gimple-walk.h: New File.
[gcc.git] / gcc / tree-tailcall.c
1 /* Tail call optimization on trees.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "basic-block.h"
27 #include "function.h"
28 #include "gimplify.h"
29 #include "gimple-iterator.h"
30 #include "gimple-ssa.h"
31 #include "tree-cfg.h"
32 #include "tree-phinodes.h"
33 #include "tree-ssanames.h"
34 #include "tree-into-ssa.h"
35 #include "tree-dfa.h"
36 #include "gimple-pretty-print.h"
37 #include "except.h"
38 #include "tree-pass.h"
39 #include "flags.h"
40 #include "langhooks.h"
41 #include "dbgcnt.h"
42 #include "target.h"
43 #include "cfgloop.h"
44 #include "common/common-target.h"
45 #include "ipa-utils.h"
46
47 /* The file implements the tail recursion elimination. It is also used to
48 analyze the tail calls in general, passing the results to the rtl level
49 where they are used for sibcall optimization.
50
51 In addition to the standard tail recursion elimination, we handle the most
52 trivial cases of making the call tail recursive by creating accumulators.
53 For example the following function
54
55 int sum (int n)
56 {
57 if (n > 0)
58 return n + sum (n - 1);
59 else
60 return 0;
61 }
62
63 is transformed into
64
65 int sum (int n)
66 {
67 int acc = 0;
68
69 while (n > 0)
70 acc += n--;
71
72 return acc;
73 }
74
75 To do this, we maintain two accumulators (a_acc and m_acc) that indicate
76 when we reach the return x statement, we should return a_acc + x * m_acc
77 instead. They are initially initialized to 0 and 1, respectively,
78 so the semantics of the function is obviously preserved. If we are
79 guaranteed that the value of the accumulator never change, we
80 omit the accumulator.
81
82 There are three cases how the function may exit. The first one is
83 handled in adjust_return_value, the other two in adjust_accumulator_values
84 (the second case is actually a special case of the third one and we
85 present it separately just for clarity):
86
87 1) Just return x, where x is not in any of the remaining special shapes.
88 We rewrite this to a gimple equivalent of return m_acc * x + a_acc.
89
90 2) return f (...), where f is the current function, is rewritten in a
91 classical tail-recursion elimination way, into assignment of arguments
92 and jump to the start of the function. Values of the accumulators
93 are unchanged.
94
95 3) return a + m * f(...), where a and m do not depend on call to f.
96 To preserve the semantics described before we want this to be rewritten
97 in such a way that we finally return
98
99 a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...).
100
101 I.e. we increase a_acc by a * m_acc, multiply m_acc by m and
102 eliminate the tail call to f. Special cases when the value is just
103 added or just multiplied are obtained by setting a = 0 or m = 1.
104
105 TODO -- it is possible to do similar tricks for other operations. */
106
107 /* A structure that describes the tailcall. */
108
109 struct tailcall
110 {
111 /* The iterator pointing to the call statement. */
112 gimple_stmt_iterator call_gsi;
113
114 /* True if it is a call to the current function. */
115 bool tail_recursion;
116
117 /* The return value of the caller is mult * f + add, where f is the return
118 value of the call. */
119 tree mult, add;
120
121 /* Next tailcall in the chain. */
122 struct tailcall *next;
123 };
124
125 /* The variables holding the value of multiplicative and additive
126 accumulator. */
127 static tree m_acc, a_acc;
128
129 static bool suitable_for_tail_opt_p (void);
130 static bool optimize_tail_call (struct tailcall *, bool);
131 static void eliminate_tail_call (struct tailcall *);
132 static void find_tail_calls (basic_block, struct tailcall **);
133
134 /* Returns false when the function is not suitable for tail call optimization
135 from some reason (e.g. if it takes variable number of arguments). */
136
137 static bool
138 suitable_for_tail_opt_p (void)
139 {
140 if (cfun->stdarg)
141 return false;
142
143 return true;
144 }
145 /* Returns false when the function is not suitable for tail call optimization
146 from some reason (e.g. if it takes variable number of arguments).
