
758 tree reloc, val;
759
760 val = gimple_phi_arg_def (phi, i);
761 if (!is_gimple_ip_invariant (val))
762 {
763 info->reason = "non-invariant value from a case";
764 return false; /* Non-invariant argument. */
765 }
766 reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
767 if ((flag_pic && reloc != null_pointer_node)
768 || (!flag_pic && reloc == NULL_TREE))
769 {
770 if (reloc)
771 info->reason
772 = "value from a case would need runtime relocations";
773 else
774 info->reason
775 = "value from a case is not a valid initializer";
776 return false;
777 }
778 }
779 }
780 }
781
782 return true;
783 }
784
785 /* The following function allocates default_values, target_{in,out}_names and
786 constructors arrays. The last one is also populated with pointers to
787 vectors that will become constructors of new arrays. */
788
789 static void
790 create_temp_arrays (struct switch_conv_info *info)
791 {
792 int i;
793
794 info->default_values = XCNEWVEC (tree, info->phi_count * 3);
795 info->constructors = XCNEWVEC (VEC (constructor_elt, gc) *, info->phi_count);
796 info->target_inbound_names = info->default_values + info->phi_count;
797 info->target_outbound_names = info->target_inbound_names + info->phi_count;
798 for (i = 0; i < info->phi_count; i++)
799 info->constructors[i]
800 = VEC_alloc (constructor_elt, gc, tree_low_cst (info->range_size, 1) + 1);
801 }
802
803 /* Free the arrays created by create_temp_arrays(). The vectors that are
804 created by that function are not freed here, however, because they have
805 already become constructors and must be preserved. */
806
807 static void
808 free_temp_arrays (struct switch_conv_info *info)
809 {
810 XDELETEVEC (info->constructors);
811 XDELETEVEC (info->default_values);
812 }
813
814 /* Populate the array of default values in the order of phi nodes.
815 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch. */
816
817 static void
818 gather_default_values (tree default_case, struct switch_conv_info *info)
819 {
820 gimple_stmt_iterator gsi;
821 basic_block bb = label_to_block (CASE_LABEL (default_case));
822 edge e;
823 int i = 0;
824
825 gcc_assert (CASE_LOW (default_case) == NULL_TREE);
826
827 if (bb == info->final_bb)
828 e = find_edge (info->switch_bb, bb);
829 else
830 e = single_succ_edge (bb);
831
832 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
833 {
834 gimple phi = gsi_stmt (gsi);
835 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
836 gcc_assert (val);
837 info->default_values[i++] = val;
838 }
839 }
840
841 /* The following function populates the vectors in the constructors array with
842 future contents of the static arrays. The vectors are populated in the
843 order of phi nodes. SWTCH is the switch statement being converted. */
844
845 static void
846 build_constructors (gimple swtch, struct switch_conv_info *info)
847 {
848 unsigned i, branch_num = gimple_switch_num_labels (swtch);
849 tree pos = info->range_min;
850
851 for (i = 1; i < branch_num; i++)
852 {
853 tree cs = gimple_switch_label (swtch, i);
854 basic_block bb = label_to_block (CASE_LABEL (cs));
855 edge e;
856 tree high;
857 gimple_stmt_iterator gsi;
858 int j;
859
860 if (bb == info->final_bb)
861 e = find_edge (info->switch_bb, bb);
862 else
863 e = single_succ_edge (bb);
864 gcc_assert (e);
865
866 while (tree_int_cst_lt (pos, CASE_LOW (cs)))
867 {
868 int k;
869 for (k = 0; k < info->phi_count; k++)
870 {
871 constructor_elt elt;
872
873 elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min);
874 elt.value = info->default_values[k];
875 VEC_quick_push (constructor_elt, info->constructors[k], elt);
876 }
877
878 pos = int_const_binop (PLUS_EXPR, pos, integer_one_node);
879 }
880 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
881
882 j = 0;
883 if (CASE_HIGH (cs))
884 high = CASE_HIGH (cs);
885 else
886 high = CASE_LOW (cs);
887 for (gsi = gsi_start_phis (info->final_bb);
888 !gsi_end_p (gsi); gsi_next (&gsi))
889 {
890 gimple phi = gsi_stmt (gsi);
891 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
892 tree low = CASE_LOW (cs);
893 pos = CASE_LOW (cs);
894
895 do
896 {
897 constructor_elt elt;
898
899 elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min);
900 elt.value = val;
901 VEC_quick_push (constructor_elt, info->constructors[j], elt);
902
903 pos = int_const_binop (PLUS_EXPR, pos, integer_one_node);
904 } while (!tree_int_cst_lt (high, pos)
905 && tree_int_cst_lt (low, pos));
906 j++;
907 }
908 }
909 }
910
911 /* If all values in the constructor vector are the same, return the value.
