gimple.h (gimple_build_switch): Remove.
[gcc.git] / gcc / tree-switch-conversion.c
1 /* Lower GIMPLE_SWITCH expressions to something more efficient than
2 a jump table.
3 Copyright (C) 2006, 2008, 2009, 2010, 2011, 2012
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This file handles the lowering of GIMPLE_SWITCH to an indexed
24 load, or a series of bit-test-and-branch expressions. */
25
26 #include "config.h"
27 #include "system.h"
28 #include "coretypes.h"
29 #include "tm.h"
30 #include "line-map.h"
31 #include "params.h"
32 #include "flags.h"
33 #include "tree.h"
34 #include "basic-block.h"
35 #include "tree-flow.h"
36 #include "tree-flow-inline.h"
37 #include "tree-ssa-operands.h"
38 #include "tree-pass.h"
39 #include "gimple-pretty-print.h"
40
41 /* ??? For lang_hooks.types.type_for_mode, but is there a word_mode
42 type in the GIMPLE type system that is language-independent? */
43 #include "langhooks.h"
44
45 /* Need to include expr.h and optabs.h for lshift_cheap_p. */
46 #include "expr.h"
47 #include "optabs.h"
48 \f
49 /* Maximum number of case bit tests.
50 FIXME: This should be derived from PARAM_CASE_VALUES_THRESHOLD and
51 targetm.case_values_threshold(), or be its own param. */
52 #define MAX_CASE_BIT_TESTS 3
53
54 /* Split the basic block at the statement pointed to by GSIP, and insert
55 a branch to the target basic block of E_TRUE conditional on tree
56 expression COND.
57
58 It is assumed that there is already an edge from the to-be-split
59 basic block to E_TRUE->dest block. This edge is removed, and the
60 profile information on the edge is re-used for the new conditional
61 jump.
62
63 The CFG is updated. The dominator tree will not be valid after
64 this transformation, but the immediate dominators are updated if
65 UPDATE_DOMINATORS is true.
66
67 Returns the newly created basic block. */
68
69 static basic_block
70 hoist_edge_and_branch_if_true (gimple_stmt_iterator *gsip,
71 tree cond, edge e_true,
72 bool update_dominators)
73 {
74 tree tmp;
75 gimple cond_stmt;
76 edge e_false;
77 basic_block new_bb, split_bb = gsi_bb (*gsip);
78 bool dominated_e_true = false;
79
80 gcc_assert (e_true->src == split_bb);
81
82 if (update_dominators
83 && get_immediate_dominator (CDI_DOMINATORS, e_true->dest) == split_bb)
84 dominated_e_true = true;
85
86 tmp = force_gimple_operand_gsi (gsip, cond, /*simple=*/true, NULL,
87 /*before=*/true, GSI_SAME_STMT);
88 cond_stmt = gimple_build_cond_from_tree (tmp, NULL_TREE, NULL_TREE);
89 gsi_insert_before (gsip, cond_stmt, GSI_SAME_STMT);
90
91 e_false = split_block (split_bb, cond_stmt);
92 new_bb = e_false->dest;
93 redirect_edge_pred (e_true, split_bb);
94
95 e_true->flags &= ~EDGE_FALLTHRU;
96 e_true->flags |= EDGE_TRUE_VALUE;
97
98 e_false->flags &= ~EDGE_FALLTHRU;
99 e_false->flags |= EDGE_FALSE_VALUE;
100 e_false->probability = REG_BR_PROB_BASE - e_true->probability;
101 e_false->count = split_bb->count - e_true->count;
102 new_bb->count = e_false->count;
103
104 if (update_dominators)
105 {
106 if (dominated_e_true)
107 set_immediate_dominator (CDI_DOMINATORS, e_true->dest, split_bb);
108 set_immediate_dominator (CDI_DOMINATORS, e_false->dest, split_bb);
109 }
110
111 return new_bb;
112 }
113
114
115 /* Determine whether "1 << x" is relatively cheap in word_mode. */
116 /* FIXME: This is the function that we need rtl.h and optabs.h for.
117 This function (and similar RTL-related cost code in e.g. IVOPTS) should
118 be moved to some kind of interface file for GIMPLE/RTL interactions. */
119 static bool
120 lshift_cheap_p (void)
121 {
122 /* FIXME: This should be made target dependent via this "this_target"
123 mechanism, similar to e.g. can_copy_init_p in gcse.c. */
124 static bool init[2] = {false, false};
125 static bool cheap[2] = {true, true};
126 bool speed_p;
127
128 /* If the targer has no lshift in word_mode, the operation will most
129 probably not be cheap. ??? Does GCC even work for such targets? */
130 if (optab_handler (ashl_optab, word_mode) == CODE_FOR_nothing)
131 return false;
132
133 speed_p = optimize_insn_for_speed_p ();
134
135 if (!init[speed_p])
136 {
137 rtx reg = gen_raw_REG (word_mode, 10000);
138 int cost = set_src_cost (gen_rtx_ASHIFT (word_mode, const1_rtx, reg),
139 speed_p);
140 cheap[speed_p] = cost < COSTS_N_INSNS (MAX_CASE_BIT_TESTS);
141 init[speed_p] = true;
142 }
143
144 return cheap[speed_p];
145 }
146
147 /* Return true if a switch should be expanded as a bit test.
148 RANGE is the difference between highest and lowest case.
149 UNIQ is number of unique case node targets, not counting the default case.
150 COUNT is the number of comparisons needed, not counting the default case. */
151
152 static bool
153 expand_switch_using_bit_tests_p (tree range,
154 unsigned int uniq,
155 unsigned int count)
156 {
157 return (((uniq == 1 && count >= 3)
158 || (uniq == 2 && count >= 5)
159 || (uniq == 3 && count >= 6))
160 && lshift_cheap_p ()
161 && compare_tree_int (range, GET_MODE_BITSIZE (word_mode)) < 0
162 && compare_tree_int (range, 0) > 0);
163 }
164 \f
165 /* Implement switch statements with bit tests
166
167 A GIMPLE switch statement can be expanded to a short sequence of bit-wise
168 comparisons. "switch(x)" is converted into "if ((1 << (x-MINVAL)) & CST)"
169 where CST and MINVAL are integer constants. This is better than a series
170 of compare-and-banch insns in some cases, e.g. we can implement:
171
172 if ((x==4) || (x==6) || (x==9) || (x==11))
173
174 as a single bit test:
175
176 if ((1<<x) & ((1<<4)|(1<<6)|(1<<9)|(1<<11)))
177
178 This transformation is only applied if the number of case targets is small,
179 if CST constains at least 3 bits, and "1 << x" is cheap. The bit tests are
180 performed in "word_mode".