147 This test must pass in addition to suitable_for_tail_opt_p in order to make
148 tail call discovery happen. */
149
150 static bool
151 suitable_for_tail_call_opt_p (void)
152 {
153 tree param;
154
155 /* alloca (until we have stack slot life analysis) inhibits
156 sibling call optimizations, but not tail recursion. */
157 if (cfun->calls_alloca)
158 return false;
159
160 /* If we are using sjlj exceptions, we may need to add a call to
161 _Unwind_SjLj_Unregister at exit of the function. Which means
162 that we cannot do any sibcall transformations. */
163 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ
164 && current_function_has_exception_handlers ())
165 return false;
166
167 /* Any function that calls setjmp might have longjmp called from
168 any called function. ??? We really should represent this
169 properly in the CFG so that this needn't be special cased. */
170 if (cfun->calls_setjmp)
171 return false;
172
173 /* ??? It is OK if the argument of a function is taken in some cases,
174 but not in all cases. See PR15387 and PR19616. Revisit for 4.1. */
175 for (param = DECL_ARGUMENTS (current_function_decl);
176 param;
177 param = DECL_CHAIN (param))
178 if (TREE_ADDRESSABLE (param))
179 return false;
180
181 return true;
182 }
183
184 /* Checks whether the expression EXPR in stmt AT is independent of the
185 statement pointed to by GSI (in a sense that we already know EXPR's value
186 at GSI). We use the fact that we are only called from the chain of
187 basic blocks that have only single successor. Returns the expression
188 containing the value of EXPR at GSI. */
189
190 static tree
191 independent_of_stmt_p (tree expr, gimple at, gimple_stmt_iterator gsi)
192 {
193 basic_block bb, call_bb, at_bb;
194 edge e;
195 edge_iterator ei;
196
197 if (is_gimple_min_invariant (expr))
198 return expr;
199
200 if (TREE_CODE (expr) != SSA_NAME)
201 return NULL_TREE;
202
203 /* Mark the blocks in the chain leading to the end. */
204 at_bb = gimple_bb (at);
205 call_bb = gimple_bb (gsi_stmt (gsi));
206 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
207 bb->aux = &bb->aux;
208 bb->aux = &bb->aux;
209
210 while (1)
211 {
212 at = SSA_NAME_DEF_STMT (expr);
213 bb = gimple_bb (at);
214
215 /* The default definition or defined before the chain. */
216 if (!bb || !bb->aux)
217 break;
218
219 if (bb == call_bb)
220 {
221 for (; !gsi_end_p (gsi); gsi_next (&gsi))
222 if (gsi_stmt (gsi) == at)
223 break;
224
225 if (!gsi_end_p (gsi))
226 expr = NULL_TREE;
227 break;
228 }
229
230 if (gimple_code (at) != GIMPLE_PHI)
231 {
232 expr = NULL_TREE;
233 break;
234 }
235
236 FOR_EACH_EDGE (e, ei, bb->preds)
237 if (e->src->aux)
238 break;
239 gcc_assert (e);
240
241 expr = PHI_ARG_DEF_FROM_EDGE (at, e);
242 if (TREE_CODE (expr) != SSA_NAME)
243 {
244 /* The value is a constant. */
245 break;
246 }
247 }
248
249 /* Unmark the blocks. */
250 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
251 bb->aux = NULL;
252 bb->aux = NULL;
253
254 return expr;
255 }
256
257 /* Simulates the effect of an assignment STMT on the return value of the tail
258 recursive CALL passed in ASS_VAR. M and A are the multiplicative and the
259 additive factor for the real return value. */
260
261 static bool
262 process_assignment (gimple stmt, gimple_stmt_iterator call, tree *m,
263 tree *a, tree *ass_var)
264 {
265 tree op0, op1 = NULL_TREE, non_ass_var = NULL_TREE;
266 tree dest = gimple_assign_lhs (stmt);
267 enum tree_code code = gimple_assign_rhs_code (stmt);
268 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
269 tree src_var = gimple_assign_rhs1 (stmt);
270
271 /* See if this is a simple copy operation of an SSA name to the function
272 result. In that case we may have a simple tail call. Ignore type
273 conversions that can never produce extra code between the function
274 call and the function return. */
275 if ((rhs_class == GIMPLE_SINGLE_RHS || gimple_assign_cast_p (stmt))
276 && (TREE_CODE (src_var) == SSA_NAME))
277 {
278 /* Reject a tailcall if the type conversion might need
279 additional code. */
280 if (gimple_assign_cast_p (stmt)
281 && TYPE_MODE (TREE_TYPE (dest)) != TYPE_MODE (TREE_TYPE (src_var)))
282 return false;
283
284 if (src_var != *ass_var)
285 return false;
286
287 *ass_var = dest;
288 return true;
289 }
290
291 switch (rhs_class)
292 {
293 case GIMPLE_BINARY_RHS:
294 op1 = gimple_assign_rhs2 (stmt);
295
296 /* Fall through. */
297
298 case GIMPLE_UNARY_RHS:
299 op0 = gimple_assign_rhs1 (stmt);
300 break;
301
302 default:
303 return false;
304 }
305
306 /* Accumulator optimizations will reverse the order of operations.
