cond.md (stzx_16): Use register_operand for operand 0.
[gcc.git] / gcc / tree-tailcall.c
1 /* Tail call optimization on trees.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "stor-layout.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "function.h"
29 #include "gimple.h"
30 #include "gimple-iterator.h"
31 #include "gimplify-me.h"
32 #include "gimple-ssa.h"
33 #include "tree-cfg.h"
34 #include "tree-phinodes.h"
35 #include "stringpool.h"
36 #include "tree-ssanames.h"
37 #include "tree-into-ssa.h"
38 #include "expr.h"
39 #include "tree-dfa.h"
40 #include "gimple-pretty-print.h"
41 #include "except.h"
42 #include "tree-pass.h"
43 #include "flags.h"
44 #include "langhooks.h"
45 #include "dbgcnt.h"
46 #include "target.h"
47 #include "cfgloop.h"
48 #include "common/common-target.h"
49 #include "ipa-utils.h"
50
51 /* The file implements the tail recursion elimination. It is also used to
52 analyze the tail calls in general, passing the results to the rtl level
53 where they are used for sibcall optimization.
54
55 In addition to the standard tail recursion elimination, we handle the most
56 trivial cases of making the call tail recursive by creating accumulators.
57 For example the following function
58
59 int sum (int n)
60 {
61 if (n > 0)
62 return n + sum (n - 1);
63 else
64 return 0;
65 }
66
67 is transformed into
68
69 int sum (int n)
70 {
71 int acc = 0;
72
73 while (n > 0)
74 acc += n--;
75
76 return acc;
77 }
78
79 To do this, we maintain two accumulators (a_acc and m_acc) that indicate
80 when we reach the return x statement, we should return a_acc + x * m_acc
81 instead. They are initially initialized to 0 and 1, respectively,
82 so the semantics of the function is obviously preserved. If we are
83 guaranteed that the value of the accumulator never change, we
84 omit the accumulator.
85
86 There are three cases how the function may exit. The first one is
87 handled in adjust_return_value, the other two in adjust_accumulator_values
88 (the second case is actually a special case of the third one and we
89 present it separately just for clarity):
90
91 1) Just return x, where x is not in any of the remaining special shapes.
92 We rewrite this to a gimple equivalent of return m_acc * x + a_acc.
93
94 2) return f (...), where f is the current function, is rewritten in a
95 classical tail-recursion elimination way, into assignment of arguments
96 and jump to the start of the function. Values of the accumulators
97 are unchanged.
98
99 3) return a + m * f(...), where a and m do not depend on call to f.
100 To preserve the semantics described before we want this to be rewritten
101 in such a way that we finally return
102
103 a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...).
104
105 I.e. we increase a_acc by a * m_acc, multiply m_acc by m and
106 eliminate the tail call to f. Special cases when the value is just
107 added or just multiplied are obtained by setting a = 0 or m = 1.
108
109 TODO -- it is possible to do similar tricks for other operations. */
110
111 /* A structure that describes the tailcall. */
112
113 struct tailcall
114 {
115 /* The iterator pointing to the call statement. */
116 gimple_stmt_iterator call_gsi;
117
118 /* True if it is a call to the current function. */
119 bool tail_recursion;
120
121 /* The return value of the caller is mult * f + add, where f is the return
122 value of the call. */
123 tree mult, add;
124
125 /* Next tailcall in the chain. */
126 struct tailcall *next;
127 };
128
129 /* The variables holding the value of multiplicative and additive
130 accumulator. */
131 static tree m_acc, a_acc;
132
133 static bool suitable_for_tail_opt_p (void);
134 static bool optimize_tail_call (struct tailcall *, bool);
135 static void eliminate_tail_call (struct tailcall *);
136 static void find_tail_calls (basic_block, struct tailcall **);
137
138 /* Returns false when the function is not suitable for tail call optimization
139 from some reason (e.g. if it takes variable number of arguments). */
140
141 static bool
142 suitable_for_tail_opt_p (void)
143 {
144 if (cfun->stdarg)
145 return false;
146
147 return true;
148 }
149 /* Returns false when the function is not suitable for tail call optimization
150 from some reason (e.g. if it takes variable number of arguments).
