Initialize a BB count in switch lowering.
[gcc.git] / gcc / tree-switch-conversion.c
1 /* Lower GIMPLE_SWITCH expressions to something more efficient than
2 a jump table.
3 Copyright (C) 2006-2019 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This file handles the lowering of GIMPLE_SWITCH to an indexed
23 load, or a series of bit-test-and-branch expressions. */
24
25 #include "config.h"
26 #include "system.h"
27 #include "coretypes.h"
28 #include "backend.h"
29 #include "insn-codes.h"
30 #include "rtl.h"
31 #include "tree.h"
32 #include "gimple.h"
33 #include "cfghooks.h"
34 #include "tree-pass.h"
35 #include "ssa.h"
36 #include "optabs-tree.h"
37 #include "cgraph.h"
38 #include "gimple-pretty-print.h"
39 #include "fold-const.h"
40 #include "varasm.h"
41 #include "stor-layout.h"
42 #include "cfganal.h"
43 #include "gimplify.h"
44 #include "gimple-iterator.h"
45 #include "gimplify-me.h"
46 #include "gimple-fold.h"
47 #include "tree-cfg.h"
48 #include "cfgloop.h"
49 #include "alloc-pool.h"
50 #include "target.h"
51 #include "tree-into-ssa.h"
52 #include "omp-general.h"
53
54 /* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
55 type in the GIMPLE type system that is language-independent? */
56 #include "langhooks.h"
57
58 #include "tree-switch-conversion.h"
59 \f
60 using namespace tree_switch_conversion;
61
62 /* Constructor. */
63
64 switch_conversion::switch_conversion (): m_final_bb (NULL),
65 m_constructors (NULL), m_default_values (NULL),
66 m_arr_ref_first (NULL), m_arr_ref_last (NULL),
67 m_reason (NULL), m_default_case_nonstandard (false), m_cfg_altered (false)
68 {
69 }
70
71 /* Collection information about SWTCH statement. */
72
73 void
74 switch_conversion::collect (gswitch *swtch)
75 {
76 unsigned int branch_num = gimple_switch_num_labels (swtch);
77 tree min_case, max_case;
78 unsigned int i;
79 edge e, e_default, e_first;
80 edge_iterator ei;
81
82 m_switch = swtch;
83
84 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
85 is a default label which is the first in the vector.
86 Collect the bits we can deduce from the CFG. */
87 m_index_expr = gimple_switch_index (swtch);
88 m_switch_bb = gimple_bb (swtch);
89 e_default = gimple_switch_default_edge (cfun, swtch);
90 m_default_bb = e_default->dest;
91 m_default_prob = e_default->probability;
92
93 /* Get upper and lower bounds of case values, and the covered range. */
94 min_case = gimple_switch_label (swtch, 1);
95 max_case = gimple_switch_label (swtch, branch_num - 1);
96
97 m_range_min = CASE_LOW (min_case);
98 if (CASE_HIGH (max_case) != NULL_TREE)
99 m_range_max = CASE_HIGH (max_case);
100 else
101 m_range_max = CASE_LOW (max_case);
102
103 m_contiguous_range = true;
104 tree last = CASE_HIGH (min_case) ? CASE_HIGH (min_case) : m_range_min;
105 for (i = 2; i < branch_num; i++)
106 {
107 tree elt = gimple_switch_label (swtch, i);
108 if (wi::to_wide (last) + 1 != wi::to_wide (CASE_LOW (elt)))
109 {
110 m_contiguous_range = false;
111 break;
112 }
113 last = CASE_HIGH (elt) ? CASE_HIGH (elt) : CASE_LOW (elt);
114 }
115
116 if (m_contiguous_range)
117 e_first = gimple_switch_edge (cfun, swtch, 1);
118 else
119 e_first = e_default;
120
121 /* See if there is one common successor block for all branch
122 targets. If it exists, record it in FINAL_BB.
123 Start with the destination of the first non-default case
124 if the range is contiguous and default case otherwise as
125 guess or its destination in case it is a forwarder block. */
126 if (! single_pred_p (e_first->dest))
127 m_final_bb = e_first->dest;
128 else if (single_succ_p (e_first->dest)
129 && ! single_pred_p (single_succ (e_first->dest)))
130 m_final_bb = single_succ (e_first->dest);
131 /* Require that all switch destinations are either that common
132 FINAL_BB or a forwarder to it, except for the default
133 case if contiguous range. */
134 if (m_final_bb)
135 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
136 {
137 if (e->dest == m_final_bb)
138 continue;
139
140 if (single_pred_p (e->dest)
141 && single_succ_p (e->dest)
142 && single_succ (e->dest) == m_final_bb)
143 continue;
144
145 if (e == e_default && m_contiguous_range)
146 {
147 m_default_case_nonstandard = true;
148 continue;
149 }
150
151 m_final_bb = NULL;
152 break;
153 }
154
155 m_range_size
156 = int_const_binop (MINUS_EXPR, m_range_max, m_range_min);
157
158 /* Get a count of the number of case labels. Single-valued case labels
159 simply count as one, but a case range counts double, since it may
160 require two compares if it gets lowered as a branching tree. */
161 m_count = 0;
162 for (i = 1; i < branch_num; i++)
163 {
164 tree elt = gimple_switch_label (swtch, i);
165 m_count++;
166 if (CASE_HIGH (elt)
167 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
168 m_count++;
169 }
170
171 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
172 block. Assume a CFG cleanup would have already removed degenerate
173 switch statements, this allows us to just use EDGE_COUNT. */
174 m_uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
175 }
176
177 /* Checks whether the range given by individual case statements of the switch
178 switch statement isn't too big and whether the number of branches actually
179 satisfies the size of the new array. */
180
181 bool
182 switch_conversion::check_range ()
183 {
184 gcc_assert (m_range_size);
185 if (!tree_fits_uhwi_p (m_range_size))
186 {
187 m_reason = "index range way too large or otherwise unusable";
188 return false;
189 }
190
191 if (tree_to_uhwi (m_range_size)
192 > ((unsigned) m_count * param_switch_conversion_branch_ratio))
193 {
194 m_reason = "the maximum range-branch ratio exceeded";
195 return false;
196 }
197
198 return true;
199 }
200
201 /* Checks whether all but the final BB basic blocks are empty. */
202
203 bool
204 switch_conversion::check_all_empty_except_final ()
205 {
206 edge e, e_default = find_edge (m_switch_bb, m_default_bb);
207 edge_iterator ei;
208
209 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
210 {
211 if (e->dest == m_final_bb)
212 continue;
213
214 if (!empty_block_p (e->dest))
215 {
216 if (m_contiguous_range && e == e_default)
217 {
218 m_default_case_nonstandard = true;
219 continue;
220 }
221
222 m_reason = "bad case - a non-final BB not empty";
223 return false;
224 }
225 }
226
227 return true;
228 }
229
230 /* This function checks whether all required values in phi nodes in final_bb
231 are constants. Required values are those that correspond to a basic block
232 which is a part of the examined switch statement. It returns true if the
233 phi nodes are OK, otherwise false. */
234
235 bool
236 switch_conversion::check_final_bb ()
237 {
238 gphi_iterator gsi;
239
240 m_phi_count = 0;
241 for (gsi = gsi_start_phis (m_final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
242 {
243 gphi *phi = gsi.phi ();
244 unsigned int i;
245
246 if (virtual_operand_p (gimple_phi_result (phi)))
247 continue;
248
249 m_phi_count++;
250
251 for (i = 0; i < gimple_phi_num_args (phi); i++)
252 {
253 basic_block bb = gimple_phi_arg_edge (phi, i)->src;
254
255 if (bb == m_switch_bb
256 || (single_pred_p (bb)
257 && single_pred (bb) == m_switch_bb
258 && (!m_default_case_nonstandard
259 || empty_block_p (bb))))
260 {
261 tree reloc, val;
262 const char *reason = NULL;
263
264 val = gimple_phi_arg_def (phi, i);
265 if (!is_gimple_ip_invariant (val))
266 reason = "non-invariant value from a case";
267 else
268 {
269 reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
270 if ((flag_pic && reloc != null_pointer_node)
271 || (!flag_pic && reloc == NULL_TREE))
272 {
273 if (reloc)
274 reason
275 = "value from a case would need runtime relocations";
276 else
277 reason
278 = "value from a case is not a valid initializer";
279 }
280 }
281 if (reason)
282 {
283 /* For contiguous range, we can allow non-constant
284 or one that needs relocation, as long as it is
285 only reachable from the default case. */
286 if (bb == m_switch_bb)
287 bb = m_final_bb;
288 if (!m_contiguous_range || bb != m_default_bb)
289 {
290 m_reason = reason;
291 return false;
292 }
293
294 unsigned int branch_num = gimple_switch_num_labels (m_switch);
295 for (unsigned int i = 1; i < branch_num; i++)
296 {
297 if (gimple_switch_label_bb (cfun, m_switch, i) == bb)
298 {
299 m_reason = reason;
300 return false;
301 }
302 }
303 m_default_case_nonstandard = true;
304 }
305 }
306 }
307 }
308
309 return true;
310 }
311
312 /* The following function allocates default_values, target_{in,out}_names and
313 constructors arrays. The last one is also populated with pointers to
314 vectors that will become constructors of new arrays. */
315
316 void
317 switch_conversion::create_temp_arrays ()
318 {
319 int i;
320
321 m_default_values = XCNEWVEC (tree, m_phi_count * 3);
322 /* ??? Macros do not support multi argument templates in their
323 argument list. We create a typedef to work around that problem. */
324 typedef vec<constructor_elt, va_gc> *vec_constructor_elt_gc;
325 m_constructors = XCNEWVEC (vec_constructor_elt_gc, m_phi_count);
326 m_target_inbound_names = m_default_values + m_phi_count;
327 m_target_outbound_names = m_target_inbound_names + m_phi_count;
328 for (i = 0; i < m_phi_count; i++)
329 vec_alloc (m_constructors[i], tree_to_uhwi (m_range_size) + 1);
330 }
331
332 /* Populate the array of default values in the order of phi nodes.
