ira-conflicts.c: Use fputs or putc instead of fprintf where appropriate.
[gcc.git] / gcc / tree-switch-conversion.c
1 /* Switch Conversion converts variable initializations based on switch
2 statements to initializations from a static array.
3 Copyright (C) 2006, 2008 Free Software Foundation, Inc.
4 Contributed by Martin Jambor <jamborm@suse.cz>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /*
24 Switch initialization conversion
25
26 The following pass changes simple initializations of scalars in a switch
27 statement into initializations from a static array. Obviously, the values must
28 be constant and known at compile time and a default branch must be
29 provided. For example, the following code:
30
31 int a,b;
32
33 switch (argc)
34 {
35 case 1:
36 case 2:
37 a_1 = 8;
38 b_1 = 6;
39 break;
40 case 3:
41 a_2 = 9;
42 b_2 = 5;
43 break;
44 case 12:
45 a_3 = 10;
46 b_3 = 4;
47 break;
48 default:
49 a_4 = 16;
50 b_4 = 1;
51 }
52 a_5 = PHI <a_1, a_2, a_3, a_4>
53 b_5 = PHI <b_1, b_2, b_3, b_4>
54
55
56 is changed into:
57
58 static const int = CSWTCH01[] = {6, 6, 5, 1, 1, 1, 1, 1, 1, 1, 1, 4};
59 static const int = CSWTCH02[] = {8, 8, 9, 16, 16, 16, 16, 16, 16, 16,
60 16, 16, 10};
61
62 if (((unsigned) argc) - 1 < 11)
63 {
64 a_6 = CSWTCH02[argc - 1];
65 b_6 = CSWTCH01[argc - 1];
66 }
67 else
68 {
69 a_7 = 16;
70 b_7 = 1;
71 }
72 a_5 = PHI <a_6, a_7>
73 b_b = PHI <b_6, b_7>
74
75 There are further constraints. Specifically, the range of values across all
76 case labels must not be bigger than SWITCH_CONVERSION_BRANCH_RATIO (default
77 eight) times the number of the actual switch branches. */
78
79 #include "config.h"
80 #include "system.h"
81 #include "coretypes.h"
82 #include "tm.h"
83 #include <signal.h>
84
85 #include "line-map.h"
86 #include "params.h"
87 #include "flags.h"
88 #include "tree.h"
89 #include "basic-block.h"
90 #include "tree-flow.h"
91 #include "tree-flow-inline.h"
92 #include "tree-ssa-operands.h"
93 #include "output.h"
94 #include "input.h"
95 #include "tree-pass.h"
96 #include "diagnostic.h"
97 #include "tree-dump.h"
98 #include "timevar.h"
99
100 /* The main structure of the pass. */
101 struct switch_conv_info
102 {
103 /* The expression used to decide the switch branch. (It is subsequently used
104 as the index to the created array.) */
105 tree index_expr;
106
107 /* The following integer constants store the minimum value covered by the
108 cases. */
109 tree range_min;
110
111 /* The difference between the above two numbers, i.e. The size of the array
112 that would have to be created by the transformation. */
113 tree range_size;
114
115 /* Basic block that contains the actual SWITCH_EXPR. */
116 basic_block switch_bb;
117
118 /* All branches of the switch statement must have a single successor stored in
119 the following variable. */
120 basic_block final_bb;
121
122 /* Number of phi nodes in the final bb (that we'll be replacing). */
123 int phi_count;
124
125 /* Array of default values, in the same order as phi nodes. */
126 tree *default_values;
127
128 /* Constructors of new static arrays. */
129 VEC (constructor_elt, gc) **constructors;
130
131 /* Array of ssa names that are initialized with a value from a new static
132 array. */
133 tree *target_inbound_names;
134
135 /* Array of ssa names that are initialized with the default value if the
136 switch expression is out of range. */
137 tree *target_outbound_names;
138
139 /* The probability of the default edge in the replaced switch. */
140 int default_prob;
141
142 /* The count of the default edge in the replaced switch. */
143 gcov_type default_count;
144
145 /* Combined count of all other (non-default) edges in the replaced switch. */
146 gcov_type other_count;
147
148 /* The first load statement that loads a temporary from a new static array.