181
182 The following example shows the code the transformation generates:
183
184 int bar(int x)
185 {
186 switch (x)
187 {
188 case '0': case '1': case '2': case '3': case '4':
189 case '5': case '6': case '7': case '8': case '9':
190 case 'A': case 'B': case 'C': case 'D': case 'E':
191 case 'F':
192 return 1;
193 }
194 return 0;
195 }
196
197 ==>
198
199 bar (int x)
200 {
201 tmp1 = x - 48;
202 if (tmp1 > (70 - 48)) goto L2;
203 tmp2 = 1 << tmp1;
204 tmp3 = 0b11111100000001111111111;
205 if ((tmp2 & tmp3) != 0) goto L1 ; else goto L2;
206 L1:
207 return 1;
208 L2:
209 return 0;
210 }
211
212 TODO: There are still some improvements to this transformation that could
213 be implemented:
214
215 * A narrower mode than word_mode could be used if that is cheaper, e.g.
216 for x86_64 where a narrower-mode shift may result in smaller code.
217
218 * The compounded constant could be shifted rather than the one. The
219 test would be either on the sign bit or on the least significant bit,
220 depending on the direction of the shift. On some machines, the test
221 for the branch would be free if the bit to test is already set by the
222 shift operation.
223
224 This transformation was contributed by Roger Sayle, see this e-mail:
225 http://gcc.gnu.org/ml/gcc-patches/2003-01/msg01950.html
226 */
227
228 /* A case_bit_test represents a set of case nodes that may be
229 selected from using a bit-wise comparison. HI and LO hold
230 the integer to be tested against, TARGET_EDGE contains the
231 edge to the basic block to jump to upon success and BITS
232 counts the number of case nodes handled by this test,
233 typically the number of bits set in HI:LO. The LABEL field
234 is used to quickly identify all cases in this set without
235 looking at label_to_block for every case label. */
236
237 struct case_bit_test
238 {
239 HOST_WIDE_INT hi;
240 HOST_WIDE_INT lo;
241 edge target_edge;
242 tree label;
243 int bits;
244 };
245
246 /* Comparison function for qsort to order bit tests by decreasing
247 probability of execution. Our best guess comes from a measured
248 profile. If the profile counts are equal, break even on the
249 number of case nodes, i.e. the node with the most cases gets
250 tested first.
251
252 TODO: Actually this currently runs before a profile is available.
253 Therefore the case-as-bit-tests transformation should be done
254 later in the pass pipeline, or something along the lines of
255 "Efficient and effective branch reordering using profile data"
256 (Yang et. al., 2002) should be implemented (although, how good
257 is a paper is called "Efficient and effective ..." when the
258 latter is implied by the former, but oh well...). */
259
260 static int
261 case_bit_test_cmp (const void *p1, const void *p2)
262 {
263 const struct case_bit_test *const d1 = (const struct case_bit_test *) p1;
264 const struct case_bit_test *const d2 = (const struct case_bit_test *) p2;
265
266 if (d2->target_edge->count != d1->target_edge->count)
267 return d2->target_edge->count - d1->target_edge->count;
268 if (d2->bits != d1->bits)
269 return d2->bits - d1->bits;
270
271 /* Stabilize the sort. */
272 return LABEL_DECL_UID (d2->label) - LABEL_DECL_UID (d1->label);
273 }
274
275 /* Expand a switch statement by a short sequence of bit-wise
276 comparisons. "switch(x)" is effectively converted into
277 "if ((1 << (x-MINVAL)) & CST)" where CST and MINVAL are
278 integer constants.
279
280 INDEX_EXPR is the value being switched on.
281
282 MINVAL is the lowest case value of in the case nodes,
283 and RANGE is highest value minus MINVAL. MINVAL and RANGE
284 are not guaranteed to be of the same type as INDEX_EXPR
285 (the gimplifier doesn't change the type of case label values,
286 and MINVAL and RANGE are derived from those values).
287
288 There *MUST* be MAX_CASE_BIT_TESTS or less unique case
289 node targets. */
290
291 static void
292 emit_case_bit_tests (gimple swtch, tree index_expr,
293 tree minval, tree range)
294 {
295 struct case_bit_test test[MAX_CASE_BIT_TESTS];
296 unsigned int i, j, k;
297 unsigned int count;
298
299 basic_block switch_bb = gimple_bb (swtch);
300 basic_block default_bb, new_default_bb, new_bb;
301 edge default_edge;
302 bool update_dom = dom_info_available_p (CDI_DOMINATORS);
303
304 VEC (basic_block, heap) *bbs_to_fix_dom = NULL;
305
306 tree index_type = TREE_TYPE (index_expr);
307 tree unsigned_index_type = unsigned_type_for (index_type);
308 unsigned int branch_num = gimple_switch_num_labels (swtch);
309
310 gimple_stmt_iterator gsi;
311 gimple shift_stmt;
312
313 tree idx, tmp, csui;
314 tree word_type_node = lang_hooks.types.type_for_mode (word_mode, 1);
315 tree word_mode_zero = fold_convert (word_type_node, integer_zero_node);
316 tree word_mode_one = fold_convert (word_type_node, integer_one_node);
317
318 memset (&test, 0, sizeof (test));
319
320 /* Get the edge for the default case. */
321 tmp = gimple_switch_default_label (swtch);
322 default_bb = label_to_block (CASE_LABEL (tmp));
323 default_edge = find_edge (switch_bb, default_bb);
324
325 /* Go through all case labels, and collect the case labels, profile
326 counts, and other information we need to build the branch tests. */
327 count = 0;
328 for (i = 1; i < branch_num; i++)
329 {
330 unsigned int lo, hi;
331 tree cs = gimple_switch_label (swtch, i);
332 tree label = CASE_LABEL (cs);
333 edge e = find_edge (switch_bb, label_to_block (label));
334 for (k = 0; k < count; k++)
335 if (e == test[k].target_edge)
336 break;
337
338 if (k == count)
339 {
340 gcc_checking_assert (count < MAX_CASE_BIT_TESTS);
341 test[k].hi = 0;
342 test[k].lo = 0;
343 test[k].target_edge = e;
344 test[k].label = label;
345 test[k].bits = 1;
346 count++;
347 }
348 else
349 test[k].bits++;
350
351 lo = tree_low_cst (int_const_binop (MINUS_EXPR,
352 CASE_LOW (cs), minval),
353 1);
354 if (CASE_HIGH (cs) == NULL_TREE)
355 hi = lo;
356 else
357 hi = tree_low_cst (int_const_binop (MINUS_EXPR,
358 CASE_HIGH (cs), minval),
359 1);
360
361 for (j = lo; j <= hi; j++)
362 if (j >= HOST_BITS_PER_WIDE_INT)
363 test[k].hi |= (HOST_WIDE_INT) 1 << (j - HOST_BITS_PER_INT);
364 else
365 test[k].lo |= (HOST_WIDE_INT) 1 << j;
366 }
367
368 qsort (test, count, sizeof(*test), case_bit_test_cmp);
369
370 /* We generate two jumps to the default case label.