151 This test must pass in addition to suitable_for_tail_opt_p in order to make
152 tail call discovery happen. */
153
154 static bool
155 suitable_for_tail_call_opt_p (void)
156 {
157 tree param;
158
159 /* alloca (until we have stack slot life analysis) inhibits
160 sibling call optimizations, but not tail recursion. */
161 if (cfun->calls_alloca)
162 return false;
163
164 /* If we are using sjlj exceptions, we may need to add a call to
165 _Unwind_SjLj_Unregister at exit of the function. Which means
166 that we cannot do any sibcall transformations. */
167 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ
168 && current_function_has_exception_handlers ())
169 return false;
170
171 /* Any function that calls setjmp might have longjmp called from
172 any called function. ??? We really should represent this
173 properly in the CFG so that this needn't be special cased. */
174 if (cfun->calls_setjmp)
175 return false;
176
177 /* ??? It is OK if the argument of a function is taken in some cases,
178 but not in all cases. See PR15387 and PR19616. Revisit for 4.1. */
179 for (param = DECL_ARGUMENTS (current_function_decl);
180 param;
181 param = DECL_CHAIN (param))
182 if (TREE_ADDRESSABLE (param))
183 return false;
184
185 return true;
186 }
187
188 /* Checks whether the expression EXPR in stmt AT is independent of the
189 statement pointed to by GSI (in a sense that we already know EXPR's value
190 at GSI). We use the fact that we are only called from the chain of
191 basic blocks that have only single successor. Returns the expression
192 containing the value of EXPR at GSI. */
193
194 static tree
195 independent_of_stmt_p (tree expr, gimple at, gimple_stmt_iterator gsi)
196 {
197 basic_block bb, call_bb, at_bb;
198 edge e;
199 edge_iterator ei;
200
201 if (is_gimple_min_invariant (expr))
202 return expr;
203
204 if (TREE_CODE (expr) != SSA_NAME)
205 return NULL_TREE;
206
207 /* Mark the blocks in the chain leading to the end. */
208 at_bb = gimple_bb (at);
209 call_bb = gimple_bb (gsi_stmt (gsi));
210 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
211 bb->aux = &bb->aux;
212 bb->aux = &bb->aux;
213
214 while (1)
215 {
216 at = SSA_NAME_DEF_STMT (expr);
217 bb = gimple_bb (at);
218
219 /* The default definition or defined before the chain. */
220 if (!bb || !bb->aux)
221 break;
222
223 if (bb == call_bb)
224 {
225 for (; !gsi_end_p (gsi); gsi_next (&gsi))
226 if (gsi_stmt (gsi) == at)
227 break;
228
229 if (!gsi_end_p (gsi))
230 expr = NULL_TREE;
231 break;
232 }
233
234 if (gimple_code (at) != GIMPLE_PHI)
235 {
236 expr = NULL_TREE;
237 break;
238 }
239
240 FOR_EACH_EDGE (e, ei, bb->preds)
241 if (e->src->aux)
242 break;
243 gcc_assert (e);
244
245 expr = PHI_ARG_DEF_FROM_EDGE (at, e);
246 if (TREE_CODE (expr) != SSA_NAME)
247 {
248 /* The value is a constant. */
249 break;
250 }
251 }
252
253 /* Unmark the blocks. */
254 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
255 bb->aux = NULL;
256 bb->aux = NULL;
257
258 return expr;
259 }
260
261 /* Simulates the effect of an assignment STMT on the return value of the tail
262 recursive CALL passed in ASS_VAR. M and A are the multiplicative and the
263 additive factor for the real return value. */
264
265 static bool
266 process_assignment (gimple stmt, gimple_stmt_iterator call, tree *m,
267 tree *a, tree *ass_var)
268 {
269 tree op0, op1 = NULL_TREE, non_ass_var = NULL_TREE;
270 tree dest = gimple_assign_lhs (stmt);
271 enum tree_code code = gimple_assign_rhs_code (stmt);
272 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
273 tree src_var = gimple_assign_rhs1 (stmt);
274
275 /* See if this is a simple copy operation of an SSA name to the function
276 result. In that case we may have a simple tail call. Ignore type
277 conversions that can never produce extra code between the function
278 call and the function return. */
279 if ((rhs_class == GIMPLE_SINGLE_RHS || gimple_assign_cast_p (stmt))
280 && (TREE_CODE (src_var) == SSA_NAME))
281 {
282 /* Reject a tailcall if the type conversion might need
283 additional code. */
284 if (gimple_assign_cast_p (stmt)
285 && TYPE_MODE (TREE_TYPE (dest)) != TYPE_MODE (TREE_TYPE (src_var)))
286 return false;
287
288 if (src_var != *ass_var)
289 return false;
290
291 *ass_var = dest;
292 return true;
293 }
294
295 switch (rhs_class)
296 {
297 case GIMPLE_BINARY_RHS:
298 op1 = gimple_assign_rhs2 (stmt);
299
300 /* Fall through. */
301
302 case GIMPLE_UNARY_RHS:
303 op0 = gimple_assign_rhs1 (stmt);
304 break;
305
306 default:
307 return false;
308 }
309
310 /* Accumulator optimizations will reverse the order of operations.
