gimplify-be.h: New file.
[gcc.git] / gcc / tree-tailcall.c
1 /* Tail call optimization on trees.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "basic-block.h"
27 #include "function.h"
28 #include "gimple.h"
29 #include "gimple-iterator.h"
30 #include "gimplify-me.h"
31 #include "gimple-ssa.h"
32 #include "tree-cfg.h"
33 #include "tree-phinodes.h"
34 #include "tree-ssanames.h"
35 #include "tree-into-ssa.h"
36 #include "tree-dfa.h"
37 #include "gimple-pretty-print.h"
38 #include "except.h"
39 #include "tree-pass.h"
40 #include "flags.h"
41 #include "langhooks.h"
42 #include "dbgcnt.h"
43 #include "target.h"
44 #include "cfgloop.h"
45 #include "common/common-target.h"
46 #include "ipa-utils.h"
47
48 /* The file implements the tail recursion elimination. It is also used to
49 analyze the tail calls in general, passing the results to the rtl level
50 where they are used for sibcall optimization.
51
52 In addition to the standard tail recursion elimination, we handle the most
53 trivial cases of making the call tail recursive by creating accumulators.
54 For example the following function
55
56 int sum (int n)
57 {
58 if (n > 0)
59 return n + sum (n - 1);
60 else
61 return 0;
62 }
63
64 is transformed into
65
66 int sum (int n)
67 {
68 int acc = 0;
69
70 while (n > 0)
71 acc += n--;
72
73 return acc;
74 }
75
76 To do this, we maintain two accumulators (a_acc and m_acc) that indicate
77 when we reach the return x statement, we should return a_acc + x * m_acc
78 instead. They are initially initialized to 0 and 1, respectively,
79 so the semantics of the function is obviously preserved. If we are
80 guaranteed that the value of the accumulator never change, we
81 omit the accumulator.
82
83 There are three cases how the function may exit. The first one is
84 handled in adjust_return_value, the other two in adjust_accumulator_values
85 (the second case is actually a special case of the third one and we
86 present it separately just for clarity):
87
88 1) Just return x, where x is not in any of the remaining special shapes.
89 We rewrite this to a gimple equivalent of return m_acc * x + a_acc.
90
91 2) return f (...), where f is the current function, is rewritten in a
92 classical tail-recursion elimination way, into assignment of arguments
93 and jump to the start of the function. Values of the accumulators
94 are unchanged.
95
96 3) return a + m * f(...), where a and m do not depend on call to f.
97 To preserve the semantics described before we want this to be rewritten
98 in such a way that we finally return
99
100 a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...).
101
102 I.e. we increase a_acc by a * m_acc, multiply m_acc by m and
103 eliminate the tail call to f. Special cases when the value is just
104 added or just multiplied are obtained by setting a = 0 or m = 1.
105
106 TODO -- it is possible to do similar tricks for other operations. */
107
108 /* A structure that describes the tailcall. */
109
110 struct tailcall
111 {
112 /* The iterator pointing to the call statement. */
113 gimple_stmt_iterator call_gsi;
114
115 /* True if it is a call to the current function. */
116 bool tail_recursion;
117
118 /* The return value of the caller is mult * f + add, where f is the return
119 value of the call. */
120 tree mult, add;
121
122 /* Next tailcall in the chain. */
123 struct tailcall *next;
124 };
125
126 /* The variables holding the value of multiplicative and additive
127 accumulator. */
128 static tree m_acc, a_acc;
129
130 static bool suitable_for_tail_opt_p (void);
131 static bool optimize_tail_call (struct tailcall *, bool);
132 static void eliminate_tail_call (struct tailcall *);
133 static void find_tail_calls (basic_block, struct tailcall **);
134
135 /* Returns false when the function is not suitable for tail call optimization
136 from some reason (e.g. if it takes variable number of arguments). */
137
138 static bool
139 suitable_for_tail_opt_p (void)
140 {
141 if (cfun->stdarg)
142 return false;
143
144 return true;
145 }
146 /* Returns false when the function is not suitable for tail call optimization
147 from some reason (e.g. if it takes variable number of arguments).
