tree-ssa.h: Don't include gimple-low.h...
[gcc.git] / gcc / tree-switch-conversion.c
1 /* Lower GIMPLE_SWITCH expressions to something more efficient than
2 a jump table.
3 Copyright (C) 2006-2013 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This file handles the lowering of GIMPLE_SWITCH to an indexed
23 load, or a series of bit-test-and-branch expressions. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "tm.h"
29 #include "line-map.h"
30 #include "params.h"
31 #include "flags.h"
32 #include "tree.h"
33 #include "basic-block.h"
34 #include "tree-ssa.h"
35 #include "tree-pass.h"
36 #include "gimple-pretty-print.h"
37 #include "cfgloop.h"
38
39 /* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
40 type in the GIMPLE type system that is language-independent? */
41 #include "langhooks.h"
42
43 /* Need to include expr.h and optabs.h for lshift_cheap_p. */
44 #include "expr.h"
45 #include "optabs.h"
46 \f
47 /* Maximum number of case bit tests.
48 FIXME: This should be derived from PARAM_CASE_VALUES_THRESHOLD and
49 targetm.case_values_threshold(), or be its own param. */
50 #define MAX_CASE_BIT_TESTS 3
51
52 /* Split the basic block at the statement pointed to by GSIP, and insert
53 a branch to the target basic block of E_TRUE conditional on tree
54 expression COND.
55
56 It is assumed that there is already an edge from the to-be-split
57 basic block to E_TRUE->dest block. This edge is removed, and the
58 profile information on the edge is re-used for the new conditional
59 jump.
60
61 The CFG is updated. The dominator tree will not be valid after
62 this transformation, but the immediate dominators are updated if
63 UPDATE_DOMINATORS is true.
64
65 Returns the newly created basic block. */
66
67 static basic_block
68 hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
69 tree cond, edge e_true,
70 bool update_dominators)
71 {
72 tree tmp;
73 gimple cond_stmt;
74 edge e_false;
75 basic_block new_bb, split_bb = gsi_bb (*gsip);
76 bool dominated_e_true = false;
77
78 gcc_assert (e_true->src == split_bb);
79
80 if (update_dominators
81 && get_immediate_dominator (CDI_DOMINATORS, e_true->dest) == split_bb)
82 dominated_e_true = true;
83
84 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
85 /*before=*/true, GSI_SAME_STMT);
86 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
87 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
88
89 e_false = split_block (split_bb, cond_stmt);
90 new_bb = e_false->dest;
91 redirect_edge_pred (e_true, split_bb);
92
93 e_true->flags &= ~EDGE_FALLTHRU;
94 e_true->flags |= EDGE_TRUE_VALUE;
95
96 e_false->flags &= ~EDGE_FALLTHRU;
97 e_false->flags |= EDGE_FALSE_VALUE;
98 e_false->probability = REG_BR_PROB_BASE - e_true->probability;
99 e_false->count = split_bb->count - e_true->count;
100 new_bb->count = e_false->count;
101
102 if (update_dominators)
103 {
104 if (dominated_e_true)
105 set_immediate_dominator (CDI_DOMINATORS, e_true->dest, split_bb);
106 set_immediate_dominator (CDI_DOMINATORS, e_false->dest, split_bb);
107 }
108
109 return new_bb;
110 }
111
112
113 /* Determine whether "1 << x" is relatively cheap in word_mode. */
114 /* FIXME: This is the function that we need rtl.h and optabs.h for.
115 This function (and similar RTL-related cost code in e.g. IVOPTS) should
116 be moved to some kind of interface file for GIMPLE/RTL interactions. */
117 static bool
118 lshift_cheap_p (void)
119 {
120 /* FIXME: This should be made target dependent via this "this_target"
121 mechanism, similar to e.g. can_copy_init_p in gcse.c. */
122 static bool init[2] = {false, false};
123 static bool cheap[2] = {true, true};
124 bool speed_p;
125
126 /* If the targer has no lshift in word_mode, the operation will most
127 probably not be cheap. ??? Does GCC even work for such targets? */
128 if (optab_handler (ashl_optab, word_mode) == CODE_FOR_nothing)
129 return false;
130
131 speed_p = optimize_insn_for_speed_p ();
132
133 if (!init[speed_p])
134 {
135 rtx reg = gen_raw_REG (word_mode, 10000);
136 int cost = set_src_cost (gen_rtx_ASHIFT (word_mode, const1_rtx, reg),
137 speed_p);
138 cheap[speed_p] = cost < COSTS_N_INSNS (MAX_CASE_BIT_TESTS);
139 init[speed_p] = true;
140 }
141
142 return cheap[speed_p];
143 }
144
145 /* Return true if a switch should be expanded as a bit test.
146 RANGE is the difference between highest and lowest case.
147 UNIQ is number of unique case node targets, not counting the default case.
148 COUNT is the number of comparisons needed, not counting the default case. */
149
150 static bool
151 expand_switch_using_bit_tests_p (tree range,
152 unsigned int uniq,
153 unsigned int count)
154 {
155 return (((uniq == 1 && count >= 3)
156 || (uniq == 2 && count >= 5)
157 || (uniq == 3 && count >= 6))
158 && lshift_cheap_p ()
159 && compare_tree_int (range, GET_MODE_BITSIZE (word_mode)) < 0
160 && compare_tree_int (range, 0) > 0);
161 }
162 \f
163 /* Implement switch statements with bit tests
164
165 A GIMPLE switch statement can be expanded to a short sequence of bit-wise
166 comparisons. "switch(x)" is converted into "if ((1 << (x-MINVAL)) & CST)"
167 where CST and MINVAL are integer constants. This is better than a series
168 of compare-and-banch insns in some cases, e.g. we can implement:
169
170 if ((x==4) || (x==6) || (x==9) || (x==11))
171
172 as a single bit test:
173
174 if ((1<<x) & ((1<<4)|(1<<6)|(1<<9)|(1<<11)))
175
176 This transformation is only applied if the number of case targets is small,
177 if CST constains at least 3 bits, and "1 << x" is cheap. The bit tests are
178 performed in "word_mode".
