passes.c (init_optimization_passes): Strip now incorrect comment.
[gcc.git] / gcc / tree-tailcall.c
1 /* Tail call optimization on trees.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "function.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
33 #include "diagnostic.h"
34 #include "except.h"
35 #include "tree-pass.h"
36 #include "flags.h"
37 #include "langhooks.h"
38 #include "dbgcnt.h"
39
40 /* The file implements the tail recursion elimination. It is also used to
41 analyze the tail calls in general, passing the results to the rtl level
42 where they are used for sibcall optimization.
43
44 In addition to the standard tail recursion elimination, we handle the most
45 trivial cases of making the call tail recursive by creating accumulators.
46 For example the following function
47
48 int sum (int n)
49 {
50 if (n > 0)
51 return n + sum (n - 1);
52 else
53 return 0;
54 }
55
56 is transformed into
57
58 int sum (int n)
59 {
60 int acc = 0;
61
62 while (n > 0)
63 acc += n--;
64
65 return acc;
66 }
67
68 To do this, we maintain two accumulators (a_acc and m_acc) that indicate
69 when we reach the return x statement, we should return a_acc + x * m_acc
70 instead. They are initially initialized to 0 and 1, respectively,
71 so the semantics of the function is obviously preserved. If we are
72 guaranteed that the value of the accumulator never change, we
73 omit the accumulator.
74
75 There are three cases how the function may exit. The first one is
76 handled in adjust_return_value, the other two in adjust_accumulator_values
77 (the second case is actually a special case of the third one and we
78 present it separately just for clarity):
79
80 1) Just return x, where x is not in any of the remaining special shapes.
81 We rewrite this to a gimple equivalent of return m_acc * x + a_acc.
82
83 2) return f (...), where f is the current function, is rewritten in a
84 classical tail-recursion elimination way, into assignment of arguments
85 and jump to the start of the function. Values of the accumulators
86 are unchanged.
87
88 3) return a + m * f(...), where a and m do not depend on call to f.
89 To preserve the semantics described before we want this to be rewritten
90 in such a way that we finally return
91
92 a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...).
93
94 I.e. we increase a_acc by a * m_acc, multiply m_acc by m and
95 eliminate the tail call to f. Special cases when the value is just
96 added or just multiplied are obtained by setting a = 0 or m = 1.
97
98 TODO -- it is possible to do similar tricks for other operations. */
99
100 /* A structure that describes the tailcall. */
101
102 struct tailcall
103 {
104 /* The iterator pointing to the call statement. */
105 gimple_stmt_iterator call_gsi;
106
107 /* True if it is a call to the current function. */
108 bool tail_recursion;
109
110 /* The return value of the caller is mult * f + add, where f is the return
111 value of the call. */
112 tree mult, add;
113
114 /* Next tailcall in the chain. */
115 struct tailcall *next;
116 };
117
118 /* The variables holding the value of multiplicative and additive
119 accumulator. */
120 static tree m_acc, a_acc;
121
122 static bool suitable_for_tail_opt_p (void);
123 static bool optimize_tail_call (struct tailcall *, bool);
124 static void eliminate_tail_call (struct tailcall *);
125 static void find_tail_calls (basic_block, struct tailcall **);
126
127 /* Returns false when the function is not suitable for tail call optimization
128 from some reason (e.g. if it takes variable number of arguments). */
129
130 static bool
131 suitable_for_tail_opt_p (void)
132 {
133 referenced_var_iterator rvi;
134 tree var;
135
136 if (cfun->stdarg)
137 return false;
138
139 /* No local variable nor structure field should be call-used. */
140 FOR_EACH_REFERENCED_VAR (var, rvi)
141 {
142 if (!is_global_var (var)
143 && is_call_used (var))
144 return false;
145 }
146
147 return true;
148 }
149 /* Returns false when the function is not suitable for tail call optimization
150 from some reason (e.g. if it takes variable number of arguments).