371 Split the default edge, so that we don't have to do any PHI node
372 updating. */
373 new_default_bb = split_edge (default_edge);
374
375 if (update_dom)
376 {
377 bbs_to_fix_dom = VEC_alloc (basic_block, heap, 10);
378 VEC_quick_push (basic_block, bbs_to_fix_dom, switch_bb);
379 VEC_quick_push (basic_block, bbs_to_fix_dom, default_bb);
380 VEC_quick_push (basic_block, bbs_to_fix_dom, new_default_bb);
381 }
382
383 /* Now build the test-and-branch code. */
384
385 gsi = gsi_last_bb (switch_bb);
386
387 /* idx = (unsigned)x - minval. */
388 idx = fold_convert (unsigned_index_type, index_expr);
389 idx = fold_build2 (MINUS_EXPR, unsigned_index_type, idx,
390 fold_convert (unsigned_index_type, minval));
391 idx = force_gimple_operand_gsi (&gsi, idx,
392 /*simple=*/true, NULL_TREE,
393 /*before=*/true, GSI_SAME_STMT);
394
395 /* if (idx > range) goto default */
396 range = force_gimple_operand_gsi (&gsi,
397 fold_convert (unsigned_index_type, range),
398 /*simple=*/true, NULL_TREE,
399 /*before=*/true, GSI_SAME_STMT);
400 tmp = fold_build2 (GT_EXPR, boolean_type_node, idx, range);
401 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, default_edge, update_dom);
402 if (update_dom)
403 VEC_quick_push (basic_block, bbs_to_fix_dom, new_bb);
404 gcc_assert (gimple_bb (swtch) == new_bb);
405 gsi = gsi_last_bb (new_bb);
406
407 /* Any blocks dominated by the GIMPLE_SWITCH, but that are not successors
408 of NEW_BB, are still immediately dominated by SWITCH_BB. Make it so. */
409 if (update_dom)
410 {
411 VEC (basic_block, heap) *dom_bbs;
412 basic_block dom_son;
413
414 dom_bbs = get_dominated_by (CDI_DOMINATORS, new_bb);
415 FOR_EACH_VEC_ELT (basic_block, dom_bbs, i, dom_son)
416 {
417 edge e = find_edge (new_bb, dom_son);
418 if (e && single_pred_p (e->dest))
419 continue;
420 set_immediate_dominator (CDI_DOMINATORS, dom_son, switch_bb);
421 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, dom_son);
422 }
423 VEC_free (basic_block, heap, dom_bbs);
424 }
425
426 /* csui = (1 << (word_mode) idx) */
427 csui = make_ssa_name (word_type_node, NULL);
428 tmp = fold_build2 (LSHIFT_EXPR, word_type_node, word_mode_one,
429 fold_convert (word_type_node, idx));
430 tmp = force_gimple_operand_gsi (&gsi, tmp,
431 /*simple=*/false, NULL_TREE,
432 /*before=*/true, GSI_SAME_STMT);
433 shift_stmt = gimple_build_assign (csui, tmp);
434 gsi_insert_before (&gsi, shift_stmt, GSI_SAME_STMT);
435 update_stmt (shift_stmt);
436
437 /* for each unique set of cases:
438 if (const & csui) goto target */
439 for (k = 0; k < count; k++)
440 {
441 tmp = build_int_cst_wide (word_type_node, test[k].lo, test[k].hi);
442 tmp = fold_build2 (BIT_AND_EXPR, word_type_node, csui, tmp);
443 tmp = force_gimple_operand_gsi (&gsi, tmp,
444 /*simple=*/true, NULL_TREE,
445 /*before=*/true, GSI_SAME_STMT);
446 tmp = fold_build2 (NE_EXPR, boolean_type_node, tmp, word_mode_zero);
447 new_bb = hoist_edge_and_branch_if_true (&gsi, tmp, test[k].target_edge,
448 update_dom);
449 if (update_dom)
450 VEC_safe_push (basic_block, heap, bbs_to_fix_dom, new_bb);
451 gcc_assert (gimple_bb (swtch) == new_bb);
452 gsi = gsi_last_bb (new_bb);
453 }
454
455 /* We should have removed all edges now. */
456 gcc_assert (EDGE_COUNT (gsi_bb (gsi)->succs) == 0);
457
458 /* If nothing matched, go to the default label. */
459 make_edge (gsi_bb (gsi), new_default_bb, EDGE_FALLTHRU);
460
461 /* The GIMPLE_SWITCH is now redundant. */
462 gsi_remove (&gsi, true);
463
464 if (update_dom)
465 {
466 /* Fix up the dominator tree. */
467 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
468 VEC_free (basic_block, heap, bbs_to_fix_dom);
469 }
470 }
471 \f
472 /*
473 Switch initialization conversion
474
475 The following pass changes simple initializations of scalars in a switch
476 statement into initializations from a static array. Obviously, the values
477 must be constant and known at compile time and a default branch must be
478 provided. For example, the following code:
479
480 int a,b;
481
482 switch (argc)
483 {
484 case 1:
485 case 2:
486 a_1 = 8;
487 b_1 = 6;
488 break;
489 case 3:
490 a_2 = 9;
491 b_2 = 5;
492 break;
493 case 12:
494 a_3 = 10;
495 b_3 = 4;
496 break;
497 default:
498 a_4 = 16;
499 b_4 = 1;
500 break;
501 }
502 a_5 = PHI <a_1, a_2, a_3, a_4>
503 b_5 = PHI <b_1, b_2, b_3, b_4>
504
505
506 is changed into:
507
508 static const int = CSWTCH01[] = {6, 6, 5, 1, 1, 1, 1, 1, 1, 1, 1, 4};
509 static const int = CSWTCH02[] = {8, 8, 9, 16, 16, 16, 16, 16, 16, 16,
510 16, 16, 10};
511
512 if (((unsigned) argc) - 1 < 11)
513 {
514 a_6 = CSWTCH02[argc - 1];
515 b_6 = CSWTCH01[argc - 1];
516 }
517 else
518 {
519 a_7 = 16;
520 b_7 = 1;
521 }
522 a_5 = PHI <a_6, a_7>
523 b_b = PHI <b_6, b_7>
524
525 There are further constraints. Specifically, the range of values across all
526 case labels must not be bigger than SWITCH_CONVERSION_BRANCH_RATIO (default
527 eight) times the number of the actual switch branches.
