revert: tree.h (phi_arg_d): New field.
[gcc.git] / gcc / tree-switch-conversion.c
1 /* Lower GIMPLE_SWITCH expressions to something more efficient than
2 a jump table.
3 Copyright (C) 2006, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This file handles the lowering of GIMPLE_SWITCH to an indexed
24 load, or a series of bit-test-and-branch expressions. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "line-map.h"
31 #include "params.h"
32 #include "flags.h"
33 #include "tree.h"
34 #include "basic-block.h"
35 #include "tree-flow.h"
36 #include "tree-flow-inline.h"
37 #include "tree-ssa-operands.h"
38 #include "tree-pass.h"
39 #include "gimple-pretty-print.h"
40 #include "tree-dump.h"
41 #include "timevar.h"
42 #include "langhooks.h"
43
44 /* Need to include expr.h and optabs.h for lshift_cheap_p. */
45 #include "expr.h"
46 #include "optabs.h"
47 \f
48 /* Maximum number of case bit tests.
49 FIXME: This should be derived from PARAM_CASE_VALUES_THRESHOLD and
50 targetm.case_values_threshold(), or be its own param. */
51 #define MAX_CASE_BIT_TESTS 3
52
53 /* Split the basic block at the statement pointed to by GSIP, and insert
54 a branch to the target basic block of E_TRUE conditional on tree
55 expression COND.
56
57 It is assumed that there is already an edge from the to-be-split
58 basic block to E_TRUE->dest block. This edge is removed, and the
59 profile information on the edge is re-used for the new conditional
60 jump.
61
62 The CFG is updated. The dominator tree will not be valid after
63 this transformation, but the immediate dominators are updated if
64 UPDATE_DOMINATORS is true.
65
66 Returns the newly created basic block. */
67
68 static basic_block
69 hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
70 tree cond, edge e_true,
71 bool update_dominators)
72 {
73 tree tmp;
74 gimple cond_stmt;
75 edge e_false;
76 basic_block new_bb, split_bb = gsi_bb (*gsip);
77 bool dominated_e_true = false;
78
79 gcc_assert (e_true->src == split_bb);
80
81 if (update_dominators
82 && get_immediate_dominator (CDI_DOMINATORS, e_true->dest) == split_bb)
83 dominated_e_true = true;
84
85 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
86 /*before=*/true, GSI_SAME_STMT);
87 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
88 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
89
90 e_false = split_block (split_bb, cond_stmt);
91 new_bb = e_false->dest;
92 redirect_edge_pred (e_true, split_bb);
93
94 e_true->flags &= ~EDGE_FALLTHRU;
95 e_true->flags |= EDGE_TRUE_VALUE;
96
97 e_false->flags &= ~EDGE_FALLTHRU;
98 e_false->flags |= EDGE_FALSE_VALUE;
99 e_false->probability = REG_BR_PROB_BASE - e_true->probability;
100 e_false->count = split_bb->count - e_true->count;
101 new_bb->count = e_false->count;
102
103 if (update_dominators)
104 {
105 if (dominated_e_true)
106 set_immediate_dominator (CDI_DOMINATORS, e_true->dest, split_bb);
107 set_immediate_dominator (CDI_DOMINATORS, e_false->dest, split_bb);
108 }
109
110 return new_bb;
111 }
112
113
114 /* Determine whether "1 << x" is relatively cheap in word_mode. */
115 /* FIXME: This is the function that we need rtl.h and optabs.h for.
116 This function (and similar RTL-related cost code in e.g. IVOPTS) should
117 be moved to some kind of interface file for GIMPLE/RTL interactions. */
118 static bool
119 lshift_cheap_p (void)
120 {
121 /* FIXME: This should be made target dependent via this "this_target"
122 mechanism, similar to e.g. can_copy_init_p in gcse.c. */
123 static bool init[2] = {false, false};
124 static bool cheap[2] = {true, true};
125 bool speed_p;
126
127 /* If the targer has no lshift in word_mode, the operation will most
128 probably not be cheap. ??? Does GCC even work for such targets? */
129 if (optab_handler (ashl_optab, word_mode) == CODE_FOR_nothing)
130 return false;
131
132 speed_p = optimize_insn_for_speed_p ();
133
134 if (!init[speed_p])
135 {
136 rtx reg = gen_raw_REG (word_mode, 10000);
137 int cost = set_src_cost (gen_rtx_ASHIFT (word_mode, const1_rtx, reg),
138 speed_p);
139 cheap[speed_p] = cost < COSTS_N_INSNS (MAX_CASE_BIT_TESTS);
140 init[speed_p] = true;
141 }
142
143 return cheap[speed_p];
144 }
145
146 /* Return true if a switch should be expanded as a bit test.
147 RANGE is the difference between highest and lowest case.
148 UNIQ is number of unique case node targets, not counting the default case.
149 COUNT is the number of comparisons needed, not counting the default case. */
150
151 static bool
152 expand_switch_using_bit_tests_p (tree range,
153 unsigned int uniq,
154 unsigned int count)
155 {
156 return (((uniq == 1 && count >= 3)
157 || (uniq == 2 && count >= 5)
158 || (uniq == 3 && count >= 6))
159 && lshift_cheap_p ()
160 && compare_tree_int (range, GET_MODE_BITSIZE (word_mode)) < 0
161 && compare_tree_int (range, 0) > 0);
162 }
163 \f
164 /* Implement switch statements with bit tests
165
166 A GIMPLE switch statement can be expanded to a short sequence of bit-wise
167 comparisons. "switch(x)" is converted into "if ((1 << (x-MINVAL)) & CST)"
168 where CST and MINVAL are integer constants. This is better than a series
169 of compare-and-banch insns in some cases, e.g. we can implement:
170
171 if ((x==4) || (x==6) || (x==9) || (x==11))
172
173 as a single bit test:
174
175 if ((1<<x) & ((1<<4)|(1<<6)|(1<<9)|(1<<11)))
176
177 This transformation is only applied if the number of case targets is small,
178 if CST constains at least 3 bits, and "x << 1" is cheap. The bit tests are
179 performed in "word_mode".