179
180 The following example shows the code the transformation generates:
181
182 int bar(int x)
183 {
184 switch (x)
185 {
186 case '0': case '1': case '2': case '3': case '4':
187 case '5': case '6': case '7': case '8': case '9':
188 case 'A': case 'B': case 'C': case 'D': case 'E':
189 case 'F':
190 return 1;
191 }
192 return 0;
193 }
194
195 ==>
196
197 bar (int x)
198 {
199 tmp1 = x - 48;
200 if (tmp1 > (70 - 48)) goto L2;
201 tmp2 = 1 << tmp1;
202 tmp3 = 0b11111100000001111111111;
203 if ((tmp2 & tmp3) != 0) goto L1 ; else goto L2;
204 L1:
205 return 1;
206 L2:
207 return 0;
208 }
209
210 TODO: There are still some improvements to this transformation that could
211 be implemented:
212
213 * A narrower mode than word_mode could be used if that is cheaper, e.g.
214 for x86_64 where a narrower-mode shift may result in smaller code.
215
216 * The compounded constant could be shifted rather than the one. The
217 test would be either on the sign bit or on the least significant bit,
218 depending on the direction of the shift. On some machines, the test
219 for the branch would be free if the bit to test is already set by the
220 shift operation.
221
222 This transformation was contributed by Roger Sayle, see this e-mail:
223 http://gcc.gnu.org/ml/gcc-patches/2003-01/msg01950.html
224 */
225
226 /* A case_bit_test represents a set of case nodes that may be
227 selected from using a bit-wise comparison. HI and LO hold
228 the integer to be tested against, TARGET_EDGE contains the
229 edge to the basic block to jump to upon success and BITS
230 counts the number of case nodes handled by this test,
231 typically the number of bits set in HI:LO. The LABEL field
232 is used to quickly identify all cases in this set without
233 looking at label_to_block for every case label. */
234
235 struct case_bit_test
236 {
237 HOST_WIDE_INT hi;
238 HOST_WIDE_INT lo;
239 edge target_edge;
240 tree label;
241 int bits;
242 };
243
244 /* Comparison function for qsort to order bit tests by decreasing
245 probability of execution. Our best guess comes from a measured
246 profile. If the profile counts are equal, break even on the
247 number of case nodes, i.e. the node with the most cases gets
248 tested first.
249
250 TODO: Actually this currently runs before a profile is available.
251 Therefore the case-as-bit-tests transformation should be done
252 later in the pass pipeline, or something along the lines of
253 "Efficient and effective branch reordering using profile data"
254 (Yang et. al., 2002) should be implemented (although, how good
255 is a paper is called "Efficient and effective ..." when the
256 latter is implied by the former, but oh well...). */
257
258 static int
259 case_bit_test_cmp (const void *p1, const void *p2)
260 {
261 const struct case_bit_test *const d1 = (const struct case_bit_test *) p1;
262 const struct case_bit_test *const d2 = (const struct case_bit_test *) p2;
263
264 if (d2->target_edge->count != d1->target_edge->count)
265 return d2->target_edge->count - d1->target_edge->count;
266 if (d2->bits != d1->bits)
267 return d2->bits - d1->bits;
268
269 /* Stabilize the sort. */
270 return LABEL_DECL_UID (d2->label) - LABEL_DECL_UID (d1->label);
271 }
272
273 /* Expand a switch statement by a short sequence of bit-wise
274 comparisons. "switch(x)" is effectively converted into
275 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
276 integer constants.
277
278 INDEX_EXPR is the value being switched on.
279
280 MINVAL is the lowest case value of in the case nodes,
281 and RANGE is highest value minus MINVAL. MINVAL and RANGE
282 are not guaranteed to be of the same type as INDEX_EXPR
283 (the gimplifier doesn't change the type of case label values,
284 and MINVAL and RANGE are derived from those values).
285
286 There *MUST* be MAX_CASE_BIT_TESTS or less unique case
287 node targets. */
288
289 static void
290 emit_case_bit_tests (gimple swtch, tree index_expr,
291 tree minval, tree range)
292 {
293 struct case_bit_test test[MAX_CASE_BIT_TESTS];
294 unsigned int i, j, k;
295 unsigned int count;
296
297 basic_block switch_bb = gimple_bb (swtch);
298 basic_block default_bb, new_default_bb, new_bb;
299 edge default_edge;
300 bool update_dom = dom_info_available_p (CDI_DOMINATORS);
301
302 vec<basic_block> bbs_to_fix_dom = vNULL;
303
304 tree index_type = TREE_TYPE (index_expr);
305 tree unsigned_index_type = unsigned_type_for (index_type);
306 unsigned int branch_num = gimple_switch_num_labels (swtch);
307
308 gimple_stmt_iterator gsi;
309 gimple shift_stmt;
310
311 tree idx, tmp, csui;
312 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
313 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
314 tree word_mode_one = fold_convert (word_type_node, integer_one_node);
315
316 memset (&test, 0, sizeof (test));
317
318 /* Get the edge for the default case. */
319 tmp = gimple_switch_default_label (swtch);
320 default_bb = label_to_block (CASE_LABEL (tmp));
321 default_edge = find_edge (switch_bb, default_bb);
322
323 /* Go through all case labels, and collect the case labels, profile
324 counts, and other information we need to build the branch tests. */
325 count = 0;
326 for (i = 1; i < branch_num; i++)
327 {
328 unsigned int lo, hi;
329 tree cs = gimple_switch_label (swtch, i);
330 tree label = CASE_LABEL (cs);
331 edge e = find_edge (switch_bb, label_to_block (label));
332 for (k = 0; k < count; k++)
333 if (e == test[k].target_edge)
334 break;
335
336 if (k == count)
337 {
338 gcc_checking_assert (count < MAX_CASE_BIT_TESTS);
339 test[k].hi = 0;
340 test[k].lo = 0;
341 test[k].target_edge = e;
342 test[k].label = label;
343 test[k].bits = 1;
344 count++;
345 }
346 else
347 test[k].bits++;
348
349 lo = tree_low_cst (int_const_binop (MINUS_EXPR,
350 CASE_LOW (cs), minval),
351 1);
352 if (CASE_HIGH (cs) == NULL_TREE)
353 hi = lo;
354 else
355 hi = tree_low_cst (int_const_binop (MINUS_EXPR,
356 CASE_HIGH (cs), minval),
357 1);
358
359 for (j = lo; j <= hi; j++)
360 if (j >= HOST_BITS_PER_WIDE_INT)
361 test[k].hi |= (HOST_WIDE_INT) 1 << (j - HOST_BITS_PER_INT);
362 else
363 test[k].lo |= (HOST_WIDE_INT) 1 << j;
364 }
365
366 qsort (test, count, sizeof (*test), case_bit_test_cmp);
367
368 /* We generate two jumps to the default case label.