528
529 This transformation was contributed by Martin Jambor, see this e-mail:
530 http://gcc.gnu.org/ml/gcc-patches/2008-07/msg00011.html */
531
532 /* The main structure of the pass. */
533 struct switch_conv_info
534 {
535 /* The expression used to decide the switch branch. */
536 tree index_expr;
537
538 /* The following integer constants store the minimum and maximum value
539 covered by the case labels. */
540 tree range_min;
541 tree range_max;
542
543 /* The difference between the above two numbers. Stored here because it
544 is used in all the conversion heuristics, as well as for some of the
545 transformation, and it is expensive to re-compute it all the time. */
546 tree range_size;
547
548 /* Basic block that contains the actual GIMPLE_SWITCH. */
549 basic_block switch_bb;
550
551 /* Basic block that is the target of the default case. */
552 basic_block default_bb;
553
554 /* The single successor block of all branches out of the GIMPLE_SWITCH,
555 if such a block exists. Otherwise NULL. */
556 basic_block final_bb;
557
558 /* The probability of the default edge in the replaced switch. */
559 int default_prob;
560
561 /* The count of the default edge in the replaced switch. */
562 gcov_type default_count;
563
564 /* Combined count of all other (non-default) edges in the replaced switch. */
565 gcov_type other_count;
566
567 /* Number of phi nodes in the final bb (that we'll be replacing). */
568 int phi_count;
569
570 /* Array of default values, in the same order as phi nodes. */
571 tree *default_values;
572
573 /* Constructors of new static arrays. */
574 VEC (constructor_elt, gc) **constructors;
575
576 /* Array of ssa names that are initialized with a value from a new static
577 array. */
578 tree *target_inbound_names;
579
580 /* Array of ssa names that are initialized with the default value if the
581 switch expression is out of range. */
582 tree *target_outbound_names;
583
584 /* The first load statement that loads a temporary from a new static array.
585 */
586 gimple arr_ref_first;
587
588 /* The last load statement that loads a temporary from a new static array. */
589 gimple arr_ref_last;
590
591 /* String reason why the case wasn't a good candidate that is written to the
592 dump file, if there is one. */
593 const char *reason;
594
595 /* Parameters for expand_switch_using_bit_tests. Should be computed
596 the same way as in expand_case. */
597 unsigned int uniq;
598 unsigned int count;
599 };
600
601 /* Collect information about GIMPLE_SWITCH statement SWTCH into INFO. */
602
603 static void
604 collect_switch_conv_info (gimple swtch, struct switch_conv_info *info)
605 {
606 unsigned int branch_num = gimple_switch_num_labels (swtch);
607 tree min_case, max_case;
608 unsigned int count, i;
609 edge e, e_default;
610 edge_iterator ei;
611
612 memset (info, 0, sizeof (*info));
613
614 /* The gimplifier has already sorted the cases by CASE_LOW and ensured there
615 is a default label which is the first in the vector.
616 Collect the bits we can deduce from the CFG. */
617 info->index_expr = gimple_switch_index (swtch);
618 info->switch_bb = gimple_bb (swtch);
619 info->default_bb =
620 label_to_block (CASE_LABEL (gimple_switch_default_label (swtch)));
621 e_default = find_edge (info->switch_bb, info->default_bb);
622 info->default_prob = e_default->probability;
623 info->default_count = e_default->count;
624 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
625 if (e != e_default)
626 info->other_count += e->count;
627
628 /* See if there is one common successor block for all branch
629 targets. If it exists, record it in FINAL_BB. */
630 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
631 {
632 if (! single_pred_p (e->dest))
633 {
634 info->final_bb = e->dest;
635 break;
636 }
637 }
638 if (info->final_bb)
639 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
640 {
641 if (e->dest == info->final_bb)
642 continue;
643
644 if (single_pred_p (e->dest)
645 && single_succ_p (e->dest)
646 && single_succ (e->dest) == info->final_bb)
647 continue;
648
649 info->final_bb = NULL;
650 break;
651 }
652
653 /* Get upper and lower bounds of case values, and the covered range. */
654 min_case = gimple_switch_label (swtch, 1);
655 max_case = gimple_switch_label (swtch, branch_num - 1);
656
657 info->range_min = CASE_LOW (min_case);
658 if (CASE_HIGH (max_case) != NULL_TREE)
659 info->range_max = CASE_HIGH (max_case);
660 else
661 info->range_max = CASE_LOW (max_case);
662
663 info->range_size =
664 int_const_binop (MINUS_EXPR, info->range_max, info->range_min);
665
666 /* Get a count of the number of case labels. Single-valued case labels
667 simply count as one, but a case range counts double, since it may
668 require two compares if it gets lowered as a branching tree. */
669 count = 0;
670 for (i = 1; i < branch_num; i++)
671 {
672 tree elt = gimple_switch_label (swtch, i);
673 count++;
674 if (CASE_HIGH (elt)
675 && ! tree_int_cst_equal (CASE_LOW (elt), CASE_HIGH (elt)))
676 count++;
677 }
678 info->count = count;
679
680 /* Get the number of unique non-default targets out of the GIMPLE_SWITCH
681 block. Assume a CFG cleanup would have already removed degenerate
682 switch statements, this allows us to just use EDGE_COUNT. */
683 info->uniq = EDGE_COUNT (gimple_bb (swtch)->succs) - 1;
684 }
685
686 /* Checks whether the range given by individual case statements of the SWTCH
687 switch statement isn't too big and whether the number of branches actually
688 satisfies the size of the new array. */
689
690 static bool
691 check_range (struct switch_conv_info *info)
692 {
693 gcc_assert (info->range_size);
694 if (!host_integerp (info->range_size, 1))
695 {
696 info->reason = "index range way too large or otherwise unusable";
697 return false;
698 }
699
700 if ((unsigned HOST_WIDE_INT) tree_low_cst (info->range_size, 1)
701 > ((unsigned) info->count * SWITCH_CONVERSION_BRANCH_RATIO))
702 {
703 info->reason = "the maximum range-branch ratio exceeded";
704 return false;
705 }
706
707 return true;
708 }
709
710 /* Checks whether all but the FINAL_BB basic blocks are empty. */
711
712 static bool
713 check_all_empty_except_final (struct switch_conv_info *info)
714 {
715 edge e;
716 edge_iterator ei;
717
718 FOR_EACH_EDGE (e, ei, info->switch_bb->succs)
719 {
720 if (e->dest == info->final_bb)
721 continue;
722
723 if (!empty_block_p (e->dest))
724 {
725 info->reason = "bad case - a non-final BB not empty";
726 return false;
727 }
728 }
729
730 return true;
731 }
732
733 /* This function checks whether all required values in phi nodes in final_bb
734 are constants. Required values are those that correspond to a basic block
735 which is a part of the examined switch statement. It returns true if the
736 phi nodes are OK, otherwise false. */
737
738 static bool
739 check_final_bb (struct switch_conv_info *info)
740 {
741 gimple_stmt_iterator gsi;
742
743 info->phi_count = 0;
744 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
745 {
746 gimple phi = gsi_stmt (gsi);
747 unsigned int i;
748
749 info->phi_count++;
750
751 for (i = 0; i < gimple_phi_num_args (phi); i++)
752 {
753 basic_block bb = gimple_phi_arg_edge (phi, i)->src;
754
755 if (bb == info->switch_bb
756 || (single_pred_p (bb) && single_pred (bb) == info->switch_bb))
757 {
758 tree reloc, val;
759
760 val = gimple_phi_arg_def (phi, i);
761 if (!is_gimple_ip_invariant (val))
762 {
763 info->reason = "non-invariant value from a case";
764 return false; /* Non-invariant argument. */
765 }
766 reloc = initializer_constant_valid_p (val, TREE_TYPE (val));
767 if ((flag_pic && reloc != null_pointer_node)
768 || (!flag_pic && reloc == NULL_TREE))
769 {
770 if (reloc)
771 info->reason
772 = "value from a case would need runtime relocations";
773 else
774 info->reason
775 = "value from a case is not a valid initializer";
776 return false;
777 }
778 }
779 }
780 }
781
782 return true;
783 }
784
785 /* The following function allocates default_values, target_{in,out}_names and
786 constructors arrays. The last one is also populated with pointers to
787 vectors that will become constructors of new arrays. */
788
789 static void
790 create_temp_arrays (struct switch_conv_info *info)
791 {
792 int i;
793
794 info->default_values = XCNEWVEC (tree, info->phi_count * 3);
795 info->constructors = XCNEWVEC (VEC (constructor_elt, gc) *, info->phi_count);
796 info->target_inbound_names = info->default_values + info->phi_count;
797 info->target_outbound_names = info->target_inbound_names + info->phi_count;
798 for (i = 0; i < info->phi_count; i++)
799 info->constructors[i]
800 = VEC_alloc (constructor_elt, gc, tree_low_cst (info->range_size, 1) + 1);
801 }
802
803 /* Free the arrays created by create_temp_arrays(). The vectors that are
804 created by that function are not freed here, however, because they have
805 already become constructors and must be preserved. */
806
807 static void
808 free_temp_arrays (struct switch_conv_info *info)
809 {
810 XDELETEVEC (info->constructors);
811 XDELETEVEC (info->default_values);
812 }
813
814 /* Populate the array of default values in the order of phi nodes.