180
181 The following example shows the code the transformation generates:
182
183 int bar(int x)
184 {
185 switch (x)
186 {
187 case '0': case '1': case '2': case '3': case '4':
188 case '5': case '6': case '7': case '8': case '9':
189 case 'A': case 'B': case 'C': case 'D': case 'E':
190 case 'F':
191 return 1;
192 }
193 return 0;
194 }
195
196 ==>
197
198 bar (int x)
199 {
200 tmp1 = x - 48;
201 if (tmp1 > (70 - 48)) goto L2;
202 tmp2 = 1 << tmp1;
203 tmp3 = 0b11111100000001111111111;
204 if ((tmp2 & tmp3) != 0) goto L1 ; else goto L2;
205 L1:
206 return 1;
207 L2:
208 return 0;
209 }
210
211 TODO: There are still some improvements to this transformation that could
212 be implemented:
213
214 * A narrower mode than word_mode could be used if that is cheaper, e.g.
215 for x86_64 where a narrower-mode shift may result in smaller code.
216
217 * The compounded constant could be shifted rather than the one. The
218 test would be either on the sign bit or on the least significant bit,
219 depending on the direction of the shift. On some machines, the test
220 for the branch would be free if the bit to test is already set by the
221 shift operation.
222
223 This transformation was contributed by Roger Sayle, see this e-mail:
224 http://gcc.gnu.org/ml/gcc-patches/2003-01/msg01950.html
225 */
226
227 /* A case_bit_test represents a set of case nodes that may be
228 selected from using a bit-wise comparison. HI and LO hold
229 the integer to be tested against, TARGET_EDGE contains the
230 edge to the basic block to jump to upon success and BITS
231 counts the number of case nodes handled by this test,
232 typically the number of bits set in HI:LO. The LABEL field
233 is used to quickly identify all cases in this set without
234 looking at label_to_block for every case label. */
235
236 struct case_bit_test
237 {
238 HOST_WIDE_INT hi;
239 HOST_WIDE_INT lo;
240 edge target_edge;
241 tree label;
242 int bits;
243 };
244
245 /* Comparison function for qsort to order bit tests by decreasing
246 probability of execution. Our best guess comes from a measured
247 profile. If the profile counts are equal, break even on the
248 number of case nodes, i.e. the node with the most cases gets
249 tested first.
250
251 TODO: Actually this currently runs before a profile is available.
252 Therefore the case-as-bit-tests transformation should be done
253 later in the pass pipeline, or something along the lines of
254 "Efficient and effective branch reordering using profile data"
255 (Yang et. al., 2002) should be implemented (although, how good
256 is a paper is called "Efficient and effective ..." when the
257 latter is implied by the former, but oh well...). */
258
259 static int
260 case_bit_test_cmp (const void *p1, const void *p2)
261 {
262 const struct case_bit_test *const d1 = (const struct case_bit_test *) p1;
263 const struct case_bit_test *const d2 = (const struct case_bit_test *) p2;
264
265 if (d2->target_edge->count != d1->target_edge->count)
266 return d2->target_edge->count - d1->target_edge->count;
267 if (d2->bits != d1->bits)
268 return d2->bits - d1->bits;
269
270 /* Stabilize the sort. */
271 return LABEL_DECL_UID (d2->label) - LABEL_DECL_UID (d1->label);
272 }
273
274 /* Expand a switch statement by a short sequence of bit-wise
275 comparisons. "switch(x)" is effectively converted into
276 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
277 integer constants.
278
279 INDEX_EXPR is the value being switched on.
280
281 MINVAL is the lowest case value of in the case nodes,
282 and RANGE is highest value minus MINVAL. MINVAL and RANGE
283 are not guaranteed to be of the same type as INDEX_EXPR
284 (the gimplifier doesn't change the type of case label values,
285 and MINVAL and RANGE are derived from those values).
286
287 There *MUST* be MAX_CASE_BIT_TESTS or less unique case
288 node targets. */
289
290 static void
291 emit_case_bit_tests (gimple swtch, tree index_expr,
292 tree minval, tree range)
293 {
294 struct case_bit_test test[MAX_CASE_BIT_TESTS];
295 unsigned int i, j, k;
296 unsigned int count;
297
298 basic_block switch_bb = gimple_bb (swtch);
299 basic_block default_bb, new_default_bb, new_bb;
300 edge default_edge;
301 bool update_dom = dom_info_available_p (CDI_DOMINATORS);
302
303 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
304
305 tree index_type = TREE_TYPE (index_expr);
306 tree unsigned_index_type = unsigned_type_for (index_type);
307 unsigned int branch_num = gimple_switch_num_labels (swtch);
308
309 gimple_stmt_iterator gsi;
310 gimple shift_stmt;
311
312 tree idx, tmp, csui;
313 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
314 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
315 tree word_mode_one = fold_convert (word_type_node, integer_one_node);
316
317 memset (&test, 0, sizeof (test));
318
319 /* Get the edge for the default case. */
320 tmp = gimple_switch_label (swtch, 0);
321 default_bb = label_to_block (CASE_LABEL (tmp));
322 default_edge = find_edge (switch_bb, default_bb);
323
324 /* Go through all case labels, and collect the case labels, profile
325 counts, and other information we need to build the branch tests. */
326 count = 0;
327 for (i = 1; i < branch_num; i++)
328 {
329 unsigned int lo, hi;
330 tree cs = gimple_switch_label (swtch, i);
331 tree label = CASE_LABEL (cs);
332 edge e = find_edge (switch_bb, label_to_block (label));
333 for (k = 0; k < count; k++)
334 if (e == test[k].target_edge)
335 break;
336
337 if (k == count)
338 {
339 gcc_checking_assert (count < MAX_CASE_BIT_TESTS);
340 test[k].hi = 0;
341 test[k].lo = 0;
342 test[k].target_edge = e;
343 test[k].label = label;
344 test[k].bits = 1;
345 count++;
346 }
347 else
348 test[k].bits++;
349
350 lo = tree_low_cst (int_const_binop (MINUS_EXPR,
351 CASE_LOW (cs), minval),
352 1);
353 if (CASE_HIGH (cs) == NULL_TREE)
354 hi = lo;
355 else
356 hi = tree_low_cst (int_const_binop (MINUS_EXPR,
357 CASE_HIGH (cs), minval),
358 1);
359
360 for (j = lo; j <= hi; j++)
361 if (j >= HOST_BITS_PER_WIDE_INT)
362 test[k].hi |= (HOST_WIDE_INT) 1 << (j - HOST_BITS_PER_INT);
363 else
364 test[k].lo |= (HOST_WIDE_INT) 1 << j;
365 }
366
367 qsort (test, count, sizeof(*test), case_bit_test_cmp);
368
369 /* We generate two jumps to the default case label.