369 Split the default edge, so that we don't have to do any PHI node
370 updating. */
371 new_default_bb = split_edge (default_edge);
372
373 if (update_dom)
374 {
375 bbs_to_fix_dom.create (10);
376 bbs_to_fix_dom.quick_push (switch_bb);
377 bbs_to_fix_dom.quick_push (default_bb);
378 bbs_to_fix_dom.quick_push (new_default_bb);
379 }
380
381 /* Now build the test-and-branch code. */
382
383 gsi = gsi_last_bb (switch_bb);
384
385 /* idx = (unsigned)x - minval. */
386 idx = fold_convert (unsigned_index_type, index_expr);
387 idx = fold_build2 (MINUS_EXPR, unsigned_index_type, idx,
388 fold_convert (unsigned_index_type, minval));
389 idx = force_gimple_operand_gsi (&gsi, idx,
390 /*simple=*/true, NULL_TREE,
391 /*before=*/true, GSI_SAME_STMT);
392
393 /* if (idx > range) goto default */
394 range = force_gimple_operand_gsi (&gsi,
395 fold_convert (unsigned_index_type, range),
396 /*simple=*/true, NULL_TREE,
397 /*before=*/true, GSI_SAME_STMT);
398 tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
399 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, default_edge, update_dom);
400 if (update_dom)
401 bbs_to_fix_dom.quick_push (new_bb);
402 gcc_assert (gimple_bb (swtch) == new_bb);
403 gsi = gsi_last_bb (new_bb);
404
405 /* Any blocks dominated by the GIMPLE_SWITCH, but that are not successors
406 of NEW_BB, are still immediately dominated by SWITCH_BB. Make it so. */
407 if (update_dom)
408 {
409 vec<basic_block> dom_bbs;
410 basic_block dom_son;
411
412 dom_bbs = get_dominated_by (CDI_DOMINATORS, new_bb);
413 FOR_EACH_VEC_ELT (dom_bbs, i, dom_son)
414 {
415 edge e = find_edge (new_bb, dom_son);
416 if (e && single_pred_p (e->dest))
417 continue;
418 set_immediate_dominator (CDI_DOMINATORS, dom_son, switch_bb);
419 bbs_to_fix_dom.safe_push (dom_son);
420 }
421 dom_bbs.release ();
422 }
423
424 /* csui = (1 << (word_mode) idx) */
425 csui = make_ssa_name (word_type_node, NULL);
426 tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one,
427 fold_convert (word_type_node, idx));
428 tmp = force_gimple_operand_gsi (&gsi, tmp,
429 /*simple=*/false, NULL_TREE,
430 /*before=*/true, GSI_SAME_STMT);
431 shift_stmt = gimple_build_assign (csui, tmp);
432 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
433 update_stmt (shift_stmt);
434
435 /* for each unique set of cases:
436 if (const & csui) goto target */
437 for (k = 0; k < count; k++)
438 {
439 tmp = build_int_cst_wide (word_type_node, test[k].lo, test[k].hi);
440 tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp);
441 tmp = force_gimple_operand_gsi (&gsi, tmp,
442 /*simple=*/true, NULL_TREE,
443 /*before=*/true, GSI_SAME_STMT);
444 tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero);
445 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_edge,
446 update_dom);
447 if (update_dom)
448 bbs_to_fix_dom.safe_push (new_bb);
449 gcc_assert (gimple_bb (swtch) == new_bb);
450 gsi = gsi_last_bb (new_bb);
451 }
452
453 /* We should have removed all edges now. */
454 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
455
456 /* If nothing matched, go to the default label. */
457 make_edge (gsi_bb (gsi), new_default_bb, EDGE_FALLTHRU);
458
459 /* The GIMPLE_SWITCH is now redundant. */
460 gsi_remove (&gsi, true);
461
462 if (update_dom)
463 {
464 /* Fix up the dominator tree. */
465 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
466 bbs_to_fix_dom.release ();
467 }
468 }
469 \f
470 /*
471 Switch initialization conversion
472
473 The following pass changes simple initializations of scalars in a switch
474 statement into initializations from a static array. Obviously, the values
475 must be constant and known at compile time and a default branch must be
476 provided. For example, the following code:
477
478 int a,b;
479
480 switch (argc)
481 {
482 case 1:
483 case 2:
484 a_1 = 8;
485 b_1 = 6;
486 break;
487 case 3:
488 a_2 = 9;
489 b_2 = 5;
490 break;
491 case 12:
492 a_3 = 10;
493 b_3 = 4;
494 break;
495 default:
496 a_4 = 16;
497 b_4 = 1;
498 break;
499 }
500 a_5 = PHI <a_1, a_2, a_3, a_4>
501 b_5 = PHI <b_1, b_2, b_3, b_4>
502
503
504 is changed into:
505
506 static const int = CSWTCH01[] = {6, 6, 5, 1, 1, 1, 1, 1, 1, 1, 1, 4};
507 static const int = CSWTCH02[] = {8, 8, 9, 16, 16, 16, 16, 16, 16, 16,
508 16, 16, 10};
509
510 if (((unsigned) argc) - 1 < 11)
511 {
512 a_6 = CSWTCH02[argc - 1];
513 b_6 = CSWTCH01[argc - 1];
514 }
515 else
516 {
517 a_7 = 16;
518 b_7 = 1;
519 }
520 a_5 = PHI <a_6, a_7>
521 b_b = PHI <b_6, b_7>
522
523 There are further constraints. Specifically, the range of values across all
524 case labels must not be bigger than SWITCH_CONVERSION_BRANCH_RATIO (default
525 eight) times the number of the actual switch branches.