151 This test must pass in addition to suitable_for_tail_opt_p in order to make
152 tail call discovery happen. */
153
154 static bool
155 suitable_for_tail_call_opt_p (void)
156 {
157 tree param;
158
159 /* alloca (until we have stack slot life analysis) inhibits
160 sibling call optimizations, but not tail recursion. */
161 if (cfun->calls_alloca)
162 return false;
163
164 /* If we are using sjlj exceptions, we may need to add a call to
165 _Unwind_SjLj_Unregister at exit of the function. Which means
166 that we cannot do any sibcall transformations. */
167 if (USING_SJLJ_EXCEPTIONS && current_function_has_exception_handlers ())
168 return false;
169
170 /* Any function that calls setjmp might have longjmp called from
171 any called function. ??? We really should represent this
172 properly in the CFG so that this needn't be special cased. */
173 if (cfun->calls_setjmp)
174 return false;
175
176 /* ??? It is OK if the argument of a function is taken in some cases,
177 but not in all cases. See PR15387 and PR19616. Revisit for 4.1. */
178 for (param = DECL_ARGUMENTS (current_function_decl);
179 param;
180 param = TREE_CHAIN (param))
181 if (TREE_ADDRESSABLE (param))
182 return false;
183
184 return true;
185 }
186
187 /* Checks whether the expression EXPR in stmt AT is independent of the
188 statement pointed to by GSI (in a sense that we already know EXPR's value
189 at GSI). We use the fact that we are only called from the chain of
190 basic blocks that have only single successor. Returns the expression
191 containing the value of EXPR at GSI. */
192
193 static tree
194 independent_of_stmt_p (tree expr, gimple at, gimple_stmt_iterator gsi)
195 {
196 basic_block bb, call_bb, at_bb;
197 edge e;
198 edge_iterator ei;
199
200 if (is_gimple_min_invariant (expr))
201 return expr;
202
203 if (TREE_CODE (expr) != SSA_NAME)
204 return NULL_TREE;
205
206 /* Mark the blocks in the chain leading to the end. */
207 at_bb = gimple_bb (at);
208 call_bb = gimple_bb (gsi_stmt (gsi));
209 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
210 bb->aux = &bb->aux;
211 bb->aux = &bb->aux;
212
213 while (1)
214 {
215 at = SSA_NAME_DEF_STMT (expr);
216 bb = gimple_bb (at);
217
218 /* The default definition or defined before the chain. */
219 if (!bb || !bb->aux)
220 break;
221
222 if (bb == call_bb)
223 {
224 for (; !gsi_end_p (gsi); gsi_next (&gsi))
225 if (gsi_stmt (gsi) == at)
226 break;
227
228 if (!gsi_end_p (gsi))
229 expr = NULL_TREE;
230 break;
231 }
232
233 if (gimple_code (at) != GIMPLE_PHI)
234 {
235 expr = NULL_TREE;
236 break;
237 }
238
239 FOR_EACH_EDGE (e, ei, bb->preds)
240 if (e->src->aux)
241 break;
242 gcc_assert (e);
243
244 expr = PHI_ARG_DEF_FROM_EDGE (at, e);
245 if (TREE_CODE (expr) != SSA_NAME)
246 {
247 /* The value is a constant. */
248 break;
249 }
250 }
251
252 /* Unmark the blocks. */
253 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
254 bb->aux = NULL;
255 bb->aux = NULL;
256
257 return expr;
258 }
259
260 /* Simulates the effect of an assignment STMT on the return value of the tail
261 recursive CALL passed in ASS_VAR. M and A are the multiplicative and the
262 additive factor for the real return value. */
263
264 static bool
265 process_assignment (gimple stmt, gimple_stmt_iterator call, tree *m,
266 tree *a, tree *ass_var)
267 {
268 tree op0, op1, non_ass_var;
269 tree dest = gimple_assign_lhs (stmt);
270 enum tree_code code = gimple_assign_rhs_code (stmt);
271 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
272 tree src_var = gimple_assign_rhs1 (stmt);
273
274 /* See if this is a simple copy operation of an SSA name to the function
275 result. In that case we may have a simple tail call. Ignore type
276 conversions that can never produce extra code between the function
277 call and the function return. */
278 if ((rhs_class == GIMPLE_SINGLE_RHS || gimple_assign_cast_p (stmt))
279 && (TREE_CODE (src_var) == SSA_NAME))
280 {
281 /* Reject a tailcall if the type conversion might need
282 additional code. */
283 if (gimple_assign_cast_p (stmt)
284 && TYPE_MODE (TREE_TYPE (dest)) != TYPE_MODE (TREE_TYPE (src_var)))
285 return false;
286
287 if (src_var != *ass_var)
288 return false;
289
290 *ass_var = dest;
291 return true;
292 }
293
294 if (rhs_class != GIMPLE_BINARY_RHS)
295 return false;
296
297 /* Accumulator optimizations will reverse the order of operations.