370 Split the default edge, so that we don't have to do any PHI node
371 updating. */
372 new_default_bb = split_edge (default_edge);
373
374 if (update_dom)
375 {
376 bbs_to_fix_dom = VEC_alloc (basic_block, heap, 10);
377 VEC_quick_push (basic_block, bbs_to_fix_dom, switch_bb);
378 VEC_quick_push (basic_block, bbs_to_fix_dom, default_bb);
379 VEC_quick_push (basic_block, bbs_to_fix_dom, new_default_bb);
380 }
381
382 /* Now build the test-and-branch code. */
383
384 gsi = gsi_last_bb (switch_bb);
385
386 /* idx = (unsigned) (x - minval) */
387 idx = fold_build2 (MINUS_EXPR, index_type, index_expr,
388 fold_convert (index_type, minval));
389 idx = fold_convert (unsigned_index_type, idx);
390 idx = force_gimple_operand_gsi (&gsi, idx,
391 /*simple=*/true, NULL_TREE,
392 /*before=*/true, GSI_SAME_STMT);
393
394 /* if (idx > range) goto default */
395 range = force_gimple_operand_gsi (&gsi,
396 fold_convert (unsigned_index_type, range),
397 /*simple=*/true, NULL_TREE,
398 /*before=*/true, GSI_SAME_STMT);
399 tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
400 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, default_edge, update_dom);
401 if (update_dom)
402 VEC_quick_push (basic_block, bbs_to_fix_dom, new_bb);
403 gcc_assert (gimple_bb (swtch) == new_bb);
404 gsi = gsi_last_bb (new_bb);
405
406 /* Any blocks dominated by the GIMPLE_SWITCH, but that are not successors
407 of NEW_BB, are still immediately dominated by SWITCH_BB. Make it so. */
408 if (update_dom)
409 {
410 VEC (basic_block, heap) *dom_bbs;
411 basic_block dom_son;
412
413 dom_bbs = get_dominated_by (CDI_DOMINATORS, new_bb);
414 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, dom_son)
415 {
416 edge e = find_edge (new_bb, dom_son);
417 if (e && single_pred_p (e->dest))
418 continue;
419 set_immediate_dominator (CDI_DOMINATORS, dom_son, switch_bb);
420 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dom_son);
421 }
422 VEC_free (basic_block, heap, dom_bbs);
423 }
424
425 /* csui = (1 << (word_mode) idx) */
426 tmp = create_tmp_var (word_type_node, "csui");
427 add_referenced_var (tmp);
428 csui = make_ssa_name (tmp, NULL);
429 tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one,
430 fold_convert (word_type_node, idx));
431 tmp = force_gimple_operand_gsi (&gsi, tmp,
432 /*simple=*/false, NULL_TREE,
433 /*before=*/true, GSI_SAME_STMT);
434 shift_stmt = gimple_build_assign (csui, tmp);
435 SSA_NAME_DEF_STMT (csui) = shift_stmt;
436 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
437 update_stmt (shift_stmt);
438
439 /* for each unique set of cases:
440 if (const & csui) goto target */
441 for (k = 0; k < count; k++)
442 {
443 tmp = build_int_cst_wide (word_type_node, test[k].lo, test[k].hi);
444 tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp);
445 tmp = force_gimple_operand_gsi (&gsi, tmp,
446 /*simple=*/true, NULL_TREE,
447 /*before=*/true, GSI_SAME_STMT);
448 tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero);
449 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_edge,
450 update_dom);
451 if (update_dom)
452 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, new_bb);
453 gcc_assert (gimple_bb (swtch) == new_bb);
454 gsi = gsi_last_bb (new_bb);
455 }
456
457 /* We should have removed all edges now. */
458 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
459
460 /* If nothing matched, go to the default label. */
461 make_edge (gsi_bb (gsi), new_default_bb, EDGE_FALLTHRU);
462
463 /* The GIMPLE_SWITCH is now redundant. */
464 gsi_remove (&gsi, true);
465
466 if (update_dom)
467 {
468 /* Fix up the dominator tree. */
469 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
470 VEC_free (basic_block, heap, bbs_to_fix_dom);
471 }
472 }
473 \f
474 /*
475 Switch initialization conversion
476
477 The following pass changes simple initializations of scalars in a switch
478 statement into initializations from a static array. Obviously, the values
479 must be constant and known at compile time and a default branch must be
480 provided. For example, the following code:
481
482 int a,b;
483
484 switch (argc)
485 {
486 case 1:
487 case 2:
488 a_1 = 8;
489 b_1 = 6;
490 break;
491 case 3:
492 a_2 = 9;
493 b_2 = 5;
494 break;
495 case 12:
496 a_3 = 10;
497 b_3 = 4;
498 break;
499 default:
500 a_4 = 16;
501 b_4 = 1;
502 break;
503 }
504 a_5 = PHI <a_1, a_2, a_3, a_4>
505 b_5 = PHI <b_1, b_2, b_3, b_4>
506
507
508 is changed into:
509
510 static const int = CSWTCH01[] = {6, 6, 5, 1, 1, 1, 1, 1, 1, 1, 1, 4};
511 static const int = CSWTCH02[] = {8, 8, 9, 16, 16, 16, 16, 16, 16, 16,
512 16, 16, 10};
513
514 if (((unsigned) argc) - 1 < 11)
515 {
516 a_6 = CSWTCH02[argc - 1];
517 b_6 = CSWTCH01[argc - 1];
518 }
519 else
520 {
521 a_7 = 16;
522 b_7 = 1;
523 }
524 a_5 = PHI <a_6, a_7>
525 b_b = PHI <b_6, b_7>
526
527 There are further constraints. Specifically, the range of values across all
528 case labels must not be bigger than SWITCH_CONVERSION_BRANCH_RATIO (default
529 eight) times the number of the actual switch branches.