333 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch
334 if the range is non-contiguous or the default case has standard
335 structure, otherwise it is the first non-default case instead. */
336
337 void
338 switch_conversion::gather_default_values (tree default_case)
339 {
340 gphi_iterator gsi;
341 basic_block bb = label_to_block (cfun, CASE_LABEL (default_case));
342 edge e;
343 int i = 0;
344
345 gcc_assert (CASE_LOW (default_case) == NULL_TREE
346 || m_default_case_nonstandard);
347
348 if (bb == m_final_bb)
349 e = find_edge (m_switch_bb, bb);
350 else
351 e = single_succ_edge (bb);
352
353 for (gsi = gsi_start_phis (m_final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
354 {
355 gphi *phi = gsi.phi ();
356 if (virtual_operand_p (gimple_phi_result (phi)))
357 continue;
358 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
359 gcc_assert (val);
360 m_default_values[i++] = val;
361 }
362 }
363
364 /* The following function populates the vectors in the constructors array with
365 future contents of the static arrays. The vectors are populated in the
366 order of phi nodes. */
367
368 void
369 switch_conversion::build_constructors ()
370 {
371 unsigned i, branch_num = gimple_switch_num_labels (m_switch);
372 tree pos = m_range_min;
373 tree pos_one = build_int_cst (TREE_TYPE (pos), 1);
374
375 for (i = 1; i < branch_num; i++)
376 {
377 tree cs = gimple_switch_label (m_switch, i);
378 basic_block bb = label_to_block (cfun, CASE_LABEL (cs));
379 edge e;
380 tree high;
381 gphi_iterator gsi;
382 int j;
383
384 if (bb == m_final_bb)
385 e = find_edge (m_switch_bb, bb);
386 else
387 e = single_succ_edge (bb);
388 gcc_assert (e);
389
390 while (tree_int_cst_lt (pos, CASE_LOW (cs)))
391 {
392 int k;
393 for (k = 0; k < m_phi_count; k++)
394 {
395 constructor_elt elt;
396
397 elt.index = int_const_binop (MINUS_EXPR, pos, m_range_min);
398 elt.value
399 = unshare_expr_without_location (m_default_values[k]);
400 m_constructors[k]->quick_push (elt);
401 }
402
403 pos = int_const_binop (PLUS_EXPR, pos, pos_one);
404 }
405 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
406
407 j = 0;
408 if (CASE_HIGH (cs))
409 high = CASE_HIGH (cs);
410 else
411 high = CASE_LOW (cs);
412 for (gsi = gsi_start_phis (m_final_bb);
413 !gsi_end_p (gsi); gsi_next (&gsi))
414 {
415 gphi *phi = gsi.phi ();
416 if (virtual_operand_p (gimple_phi_result (phi)))
417 continue;
418 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
419 tree low = CASE_LOW (cs);
420 pos = CASE_LOW (cs);
421
422 do
423 {
424 constructor_elt elt;
425
426 elt.index = int_const_binop (MINUS_EXPR, pos, m_range_min);
427 elt.value = unshare_expr_without_location (val);
428 m_constructors[j]->quick_push (elt);
429
430 pos = int_const_binop (PLUS_EXPR, pos, pos_one);
431 } while (!tree_int_cst_lt (high, pos)
432 && tree_int_cst_lt (low, pos));
433 j++;
434 }
435 }
436 }
437
438 /* If all values in the constructor vector are products of a linear function
439 a * x + b, then return true. When true, COEFF_A and COEFF_B and
440 coefficients of the linear function. Note that equal values are special
441 case of a linear function with a and b equal to zero. */
442
443 bool
444 switch_conversion::contains_linear_function_p (vec<constructor_elt, va_gc> *vec,
445 wide_int *coeff_a,
446 wide_int *coeff_b)
447 {
448 unsigned int i;
449 constructor_elt *elt;
450
451 gcc_assert (vec->length () >= 2);
452
453 /* Let's try to find any linear function a * x + y that can apply to
454 given values. 'a' can be calculated as follows:
455
456 a = (y2 - y1) / (x2 - x1) where x2 - x1 = 1 (consecutive case indices)
457 a = y2 - y1
458
459 and
460
461 b = y2 - a * x2
462
463 */
464
465 tree elt0 = (*vec)[0].value;
466 tree elt1 = (*vec)[1].value;
467
468 if (TREE_CODE (elt0) != INTEGER_CST || TREE_CODE (elt1) != INTEGER_CST)
469 return false;
470
471 wide_int range_min
472 = wide_int::from (wi::to_wide (m_range_min),
473 TYPE_PRECISION (TREE_TYPE (elt0)),
474 TYPE_SIGN (TREE_TYPE (m_range_min)));
475 wide_int y1 = wi::to_wide (elt0);
476 wide_int y2 = wi::to_wide (elt1);
477 wide_int a = y2 - y1;
478 wide_int b = y2 - a * (range_min + 1);
479
480 /* Verify that all values fulfill the linear function. */
481 FOR_EACH_VEC_SAFE_ELT (vec, i, elt)
482 {
483 if (TREE_CODE (elt->value) != INTEGER_CST)
484 return false;
485
486 wide_int value = wi::to_wide (elt->value);
487 if (a * range_min + b != value)
488 return false;
489
490 ++range_min;
491 }
492
493 *coeff_a = a;
494 *coeff_b = b;
495
496 return true;
497 }
498
499 /* Return type which should be used for array elements, either TYPE's
500 main variant or, for integral types, some smaller integral type
501 that can still hold all the constants. */
502
503 tree
504 switch_conversion::array_value_type (tree type, int num)
505 {
506 unsigned int i, len = vec_safe_length (m_constructors[num]);
507 constructor_elt *elt;
508 int sign = 0;
509 tree smaller_type;
510
511 /* Types with alignments greater than their size can reach here, e.g. out of
512 SRA. We couldn't use these as an array component type so get back to the
513 main variant first, which, for our purposes, is fine for other types as
514 well. */
515
516 type = TYPE_MAIN_VARIANT (type);
517
518 if (!INTEGRAL_TYPE_P (type))
519 return type;
520
521 scalar_int_mode type_mode = SCALAR_INT_TYPE_MODE (type);
522 scalar_int_mode mode = get_narrowest_mode (type_mode);
523 if (GET_MODE_SIZE (type_mode) <= GET_MODE_SIZE (mode))
524 return type;
525
526 if (len < (optimize_bb_for_size_p (gimple_bb (m_switch)) ? 2 : 32))
527 return type;
528
529 FOR_EACH_VEC_SAFE_ELT (m_constructors[num], i, elt)
530 {
531 wide_int cst;
532
533 if (TREE_CODE (elt->value) != INTEGER_CST)
534 return type;
535
536 cst = wi::to_wide (elt->value);
537 while (1)
538 {
539 unsigned int prec = GET_MODE_BITSIZE (mode);
540 if (prec > HOST_BITS_PER_WIDE_INT)
541 return type;
542
543 if (sign >= 0 && cst == wi::zext (cst, prec))
544 {
545 if (sign == 0 && cst == wi::sext (cst, prec))
546 break;
547 sign = 1;
548 break;
549 }
550 if (sign <= 0 && cst == wi::sext (cst, prec))
551 {
552 sign = -1;
553 break;
554 }
555
556 if (sign == 1)
557 sign = 0;
558
559 if (!GET_MODE_WIDER_MODE (mode).exists (&mode)
560 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (type_mode))
561 return type;
562 }
563 }
564
565 if (sign == 0)
566 sign = TYPE_UNSIGNED (type) ? 1 : -1;
567 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
568 if (GET_MODE_SIZE (type_mode)
569 <= GET_MODE_SIZE (SCALAR_INT_TYPE_MODE (smaller_type)))
570 return type;
571
572 return smaller_type;
573 }
574
575 /* Create an appropriate array type and declaration and assemble a static
576 array variable. Also create a load statement that initializes
577 the variable in question with a value from the static array. SWTCH is
578 the switch statement being converted, NUM is the index to
579 arrays of constructors, default values and target SSA names
580 for this particular array. ARR_INDEX_TYPE is the type of the index
581 of the new array, PHI is the phi node of the final BB that corresponds
582 to the value that will be loaded from the created array. TIDX
583 is an ssa name of a temporary variable holding the index for loads from the
584 new array. */
585
586 void
587 switch_conversion::build_one_array (int num, tree arr_index_type,
588 gphi *phi, tree tidx)
589 {
590 tree name;
591 gimple *load;
592 gimple_stmt_iterator gsi = gsi_for_stmt (m_switch);
593 location_t loc = gimple_location (m_switch);
594
595 gcc_assert (m_default_values[num]);
596
597 name = copy_ssa_name (PHI_RESULT (phi));
598 m_target_inbound_names[num] = name;
599
600 vec<constructor_elt, va_gc> *constructor = m_constructors[num];
601 wide_int coeff_a, coeff_b;
602 bool linear_p = contains_linear_function_p (constructor, &coeff_a, &coeff_b);
603 tree type;
604 if (linear_p
605 && (type = range_check_type (TREE_TYPE ((*constructor)[0].value))))
606 {
607 if (dump_file && coeff_a.to_uhwi () > 0)
608 fprintf (dump_file, "Linear transformation with A = %" PRId64
609 " and B = %" PRId64 "\n", coeff_a.to_shwi (),
610 coeff_b.to_shwi ());
611
612 /* We must use type of constructor values. */
613 gimple_seq seq = NULL;
614 tree tmp = gimple_convert (&seq, type, m_index_expr);
615 tree tmp2 = gimple_build (&seq, MULT_EXPR, type,
616 wide_int_to_tree (type, coeff_a), tmp);
617 tree tmp3 = gimple_build (&seq, PLUS_EXPR, type, tmp2,
618 wide_int_to_tree (type, coeff_b));
619 tree tmp4 = gimple_convert (&seq, TREE_TYPE (name), tmp3);
620 gsi_insert_seq_before (&gsi, seq, GSI_SAME_STMT);
621 load = gimple_build_assign (name, tmp4);
622 }
623 else
624 {
625 tree array_type, ctor, decl, value_type, fetch, default_type;
626
627 default_type = TREE_TYPE (m_default_values[num]);
628 value_type = array_value_type (default_type, num);
629 array_type = build_array_type (value_type, arr_index_type);
630 if (default_type != value_type)
631 {
632 unsigned int i;
633 constructor_elt *elt;
634
635 FOR_EACH_VEC_SAFE_ELT (constructor, i, elt)
636 elt->value = fold_convert (value_type, elt->value);
637 }
638 ctor = build_constructor (array_type, constructor);
639 TREE_CONSTANT (ctor) = true;
640 TREE_STATIC (ctor) = true;
641
642 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
643 TREE_STATIC (decl) = 1;
644 DECL_INITIAL (decl) = ctor;
645
646 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