148 This test must pass in addition to suitable_for_tail_opt_p in order to make
149 tail call discovery happen. */
150
151 static bool
152 suitable_for_tail_call_opt_p (void)
153 {
154 tree param;
155
156 /* alloca (until we have stack slot life analysis) inhibits
157 sibling call optimizations, but not tail recursion. */
158 if (cfun->calls_alloca)
159 return false;
160
161 /* If we are using sjlj exceptions, we may need to add a call to
162 _Unwind_SjLj_Unregister at exit of the function. Which means
163 that we cannot do any sibcall transformations. */
164 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ
165 && current_function_has_exception_handlers ())
166 return false;
167
168 /* Any function that calls setjmp might have longjmp called from
169 any called function. ??? We really should represent this
170 properly in the CFG so that this needn't be special cased. */
171 if (cfun->calls_setjmp)
172 return false;
173
174 /* ??? It is OK if the argument of a function is taken in some cases,
175 but not in all cases. See PR15387 and PR19616. Revisit for 4.1. */
176 for (param = DECL_ARGUMENTS (current_function_decl);
177 param;
178 param = DECL_CHAIN (param))
179 if (TREE_ADDRESSABLE (param))
180 return false;
181
182 return true;
183 }
184
185 /* Checks whether the expression EXPR in stmt AT is independent of the
186 statement pointed to by GSI (in a sense that we already know EXPR's value
187 at GSI). We use the fact that we are only called from the chain of
188 basic blocks that have only single successor. Returns the expression
189 containing the value of EXPR at GSI. */
190
191 static tree
192 independent_of_stmt_p (tree expr, gimple at, gimple_stmt_iterator gsi)
193 {
194 basic_block bb, call_bb, at_bb;
195 edge e;
196 edge_iterator ei;
197
198 if (is_gimple_min_invariant (expr))
199 return expr;
200
201 if (TREE_CODE (expr) != SSA_NAME)
202 return NULL_TREE;
203
204 /* Mark the blocks in the chain leading to the end. */
205 at_bb = gimple_bb (at);
206 call_bb = gimple_bb (gsi_stmt (gsi));
207 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
208 bb->aux = &bb->aux;
209 bb->aux = &bb->aux;
210
211 while (1)
212 {
213 at = SSA_NAME_DEF_STMT (expr);
214 bb = gimple_bb (at);
215
216 /* The default definition or defined before the chain. */
217 if (!bb || !bb->aux)
218 break;
219
220 if (bb == call_bb)
221 {
222 for (; !gsi_end_p (gsi); gsi_next (&gsi))
223 if (gsi_stmt (gsi) == at)
224 break;
225
226 if (!gsi_end_p (gsi))
227 expr = NULL_TREE;
228 break;
229 }
230
231 if (gimple_code (at) != GIMPLE_PHI)
232 {
233 expr = NULL_TREE;
234 break;
235 }
236
237 FOR_EACH_EDGE (e, ei, bb->preds)
238 if (e->src->aux)
239 break;
240 gcc_assert (e);
241
242 expr = PHI_ARG_DEF_FROM_EDGE (at, e);
243 if (TREE_CODE (expr) != SSA_NAME)
244 {
245 /* The value is a constant. */
246 break;
247 }
248 }
249
250 /* Unmark the blocks. */
251 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
252 bb->aux = NULL;
253 bb->aux = NULL;
254
255 return expr;
256 }
257
258 /* Simulates the effect of an assignment STMT on the return value of the tail
259 recursive CALL passed in ASS_VAR. M and A are the multiplicative and the
260 additive factor for the real return value. */
261
262 static bool
263 process_assignment (gimple stmt, gimple_stmt_iterator call, tree *m,
264 tree *a, tree *ass_var)
265 {
266 tree op0, op1 = NULL_TREE, non_ass_var = NULL_TREE;
267 tree dest = gimple_assign_lhs (stmt);
268 enum tree_code code = gimple_assign_rhs_code (stmt);
269 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
270 tree src_var = gimple_assign_rhs1 (stmt);
271
272 /* See if this is a simple copy operation of an SSA name to the function
273 result. In that case we may have a simple tail call. Ignore type
274 conversions that can never produce extra code between the function
275 call and the function return. */
276 if ((rhs_class == GIMPLE_SINGLE_RHS || gimple_assign_cast_p (stmt))
277 && (TREE_CODE (src_var) == SSA_NAME))
278 {
279 /* Reject a tailcall if the type conversion might need
280 additional code. */
281 if (gimple_assign_cast_p (stmt)
282 && TYPE_MODE (TREE_TYPE (dest)) != TYPE_MODE (TREE_TYPE (src_var)))
283 return false;
284
285 if (src_var != *ass_var)
286 return false;
287
288 *ass_var = dest;
289 return true;
290 }
291
292 switch (rhs_class)
293 {
294 case GIMPLE_BINARY_RHS:
295 op1 = gimple_assign_rhs2 (stmt);
296
297 /* Fall through. */
298
299 case GIMPLE_UNARY_RHS:
300 op0 = gimple_assign_rhs1 (stmt);
301 break;
302
303 default:
304 return false;
305 }
306
307 /* Accumulator optimizations will reverse the order of operations.