298 We can only do that for floating-point types if we're assuming
299 that addition and multiplication are associative. */
300 if (!flag_associative_math)
301 if (FLOAT_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
302 return false;
303
304 /* We only handle the code like
305
306 x = call ();
307 y = m * x;
308 z = y + a;
309 return z;
310
311 TODO -- Extend it for cases where the linear transformation of the output
312 is expressed in a more complicated way. */
313
314 op0 = gimple_assign_rhs1 (stmt);
315 op1 = gimple_assign_rhs2 (stmt);
316
317 if (op0 == *ass_var
318 && (non_ass_var = independent_of_stmt_p (op1, stmt, call)))
319 ;
320 else if (op1 == *ass_var
321 && (non_ass_var = independent_of_stmt_p (op0, stmt, call)))
322 ;
323 else
324 return false;
325
326 switch (code)
327 {
328 case PLUS_EXPR:
329 /* There should be no previous addition. TODO -- it should be fairly
330 straightforward to lift this restriction -- just allow storing
331 more complicated expressions in *A, and gimplify it in
332 adjust_accumulator_values. */
333 if (*a)
334 return false;
335 *a = non_ass_var;
336 *ass_var = dest;
337 return true;
338
339 case MULT_EXPR:
340 /* Similar remark applies here. Handling multiplication after addition
341 is just slightly more complicated -- we need to multiply both *A and
342 *M. */
343 if (*a || *m)
344 return false;
345 *m = non_ass_var;
346 *ass_var = dest;
347 return true;
348
349 /* TODO -- Handle other codes (NEGATE_EXPR, MINUS_EXPR,
350 POINTER_PLUS_EXPR). */
351
352 default:
353 return false;
354 }
355 }
356
357 /* Propagate VAR through phis on edge E. */
358
359 static tree
360 propagate_through_phis (tree var, edge e)
361 {
362 basic_block dest = e->dest;
363 gimple_stmt_iterator gsi;
364
365 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
366 {
367 gimple phi = gsi_stmt (gsi);
368 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var)
369 return PHI_RESULT (phi);
370 }
371 return var;
372 }
373
374 /* Finds tailcalls falling into basic block BB. The list of found tailcalls is
375 added to the start of RET. */
376
377 static void
378 find_tail_calls (basic_block bb, struct tailcall **ret)
379 {
380 tree ass_var = NULL_TREE, ret_var, func, param;
381 gimple stmt, call = NULL;
382 gimple_stmt_iterator gsi, agsi;
383 bool tail_recursion;
384 struct tailcall *nw;
385 edge e;
386 tree m, a;
387 basic_block abb;
388 size_t idx;
389
390 if (!single_succ_p (bb))
391 return;
392
393 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
394 {
395 stmt = gsi_stmt (gsi);
396
397 /* Ignore labels. */
398 if (gimple_code (stmt) == GIMPLE_LABEL)
399 continue;
400
401 /* Check for a call. */
402 if (is_gimple_call (stmt))
403 {
404 call = stmt;
405 ass_var = gimple_call_lhs (stmt);
406 break;
407 }
408
409 /* If the statement references memory or volatile operands, fail. */
410 if (gimple_references_memory_p (stmt)
411 || gimple_has_volatile_ops (stmt))
412 return;
413 }
414
415 if (gsi_end_p (gsi))
416 {
417 edge_iterator ei;
418 /* Recurse to the predecessors. */
419 FOR_EACH_EDGE (e, ei, bb->preds)
420 find_tail_calls (e->src, ret);
421
422 return;
423 }
424
425 /* If the LHS of our call is not just a simple register, we can't
426 transform this into a tail or sibling call. This situation happens,
427 in (e.g.) "*p = foo()" where foo returns a struct. In this case
428 we won't have a temporary here, but we need to carry out the side
429 effect anyway, so tailcall is impossible.