530
531 This transformation was contributed by Martin Jambor, see this e-mail:
532 http://gcc.gnu.org/ml/gcc-patches/2008-07/msg00011.html */
533
534 /* The main structure of the pass. */
535 struct switch_conv_info
536 {
537 /* The expression used to decide the switch branch. */
538 tree index_expr;
539
540 /* The following integer constants store the minimum and maximum value
541 covered by the case labels. */
542 tree range_min;
543 tree range_max;
544
545 /* The difference between the above two numbers. Stored here because it
546 is used in all the conversion heuristics, as well as for some of the
547 transformation, and it is expensive to re-compute it all the time. */
548 tree range_size;
549
550 /* Basic block that contains the actual GIMPLE_SWITCH. */
551 basic_block switch_bb;
552
553 /* Basic block that is the target of the default case. */
554 basic_block default_bb;
555
556 /* The single successor block of all branches out of the GIMPLE_SWITCH,
557 if such a block exists. Otherwise NULL. */
558 basic_block final_bb;
559
560 /* The probability of the default edge in the replaced switch. */
561 int default_prob;
562
563 /* The count of the default edge in the replaced switch. */
564 gcov_type default_count;
565
566 /* Combined count of all other (non-default) edges in the replaced switch. */
567 gcov_type other_count;
568
569 /* Number of phi nodes in the final bb (that we'll be replacing). */
570 int phi_count;
571
572 /* Array of default values, in the same order as phi nodes. */
573 tree *default_values;
574
575 /* Constructors of new static arrays. */
576 VEC (constructor_elt, gc) **constructors;
577
578 /* Array of ssa names that are initialized with a value from a new static
579 array. */
580 tree *target_inbound_names;
581
582 /* Array of ssa names that are initialized with the default value if the
583 switch expression is out of range. */
584 tree *target_outbound_names;
585
586 /* The first load statement that loads a temporary from a new static array.
587 */
588 gimple arr_ref_first;
589
590 /* The last load statement that loads a temporary from a new static array. */
591 gimple arr_ref_last;
592
593 /* String reason why the case wasn't a good candidate that is written to the
594 dump file, if there is one. */
595 const char *reason;
596
597 /* Parameters for expand_switch_using_bit_tests. Should be computed
598 the same way as in expand_case. */
599 unsigned int uniq;
600 unsigned int count;
601 };
602
603 /* Collect information about GIMPLE_SWITCH statement SWTCH into INFO. */
604
605 static void
606 collect_switch_conv_info (gimple swtch, struct switch_conv_info *info)
607 {
608 unsigned int branch_num = gimple_switch_num_labels (swtch);
609 tree min_case, max_case;
610 unsigned int count, i;
611 edge e, e_default;
612 edge_iterator ei;
613
614 memset (info, 0, sizeof (*info));
615
616 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
617 is a default label which is the first in the vector. */
618 gcc_assert (CASE_LOW (gimple_switch_label (swtch, 0)) == NULL_TREE);
619
620 /* Collect the bits we can deduce from the CFG. */
621 info->index_expr = gimple_switch_index (swtch);
622 info->switch_bb = gimple_bb (swtch);
623 info->default_bb =
624 label_to_block (CASE_LABEL (gimple_switch_label (swtch, 0)));
625 e_default = find_edge (info->switch_bb, info->default_bb);
626 info->default_prob = e_default->probability;
627 info->default_count = e_default->count;
628 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
629 if (e != e_default)
630 info->other_count += e->count;
631
632 /* See if there is one common successor block for all branch
633 targets. If it exists, record it in FINAL_BB. */
634 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
635 {
636 if (! single_pred_p (e->dest))
637 {
638 info->final_bb = e->dest;
639 break;
640 }
641 }
642 if (info->final_bb)
643 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
644 {
645 if (e->dest == info->final_bb)
646 continue;
647
648 if (single_pred_p (e->dest)
649 && single_succ_p (e->dest)
650 && single_succ (e->dest) == info->final_bb)
651 continue;
652
653 info->final_bb = NULL;
654 break;
655 }
656
657 /* Get upper and lower bounds of case values, and the covered range. */
658 min_case = gimple_switch_label (swtch, 1);
659 max_case = gimple_switch_label (swtch, branch_num - 1);
660
661 info->range_min = CASE_LOW (min_case);
662 if (CASE_HIGH (max_case) != NULL_TREE)
663 info->range_max = CASE_HIGH (max_case);
664 else
665 info->range_max = CASE_LOW (max_case);
666
667 info->range_size =
668 int_const_binop (MINUS_EXPR, info->range_max, info->range_min);
669
670 /* Get a count of the number of case labels. Single-valued case labels
671 simply count as one, but a case range counts double, since it may
672 require two compares if it gets lowered as a branching tree. */
673 count = 0;
674 for (i = 1; i < branch_num; i++)
675 {
676 tree elt = gimple_switch_label (swtch, i);
677 count++;
678 if (CASE_HIGH (elt)
679 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
680 count++;
681 }
682 info->count = count;
683
684 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
685 block. Assume a CFG cleanup would have already removed degenerate
686 switch statements, this allows us to just use EDGE_COUNT. */
687 info->uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
688 }
689
690 /* Checks whether the range given by individual case statements of the SWTCH
691 switch statement isn't too big and whether the number of branches actually
692 satisfies the size of the new array. */
693
694 static bool
695 check_range (struct switch_conv_info *info)
696 {
697 gcc_assert (info->range_size);
698 if (!host_integerp (info->range_size, 1))
699 {
700 info->reason = "index range way too large or otherwise unusable";
701 return false;
702 }
703
704 if ((unsigned HOST_WIDE_INT) tree_low_cst (info->range_size, 1)
705 > ((unsigned) info->count * SWITCH_CONVERSION_BRANCH_RATIO))
706 {