526
527 This transformation was contributed by Martin Jambor, see this e-mail:
528 http://gcc.gnu.org/ml/gcc-patches/2008-07/msg00011.html */
529
530 /* The main structure of the pass. */
531 struct switch_conv_info
532 {
533 /* The expression used to decide the switch branch. */
534 tree index_expr;
535
536 /* The following integer constants store the minimum and maximum value
537 covered by the case labels. */
538 tree range_min;
539 tree range_max;
540
541 /* The difference between the above two numbers. Stored here because it
542 is used in all the conversion heuristics, as well as for some of the
543 transformation, and it is expensive to re-compute it all the time. */
544 tree range_size;
545
546 /* Basic block that contains the actual GIMPLE_SWITCH. */
547 basic_block switch_bb;
548
549 /* Basic block that is the target of the default case. */
550 basic_block default_bb;
551
552 /* The single successor block of all branches out of the GIMPLE_SWITCH,
553 if such a block exists. Otherwise NULL. */
554 basic_block final_bb;
555
556 /* The probability of the default edge in the replaced switch. */
557 int default_prob;
558
559 /* The count of the default edge in the replaced switch. */
560 gcov_type default_count;
561
562 /* Combined count of all other (non-default) edges in the replaced switch. */
563 gcov_type other_count;
564
565 /* Number of phi nodes in the final bb (that we'll be replacing). */
566 int phi_count;
567
568 /* Array of default values, in the same order as phi nodes. */
569 tree *default_values;
570
571 /* Constructors of new static arrays. */
572 vec<constructor_elt, va_gc> **constructors;
573
574 /* Array of ssa names that are initialized with a value from a new static
575 array. */
576 tree *target_inbound_names;
577
578 /* Array of ssa names that are initialized with the default value if the
579 switch expression is out of range. */
580 tree *target_outbound_names;
581
582 /* The first load statement that loads a temporary from a new static array.
583 */
584 gimple arr_ref_first;
585
586 /* The last load statement that loads a temporary from a new static array. */
587 gimple arr_ref_last;
588
589 /* String reason why the case wasn't a good candidate that is written to the
590 dump file, if there is one. */
591 const char *reason;
592
593 /* Parameters for expand_switch_using_bit_tests. Should be computed
594 the same way as in expand_case. */
595 unsigned int uniq;
596 unsigned int count;
597 };
598
599 /* Collect information about GIMPLE_SWITCH statement SWTCH into INFO. */
600
601 static void
602 collect_switch_conv_info (gimple swtch, struct switch_conv_info *info)
603 {
604 unsigned int branch_num = gimple_switch_num_labels (swtch);
605 tree min_case, max_case;
606 unsigned int count, i;
607 edge e, e_default;
608 edge_iterator ei;
609
610 memset (info, 0, sizeof (*info));
611
612 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
613 is a default label which is the first in the vector.
614 Collect the bits we can deduce from the CFG. */
615 info->index_expr = gimple_switch_index (swtch);
616 info->switch_bb = gimple_bb (swtch);
617 info->default_bb =
618 label_to_block (CASE_LABEL (gimple_switch_default_label (swtch)));
619 e_default = find_edge (info->switch_bb, info->default_bb);
620 info->default_prob = e_default->probability;
621 info->default_count = e_default->count;
622 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
623 if (e != e_default)
624 info->other_count += e->count;
625
626 /* See if there is one common successor block for all branch
627 targets. If it exists, record it in FINAL_BB. */
628 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
629 {
630 if (! single_pred_p (e->dest))
631 {
632 info->final_bb = e->dest;
633 break;
634 }
635 }
636 if (info->final_bb)
637 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
638 {
639 if (e->dest == info->final_bb)
640 continue;
641
642 if (single_pred_p (e->dest)
643 && single_succ_p (e->dest)
644 && single_succ (e->dest) == info->final_bb)
645 continue;
646
647 info->final_bb = NULL;
648 break;
649 }
650
651 /* Get upper and lower bounds of case values, and the covered range. */
652 min_case = gimple_switch_label (swtch, 1);
653 max_case = gimple_switch_label (swtch, branch_num - 1);
654
655 info->range_min = CASE_LOW (min_case);
656 if (CASE_HIGH (max_case) != NULL_TREE)
657 info->range_max = CASE_HIGH (max_case);
658 else
659 info->range_max = CASE_LOW (max_case);
660
661 info->range_size =
662 int_const_binop (MINUS_EXPR, info->range_max, info->range_min);
663
664 /* Get a count of the number of case labels. Single-valued case labels
665 simply count as one, but a case range counts double, since it may
666 require two compares if it gets lowered as a branching tree. */
667 count = 0;
668 for (i = 1; i < branch_num; i++)
669 {
670 tree elt = gimple_switch_label (swtch, i);
671 count++;
672 if (CASE_HIGH (elt)
673 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
674 count++;
675 }
676 info->count = count;
677
678 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
679 block. Assume a CFG cleanup would have already removed degenerate
680 switch statements, this allows us to just use EDGE_COUNT. */
681 info->uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
682 }
683
684 /* Checks whether the range given by individual case statements of the SWTCH
685 switch statement isn't too big and whether the number of branches actually
686 satisfies the size of the new array. */
687
688 static bool
689 check_range (struct switch_conv_info *info)
690 {
691 gcc_assert (info->range_size);
692 if (!host_integerp (info->range_size, 1))
693 {
694 info->reason = "index range way too large or otherwise unusable";
695 return false;
696 }
697
698 if ((unsigned HOST_WIDE_INT) tree_low_cst (info->range_size, 1)
699 > ((unsigned) info->count * SWITCH_CONVERSION_BRANCH_RATIO))
700 {
701 info->reason = "the maximum range-branch ratio exceeded";
702 return false;
703 }
704
705 return true;
706 }
707