430
431 ??? In some situations (when the struct is returned in memory via
432 invisible argument) we could deal with this, e.g. by passing 'p'
433 itself as that argument to foo, but it's too early to do this here,
434 and expand_call() will not handle it anyway. If it ever can, then
435 we need to revisit this here, to allow that situation. */
436 if (ass_var && !is_gimple_reg (ass_var))
437 return;
438
439 /* We found the call, check whether it is suitable. */
440 tail_recursion = false;
441 func = gimple_call_fndecl (call);
442 if (func == current_function_decl)
443 {
444 tree arg;
445 for (param = DECL_ARGUMENTS (func), idx = 0;
446 param && idx < gimple_call_num_args (call);
447 param = TREE_CHAIN (param), idx ++)
448 {
449 arg = gimple_call_arg (call, idx);
450 if (param != arg)
451 {
452 /* Make sure there are no problems with copying. The parameter
453 have a copyable type and the two arguments must have reasonably
454 equivalent types. The latter requirement could be relaxed if
455 we emitted a suitable type conversion statement. */
456 if (!is_gimple_reg_type (TREE_TYPE (param))
457 || !useless_type_conversion_p (TREE_TYPE (param),
458 TREE_TYPE (arg)))
459 break;
460
461 /* The parameter should be a real operand, so that phi node
462 created for it at the start of the function has the meaning
463 of copying the value. This test implies is_gimple_reg_type
464 from the previous condition, however this one could be
465 relaxed by being more careful with copying the new value
466 of the parameter (emitting appropriate GIMPLE_ASSIGN and
467 updating the virtual operands). */
468 if (!is_gimple_reg (param))
469 break;
470 }
471 }
472 if (idx == gimple_call_num_args (call) && !param)
473 tail_recursion = true;
474 }
475
476 /* Now check the statements after the call. None of them has virtual
477 operands, so they may only depend on the call through its return
478 value. The return value should also be dependent on each of them,
479 since we are running after dce. */
480 m = NULL_TREE;
481 a = NULL_TREE;
482
483 abb = bb;
484 agsi = gsi;
485 while (1)
486 {
487 gsi_next (&agsi);
488
489 while (gsi_end_p (agsi))
490 {
491 ass_var = propagate_through_phis (ass_var, single_succ_edge (abb));
492 abb = single_succ (abb);
493 agsi = gsi_start_bb (abb);
494 }
495
496 stmt = gsi_stmt (agsi);
497
498 if (gimple_code (stmt) == GIMPLE_LABEL)
499 continue;
500
501 if (gimple_code (stmt) == GIMPLE_RETURN)
502 break;
503
504 if (gimple_code (stmt) != GIMPLE_ASSIGN)
505 return;
506
507 /* This is a gimple assign. */
508 if (! process_assignment (stmt, gsi, &m, &a, &ass_var))
509 return;
510 }
511
512 /* See if this is a tail call we can handle. */
513 ret_var = gimple_return_retval (stmt);
514
515 /* We may proceed if there either is no return value, or the return value
516 is identical to the call's return. */
517 if (ret_var
518 && (ret_var != ass_var))
519 return;
520
521 /* If this is not a tail recursive call, we cannot handle addends or
522 multiplicands. */
523 if (!tail_recursion && (m || a))
524 return;
525
526 nw = XNEW (struct tailcall);
527
528 nw->call_gsi = gsi;
529
530 nw->tail_recursion = tail_recursion;
531
532 nw->mult = m;
533 nw->add = a;
534
535 nw->next = *ret;
536 *ret = nw;
537 }
538
539 /* Helper to insert PHI_ARGH to the phi of VAR in the destination of edge E. */
540
541 static void
542 add_successor_phi_arg (edge e, tree var, tree phi_arg)
543 {
544 gimple_stmt_iterator gsi;
545
546 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
547 if (PHI_RESULT (gsi_stmt (gsi)) == var)
548 break;
549
550 gcc_assert (!gsi_end_p (gsi));