647 DECL_ARTIFICIAL (decl) = 1;
648 DECL_IGNORED_P (decl) = 1;
649 TREE_CONSTANT (decl) = 1;
650 TREE_READONLY (decl) = 1;
651 DECL_IGNORED_P (decl) = 1;
652 if (offloading_function_p (cfun->decl))
653 DECL_ATTRIBUTES (decl)
654 = tree_cons (get_identifier ("omp declare target"), NULL_TREE,
655 NULL_TREE);
656 varpool_node::finalize_decl (decl);
657
658 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
659 NULL_TREE);
660 if (default_type != value_type)
661 {
662 fetch = fold_convert (default_type, fetch);
663 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
664 true, GSI_SAME_STMT);
665 }
666 load = gimple_build_assign (name, fetch);
667 }
668
669 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
670 update_stmt (load);
671 m_arr_ref_last = load;
672 }
673
674 /* Builds and initializes static arrays initialized with values gathered from
675 the switch statement. Also creates statements that load values from
676 them. */
677
678 void
679 switch_conversion::build_arrays ()
680 {
681 tree arr_index_type;
682 tree tidx, sub, utype;
683 gimple *stmt;
684 gimple_stmt_iterator gsi;
685 gphi_iterator gpi;
686 int i;
687 location_t loc = gimple_location (m_switch);
688
689 gsi = gsi_for_stmt (m_switch);
690
691 /* Make sure we do not generate arithmetics in a subrange. */
692 utype = TREE_TYPE (m_index_expr);
693 if (TREE_TYPE (utype))
694 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
695 else
696 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
697
698 arr_index_type = build_index_type (m_range_size);
699 tidx = make_ssa_name (utype);
700 sub = fold_build2_loc (loc, MINUS_EXPR, utype,
701 fold_convert_loc (loc, utype, m_index_expr),
702 fold_convert_loc (loc, utype, m_range_min));
703 sub = force_gimple_operand_gsi (&gsi, sub,
704 false, NULL, true, GSI_SAME_STMT);
705 stmt = gimple_build_assign (tidx, sub);
706
707 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
708 update_stmt (stmt);
709 m_arr_ref_first = stmt;
710
711 for (gpi = gsi_start_phis (m_final_bb), i = 0;
712 !gsi_end_p (gpi); gsi_next (&gpi))
713 {
714 gphi *phi = gpi.phi ();
715 if (!virtual_operand_p (gimple_phi_result (phi)))
716 build_one_array (i++, arr_index_type, phi, tidx);
717 else
718 {
719 edge e;
720 edge_iterator ei;
721 FOR_EACH_EDGE (e, ei, m_switch_bb->succs)
722 {
723 if (e->dest == m_final_bb)
724 break;
725 if (!m_default_case_nonstandard
726 || e->dest != m_default_bb)
727 {
728 e = single_succ_edge (e->dest);
729 break;
730 }
731 }
732 gcc_assert (e && e->dest == m_final_bb);
733 m_target_vop = PHI_ARG_DEF_FROM_EDGE (phi, e);
734 }
735 }
736 }
737
738 /* Generates and appropriately inserts loads of default values at the position
739 given by GSI. Returns the last inserted statement. */
740
741 gassign *
742 switch_conversion::gen_def_assigns (gimple_stmt_iterator *gsi)
743 {
744 int i;
745 gassign *assign = NULL;
746
747 for (i = 0; i < m_phi_count; i++)
748 {
749 tree name = copy_ssa_name (m_target_inbound_names[i]);
750 m_target_outbound_names[i] = name;
751 assign = gimple_build_assign (name, m_default_values[i]);
752 gsi_insert_before (gsi, assign, GSI_SAME_STMT);
753 update_stmt (assign);
754 }
755 return assign;
756 }
757
758 /* Deletes the unused bbs and edges that now contain the switch statement and
759 its empty branch bbs. BBD is the now dead BB containing
760 the original switch statement, FINAL is the last BB of the converted
761 switch statement (in terms of succession). */
762
763 void
764 switch_conversion::prune_bbs (basic_block bbd, basic_block final,
765 basic_block default_bb)
766 {
767 edge_iterator ei;
768 edge e;
769
770 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
771 {
772 basic_block bb;
773 bb = e->dest;
774 remove_edge (e);
775 if (bb != final && bb != default_bb)
776 delete_basic_block (bb);
777 }
778 delete_basic_block (bbd);
779 }
780
781 /* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
782 from the basic block loading values from an array and E2F from the basic
783 block loading default values. BBF is the last switch basic block (see the
784 bbf description in the comment below). */
785
786 void
787 switch_conversion::fix_phi_nodes (edge e1f, edge e2f, basic_block bbf)
788 {
789 gphi_iterator gsi;
790 int i;
791
792 for (gsi = gsi_start_phis (bbf), i = 0;
793 !gsi_end_p (gsi); gsi_next (&gsi))
794 {
795 gphi *phi = gsi.phi ();
796 tree inbound, outbound;
797 if (virtual_operand_p (gimple_phi_result (phi)))
798 inbound = outbound = m_target_vop;
799 else
800 {
801 inbound = m_target_inbound_names[i];
802 outbound = m_target_outbound_names[i++];
803 }
804 add_phi_arg (phi, inbound, e1f, UNKNOWN_LOCATION);
805 if (!m_default_case_nonstandard)
806 add_phi_arg (phi, outbound, e2f, UNKNOWN_LOCATION);
807 }
808 }
809
810 /* Creates a check whether the switch expression value actually falls into the
811 range given by all the cases. If it does not, the temporaries are loaded
812 with default values instead. */
813
814 void
815 switch_conversion::gen_inbound_check ()
816 {
817 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
818 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
819 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
820 glabel *label1, *label2, *label3;
821 tree utype, tidx;
822 tree bound;
823
824 gcond *cond_stmt;
825
826 gassign *last_assign = NULL;
827 gimple_stmt_iterator gsi;
828 basic_block bb0, bb1, bb2, bbf, bbd;
829 edge e01 = NULL, e02, e21, e1d, e1f, e2f;
830 location_t loc = gimple_location (m_switch);
831
832 gcc_assert (m_default_values);
833
834 bb0 = gimple_bb (m_switch);
835
836 tidx = gimple_assign_lhs (m_arr_ref_first);
837 utype = TREE_TYPE (tidx);
838
839 /* (end of) block 0 */
840 gsi = gsi_for_stmt (m_arr_ref_first);
841 gsi_next (&gsi);
842
843 bound = fold_convert_loc (loc, utype, m_range_size);
844 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
845 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
846 update_stmt (cond_stmt);
847
848 /* block 2 */
849 if (!m_default_case_nonstandard)
850 {
851 label2 = gimple_build_label (label_decl2);
852 gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
853 last_assign = gen_def_assigns (&gsi);
854 }
855
856 /* block 1 */
857 label1 = gimple_build_label (label_decl1);
858 gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
859
860 /* block F */
861 gsi = gsi_start_bb (m_final_bb);
862 label3 = gimple_build_label (label_decl3);
863 gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
864
865 /* cfg fix */
866 e02 = split_block (bb0, cond_stmt);
867 bb2 = e02->dest;
868
869 if (m_default_case_nonstandard)
870 {
871 bb1 = bb2;
872 bb2 = m_default_bb;
873 e01 = e02;
874 e01->flags = EDGE_TRUE_VALUE;
875 e02 = make_edge (bb0, bb2, EDGE_FALSE_VALUE);
876 edge e_default = find_edge (bb1, bb2);
877 for (gphi_iterator gsi = gsi_start_phis (bb2);
878 !gsi_end_p (gsi); gsi_next (&gsi))
879 {
880 gphi *phi = gsi.phi ();
881 tree arg = PHI_ARG_DEF_FROM_EDGE (phi, e_default);
882 add_phi_arg (phi, arg, e02,
883 gimple_phi_arg_location_from_edge (phi, e_default));
884 }
885 /* Partially fix the dominator tree, if it is available. */
886 if (dom_info_available_p (CDI_DOMINATORS))
887 redirect_immediate_dominators (CDI_DOMINATORS, bb1, bb0);
888 }
889 else
890 {
891 e21 = split_block (bb2, last_assign);
892 bb1 = e21->dest;
893 remove_edge (e21);
894 }
895
896 e1d = split_block (bb1, m_arr_ref_last);
897 bbd = e1d->dest;
898 remove_edge (e1d);
899
900 /* Flags and profiles of the edge for in-range values. */
901 if (!m_default_case_nonstandard)
902 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
903 e01->probability = m_default_prob.invert ();
904
905 /* Flags and profiles of the edge taking care of out-of-range values. */
906 e02->flags &= ~EDGE_FALLTHRU;
907 e02->flags |= EDGE_FALSE_VALUE;
908 e02->probability = m_default_prob;
909
910 bbf = m_final_bb;
911
912 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
913 e1f->probability = profile_probability::always ();
914
915 if (m_default_case_nonstandard)
916 e2f = NULL;
917 else
918 {
919 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
920 e2f->probability = profile_probability::always ();
921 }
922
923 /* frequencies of the new BBs */
924 bb1->count = e01->count ();
925 bb2->count = e02->count ();
926 if (!m_default_case_nonstandard)
927 bbf->count = e1f->count () + e2f->count ();
928
929 /* Tidy blocks that have become unreachable. */
930 prune_bbs (bbd, m_final_bb,
931 m_default_case_nonstandard ? m_default_bb : NULL);
932
933 /* Fixup the PHI nodes in bbF. */
934 fix_phi_nodes (e1f, e2f, bbf);
935
936 /* Fix the dominator tree, if it is available. */
937 if (dom_info_available_p (CDI_DOMINATORS))
938 {
939 vec<basic_block> bbs_to_fix_dom;
940
941 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
942 if (!m_default_case_nonstandard)
943 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
944 if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
945 /* If bbD was the immediate dominator ... */
946 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
947
948 bbs_to_fix_dom.create (3 + (bb2 != bbf));
949 bbs_to_fix_dom.quick_push (bb0);
950 bbs_to_fix_dom.quick_push (bb1);
951 if (bb2 != bbf)
952 bbs_to_fix_dom.quick_push (bb2);
953 bbs_to_fix_dom.quick_push (bbf);
954
955 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
956 bbs_to_fix_dom.release ();
957 }
958 }
959
960 /* The following function is invoked on every switch statement (the current