708 /* Checks whether all but the FINAL_BB basic blocks are empty. */
709
710 static bool
711 check_all_empty_except_final (struct switch_conv_info *info)
712 {
713 edge e;
714 edge_iterator ei;
715
716 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
717 {
718 if (e->dest == info->final_bb)
719 continue;
720
721 if (!empty_block_p (e->dest))
722 {
723 info->reason = "bad case - a non-final BB not empty";
724 return false;
725 }
726 }
727
728 return true;
729 }
730
731 /* This function checks whether all required values in phi nodes in final_bb
732 are constants. Required values are those that correspond to a basic block
733 which is a part of the examined switch statement. It returns true if the
734 phi nodes are OK, otherwise false. */
735
736 static bool
737 check_final_bb (struct switch_conv_info *info)
738 {
739 gimple_stmt_iterator gsi;
740
741 info->phi_count = 0;
742 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
743 {
744 gimple phi = gsi_stmt (gsi);
745 unsigned int i;
746
747 info->phi_count++;
748
749 for (i = 0; i < gimple_phi_num_args (phi); i++)
750 {
751 basic_block bb = gimple_phi_arg_edge (phi, i)->src;
752
753 if (bb == info->switch_bb
754 || (single_pred_p (bb) && single_pred (bb) == info->switch_bb))
755 {
756 tree reloc, val;
757
758 val = gimple_phi_arg_def (phi, i);
759 if (!is_gimple_ip_invariant (val))
760 {
761 info->reason = "non-invariant value from a case";
762 return false; /* Non-invariant argument. */
763 }
764 reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
765 if ((flag_pic && reloc != null_pointer_node)
766 || (!flag_pic && reloc == NULL_TREE))
767 {
768 if (reloc)
769 info->reason
770 = "value from a case would need runtime relocations";
771 else
772 info->reason
773 = "value from a case is not a valid initializer";
774 return false;
775 }
776 }
777 }
778 }
779
780 return true;
781 }
782
783 /* The following function allocates default_values, target_{in,out}_names and
784 constructors arrays. The last one is also populated with pointers to
785 vectors that will become constructors of new arrays. */
786
787 static void
788 create_temp_arrays (struct switch_conv_info *info)
789 {
790 int i;
791
792 info->default_values = XCNEWVEC (tree, info->phi_count * 3);
793 /* ??? Macros do not support multi argument templates in their
794 argument list. We create a typedef to work around that problem. */
795 typedef vec<constructor_elt, va_gc> *vec_constructor_elt_gc;
796 info->constructors = XCNEWVEC (vec_constructor_elt_gc, info->phi_count);
797 info->target_inbound_names = info->default_values + info->phi_count;
798 info->target_outbound_names = info->target_inbound_names + info->phi_count;
799 for (i = 0; i < info->phi_count; i++)
800 vec_alloc (info->constructors[i], tree_low_cst (info->range_size, 1) + 1);
801 }
802
803 /* Free the arrays created by create_temp_arrays(). The vectors that are
804 created by that function are not freed here, however, because they have
805 already become constructors and must be preserved. */
806
807 static void
808 free_temp_arrays (struct switch_conv_info *info)
809 {
810 XDELETEVEC (info->constructors);
811 XDELETEVEC (info->default_values);
812 }
813
814 /* Populate the array of default values in the order of phi nodes.
815 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch. */
816
817 static void
818 gather_default_values (tree default_case, struct switch_conv_info *info)
819 {
820 gimple_stmt_iterator gsi;
821 basic_block bb = label_to_block (CASE_LABEL (default_case));
822 edge e;
823 int i = 0;
824
825 gcc_assert (CASE_LOW (default_case) == NULL_TREE);
826
827 if (bb == info->final_bb)
828 e = find_edge (info->switch_bb, bb);
829 else
830 e = single_succ_edge (bb);
831
832 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
833 {
834 gimple phi = gsi_stmt (gsi);
835 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
836 gcc_assert (val);
837 info->default_values[i++] = val;
838 }
839 }
840
841 /* The following function populates the vectors in the constructors array with
842 future contents of the static arrays. The vectors are populated in the
843 order of phi nodes. SWTCH is the switch statement being converted. */
844
845 static void
846 build_constructors (gimple swtch, struct switch_conv_info *info)
847 {
848 unsigned i, branch_num = gimple_switch_num_labels (swtch);
849 tree pos = info->range_min;
850
851 for (i = 1; i < branch_num; i++)
852 {
853 tree cs = gimple_switch_label (swtch, i);
854 basic_block bb = label_to_block (CASE_LABEL (cs));
855 edge e;
856 tree high;
857 gimple_stmt_iterator gsi;
858 int j;
859
860 if (bb == info->final_bb)
861 e = find_edge (info->switch_bb, bb);
862 else
863 e = single_succ_edge (bb);
864 gcc_assert (e);
865
866 while (tree_int_cst_lt (pos, CASE_LOW (cs)))
867 {
868 int k;
869 for (k = 0; k < info->phi_count; k++)
870 {
871 constructor_elt elt;
872
873 elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min);
874 elt.value
875 = unshare_expr_without_location (info->default_values[k]);
876 info->constructors[k]->quick_push (elt);
877 }
878
879 pos = int_const_binop (PLUS_EXPR, pos, integer_one_node);
880 }
881 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
882
883 j = 0;
884 if (CASE_HIGH (cs))
885 high = CASE_HIGH (cs);
886 else
887 high = CASE_LOW (cs);
888 for (gsi = gsi_start_phis (info->final_bb);
889 !gsi_end_p (gsi); gsi_next (&gsi))
890 {
891 gimple phi = gsi_stmt (gsi);
892 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
893 tree low = CASE_LOW (cs);
894 pos = CASE_LOW (cs);
895
896 do
897 {
898 constructor_elt elt;
899
900 elt.index = int_const_binop (MINUS_EXPR, pos, info->range_min);
901 elt.value = unshare_expr_without_location (val);
902 info->constructors[j]->quick_push (elt);
903
904 pos = int_const_binop (PLUS_EXPR, pos, integer_one_node);
905 } while (!tree_int_cst_lt (high, pos)
906 && tree_int_cst_lt (low, pos));
907 j++;
908 }
909 }
910 }
911
912 /* If all values in the constructor vector are the same, return the value.