308 We can only do that for floating-point types if we're assuming
309 that addition and multiplication are associative. */
310 if (!flag_associative_math)
311 if (FLOAT_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
312 return false;
313
314 if (rhs_class == GIMPLE_UNARY_RHS)
315 ;
316 else if (op0 == *ass_var
317 && (non_ass_var = independent_of_stmt_p (op1, stmt, call)))
318 ;
319 else if (op1 == *ass_var
320 && (non_ass_var = independent_of_stmt_p (op0, stmt, call)))
321 ;
322 else
323 return false;
324
325 switch (code)
326 {
327 case PLUS_EXPR:
328 *a = non_ass_var;
329 *ass_var = dest;
330 return true;
331
332 case POINTER_PLUS_EXPR:
333 if (op0 != *ass_var)
334 return false;
335 *a = non_ass_var;
336 *ass_var = dest;
337 return true;
338
339 case MULT_EXPR:
340 *m = non_ass_var;
341 *ass_var = dest;
342 return true;
343
344 case NEGATE_EXPR:
345 *m = build_minus_one_cst (TREE_TYPE (op0));
346 *ass_var = dest;
347 return true;
348
349 case MINUS_EXPR:
350 if (*ass_var == op0)
351 *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
352 else
353 {
354 *m = build_minus_one_cst (TREE_TYPE (non_ass_var));
355 *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
356 }
357
358 *ass_var = dest;
359 return true;
360
361 /* TODO -- Handle POINTER_PLUS_EXPR. */
362
363 default:
364 return false;
365 }
366 }
367
368 /* Propagate VAR through phis on edge E. */
369
370 static tree
371 propagate_through_phis (tree var, edge e)
372 {
373 basic_block dest = e->dest;
374 gimple_stmt_iterator gsi;
375
376 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
377 {
378 gimple phi = gsi_stmt (gsi);
379 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var)
380 return PHI_RESULT (phi);
381 }
382 return var;
383 }
384
385 /* Finds tailcalls falling into basic block BB. The list of found tailcalls is
386 added to the start of RET. */
387
388 static void
389 find_tail_calls (basic_block bb, struct tailcall **ret)
390 {
391 tree ass_var = NULL_TREE, ret_var, func, param;
392 gimple stmt, call = NULL;
393 gimple_stmt_iterator gsi, agsi;
394 bool tail_recursion;
395 struct tailcall *nw;
396 edge e;
397 tree m, a;
398 basic_block abb;
399 size_t idx;
400 tree var;
401
402 if (!single_succ_p (bb))
403 return;
404
405 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
406 {
407 stmt = gsi_stmt (gsi);
408
409 /* Ignore labels, returns, clobbers and debug stmts. */
410 if (gimple_code (stmt) == GIMPLE_LABEL
411 || gimple_code (stmt) == GIMPLE_RETURN
412 || gimple_clobber_p (stmt)
413 || is_gimple_debug (stmt))
414 continue;
415
416 /* Check for a call. */
417 if (is_gimple_call (stmt))
418 {
419 call = stmt;
420 ass_var = gimple_call_lhs (stmt);
421 break;
422 }
423
424 /* If the statement references memory or volatile operands, fail. */
425 if (gimple_references_memory_p (stmt)
426 || gimple_has_volatile_ops (stmt))
427 return;
428 }
429
430 if (gsi_end_p (gsi))
431 {
432 edge_iterator ei;
433 /* Recurse to the predecessors. */
434 FOR_EACH_EDGE (e, ei, bb->preds)
435 find_tail_calls (e->src, ret);
436
437 return;
438 }
439
440 /* If the LHS of our call is not just a simple register, we can't
441 transform this into a tail or sibling call. This situation happens,
442 in (e.g.) "*p = foo()" where foo returns a struct. In this case
443 we won't have a temporary here, but we need to carry out the side
444 effect anyway, so tailcall is impossible.