815 DEFAULT_CASE is the CASE_LABEL_EXPR for the default switch branch. */
816
817 static void
818 gather_default_values (tree default_case, struct switch_conv_info *info)
819 {
820 gimple_stmt_iterator gsi;
821 basic_block bb = label_to_block (CASE_LABEL (default_case));
822 edge e;
823 int i = 0;
824
825 gcc_assert (CASE_LOW (default_case) == NULL_TREE);
826
827 if (bb == info->final_bb)
828 e = find_edge (info->switch_bb, bb);
829 else
830 e = single_succ_edge (bb);
831
832 for (gsi = gsi_start_phis (info->final_bb); !gsi_end_p (gsi); gsi_next (&gsi))
833 {
834 gimple phi = gsi_stmt (gsi);
835 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
836 gcc_assert (val);
837 info->default_values[i++] = val;
838 }
839 }
840
841 /* The following function populates the vectors in the constructors array with
842 future contents of the static arrays. The vectors are populated in the
843 order of phi nodes. SWTCH is the switch statement being converted. */
844
845 static void
846 build_constructors (gimple swtch, struct switch_conv_info *info)
847 {
848 unsigned i, branch_num = gimple_switch_num_labels (swtch);
849 tree pos = info->range_min;
850
851 for (i = 1; i < branch_num; i++)
852 {
853 tree cs = gimple_switch_label (swtch, i);
854 basic_block bb = label_to_block (CASE_LABEL (cs));
855 edge e;
856 tree high;
857 gimple_stmt_iterator gsi;
858 int j;
859
860 if (bb == info->final_bb)
861 e = find_edge (info->switch_bb, bb);
862 else
863 e = single_succ_edge (bb);
864 gcc_assert (e);
865
866 while (tree_int_cst_lt (pos, CASE_LOW (cs)))
867 {
868 int k;
869 for (k = 0; k < info->phi_count; k++)
870 {
871 constructor_elt *elt;
872
873 elt = VEC_quick_push (constructor_elt,
874 info->constructors[k], NULL);
875 elt->index = int_const_binop (MINUS_EXPR, pos,
876 info->range_min);
877 elt->value = info->default_values[k];
878 }
879
880 pos = int_const_binop (PLUS_EXPR, pos, integer_one_node);
881 }
882 gcc_assert (tree_int_cst_equal (pos, CASE_LOW (cs)));
883
884 j = 0;
885 if (CASE_HIGH (cs))
886 high = CASE_HIGH (cs);
887 else
888 high = CASE_LOW (cs);
889 for (gsi = gsi_start_phis (info->final_bb);
890 !gsi_end_p (gsi); gsi_next (&gsi))
891 {
892 gimple phi = gsi_stmt (gsi);
893 tree val = PHI_ARG_DEF_FROM_EDGE (phi, e);
894 tree low = CASE_LOW (cs);
895 pos = CASE_LOW (cs);
896
897 do
898 {
899 constructor_elt *elt;
900
901 elt = VEC_quick_push (constructor_elt,
902 info->constructors[j], NULL);
903 elt->index = int_const_binop (MINUS_EXPR, pos, info->range_min);
904 elt->value = val;
905
906 pos = int_const_binop (PLUS_EXPR, pos, integer_one_node);
907 } while (!tree_int_cst_lt (high, pos)
908 && tree_int_cst_lt (low, pos));
909 j++;
910 }
911 }
912 }
913
914 /* If all values in the constructor vector are the same, return the value.