707 info->reason = "the maximum range-branch ratio exceeded";
708 return false;
709 }
710
711 return true;
712 }
713
714 /* Checks whether all but the FINAL_BB basic blocks are empty. */
715
716 static bool
717 check_all_empty_except_final (struct switch_conv_info *info)
718 {
719 edge e;
720 edge_iterator ei;
721
722 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
723 {
724 if (e->dest == info->final_bb)
725 continue;
726
727 if (!empty_block_p (e->dest))
728 {
729 info->reason = "bad case - a non-final BB not empty";
730 return false;
731 }
732 }
733
734 return true;
735 }
736
737 /* This function checks whether all required values in phi nodes in final_bb
738 are constants. Required values are those that correspond to a basic block
739 which is a part of the examined switch statement. It returns true if the
740 phi nodes are OK, otherwise false. */
741
742 static bool
743 check_final_bb (struct switch_conv_info *info)
744 {
745 gimple_stmt_iterator gsi;
746
747 info->phi_count = 0;
748 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
749 {
750 gimple phi = gsi_stmt (gsi);
751 unsigned int i;
752
753 info->phi_count++;
754
755 for (i = 0; i < gimple_phi_num_args (phi); i++)
756 {
757 basic_block bb = gimple_phi_arg_edge (phi, i)->src;
758
759 if (bb == info->switch_bb
760 || (single_pred_p (bb) && single_pred (bb) == info->switch_bb))
761 {
762 tree reloc, val;
763
764 val = gimple_phi_arg_def (phi, i);
765 if (!is_gimple_ip_invariant (val))
766 {
767 info->reason = "non-invariant value from a case";
768 return false; /* Non-invariant argument. */
769 }
770 reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
771 if ((flag_pic && reloc != null_pointer_node)
772 || (!flag_pic && reloc == NULL_TREE))
773 {
774 if (reloc)
775 info->reason
776 = "value from a case would need runtime relocations";
777 else
778 info->reason
779 = "value from a case is not a valid initializer";
780 return false;
781 }
782 }
783 }
784 }
785
786 return true;
787 }
788
789 /* The following function allocates default_values, target_{in,out}_names and
790 constructors arrays. The last one is also populated with pointers to
791 vectors that will become constructors of new arrays. */
792
793 static void
794 create_temp_arrays (struct switch_conv_info *info)
795 {
796 int i;
797
798 info->default_values = XCNEWVEC (tree, info->phi_count * 3);
799 info->constructors = XCNEWVEC (VEC (constructor_elt, gc) *, info->phi_count);
800 info->target_inbound_names = info->default_values + info->phi_count;
801 info->target_outbound_names = info->target_inbound_names + info->phi_count;
802 for (i = 0; i < info->phi_count; i++)
803 info->constructors[i]
804 = VEC_alloc (constructor_elt, gc, tree_low_cst (info->range_size, 1) + 1);
805 }
806
807 /* Free the arrays created by create_temp_arrays(). The vectors that are
808 created by that function are not freed here, however, because they have
809 already become constructors and must be preserved. */
810
811 static void
812 free_temp_arrays (struct switch_conv_info *info)
813 {
814 XDELETEVEC (info->constructors);
815 XDELETEVEC (info->default_values);
816 }
817
818 /* Populate the array of default values in the order of phi nodes.
819 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch. */
820
821 static void
822 gather_default_values (tree default_case, struct switch_conv_info *info)
823 {
824 gimple_stmt_iterator gsi;
825 basic_block bb = label_to_block (CASE_LABEL (default_case));
826 edge e;
827 int i = 0;
828
829 gcc_assert (CASE_LOW (default_case) == NULL_TREE);
830
831 if (bb == info->final_bb)
832 e = find_edge (info->switch_bb, bb);
833 else
834 e = single_succ_edge (bb);
835
836 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
837 {
838 gimple phi = gsi_stmt (gsi);
839 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
840 gcc_assert (val);
841 info->default_values[i++] = val;
842 }
843 }
844
845 /* The following function populates the vectors in the constructors array with
846 future contents of the static arrays. The vectors are populated in the
847 order of phi nodes. SWTCH is the switch statement being converted. */
848
849 static void
850 build_constructors (gimple swtch, struct switch_conv_info *info)
851 {
852 unsigned i, branch_num = gimple_switch_num_labels (swtch);
853 tree pos = info->range_min;
854
855 for (i = 1; i < branch_num; i++)
856 {
857 tree cs = gimple_switch_label (swtch, i);
858 basic_block bb = label_to_block (CASE_LABEL (cs));
859 edge e;
860 tree high;
861 gimple_stmt_iterator gsi;
862 int j;
863
864 if (bb == info->final_bb)
865 e = find_edge (info->switch_bb, bb);
866 else
867 e = single_succ_edge (bb);
868 gcc_assert (e);
869
870 while (tree_int_cst_lt (pos, CASE_LOW (cs)))
871 {
872 int k;
873 for (k = 0; k < info->phi_count; k++)
874 {
875 constructor_elt *elt;
876
877 elt = VEC_quick_push (constructor_elt,
878 info->constructors[k], NULL);
879 elt->index = int_const_binop (MINUS_EXPR, pos,
880 info->range_min);
881 elt->value = info->default_values[k];
882 }
883
884 pos = int_const_binop (PLUS_EXPR, pos, integer_one_node);
885 }
886 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
887
888 j = 0;
889 if (CASE_HIGH (cs))
890 high = CASE_HIGH (cs);
891 else
892 high = CASE_LOW (cs);
893 for (gsi = gsi_start_phis (info->final_bb);
894 !gsi_end_p (gsi); gsi_next (&gsi))
895 {
896 gimple phi = gsi_stmt (gsi);
897 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
898 tree low = CASE_LOW (cs);
899 pos = CASE_LOW (cs);
900
901 do
902 {
903 constructor_elt *elt;
904
905 elt = VEC_quick_push (constructor_elt,
906 info->constructors[j], NULL);
907 elt->index = int_const_binop (MINUS_EXPR, pos, info->range_min);
908 elt->value = val;
909
910 pos = int_const_binop (PLUS_EXPR, pos, integer_one_node);
911 } while (!tree_int_cst_lt (high, pos)
912 && tree_int_cst_lt (low, pos));
913 j++;
914 }
915 }
916 }
917
918 /* If all values in the constructor vector are the same, return the value.