551 add_phi_arg (gsi_stmt (gsi), phi_arg, e);
552 }
553
554 /* Creates a GIMPLE statement which computes the operation specified by
555 CODE, OP0 and OP1 to a new variable with name LABEL and inserts the
556 statement in the position specified by GSI and UPDATE. Returns the
557 tree node of the statement's result. */
558
559 static tree
560 adjust_return_value_with_ops (enum tree_code code, const char *label,
561 tree op0, tree op1, gimple_stmt_iterator gsi,
562 enum gsi_iterator_update update)
563 {
564
565 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
566 tree tmp = create_tmp_var (ret_type, label);
567 gimple stmt = gimple_build_assign_with_ops (code, tmp, op0, op1);
568 tree result;
569
570 add_referenced_var (tmp);
571 result = make_ssa_name (tmp, stmt);
572 gimple_assign_set_lhs (stmt, result);
573 update_stmt (stmt);
574 gsi_insert_before (&gsi, stmt, update);
575 return result;
576 }
577
578 /* Creates a new GIMPLE statement that adjusts the value of accumulator ACC by
579 the computation specified by CODE and OP1 and insert the statement
580 at the position specified by GSI as a new statement. Returns new SSA name
581 of updated accumulator. */
582
583 static tree
584 update_accumulator_with_ops (enum tree_code code, tree acc, tree op1,
585 gimple_stmt_iterator gsi)
586 {
587 gimple stmt = gimple_build_assign_with_ops (code, SSA_NAME_VAR (acc), acc,
588 op1);
589 tree var = make_ssa_name (SSA_NAME_VAR (acc), stmt);
590 gimple_assign_set_lhs (stmt, var);
591 update_stmt (stmt);
592 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
593 return var;
594 }
595
596 /* Adjust the accumulator values according to A and M after GSI, and update
597 the phi nodes on edge BACK. */
598
599 static void
600 adjust_accumulator_values (gimple_stmt_iterator gsi, tree m, tree a, edge back)
601 {
602 tree var, a_acc_arg = a_acc, m_acc_arg = m_acc;
603
604 if (a)
605 {
606 if (m_acc)
607 {
608 if (integer_onep (a))
609 var = m_acc;
610 else
611 var = adjust_return_value_with_ops (MULT_EXPR, "acc_tmp", m_acc,
612 a, gsi, GSI_NEW_STMT);
613 }
614 else
615 var = a;
616
617 a_acc_arg = update_accumulator_with_ops (PLUS_EXPR, a_acc, var, gsi);
618 }
619
620 if (m)
621 m_acc_arg = update_accumulator_with_ops (MULT_EXPR, m_acc, m, gsi);
622
623 if (a_acc)
624 add_successor_phi_arg (back, a_acc, a_acc_arg);
625
626 if (m_acc)
627 add_successor_phi_arg (back, m_acc, m_acc_arg);
628 }
629
630 /* Adjust value of the return at the end of BB according to M and A
631 accumulators. */
632
633 static void
634 adjust_return_value (basic_block bb, tree m, tree a)
635 {
636 tree retval;
637 gimple ret_stmt = gimple_seq_last_stmt (bb_seq (bb));
638 gimple_stmt_iterator gsi = gsi_last_bb (bb);
639
640 gcc_assert (gimple_code (ret_stmt) == GIMPLE_RETURN);
641
642 retval = gimple_return_retval (ret_stmt);
643 if (!retval || retval == error_mark_node)
644 return;
645
646 if (m)
647 retval = adjust_return_value_with_ops (MULT_EXPR, "mul_tmp", m_acc, retval,
648 gsi, GSI_SAME_STMT);
649 if (a)
650 retval = adjust_return_value_with_ops (PLUS_EXPR, "acc_tmp", a_acc, retval,
651 gsi, GSI_SAME_STMT);
652 gimple_return_set_retval (ret_stmt, retval);
653 update_stmt (ret_stmt);
654 }
655
656 /* Subtract COUNT and FREQUENCY from the basic block and it's
657 outgoing edge. */
658 static void
659 decrease_profile (basic_block bb, gcov_type count, int frequency)
660 {
661 edge e;
662 bb->count -= count;
663 if (bb->count < 0)
664 bb->count = 0;
665 bb->frequency -= frequency;
666 if (bb->frequency < 0)
667 bb->frequency = 0;
668 if (!single_succ_p (bb))
669 {