961 one is given in SWTCH) and runs the individual phases of switch
962 conversion on it one after another until one fails or the conversion
963 is completed. On success, NULL is in m_reason, otherwise points
964 to a string with the reason why the conversion failed. */
965
966 void
967 switch_conversion::expand (gswitch *swtch)
968 {
969 /* Group case labels so that we get the right results from the heuristics
970 that decide on the code generation approach for this switch. */
971 m_cfg_altered |= group_case_labels_stmt (swtch);
972
973 /* If this switch is now a degenerate case with only a default label,
974 there is nothing left for us to do. */
975 if (gimple_switch_num_labels (swtch) < 2)
976 {
977 m_reason = "switch is a degenerate case";
978 return;
979 }
980
981 collect (swtch);
982
983 /* No error markers should reach here (they should be filtered out
984 during gimplification). */
985 gcc_checking_assert (TREE_TYPE (m_index_expr) != error_mark_node);
986
987 /* A switch on a constant should have been optimized in tree-cfg-cleanup. */
988 gcc_checking_assert (!TREE_CONSTANT (m_index_expr));
989
990 /* Prefer bit test if possible. */
991 if (tree_fits_uhwi_p (m_range_size)
992 && bit_test_cluster::can_be_handled (tree_to_uhwi (m_range_size), m_uniq)
993 && bit_test_cluster::is_beneficial (m_count, m_uniq))
994 {
995 m_reason = "expanding as bit test is preferable";
996 return;
997 }
998
999 if (m_uniq <= 2)
1000 {
1001 /* This will be expanded as a decision tree . */
1002 m_reason = "expanding as jumps is preferable";
1003 return;
1004 }
1005
1006 /* If there is no common successor, we cannot do the transformation. */
1007 if (!m_final_bb)
1008 {
1009 m_reason = "no common successor to all case label target blocks found";
1010 return;
1011 }
1012
1013 /* Check the case label values are within reasonable range: */
1014 if (!check_range ())
1015 {
1016 gcc_assert (m_reason);
1017 return;
1018 }
1019
1020 /* For all the cases, see whether they are empty, the assignments they
1021 represent constant and so on... */
1022 if (!check_all_empty_except_final ())
1023 {
1024 gcc_assert (m_reason);
1025 return;
1026 }
1027 if (!check_final_bb ())
1028 {
1029 gcc_assert (m_reason);
1030 return;
1031 }
1032
1033 /* At this point all checks have passed and we can proceed with the
1034 transformation. */
1035
1036 create_temp_arrays ();
1037 gather_default_values (m_default_case_nonstandard
1038 ? gimple_switch_label (swtch, 1)
1039 : gimple_switch_default_label (swtch));
1040 build_constructors ();
1041
1042 build_arrays (); /* Build the static arrays and assignments. */
1043 gen_inbound_check (); /* Build the bounds check. */
1044
1045 m_cfg_altered = true;
1046 }
1047
1048 /* Destructor. */
1049
1050 switch_conversion::~switch_conversion ()
1051 {
1052 XDELETEVEC (m_constructors);
1053 XDELETEVEC (m_default_values);
1054 }
1055
1056 /* Constructor. */
1057
1058 group_cluster::group_cluster (vec<cluster *> &clusters,
1059 unsigned start, unsigned end)
1060 {
1061 gcc_checking_assert (end - start + 1 >= 1);
1062 m_prob = profile_probability::never ();
1063 m_cases.create (end - start + 1);
1064 for (unsigned i = start; i <= end; i++)
1065 {
1066 m_cases.quick_push (static_cast<simple_cluster *> (clusters[i]));
1067 m_prob += clusters[i]->m_prob;
1068 }
1069 m_subtree_prob = m_prob;
1070 }
1071
1072 /* Destructor. */
1073
1074 group_cluster::~group_cluster ()
1075 {
1076 for (unsigned i = 0; i < m_cases.length (); i++)
1077 delete m_cases[i];
1078
1079 m_cases.release ();
1080 }
1081
1082 /* Dump content of a cluster. */
1083
1084 void
1085 group_cluster::dump (FILE *f, bool details)
1086 {
1087 unsigned total_values = 0;
1088 for (unsigned i = 0; i < m_cases.length (); i++)
1089 total_values += m_cases[i]->get_range (m_cases[i]->get_low (),
1090 m_cases[i]->get_high ());
1091
1092 unsigned comparison_count = 0;
1093 for (unsigned i = 0; i < m_cases.length (); i++)
1094 {
1095 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1096 comparison_count += sc->m_range_p ? 2 : 1;
1097 }
1098
1099 unsigned HOST_WIDE_INT range = get_range (get_low (), get_high ());
1100 fprintf (f, "%s", get_type () == JUMP_TABLE ? "JT" : "BT");
1101
1102 if (details)
1103 fprintf (f, "(values:%d comparisons:%d range:" HOST_WIDE_INT_PRINT_DEC
1104 " density: %.2f%%)", total_values, comparison_count, range,
1105 100.0f * comparison_count / range);
1106
1107 fprintf (f, ":");
1108 PRINT_CASE (f, get_low ());
1109 fprintf (f, "-");
1110 PRINT_CASE (f, get_high ());
1111 fprintf (f, " ");
1112 }
1113
1114 /* Emit GIMPLE code to handle the cluster. */
1115
1116 void
1117 jump_table_cluster::emit (tree index_expr, tree,
1118 tree default_label_expr, basic_block default_bb)
1119 {
1120 unsigned HOST_WIDE_INT range = get_range (get_low (), get_high ());
1121 unsigned HOST_WIDE_INT nondefault_range = 0;
1122
1123 /* For jump table we just emit a new gswitch statement that will
1124 be latter lowered to jump table. */
1125 auto_vec <tree> labels;
1126 labels.create (m_cases.length ());
1127
1128 make_edge (m_case_bb, default_bb, 0);
1129 for (unsigned i = 0; i < m_cases.length (); i++)
1130 {
1131 labels.quick_push (unshare_expr (m_cases[i]->m_case_label_expr));
1132 make_edge (m_case_bb, m_cases[i]->m_case_bb, 0);
1133 }
1134
1135 gswitch *s = gimple_build_switch (index_expr,
1136 unshare_expr (default_label_expr), labels);
1137 gimple_stmt_iterator gsi = gsi_start_bb (m_case_bb);
1138 gsi_insert_after (&gsi, s, GSI_NEW_STMT);
1139
1140 /* Set up even probabilities for all cases. */
1141 for (unsigned i = 0; i < m_cases.length (); i++)
1142 {
1143 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1144 edge case_edge = find_edge (m_case_bb, sc->m_case_bb);
1145 unsigned HOST_WIDE_INT case_range
1146 = sc->get_range (sc->get_low (), sc->get_high ());
1147 nondefault_range += case_range;
1148
1149 /* case_edge->aux is number of values in a jump-table that are covered
1150 by the case_edge. */
1151 case_edge->aux = (void *) ((intptr_t) (case_edge->aux) + case_range);
1152 }
1153
1154 edge default_edge = gimple_switch_default_edge (cfun, s);
1155 default_edge->probability = profile_probability::never ();
1156
1157 for (unsigned i = 0; i < m_cases.length (); i++)
1158 {
1159 simple_cluster *sc = static_cast<simple_cluster *> (m_cases[i]);
1160 edge case_edge = find_edge (m_case_bb, sc->m_case_bb);
1161 case_edge->probability
1162 = profile_probability::always ().apply_scale ((intptr_t)case_edge->aux,
1163 range);
1164 }
1165
1166 /* Number of non-default values is probability of default edge. */
1167 default_edge->probability
1168 += profile_probability::always ().apply_scale (nondefault_range,
1169 range).invert ();
1170
1171 switch_decision_tree::reset_out_edges_aux (s);
1172 }
1173
1174 /* Find jump tables of given CLUSTERS, where all members of the vector
1175 are of type simple_cluster. New clusters are returned. */
1176
1177 vec<cluster *>
1178 jump_table_cluster::find_jump_tables (vec<cluster *> &clusters)
1179 {
1180 if (!is_enabled ())
1181 return clusters.copy ();
1182
1183 unsigned l = clusters.length ();
1184 auto_vec<min_cluster_item> min;
1185 min.reserve (l + 1);
1186
1187 min.quick_push (min_cluster_item (0, 0, 0));
1188
1189 for (unsigned i = 1; i <= l; i++)
1190 {
1191 /* Set minimal # of clusters with i-th item to infinite. */
1192 min.quick_push (min_cluster_item (INT_MAX, INT_MAX, INT_MAX));
1193
1194 for (unsigned j = 0; j < i; j++)
1195 {
1196 unsigned HOST_WIDE_INT s = min[j].m_non_jt_cases;
1197 if (i - j < case_values_threshold ())
1198 s += i - j;
1199
1200 /* Prefer clusters with smaller number of numbers covered. */
1201 if ((min[j].m_count + 1 < min[i].m_count
1202 || (min[j].m_count + 1 == min[i].m_count
1203 && s < min[i].m_non_jt_cases))
1204 && can_be_handled (clusters, j, i - 1))
1205 min[i] = min_cluster_item (min[j].m_count + 1, j, s);
1206 }
1207
1208 gcc_checking_assert (min[i].m_count != INT_MAX);
1209 }
1210
1211 /* No result. */
1212 if (min[l].m_count == l)
1213 return clusters.copy ();
1214
1215 vec<cluster *> output;
1216 output.create (4);
1217
1218 /* Find and build the clusters. */
1219 for (unsigned int end = l;;)
1220 {
1221 int start = min[end].m_start;
1222
1223 /* Do not allow clusters with small number of cases. */
1224 if (is_beneficial (clusters, start, end - 1))
1225 output.safe_push (new jump_table_cluster (clusters, start, end - 1));
1226 else
1227 for (int i = end - 1; i >= start; i--)
1228 output.safe_push (clusters[i]);
1229
1230 end = start;
1231
1232 if (start <= 0)
1233 break;
1234 }
1235
1236 output.reverse ();
1237 return output;
1238 }
1239
1240 /* Return true when cluster starting at START and ending at END (inclusive)
1241 can build a jump-table. */
1242
1243 bool
1244 jump_table_cluster::can_be_handled (const vec<cluster *> &clusters,
1245 unsigned start, unsigned end)
1246 {
1247 /* If the switch is relatively small such that the cost of one
1248 indirect jump on the target are higher than the cost of a
1249 decision tree, go with the decision tree.
1250
1251 If range of values is much bigger than number of values,
1252 or if it is too large to represent in a HOST_WIDE_INT,
1253 make a sequence of conditional branches instead of a dispatch.
1254
1255 The definition of "much bigger" depends on whether we are
1256 optimizing for size or for speed.