912 Otherwise return NULL_TREE. Not supposed to be called for empty
913 vectors. */
914
915 static tree
916 constructor_contains_same_values_p (VEC (constructor_elt, gc) *vec)
917 {
918 unsigned int i;
919 tree prev = NULL_TREE;
920 constructor_elt *elt;
921
922 FOR_EACH_VEC_ELT (constructor_elt, vec, i, elt)
923 {
924 if (!prev)
925 prev = elt->value;
926 else if (!operand_equal_p (elt->value, prev, OEP_ONLY_CONST))
927 return NULL_TREE;
928 }
929 return prev;
930 }
931
932 /* Return type which should be used for array elements, either TYPE,
933 or for integral type some smaller integral type that can still hold
934 all the constants. */
935
936 static tree
937 array_value_type (gimple swtch, tree type, int num,
938 struct switch_conv_info *info)
939 {
940 unsigned int i, len = VEC_length (constructor_elt, info->constructors[num]);
941 constructor_elt *elt;
942 enum machine_mode mode;
943 int sign = 0;
944 tree smaller_type;
945
946 if (!INTEGRAL_TYPE_P (type))
947 return type;
948
949 mode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (TYPE_MODE (type)));
950 if (GET_MODE_SIZE (TYPE_MODE (type)) <= GET_MODE_SIZE (mode))
951 return type;
952
953 if (len < (optimize_bb_for_size_p (gimple_bb (swtch)) ? 2 : 32))
954 return type;
955
956 FOR_EACH_VEC_ELT (constructor_elt, info->constructors[num], i, elt)
957 {
958 double_int cst;
959
960 if (TREE_CODE (elt->value) != INTEGER_CST)
961 return type;
962
963 cst = TREE_INT_CST (elt->value);
964 while (1)
965 {
966 unsigned int prec = GET_MODE_BITSIZE (mode);
967 if (prec > HOST_BITS_PER_WIDE_INT)
968 return type;
969
970 if (sign >= 0 && cst == cst.zext (prec))
971 {
972 if (sign == 0 && cst == cst.sext (prec))
973 break;
974 sign = 1;
975 break;
976 }
977 if (sign <= 0 && cst == cst.sext (prec))
978 {
979 sign = -1;
980 break;
981 }
982
983 if (sign == 1)
984 sign = 0;
985
986 mode = GET_MODE_WIDER_MODE (mode);
987 if (mode == VOIDmode
988 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (TYPE_MODE (type)))
989 return type;
990 }
991 }
992
993 if (sign == 0)
994 sign = TYPE_UNSIGNED (type) ? 1 : -1;
995 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
996 if (GET_MODE_SIZE (TYPE_MODE (type))
997 <= GET_MODE_SIZE (TYPE_MODE (smaller_type)))
998 return type;
999
1000 return smaller_type;
1001 }
1002
1003 /* Create an appropriate array type and declaration and assemble a static array
1004 variable. Also create a load statement that initializes the variable in
1005 question with a value from the static array. SWTCH is the switch statement
1006 being converted, NUM is the index to arrays of constructors, default values
1007 and target SSA names for this particular array. ARR_INDEX_TYPE is the type
1008 of the index of the new array, PHI is the phi node of the final BB that
1009 corresponds to the value that will be loaded from the created array. TIDX
1010 is an ssa name of a temporary variable holding the index for loads from the
1011 new array. */
1012
1013 static void
1014 build_one_array (gimple swtch, int num, tree arr_index_type, gimple phi,
1015 tree tidx, struct switch_conv_info *info)
1016 {
1017 tree name, cst;
1018 gimple load;
1019 gimple_stmt_iterator gsi = gsi_for_stmt (swtch);
1020 location_t loc = gimple_location (swtch);
1021
1022 gcc_assert (info->default_values[num]);
1023
1024 name = copy_ssa_name (PHI_RESULT (phi), NULL);
1025 info->target_inbound_names[num] = name;
1026
1027 cst = constructor_contains_same_values_p (info->constructors[num]);
1028 if (cst)
1029 load = gimple_build_assign (name, cst);
1030 else
1031 {
1032 tree array_type, ctor, decl, value_type, fetch, default_type;
1033
1034 default_type = TREE_TYPE (info->default_values[num]);