670 gcc_assert (!EDGE_COUNT (bb->succs));
671 return;
672 }
673 e = single_succ_edge (bb);
674 e->count -= count;
675 if (e->count < 0)
676 e->count = 0;
677 }
678
679 /* Returns true if argument PARAM of the tail recursive call needs to be copied
680 when the call is eliminated. */
681
682 static bool
683 arg_needs_copy_p (tree param)
684 {
685 tree def;
686
687 if (!is_gimple_reg (param) || !var_ann (param))
688 return false;
689
690 /* Parameters that are only defined but never used need not be copied. */
691 def = gimple_default_def (cfun, param);
692 if (!def)
693 return false;
694
695 return true;
696 }
697
698 /* Eliminates tail call described by T. TMP_VARS is a list of
699 temporary variables used to copy the function arguments. */
700
701 static void
702 eliminate_tail_call (struct tailcall *t)
703 {
704 tree param, rslt;
705 gimple stmt, call;
706 tree arg;
707 size_t idx;
708 basic_block bb, first;
709 edge e;
710 gimple phi;
711 gimple_stmt_iterator gsi;
712 gimple orig_stmt;
713
714 stmt = orig_stmt = gsi_stmt (t->call_gsi);
715 bb = gsi_bb (t->call_gsi);
716
717 if (dump_file && (dump_flags & TDF_DETAILS))
718 {
719 fprintf (dump_file, "Eliminated tail recursion in bb %d : ",
720 bb->index);
721 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
722 fprintf (dump_file, "\n");
723 }
724
725 gcc_assert (is_gimple_call (stmt));
726
727 first = single_succ (ENTRY_BLOCK_PTR);
728
729 /* Remove the code after call_gsi that will become unreachable. The
730 possibly unreachable code in other blocks is removed later in
731 cfg cleanup. */
732 gsi = t->call_gsi;
733 gsi_next (&gsi);
734 while (!gsi_end_p (gsi))
735 {
736 gimple t = gsi_stmt (gsi);
737 /* Do not remove the return statement, so that redirect_edge_and_branch
738 sees how the block ends. */
739 if (gimple_code (t) == GIMPLE_RETURN)
740 break;
741
742 gsi_remove (&gsi, true);
743 release_defs (t);
744 }
745
746 /* Number of executions of function has reduced by the tailcall. */
747 e = single_succ_edge (gsi_bb (t->call_gsi));
748 decrease_profile (EXIT_BLOCK_PTR, e->count, EDGE_FREQUENCY (e));
749 decrease_profile (ENTRY_BLOCK_PTR, e->count, EDGE_FREQUENCY (e));
750 if (e->dest != EXIT_BLOCK_PTR)
751 decrease_profile (e->dest, e->count, EDGE_FREQUENCY (e));
752
753 /* Replace the call by a jump to the start of function. */
754 e = redirect_edge_and_branch (single_succ_edge (gsi_bb (t->call_gsi)),
755 first);
756 gcc_assert (e);
757 PENDING_STMT (e) = NULL;
758
759 /* Add phi node entries for arguments. The ordering of the phi nodes should
760 be the same as the ordering of the arguments. */
761 for (param = DECL_ARGUMENTS (current_function_decl),
762 idx = 0, gsi = gsi_start_phis (first);
763 param;
764 param = TREE_CHAIN (param), idx++)
765 {
766 if (!arg_needs_copy_p (param))
767 continue;
768
769 arg = gimple_call_arg (stmt, idx);
770 phi = gsi_stmt (gsi);
771 gcc_assert (param == SSA_NAME_VAR (PHI_RESULT (phi)));
772
773 add_phi_arg (phi, arg, e);
774 gsi_next (&gsi);
775 }
776
777 /* Update the values of accumulators. */
778 adjust_accumulator_values (t->call_gsi, t->mult, t->add, e);
779
780 call = gsi_stmt (t->call_gsi);
781 rslt = gimple_call_lhs (call);
782 if (rslt != NULL_TREE)
783 {
784 /* Result of the call will no longer be defined. So adjust the
785 SSA_NAME_DEF_STMT accordingly. */
786 SSA_NAME_DEF_STMT (rslt) = gimple_build_nop ();
787 }
788
789 gsi_remove (&t->call_gsi, true);
790 release_defs (call);
791 }
792
793 /* Add phi nodes for the virtual operands defined in the function to the
794 header of the loop created by tail recursion elimination.