311 We can only do that for floating-point types if we're assuming
312 that addition and multiplication are associative. */
313 if (!flag_associative_math)
314 if (FLOAT_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
315 return false;
316
317 if (rhs_class == GIMPLE_UNARY_RHS)
318 ;
319 else if (op0 == *ass_var
320 && (non_ass_var = independent_of_stmt_p (op1, stmt, call)))
321 ;
322 else if (op1 == *ass_var
323 && (non_ass_var = independent_of_stmt_p (op0, stmt, call)))
324 ;
325 else
326 return false;
327
328 switch (code)
329 {
330 case PLUS_EXPR:
331 *a = non_ass_var;
332 *ass_var = dest;
333 return true;
334
335 case POINTER_PLUS_EXPR:
336 if (op0 != *ass_var)
337 return false;
338 *a = non_ass_var;
339 *ass_var = dest;
340 return true;
341
342 case MULT_EXPR:
343 *m = non_ass_var;
344 *ass_var = dest;
345 return true;
346
347 case NEGATE_EXPR:
348 *m = build_minus_one_cst (TREE_TYPE (op0));
349 *ass_var = dest;
350 return true;
351
352 case MINUS_EXPR:
353 if (*ass_var == op0)
354 *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
355 else
356 {
357 *m = build_minus_one_cst (TREE_TYPE (non_ass_var));
358 *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
359 }
360
361 *ass_var = dest;
362 return true;
363
364 /* TODO -- Handle POINTER_PLUS_EXPR. */
365
366 default:
367 return false;
368 }
369 }
370
371 /* Propagate VAR through phis on edge E. */
372
373 static tree
374 propagate_through_phis (tree var, edge e)
375 {
376 basic_block dest = e->dest;
377 gimple_stmt_iterator gsi;
378
379 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
380 {
381 gimple phi = gsi_stmt (gsi);
382 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var)
383 return PHI_RESULT (phi);
384 }
385 return var;
386 }
387
388 /* Finds tailcalls falling into basic block BB. The list of found tailcalls is
389 added to the start of RET. */
390
391 static void
392 find_tail_calls (basic_block bb, struct tailcall **ret)
393 {
394 tree ass_var = NULL_TREE, ret_var, func, param;
395 gimple stmt, call = NULL;
396 gimple_stmt_iterator gsi, agsi;
397 bool tail_recursion;
398 struct tailcall *nw;
399 edge e;
400 tree m, a;
401 basic_block abb;
402 size_t idx;
403 tree var;
404
405 if (!single_succ_p (bb))
406 return;
407
408 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
409 {
410 stmt = gsi_stmt (gsi);
411
412 /* Ignore labels, returns, clobbers and debug stmts. */
413 if (gimple_code (stmt) == GIMPLE_LABEL
414 || gimple_code (stmt) == GIMPLE_RETURN
415 || gimple_clobber_p (stmt)
416 || is_gimple_debug (stmt))
417 continue;
418
419 /* Check for a call. */
420 if (is_gimple_call (stmt))
421 {
422 call = stmt;
423 ass_var = gimple_call_lhs (stmt);
424 break;
425 }
426
427 /* If the statement references memory or volatile operands, fail. */
428 if (gimple_references_memory_p (stmt)
429 || gimple_has_volatile_ops (stmt))
430 return;
431 }
432
433 if (gsi_end_p (gsi))
434 {
435 edge_iterator ei;
436 /* Recurse to the predecessors. */
437 FOR_EACH_EDGE (e, ei, bb->preds)
438 find_tail_calls (e->src, ret);
439
440 return;
441 }
442
443 /* If the LHS of our call is not just a simple register, we can't
444 transform this into a tail or sibling call. This situation happens,
445 in (e.g.) "*p = foo()" where foo returns a struct. In this case
446 we won't have a temporary here, but we need to carry out the side
447 effect anyway, so tailcall is impossible.