1257
1258 For algorithm correctness, jump table for a single case must return
1259 true. We bail out in is_beneficial if it's called just for
1260 a single case. */
1261 if (start == end)
1262 return true;
1263
1264 unsigned HOST_WIDE_INT max_ratio
1265 = (optimize_insn_for_size_p ()
1266 ? param_jump_table_max_growth_ratio_for_size
1267 : param_jump_table_max_growth_ratio_for_speed);
1268 unsigned HOST_WIDE_INT range = get_range (clusters[start]->get_low (),
1269 clusters[end]->get_high ());
1270 /* Check overflow. */
1271 if (range == 0)
1272 return false;
1273
1274 unsigned HOST_WIDE_INT comparison_count = 0;
1275 for (unsigned i = start; i <= end; i++)
1276 {
1277 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
1278 comparison_count += sc->m_range_p ? 2 : 1;
1279 }
1280
1281 unsigned HOST_WIDE_INT lhs = 100 * range;
1282 if (lhs < range)
1283 return false;
1284
1285 return lhs <= max_ratio * comparison_count;
1286 }
1287
1288 /* Return true if cluster starting at START and ending at END (inclusive)
1289 is profitable transformation. */
1290
1291 bool
1292 jump_table_cluster::is_beneficial (const vec<cluster *> &,
1293 unsigned start, unsigned end)
1294 {
1295 /* Single case bail out. */
1296 if (start == end)
1297 return false;
1298
1299 return end - start + 1 >= case_values_threshold ();
1300 }
1301
1302 /* Find bit tests of given CLUSTERS, where all members of the vector
1303 are of type simple_cluster. New clusters are returned. */
1304
1305 vec<cluster *>
1306 bit_test_cluster::find_bit_tests (vec<cluster *> &clusters)
1307 {
1308 unsigned l = clusters.length ();
1309 auto_vec<min_cluster_item> min;
1310 min.reserve (l + 1);
1311
1312 min.quick_push (min_cluster_item (0, 0, 0));
1313
1314 for (unsigned i = 1; i <= l; i++)
1315 {
1316 /* Set minimal # of clusters with i-th item to infinite. */
1317 min.quick_push (min_cluster_item (INT_MAX, INT_MAX, INT_MAX));
1318
1319 for (unsigned j = 0; j < i; j++)
1320 {
1321 if (min[j].m_count + 1 < min[i].m_count
1322 && can_be_handled (clusters, j, i - 1))
1323 min[i] = min_cluster_item (min[j].m_count + 1, j, INT_MAX);
1324 }
1325
1326 gcc_checking_assert (min[i].m_count != INT_MAX);
1327 }
1328
1329 /* No result. */
1330 if (min[l].m_count == l)
1331 return clusters.copy ();
1332
1333 vec<cluster *> output;
1334 output.create (4);
1335
1336 /* Find and build the clusters. */
1337 for (unsigned end = l;;)
1338 {
1339 int start = min[end].m_start;
1340
1341 if (is_beneficial (clusters, start, end - 1))
1342 {
1343 bool entire = start == 0 && end == clusters.length ();
1344 output.safe_push (new bit_test_cluster (clusters, start, end - 1,
1345 entire));
1346 }
1347 else
1348 for (int i = end - 1; i >= start; i--)
1349 output.safe_push (clusters[i]);
1350
1351 end = start;
1352
1353 if (start <= 0)
1354 break;
1355 }
1356
1357 output.reverse ();
1358 return output;
1359 }
1360
1361 /* Return true when RANGE of case values with UNIQ labels
1362 can build a bit test. */
1363
1364 bool
1365 bit_test_cluster::can_be_handled (unsigned HOST_WIDE_INT range,
1366 unsigned int uniq)
1367 {
1368 /* Check overflow. */
1369 if (range == 0)
1370 return 0;
1371
1372 if (range >= GET_MODE_BITSIZE (word_mode))
1373 return false;
1374
1375 return uniq <= 3;
1376 }
1377
1378 /* Return true when cluster starting at START and ending at END (inclusive)
1379 can build a bit test. */
1380
1381 bool
1382 bit_test_cluster::can_be_handled (const vec<cluster *> &clusters,
1383 unsigned start, unsigned end)
1384 {
1385 /* For algorithm correctness, bit test for a single case must return
1386 true. We bail out in is_beneficial if it's called just for
1387 a single case. */
1388 if (start == end)
1389 return true;
1390
1391 unsigned HOST_WIDE_INT range = get_range (clusters[start]->get_low (),
1392 clusters[end]->get_high ());
1393 auto_bitmap dest_bbs;
1394
1395 for (unsigned i = start; i <= end; i++)
1396 {
1397 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
1398 bitmap_set_bit (dest_bbs, sc->m_case_bb->index);
1399 }
1400
1401 return can_be_handled (range, bitmap_count_bits (dest_bbs));
1402 }
1403
1404 /* Return true when COUNT of cases of UNIQ labels is beneficial for bit test
1405 transformation. */
1406
1407 bool
1408 bit_test_cluster::is_beneficial (unsigned count, unsigned uniq)
1409 {
1410 return (((uniq == 1 && count >= 3)
1411 || (uniq == 2 && count >= 5)
1412 || (uniq == 3 && count >= 6)));
1413 }
1414
1415 /* Return true if cluster starting at START and ending at END (inclusive)
1416 is profitable transformation. */
1417
1418 bool
1419 bit_test_cluster::is_beneficial (const vec<cluster *> &clusters,
1420 unsigned start, unsigned end)
1421 {
1422 /* Single case bail out. */
1423 if (start == end)
1424 return false;
1425
1426 auto_bitmap dest_bbs;
1427
1428 for (unsigned i = start; i <= end; i++)
1429 {
1430 simple_cluster *sc = static_cast<simple_cluster *> (clusters[i]);
1431 bitmap_set_bit (dest_bbs, sc->m_case_bb->index);
1432 }
1433
1434 unsigned uniq = bitmap_count_bits (dest_bbs);
1435 unsigned count = end - start + 1;
1436 return is_beneficial (count, uniq);
1437 }
1438
1439 /* Comparison function for qsort to order bit tests by decreasing
1440 probability of execution. */
1441
1442 int
1443 case_bit_test::cmp (const void *p1, const void *p2)
1444 {
1445 const case_bit_test *const d1 = (const case_bit_test *) p1;
1446 const case_bit_test *const d2 = (const case_bit_test *) p2;
1447
1448 if (d2->bits != d1->bits)
1449 return d2->bits - d1->bits;
1450
1451 /* Stabilize the sort. */
1452 return (LABEL_DECL_UID (CASE_LABEL (d2->label))
1453 - LABEL_DECL_UID (CASE_LABEL (d1->label)));
1454 }
1455
1456 /* Expand a switch statement by a short sequence of bit-wise
1457 comparisons. "switch(x)" is effectively converted into
1458 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
1459 integer constants.
1460
1461 INDEX_EXPR is the value being switched on.
1462
1463 MINVAL is the lowest case value of in the case nodes,
1464 and RANGE is highest value minus MINVAL. MINVAL and RANGE
1465 are not guaranteed to be of the same type as INDEX_EXPR
1466 (the gimplifier doesn't change the type of case label values,
1467 and MINVAL and RANGE are derived from those values).
1468 MAXVAL is MINVAL + RANGE.
1469
1470 There *MUST* be max_case_bit_tests or less unique case
1471 node targets. */
1472
1473 void
1474 bit_test_cluster::emit (tree index_expr, tree index_type,
1475 tree, basic_block default_bb)
1476 {
1477 case_bit_test test[m_max_case_bit_tests] = { {} };
1478 unsigned int i, j, k;
1479 unsigned int count;
1480
1481 tree unsigned_index_type = range_check_type (index_type);
1482
1483 gimple_stmt_iterator gsi;
1484 gassign *shift_stmt;
1485
1486 tree idx, tmp, csui;
1487 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
1488 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
1489 tree word_mode_one = fold_convert (word_type_node, integer_one_node);
1490 int prec = TYPE_PRECISION (word_type_node);
1491 wide_int wone = wi::one (prec);
1492
1493 tree minval = get_low ();
1494 tree maxval = get_high ();
1495 tree range = int_const_binop (MINUS_EXPR, maxval, minval);
1496 unsigned HOST_WIDE_INT bt_range = get_range (minval, maxval);
1497
1498 /* Go through all case labels, and collect the case labels, profile
1499 counts, and other information we need to build the branch tests. */
1500 count = 0;
1501 for (i = 0; i < m_cases.length (); i++)
1502 {
1503 unsigned int lo, hi;
1504 simple_cluster *n = static_cast<simple_cluster *> (m_cases[i]);
1505 for (k = 0; k < count; k++)
1506 if (n->m_case_bb == test[k].target_bb)
1507 break;
1508
1509 if (k == count)
1510 {
1511 gcc_checking_assert (count < m_max_case_bit_tests);
1512 test[k].mask = wi::zero (prec);
1513 test[k].target_bb = n->m_case_bb;
1514 test[k].label = n->m_case_label_expr;
1515 test[k].bits = 0;
1516 count++;
1517 }
1518
1519 test[k].bits += n->get_range (n->get_low (), n->get_high ());
1520
1521 lo = tree_to_uhwi (int_const_binop (MINUS_EXPR, n->get_low (), minval));
1522 if (n->get_high () == NULL_TREE)
1523 hi = lo;
1524 else
1525 hi = tree_to_uhwi (int_const_binop (MINUS_EXPR, n->get_high (),
1526 minval));
1527
1528 for (j = lo; j <= hi; j++)
1529 test[k].mask |= wi::lshift (wone, j);
1530 }
1531
1532 qsort (test, count, sizeof (*test), case_bit_test::cmp);
1533
1534 /* If all values are in the 0 .. BITS_PER_WORD-1 range, we can get rid of
1535 the minval subtractions, but it might make the mask constants more
1536 expensive. So, compare the costs. */
1537 if (compare_tree_int (minval, 0) > 0
1538 && compare_tree_int (maxval, GET_MODE_BITSIZE (word_mode)) < 0)
1539 {
1540 int cost_diff;
1541 HOST_WIDE_INT m = tree_to_uhwi (minval);
1542 rtx reg = gen_raw_REG (word_mode, 10000);
1543 bool speed_p = optimize_insn_for_speed_p ();
1544 cost_diff = set_rtx_cost (gen_rtx_PLUS (word_mode, reg,
1545 GEN_INT (-m)), speed_p);
1546 for (i = 0; i < count; i++)
1547 {
1548 rtx r = immed_wide_int_const (test[i].mask, word_mode);
1549 cost_diff += set_src_cost (gen_rtx_AND (word_mode, reg, r),
1550 word_mode, speed_p);
1551 r = immed_wide_int_const (wi::lshift (test[i].mask, m), word_mode);
1552 cost_diff -= set_src_cost (gen_rtx_AND (word_mode, reg, r),
1553 word_mode, speed_p);
1554 }
1555 if (cost_diff > 0)
1556 {
1557 for (i = 0; i < count; i++)
1558 test[i].mask = wi::lshift (test[i].mask, m);
1559 minval = build_zero_cst (TREE_TYPE (minval));
1560 range = maxval;
1561 }
1562 }
1563
1564 /* Now build the test-and-branch code. */
1565
1566 gsi = gsi_last_bb (m_case_bb);
1567
1568 /* idx = (unsigned)x - minval. */
1569 idx = fold_convert (unsigned_index_type, index_expr);
1570 idx = fold_build2 (MINUS_EXPR, unsigned_index_type, idx,
1571 fold_convert (unsigned_index_type, minval));
1572 idx = force_gimple_operand_gsi (&gsi, idx,
1573 /*simple=*/true, NULL_TREE,
1574 /*before=*/true, GSI_SAME_STMT);
1575
1576 if (m_handles_entire_switch)
1577 {
1578 /* if (idx > range) goto default */
1579 range
1580 = force_gimple_operand_gsi (&gsi,
1581 fold_convert (unsigned_index_type, range),
1582 /*simple=*/true, NULL_TREE,
1583 /*before=*/true, GSI_SAME_STMT);
1584 tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
1585 basic_block new_bb
1586 = hoist_edge_and_branch_if_true (&gsi, tmp, default_bb,
1587 profile_probability::unlikely ());
1588 gsi = gsi_last_bb (new_bb);
1589 }
1590
1591 /* csui = (1 << (word_mode) idx) */
1592 csui = make_ssa_name (word_type_node);
1593 tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one,
1594 fold_convert (word_type_node, idx));
1595 tmp = force_gimple_operand_gsi (&gsi, tmp,
1596 /*simple=*/false, NULL_TREE,
1597 /*before=*/true, GSI_SAME_STMT);
1598 shift_stmt = gimple_build_assign (csui, tmp);
1599 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
1600 update_stmt (shift_stmt);
1601
1602 profile_probability prob = profile_probability::always ();
1603
1604 /* for each unique set of cases:
1605 if (const & csui) goto target */
1606 for (k = 0; k < count; k++)
1607 {
1608 prob = profile_probability::always ().apply_scale (test[k].bits,
1609 bt_range);
1610 bt_range -= test[k].bits;
1611 tmp = wide_int_to_tree (word_type_node, test[k].mask);
1612 tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp);
1613 tmp = force_gimple_operand_gsi (&gsi, tmp,
1614 /*simple=*/true, NULL_TREE,
1615 /*before=*/true, GSI_SAME_STMT);
1616 tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero);
1617 basic_block new_bb
1618 = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_bb, prob);
1619 gsi = gsi_last_bb (new_bb);
1620 }
1621
1622 /* We should have removed all edges now. */
1623 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
1624
1625 /* If nothing matched, go to the default label. */
1626 edge e = make_edge (gsi_bb (gsi), default_bb, EDGE_FALLTHRU);
1627 e->probability = profile_probability::always ();
1628 }
1629
1630 /* Split the basic block at the statement pointed to by GSIP, and insert
1631 a branch to the target basic block of E_TRUE conditional on tree
1632 expression COND.