913 Otherwise return NULL_TREE. Not supposed to be called for empty
914 vectors. */
915
916 static tree
917 constructor_contains_same_values_p (vec<constructor_elt, va_gc> *vec)
918 {
919 unsigned int i;
920 tree prev = NULL_TREE;
921 constructor_elt *elt;
922
923 FOR_EACH_VEC_SAFE_ELT (vec, i, elt)
924 {
925 if (!prev)
926 prev = elt->value;
927 else if (!operand_equal_p (elt->value, prev, OEP_ONLY_CONST))
928 return NULL_TREE;
929 }
930 return prev;
931 }
932
933 /* Return type which should be used for array elements, either TYPE,
934 or for integral type some smaller integral type that can still hold
935 all the constants. */
936
937 static tree
938 array_value_type (gimple swtch, tree type, int num,
939 struct switch_conv_info *info)
940 {
941 unsigned int i, len = vec_safe_length (info->constructors[num]);
942 constructor_elt *elt;
943 enum machine_mode mode;
944 int sign = 0;
945 tree smaller_type;
946
947 if (!INTEGRAL_TYPE_P (type))
948 return type;
949
950 mode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (TYPE_MODE (type)));
951 if (GET_MODE_SIZE (TYPE_MODE (type)) <= GET_MODE_SIZE (mode))
952 return type;
953
954 if (len < (optimize_bb_for_size_p (gimple_bb (swtch)) ? 2 : 32))
955 return type;
956
957 FOR_EACH_VEC_SAFE_ELT (info->constructors[num], i, elt)
958 {
959 double_int cst;
960
961 if (TREE_CODE (elt->value) != INTEGER_CST)
962 return type;
963
964 cst = TREE_INT_CST (elt->value);
965 while (1)
966 {
967 unsigned int prec = GET_MODE_BITSIZE (mode);
968 if (prec > HOST_BITS_PER_WIDE_INT)
969 return type;
970
971 if (sign >= 0 && cst == cst.zext (prec))
972 {
973 if (sign == 0 && cst == cst.sext (prec))
974 break;
975 sign = 1;
976 break;
977 }
978 if (sign <= 0 && cst == cst.sext (prec))
979 {
980 sign = -1;
981 break;
982 }
983
984 if (sign == 1)
985 sign = 0;
986
987 mode = GET_MODE_WIDER_MODE (mode);
988 if (mode == VOIDmode
989 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (TYPE_MODE (type)))
990 return type;
991 }
992 }
993
994 if (sign == 0)
995 sign = TYPE_UNSIGNED (type) ? 1 : -1;
996 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
997 if (GET_MODE_SIZE (TYPE_MODE (type))
998 <= GET_MODE_SIZE (TYPE_MODE (smaller_type)))
999 return type;
1000
1001 return smaller_type;
1002 }
1003
1004 /* Create an appropriate array type and declaration and assemble a static array
1005 variable. Also create a load statement that initializes the variable in
1006 question with a value from the static array. SWTCH is the switch statement
1007 being converted, NUM is the index to arrays of constructors, default values
1008 and target SSA names for this particular array. ARR_INDEX_TYPE is the type
1009 of the index of the new array, PHI is the phi node of the final BB that
1010 corresponds to the value that will be loaded from the created array. TIDX
1011 is an ssa name of a temporary variable holding the index for loads from the
1012 new array. */
1013
1014 static void
1015 build_one_array (gimple swtch, int num, tree arr_index_type, gimple phi,
1016 tree tidx, struct switch_conv_info *info)
1017 {
1018 tree name, cst;
1019 gimple load;
1020 gimple_stmt_iterator gsi = gsi_for_stmt (swtch);
1021 location_t loc = gimple_location (swtch);
1022
1023 gcc_assert (info->default_values[num]);
1024
1025 name = copy_ssa_name (PHI_RESULT (phi), NULL);
1026 info->target_inbound_names[num] = name;
1027
1028 cst = constructor_contains_same_values_p (info->constructors[num]);
1029 if (cst)
1030 load = gimple_build_assign (name, cst);
1031 else
1032 {
1033 tree array_type, ctor, decl, value_type, fetch, default_type;
1034
1035 default_type = TREE_TYPE (info->default_values[num]);
1036 value_type = array_value_type (swtch, default_type, num, info);
1037 array_type = build_array_type (value_type, arr_index_type);
1038 if (default_type != value_type)
1039 {
1040 unsigned int i;
1041 constructor_elt *elt;
1042
1043 FOR_EACH_VEC_SAFE_ELT (info->constructors[num], i, elt)
1044 elt->value = fold_convert (value_type, elt->value);
1045 }
1046 ctor = build_constructor (array_type, info->constructors[num]);
1047 TREE_CONSTANT (ctor) = true;
1048 TREE_STATIC (ctor) = true;
1049
1050 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
1051 TREE_STATIC (decl) = 1;
1052 DECL_INITIAL (decl) = ctor;
1053
1054 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
1055 DECL_ARTIFICIAL (decl) = 1;
1056 TREE_CONSTANT (decl) = 1;
1057 TREE_READONLY (decl) = 1;
1058 varpool_finalize_decl (decl);
1059
1060 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
1061 NULL_TREE);
1062 if (default_type != value_type)
1063 {
1064 fetch = fold_convert (default_type, fetch);
1065 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
1066 true, GSI_SAME_STMT);
1067 }
1068 load = gimple_build_assign (name, fetch);
1069 }
1070
1071 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1072 update_stmt (load);
1073 info->arr_ref_last = load;
1074 }
1075
1076 /* Builds and initializes static arrays initialized with values gathered from
1077 the SWTCH switch statement. Also creates statements that load values from
1078 them. */
1079
1080 static void
1081 build_arrays (gimple swtch, struct switch_conv_info *info)
1082 {
1083 tree arr_index_type;
1084 tree tidx, sub, utype;
1085 gimple stmt;
1086 gimple_stmt_iterator gsi;
1087 int i;
1088 location_t loc = gimple_location (swtch);
1089
1090 gsi = gsi_for_stmt (swtch);
1091
1092 /* Make sure we do not generate arithmetics in a subrange. */
1093 utype = TREE_TYPE (info->index_expr);
1094 if (TREE_TYPE (utype))
1095 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
1096 else
1097 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
1098
1099 arr_index_type = build_index_type (info->range_size);
1100 tidx = make_ssa_name (utype, NULL);
1101 sub = fold_build2_loc (loc, MINUS_EXPR, utype,
1102 fold_convert_loc (loc, utype, info->index_expr),
1103 fold_convert_loc (loc, utype, info->range_min));
1104 sub = force_gimple_operand_gsi (&gsi, sub,
1105 false, NULL, true, GSI_SAME_STMT);
1106 stmt = gimple_build_assign (tidx, sub);
1107
1108 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1109 update_stmt (stmt);
1110 info->arr_ref_first = stmt;
1111
1112 for (gsi = gsi_start_phis (info->final_bb), i = 0;
1113 !gsi_end_p (gsi); gsi_next (&gsi), i++)
1114 build_one_array (swtch, i, arr_index_type, gsi_stmt (gsi), tidx, info);
1115 }
1116
1117 /* Generates and appropriately inserts loads of default values at the position
1118 given by BSI. Returns the last inserted statement. */
1119
1120 static gimple
1121 gen_def_assigns (gimple_stmt_iterator *gsi, struct switch_conv_info *info)
1122 {
1123 int i;
1124 gimple assign = NULL;
1125
1126 for (i = 0; i < info->phi_count; i++)
1127 {
1128 tree name = copy_ssa_name (info->target_inbound_names[i], NULL);
1129 info->target_outbound_names[i] = name;
1130 assign = gimple_build_assign (name, info->default_values[i]);
1131 gsi_insert_before (gsi, assign, GSI_SAME_STMT);
1132 update_stmt (assign);
1133 }
1134 return assign;
1135 }
1136
1137 /* Deletes the unused bbs and edges that now contain the switch statement and
1138 its empty branch bbs. BBD is the now dead BB containing the original switch
1139 statement, FINAL is the last BB of the converted switch statement (in terms
1140 of succession). */
1141
1142 static void
1143 prune_bbs (basic_block bbd, basic_block final)
1144 {
1145 edge_iterator ei;
1146 edge e;
1147
1148 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
1149 {
1150 basic_block bb;
1151 bb = e->dest;
1152 remove_edge (e);
1153 if (bb != final)
1154 delete_basic_block (bb);
1155 }
1156 delete_basic_block (bbd);
1157 }
1158
1159 /* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
1160 from the basic block loading values from an array and E2F from the basic
1161 block loading default values. BBF is the last switch basic block (see the
1162 bbf description in the comment below). */
1163
1164 static void
1165 fix_phi_nodes (edge e1f, edge e2f, basic_block bbf,
1166 struct switch_conv_info *info)
1167 {
1168 gimple_stmt_iterator gsi;
1169 int i;
1170
1171 for (gsi = gsi_start_phis (bbf), i = 0;
1172 !gsi_end_p (gsi); gsi_next (&gsi), i++)
1173 {
1174 gimple phi = gsi_stmt (gsi);
1175 add_phi_arg (phi, info->target_inbound_names[i], e1f, UNKNOWN_LOCATION);
1176 add_phi_arg (phi, info->target_outbound_names[i], e2f, UNKNOWN_LOCATION);
1177 }
1178 }
1179
1180 /* Creates a check whether the switch expression value actually falls into the
1181 range given by all the cases. If it does not, the temporaries are loaded
1182 with default values instead. SWTCH is the switch statement being converted.