445
446 ??? In some situations (when the struct is returned in memory via
447 invisible argument) we could deal with this, e.g. by passing 'p'
448 itself as that argument to foo, but it's too early to do this here,
449 and expand_call() will not handle it anyway. If it ever can, then
450 we need to revisit this here, to allow that situation. */
451 if (ass_var && !is_gimple_reg (ass_var))
452 return;
453
454 /* We found the call, check whether it is suitable. */
455 tail_recursion = false;
456 func = gimple_call_fndecl (call);
457 if (func
458 && !DECL_BUILT_IN (func)
459 && recursive_call_p (current_function_decl, func))
460 {
461 tree arg;
462
463 for (param = DECL_ARGUMENTS (func), idx = 0;
464 param && idx < gimple_call_num_args (call);
465 param = DECL_CHAIN (param), idx ++)
466 {
467 arg = gimple_call_arg (call, idx);
468 if (param != arg)
469 {
470 /* Make sure there are no problems with copying. The parameter
471 have a copyable type and the two arguments must have reasonably
472 equivalent types. The latter requirement could be relaxed if
473 we emitted a suitable type conversion statement. */
474 if (!is_gimple_reg_type (TREE_TYPE (param))
475 || !useless_type_conversion_p (TREE_TYPE (param),
476 TREE_TYPE (arg)))
477 break;
478
479 /* The parameter should be a real operand, so that phi node
480 created for it at the start of the function has the meaning
481 of copying the value. This test implies is_gimple_reg_type
482 from the previous condition, however this one could be
483 relaxed by being more careful with copying the new value
484 of the parameter (emitting appropriate GIMPLE_ASSIGN and
485 updating the virtual operands). */
486 if (!is_gimple_reg (param))
487 break;
488 }
489 }
490 if (idx == gimple_call_num_args (call) && !param)
491 tail_recursion = true;
492 }
493
494 /* Make sure the tail invocation of this function does not refer
495 to local variables. */
496 FOR_EACH_LOCAL_DECL (cfun, idx, var)
497 {
498 if (TREE_CODE (var) != PARM_DECL
499 && auto_var_in_fn_p (var, cfun->decl)
500 && (ref_maybe_used_by_stmt_p (call, var)
501 || call_may_clobber_ref_p (call, var)))
502 return;
503 }
504
505 /* Now check the statements after the call. None of them has virtual
506 operands, so they may only depend on the call through its return
507 value. The return value should also be dependent on each of them,
508 since we are running after dce. */
509 m = NULL_TREE;
510 a = NULL_TREE;
511
512 abb = bb;
513 agsi = gsi;
514 while (1)
515 {
516 tree tmp_a = NULL_TREE;
517 tree tmp_m = NULL_TREE;
518 gsi_next (&agsi);
519
520 while (gsi_end_p (agsi))
521 {
522 ass_var = propagate_through_phis (ass_var, single_succ_edge (abb));
523 abb = single_succ (abb);
524 agsi = gsi_start_bb (abb);
525 }
526
527 stmt = gsi_stmt (agsi);
528
529 if (gimple_code (stmt) == GIMPLE_LABEL)
530 continue;
531
532 if (gimple_code (stmt) == GIMPLE_RETURN)
533 break;
534
535 if (gimple_clobber_p (stmt))
536 continue;
537
538 if (is_gimple_debug (stmt))
539 continue;
540
541 if (gimple_code (stmt) != GIMPLE_ASSIGN)
542 return;
543
544 /* This is a gimple assign. */
545 if (! process_assignment (stmt, gsi, &tmp_m, &tmp_a, &ass_var))
546 return;
547
548 if (tmp_a)
549 {
550 tree type = TREE_TYPE (tmp_a);
551 if (a)
552 a = fold_build2 (PLUS_EXPR, type, fold_convert (type, a), tmp_a);
553 else
554 a = tmp_a;
555 }
556 if (tmp_m)
557 {
558 tree type = TREE_TYPE (tmp_m);
559 if (m)
560 m = fold_build2 (MULT_EXPR, type, fold_convert (type, m), tmp_m);
561 else
562 m = tmp_m;
563
564 if (a)
565 a = fold_build2 (MULT_EXPR, type, fold_convert (type, a), tmp_m);
566 }
567 }
568
569 /* See if this is a tail call we can handle. */
570 ret_var = gimple_return_retval (stmt);
571
572 /* We may proceed if there either is no return value, or the return value
573 is identical to the call's return. */
574 if (ret_var
575 && (ret_var != ass_var))
576 return;
577
578 /* If this is not a tail recursive call, we cannot handle addends or
579 multiplicands. */
580 if (!tail_recursion && (m || a))
581 return;
582
583 /* For pointers only allow additions. */
584 if (m && POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