149 */
150 gimple arr_ref_first;
151
152 /* The last load statement that loads a temporary from a new static array. */
153 gimple arr_ref_last;
154
155 /* String reason why the case wasn't a good candidate that is written to the
156 dump file, if there is one. */
157 const char *reason;
158 };
159
160 /* Global pass info. */
161 static struct switch_conv_info info;
162
163
164 /* Checks whether the range given by individual case statements of the SWTCH
165 switch statement isn't too big and whether the number of branches actually
166 satisfies the size of the new array. */
167
168 static bool
169 check_range (gimple swtch)
170 {
171 tree min_case, max_case;
172 unsigned int branch_num = gimple_switch_num_labels (swtch);
173 tree range_max;
174
175 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
176 is a default label which is the last in the vector. */
177
178 min_case = gimple_switch_label (swtch, 1);
179 info.range_min = CASE_LOW (min_case);
180
181 gcc_assert (branch_num > 1);
182 gcc_assert (CASE_LOW (gimple_switch_label (swtch, 0)) == NULL_TREE);
183 max_case = gimple_switch_label (swtch, branch_num - 1);
184 if (CASE_HIGH (max_case) != NULL_TREE)
185 range_max = CASE_HIGH (max_case);
186 else
187 range_max = CASE_LOW (max_case);
188
189 gcc_assert (info.range_min);
190 gcc_assert (range_max);
191
192 info.range_size = int_const_binop (MINUS_EXPR, range_max, info.range_min, 0);
193
194 gcc_assert (info.range_size);
195 if (!host_integerp (info.range_size, 1))
196 {
197 info.reason = "index range way too large or otherwise unusable.\n";
198 return false;
199 }
200
201 if ((unsigned HOST_WIDE_INT) tree_low_cst (info.range_size, 1)
202 > ((unsigned) branch_num * SWITCH_CONVERSION_BRANCH_RATIO))
203 {
204 info.reason = "the maximum range-branch ratio exceeded.\n";
205 return false;
206 }
207
208 return true;
209 }
210
211 /* Checks the given CS switch case whether it is suitable for conversion
212 (whether all but the default basic blocks are empty and so on). If it is,
213 adds the case to the branch list along with values for the defined variables
214 and returns true. Otherwise returns false. */
215
216 static bool
217 check_process_case (tree cs)
218 {
219 tree ldecl;
220 basic_block label_bb, following_bb;
221 edge e;
222
223 ldecl = CASE_LABEL (cs);
224 label_bb = label_to_block (ldecl);
225
226 e = find_edge (info.switch_bb, label_bb);
227 gcc_assert (e);
228
229 if (CASE_LOW (cs) == NULL_TREE)
230 {
231 /* Default branch. */
232 info.default_prob = e->probability;
233 info.default_count = e->count;
234 }
235 else
236 info.other_count += e->count;
237
238 if (!label_bb)
239 {
240 info.reason = " Bad case - cs BB label is NULL\n";
241 return false;
242 }
243
244 if (!single_pred_p (label_bb))
245 {
246 if (info.final_bb && info.final_bb != label_bb)
247 {
248 info.reason = " Bad case - a non-final BB has two predecessors\n";
249 return false; /* sth complex going on in this branch */
250 }
251
252 following_bb = label_bb;
253 }
254 else
255 {
256 if (!empty_block_p (label_bb))
257 {
258 info.reason = " Bad case - a non-final BB not empty\n";
259 return false;
260 }
261
262 e = single_succ_edge (label_bb);
263 following_bb = single_succ (label_bb);
264 }
265
266 if (!info.final_bb)
267 info.final_bb = following_bb;
268 else if (info.final_bb != following_bb)
269 {
270 info.reason = " Bad case - different final BB\n";
271 return false; /* the only successor is not common for all the branches */
272 }
273
274 return true;
275 }
276
277 /* This function checks whether all required values in phi nodes in final_bb
278 are constants. Required values are those that correspond to a basic block
279 which is a part of the examined switch statement. It returns true if the
280 phi nodes are OK, otherwise false. */
281
282 static bool
283 check_final_bb (void)
284 {
285 gimple_stmt_iterator gsi;
286
287 info.phi_count = 0;
288 for (gsi = gsi_start_phis (info.final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
289 {
290 gimple phi = gsi_stmt (gsi);
291 unsigned int i;
292
293 info.phi_count++;
294
295 for (i = 0; i < gimple_phi_num_args (phi); i++)
296 {
297 basic_block bb = gimple_phi_arg_edge (phi, i)->src;
298
299 if (bb == info.switch_bb
300 || (single_pred_p (bb) && single_pred (bb) == info.switch_bb))
301 {
302 tree reloc, val;
303
304 val = gimple_phi_arg_def (phi, i);
305 if (!is_gimple_ip_invariant (val))
306 {
307 info.reason = " Non-invariant value from a case\n";