448
449 ??? In some situations (when the struct is returned in memory via
450 invisible argument) we could deal with this, e.g. by passing 'p'
451 itself as that argument to foo, but it's too early to do this here,
452 and expand_call() will not handle it anyway. If it ever can, then
453 we need to revisit this here, to allow that situation. */
454 if (ass_var && !is_gimple_reg (ass_var))
455 return;
456
457 /* We found the call, check whether it is suitable. */
458 tail_recursion = false;
459 func = gimple_call_fndecl (call);
460 if (func
461 && !DECL_BUILT_IN (func)
462 && recursive_call_p (current_function_decl, func))
463 {
464 tree arg;
465
466 for (param = DECL_ARGUMENTS (func), idx = 0;
467 param && idx < gimple_call_num_args (call);
468 param = DECL_CHAIN (param), idx ++)
469 {
470 arg = gimple_call_arg (call, idx);
471 if (param != arg)
472 {
473 /* Make sure there are no problems with copying. The parameter
474 have a copyable type and the two arguments must have reasonably
475 equivalent types. The latter requirement could be relaxed if
476 we emitted a suitable type conversion statement. */
477 if (!is_gimple_reg_type (TREE_TYPE (param))
478 || !useless_type_conversion_p (TREE_TYPE (param),
479 TREE_TYPE (arg)))
480 break;
481
482 /* The parameter should be a real operand, so that phi node
483 created for it at the start of the function has the meaning
484 of copying the value. This test implies is_gimple_reg_type
485 from the previous condition, however this one could be
486 relaxed by being more careful with copying the new value
487 of the parameter (emitting appropriate GIMPLE_ASSIGN and
488 updating the virtual operands). */
489 if (!is_gimple_reg (param))
490 break;
491 }
492 }
493 if (idx == gimple_call_num_args (call) && !param)
494 tail_recursion = true;
495 }
496
497 /* Make sure the tail invocation of this function does not refer
498 to local variables. */
499 FOR_EACH_LOCAL_DECL (cfun, idx, var)
500 {
501 if (TREE_CODE (var) != PARM_DECL
502 && auto_var_in_fn_p (var, cfun->decl)
503 && (ref_maybe_used_by_stmt_p (call, var)
504 || call_may_clobber_ref_p (call, var)))
505 return;
506 }
507
508 /* Now check the statements after the call. None of them has virtual
509 operands, so they may only depend on the call through its return
510 value. The return value should also be dependent on each of them,
511 since we are running after dce. */
512 m = NULL_TREE;
513 a = NULL_TREE;
514
515 abb = bb;
516 agsi = gsi;
517 while (1)
518 {
519 tree tmp_a = NULL_TREE;
520 tree tmp_m = NULL_TREE;
521 gsi_next (&agsi);
522
523 while (gsi_end_p (agsi))
524 {
525 ass_var = propagate_through_phis (ass_var, single_succ_edge (abb));
526 abb = single_succ (abb);
527 agsi = gsi_start_bb (abb);
528 }
529
530 stmt = gsi_stmt (agsi);
531
532 if (gimple_code (stmt) == GIMPLE_LABEL)
533 continue;
534
535 if (gimple_code (stmt) == GIMPLE_RETURN)
536 break;
537
538 if (gimple_clobber_p (stmt))
539 continue;
540
541 if (is_gimple_debug (stmt))
542 continue;
543
544 if (gimple_code (stmt) != GIMPLE_ASSIGN)
545 return;
546
547 /* This is a gimple assign. */
548 if (! process_assignment (stmt, gsi, &tmp_m, &tmp_a, &ass_var))
549 return;
550
551 if (tmp_a)
552 {
553 tree type = TREE_TYPE (tmp_a);
554 if (a)
555 a = fold_build2 (PLUS_EXPR, type, fold_convert (type, a), tmp_a);
556 else
557 a = tmp_a;
558 }
559 if (tmp_m)
560 {
561 tree type = TREE_TYPE (tmp_m);
562 if (m)
563 m = fold_build2 (MULT_EXPR, type, fold_convert (type, m), tmp_m);
564 else
565 m = tmp_m;
566
567 if (a)
568 a = fold_build2 (MULT_EXPR, type, fold_convert (type, a), tmp_m);
569 }
570 }
571
572 /* See if this is a tail call we can handle. */
573 ret_var = gimple_return_retval (stmt);
574
575 /* We may proceed if there either is no return value, or the return value
576 is identical to the call's return. */
577 if (ret_var
578 && (ret_var != ass_var))
579 return;
580
581 /* If this is not a tail recursive call, we cannot handle addends or
582 multiplicands. */
583 if (!tail_recursion && (m || a))
584 return;
585
586 /* For pointers only allow additions. */
587 if (m && POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
588 return;
589
590 nw = XNEW (struct tailcall);