585 return;
586
587 nw = XNEW (struct tailcall);
588
589 nw->call_gsi = gsi;
590
591 nw->tail_recursion = tail_recursion;
592
593 nw->mult = m;
594 nw->add = a;
595
596 nw->next = *ret;
597 *ret = nw;
598 }
599
600 /* Helper to insert PHI_ARGH to the phi of VAR in the destination of edge E. */
601
602 static void
603 add_successor_phi_arg (edge e, tree var, tree phi_arg)
604 {
605 gimple_stmt_iterator gsi;
606
607 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
608 if (PHI_RESULT (gsi_stmt (gsi)) == var)
609 break;
610
611 gcc_assert (!gsi_end_p (gsi));
612 add_phi_arg (gsi_stmt (gsi), phi_arg, e, UNKNOWN_LOCATION);
613 }
614
615 /* Creates a GIMPLE statement which computes the operation specified by
616 CODE, ACC and OP1 to a new variable with name LABEL and inserts the
617 statement in the position specified by GSI. Returns the
618 tree node of the statement's result. */
619
620 static tree
621 adjust_return_value_with_ops (enum tree_code code, const char *label,
622 tree acc, tree op1, gimple_stmt_iterator gsi)
623 {
624
625 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
626 tree result = make_temp_ssa_name (ret_type, NULL, label);
627 gimple stmt;
628
629 if (POINTER_TYPE_P (ret_type))
630 {
631 gcc_assert (code == PLUS_EXPR && TREE_TYPE (acc) == sizetype);
632 code = POINTER_PLUS_EXPR;
633 }
634 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1))
635 && code != POINTER_PLUS_EXPR)
636 stmt = gimple_build_assign_with_ops (code, result, acc, op1);
637 else
638 {
639 tree tem;
640 if (code == POINTER_PLUS_EXPR)
641 tem = fold_build2 (code, TREE_TYPE (op1), op1, acc);
642 else
643 tem = fold_build2 (code, TREE_TYPE (op1),
644 fold_convert (TREE_TYPE (op1), acc), op1);
645 tree rhs = fold_convert (ret_type, tem);
646 rhs = force_gimple_operand_gsi (&gsi, rhs,
647 false, NULL, true, GSI_SAME_STMT);
648 stmt = gimple_build_assign (result, rhs);
649 }
650
651 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
652 return result;
653 }
654
655 /* Creates a new GIMPLE statement that adjusts the value of accumulator ACC by
656 the computation specified by CODE and OP1 and insert the statement
657 at the position specified by GSI as a new statement. Returns new SSA name
658 of updated accumulator. */
659
660 static tree
661 update_accumulator_with_ops (enum tree_code code, tree acc, tree op1,
662 gimple_stmt_iterator gsi)
663 {
664 gimple stmt;
665 tree var = copy_ssa_name (acc, NULL);
666 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1)))
667 stmt = gimple_build_assign_with_ops (code, var, acc, op1);
668 else
669 {
670 tree rhs = fold_convert (TREE_TYPE (acc),
671 fold_build2 (code,
672 TREE_TYPE (op1),
673 fold_convert (TREE_TYPE (op1), acc),
674 op1));
675 rhs = force_gimple_operand_gsi (&gsi, rhs,
676 false, NULL, false, GSI_CONTINUE_LINKING);
677 stmt = gimple_build_assign (var, rhs);
678 }
679 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
680 return var;
681 }
682
683 /* Adjust the accumulator values according to A and M after GSI, and update
684 the phi nodes on edge BACK. */
685
686 static void
687 adjust_accumulator_values (gimple_stmt_iterator gsi, tree m, tree a, edge back)
688 {
689 tree var, a_acc_arg, m_acc_arg;
690
691 if (m)
692 m = force_gimple_operand_gsi (&gsi, m, true, NULL, true, GSI_SAME_STMT);
693 if (a)
694 a = force_gimple_operand_gsi (&gsi, a, true, NULL, true, GSI_SAME_STMT);
695
696 a_acc_arg = a_acc;
697 m_acc_arg = m_acc;
698 if (a)
699 {
700 if (m_acc)
701 {
702 if (integer_onep (a))
703 var = m_acc;
704 else
705 var = adjust_return_value_with_ops (MULT_EXPR, "acc_tmp", m_acc,
706 a, gsi);
707 }
708 else
709 var = a;
710
711 a_acc_arg = update_accumulator_with_ops (PLUS_EXPR, a_acc, var, gsi);
712 }
713
714 if (m)
715 m_acc_arg = update_accumulator_with_ops (MULT_EXPR, m_acc, m, gsi);
716
717 if (a_acc)
718 add_successor_phi_arg (back, a_acc, a_acc_arg);
719
720 if (m_acc)
721 add_successor_phi_arg (back, m_acc, m_acc_arg);
722 }
723
724 /* Adjust value of the return at the end of BB according to M and A
725 accumulators. */
726
727 static void
728 adjust_return_value (basic_block bb, tree m, tree a)
729 {
730 tree retval;