308 return false; /* Non-invariant argument. */
309 }
310 reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
311 if ((flag_pic && reloc != null_pointer_node)
312 || (!flag_pic && reloc == NULL_TREE))
313 {
314 if (reloc)
315 info.reason
316 = " Value from a case would need runtime relocations\n";
317 else
318 info.reason
319 = " Value from a case is not a valid initializer\n";
320 return false;
321 }
322 }
323 }
324 }
325
326 return true;
327 }
328
329 /* The following function allocates default_values, target_{in,out}_names and
330 constructors arrays. The last one is also populated with pointers to
331 vectors that will become constructors of new arrays. */
332
333 static void
334 create_temp_arrays (void)
335 {
336 int i;
337
338 info.default_values = (tree *) xcalloc (info.phi_count, sizeof (tree));
339 info.constructors = (VEC (constructor_elt, gc) **) xcalloc (info.phi_count,
340 sizeof (tree));
341 info.target_inbound_names = (tree *) xcalloc (info.phi_count, sizeof (tree));
342 info.target_outbound_names = (tree *) xcalloc (info.phi_count,
343 sizeof (tree));
344
345 for (i = 0; i < info.phi_count; i++)
346 info.constructors[i]
347 = VEC_alloc (constructor_elt, gc, tree_low_cst (info.range_size, 1) + 1);
348 }
349
350 /* Free the arrays created by create_temp_arrays(). The vectors that are
351 created by that function are not freed here, however, because they have
352 already become constructors and must be preserved. */
353
354 static void
355 free_temp_arrays (void)
356 {
357 free (info.constructors);
358 free (info.default_values);
359 free (info.target_inbound_names);
360 free (info.target_outbound_names);
361 }
362
363 /* Populate the array of default values in the order of phi nodes.
364 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch. */
365
366 static void
367 gather_default_values (tree default_case)
368 {
369 gimple_stmt_iterator gsi;
370 basic_block bb = label_to_block (CASE_LABEL (default_case));
371 edge e;
372 int i = 0;
373
374 gcc_assert (CASE_LOW (default_case) == NULL_TREE);
375
376 if (bb == info.final_bb)
377 e = find_edge (info.switch_bb, bb);
378 else
379 e = single_succ_edge (bb);
380
381 for (gsi = gsi_start_phis (info.final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
382 {
383 gimple phi = gsi_stmt (gsi);
384 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
385 gcc_assert (val);
386 info.default_values[i++] = val;
387 }
388 }
389
390 /* The following function populates the vectors in the constructors array with
391 future contents of the static arrays. The vectors are populated in the
392 order of phi nodes. SWTCH is the switch statement being converted. */
393
394 static void
395 build_constructors (gimple swtch)
396 {
397 unsigned i, branch_num = gimple_switch_num_labels (swtch);
398 tree pos = info.range_min;
399
400 for (i = 1; i < branch_num; i++)
401 {
402 tree cs = gimple_switch_label (swtch, i);
403 basic_block bb = label_to_block (CASE_LABEL (cs));
404 edge e;
405 tree high;
406 gimple_stmt_iterator gsi;
407 int j;
408
409 if (bb == info.final_bb)
410 e = find_edge (info.switch_bb, bb);
411 else
412 e = single_succ_edge (bb);
413 gcc_assert (e);
414
415 while (tree_int_cst_lt (pos, CASE_LOW (cs)))
416 {
417 int k;
418 for (k = 0; k < info.phi_count; k++)
419 {
420 constructor_elt *elt;
421
422 elt = VEC_quick_push (constructor_elt,
423 info.constructors[k], NULL);
424 elt->index = int_const_binop (MINUS_EXPR, pos,
425 info.range_min, 0);
426 elt->value = info.default_values[k];
427 }
428
429 pos = int_const_binop (PLUS_EXPR, pos, integer_one_node, 0);
430 }
431 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
432
433 j = 0;
434 if (CASE_HIGH (cs))
435 high = CASE_HIGH (cs);
436 else
437 high = CASE_LOW (cs);
438 for (gsi = gsi_start_phis (info.final_bb);
439 !gsi_end_p (gsi); gsi_next (&gsi))
440 {
441 gimple phi = gsi_stmt (gsi);
442 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
443 tree low = CASE_LOW (cs);
444 pos = CASE_LOW (cs);
445
446 do
447 {
448 constructor_elt *elt;
449
450 elt = VEC_quick_push (constructor_elt,
451 info.constructors[j], NULL);
452 elt->index = int_const_binop (MINUS_EXPR, pos, info.range_min, 0);
453 elt->value = val;
454
455 pos = int_const_binop (PLUS_EXPR, pos, integer_one_node, 0);
456 } while (!tree_int_cst_lt (high, pos)
457 && tree_int_cst_lt (low, pos));
458 j++;
459 }
460 }
461 }
462
463 /* If all values in the constructor vector are the same, return the value.