591
592 nw->call_gsi = gsi;
593
594 nw->tail_recursion = tail_recursion;
595
596 nw->mult = m;
597 nw->add = a;
598
599 nw->next = *ret;
600 *ret = nw;
601 }
602
603 /* Helper to insert PHI_ARGH to the phi of VAR in the destination of edge E. */
604
605 static void
606 add_successor_phi_arg (edge e, tree var, tree phi_arg)
607 {
608 gimple_stmt_iterator gsi;
609
610 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
611 if (PHI_RESULT (gsi_stmt (gsi)) == var)
612 break;
613
614 gcc_assert (!gsi_end_p (gsi));
615 add_phi_arg (gsi_stmt (gsi), phi_arg, e, UNKNOWN_LOCATION);
616 }
617
618 /* Creates a GIMPLE statement which computes the operation specified by
619 CODE, ACC and OP1 to a new variable with name LABEL and inserts the
620 statement in the position specified by GSI. Returns the
621 tree node of the statement's result. */
622
623 static tree
624 adjust_return_value_with_ops (enum tree_code code, const char *label,
625 tree acc, tree op1, gimple_stmt_iterator gsi)
626 {
627
628 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
629 tree result = make_temp_ssa_name (ret_type, NULL, label);
630 gimple stmt;
631
632 if (POINTER_TYPE_P (ret_type))
633 {
634 gcc_assert (code == PLUS_EXPR && TREE_TYPE (acc) == sizetype);
635 code = POINTER_PLUS_EXPR;
636 }
637 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1))
638 && code != POINTER_PLUS_EXPR)
639 stmt = gimple_build_assign_with_ops (code, result, acc, op1);
640 else
641 {
642 tree tem;
643 if (code == POINTER_PLUS_EXPR)
644 tem = fold_build2 (code, TREE_TYPE (op1), op1, acc);
645 else
646 tem = fold_build2 (code, TREE_TYPE (op1),
647 fold_convert (TREE_TYPE (op1), acc), op1);
648 tree rhs = fold_convert (ret_type, tem);
649 rhs = force_gimple_operand_gsi (&gsi, rhs,
650 false, NULL, true, GSI_SAME_STMT);
651 stmt = gimple_build_assign (result, rhs);
652 }
653
654 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
655 return result;
656 }
657
658 /* Creates a new GIMPLE statement that adjusts the value of accumulator ACC by
659 the computation specified by CODE and OP1 and insert the statement
660 at the position specified by GSI as a new statement. Returns new SSA name
661 of updated accumulator. */
662
663 static tree
664 update_accumulator_with_ops (enum tree_code code, tree acc, tree op1,
665 gimple_stmt_iterator gsi)
666 {
667 gimple stmt;
668 tree var = copy_ssa_name (acc, NULL);
669 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1)))
670 stmt = gimple_build_assign_with_ops (code, var, acc, op1);
671 else
672 {
673 tree rhs = fold_convert (TREE_TYPE (acc),
674 fold_build2 (code,
675 TREE_TYPE (op1),
676 fold_convert (TREE_TYPE (op1), acc),
677 op1));
678 rhs = force_gimple_operand_gsi (&gsi, rhs,
679 false, NULL, false, GSI_CONTINUE_LINKING);
680 stmt = gimple_build_assign (var, rhs);
681 }
682 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
683 return var;
684 }
685
686 /* Adjust the accumulator values according to A and M after GSI, and update
687 the phi nodes on edge BACK. */
688
689 static void
690 adjust_accumulator_values (gimple_stmt_iterator gsi, tree m, tree a, edge back)
691 {
692 tree var, a_acc_arg, m_acc_arg;
693
694 if (m)
695 m = force_gimple_operand_gsi (&gsi, m, true, NULL, true, GSI_SAME_STMT);
696 if (a)
697 a = force_gimple_operand_gsi (&gsi, a, true, NULL, true, GSI_SAME_STMT);
698
699 a_acc_arg = a_acc;
700 m_acc_arg = m_acc;
701 if (a)
702 {
703 if (m_acc)
704 {
705 if (integer_onep (a))
706 var = m_acc;
707 else
708 var = adjust_return_value_with_ops (MULT_EXPR, "acc_tmp", m_acc,
709 a, gsi);
710 }
711 else
712 var = a;
713
714 a_acc_arg = update_accumulator_with_ops (PLUS_EXPR, a_acc, var, gsi);
715 }
716
717 if (m)
718 m_acc_arg = update_accumulator_with_ops (MULT_EXPR, m_acc, m, gsi);
719
720 if (a_acc)
721 add_successor_phi_arg (back, a_acc, a_acc_arg);
722
723 if (m_acc)
724 add_successor_phi_arg (back, m_acc, m_acc_arg);
725 }
726
727 /* Adjust value of the return at the end of BB according to M and A
728 accumulators. */
729
730 static void
731 adjust_return_value (basic_block bb, tree m, tree a)
732 {
733 tree retval;
734 gimple ret_stmt = gimple_seq_last_stmt (bb_seq (bb));