731 gimple ret_stmt = gimple_seq_last_stmt (bb_seq (bb));
732 gimple_stmt_iterator gsi = gsi_last_bb (bb);
733
734 gcc_assert (gimple_code (ret_stmt) == GIMPLE_RETURN);
735
736 retval = gimple_return_retval (ret_stmt);
737 if (!retval || retval == error_mark_node)
738 return;
739
740 if (m)
741 retval = adjust_return_value_with_ops (MULT_EXPR, "mul_tmp", m_acc, retval,
742 gsi);
743 if (a)
744 retval = adjust_return_value_with_ops (PLUS_EXPR, "acc_tmp", a_acc, retval,
745 gsi);
746 gimple_return_set_retval (ret_stmt, retval);
747 update_stmt (ret_stmt);
748 }
749
750 /* Subtract COUNT and FREQUENCY from the basic block and it's
751 outgoing edge. */
752 static void
753 decrease_profile (basic_block bb, gcov_type count, int frequency)
754 {
755 edge e;
756 bb->count -= count;
757 if (bb->count < 0)
758 bb->count = 0;
759 bb->frequency -= frequency;
760 if (bb->frequency < 0)
761 bb->frequency = 0;
762 if (!single_succ_p (bb))
763 {
764 gcc_assert (!EDGE_COUNT (bb->succs));
765 return;
766 }
767 e = single_succ_edge (bb);
768 e->count -= count;
769 if (e->count < 0)
770 e->count = 0;
771 }
772
773 /* Returns true if argument PARAM of the tail recursive call needs to be copied
774 when the call is eliminated. */
775
776 static bool
777 arg_needs_copy_p (tree param)
778 {
779 tree def;
780
781 if (!is_gimple_reg (param))
782 return false;
783
784 /* Parameters that are only defined but never used need not be copied. */
785 def = ssa_default_def (cfun, param);
786 if (!def)
787 return false;
788
789 return true;
790 }
791
792 /* Eliminates tail call described by T. TMP_VARS is a list of
793 temporary variables used to copy the function arguments. */
794
795 static void
796 eliminate_tail_call (struct tailcall *t)
797 {
798 tree param, rslt;
799 gimple stmt, call;
800 tree arg;
801 size_t idx;
802 basic_block bb, first;
803 edge e;
804 gimple phi;
805 gimple_stmt_iterator gsi;
806 gimple orig_stmt;
807
808 stmt = orig_stmt = gsi_stmt (t->call_gsi);
809 bb = gsi_bb (t->call_gsi);
810
811 if (dump_file && (dump_flags & TDF_DETAILS))
812 {
813 fprintf (dump_file, "Eliminated tail recursion in bb %d : ",
814 bb->index);
815 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
816 fprintf (dump_file, "\n");
817 }
818
819 gcc_assert (is_gimple_call (stmt));
820
821 first = single_succ (ENTRY_BLOCK_PTR);
822
823 /* Remove the code after call_gsi that will become unreachable. The
824 possibly unreachable code in other blocks is removed later in
825 cfg cleanup. */
826 gsi = t->call_gsi;
827 gsi_next (&gsi);
828 while (!gsi_end_p (gsi))
829 {
830 gimple t = gsi_stmt (gsi);
831 /* Do not remove the return statement, so that redirect_edge_and_branch
832 sees how the block ends. */
833 if (gimple_code (t) == GIMPLE_RETURN)
834 break;
835
836 gsi_remove (&gsi, true);
837 release_defs (t);
838 }
839
840 /* Number of executions of function has reduced by the tailcall. */
841 e = single_succ_edge (gsi_bb (t->call_gsi));
842 decrease_profile (EXIT_BLOCK_PTR, e->count, EDGE_FREQUENCY (e));
843 decrease_profile (ENTRY_BLOCK_PTR, e->count, EDGE_FREQUENCY (e));
844 if (e->dest != EXIT_BLOCK_PTR)
845 decrease_profile (e->dest, e->count, EDGE_FREQUENCY (e));
846
847 /* Replace the call by a jump to the start of function. */
848 e = redirect_edge_and_branch (single_succ_edge (gsi_bb (t->call_gsi)),
849 first);
850 gcc_assert (e);
851 PENDING_STMT (e) = NULL;
852
853 /* Add phi node entries for arguments. The ordering of the phi nodes should
854 be the same as the ordering of the arguments. */
855 for (param = DECL_ARGUMENTS (current_function_decl),
856 idx = 0, gsi = gsi_start_phis (first);
857 param;
858 param = DECL_CHAIN (param), idx++)
859 {
860 if (!arg_needs_copy_p (param))
861 continue;
862
863 arg = gimple_call_arg (stmt, idx);
864 phi = gsi_stmt (gsi);
865 gcc_assert (param == SSA_NAME_VAR (PHI_RESULT (phi)));
866
867 add_phi_arg (phi, arg, e, gimple_location (stmt));
868 gsi_next (&gsi);
869 }
870
871 /* Update the values of accumulators. */
872 adjust_accumulator_values (t->call_gsi, t->mult, t->add, e);
873
874 call = gsi_stmt (t->call_gsi);
875 rslt = gimple_call_lhs (call);
876 if (rslt != NULL_TREE)