464 Otherwise return NULL_TREE. Not supposed to be called for empty
465 vectors. */
466
467 static tree
468 constructor_contains_same_values_p (VEC (constructor_elt, gc) *vec)
469 {
470 int i, len = VEC_length (constructor_elt, vec);
471 tree prev = NULL_TREE;
472
473 for (i = 0; i < len; i++)
474 {
475 constructor_elt *elt = VEC_index (constructor_elt, vec, i);
476
477 if (!prev)
478 prev = elt->value;
479 else if (!operand_equal_p (elt->value, prev, OEP_ONLY_CONST))
480 return NULL_TREE;
481 }
482 return prev;
483 }
484
485 /* Create an appropriate array type and declaration and assemble a static array
486 variable. Also create a load statement that initializes the variable in
487 question with a value from the static array. SWTCH is the switch statement
488 being converted, NUM is the index to arrays of constructors, default values
489 and target SSA names for this particular array. ARR_INDEX_TYPE is the type
490 of the index of the new array, PHI is the phi node of the final BB that
491 corresponds to the value that will be loaded from the created array. TIDX
492 is an ssa name of a temporary variable holding the index for loads from the
493 new array. */
494
495 static void
496 build_one_array (gimple swtch, int num, tree arr_index_type, gimple phi,
497 tree tidx)
498 {
499 tree name, cst;
500 gimple load;
501 gimple_stmt_iterator gsi = gsi_for_stmt (swtch);
502 location_t loc = gimple_location (swtch);
503
504 gcc_assert (info.default_values[num]);
505
506 name = make_ssa_name (SSA_NAME_VAR (PHI_RESULT (phi)), NULL);
507 info.target_inbound_names[num] = name;
508
509 cst = constructor_contains_same_values_p (info.constructors[num]);
510 if (cst)
511 load = gimple_build_assign (name, cst);
512 else
513 {
514 tree array_type, ctor, decl, value_type, fetch;
515
516 value_type = TREE_TYPE (info.default_values[num]);
517 array_type = build_array_type (value_type, arr_index_type);
518 ctor = build_constructor (array_type, info.constructors[num]);
519 TREE_CONSTANT (ctor) = true;
520
521 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
522 TREE_STATIC (decl) = 1;
523 DECL_INITIAL (decl) = ctor;
524
525 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
526 DECL_ARTIFICIAL (decl) = 1;
527 TREE_CONSTANT (decl) = 1;
528 add_referenced_var (decl);
529 varpool_mark_needed_node (varpool_node (decl));
530 varpool_finalize_decl (decl);
531
532 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
533 NULL_TREE);
534 load = gimple_build_assign (name, fetch);
535 }
536
537 SSA_NAME_DEF_STMT (name) = load;
538 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
539 update_stmt (load);
540 info.arr_ref_last = load;
541 }
542
543 /* Builds and initializes static arrays initialized with values gathered from
544 the SWTCH switch statement. Also creates statements that load values from
545 them. */
546
547 static void
548 build_arrays (gimple swtch)
549 {
550 tree arr_index_type;
551 tree tidx, sub, tmp;
552 gimple stmt;
553 gimple_stmt_iterator gsi;
554 int i;
555 location_t loc = gimple_location (swtch);
556
557 gsi = gsi_for_stmt (swtch);
558
559 arr_index_type = build_index_type (info.range_size);
560 tmp = create_tmp_var (TREE_TYPE (info.index_expr), "csti");
561 add_referenced_var (tmp);
562 tidx = make_ssa_name (tmp, NULL);
563 sub = fold_build2_loc (loc, MINUS_EXPR,
564 TREE_TYPE (info.index_expr), info.index_expr,