307 We can only do that for floating-point types if we're assuming
308 that addition and multiplication are associative. */
309 if (!flag_associative_math)
310 if (FLOAT_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
311 return false;
312
313 if (rhs_class == GIMPLE_UNARY_RHS)
314 ;
315 else if (op0 == *ass_var
316 && (non_ass_var = independent_of_stmt_p (op1, stmt, call)))
317 ;
318 else if (op1 == *ass_var
319 && (non_ass_var = independent_of_stmt_p (op0, stmt, call)))
320 ;
321 else
322 return false;
323
324 switch (code)
325 {
326 case PLUS_EXPR:
327 *a = non_ass_var;
328 *ass_var = dest;
329 return true;
330
331 case POINTER_PLUS_EXPR:
332 if (op0 != *ass_var)
333 return false;
334 *a = non_ass_var;
335 *ass_var = dest;
336 return true;
337
338 case MULT_EXPR:
339 *m = non_ass_var;
340 *ass_var = dest;
341 return true;
342
343 case NEGATE_EXPR:
344 *m = build_minus_one_cst (TREE_TYPE (op0));
345 *ass_var = dest;
346 return true;
347
348 case MINUS_EXPR:
349 if (*ass_var == op0)
350 *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
351 else
352 {
353 *m = build_minus_one_cst (TREE_TYPE (non_ass_var));
354 *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
355 }
356
357 *ass_var = dest;
358 return true;
359
360 /* TODO -- Handle POINTER_PLUS_EXPR. */
361
362 default:
363 return false;
364 }
365 }
366
367 /* Propagate VAR through phis on edge E. */
368
369 static tree
370 propagate_through_phis (tree var, edge e)
371 {
372 basic_block dest = e->dest;
373 gimple_stmt_iterator gsi;
374
375 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
376 {
377 gimple phi = gsi_stmt (gsi);
378 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var)
379 return PHI_RESULT (phi);
380 }
381 return var;
382 }
383
384 /* Finds tailcalls falling into basic block BB. The list of found tailcalls is
385 added to the start of RET. */
386
387 static void
388 find_tail_calls (basic_block bb, struct tailcall **ret)
389 {
390 tree ass_var = NULL_TREE, ret_var, func, param;
391 gimple stmt, call = NULL;
392 gimple_stmt_iterator gsi, agsi;
393 bool tail_recursion;
394 struct tailcall *nw;
395 edge e;
396 tree m, a;
397 basic_block abb;
398 size_t idx;
399 tree var;
400
401 if (!single_succ_p (bb))
402 return;
403
404 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
405 {
406 stmt = gsi_stmt (gsi);
407
408 /* Ignore labels, returns, clobbers and debug stmts. */
409 if (gimple_code (stmt) == GIMPLE_LABEL
410 || gimple_code (stmt) == GIMPLE_RETURN
411 || gimple_clobber_p (stmt)
412 || is_gimple_debug (stmt))
413 continue;
414
415 /* Check for a call. */
416 if (is_gimple_call (stmt))
417 {
418 call = stmt;
419 ass_var = gimple_call_lhs (stmt);
420 break;
421 }
422
423 /* If the statement references memory or volatile operands, fail. */
424 if (gimple_references_memory_p (stmt)
425 || gimple_has_volatile_ops (stmt))
426 return;
427 }
428
429 if (gsi_end_p (gsi))
430 {
431 edge_iterator ei;
432 /* Recurse to the predecessors. */
433 FOR_EACH_EDGE (e, ei, bb->preds)
434 find_tail_calls (e->src, ret);
435
436 return;
437 }
438
439 /* If the LHS of our call is not just a simple register, we can't
440 transform this into a tail or sibling call. This situation happens,
441 in (e.g.) "*p = foo()" where foo returns a struct. In this case
442 we won't have a temporary here, but we need to carry out the side
443 effect anyway, so tailcall is impossible.