735 gimple_stmt_iterator gsi = gsi_last_bb (bb);
736
737 gcc_assert (gimple_code (ret_stmt) == GIMPLE_RETURN);
738
739 retval = gimple_return_retval (ret_stmt);
740 if (!retval || retval == error_mark_node)
741 return;
742
743 if (m)
744 retval = adjust_return_value_with_ops (MULT_EXPR, "mul_tmp", m_acc, retval,
745 gsi);
746 if (a)
747 retval = adjust_return_value_with_ops (PLUS_EXPR, "acc_tmp", a_acc, retval,
748 gsi);
749 gimple_return_set_retval (ret_stmt, retval);
750 update_stmt (ret_stmt);
751 }
752
753 /* Subtract COUNT and FREQUENCY from the basic block and it's
754 outgoing edge. */
755 static void
756 decrease_profile (basic_block bb, gcov_type count, int frequency)
757 {
758 edge e;
759 bb->count -= count;
760 if (bb->count < 0)
761 bb->count = 0;
762 bb->frequency -= frequency;
763 if (bb->frequency < 0)
764 bb->frequency = 0;
765 if (!single_succ_p (bb))
766 {
767 gcc_assert (!EDGE_COUNT (bb->succs));
768 return;
769 }
770 e = single_succ_edge (bb);
771 e->count -= count;
772 if (e->count < 0)
773 e->count = 0;
774 }
775
776 /* Returns true if argument PARAM of the tail recursive call needs to be copied
777 when the call is eliminated. */
778
779 static bool
780 arg_needs_copy_p (tree param)
781 {
782 tree def;
783
784 if (!is_gimple_reg (param))
785 return false;
786
787 /* Parameters that are only defined but never used need not be copied. */
788 def = ssa_default_def (cfun, param);
789 if (!def)
790 return false;
791
792 return true;
793 }
794
795 /* Eliminates tail call described by T. TMP_VARS is a list of
796 temporary variables used to copy the function arguments. */
797
798 static void
799 eliminate_tail_call (struct tailcall *t)
800 {
801 tree param, rslt;
802 gimple stmt, call;
803 tree arg;
804 size_t idx;
805 basic_block bb, first;
806 edge e;
807 gimple phi;
808 gimple_stmt_iterator gsi;
809 gimple orig_stmt;
810
811 stmt = orig_stmt = gsi_stmt (t->call_gsi);
812 bb = gsi_bb (t->call_gsi);
813
814 if (dump_file && (dump_flags & TDF_DETAILS))
815 {
816 fprintf (dump_file, "Eliminated tail recursion in bb %d : ",
817 bb->index);
818 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
819 fprintf (dump_file, "\n");
820 }
821
822 gcc_assert (is_gimple_call (stmt));
823
824 first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
825
826 /* Remove the code after call_gsi that will become unreachable. The
827 possibly unreachable code in other blocks is removed later in
828 cfg cleanup. */
829 gsi = t->call_gsi;
830 gsi_next (&gsi);
831 while (!gsi_end_p (gsi))
832 {
833 gimple t = gsi_stmt (gsi);
834 /* Do not remove the return statement, so that redirect_edge_and_branch
835 sees how the block ends. */
836 if (gimple_code (t) == GIMPLE_RETURN)
837 break;
838
839 gsi_remove (&gsi, true);
840 release_defs (t);
841 }
842
843 /* Number of executions of function has reduced by the tailcall. */
844 e = single_succ_edge (gsi_bb (t->call_gsi));
845 decrease_profile (EXIT_BLOCK_PTR_FOR_FN (cfun), e->count, EDGE_FREQUENCY (e));
846 decrease_profile (ENTRY_BLOCK_PTR_FOR_FN (cfun), e->count,
847 EDGE_FREQUENCY (e));
848 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
849 decrease_profile (e->dest, e->count, EDGE_FREQUENCY (e));
850
851 /* Replace the call by a jump to the start of function. */
852 e = redirect_edge_and_branch (single_succ_edge (gsi_bb (t->call_gsi)),
853 first);
854 gcc_assert (e);
855 PENDING_STMT (e) = NULL;
856
857 /* Add phi node entries for arguments. The ordering of the phi nodes should
858 be the same as the ordering of the arguments. */
859 for (param = DECL_ARGUMENTS (current_function_decl),
860 idx = 0, gsi = gsi_start_phis (first);
861 param;
862 param = DECL_CHAIN (param), idx++)
863 {
864 if (!arg_needs_copy_p (param))
865 continue;
866
867 arg = gimple_call_arg (stmt, idx);
868 phi = gsi_stmt (gsi);
869 gcc_assert (param == SSA_NAME_VAR (PHI_RESULT (phi)));
870
871 add_phi_arg (phi, arg, e, gimple_location (stmt));
872 gsi_next (&gsi);
873 }
874
875 /* Update the values of accumulators. */
876 adjust_accumulator_values (t->call_gsi, t->mult, t->add, e);
877
878 call = gsi_stmt (t->call_gsi);
879 rslt = gimple_call_lhs (call);
880 if (rslt != NULL_TREE)
881 {