915 Otherwise return NULL_TREE. Not supposed to be called for empty
916 vectors. */
917
918 static tree
919 constructor_contains_same_values_p (VEC (constructor_elt, gc) *vec)
920 {
921 unsigned int i;
922 tree prev = NULL_TREE;
923 constructor_elt *elt;
924
925 FOR_EACH_VEC_ELT (constructor_elt, vec, i, elt)
926 {
927 if (!prev)
928 prev = elt->value;
929 else if (!operand_equal_p (elt->value, prev, OEP_ONLY_CONST))
930 return NULL_TREE;
931 }
932 return prev;
933 }
934
935 /* Return type which should be used for array elements, either TYPE,
936 or for integral type some smaller integral type that can still hold
937 all the constants. */
938
939 static tree
940 array_value_type (gimple swtch, tree type, int num,
941 struct switch_conv_info *info)
942 {
943 unsigned int i, len = VEC_length (constructor_elt, info->constructors[num]);
944 constructor_elt *elt;
945 enum machine_mode mode;
946 int sign = 0;
947 tree smaller_type;
948
949 if (!INTEGRAL_TYPE_P (type))
950 return type;
951
952 mode = GET_CLASS_NARROWEST_MODE (GET_MODE_CLASS (TYPE_MODE (type)));
953 if (GET_MODE_SIZE (TYPE_MODE (type)) <= GET_MODE_SIZE (mode))
954 return type;
955
956 if (len < (optimize_bb_for_size_p (gimple_bb (swtch)) ? 2 : 32))
957 return type;
958
959 FOR_EACH_VEC_ELT (constructor_elt, info->constructors[num], i, elt)
960 {
961 double_int cst;
962
963 if (TREE_CODE (elt->value) != INTEGER_CST)
964 return type;
965
966 cst = TREE_INT_CST (elt->value);
967 while (1)
968 {
969 unsigned int prec = GET_MODE_BITSIZE (mode);
970 if (prec > HOST_BITS_PER_WIDE_INT)
971 return type;
972
973 if (sign >= 0
974 && double_int_equal_p (cst, double_int_zext (cst, prec)))
975 {
976 if (sign == 0
977 && double_int_equal_p (cst, double_int_sext (cst, prec)))
978 break;
979 sign = 1;
980 break;
981 }
982 if (sign <= 0
983 && double_int_equal_p (cst, double_int_sext (cst, prec)))
984 {
985 sign = -1;
986 break;
987 }
988
989 if (sign == 1)
990 sign = 0;
991
992 mode = GET_MODE_WIDER_MODE (mode);
993 if (mode == VOIDmode
994 || GET_MODE_SIZE (mode) >= GET_MODE_SIZE (TYPE_MODE (type)))
995 return type;
996 }
997 }
998
999 if (sign == 0)
1000 sign = TYPE_UNSIGNED (type) ? 1 : -1;
1001 smaller_type = lang_hooks.types.type_for_mode (mode, sign >= 0);
1002 if (GET_MODE_SIZE (TYPE_MODE (type))
1003 <= GET_MODE_SIZE (TYPE_MODE (smaller_type)))
1004 return type;
1005
1006 return smaller_type;
1007 }
1008
1009 /* Create an appropriate array type and declaration and assemble a static array
1010 variable. Also create a load statement that initializes the variable in
1011 question with a value from the static array. SWTCH is the switch statement
1012 being converted, NUM is the index to arrays of constructors, default values
1013 and target SSA names for this particular array. ARR_INDEX_TYPE is the type
1014 of the index of the new array, PHI is the phi node of the final BB that
1015 corresponds to the value that will be loaded from the created array. TIDX
1016 is an ssa name of a temporary variable holding the index for loads from the
1017 new array. */
1018
1019 static void
1020 build_one_array (gimple swtch, int num, tree arr_index_type, gimple phi,
1021 tree tidx, struct switch_conv_info *info)
1022 {
1023 tree name, cst;
1024 gimple load;
1025 gimple_stmt_iterator gsi = gsi_for_stmt (swtch);
1026 location_t loc = gimple_location (swtch);
1027
1028 gcc_assert (info->default_values[num]);
1029
1030 name = copy_ssa_name (PHI_RESULT (phi), NULL);
1031 info->target_inbound_names[num] = name;
1032
1033 cst = constructor_contains_same_values_p (info->constructors[num]);
1034 if (cst)
1035 load = gimple_build_assign (name, cst);
1036 else
1037 {
1038 tree array_type, ctor, decl, value_type, fetch, default_type;
1039
1040 default_type = TREE_TYPE (info->default_values[num]);
1041 value_type = array_value_type (swtch, default_type, num, info);
1042 array_type = build_array_type (value_type, arr_index_type);
1043 if (default_type != value_type)
1044 {
1045 unsigned int i;
1046 constructor_elt *elt;
1047
1048 FOR_EACH_VEC_ELT (constructor_elt, info->constructors[num], i, elt)
1049 elt->value = fold_convert (value_type, elt->value);
1050 }
1051 ctor = build_constructor (array_type, info->constructors[num]);
1052 TREE_CONSTANT (ctor) = true;
1053 TREE_STATIC (ctor) = true;
1054
1055 decl = build_decl (loc, VAR_DECL, NULL_TREE, array_type);
1056 TREE_STATIC (decl) = 1;
1057 DECL_INITIAL (decl) = ctor;
1058
1059 DECL_NAME (decl) = create_tmp_var_name ("CSWTCH");
1060 DECL_ARTIFICIAL (decl) = 1;
1061 TREE_CONSTANT (decl) = 1;
1062 TREE_READONLY (decl) = 1;
1063 varpool_finalize_decl (decl);
1064
1065 fetch = build4 (ARRAY_REF, value_type, decl, tidx, NULL_TREE,
1066 NULL_TREE);
1067 if (default_type != value_type)
1068 {
1069 fetch = fold_convert (default_type, fetch);
1070 fetch = force_gimple_operand_gsi (&gsi, fetch, true, NULL_TREE,
1071 true, GSI_SAME_STMT);
1072 }
1073 load = gimple_build_assign (name, fetch);
1074 }
1075
1076 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
1077 update_stmt (load);
1078 info->arr_ref_last = load;
1079 }
1080
1081 /* Builds and initializes static arrays initialized with values gathered from
1082 the SWTCH switch statement. Also creates statements that load values from
1083 them. */
1084
1085 static void
1086 build_arrays (gimple swtch, struct switch_conv_info *info)
1087 {
1088 tree arr_index_type;
1089 tree tidx, sub, utype;
1090 gimple stmt;
1091 gimple_stmt_iterator gsi;
1092 int i;
1093 location_t loc = gimple_location (swtch);
1094
1095 gsi = gsi_for_stmt (swtch);
1096
1097 /* Make sure we do not generate arithmetics in a subrange. */
1098 utype = TREE_TYPE (info->index_expr);
1099 if (TREE_TYPE (utype))
1100 utype = lang_hooks.types.type_for_mode (TYPE_MODE (TREE_TYPE (utype)), 1);
1101 else
1102 utype = lang_hooks.types.type_for_mode (TYPE_MODE (utype), 1);
1103
1104 arr_index_type = build_index_type (info->range_size);
1105 tidx = make_ssa_name (utype, NULL);
1106 sub = fold_build2_loc (loc, MINUS_EXPR, utype,
1107 fold_convert_loc (loc, utype, info->index_expr),
1108 fold_convert_loc (loc, utype, info->range_min));
1109 sub = force_gimple_operand_gsi (&gsi, sub,
1110 false, NULL, true, GSI_SAME_STMT);
1111 stmt = gimple_build_assign (tidx, sub);
1112
1113 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1114 update_stmt (stmt);
1115 info->arr_ref_first = stmt;
1116
1117 for (gsi = gsi_start_phis (info->final_bb), i = 0;
1118 !gsi_end_p (gsi); gsi_next (&gsi), i++)
1119 build_one_array (swtch, i, arr_index_type, gsi_stmt (gsi), tidx, info);
1120 }
1121
1122 /* Generates and appropriately inserts loads of default values at the position
1123 given by BSI. Returns the last inserted statement. */
1124
1125 static gimple
1126 gen_def_assigns (gimple_stmt_iterator *gsi, struct switch_conv_info *info)