877 {
878 /* Result of the call will no longer be defined. So adjust the
879 SSA_NAME_DEF_STMT accordingly. */
880 SSA_NAME_DEF_STMT (rslt) = gimple_build_nop ();
881 }
882
883 gsi_remove (&t->call_gsi, true);
884 release_defs (call);
885 }
886
887 /* Optimizes the tailcall described by T. If OPT_TAILCALLS is true, also
888 mark the tailcalls for the sibcall optimization. */
889
890 static bool
891 optimize_tail_call (struct tailcall *t, bool opt_tailcalls)
892 {
893 if (t->tail_recursion)
894 {
895 eliminate_tail_call (t);
896 return true;
897 }
898
899 if (opt_tailcalls)
900 {
901 gimple stmt = gsi_stmt (t->call_gsi);
902
903 gimple_call_set_tail (stmt, true);
904 if (dump_file && (dump_flags & TDF_DETAILS))
905 {
906 fprintf (dump_file, "Found tail call ");
907 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
908 fprintf (dump_file, " in bb %i\n", (gsi_bb (t->call_gsi))->index);
909 }
910 }
911
912 return false;
913 }
914
915 /* Creates a tail-call accumulator of the same type as the return type of the
916 current function. LABEL is the name used to creating the temporary
917 variable for the accumulator. The accumulator will be inserted in the
918 phis of a basic block BB with single predecessor with an initial value
919 INIT converted to the current function return type. */
920
921 static tree
922 create_tailcall_accumulator (const char *label, basic_block bb, tree init)
923 {
924 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
925 if (POINTER_TYPE_P (ret_type))
926 ret_type = sizetype;
927
928 tree tmp = make_temp_ssa_name (ret_type, NULL, label);
929 gimple phi;
930
931 phi = create_phi_node (tmp, bb);
932 /* RET_TYPE can be a float when -ffast-maths is enabled. */
933 add_phi_arg (phi, fold_convert (ret_type, init), single_pred_edge (bb),
934 UNKNOWN_LOCATION);
935 return PHI_RESULT (phi);
936 }
937
938 /* Optimizes tail calls in the function, turning the tail recursion
939 into iteration. */
940
941 static unsigned int
942 tree_optimize_tail_calls_1 (bool opt_tailcalls)
943 {
944 edge e;
945 bool phis_constructed = false;
946 struct tailcall *tailcalls = NULL, *act, *next;
947 bool changed = false;
948 basic_block first = single_succ (ENTRY_BLOCK_PTR);
949 tree param;
950 gimple stmt;
951 edge_iterator ei;
952
953 if (!suitable_for_tail_opt_p ())
954 return 0;
955 if (opt_tailcalls)
956 opt_tailcalls = suitable_for_tail_call_opt_p ();
957
958 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
959 {
960 /* Only traverse the normal exits, i.e. those that end with return
961 statement. */
962 stmt = last_stmt (e->src);
963
964 if (stmt
965 && gimple_code (stmt) == GIMPLE_RETURN)
966 find_tail_calls (e->src, &tailcalls);
967 }
968
969 /* Construct the phi nodes and accumulators if necessary. */
970 a_acc = m_acc = NULL_TREE;
971 for (act = tailcalls; act; act = act->next)
972 {
973 if (!act->tail_recursion)
974 continue;
975
976 if (!phis_constructed)
977 {
978 /* Ensure that there is only one predecessor of the block
979 or if there are existing degenerate PHI nodes. */
980 if (!single_pred_p (first)
981 || !gimple_seq_empty_p (phi_nodes (first)))
982 first = split_edge (single_succ_edge (ENTRY_BLOCK_PTR));
983
984 /* Copy the args if needed. */
985 for (param = DECL_ARGUMENTS (current_function_decl);
986 param;
987 param = DECL_CHAIN (param))
988 if (arg_needs_copy_p (param))
989 {
990 tree name = ssa_default_def (cfun, param);
991 tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name));
992 gimple phi;
993
994 set_ssa_default_def (cfun, param, new_name);
995 phi = create_phi_node (name, first);
996 add_phi_arg (phi, new_name, single_pred_edge (first),
997 EXPR_LOCATION (param));
998 }
999 phis_constructed = true;
1000 }
1001
1002 if (act->add && !a_acc)
1003 a_acc = create_tailcall_accumulator ("add_acc", first,
1004 integer_zero_node);
1005
1006 if (act->mult && !m_acc)
1007 m_acc = create_tailcall_accumulator ("mult_acc", first,
1008 integer_one_node);
1009 }
1010
1011 if (a_acc || m_acc)
1012 {
1013 /* When the tail call elimination using accumulators is performed,
1014 statements adding the accumulated value are inserted at all exits.