1183
1184 bb0 is the bb with the switch statement, however, we'll end it with a
1185 condition instead.
1186
1187 bb1 is the bb to be used when the range check went ok. It is derived from
1188 the switch BB
1189
1190 bb2 is the bb taken when the expression evaluated outside of the range
1191 covered by the created arrays. It is populated by loads of default
1192 values.
1193
1194 bbF is a fall through for both bb1 and bb2 and contains exactly what
1195 originally followed the switch statement.
1196
1197 bbD contains the switch statement (in the end). It is unreachable but we
1198 still need to strip off its edges.
1199 */
1200
1201 static void
1202 gen_inbound_check (gimple swtch, struct switch_conv_info *info)
1203 {
1204 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
1205 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
1206 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
1207 gimple label1, label2, label3;
1208 tree utype, tidx;
1209 tree bound;
1210
1211 gimple cond_stmt;
1212
1213 gimple last_assign;
1214 gimple_stmt_iterator gsi;
1215 basic_block bb0, bb1, bb2, bbf, bbd;
1216 edge e01, e02, e21, e1d, e1f, e2f;
1217 location_t loc = gimple_location (swtch);
1218
1219 gcc_assert (info->default_values);
1220
1221 bb0 = gimple_bb (swtch);
1222
1223 tidx = gimple_assign_lhs (info->arr_ref_first);
1224 utype = TREE_TYPE (tidx);
1225
1226 /* (end of) block 0 */
1227 gsi = gsi_for_stmt (info->arr_ref_first);
1228 gsi_next (&gsi);
1229
1230 bound = fold_convert_loc (loc, utype, info->range_size);
1231 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
1232 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
1233 update_stmt (cond_stmt);
1234
1235 /* block 2 */
1236 label2 = gimple_build_label (label_decl2);
1237 gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
1238 last_assign = gen_def_assigns (&gsi, info);
1239
1240 /* block 1 */
1241 label1 = gimple_build_label (label_decl1);
1242 gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
1243
1244 /* block F */
1245 gsi = gsi_start_bb (info->final_bb);
1246 label3 = gimple_build_label (label_decl3);
1247 gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
1248
1249 /* cfg fix */
1250 e02 = split_block (bb0, cond_stmt);
1251 bb2 = e02->dest;
1252
1253 e21 = split_block (bb2, last_assign);
1254 bb1 = e21->dest;
1255 remove_edge (e21);
1256
1257 e1d = split_block (bb1, info->arr_ref_last);
1258 bbd = e1d->dest;
1259 remove_edge (e1d);
1260
1261 /* flags and profiles of the edge for in-range values */
1262 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
1263 e01->probability = REG_BR_PROB_BASE - info->default_prob;
1264 e01->count = info->other_count;
1265
1266 /* flags and profiles of the edge taking care of out-of-range values */
1267 e02->flags &= ~EDGE_FALLTHRU;
1268 e02->flags |= EDGE_FALSE_VALUE;
1269 e02->probability = info->default_prob;
1270 e02->count = info->default_count;
1271
1272 bbf = info->final_bb;
1273
1274 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
1275 e1f->probability = REG_BR_PROB_BASE;
1276 e1f->count = info->other_count;
1277
1278 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
1279 e2f->probability = REG_BR_PROB_BASE;
1280 e2f->count = info->default_count;
1281
1282 /* frequencies of the new BBs */
1283 bb1->frequency = EDGE_FREQUENCY (e01);
1284 bb2->frequency = EDGE_FREQUENCY (e02);
1285 bbf->frequency = EDGE_FREQUENCY (e1f) + EDGE_FREQUENCY (e2f);
1286
1287 /* Tidy blocks that have become unreachable. */
1288 prune_bbs (bbd, info->final_bb);
1289
1290 /* Fixup the PHI nodes in bbF. */
1291 fix_phi_nodes (e1f, e2f, bbf, info);
1292
1293 /* Fix the dominator tree, if it is available. */
1294 if (dom_info_available_p (CDI_DOMINATORS))
1295 {
1296 vec<basic_block> bbs_to_fix_dom;
1297
1298 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
1299 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
1300 if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
1301 /* If bbD was the immediate dominator ... */
1302 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
1303
1304 bbs_to_fix_dom.create (4);
1305 bbs_to_fix_dom.quick_push (bb0);
1306 bbs_to_fix_dom.quick_push (bb1);
1307 bbs_to_fix_dom.quick_push (bb2);
1308 bbs_to_fix_dom.quick_push (bbf);
1309
1310 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
1311 bbs_to_fix_dom.release ();
1312 }
1313 }
1314
1315 /* The following function is invoked on every switch statement (the current one
1316 is given in SWTCH) and runs the individual phases of switch conversion on it
1317 one after another until one fails or the conversion is completed.