1127 {
1128 int i;
1129 gimple assign = NULL;
1130
1131 for (i = 0; i < info->phi_count; i++)
1132 {
1133 tree name = copy_ssa_name (info->target_inbound_names[i], NULL);
1134 info->target_outbound_names[i] = name;
1135 assign = gimple_build_assign (name, info->default_values[i]);
1136 gsi_insert_before (gsi, assign, GSI_SAME_STMT);
1137 update_stmt (assign);
1138 }
1139 return assign;
1140 }
1141
1142 /* Deletes the unused bbs and edges that now contain the switch statement and
1143 its empty branch bbs. BBD is the now dead BB containing the original switch
1144 statement, FINAL is the last BB of the converted switch statement (in terms
1145 of succession). */
1146
1147 static void
1148 prune_bbs (basic_block bbd, basic_block final)
1149 {
1150 edge_iterator ei;
1151 edge e;
1152
1153 for (ei = ei_start (bbd->succs); (e = ei_safe_edge (ei)); )
1154 {
1155 basic_block bb;
1156 bb = e->dest;
1157 remove_edge (e);
1158 if (bb != final)
1159 delete_basic_block (bb);
1160 }
1161 delete_basic_block (bbd);
1162 }
1163
1164 /* Add values to phi nodes in final_bb for the two new edges. E1F is the edge
1165 from the basic block loading values from an array and E2F from the basic
1166 block loading default values. BBF is the last switch basic block (see the
1167 bbf description in the comment below). */
1168
1169 static void
1170 fix_phi_nodes (edge e1f, edge e2f, basic_block bbf,
1171 struct switch_conv_info *info)
1172 {
1173 gimple_stmt_iterator gsi;
1174 int i;
1175
1176 for (gsi = gsi_start_phis (bbf), i = 0;
1177 !gsi_end_p (gsi); gsi_next (&gsi), i++)
1178 {
1179 gimple phi = gsi_stmt (gsi);
1180 add_phi_arg (phi, info->target_inbound_names[i], e1f, UNKNOWN_LOCATION);
1181 add_phi_arg (phi, info->target_outbound_names[i], e2f, UNKNOWN_LOCATION);
1182 }
1183 }
1184
1185 /* Creates a check whether the switch expression value actually falls into the
1186 range given by all the cases. If it does not, the temporaries are loaded
1187 with default values instead. SWTCH is the switch statement being converted.
1188
1189 bb0 is the bb with the switch statement, however, we'll end it with a
1190 condition instead.
1191
1192 bb1 is the bb to be used when the range check went ok. It is derived from
1193 the switch BB
1194
1195 bb2 is the bb taken when the expression evaluated outside of the range
1196 covered by the created arrays. It is populated by loads of default
1197 values.
1198
1199 bbF is a fall through for both bb1 and bb2 and contains exactly what
1200 originally followed the switch statement.
1201
1202 bbD contains the switch statement (in the end). It is unreachable but we
1203 still need to strip off its edges.
1204 */
1205
1206 static void
1207 gen_inbound_check (gimple swtch, struct switch_conv_info *info)
1208 {
1209 tree label_decl1 = create_artificial_label (UNKNOWN_LOCATION);
1210 tree label_decl2 = create_artificial_label (UNKNOWN_LOCATION);
1211 tree label_decl3 = create_artificial_label (UNKNOWN_LOCATION);
1212 gimple label1, label2, label3;
1213 tree utype, tidx;
1214 tree bound;
1215
1216 gimple cond_stmt;
1217
1218 gimple last_assign;
1219 gimple_stmt_iterator gsi;
1220 basic_block bb0, bb1, bb2, bbf, bbd;
1221 edge e01, e02, e21, e1d, e1f, e2f;
1222 location_t loc = gimple_location (swtch);
1223
1224 gcc_assert (info->default_values);
1225
1226 bb0 = gimple_bb (swtch);
1227
1228 tidx = gimple_assign_lhs (info->arr_ref_first);
1229 utype = TREE_TYPE (tidx);
1230
1231 /* (end of) block 0 */
1232 gsi = gsi_for_stmt (info->arr_ref_first);
1233 gsi_next (&gsi);
1234
1235 bound = fold_convert_loc (loc, utype, info->range_size);
1236 cond_stmt = gimple_build_cond (LE_EXPR, tidx, bound, NULL_TREE, NULL_TREE);
1237 gsi_insert_before (&gsi, cond_stmt, GSI_SAME_STMT);
1238 update_stmt (cond_stmt);
1239
1240 /* block 2 */
1241 label2 = gimple_build_label (label_decl2);
1242 gsi_insert_before (&gsi, label2, GSI_SAME_STMT);
1243 last_assign = gen_def_assigns (&gsi, info);
1244
1245 /* block 1 */
1246 label1 = gimple_build_label (label_decl1);
1247 gsi_insert_before (&gsi, label1, GSI_SAME_STMT);
1248
1249 /* block F */
1250 gsi = gsi_start_bb (info->final_bb);
1251 label3 = gimple_build_label (label_decl3);
1252 gsi_insert_before (&gsi, label3, GSI_SAME_STMT);
1253
1254 /* cfg fix */
1255 e02 = split_block (bb0, cond_stmt);
1256 bb2 = e02->dest;
1257
1258 e21 = split_block (bb2, last_assign);
1259 bb1 = e21->dest;
1260 remove_edge (e21);
1261
1262 e1d = split_block (bb1, info->arr_ref_last);
1263 bbd = e1d->dest;
1264 remove_edge (e1d);
1265
1266 /* flags and profiles of the edge for in-range values */
1267 e01 = make_edge (bb0, bb1, EDGE_TRUE_VALUE);
1268 e01->probability = REG_BR_PROB_BASE - info->default_prob;
1269 e01->count = info->other_count;
1270
1271 /* flags and profiles of the edge taking care of out-of-range values */
1272 e02->flags &= ~EDGE_FALLTHRU;
1273 e02->flags |= EDGE_FALSE_VALUE;
1274 e02->probability = info->default_prob;
1275 e02->count = info->default_count;
1276
1277 bbf = info->final_bb;
1278
1279 e1f = make_edge (bb1, bbf, EDGE_FALLTHRU);
1280 e1f->probability = REG_BR_PROB_BASE;
1281 e1f->count = info->other_count;
1282
1283 e2f = make_edge (bb2, bbf, EDGE_FALLTHRU);
1284 e2f->probability = REG_BR_PROB_BASE;
1285 e2f->count = info->default_count;
1286
1287 /* frequencies of the new BBs */
1288 bb1->frequency = EDGE_FREQUENCY (e01);
1289 bb2->frequency = EDGE_FREQUENCY (e02);
1290 bbf->frequency = EDGE_FREQUENCY (e1f) + EDGE_FREQUENCY (e2f);
1291
1292 /* Tidy blocks that have become unreachable. */
1293 prune_bbs (bbd, info->final_bb);
1294
1295 /* Fixup the PHI nodes in bbF. */
1296 fix_phi_nodes (e1f, e2f, bbf, info);
1297
1298 /* Fix the dominator tree, if it is available. */
1299 if (dom_info_available_p (CDI_DOMINATORS))
1300 {
1301 VEC (basic_block, heap) *bbs_to_fix_dom;
1302
1303 set_immediate_dominator (CDI_DOMINATORS, bb1, bb0);
1304 set_immediate_dominator (CDI_DOMINATORS, bb2, bb0);
1305 if (! get_immediate_dominator (CDI_DOMINATORS, bbf))
1306 /* If bbD was the immediate dominator ... */
1307 set_immediate_dominator (CDI_DOMINATORS, bbf, bb0);
1308
1309 bbs_to_fix_dom = VEC_alloc (basic_block, heap, 4);
1310 VEC_quick_push (basic_block, bbs_to_fix_dom, bb0);
1311 VEC_quick_push (basic_block, bbs_to_fix_dom, bb1);
1312 VEC_quick_push (basic_block, bbs_to_fix_dom, bb2);
1313 VEC_quick_push (basic_block, bbs_to_fix_dom, bbf);
1314
1315 iterate_fix_dominators (CDI_DOMINATORS, bbs_to_fix_dom, true);
1316 VEC_free (basic_block, heap, bbs_to_fix_dom);
1317 }
1318 }
1319
1320 /* The following function is invoked on every switch statement (the current one
1321 is given in SWTCH) and runs the individual phases of switch conversion on it
1322 one after another until one fails or the conversion is completed.