1035 value_type = array_value_type (swtch, default_type, num, info);
1036 array_type = build_array_type (value_type, arr_index_type);
1037 if (default_type != value_type)
1038 {
1039 unsigned int i;
1040 constructor_elt *elt;
1041
1042 FOR_EACH_VEC_ELT (constructor_elt, info->constructors[num], i, elt)
1043 elt->value = fold_convert (value_type, elt->value);
1044 }
1045 ctor = build_constructor (array_type, info->constructors[num]);
1046 TREE_CONSTANT (ctor) = true;
1047 TREE_STATIC (ctor) = true;
1048
1049 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
1050 TREE_STATIC (decl) = 1;
1051 DECL_INITIAL (decl) = ctor;
1052
1053 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
1054 DECL_ARTIFICIAL (decl) = 1;
1055 TREE_CONSTANT (decl) = 1;
1056 TREE_READONLY (decl) = 1;
1057 varpool_finalize_decl (decl);
1058
1059 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
1060 NULL_TREE);
1061 if (default_type != value_type)
1062 {
1063 fetch = fold_convert (default_type, fetch);
1064 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
1065 true, GSI_SAME_STMT);
1066 }
1067 load = gimple_build_assign (name, fetch);
1068 }
1069
1070 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1071 update_stmt (load);
1072 info->arr_ref_last = load;
1073 }
1074
1075 /* Builds and initializes static arrays initialized with values gathered from
1076 the SWTCH switch statement. Also creates statements that load values from
1077 them. */
1078
1079 static void
1080 build_arrays (gimple swtch, struct switch_conv_info *info)
1081 {
1082 tree arr_index_type;
1083 tree tidx, sub, utype;
1084 gimple stmt;
1085 gimple_stmt_iterator gsi;
1086 int i;
1087 location_t loc = gimple_location (swtch);
1088
1089 gsi = gsi_for_stmt (swtch);
1090
1091 /* Make sure we do not generate arithmetics in a subrange. */
1092 utype = TREE_TYPE (info->index_expr);
1093 if (TREE_TYPE (utype))
1094 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
1095 else
1096 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
1097
1098 arr_index_type = build_index_type (info->range_size);
1099 tidx = make_ssa_name (utype, NULL);
1100 sub = fold_build2_loc (loc, MINUS_EXPR, utype,
1101 fold_convert_loc (loc, utype, info->index_expr),
1102 fold_convert_loc (loc, utype, info->range_min));
1103 sub = force_gimple_operand_gsi (&gsi, sub,
1104 false, NULL, true, GSI_SAME_STMT);
1105 stmt = gimple_build_assign (tidx, sub);
1106
1107 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1108 update_stmt (stmt);
1109 info->arr_ref_first = stmt;
1110
1111 for (gsi = gsi_start_phis (info->final_bb), i = 0;
1112 !gsi_end_p (gsi); gsi_next (&gsi), i++)
1113 build_one_array (swtch, i, arr_index_type, gsi_stmt (gsi), tidx, info);
1114 }
1115
1116 /* Generates and appropriately inserts loads of default values at the position
1117 given by BSI. Returns the last inserted statement. */
1118
1119 static gimple
1120 gen_def_assigns (gimple_stmt_iterator *gsi, struct switch_conv_info *info)
1121 {
1122 int i;
1123 gimple assign = NULL;
1124
1125 for (i = 0; i < info->phi_count; i++)
1126 {
1127 tree name = copy_ssa_name (info->target_inbound_names[i], NULL);
1128 info->target_outbound_names[i] = name;
1129 assign = gimple_build_assign (name, info->default_values[i]);
1130 gsi_insert_before (gsi, assign, GSI_SAME_STMT);
1131 update_stmt (assign);
1132 }
1133 return assign;
1134 }
1135
1136 /* Deletes the unused bbs and edges that now contain the switch statement and
1137 its empty branch bbs. BBD is the now dead BB containing the original switch
1138 statement, FINAL is the last BB of the converted switch statement (in terms
1139 of succession). */