444
445 ??? In some situations (when the struct is returned in memory via
446 invisible argument) we could deal with this, e.g. by passing 'p'
447 itself as that argument to foo, but it's too early to do this here,
448 and expand_call() will not handle it anyway. If it ever can, then
449 we need to revisit this here, to allow that situation. */
450 if (ass_var && !is_gimple_reg (ass_var))
451 return;
452
453 /* We found the call, check whether it is suitable. */
454 tail_recursion = false;
455 func = gimple_call_fndecl (call);
456 if (func
457 && !DECL_BUILT_IN (func)
458 && recursive_call_p (current_function_decl, func))
459 {
460 tree arg;
461
462 for (param = DECL_ARGUMENTS (func), idx = 0;
463 param && idx < gimple_call_num_args (call);
464 param = DECL_CHAIN (param), idx ++)
465 {
466 arg = gimple_call_arg (call, idx);
467 if (param != arg)
468 {
469 /* Make sure there are no problems with copying. The parameter
470 have a copyable type and the two arguments must have reasonably
471 equivalent types. The latter requirement could be relaxed if
472 we emitted a suitable type conversion statement. */
473 if (!is_gimple_reg_type (TREE_TYPE (param))
474 || !useless_type_conversion_p (TREE_TYPE (param),
475 TREE_TYPE (arg)))
476 break;
477
478 /* The parameter should be a real operand, so that phi node
479 created for it at the start of the function has the meaning
480 of copying the value. This test implies is_gimple_reg_type
481 from the previous condition, however this one could be
482 relaxed by being more careful with copying the new value
483 of the parameter (emitting appropriate GIMPLE_ASSIGN and
484 updating the virtual operands). */
485 if (!is_gimple_reg (param))
486 break;
487 }
488 }
489 if (idx == gimple_call_num_args (call) && !param)
490 tail_recursion = true;
491 }
492
493 /* Make sure the tail invocation of this function does not refer
494 to local variables. */
495 FOR_EACH_LOCAL_DECL (cfun, idx, var)
496 {
497 if (TREE_CODE (var) != PARM_DECL
498 && auto_var_in_fn_p (var, cfun->decl)
499 && (ref_maybe_used_by_stmt_p (call, var)
500 || call_may_clobber_ref_p (call, var)))
501 return;
502 }
503
504 /* Now check the statements after the call. None of them has virtual
505 operands, so they may only depend on the call through its return
506 value. The return value should also be dependent on each of them,
507 since we are running after dce. */
508 m = NULL_TREE;
509 a = NULL_TREE;
510
511 abb = bb;
512 agsi = gsi;
513 while (1)
514 {
515 tree tmp_a = NULL_TREE;
516 tree tmp_m = NULL_TREE;
517 gsi_next (&agsi);
518
519 while (gsi_end_p (agsi))
520 {
521 ass_var = propagate_through_phis (ass_var, single_succ_edge (abb));
522 abb = single_succ (abb);
523 agsi = gsi_start_bb (abb);
524 }
525
526 stmt = gsi_stmt (agsi);
527
528 if (gimple_code (stmt) == GIMPLE_LABEL)
529 continue;
530
531 if (gimple_code (stmt) == GIMPLE_RETURN)
532 break;
533
534 if (gimple_clobber_p (stmt))
535 continue;
536
537 if (is_gimple_debug (stmt))
538 continue;
539
540 if (gimple_code (stmt) != GIMPLE_ASSIGN)
541 return;
542
543 /* This is a gimple assign. */
544 if (! process_assignment (stmt, gsi, &tmp_m, &tmp_a, &ass_var))
545 return;
546
547 if (tmp_a)
548 {
549 tree type = TREE_TYPE (tmp_a);
550 if (a)
551 a = fold_build2 (PLUS_EXPR, type, fold_convert (type, a), tmp_a);
552 else
553 a = tmp_a;
554 }
555 if (tmp_m)
556 {
557 tree type = TREE_TYPE (tmp_m);
558 if (m)
559 m = fold_build2 (MULT_EXPR, type, fold_convert (type, m), tmp_m);
560 else
561 m = tmp_m;
562
563 if (a)
564 a = fold_build2 (MULT_EXPR, type, fold_convert (type, a), tmp_m);
565 }
566 }
567
568 /* See if this is a tail call we can handle. */
569 ret_var = gimple_return_retval (stmt);
570
571 /* We may proceed if there either is no return value, or the return value
572 is identical to the call's return. */
573 if (ret_var
574 && (ret_var != ass_var))
575 return;
576