795
796 Originally, we used to add phi nodes only for call clobbered variables,
797 as the value of the non-call clobbered ones obviously cannot be used
798 or changed within the recursive call. However, the local variables
799 from multiple calls now share the same location, so the virtual ssa form
800 requires us to say that the location dies on further iterations of the loop,
801 which requires adding phi nodes.
802 */
803 static void
804 add_virtual_phis (void)
805 {
806 referenced_var_iterator rvi;
807 tree var;
808
809 /* The problematic part is that there is no way how to know what
810 to put into phi nodes (there in fact does not have to be such
811 ssa name available). A solution would be to have an artificial
812 use/kill for all virtual operands in EXIT node. Unless we have
813 this, we cannot do much better than to rebuild the ssa form for
814 possibly affected virtual ssa names from scratch. */
815
816 FOR_EACH_REFERENCED_VAR (var, rvi)
817 {
818 if (!is_gimple_reg (var) && gimple_default_def (cfun, var) != NULL_TREE)
819 mark_sym_for_renaming (var);
820 }
821 }
822
823 /* Optimizes the tailcall described by T. If OPT_TAILCALLS is true, also
824 mark the tailcalls for the sibcall optimization. */
825
826 static bool
827 optimize_tail_call (struct tailcall *t, bool opt_tailcalls)
828 {
829 if (t->tail_recursion)
830 {
831 eliminate_tail_call (t);
832 return true;
833 }
834
835 if (opt_tailcalls)
836 {
837 gimple stmt = gsi_stmt (t->call_gsi);
838
839 gimple_call_set_tail (stmt, true);
840 if (dump_file && (dump_flags & TDF_DETAILS))
841 {
842 fprintf (dump_file, "Found tail call ");
843 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
844 fprintf (dump_file, " in bb %i\n", (gsi_bb (t->call_gsi))->index);
845 }
846 }
847
848 return false;
849 }
850
851 /* Creates a tail-call accumulator of the same type as the return type of the
852 current function. LABEL is the name used to creating the temporary
853 variable for the accumulator. The accumulator will be inserted in the
854 phis of a basic block BB with single predecessor with an initial value
855 INIT converted to the current function return type. */
856
857 static tree
858 create_tailcall_accumulator (const char *label, basic_block bb, tree init)
859 {
860 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
861 tree tmp = create_tmp_var (ret_type, label);
862 gimple phi;
863
864 add_referenced_var (tmp);
865 phi = create_phi_node (tmp, bb);
866 /* RET_TYPE can be a float when -ffast-maths is enabled. */
867 add_phi_arg (phi, fold_convert (ret_type, init), single_pred_edge (bb));
868 return PHI_RESULT (phi);
869 }
870
871 /* Optimizes tail calls in the function, turning the tail recursion
872 into iteration. */
873
874 static unsigned int
875 tree_optimize_tail_calls_1 (bool opt_tailcalls)
876 {
877 edge e;
878 bool phis_constructed = false;
879 struct tailcall *tailcalls = NULL, *act, *next;
880 bool changed = false;
881 basic_block first = single_succ (ENTRY_BLOCK_PTR);
882 tree param;
883 gimple stmt;
884 edge_iterator ei;
885
886 if (!suitable_for_tail_opt_p ())
887 return 0;
888 if (opt_tailcalls)
889 opt_tailcalls = suitable_for_tail_call_opt_p ();
890
891 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
892 {
893 /* Only traverse the normal exits, i.e. those that end with return
894 statement. */
895 stmt = last_stmt (e->src);
896
897 if (stmt