565 fold_convert_loc (loc, TREE_TYPE (info.index_expr),
566 info.range_min));
567 sub = force_gimple_operand_gsi (&gsi, sub,
568 false, NULL, true, GSI_SAME_STMT);
569 stmt = gimple_build_assign (tidx, sub);
570 SSA_NAME_DEF_STMT (tidx) = stmt;
571
572 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
573 update_stmt (stmt);
574 info.arr_ref_first = stmt;
575
576 for (gsi = gsi_start_phis (info.final_bb), i = 0;
577 !gsi_end_p (gsi); gsi_next (&gsi), i++)
578 build_one_array (swtch, i, arr_index_type, gsi_stmt (gsi), tidx);
579 }
580
581 /* Generates and appropriately inserts loads of default values at the position
582 given by BSI. Returns the last inserted statement. */
583
584 static gimple
585 gen_def_assigns (gimple_stmt_iterator *gsi)
586 {
587 int i;
588 gimple assign = NULL;
589
590 for (i = 0; i < info.phi_count; i++)
591 {
592 tree name
593 = make_ssa_name (SSA_NAME_VAR (info.target_inbound_names[i]), NULL);
594
595 info.target_outbound_names[i] = name;
596 assign = gimple_build_assign (name, info.default_values[i]);
597 SSA_NAME_DEF_STMT (name) = assign;
598 gsi_insert_before (gsi, assign, GSI_SAME_STMT);
599 update_stmt (assign);
600 }
601 return assign;
602 }
603
604 /* Deletes the unused bbs and edges that now contain the switch statement and
605 its empty branch bbs. BBD is the now dead BB containing the original switch
606 statement, FINAL is the last BB of the converted switch statement (in terms
607 of succession). */
608
609 static void
610 prune_bbs (basic_block bbd, basic_block final)
611 {
612 edge_iterator ei;
613 edge e;
614
615 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
616 {
617 basic_block bb;
618 bb = e->dest;
619 remove_edge (e);
620 if (bb != final)
621 delete_basic_block (bb);
622 }
623 delete_basic_block (bbd);
624 }
625
626 /* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
627 from the basic block loading values from an array and E2F from the basic
628 block loading default values. BBF is the last switch basic block (see the
629 bbf description in the comment below). */
630
631 static void
632 fix_phi_nodes (edge e1f, edge e2f, basic_block bbf)
633 {
634 gimple_stmt_iterator gsi;
635 int i;
636
637 for (gsi = gsi_start_phis (bbf), i = 0;
638 !gsi_end_p (gsi); gsi_next (&gsi), i++)
639 {
640 gimple phi = gsi_stmt (gsi);
641 add_phi_arg (phi, info.target_inbound_names[i], e1f, UNKNOWN_LOCATION);
642 add_phi_arg (phi, info.target_outbound_names[i], e2f, UNKNOWN_LOCATION);
643 }
644
645 }
646
647 /* Creates a check whether the switch expression value actually falls into the
648 range given by all the cases. If it does not, the temporaries are loaded
649 with default values instead. SWTCH is the switch statement being converted.
650
651 bb0 is the bb with the switch statement, however, we'll end it with a
652 condition instead.
653
654 bb1 is the bb to be used when the range check went ok. It is derived from
655 the switch BB
656
657 bb2 is the bb taken when the expression evaluated outside of the range
658 covered by the created arrays. It is populated by loads of default
659 values.
660
661 bbF is a fall through for both bb1 and bb2 and contains exactly what
662 originally followed the switch statement.
663
664 bbD contains the switch statement (in the end). It is unreachable but we
665 still need to strip off its edges.