1323 Returns NULL on success, or a pointer to a string with the reason why the
1324 conversion failed. */
1325
1326 static const char *
1327 process_switch (gimple swtch)
1328 {
1329 struct switch_conv_info info;
1330
1331 /* Group case labels so that we get the right results from the heuristics
1332 that decide on the code generation approach for this switch. */
1333 group_case_labels_stmt (swtch);
1334
1335 /* If this switch is now a degenerate case with only a default label,
1336 there is nothing left for us to do. */
1337 if (gimple_switch_num_labels (swtch) < 2)
1338 return "switch is a degenerate case";
1339
1340 collect_switch_conv_info (swtch, &info);
1341
1342 /* No error markers should reach here (they should be filtered out
1343 during gimplification). */
1344 gcc_checking_assert (TREE_TYPE (info.index_expr) != error_mark_node);
1345
1346 /* A switch on a constant should have been optimized in tree-cfg-cleanup. */
1347 gcc_checking_assert (! TREE_CONSTANT (info.index_expr));
1348
1349 if (info.uniq <= MAX_CASE_BIT_TESTS)
1350 {
1351 if (expand_switch_using_bit_tests_p (info.range_size,
1352 info.uniq, info.count))
1353 {
1354 if (dump_file)
1355 fputs (" expanding as bit test is preferable\n", dump_file);
1356 emit_case_bit_tests (swtch, info.index_expr,
1357 info.range_min, info.range_size);
1358 return NULL;
1359 }
1360
1361 if (info.uniq <= 2)
1362 /* This will be expanded as a decision tree in stmt.c:expand_case. */
1363 return " expanding as jumps is preferable";
1364 }
1365
1366 /* If there is no common successor, we cannot do the transformation. */
1367 if (! info.final_bb)
1368 return "no common successor to all case label target blocks found";
1369
1370 /* Check the case label values are within reasonable range: */
1371 if (!check_range (&info))
1372 {
1373 gcc_assert (info.reason);
1374 return info.reason;
1375 }
1376
1377 /* For all the cases, see whether they are empty, the assignments they
1378 represent constant and so on... */
1379 if (! check_all_empty_except_final (&info))
1380 {
1381 gcc_assert (info.reason);
1382 return info.reason;
1383 }
1384 if (!check_final_bb (&info))
1385 {
1386 gcc_assert (info.reason);
1387 return info.reason;
1388 }
1389
1390 /* At this point all checks have passed and we can proceed with the
1391 transformation. */
1392
1393 create_temp_arrays (&info);
1394 gather_default_values (gimple_switch_default_label (swtch), &info);
1395 build_constructors (swtch, &info);
1396
1397 build_arrays (swtch, &info); /* Build the static arrays and assignments. */
1398 gen_inbound_check (swtch, &info); /* Build the bounds check. */
1399
1400 /* Cleanup: */
1401 free_temp_arrays (&info);
1402 return NULL;
1403 }
1404
1405 /* The main function of the pass scans statements for switches and invokes
1406 process_switch on them. */
1407
1408 static unsigned int
1409 do_switchconv (void)
1410 {
1411 basic_block bb;
1412
1413 FOR_EACH_BB (bb)
1414 {
1415 const char *failure_reason;
1416 gimple stmt = last_stmt (bb);
1417 if (stmt && gimple_code (stmt) == GIMPLE_SWITCH)
1418 {
1419 if (dump_file)
1420 {
1421 expanded_location loc = expand_location (gimple_location (stmt));
1422
1423 fprintf (dump_file, "beginning to process the following "
1424 "SWITCH statement (%s:%d) : ------- \n",
1425 loc.file, loc.line);
1426 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1427 putc ('\n', dump_file);
1428 }
1429
1430 failure_reason = process_switch (stmt);
1431 if (! failure_reason)
1432 {
1433 if (dump_file)
1434 {
1435 fputs ("Switch converted\n", dump_file);
1436 fputs ("--------------------------------\n", dump_file);
1437 }
1438
1439 /* Make no effort to update the post-dominator tree. It is actually not
1440 that hard for the transformations we have performed, but it is not
1441 supported by iterate_fix_dominators. */
1442 free_dominance_info (CDI_POST_DOMINATORS);
1443 }
1444 else
1445 {
1446 if (dump_file)
1447 {
1448 fputs ("Bailing out - ", dump_file);
1449 fputs (failure_reason, dump_file);
1450 fputs ("\n--------------------------------\n", dump_file);
1451 }
1452 }
1453 }
1454 }
1455
1456 return 0;
1457 }
1458
1459 /* The pass gate. */
1460
1461 static bool
1462 switchconv_gate (void)
1463 {
1464 return flag_tree_switch_conversion != 0;
1465 }
1466
1467 struct gimple_opt_pass pass_convert_switch =
1468 {
1469 {
1470 GIMPLE_PASS,
1471 "switchconv", /* name */
1472 switchconv_gate, /* gate */
1473 do_switchconv, /* execute */
1474 NULL, /* sub */
1475 NULL, /* next */
1476 0, /* static_pass_number */
1477 TV_TREE_SWITCH_CONVERSION, /* tv_id */
1478 PROP_cfg | PROP_ssa, /* properties_required */
1479 0, /* properties_provided */
1480 0, /* properties_destroyed */
1481 0, /* todo_flags_start */
1482 TODO_update_ssa
1483 | TODO_ggc_collect | TODO_verify_ssa
1484 | TODO_verify_stmts
1485 | TODO_verify_flow /* todo_flags_finish */
1486 }
1487 };