919 Otherwise return NULL_TREE. Not supposed to be called for empty
920 vectors. */
921
922 static tree
923 constructor_contains_same_values_p (VEC (constructor_elt, gc) *vec)
924 {
925 unsigned int i;
926 tree prev = NULL_TREE;
927 constructor_elt *elt;
928
929 FOR_EACH_VEC_ELT (constructor_elt, vec, i, elt)
930 {
931 if (!prev)
932 prev = elt->value;
933 else if (!operand_equal_p (elt->value, prev, OEP_ONLY_CONST))
934 return NULL_TREE;
935 }
936 return prev;
937 }
938
939 /* Return type which should be used for array elements, either TYPE,
940 or for integral type some smaller integral type that can still hold
941 all the constants. */
942
943 static tree
944 array_value_type (gimple swtch, tree type, int num,
945 struct switch_conv_info *info)
946 {
947 unsigned int i, len = VEC_length (constructor_elt, info->constructors[num]);
948 constructor_elt *elt;
949 enum machine_mode mode;
950 int sign = 0;
951 tree smaller_type;
952
953 if (!INTEGRAL_TYPE_P (type))
954 return type;
955
956 mode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (TYPE_MODE (type)));
957 if (GET_MODE_SIZE (TYPE_MODE (type)) <= GET_MODE_SIZE (mode))
958 return type;
959
960 if (len < (optimize_bb_for_size_p (gimple_bb (swtch)) ? 2 : 32))
961 return type;
962
963 FOR_EACH_VEC_ELT (constructor_elt, info->constructors[num], i, elt)
964 {
965 double_int cst;
966
967 if (TREE_CODE (elt->value) != INTEGER_CST)
968 return type;
969
970 cst = TREE_INT_CST (elt->value);
971 while (1)
972 {
973 unsigned int prec = GET_MODE_BITSIZE (mode);
974 if (prec > HOST_BITS_PER_WIDE_INT)
975 return type;
976
977 if (sign >= 0
978 && double_int_equal_p (cst, double_int_zext (cst, prec)))
979 {
980 if (sign == 0
981 && double_int_equal_p (cst, double_int_sext (cst, prec)))
982 break;
983 sign = 1;
984 break;
985 }
986 if (sign <= 0
987 && double_int_equal_p (cst, double_int_sext (cst, prec)))
988 {
989 sign = -1;
990 break;
991 }
992
993 if (sign == 1)
994 sign = 0;
995
996 mode = GET_MODE_WIDER_MODE (mode);
997 if (mode == VOIDmode
998 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (TYPE_MODE (type)))
999 return type;
1000 }
1001 }
1002
1003 if (sign == 0)
1004 sign = TYPE_UNSIGNED (type) ? 1 : -1;
1005 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
1006 if (GET_MODE_SIZE (TYPE_MODE (type))
1007 <= GET_MODE_SIZE (TYPE_MODE (smaller_type)))
1008 return type;
1009
1010 return smaller_type;
1011 }
1012
1013 /* Create an appropriate array type and declaration and assemble a static array
1014 variable. Also create a load statement that initializes the variable in
1015 question with a value from the static array. SWTCH is the switch statement
1016 being converted, NUM is the index to arrays of constructors, default values
1017 and target SSA names for this particular array. ARR_INDEX_TYPE is the type
1018 of the index of the new array, PHI is the phi node of the final BB that
1019 corresponds to the value that will be loaded from the created array. TIDX
1020 is an ssa name of a temporary variable holding the index for loads from the
1021 new array. */
1022
1023 static void
1024 build_one_array (gimple swtch, int num, tree arr_index_type, gimple phi,
1025 tree tidx, struct switch_conv_info *info)
1026 {
1027 tree name, cst;
1028 gimple load;
1029 gimple_stmt_iterator gsi = gsi_for_stmt (swtch);
1030 location_t loc = gimple_location (swtch);
1031
1032 gcc_assert (info->default_values[num]);
1033
1034 name = make_ssa_name (SSA_NAME_VAR (PHI_RESULT (phi)), NULL);
1035 info->target_inbound_names[num] = name;
1036
1037 cst = constructor_contains_same_values_p (info->constructors[num]);
1038 if (cst)
1039 load = gimple_build_assign (name, cst);
1040 else
1041 {
1042 tree array_type, ctor, decl, value_type, fetch, default_type;
1043
1044 default_type = TREE_TYPE (info->default_values[num]);
1045 value_type = array_value_type (swtch, default_type, num, info);
1046 array_type = build_array_type (value_type, arr_index_type);
1047 if (default_type != value_type)
1048 {
1049 unsigned int i;
1050 constructor_elt *elt;
1051
1052 FOR_EACH_VEC_ELT (constructor_elt, info->constructors[num], i, elt)
1053 elt->value = fold_convert (value_type, elt->value);
1054 }
1055 ctor = build_constructor (array_type, info->constructors[num]);
1056 TREE_CONSTANT (ctor) = true;
1057 TREE_STATIC (ctor) = true;
1058
1059 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
1060 TREE_STATIC (decl) = 1;
1061 DECL_INITIAL (decl) = ctor;
1062
1063 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
1064 DECL_ARTIFICIAL (decl) = 1;
1065 TREE_CONSTANT (decl) = 1;
1066 TREE_READONLY (decl) = 1;
1067 varpool_finalize_decl (decl);
1068
1069 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
1070 NULL_TREE);
1071 if (default_type != value_type)
1072 {
1073 fetch = fold_convert (default_type, fetch);
1074 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
1075 true, GSI_SAME_STMT);
1076 }
1077 load = gimple_build_assign (name, fetch);
1078 }
1079
1080 SSA_NAME_DEF_STMT (name) = load;
1081 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1082 update_stmt (load);
1083 info->arr_ref_last = load;
1084 }
1085
1086 /* Builds and initializes static arrays initialized with values gathered from
1087 the SWTCH switch statement. Also creates statements that load values from
1088 them. */
1089
1090 static void
1091 build_arrays (gimple swtch, struct switch_conv_info *info)
1092 {
1093 tree arr_index_type;
1094 tree tidx, sub, tmp, utype;
1095 gimple stmt;
1096 gimple_stmt_iterator gsi;
1097 int i;
1098 location_t loc = gimple_location (swtch);
1099
1100 gsi = gsi_for_stmt (swtch);
1101
1102 /* Make sure we do not generate arithmetics in a subrange. */
1103 utype = TREE_TYPE (info->index_expr);
1104 if (TREE_TYPE (utype))
1105 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
1106 else
1107 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
1108
1109 arr_index_type = build_index_type (info->range_size);
1110 tmp = create_tmp_var (utype, "csui");
1111 add_referenced_var (tmp);
1112 tidx = make_ssa_name (tmp, NULL);
1113 sub = fold_build2_loc (loc, MINUS_EXPR, utype,
1114 fold_convert_loc (loc, utype, info->index_expr),
1115 fold_convert_loc (loc, utype, info->range_min));
1116 sub = force_gimple_operand_gsi (&gsi, sub,
1117 false, NULL, true, GSI_SAME_STMT);
1118 stmt = gimple_build_assign (tidx, sub);
1119 SSA_NAME_DEF_STMT (tidx) = stmt;
1120
1121 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1122 update_stmt (stmt);
1123 info->arr_ref_first = stmt;
1124
1125 for (gsi = gsi_start_phis (info->final_bb), i = 0;
1126 !gsi_end_p (gsi); gsi_next (&gsi), i++)
1127 build_one_array (swtch, i, arr_index_type, gsi_stmt (gsi), tidx, info);
1128 }
1129
1130 /* Generates and appropriately inserts loads of default values at the position
1131 given by BSI. Returns the last inserted statement. */
1132
1133 static gimple