666 */
667
668 static void
669 gen_inbound_check (gimple swtch)
670 {
671 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
672 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
673 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
674 gimple label1, label2, label3;
675
676 tree utype;
677 tree tmp_u_1, tmp_u_2, tmp_u_var;
678 tree cast;
679 gimple cast_assign, minus_assign;
680 tree ulb, minus;
681 tree bound;
682
683 gimple cond_stmt;
684
685 gimple last_assign;
686 gimple_stmt_iterator gsi;
687 basic_block bb0, bb1, bb2, bbf, bbd;
688 edge e01, e02, e21, e1d, e1f, e2f;
689 location_t loc = gimple_location (swtch);
690
691 gcc_assert (info.default_values);
692 bb0 = gimple_bb (swtch);
693
694 /* Make sure we do not generate arithmetics in a subrange. */
695 if (TREE_TYPE (TREE_TYPE (info.index_expr)))
696 utype = unsigned_type_for (TREE_TYPE (TREE_TYPE (info.index_expr)));
697 else
698 utype = unsigned_type_for (TREE_TYPE (info.index_expr));
699
700 /* (end of) block 0 */
701 gsi = gsi_for_stmt (info.arr_ref_first);
702 tmp_u_var = create_tmp_var (utype, "csui");
703 add_referenced_var (tmp_u_var);
704 tmp_u_1 = make_ssa_name (tmp_u_var, NULL);
705
706 cast = fold_convert_loc (loc, utype, info.index_expr);
707 cast_assign = gimple_build_assign (tmp_u_1, cast);
708 SSA_NAME_DEF_STMT (tmp_u_1) = cast_assign;
709 gsi_insert_before (&gsi, cast_assign, GSI_SAME_STMT);
710 update_stmt (cast_assign);
711
712 ulb = fold_convert_loc (loc, utype, info.range_min);
713 minus = fold_build2_loc (loc, MINUS_EXPR, utype, tmp_u_1, ulb);
714 minus = force_gimple_operand_gsi (&gsi, minus, false, NULL, true,
715 GSI_SAME_STMT);
716 tmp_u_2 = make_ssa_name (tmp_u_var, NULL);
717 minus_assign = gimple_build_assign (tmp_u_2, minus);
718 SSA_NAME_DEF_STMT (tmp_u_2) = minus_assign;
719 gsi_insert_before (&gsi, minus_assign, GSI_SAME_STMT);
720 update_stmt (minus_assign);
721
722 bound = fold_convert_loc (loc, utype, info.range_size);
723 cond_stmt = gimple_build_cond (LE_EXPR, tmp_u_2, bound, NULL_TREE, NULL_TREE);
724 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
725 update_stmt (cond_stmt);
726
727 /* block 2 */
728 gsi = gsi_for_stmt (info.arr_ref_first);
729 label2 = gimple_build_label (label_decl2);
730 gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
731 last_assign = gen_def_assigns (&gsi);
732
733 /* block 1 */
734 gsi = gsi_for_stmt (info.arr_ref_first);
735 label1 = gimple_build_label (label_decl1);
736 gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
737
738 /* block F */
739 gsi = gsi_start_bb (info.final_bb);
740 label3 = gimple_build_label (label_decl3);
741 gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
742
743 /* cfg fix */
744 e02 = split_block (bb0, cond_stmt);
745 bb2 = e02->dest;
746
747 e21 = split_block (bb2, last_assign);
748 bb1 = e21->dest;
749 remove_edge (e21);
750
751 e1d = split_block (bb1, info.arr_ref_last);
752 bbd = e1d->dest;
753 remove_edge (e1d);
754
755 /* flags and profiles of the edge for in-range values */
756 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
757 e01->probability = REG_BR_PROB_BASE - info.default_prob;
758 e01->count = info.other_count;
759
760 /* flags and profiles of the edge taking care of out-of-range values */
761 e02->flags &= ~EDGE_FALLTHRU;
762 e02->flags |= EDGE_FALSE_VALUE;
763 e02->probability = info.default_prob;
764 e02->count = info.default_count;
765
766 bbf = info.final_bb;
767
768 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
769 e1f->probability = REG_BR_PROB_BASE;
770 e1f->count = info.other_count;
771
772 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
773 e2f->probability = REG_BR_PROB_BASE;
774 e2f->count = info.default_count;
775
776 /* frequencies of the new BBs */
777 bb1->frequency = EDGE_FREQUENCY (e01);
778 bb2->frequency = EDGE_FREQUENCY (e02);
779 bbf->frequency = EDGE_FREQUENCY (e1f) + EDGE_FREQUENCY (e2f);
780
781 prune_bbs (bbd, info.final_bb); /* To keep calc_dfs_tree() in dominance.c
782 happy. */
783
784 fix_phi_nodes (e1f, e2f, bbf);
785
786 free_dominance_info (CDI_DOMINATORS);
787 free_dominance_info (CDI_POST_DOMINATORS);
788 }
789
790 /* The following function is invoked on every switch statement (the current one
791 is given in SWTCH) and runs the individual phases of switch conversion on it
792 one after another until one fails or the conversion is completed. */
793
794 static bool
795 process_switch (gimple swtch)
796 {
797 unsigned int i, branch_num = gimple_switch_num_labels (swtch);
798 tree index_type;
799
800 /* Operand 2 is either NULL_TREE or a vector of cases (stmt.c). */
801 if (branch_num < 2)
802 {
803 info.reason = "switch has no labels\n";
804 return false;
805 }
806
807 info.final_bb = NULL;
808 info.switch_bb = gimple_bb (swtch);
809 info.index_expr = gimple_switch_index (swtch);
810 index_type = TREE_TYPE (info.index_expr);
811 info.arr_ref_first = NULL;
812 info.arr_ref_last = NULL;
813 info.default_prob = 0;
814 info.default_count = 0;
815 info.other_count = 0;
816
817 /* An ERROR_MARK occurs for various reasons including invalid data type.