882 /* Result of the call will no longer be defined. So adjust the
883 SSA_NAME_DEF_STMT accordingly. */
884 SSA_NAME_DEF_STMT (rslt) = gimple_build_nop ();
885 }
886
887 gsi_remove (&t->call_gsi, true);
888 release_defs (call);
889 }
890
891 /* Optimizes the tailcall described by T. If OPT_TAILCALLS is true, also
892 mark the tailcalls for the sibcall optimization. */
893
894 static bool
895 optimize_tail_call (struct tailcall *t, bool opt_tailcalls)
896 {
897 if (t->tail_recursion)
898 {
899 eliminate_tail_call (t);
900 return true;
901 }
902
903 if (opt_tailcalls)
904 {
905 gimple stmt = gsi_stmt (t->call_gsi);
906
907 gimple_call_set_tail (stmt, true);
908 if (dump_file && (dump_flags & TDF_DETAILS))
909 {
910 fprintf (dump_file, "Found tail call ");
911 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
912 fprintf (dump_file, " in bb %i\n", (gsi_bb (t->call_gsi))->index);
913 }
914 }
915
916 return false;
917 }
918
919 /* Creates a tail-call accumulator of the same type as the return type of the
920 current function. LABEL is the name used to creating the temporary
921 variable for the accumulator. The accumulator will be inserted in the
922 phis of a basic block BB with single predecessor with an initial value
923 INIT converted to the current function return type. */
924
925 static tree
926 create_tailcall_accumulator (const char *label, basic_block bb, tree init)
927 {
928 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
929 if (POINTER_TYPE_P (ret_type))
930 ret_type = sizetype;
931
932 tree tmp = make_temp_ssa_name (ret_type, NULL, label);
933 gimple phi;
934
935 phi = create_phi_node (tmp, bb);
936 /* RET_TYPE can be a float when -ffast-maths is enabled. */
937 add_phi_arg (phi, fold_convert (ret_type, init), single_pred_edge (bb),
938 UNKNOWN_LOCATION);
939 return PHI_RESULT (phi);
940 }
941
942 /* Optimizes tail calls in the function, turning the tail recursion
943 into iteration. */
944
945 static unsigned int
946 tree_optimize_tail_calls_1 (bool opt_tailcalls)
947 {
948 edge e;
949 bool phis_constructed = false;
950 struct tailcall *tailcalls = NULL, *act, *next;
951 bool changed = false;
952 basic_block first = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
953 tree param;
954 gimple stmt;
955 edge_iterator ei;
956
957 if (!suitable_for_tail_opt_p ())
958 return 0;
959 if (opt_tailcalls)
960 opt_tailcalls = suitable_for_tail_call_opt_p ();
961
962 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
963 {
964 /* Only traverse the normal exits, i.e. those that end with return
965 statement. */
966 stmt = last_stmt (e->src);
967
968 if (stmt
969 && gimple_code (stmt) == GIMPLE_RETURN)
970 find_tail_calls (e->src, &tailcalls);
971 }
972
973 /* Construct the phi nodes and accumulators if necessary. */
974 a_acc = m_acc = NULL_TREE;
975 for (act = tailcalls; act; act = act->next)
976 {
977 if (!act->tail_recursion)
978 continue;
979
980 if (!phis_constructed)
981 {
982 /* Ensure that there is only one predecessor of the block
983 or if there are existing degenerate PHI nodes. */
984 if (!single_pred_p (first)
985 || !gimple_seq_empty_p (phi_nodes (first)))
986 first =
987 split_edge (single_succ_edge (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
988
989 /* Copy the args if needed. */
990 for (param = DECL_ARGUMENTS (current_function_decl);
991 param;
992 param = DECL_CHAIN (param))
993 if (arg_needs_copy_p (param))
994 {
995 tree name = ssa_default_def (cfun, param);
996 tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name));
997 gimple phi;
998
999 set_ssa_default_def (cfun, param, new_name);
1000 phi = create_phi_node (name, first);
1001 add_phi_arg (phi, new_name, single_pred_edge (first),
1002 EXPR_LOCATION (param));
1003 }
1004 phis_constructed = true;
1005 }
1006
1007 if (act->add && !a_acc)
1008 a_acc = create_tailcall_accumulator ("add_acc", first,
1009 integer_zero_node);
1010
1011 if (act->mult && !m_acc)
1012 m_acc = create_tailcall_accumulator ("mult_acc", first,
1013 integer_one_node);
1014 }
1015
1016 if (a_acc || m_acc)
1017 {
1018 /* When the tail call elimination using accumulators is performed,
1019 statements adding the accumulated value are inserted at all exits.