1140
1141 static void
1142 prune_bbs (basic_block bbd, basic_block final)
1143 {
1144 edge_iterator ei;
1145 edge e;
1146
1147 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
1148 {
1149 basic_block bb;
1150 bb = e->dest;
1151 remove_edge (e);
1152 if (bb != final)
1153 delete_basic_block (bb);
1154 }
1155 delete_basic_block (bbd);
1156 }
1157
1158 /* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
1159 from the basic block loading values from an array and E2F from the basic
1160 block loading default values. BBF is the last switch basic block (see the
1161 bbf description in the comment below). */
1162
1163 static void
1164 fix_phi_nodes (edge e1f, edge e2f, basic_block bbf,
1165 struct switch_conv_info *info)
1166 {
1167 gimple_stmt_iterator gsi;
1168 int i;
1169
1170 for (gsi = gsi_start_phis (bbf), i = 0;
1171 !gsi_end_p (gsi); gsi_next (&gsi), i++)
1172 {
1173 gimple phi = gsi_stmt (gsi);
1174 add_phi_arg (phi, info->target_inbound_names[i], e1f, UNKNOWN_LOCATION);
1175 add_phi_arg (phi, info->target_outbound_names[i], e2f, UNKNOWN_LOCATION);
1176 }
1177 }
1178
1179 /* Creates a check whether the switch expression value actually falls into the
1180 range given by all the cases. If it does not, the temporaries are loaded
1181 with default values instead. SWTCH is the switch statement being converted.
1182
1183 bb0 is the bb with the switch statement, however, we'll end it with a
1184 condition instead.
1185
1186 bb1 is the bb to be used when the range check went ok. It is derived from
1187 the switch BB
1188
1189 bb2 is the bb taken when the expression evaluated outside of the range
1190 covered by the created arrays. It is populated by loads of default
1191 values.
1192
1193 bbF is a fall through for both bb1 and bb2 and contains exactly what
1194 originally followed the switch statement.
1195
1196 bbD contains the switch statement (in the end). It is unreachable but we
1197 still need to strip off its edges.
1198 */
1199
1200 static void
1201 gen_inbound_check (gimple swtch, struct switch_conv_info *info)
1202 {
1203 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
1204 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
1205 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
1206 gimple label1, label2, label3;
1207 tree utype, tidx;
1208 tree bound;
1209
1210 gimple cond_stmt;
1211
1212 gimple last_assign;
1213 gimple_stmt_iterator gsi;
1214 basic_block bb0, bb1, bb2, bbf, bbd;
1215 edge e01, e02, e21, e1d, e1f, e2f;
1216 location_t loc = gimple_location (swtch);
1217
1218 gcc_assert (info->default_values);
1219
1220 bb0 = gimple_bb (swtch);
1221
1222 tidx = gimple_assign_lhs (info->arr_ref_first);
1223 utype = TREE_TYPE (tidx);
1224
1225 /* (end of) block 0 */
1226 gsi = gsi_for_stmt (info->arr_ref_first);
1227 gsi_next (&gsi);
1228
1229 bound = fold_convert_loc (loc, utype, info->range_size);
1230 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
1231 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
1232 update_stmt (cond_stmt);
1233
1234 /* block 2 */
1235 label2 = gimple_build_label (label_decl2);
1236 gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
1237 last_assign = gen_def_assigns (&gsi, info);
1238
1239 /* block 1 */
1240 label1 = gimple_build_label (label_decl1);
1241 gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
1242
1243 /* block F */
1244 gsi = gsi_start_bb (info->final_bb);
1245 label3 = gimple_build_label (label_decl3);
1246 gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
1247
1248 /* cfg fix */
1249 e02 = split_block (bb0, cond_stmt);
1250 bb2 = e02->dest;
1251
1252 e21 = split_block (bb2, last_assign);