1134 gen_def_assigns (gimple_stmt_iterator *gsi, struct switch_conv_info *info)
1135 {
1136 int i;
1137 gimple assign = NULL;
1138
1139 for (i = 0; i < info->phi_count; i++)
1140 {
1141 tree name
1142 = make_ssa_name (SSA_NAME_VAR (info->target_inbound_names[i]), NULL);
1143
1144 info->target_outbound_names[i] = name;
1145 assign = gimple_build_assign (name, info->default_values[i]);
1146 SSA_NAME_DEF_STMT (name) = assign;
1147 gsi_insert_before (gsi, assign, GSI_SAME_STMT);
1148 update_stmt (assign);
1149 }
1150 return assign;
1151 }
1152
1153 /* Deletes the unused bbs and edges that now contain the switch statement and
1154 its empty branch bbs. BBD is the now dead BB containing the original switch
1155 statement, FINAL is the last BB of the converted switch statement (in terms
1156 of succession). */
1157
1158 static void
1159 prune_bbs (basic_block bbd, basic_block final)
1160 {
1161 edge_iterator ei;
1162 edge e;
1163
1164 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
1165 {
1166 basic_block bb;
1167 bb = e->dest;
1168 remove_edge (e);
1169 if (bb != final)
1170 delete_basic_block (bb);
1171 }
1172 delete_basic_block (bbd);
1173 }
1174
1175 /* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
1176 from the basic block loading values from an array and E2F from the basic
1177 block loading default values. BBF is the last switch basic block (see the
1178 bbf description in the comment below). */
1179
1180 static void
1181 fix_phi_nodes (edge e1f, edge e2f, basic_block bbf,
1182 struct switch_conv_info *info)
1183 {
1184 gimple_stmt_iterator gsi;
1185 int i;
1186
1187 for (gsi = gsi_start_phis (bbf), i = 0;
1188 !gsi_end_p (gsi); gsi_next (&gsi), i++)
1189 {
1190 gimple phi = gsi_stmt (gsi);
1191 add_phi_arg (phi, info->target_inbound_names[i], e1f, UNKNOWN_LOCATION);
1192 add_phi_arg (phi, info->target_outbound_names[i], e2f, UNKNOWN_LOCATION);
1193 }
1194 }
1195
1196 /* Creates a check whether the switch expression value actually falls into the
1197 range given by all the cases. If it does not, the temporaries are loaded
1198 with default values instead. SWTCH is the switch statement being converted.
1199
1200 bb0 is the bb with the switch statement, however, we'll end it with a
1201 condition instead.
1202
1203 bb1 is the bb to be used when the range check went ok. It is derived from
1204 the switch BB
1205
1206 bb2 is the bb taken when the expression evaluated outside of the range
1207 covered by the created arrays. It is populated by loads of default
1208 values.
1209
1210 bbF is a fall through for both bb1 and bb2 and contains exactly what
1211 originally followed the switch statement.
1212
1213 bbD contains the switch statement (in the end). It is unreachable but we
1214 still need to strip off its edges.
1215 */
1216
1217 static void
1218 gen_inbound_check (gimple swtch, struct switch_conv_info *info)
1219 {
1220 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
1221 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
1222 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
1223 gimple label1, label2, label3;
1224 tree utype, tidx;
1225 tree bound;
1226
1227 gimple cond_stmt;
1228
1229 gimple last_assign;
1230 gimple_stmt_iterator gsi;
1231 basic_block bb0, bb1, bb2, bbf, bbd;
1232 edge e01, e02, e21, e1d, e1f, e2f;
1233 location_t loc = gimple_location (swtch);
1234
1235 gcc_assert (info->default_values);
1236
1237 bb0 = gimple_bb (swtch);
1238
1239 tidx = gimple_assign_lhs (info->arr_ref_first);
1240 utype = TREE_TYPE (tidx);
1241
1242 /* (end of) block 0 */
1243 gsi = gsi_for_stmt (info->arr_ref_first);
1244 gsi_next (&gsi);
1245
1246 bound = fold_convert_loc (loc, utype, info->range_size);
1247 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
1248 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
1249 update_stmt (cond_stmt);
1250
1251 /* block 2 */
1252 label2 = gimple_build_label (label_decl2);
1253 gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
1254 last_assign = gen_def_assigns (&gsi, info);
1255
1256 /* block 1 */
1257 label1 = gimple_build_label (label_decl1);
1258 gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
1259
1260 /* block F */
1261 gsi = gsi_start_bb (info->final_bb);
1262 label3 = gimple_build_label (label_decl3);
1263 gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
1264
1265 /* cfg fix */
1266 e02 = split_block (bb0, cond_stmt);
1267 bb2 = e02->dest;
1268
1269 e21 = split_block (bb2, last_assign);
1270 bb1 = e21->dest;
1271 remove_edge (e21);
1272
1273 e1d = split_block (bb1, info->arr_ref_last);
1274 bbd = e1d->dest;
1275 remove_edge (e1d);
1276
1277 /* flags and profiles of the edge for in-range values */
1278 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
1279 e01->probability = REG_BR_PROB_BASE - info->default_prob;
1280 e01->count = info->other_count;
1281
1282 /* flags and profiles of the edge taking care of out-of-range values */
1283 e02->flags &= ~EDGE_FALLTHRU;
1284 e02->flags |= EDGE_FALSE_VALUE;
1285 e02->probability = info->default_prob;
1286 e02->count = info->default_count;
1287
1288 bbf = info->final_bb;
1289
1290 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
1291 e1f->probability = REG_BR_PROB_BASE;
1292 e1f->count = info->other_count;
1293
1294 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
1295 e2f->probability = REG_BR_PROB_BASE;
1296 e2f->count = info->default_count;
1297
1298 /* frequencies of the new BBs */
1299 bb1->frequency = EDGE_FREQUENCY (e01);
1300 bb2->frequency = EDGE_FREQUENCY (e02);
1301 bbf->frequency = EDGE_FREQUENCY (e1f) + EDGE_FREQUENCY (e2f);
1302
1303 /* Tidy blocks that have become unreachable. */
1304 prune_bbs (bbd, info->final_bb);
1305
1306 /* Fixup the PHI nodes in bbF. */
1307 fix_phi_nodes (e1f, e2f, bbf, info);
1308
1309 /* Fix the dominator tree, if it is available. */
1310 if (dom_info_available_p (CDI_DOMINATORS))
1311 {
1312 VEC (basic_block, heap) *bbs_to_fix_dom;
1313
1314 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
1315 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
1316 if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
1317 /* If bbD was the immediate dominator ... */
1318 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
1319
1320 bbs_to_fix_dom = VEC_alloc (basic_block, heap, 4);
1321 VEC_quick_push (basic_block, bbs_to_fix_dom, bb0);
1322 VEC_quick_push (basic_block, bbs_to_fix_dom, bb1);
1323 VEC_quick_push (basic_block, bbs_to_fix_dom, bb2);
1324 VEC_quick_push (basic_block, bbs_to_fix_dom, bbf);
1325
1326 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
1327 VEC_free (basic_block, heap, bbs_to_fix_dom);
1328 }
1329 }
1330
1331 /* The following function is invoked on every switch statement (the current one
1332 is given in SWTCH) and runs the individual phases of switch conversion on it
1333 one after another until one fails or the conversion is completed.