1015 This turns all other tail calls to non-tail ones. */
1016 opt_tailcalls = false;
1017 }
1018
1019 for (; tailcalls; tailcalls = next)
1020 {
1021 next = tailcalls->next;
1022 changed |= optimize_tail_call (tailcalls, opt_tailcalls);
1023 free (tailcalls);
1024 }
1025
1026 if (a_acc || m_acc)
1027 {
1028 /* Modify the remaining return statements. */
1029 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1030 {
1031 stmt = last_stmt (e->src);
1032
1033 if (stmt
1034 && gimple_code (stmt) == GIMPLE_RETURN)
1035 adjust_return_value (e->src, m_acc, a_acc);
1036 }
1037 }
1038
1039 if (changed)
1040 {
1041 /* We may have created new loops. Make them magically appear. */
1042 if (current_loops)
1043 loops_state_set (LOOPS_NEED_FIXUP);
1044 free_dominance_info (CDI_DOMINATORS);
1045 }
1046
1047 /* Add phi nodes for the virtual operands defined in the function to the
1048 header of the loop created by tail recursion elimination. Do so
1049 by triggering the SSA renamer. */
1050 if (phis_constructed)
1051 mark_virtual_operands_for_renaming (cfun);
1052
1053 if (changed)
1054 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
1055 return 0;
1056 }
1057
1058 static unsigned int
1059 execute_tail_recursion (void)
1060 {
1061 return tree_optimize_tail_calls_1 (false);
1062 }
1063
1064 static bool
1065 gate_tail_calls (void)
1066 {
1067 return flag_optimize_sibling_calls != 0 && dbg_cnt (tail_call);
1068 }
1069
1070 static unsigned int
1071 execute_tail_calls (void)
1072 {
1073 return tree_optimize_tail_calls_1 (true);
1074 }
1075
1076 namespace {
1077
1078 const pass_data pass_data_tail_recursion =
1079 {
1080 GIMPLE_PASS, /* type */
1081 "tailr", /* name */
1082 OPTGROUP_NONE, /* optinfo_flags */
1083 true, /* has_gate */
1084 true, /* has_execute */
1085 TV_NONE, /* tv_id */
1086 ( PROP_cfg | PROP_ssa ), /* properties_required */
1087 0, /* properties_provided */
1088 0, /* properties_destroyed */
1089 0, /* todo_flags_start */
1090 TODO_verify_ssa, /* todo_flags_finish */
1091 };
1092
1093 class pass_tail_recursion : public gimple_opt_pass
1094 {
1095 public:
1096 pass_tail_recursion (gcc::context *ctxt)
1097 : gimple_opt_pass (pass_data_tail_recursion, ctxt)
1098 {}
1099
1100 /* opt_pass methods: */
1101 opt_pass * clone () { return new pass_tail_recursion (m_ctxt); }
1102 bool gate () { return gate_tail_calls (); }
1103 unsigned int execute () { return execute_tail_recursion (); }
1104
1105 }; // class pass_tail_recursion
1106
1107 } // anon namespace
1108
1109 gimple_opt_pass *
1110 make_pass_tail_recursion (gcc::context *ctxt)
1111 {
1112 return new pass_tail_recursion (ctxt);
1113 }
1114
1115 namespace {
1116
1117 const pass_data pass_data_tail_calls =
1118 {
1119 GIMPLE_PASS, /* type */
1120 "tailc", /* name */
1121 OPTGROUP_NONE, /* optinfo_flags */
1122 true, /* has_gate */
1123 true, /* has_execute */
1124 TV_NONE, /* tv_id */
1125 ( PROP_cfg | PROP_ssa ), /* properties_required */
1126 0, /* properties_provided */
1127 0, /* properties_destroyed */
1128 0, /* todo_flags_start */
1129 TODO_verify_ssa, /* todo_flags_finish */
1130 };
1131
1132 class pass_tail_calls : public gimple_opt_pass
1133 {
1134 public:
1135 pass_tail_calls (gcc::context *ctxt)
1136 : gimple_opt_pass (pass_data_tail_calls, ctxt)
1137 {}
1138
1139 /* opt_pass methods: */
1140 bool gate () { return gate_tail_calls (); }
1141 unsigned int execute () { return execute_tail_calls (); }
1142
1143 }; // class pass_tail_calls
1144
1145 } // anon namespace
1146
1147 gimple_opt_pass *
1148 make_pass_tail_calls (gcc::context *ctxt)
1149 {
1150 return new pass_tail_calls (ctxt);
1151 }