1020 This turns all other tail calls to non-tail ones. */
1021 opt_tailcalls = false;
1022 }
1023
1024 for (; tailcalls; tailcalls = next)
1025 {
1026 next = tailcalls->next;
1027 changed |= optimize_tail_call (tailcalls, opt_tailcalls);
1028 free (tailcalls);
1029 }
1030
1031 if (a_acc || m_acc)
1032 {
1033 /* Modify the remaining return statements. */
1034 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR_FOR_FN (cfun)->preds)
1035 {
1036 stmt = last_stmt (e->src);
1037
1038 if (stmt
1039 && gimple_code (stmt) == GIMPLE_RETURN)
1040 adjust_return_value (e->src, m_acc, a_acc);
1041 }
1042 }
1043
1044 if (changed)
1045 {
1046 /* We may have created new loops. Make them magically appear. */
1047 if (current_loops)
1048 loops_state_set (LOOPS_NEED_FIXUP);
1049 free_dominance_info (CDI_DOMINATORS);
1050 }
1051
1052 /* Add phi nodes for the virtual operands defined in the function to the
1053 header of the loop created by tail recursion elimination. Do so
1054 by triggering the SSA renamer. */
1055 if (phis_constructed)
1056 mark_virtual_operands_for_renaming (cfun);
1057
1058 if (changed)
1059 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
1060 return 0;
1061 }
1062
1063 static unsigned int
1064 execute_tail_recursion (void)
1065 {
1066 return tree_optimize_tail_calls_1 (false);
1067 }
1068
1069 static bool
1070 gate_tail_calls (void)
1071 {
1072 return flag_optimize_sibling_calls != 0 && dbg_cnt (tail_call);
1073 }
1074
1075 static unsigned int
1076 execute_tail_calls (void)
1077 {
1078 return tree_optimize_tail_calls_1 (true);
1079 }
1080
1081 namespace {
1082
1083 const pass_data pass_data_tail_recursion =
1084 {
1085 GIMPLE_PASS, /* type */
1086 "tailr", /* name */
1087 OPTGROUP_NONE, /* optinfo_flags */
1088 true, /* has_gate */
1089 true, /* has_execute */
1090 TV_NONE, /* tv_id */
1091 ( PROP_cfg | PROP_ssa ), /* properties_required */
1092 0, /* properties_provided */
1093 0, /* properties_destroyed */
1094 0, /* todo_flags_start */
1095 TODO_verify_ssa, /* todo_flags_finish */
1096 };
1097
1098 class pass_tail_recursion : public gimple_opt_pass
1099 {
1100 public:
1101 pass_tail_recursion (gcc::context *ctxt)
1102 : gimple_opt_pass (pass_data_tail_recursion, ctxt)
1103 {}
1104
1105 /* opt_pass methods: */
1106 opt_pass * clone () { return new pass_tail_recursion (m_ctxt); }
1107 bool gate () { return gate_tail_calls (); }
1108 unsigned int execute () { return execute_tail_recursion (); }
1109
1110 }; // class pass_tail_recursion
1111
1112 } // anon namespace
1113
1114 gimple_opt_pass *
1115 make_pass_tail_recursion (gcc::context *ctxt)
1116 {
1117 return new pass_tail_recursion (ctxt);
1118 }
1119
1120 namespace {
1121
1122 const pass_data pass_data_tail_calls =
1123 {
1124 GIMPLE_PASS, /* type */
1125 "tailc", /* name */
1126 OPTGROUP_NONE, /* optinfo_flags */
1127 true, /* has_gate */
1128 true, /* has_execute */
1129 TV_NONE, /* tv_id */
1130 ( PROP_cfg | PROP_ssa ), /* properties_required */
1131 0, /* properties_provided */
1132 0, /* properties_destroyed */
1133 0, /* todo_flags_start */
1134 TODO_verify_ssa, /* todo_flags_finish */
1135 };
1136
1137 class pass_tail_calls : public gimple_opt_pass
1138 {
1139 public:
1140 pass_tail_calls (gcc::context *ctxt)
1141 : gimple_opt_pass (pass_data_tail_calls, ctxt)
1142 {}
1143
1144 /* opt_pass methods: */
1145 bool gate () { return gate_tail_calls (); }
1146 unsigned int execute () { return execute_tail_calls (); }
1147
1148 }; // class pass_tail_calls
1149
1150 } // anon namespace
1151
1152 gimple_opt_pass *
1153 make_pass_tail_calls (gcc::context *ctxt)
1154 {
1155 return new pass_tail_calls (ctxt);
1156 }