1633
1634 It is assumed that there is already an edge from the to-be-split
1635 basic block to E_TRUE->dest block. This edge is removed, and the
1636 profile information on the edge is re-used for the new conditional
1637 jump.
1638
1639 The CFG is updated. The dominator tree will not be valid after
1640 this transformation, but the immediate dominators are updated if
1641 UPDATE_DOMINATORS is true.
1642
1643 Returns the newly created basic block. */
1644
1645 basic_block
1646 bit_test_cluster::hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
1647 tree cond, basic_block case_bb,
1648 profile_probability prob)
1649 {
1650 tree tmp;
1651 gcond *cond_stmt;
1652 edge e_false;
1653 basic_block new_bb, split_bb = gsi_bb (*gsip);
1654
1655 edge e_true = make_edge (split_bb, case_bb, EDGE_TRUE_VALUE);
1656 e_true->probability = prob;
1657 gcc_assert (e_true->src == split_bb);
1658
1659 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
1660 /*before=*/true, GSI_SAME_STMT);
1661 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
1662 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
1663
1664 e_false = split_block (split_bb, cond_stmt);
1665 new_bb = e_false->dest;
1666 redirect_edge_pred (e_true, split_bb);
1667
1668 e_false->flags &= ~EDGE_FALLTHRU;
1669 e_false->flags |= EDGE_FALSE_VALUE;
1670 e_false->probability = e_true->probability.invert ();
1671 new_bb->count = e_false->count ();
1672
1673 return new_bb;
1674 }
1675
1676 /* Compute the number of case labels that correspond to each outgoing edge of
1677 switch statement. Record this information in the aux field of the edge. */
1678
1679 void
1680 switch_decision_tree::compute_cases_per_edge ()
1681 {
1682 reset_out_edges_aux (m_switch);
1683 int ncases = gimple_switch_num_labels (m_switch);
1684 for (int i = ncases - 1; i >= 1; --i)
1685 {
1686 edge case_edge = gimple_switch_edge (cfun, m_switch, i);
1687 case_edge->aux = (void *) ((intptr_t) (case_edge->aux) + 1);
1688 }
1689 }
1690
1691 /* Analyze switch statement and return true when the statement is expanded
1692 as decision tree. */
1693
1694 bool
1695 switch_decision_tree::analyze_switch_statement ()
1696 {
1697 unsigned l = gimple_switch_num_labels (m_switch);
1698 basic_block bb = gimple_bb (m_switch);
1699 auto_vec<cluster *> clusters;
1700 clusters.create (l - 1);
1701
1702 basic_block default_bb = gimple_switch_default_bb (cfun, m_switch);
1703 m_case_bbs.reserve (l);
1704 m_case_bbs.quick_push (default_bb);
1705
1706 compute_cases_per_edge ();
1707
1708 for (unsigned i = 1; i < l; i++)
1709 {
1710 tree elt = gimple_switch_label (m_switch, i);
1711 tree lab = CASE_LABEL (elt);
1712 basic_block case_bb = label_to_block (cfun, lab);
1713 edge case_edge = find_edge (bb, case_bb);
1714 tree low = CASE_LOW (elt);
1715 tree high = CASE_HIGH (elt);
1716
1717 profile_probability p
1718 = case_edge->probability.apply_scale (1, (intptr_t) (case_edge->aux));
1719 clusters.quick_push (new simple_cluster (low, high, elt, case_edge->dest,
1720 p));
1721 m_case_bbs.quick_push (case_edge->dest);
1722 }
1723
1724 reset_out_edges_aux (m_switch);
1725
1726 /* Find jump table clusters. */
1727 vec<cluster *> output = jump_table_cluster::find_jump_tables (clusters);
1728
1729 /* Find bit test clusters. */
1730 vec<cluster *> output2;
1731 auto_vec<cluster *> tmp;
1732 output2.create (1);
1733 tmp.create (1);
1734
1735 for (unsigned i = 0; i < output.length (); i++)
1736 {
1737 cluster *c = output[i];
1738 if (c->get_type () != SIMPLE_CASE)
1739 {
1740 if (!tmp.is_empty ())
1741 {
1742 vec<cluster *> n = bit_test_cluster::find_bit_tests (tmp);
1743 output2.safe_splice (n);
1744 n.release ();
1745 tmp.truncate (0);
1746 }
1747 output2.safe_push (c);
1748 }
1749 else
1750 tmp.safe_push (c);
1751 }
1752
1753 /* We still can have a temporary vector to test. */
1754 if (!tmp.is_empty ())
1755 {
1756 vec<cluster *> n = bit_test_cluster::find_bit_tests (tmp);
1757 output2.safe_splice (n);
1758 n.release ();
1759 }
1760
1761 if (dump_file)
1762 {
1763 fprintf (dump_file, ";; GIMPLE switch case clusters: ");
1764 for (unsigned i = 0; i < output2.length (); i++)
1765 output2[i]->dump (dump_file, dump_flags & TDF_DETAILS);
1766 fprintf (dump_file, "\n");
1767 }
1768
1769 output.release ();
1770
1771 bool expanded = try_switch_expansion (output2);
1772
1773 for (unsigned i = 0; i < output2.length (); i++)
1774 delete output2[i];
1775
1776 output2.release ();
1777
1778 return expanded;
1779 }
1780
1781 /* Attempt to expand CLUSTERS as a decision tree. Return true when
1782 expanded. */
1783
1784 bool
1785 switch_decision_tree::try_switch_expansion (vec<cluster *> &clusters)
1786 {
1787 tree index_expr = gimple_switch_index (m_switch);
1788 tree index_type = TREE_TYPE (index_expr);
1789 basic_block bb = gimple_bb (m_switch);
1790
1791 if (gimple_switch_num_labels (m_switch) == 1
1792 || range_check_type (index_type) == NULL_TREE)
1793 return false;
1794
1795 /* Find the default case target label. */
1796 edge default_edge = gimple_switch_default_edge (cfun, m_switch);
1797 m_default_bb = default_edge->dest;
1798
1799 /* Do the insertion of a case label into m_case_list. The labels are
1800 fed to us in descending order from the sorted vector of case labels used
1801 in the tree part of the middle end. So the list we construct is
1802 sorted in ascending order. */
1803
1804 for (int i = clusters.length () - 1; i >= 0; i--)
1805 {
1806 case_tree_node *r = m_case_list;
1807 m_case_list = m_case_node_pool.allocate ();
1808 m_case_list->m_right = r;
1809 m_case_list->m_c = clusters[i];
1810 }
1811
1812 record_phi_operand_mapping ();
1813
1814 /* Split basic block that contains the gswitch statement. */
1815 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1816 edge e;
1817 if (gsi_end_p (gsi))
1818 e = split_block_after_labels (bb);
1819 else
1820 {
1821 gsi_prev (&gsi);
1822 e = split_block (bb, gsi_stmt (gsi));
1823 }
1824 bb = split_edge (e);
1825
1826 /* Create new basic blocks for non-case clusters where specific expansion
1827 needs to happen. */
1828 for (unsigned i = 0; i < clusters.length (); i++)
1829 if (clusters[i]->get_type () != SIMPLE_CASE)
1830 {
1831 clusters[i]->m_case_bb = create_empty_bb (bb);
1832 clusters[i]->m_case_bb->count = bb->count;
1833 clusters[i]->m_case_bb->loop_father = bb->loop_father;
1834 }
1835
1836 /* Do not do an extra work for a single cluster. */
1837 if (clusters.length () == 1
1838 && clusters[0]->get_type () != SIMPLE_CASE)
1839 {
1840 cluster *c = clusters[0];
1841 c->emit (index_expr, index_type,
1842 gimple_switch_default_label (m_switch), m_default_bb);
1843 redirect_edge_succ (single_succ_edge (bb), c->m_case_bb);
1844 }
1845 else
1846 {
1847 emit (bb, index_expr, default_edge->probability, index_type);
1848
1849 /* Emit cluster-specific switch handling. */
1850 for (unsigned i = 0; i < clusters.length (); i++)
1851 if (clusters[i]->get_type () != SIMPLE_CASE)
1852 clusters[i]->emit (index_expr, index_type,
1853 gimple_switch_default_label (m_switch),
1854 m_default_bb);
1855 }
1856
1857 fix_phi_operands_for_edges ();
1858
1859 return true;
1860 }
1861
1862 /* Before switch transformation, record all SSA_NAMEs defined in switch BB
1863 and used in a label basic block. */
1864
1865 void
1866 switch_decision_tree::record_phi_operand_mapping ()
1867 {
1868 basic_block switch_bb = gimple_bb (m_switch);
1869 /* Record all PHI nodes that have to be fixed after conversion. */
1870 for (unsigned i = 0; i < m_case_bbs.length (); i++)
1871 {
1872 gphi_iterator gsi;
1873 basic_block bb = m_case_bbs[i];
1874 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1875 {
1876 gphi *phi = gsi.phi ();
1877
1878 for (unsigned i = 0; i < gimple_phi_num_args (phi); i++)
1879 {
1880 basic_block phi_src_bb = gimple_phi_arg_edge (phi, i)->src;
1881 if (phi_src_bb == switch_bb)
1882 {
1883 tree def = gimple_phi_arg_def (phi, i);
1884 tree result = gimple_phi_result (phi);
1885 m_phi_mapping.put (result, def);
1886 break;
1887 }
1888 }
1889 }
1890 }
1891 }
1892
1893 /* Append new operands to PHI statements that were introduced due to
1894 addition of new edges to case labels. */
1895
1896 void
1897 switch_decision_tree::fix_phi_operands_for_edges ()
1898 {
1899 gphi_iterator gsi;
1900
1901 for (unsigned i = 0; i < m_case_bbs.length (); i++)
1902 {
1903 basic_block bb = m_case_bbs[i];
1904 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1905 {
1906 gphi *phi = gsi.phi ();
1907 for (unsigned j = 0; j < gimple_phi_num_args (phi); j++)
1908 {
1909 tree def = gimple_phi_arg_def (phi, j);
1910 if (def == NULL_TREE)
1911 {
1912 edge e = gimple_phi_arg_edge (phi, j);
1913 tree *definition
1914 = m_phi_mapping.get (gimple_phi_result (phi));
1915 gcc_assert (definition);
1916 add_phi_arg (phi, *definition, e, UNKNOWN_LOCATION);
1917 }
1918 }
1919 }
1920 }
1921 }
1922
1923 /* Generate a decision tree, switching on INDEX_EXPR and jumping to
1924 one of the labels in CASE_LIST or to the DEFAULT_LABEL.