1318 Returns NULL on success, or a pointer to a string with the reason why the
1319 conversion failed. */
1320
1321 static const char *
1322 process_switch (gimple swtch)
1323 {
1324 struct switch_conv_info info;
1325
1326 /* Group case labels so that we get the right results from the heuristics
1327 that decide on the code generation approach for this switch. */
1328 group_case_labels_stmt (swtch);
1329
1330 /* If this switch is now a degenerate case with only a default label,
1331 there is nothing left for us to do. */
1332 if (gimple_switch_num_labels (swtch) < 2)
1333 return "switch is a degenerate case";
1334
1335 collect_switch_conv_info (swtch, &info);
1336
1337 /* No error markers should reach here (they should be filtered out
1338 during gimplification). */
1339 gcc_checking_assert (TREE_TYPE (info.index_expr) != error_mark_node);
1340
1341 /* A switch on a constant should have been optimized in tree-cfg-cleanup. */
1342 gcc_checking_assert (! TREE_CONSTANT (info.index_expr));
1343
1344 if (info.uniq <= MAX_CASE_BIT_TESTS)
1345 {
1346 if (expand_switch_using_bit_tests_p (info.range_size,
1347 info.uniq, info.count))
1348 {
1349 if (dump_file)
1350 fputs (" expanding as bit test is preferable\n", dump_file);
1351 emit_case_bit_tests (swtch, info.index_expr,
1352 info.range_min, info.range_size);
1353 if (current_loops)
1354 loops_state_set (LOOPS_NEED_FIXUP);
1355 return NULL;
1356 }
1357
1358 if (info.uniq <= 2)
1359 /* This will be expanded as a decision tree in stmt.c:expand_case. */
1360 return " expanding as jumps is preferable";
1361 }
1362
1363 /* If there is no common successor, we cannot do the transformation. */
1364 if (! info.final_bb)
1365 return "no common successor to all case label target blocks found";
1366
1367 /* Check the case label values are within reasonable range: */
1368 if (!check_range (&info))
1369 {
1370 gcc_assert (info.reason);
1371 return info.reason;
1372 }
1373
1374 /* For all the cases, see whether they are empty, the assignments they
1375 represent constant and so on... */
1376 if (! check_all_empty_except_final (&info))
1377 {
1378 gcc_assert (info.reason);
1379 return info.reason;
1380 }
1381 if (!check_final_bb (&info))
1382 {
1383 gcc_assert (info.reason);
1384 return info.reason;
1385 }
1386
1387 /* At this point all checks have passed and we can proceed with the
1388 transformation. */
1389
1390 create_temp_arrays (&info);
1391 gather_default_values (gimple_switch_default_label (swtch), &info);
1392 build_constructors (swtch, &info);
1393
1394 build_arrays (swtch, &info); /* Build the static arrays and assignments. */
1395 gen_inbound_check (swtch, &info); /* Build the bounds check. */
1396
1397 /* Cleanup: */
1398 free_temp_arrays (&info);
1399 return NULL;
1400 }
1401
1402 /* The main function of the pass scans statements for switches and invokes
1403 process_switch on them. */
1404
1405 static unsigned int
1406 do_switchconv (void)
1407 {
1408 basic_block bb;
1409
1410 FOR_EACH_BB (bb)
1411 {
1412 const char *failure_reason;
1413 gimple stmt = last_stmt (bb);
1414 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1415 {
1416 if (dump_file)
1417 {
1418 expanded_location loc = expand_location (gimple_location (stmt));
1419
1420 fprintf (dump_file, "beginning to process the following "
1421 "SWITCH statement (%s:%d) : ------- \n",
1422 loc.file, loc.line);
1423 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1424 putc ('\n', dump_file);
1425 }
1426
1427 failure_reason = process_switch (stmt);
1428 if (! failure_reason)
1429 {
1430 if (dump_file)
1431 {
1432 fputs ("Switch converted\n", dump_file);
1433 fputs ("--------------------------------\n", dump_file);
1434 }
1435
1436 /* Make no effort to update the post-dominator tree. It is actually not
1437 that hard for the transformations we have performed, but it is not
1438 supported by iterate_fix_dominators. */
1439 free_dominance_info (CDI_POST_DOMINATORS);
1440 }
1441 else
1442 {
1443 if (dump_file)
1444 {
1445 fputs ("Bailing out - ", dump_file);
1446 fputs (failure_reason, dump_file);
1447 fputs ("\n--------------------------------\n", dump_file);
1448 }
1449 }
1450 }
1451 }
1452
1453 return 0;
1454 }
1455
1456 /* The pass gate. */
1457
1458 static bool
1459 switchconv_gate (void)
1460 {
1461 return flag_tree_switch_conversion != 0;
1462 }
1463
1464 namespace {
1465
1466 const pass_data pass_data_convert_switch =
1467 {
1468 GIMPLE_PASS, /* type */
1469 "switchconv", /* name */
1470 OPTGROUP_NONE, /* optinfo_flags */
1471 true, /* has_gate */
1472 true, /* has_execute */
1473 TV_TREE_SWITCH_CONVERSION, /* tv_id */
1474 ( PROP_cfg | PROP_ssa ), /* properties_required */
1475 0, /* properties_provided */
1476 0, /* properties_destroyed */
1477 0, /* todo_flags_start */
1478 ( TODO_update_ssa | TODO_verify_ssa
1479 | TODO_verify_stmts
1480 | TODO_verify_flow ), /* todo_flags_finish */
1481 };
1482
1483 class pass_convert_switch : public gimple_opt_pass
1484 {
1485 public:
1486 pass_convert_switch (gcc::context *ctxt)
1487 : gimple_opt_pass (pass_data_convert_switch, ctxt)
1488 {}
1489
1490 /* opt_pass methods: */
1491 bool gate () { return switchconv_gate (); }
1492 unsigned int execute () { return do_switchconv (); }
1493
1494 }; // class pass_convert_switch
1495
1496 } // anon namespace
1497
1498 gimple_opt_pass *
1499 make_pass_convert_switch (gcc::context *ctxt)
1500 {
1501 return new pass_convert_switch (ctxt);
1502 }