898 && gimple_code (stmt) == GIMPLE_RETURN)
899 find_tail_calls (e->src, &tailcalls);
900 }
901
902 /* Construct the phi nodes and accumulators if necessary. */
903 a_acc = m_acc = NULL_TREE;
904 for (act = tailcalls; act; act = act->next)
905 {
906 if (!act->tail_recursion)
907 continue;
908
909 if (!phis_constructed)
910 {
911 /* Ensure that there is only one predecessor of the block
912 or if there are existing degenerate PHI nodes. */
913 if (!single_pred_p (first)
914 || !gimple_seq_empty_p (phi_nodes (first)))
915 first = split_edge (single_succ_edge (ENTRY_BLOCK_PTR));
916
917 /* Copy the args if needed. */
918 for (param = DECL_ARGUMENTS (current_function_decl);
919 param;
920 param = TREE_CHAIN (param))
921 if (arg_needs_copy_p (param))
922 {
923 tree name = gimple_default_def (cfun, param);
924 tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name));
925 gimple phi;
926
927 set_default_def (param, new_name);
928 phi = create_phi_node (name, first);
929 SSA_NAME_DEF_STMT (name) = phi;
930 add_phi_arg (phi, new_name, single_pred_edge (first));
931 }
932 phis_constructed = true;
933 }
934
935 if (act->add && !a_acc)
936 a_acc = create_tailcall_accumulator ("add_acc", first,
937 integer_zero_node);
938
939 if (act->mult && !m_acc)
940 m_acc = create_tailcall_accumulator ("mult_acc", first,
941 integer_one_node);
942 }
943
944 for (; tailcalls; tailcalls = next)
945 {
946 next = tailcalls->next;
947 changed |= optimize_tail_call (tailcalls, opt_tailcalls);
948 free (tailcalls);
949 }
950
951 if (a_acc || m_acc)
952 {
953 /* Modify the remaining return statements. */
954 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
955 {
956 stmt = last_stmt (e->src);
957
958 if (stmt
959 && gimple_code (stmt) == GIMPLE_RETURN)
960 adjust_return_value (e->src, m_acc, a_acc);
961 }
962 }
963
964 if (changed)
965 free_dominance_info (CDI_DOMINATORS);
966
967 if (phis_constructed)
968 add_virtual_phis ();
969 if (changed)
970 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
971 return 0;
972 }
973
974 static unsigned int
975 execute_tail_recursion (void)
976 {
977 return tree_optimize_tail_calls_1 (false);
978 }
979
980 static bool
981 gate_tail_calls (void)
982 {
983 return flag_optimize_sibling_calls != 0 && dbg_cnt (tail_call);
984 }
985
986 static unsigned int
987 execute_tail_calls (void)
988 {
989 return tree_optimize_tail_calls_1 (true);
990 }
991
992 struct gimple_opt_pass pass_tail_recursion =
993 {
994 {
995 GIMPLE_PASS,
996 "tailr", /* name */
997 gate_tail_calls, /* gate */
998 execute_tail_recursion, /* execute */
999 NULL, /* sub */
1000 NULL, /* next */
1001 0, /* static_pass_number */
1002 TV_NONE, /* tv_id */
1003 PROP_cfg | PROP_ssa, /* properties_required */
1004 0, /* properties_provided */
1005 0, /* properties_destroyed */
1006 0, /* todo_flags_start */
1007 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1008 }
1009 };
1010
1011 struct gimple_opt_pass pass_tail_calls =
1012 {
1013 {
1014 GIMPLE_PASS,
1015 "tailc", /* name */
1016 gate_tail_calls, /* gate */
1017 execute_tail_calls, /* execute */
1018 NULL, /* sub */
1019 NULL, /* next */
1020 0, /* static_pass_number */
1021 TV_NONE, /* tv_id */
1022 PROP_cfg | PROP_ssa, /* properties_required */
1023 0, /* properties_provided */
1024 0, /* properties_destroyed */
1025 0, /* todo_flags_start */
1026 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1027 }
1028 };