1925
1926 We generate a binary decision tree to select the appropriate target
1927 code. */
1928
1929 void
1930 switch_decision_tree::emit (basic_block bb, tree index_expr,
1931 profile_probability default_prob, tree index_type)
1932 {
1933 balance_case_nodes (&m_case_list, NULL);
1934
1935 if (dump_file)
1936 dump_function_to_file (current_function_decl, dump_file, dump_flags);
1937 if (dump_file && (dump_flags & TDF_DETAILS))
1938 {
1939 int indent_step = ceil_log2 (TYPE_PRECISION (index_type)) + 2;
1940 fprintf (dump_file, ";; Expanding GIMPLE switch as decision tree:\n");
1941 gcc_assert (m_case_list != NULL);
1942 dump_case_nodes (dump_file, m_case_list, indent_step, 0);
1943 }
1944
1945 bb = emit_case_nodes (bb, index_expr, m_case_list, default_prob, index_type,
1946 gimple_location (m_switch));
1947
1948 if (bb)
1949 emit_jump (bb, m_default_bb);
1950
1951 /* Remove all edges and do just an edge that will reach default_bb. */
1952 bb = gimple_bb (m_switch);
1953 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1954 gsi_remove (&gsi, true);
1955
1956 delete_basic_block (bb);
1957 }
1958
1959 /* Take an ordered list of case nodes
1960 and transform them into a near optimal binary tree,
1961 on the assumption that any target code selection value is as
1962 likely as any other.
1963
1964 The transformation is performed by splitting the ordered
1965 list into two equal sections plus a pivot. The parts are
1966 then attached to the pivot as left and right branches. Each
1967 branch is then transformed recursively. */
1968
1969 void
1970 switch_decision_tree::balance_case_nodes (case_tree_node **head,
1971 case_tree_node *parent)
1972 {
1973 case_tree_node *np;
1974
1975 np = *head;
1976 if (np)
1977 {
1978 int i = 0;
1979 int ranges = 0;
1980 case_tree_node **npp;
1981 case_tree_node *left;
1982 profile_probability prob = profile_probability::never ();
1983
1984 /* Count the number of entries on branch. Also count the ranges. */
1985
1986 while (np)
1987 {
1988 if (!tree_int_cst_equal (np->m_c->get_low (), np->m_c->get_high ()))
1989 ranges++;
1990
1991 i++;
1992 prob += np->m_c->m_prob;
1993 np = np->m_right;
1994 }
1995
1996 if (i > 2)
1997 {
1998 /* Split this list if it is long enough for that to help. */
1999 npp = head;
2000 left = *npp;
2001 profile_probability pivot_prob = prob.apply_scale (1, 2);
2002
2003 /* Find the place in the list that bisects the list's total cost,
2004 where ranges count as 2. */
2005 while (1)
2006 {
2007 /* Skip nodes while their probability does not reach
2008 that amount. */
2009 prob -= (*npp)->m_c->m_prob;
2010 if ((prob.initialized_p () && prob < pivot_prob)
2011 || ! (*npp)->m_right)
2012 break;
2013 npp = &(*npp)->m_right;
2014 }
2015
2016 np = *npp;
2017 *npp = 0;
2018 *head = np;
2019 np->m_parent = parent;
2020 np->m_left = left == np ? NULL : left;
2021
2022 /* Optimize each of the two split parts. */
2023 balance_case_nodes (&np->m_left, np);
2024 balance_case_nodes (&np->m_right, np);
2025 np->m_c->m_subtree_prob = np->m_c->m_prob;
2026 if (np->m_left)
2027 np->m_c->m_subtree_prob += np->m_left->m_c->m_subtree_prob;
2028 if (np->m_right)
2029 np->m_c->m_subtree_prob += np->m_right->m_c->m_subtree_prob;
2030 }
2031 else
2032 {
2033 /* Else leave this branch as one level,
2034 but fill in `parent' fields. */
2035 np = *head;
2036 np->m_parent = parent;
2037 np->m_c->m_subtree_prob = np->m_c->m_prob;
2038 for (; np->m_right; np = np->m_right)
2039 {
2040 np->m_right->m_parent = np;
2041 (*head)->m_c->m_subtree_prob += np->m_right->m_c->m_subtree_prob;
2042 }
2043 }
2044 }
2045 }
2046
2047 /* Dump ROOT, a list or tree of case nodes, to file. */
2048
2049 void
2050 switch_decision_tree::dump_case_nodes (FILE *f, case_tree_node *root,
2051 int indent_step, int indent_level)
2052 {
2053 if (root == 0)
2054 return;
2055 indent_level++;
2056
2057 dump_case_nodes (f, root->m_left, indent_step, indent_level);
2058
2059 fputs (";; ", f);
2060 fprintf (f, "%*s", indent_step * indent_level, "");
2061 root->m_c->dump (f);
2062 root->m_c->m_prob.dump (f);
2063 fputs (" subtree: ", f);
2064 root->m_c->m_subtree_prob.dump (f);
2065 fputs (")\n", f);
2066
2067 dump_case_nodes (f, root->m_right, indent_step, indent_level);
2068 }
2069
2070
2071 /* Add an unconditional jump to CASE_BB that happens in basic block BB. */
2072
2073 void
2074 switch_decision_tree::emit_jump (basic_block bb, basic_block case_bb)
2075 {
2076 edge e = single_succ_edge (bb);
2077 redirect_edge_succ (e, case_bb);
2078 }
2079
2080 /* Generate code to compare OP0 with OP1 so that the condition codes are
2081 set and to jump to LABEL_BB if the condition is true.
2082 COMPARISON is the GIMPLE comparison (EQ, NE, GT, etc.).
2083 PROB is the probability of jumping to LABEL_BB. */
2084
2085 basic_block
2086 switch_decision_tree::emit_cmp_and_jump_insns (basic_block bb, tree op0,
2087 tree op1, tree_code comparison,
2088 basic_block label_bb,
2089 profile_probability prob,
2090 location_t loc)
2091 {
2092 // TODO: it's once called with lhs != index.
2093 op1 = fold_convert (TREE_TYPE (op0), op1);
2094
2095 gcond *cond = gimple_build_cond (comparison, op0, op1, NULL_TREE, NULL_TREE);
2096 gimple_set_location (cond, loc);
2097 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2098 gsi_insert_after (&gsi, cond, GSI_NEW_STMT);
2099
2100 gcc_assert (single_succ_p (bb));
2101
2102 /* Make a new basic block where false branch will take place. */
2103 edge false_edge = split_block (bb, cond);
2104 false_edge->flags = EDGE_FALSE_VALUE;
2105 false_edge->probability = prob.invert ();
2106
2107 edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE);
2108 true_edge->probability = prob;
2109
2110 return false_edge->dest;
2111 }
2112
2113 /* Generate code to jump to LABEL if OP0 and OP1 are equal.
2114 PROB is the probability of jumping to LABEL_BB.
2115 BB is a basic block where the new condition will be placed. */
2116
2117 basic_block
2118 switch_decision_tree::do_jump_if_equal (basic_block bb, tree op0, tree op1,
2119 basic_block label_bb,
2120 profile_probability prob,
2121 location_t loc)
2122 {
2123 op1 = fold_convert (TREE_TYPE (op0), op1);
2124
2125 gcond *cond = gimple_build_cond (EQ_EXPR, op0, op1, NULL_TREE, NULL_TREE);
2126 gimple_set_location (cond, loc);
2127 gimple_stmt_iterator gsi = gsi_last_bb (bb);
2128 gsi_insert_before (&gsi, cond, GSI_SAME_STMT);
2129
2130 gcc_assert (single_succ_p (bb));
2131
2132 /* Make a new basic block where false branch will take place. */
2133 edge false_edge = split_block (bb, cond);
2134 false_edge->flags = EDGE_FALSE_VALUE;
2135 false_edge->probability = prob.invert ();
2136
2137 edge true_edge = make_edge (bb, label_bb, EDGE_TRUE_VALUE);
2138 true_edge->probability = prob;
2139
2140 return false_edge->dest;
2141 }
2142
2143 /* Emit step-by-step code to select a case for the value of INDEX.
2144 The thus generated decision tree follows the form of the
2145 case-node binary tree NODE, whose nodes represent test conditions.
2146 DEFAULT_PROB is probability of cases leading to default BB.
2147 INDEX_TYPE is the type of the index of the switch. */
2148
2149 basic_block
2150 switch_decision_tree::emit_case_nodes (basic_block bb, tree index,
2151 case_tree_node *node,
2152 profile_probability default_prob,
2153 tree index_type, location_t loc)
2154 {
2155 profile_probability p;
2156
2157 /* If node is null, we are done. */
2158 if (node == NULL)
2159 return bb;
2160
2161 /* Single value case. */
2162 if (node->m_c->is_single_value_p ())
2163 {
2164 /* Node is single valued. First see if the index expression matches
2165 this node and then check our children, if any. */
2166 p = node->m_c->m_prob / (node->m_c->m_subtree_prob + default_prob);
2167 bb = do_jump_if_equal (bb, index, node->m_c->get_low (),
2168 node->m_c->m_case_bb, p, loc);
2169 /* Since this case is taken at this point, reduce its weight from
2170 subtree_weight. */
2171 node->m_c->m_subtree_prob -= p;
2172
2173 if (node->m_left != NULL && node->m_right != NULL)
2174 {
2175 /* 1) the node has both children
2176
2177 If both children are single-valued cases with no
2178 children, finish up all the work. This way, we can save
2179 one ordered comparison. */
2180
2181 if (!node->m_left->has_child ()
2182 && node->m_left->m_c->is_single_value_p ()
2183 && !node->m_right->has_child ()
2184 && node->m_right->m_c->is_single_value_p ())
2185 {
2186 p = (node->m_right->m_c->m_prob
2187 / (node->m_c->m_subtree_prob + default_prob));
2188 bb = do_jump_if_equal (bb, index, node->m_right->m_c->get_low (),
2189 node->m_right->m_c->m_case_bb, p, loc);
2190
2191 p = (node->m_left->m_c->m_prob
2192 / (node->m_c->m_subtree_prob + default_prob));
2193 bb = do_jump_if_equal (bb, index, node->m_left->m_c->get_low (),
2194 node->m_left->m_c->m_case_bb, p, loc);
2195 }
2196 else
2197 {
2198 /* Branch to a label where we will handle it later. */
2199 basic_block test_bb = split_edge (single_succ_edge (bb));
2200 redirect_edge_succ (single_pred_edge (test_bb),
2201 single_succ_edge (bb)->dest);
2202
2203 p = ((node->m_right->m_c->m_subtree_prob
2204 + default_prob.apply_scale (1, 2))
2205 / (node->m_c->m_subtree_prob + default_prob));
2206 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
2207 GT_EXPR, test_bb, p, loc);
2208 default_prob = default_prob.apply_scale (1, 2);
2209
2210 /* Handle the left-hand subtree. */
2211 bb = emit_case_nodes (bb, index, node->m_left,
2212 default_prob, index_type, loc);
2213
2214 /* If the left-hand subtree fell through,
2215 don't let it fall into the right-hand subtree. */
2216 if (bb && m_default_bb)
2217 emit_jump (bb, m_default_bb);
2218
2219 bb = emit_case_nodes (test_bb, index, node->m_right,
2220 default_prob, index_type, loc);
2221 }
2222 }
2223 else if (node->m_left == NULL && node->m_right != NULL)
2224 {
2225 /* 2) the node has only right child. */
2226
2227 /* Here we have a right child but no left so we issue a conditional
2228 branch to default and process the right child.