1334 Returns NULL on success, or a pointer to a string with the reason why the
1335 conversion failed. */
1336
1337 static const char *
1338 process_switch (gimple swtch)
1339 {
1340 struct switch_conv_info info;
1341
1342 /* Group case labels so that we get the right results from the heuristics
1343 that decide on the code generation approach for this switch. */
1344 group_case_labels_stmt (swtch);
1345
1346 /* If this switch is now a degenerate case with only a default label,
1347 there is nothing left for us to do. */
1348 if (gimple_switch_num_labels (swtch) < 2)
1349 return "switch is a degenerate case";
1350
1351 collect_switch_conv_info (swtch, &info);
1352
1353 /* No error markers should reach here (they should be filtered out
1354 during gimplification). */
1355 gcc_checking_assert (TREE_TYPE (info.index_expr) != error_mark_node);
1356
1357 /* A switch on a constant should have been optimized in tree-cfg-cleanup. */
1358 gcc_checking_assert (! TREE_CONSTANT (info.index_expr));
1359
1360 if (info.uniq <= MAX_CASE_BIT_TESTS)
1361 {
1362 if (expand_switch_using_bit_tests_p (info.range_size,
1363 info.uniq, info.count))
1364 {
1365 if (dump_file)
1366 fputs (" expanding as bit test is preferable\n", dump_file);
1367 emit_case_bit_tests (swtch, info.index_expr,
1368 info.range_min, info.range_size);
1369 return NULL;
1370 }
1371
1372 if (info.uniq <= 2)
1373 /* This will be expanded as a decision tree in stmt.c:expand_case. */
1374 return " expanding as jumps is preferable";
1375 }
1376
1377 /* If there is no common successor, we cannot do the transformation. */
1378 if (! info.final_bb)
1379 return "no common successor to all case label target blocks found";
1380
1381 /* Check the case label values are within reasonable range: */
1382 if (!check_range (&info))
1383 {
1384 gcc_assert (info.reason);
1385 return info.reason;
1386 }
1387
1388 /* For all the cases, see whether they are empty, the assignments they
1389 represent constant and so on... */
1390 if (! check_all_empty_except_final (&info))
1391 {
1392 gcc_assert (info.reason);
1393 return info.reason;
1394 }
1395 if (!check_final_bb (&info))
1396 {
1397 gcc_assert (info.reason);
1398 return info.reason;
1399 }
1400
1401 /* At this point all checks have passed and we can proceed with the
1402 transformation. */
1403
1404 create_temp_arrays (&info);
1405 gather_default_values (gimple_switch_label (swtch, 0), &info);
1406 build_constructors (swtch, &info);
1407
1408 build_arrays (swtch, &info); /* Build the static arrays and assignments. */
1409 gen_inbound_check (swtch, &info); /* Build the bounds check. */
1410
1411 /* Cleanup: */
1412 free_temp_arrays (&info);
1413 return NULL;
1414 }
1415
1416 /* The main function of the pass scans statements for switches and invokes
1417 process_switch on them. */
1418
1419 static unsigned int
1420 do_switchconv (void)
1421 {
1422 basic_block bb;
1423
1424 FOR_EACH_BB (bb)
1425 {
1426 const char *failure_reason;
1427 gimple stmt = last_stmt (bb);
1428 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1429 {
1430 if (dump_file)
1431 {
1432 expanded_location loc = expand_location (gimple_location (stmt));
1433
1434 fprintf (dump_file, "beginning to process the following "
1435 "SWITCH statement (%s:%d) : ------- \n",
1436 loc.file, loc.line);
1437 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1438 putc ('\n', dump_file);
1439 }
1440
1441 failure_reason = process_switch (stmt);
1442 if (! failure_reason)
1443 {
1444 if (dump_file)
1445 {
1446 fputs ("Switch converted\n", dump_file);
1447 fputs ("--------------------------------\n", dump_file);
1448 }
1449
1450 /* Make no effort to update the post-dominator tree. It is actually not
1451 that hard for the transformations we have performed, but it is not
1452 supported by iterate_fix_dominators. */
1453 free_dominance_info (CDI_POST_DOMINATORS);
1454 }
1455 else
1456 {
1457 if (dump_file)
1458 {
1459 fputs ("Bailing out - ", dump_file);
1460 fputs (failure_reason, dump_file);
1461 fputs ("\n--------------------------------\n", dump_file);
1462 }
1463 }
1464 }
1465 }
1466
1467 return 0;
1468 }
1469
1470 /* The pass gate. */
1471
1472 static bool
1473 switchconv_gate (void)
1474 {
1475 return flag_tree_switch_conversion != 0;
1476 }
1477
1478 struct gimple_opt_pass pass_convert_switch =
1479 {
1480 {
1481 GIMPLE_PASS,
1482 "switchconv", /* name */
1483 switchconv_gate, /* gate */
1484 do_switchconv, /* execute */
1485 NULL, /* sub */
1486 NULL, /* next */
1487 0, /* static_pass_number */
1488 TV_TREE_SWITCH_CONVERSION, /* tv_id */
1489 PROP_cfg | PROP_ssa, /* properties_required */
1490 0, /* properties_provided */
1491 0, /* properties_destroyed */
1492 0, /* todo_flags_start */
1493 TODO_update_ssa
1494 | TODO_ggc_collect | TODO_verify_ssa
1495 | TODO_verify_stmts
1496 | TODO_verify_flow /* todo_flags_finish */
1497 }
1498 };