1253 bb1 = e21->dest;
1254 remove_edge (e21);
1255
1256 e1d = split_block (bb1, info->arr_ref_last);
1257 bbd = e1d->dest;
1258 remove_edge (e1d);
1259
1260 /* flags and profiles of the edge for in-range values */
1261 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
1262 e01->probability = REG_BR_PROB_BASE - info->default_prob;
1263 e01->count = info->other_count;
1264
1265 /* flags and profiles of the edge taking care of out-of-range values */
1266 e02->flags &= ~EDGE_FALLTHRU;
1267 e02->flags |= EDGE_FALSE_VALUE;
1268 e02->probability = info->default_prob;
1269 e02->count = info->default_count;
1270
1271 bbf = info->final_bb;
1272
1273 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
1274 e1f->probability = REG_BR_PROB_BASE;
1275 e1f->count = info->other_count;
1276
1277 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
1278 e2f->probability = REG_BR_PROB_BASE;
1279 e2f->count = info->default_count;
1280
1281 /* frequencies of the new BBs */
1282 bb1->frequency = EDGE_FREQUENCY (e01);
1283 bb2->frequency = EDGE_FREQUENCY (e02);
1284 bbf->frequency = EDGE_FREQUENCY (e1f) + EDGE_FREQUENCY (e2f);
1285
1286 /* Tidy blocks that have become unreachable. */
1287 prune_bbs (bbd, info->final_bb);
1288
1289 /* Fixup the PHI nodes in bbF. */
1290 fix_phi_nodes (e1f, e2f, bbf, info);
1291
1292 /* Fix the dominator tree, if it is available. */
1293 if (dom_info_available_p (CDI_DOMINATORS))
1294 {
1295 VEC (basic_block, heap) *bbs_to_fix_dom;
1296
1297 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
1298 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
1299 if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
1300 /* If bbD was the immediate dominator ... */
1301 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
1302
1303 bbs_to_fix_dom = VEC_alloc (basic_block, heap, 4);
1304 VEC_quick_push (basic_block, bbs_to_fix_dom, bb0);
1305 VEC_quick_push (basic_block, bbs_to_fix_dom, bb1);
1306 VEC_quick_push (basic_block, bbs_to_fix_dom, bb2);
1307 VEC_quick_push (basic_block, bbs_to_fix_dom, bbf);
1308
1309 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
1310 VEC_free (basic_block, heap, bbs_to_fix_dom);
1311 }
1312 }
1313
1314 /* The following function is invoked on every switch statement (the current one
1315 is given in SWTCH) and runs the individual phases of switch conversion on it
1316 one after another until one fails or the conversion is completed.
1317 Returns NULL on success, or a pointer to a string with the reason why the
1318 conversion failed. */
1319
1320 static const char *
1321 process_switch (gimple swtch)
1322 {
1323 struct switch_conv_info info;
1324
1325 /* Group case labels so that we get the right results from the heuristics
1326 that decide on the code generation approach for this switch. */
1327 group_case_labels_stmt (swtch);
1328
1329 /* If this switch is now a degenerate case with only a default label,
1330 there is nothing left for us to do. */
1331 if (gimple_switch_num_labels (swtch) < 2)
1332 return "switch is a degenerate case";
1333
1334 collect_switch_conv_info (swtch, &info);
1335
1336 /* No error markers should reach here (they should be filtered out
1337 during gimplification). */
1338 gcc_checking_assert (TREE_TYPE (info.index_expr) != error_mark_node);
1339
1340 /* A switch on a constant should have been optimized in tree-cfg-cleanup. */
1341 gcc_checking_assert (! TREE_CONSTANT (info.index_expr));
1342
1343 if (info.uniq <= MAX_CASE_BIT_TESTS)
1344 {
1345 if (expand_switch_using_bit_tests_p (info.range_size,
1346 info.uniq, info.count))
1347 {
1348 if (dump_file)
1349 fputs (" expanding as bit test is preferable\n", dump_file);