818 (comment from stmt.c) */
819 if (index_type == error_mark_node)
820 {
821 info.reason = "index error.\n";
822 return false;
823 }
824
825 /* Check the case label values are within reasonable range: */
826 if (!check_range (swtch))
827 return false;
828
829 /* For all the cases, see whether they are empty, the assignments they
830 represent constant and so on... */
831 for (i = 0; i < branch_num; i++)
832 if (!check_process_case (gimple_switch_label (swtch, i)))
833 {
834 if (dump_file)
835 fprintf (dump_file, "Processing of case %i failed\n", i);
836 return false;
837 }
838
839 if (!check_final_bb ())
840 return false;
841
842 /* At this point all checks have passed and we can proceed with the
843 transformation. */
844
845 create_temp_arrays ();
846 gather_default_values (gimple_switch_label (swtch, 0));
847 build_constructors (swtch);
848
849 build_arrays (swtch); /* Build the static arrays and assignments. */
850 gen_inbound_check (swtch); /* Build the bounds check. */
851
852 /* Cleanup: */
853 free_temp_arrays ();
854 return true;
855 }
856
857 /* The main function of the pass scans statements for switches and invokes
858 process_switch on them. */
859
860 static unsigned int
861 do_switchconv (void)
862 {
863 basic_block bb;
864
865 FOR_EACH_BB (bb)
866 {
867 gimple stmt = last_stmt (bb);
868 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
869 {
870 if (dump_file)
871 {
872 expanded_location loc = expand_location (gimple_location (stmt));
873
874 fprintf (dump_file, "beginning to process the following "
875 "SWITCH statement (%s:%d) : ------- \n",
876 loc.file, loc.line);
877 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
878 putc ('\n', dump_file);
879 }
880
881 info.reason = NULL;
882 if (process_switch (stmt))
883 {
884 if (dump_file)
885 {
886 fputs ("Switch converted\n", dump_file);
887 fputs ("--------------------------------\n", dump_file);
888 }
889 }
890 else
891 {
892 if (dump_file)
893 {
894 gcc_assert (info.reason);
895 fputs ("Bailing out - ", dump_file);
896 fputs (info.reason, dump_file);
897 fputs ("--------------------------------\n", dump_file);
898 }
899 }
900 }
901 }
902
903 return 0;
904 }
905
906 /* The pass gate. */
907
908 static bool
909 switchconv_gate (void)
910 {
911 return flag_tree_switch_conversion != 0;
912 }
913
914 struct gimple_opt_pass pass_convert_switch =
915 {
916 {
917 GIMPLE_PASS,
918 "switchconv", /* name */
919 switchconv_gate, /* gate */
920 do_switchconv, /* execute */
921 NULL, /* sub */
922 NULL, /* next */
923 0, /* static_pass_number */
924 TV_TREE_SWITCH_CONVERSION, /* tv_id */
925 PROP_cfg | PROP_ssa, /* properties_required */
926 0, /* properties_provided */
927 0, /* properties_destroyed */
928 0, /* todo_flags_start */
929 TODO_update_ssa | TODO_dump_func
930 | TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
931 }
932 };