2229
2230 Omit the conditional branch to default if the right child
2231 does not have any children and is single valued; it would
2232 cost too much space to save so little time. */
2233
2234 if (node->m_right->has_child ()
2235 || !node->m_right->m_c->is_single_value_p ())
2236 {
2237 p = (default_prob.apply_scale (1, 2)
2238 / (node->m_c->m_subtree_prob + default_prob));
2239 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_low (),
2240 LT_EXPR, m_default_bb, p, loc);
2241 default_prob = default_prob.apply_scale (1, 2);
2242
2243 bb = emit_case_nodes (bb, index, node->m_right, default_prob,
2244 index_type, loc);
2245 }
2246 else
2247 {
2248 /* We cannot process node->right normally
2249 since we haven't ruled out the numbers less than
2250 this node's value. So handle node->right explicitly. */
2251 p = (node->m_right->m_c->m_subtree_prob
2252 / (node->m_c->m_subtree_prob + default_prob));
2253 bb = do_jump_if_equal (bb, index, node->m_right->m_c->get_low (),
2254 node->m_right->m_c->m_case_bb, p, loc);
2255 }
2256 }
2257 else if (node->m_left != NULL && node->m_right == NULL)
2258 {
2259 /* 3) just one subtree, on the left. Similar case as previous. */
2260
2261 if (node->m_left->has_child ()
2262 || !node->m_left->m_c->is_single_value_p ())
2263 {
2264 p = (default_prob.apply_scale (1, 2)
2265 / (node->m_c->m_subtree_prob + default_prob));
2266 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
2267 GT_EXPR, m_default_bb, p, loc);
2268 default_prob = default_prob.apply_scale (1, 2);
2269
2270 bb = emit_case_nodes (bb, index, node->m_left, default_prob,
2271 index_type, loc);
2272 }
2273 else
2274 {
2275 /* We cannot process node->left normally
2276 since we haven't ruled out the numbers less than
2277 this node's value. So handle node->left explicitly. */
2278 p = (node->m_left->m_c->m_subtree_prob
2279 / (node->m_c->m_subtree_prob + default_prob));
2280 bb = do_jump_if_equal (bb, index, node->m_left->m_c->get_low (),
2281 node->m_left->m_c->m_case_bb, p, loc);
2282 }
2283 }
2284 }
2285 else
2286 {
2287 /* Node is a range. These cases are very similar to those for a single
2288 value, except that we do not start by testing whether this node
2289 is the one to branch to. */
2290 if (node->has_child () || node->m_c->get_type () != SIMPLE_CASE)
2291 {
2292 /* Branch to a label where we will handle it later. */
2293 basic_block test_bb = split_edge (single_succ_edge (bb));
2294 redirect_edge_succ (single_pred_edge (test_bb),
2295 single_succ_edge (bb)->dest);
2296
2297
2298 profile_probability right_prob = profile_probability::never ();
2299 if (node->m_right)
2300 right_prob = node->m_right->m_c->m_subtree_prob;
2301 p = ((right_prob + default_prob.apply_scale (1, 2))
2302 / (node->m_c->m_subtree_prob + default_prob));
2303
2304 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_high (),
2305 GT_EXPR, test_bb, p, loc);
2306 default_prob = default_prob.apply_scale (1, 2);
2307
2308 /* Value belongs to this node or to the left-hand subtree. */
2309 p = node->m_c->m_prob / (node->m_c->m_subtree_prob + default_prob);
2310 bb = emit_cmp_and_jump_insns (bb, index, node->m_c->get_low (),
2311 GE_EXPR, node->m_c->m_case_bb, p, loc);
2312
2313 /* Handle the left-hand subtree. */
2314 bb = emit_case_nodes (bb, index, node->m_left,
2315 default_prob, index_type, loc);
2316
2317 /* If the left-hand subtree fell through,
2318 don't let it fall into the right-hand subtree. */
2319 if (bb && m_default_bb)
2320 emit_jump (bb, m_default_bb);
2321
2322 bb = emit_case_nodes (test_bb, index, node->m_right,
2323 default_prob, index_type, loc);
2324 }
2325 else
2326 {
2327 /* Node has no children so we check low and high bounds to remove
2328 redundant tests. Only one of the bounds can exist,
2329 since otherwise this node is bounded--a case tested already. */
2330 tree lhs, rhs;
2331 generate_range_test (bb, index, node->m_c->get_low (),
2332 node->m_c->get_high (), &lhs, &rhs);
2333 p = default_prob / (node->m_c->m_subtree_prob + default_prob);
2334
2335 bb = emit_cmp_and_jump_insns (bb, lhs, rhs, GT_EXPR,
2336 m_default_bb, p, loc);
2337
2338 emit_jump (bb, node->m_c->m_case_bb);
2339 return NULL;
2340 }
2341 }
2342
2343 return bb;
2344 }
2345
2346 /* The main function of the pass scans statements for switches and invokes
2347 process_switch on them. */
2348
2349 namespace {
2350
2351 const pass_data pass_data_convert_switch =
2352 {
2353 GIMPLE_PASS, /* type */
2354 "switchconv", /* name */
2355 OPTGROUP_NONE, /* optinfo_flags */
2356 TV_TREE_SWITCH_CONVERSION, /* tv_id */
2357 ( PROP_cfg | PROP_ssa ), /* properties_required */
2358 0, /* properties_provided */
2359 0, /* properties_destroyed */
2360 0, /* todo_flags_start */
2361 TODO_update_ssa, /* todo_flags_finish */
2362 };
2363
2364 class pass_convert_switch : public gimple_opt_pass
2365 {
2366 public:
2367 pass_convert_switch (gcc::context *ctxt)
2368 : gimple_opt_pass (pass_data_convert_switch, ctxt)
2369 {}
2370
2371 /* opt_pass methods: */
2372 virtual bool gate (function *) { return flag_tree_switch_conversion != 0; }
2373 virtual unsigned int execute (function *);
2374
2375 }; // class pass_convert_switch
2376
2377 unsigned int
2378 pass_convert_switch::execute (function *fun)
2379 {
2380 basic_block bb;
2381 bool cfg_altered = false;
2382
2383 FOR_EACH_BB_FN (bb, fun)
2384 {
2385 gimple *stmt = last_stmt (bb);
2386 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
2387 {
2388 if (dump_file)
2389 {
2390 expanded_location loc = expand_location (gimple_location (stmt));
2391
2392 fprintf (dump_file, "beginning to process the following "
2393 "SWITCH statement (%s:%d) : ------- \n",
2394 loc.file, loc.line);
2395 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2396 putc ('\n', dump_file);
2397 }
2398
2399 switch_conversion sconv;
2400 sconv.expand (as_a <gswitch *> (stmt));
2401 cfg_altered |= sconv.m_cfg_altered;
2402 if (!sconv.m_reason)
2403 {
2404 if (dump_file)
2405 {
2406 fputs ("Switch converted\n", dump_file);
2407 fputs ("--------------------------------\n", dump_file);
2408 }
2409
2410 /* Make no effort to update the post-dominator tree.
2411 It is actually not that hard for the transformations
2412 we have performed, but it is not supported
2413 by iterate_fix_dominators. */
2414 free_dominance_info (CDI_POST_DOMINATORS);
2415 }
2416 else
2417 {
2418 if (dump_file)
2419 {
2420 fputs ("Bailing out - ", dump_file);
2421 fputs (sconv.m_reason, dump_file);
2422 fputs ("\n--------------------------------\n", dump_file);
2423 }
2424 }
2425 }
2426 }
2427
2428 return cfg_altered ? TODO_cleanup_cfg : 0;;
2429 }
2430
2431 } // anon namespace
2432
2433 gimple_opt_pass *
2434 make_pass_convert_switch (gcc::context *ctxt)
2435 {
2436 return new pass_convert_switch (ctxt);
2437 }
2438
2439 /* The main function of the pass scans statements for switches and invokes
2440 process_switch on them. */
2441
2442 namespace {
2443
2444 template <bool O0> class pass_lower_switch: public gimple_opt_pass
2445 {
2446 public:
2447 pass_lower_switch (gcc::context *ctxt) : gimple_opt_pass (data, ctxt) {}
2448
2449 static const pass_data data;
2450 opt_pass *
2451 clone ()
2452 {
2453 return new pass_lower_switch<O0> (m_ctxt);
2454 }
2455
2456 virtual bool
2457 gate (function *)
2458 {
2459 return !O0 || !optimize;
2460 }
2461
2462 virtual unsigned int execute (function *fun);
2463 }; // class pass_lower_switch
2464
2465 template <bool O0>
2466 const pass_data pass_lower_switch<O0>::data = {
2467 GIMPLE_PASS, /* type */
2468 O0 ? "switchlower_O0" : "switchlower", /* name */
2469 OPTGROUP_NONE, /* optinfo_flags */
2470 TV_TREE_SWITCH_LOWERING, /* tv_id */
2471 ( PROP_cfg | PROP_ssa ), /* properties_required */
2472 0, /* properties_provided */
2473 0, /* properties_destroyed */
2474 0, /* todo_flags_start */
2475 TODO_update_ssa | TODO_cleanup_cfg, /* todo_flags_finish */
2476 };
2477
2478 template <bool O0>
2479 unsigned int
2480 pass_lower_switch<O0>::execute (function *fun)
2481 {
2482 basic_block bb;
2483 bool expanded = false;
2484
2485 auto_vec<gimple *> switch_statements;
2486 switch_statements.create (1);
2487
2488 FOR_EACH_BB_FN (bb, fun)
2489 {
2490 gimple *stmt = last_stmt (bb);
2491 gswitch *swtch;
2492 if (stmt && (swtch = dyn_cast<gswitch *> (stmt)))
2493 {
2494 if (!O0)
2495 group_case_labels_stmt (swtch);
2496 switch_statements.safe_push (swtch);
2497 }
2498 }
2499
2500 for (unsigned i = 0; i < switch_statements.length (); i++)
2501 {
2502 gimple *stmt = switch_statements[i];
2503 if (dump_file)
2504 {
2505 expanded_location loc = expand_location (gimple_location (stmt));
2506
2507 fprintf (dump_file, "beginning to process the following "
2508 "SWITCH statement (%s:%d) : ------- \n",
2509 loc.file, loc.line);
2510 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
2511 putc ('\n', dump_file);
2512 }
2513
2514 gswitch *swtch = dyn_cast<gswitch *> (stmt);
2515 if (swtch)
2516 {
2517 switch_decision_tree dt (swtch);
2518 expanded |= dt.analyze_switch_statement ();
2519 }
2520 }
2521
2522 if (expanded)
2523 {
2524 free_dominance_info (CDI_DOMINATORS);
2525 free_dominance_info (CDI_POST_DOMINATORS);
2526 mark_virtual_operands_for_renaming (cfun);
2527 }
2528
2529 return 0;
2530 }
2531
2532 } // anon namespace
2533
2534 gimple_opt_pass *
2535 make_pass_lower_switch_O0 (gcc::context *ctxt)
2536 {
2537 return new pass_lower_switch<true> (ctxt);
2538 }
2539 gimple_opt_pass *
2540 make_pass_lower_switch (gcc::context *ctxt)
2541 {
2542 return new pass_lower_switch<false> (ctxt);
2543 }
2544
2545