1350 emit_case_bit_tests (swtch, info.index_expr,
1351 info.range_min, info.range_size);
1352 return NULL;
1353 }
1354
1355 if (info.uniq <= 2)
1356 /* This will be expanded as a decision tree in stmt.c:expand_case. */
1357 return " expanding as jumps is preferable";
1358 }
1359
1360 /* If there is no common successor, we cannot do the transformation. */
1361 if (! info.final_bb)
1362 return "no common successor to all case label target blocks found";
1363
1364 /* Check the case label values are within reasonable range: */
1365 if (!check_range (&info))
1366 {
1367 gcc_assert (info.reason);
1368 return info.reason;
1369 }
1370
1371 /* For all the cases, see whether they are empty, the assignments they
1372 represent constant and so on... */
1373 if (! check_all_empty_except_final (&info))
1374 {
1375 gcc_assert (info.reason);
1376 return info.reason;
1377 }
1378 if (!check_final_bb (&info))
1379 {
1380 gcc_assert (info.reason);
1381 return info.reason;
1382 }
1383
1384 /* At this point all checks have passed and we can proceed with the
1385 transformation. */
1386
1387 create_temp_arrays (&info);
1388 gather_default_values (gimple_switch_default_label (swtch), &info);
1389 build_constructors (swtch, &info);
1390
1391 build_arrays (swtch, &info); /* Build the static arrays and assignments. */
1392 gen_inbound_check (swtch, &info); /* Build the bounds check. */
1393
1394 /* Cleanup: */
1395 free_temp_arrays (&info);
1396 return NULL;
1397 }
1398
1399 /* The main function of the pass scans statements for switches and invokes
1400 process_switch on them. */
1401
1402 static unsigned int
1403 do_switchconv (void)
1404 {
1405 basic_block bb;
1406
1407 FOR_EACH_BB (bb)
1408 {
1409 const char *failure_reason;
1410 gimple stmt = last_stmt (bb);
1411 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1412 {
1413 if (dump_file)
1414 {
1415 expanded_location loc = expand_location (gimple_location (stmt));
1416
1417 fprintf (dump_file, "beginning to process the following "
1418 "SWITCH statement (%s:%d) : ------- \n",
1419 loc.file, loc.line);
1420 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1421 putc ('\n', dump_file);
1422 }
1423
1424 failure_reason = process_switch (stmt);
1425 if (! failure_reason)
1426 {
1427 if (dump_file)
1428 {
1429 fputs ("Switch converted\n", dump_file);
1430 fputs ("--------------------------------\n", dump_file);
1431 }
1432
1433 /* Make no effort to update the post-dominator tree. It is actually not
1434 that hard for the transformations we have performed, but it is not
1435 supported by iterate_fix_dominators. */
1436 free_dominance_info (CDI_POST_DOMINATORS);
1437 }
1438 else
1439 {
1440 if (dump_file)
1441 {
1442 fputs ("Bailing out - ", dump_file);
1443 fputs (failure_reason, dump_file);
1444 fputs ("\n--------------------------------\n", dump_file);
1445 }
1446 }
1447 }
1448 }
1449
1450 return 0;
1451 }
1452
1453 /* The pass gate. */
1454
1455 static bool
1456 switchconv_gate (void)
1457 {
1458 return flag_tree_switch_conversion != 0;
1459 }
1460
1461 struct gimple_opt_pass pass_convert_switch =
1462 {
1463 {
1464 GIMPLE_PASS,
1465 "switchconv", /* name */
1466 OPTGROUP_NONE, /* optinfo_flags */
1467 switchconv_gate, /* gate */
1468 do_switchconv, /* execute */
1469 NULL, /* sub */
1470 NULL, /* next */
1471 0, /* static_pass_number */
1472 TV_TREE_SWITCH_CONVERSION, /* tv_id */
1473 PROP_cfg | PROP_ssa, /* properties_required */
1474 0, /* properties_provided */
1475 0, /* properties_destroyed */
1476 0, /* todo_flags_start */
1477 TODO_update_ssa
1478 | TODO_ggc_collect | TODO_verify_ssa
1479 | TODO_verify_stmts
1480 | TODO_verify_flow /* todo_flags_finish */
1481 }
1482 };