577 /* If this is not a tail recursive call, we cannot handle addends or
578 multiplicands. */
579 if (!tail_recursion && (m || a))
580 return;
581
582 /* For pointers only allow additions. */
583 if (m && POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
584 return;
585
586 nw = XNEW (struct tailcall);
587
588 nw->call_gsi = gsi;
589
590 nw->tail_recursion = tail_recursion;
591
592 nw->mult = m;
593 nw->add = a;
594
595 nw->next = *ret;
596 *ret = nw;
597 }
598
599 /* Helper to insert PHI_ARGH to the phi of VAR in the destination of edge E. */
600
601 static void
602 add_successor_phi_arg (edge e, tree var, tree phi_arg)
603 {
604 gimple_stmt_iterator gsi;
605
606 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
607 if (PHI_RESULT (gsi_stmt (gsi)) == var)
608 break;
609
610 gcc_assert (!gsi_end_p (gsi));
611 add_phi_arg (gsi_stmt (gsi), phi_arg, e, UNKNOWN_LOCATION);
612 }
613
614 /* Creates a GIMPLE statement which computes the operation specified by
615 CODE, ACC and OP1 to a new variable with name LABEL and inserts the
616 statement in the position specified by GSI. Returns the
617 tree node of the statement's result. */
618
619 static tree
620 adjust_return_value_with_ops (enum tree_code code, const char *label,
621 tree acc, tree op1, gimple_stmt_iterator gsi)
622 {
623
624 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
625 tree result = make_temp_ssa_name (ret_type, NULL, label);
626 gimple stmt;
627
628 if (POINTER_TYPE_P (ret_type))
629 {
630 gcc_assert (code == PLUS_EXPR && TREE_TYPE (acc) == sizetype);
631 code = POINTER_PLUS_EXPR;
632 }
633 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1))
634 && code != POINTER_PLUS_EXPR)
635 stmt = gimple_build_assign_with_ops (code, result, acc, op1);
636 else
637 {
638 tree tem;
639 if (code == POINTER_PLUS_EXPR)
640 tem = fold_build2 (code, TREE_TYPE (op1), op1, acc);
641 else
642 tem = fold_build2 (code, TREE_TYPE (op1),
643 fold_convert (TREE_TYPE (op1), acc), op1);
644 tree rhs = fold_convert (ret_type, tem);
645 rhs = force_gimple_operand_gsi (&gsi, rhs,
646 false, NULL, true, GSI_SAME_STMT);
647 stmt = gimple_build_assign (result, rhs);
648 }
649
650 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
651 return result;
652 }
653
654 /* Creates a new GIMPLE statement that adjusts the value of accumulator ACC by
655 the computation specified by CODE and OP1 and insert the statement
656 at the position specified by GSI as a new statement. Returns new SSA name
657 of updated accumulator. */
658
659 static tree
660 update_accumulator_with_ops (enum tree_code code, tree acc, tree op1,
661 gimple_stmt_iterator gsi)
662 {
663 gimple stmt;
664 tree var = copy_ssa_name (acc, NULL);
665 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1)))
666 stmt = gimple_build_assign_with_ops (code, var, acc, op1);
667 else
668 {
669 tree rhs = fold_convert (TREE_TYPE (acc),
670 fold_build2 (code,
671 TREE_TYPE (op1),
672 fold_convert (TREE_TYPE (op1), acc),
673 op1));
674 rhs = force_gimple_operand_gsi (&gsi, rhs,
675 false, NULL, false, GSI_CONTINUE_LINKING);
676 stmt = gimple_build_assign (var, rhs);
677 }
678 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
679 return var;
680 }
681
682 /* Adjust the accumulator values according to A and M after GSI, and update
683 the phi nodes on edge BACK. */
684
685 static void
686 adjust_accumulator_values (gimple_stmt_iterator gsi, tree m, tree a, edge back)
687 {
688 tree var, a_acc_arg, m_acc_arg;
689
690 if (m)
691 m = force_gimple_operand_gsi (&gsi, m, true, NULL, true, GSI_SAME_STMT);
692 if (a)
693 a = force_gimple_operand_gsi (&gsi, a, true, NULL, true, GSI_SAME_STMT);
694
695 a_acc_arg = a_acc;
696 m_acc_arg = m_acc;
697 if (a)
698 {
699 if (m_acc)
700 {
701 if (integer_onep (a))
702 var = m_acc;
703 else
704 var = adjust_return_value_with_ops (MULT_EXPR, "acc_tmp", m_acc,
705 a, gsi);
706 }
707 else
708 var = a;
709
710 a_acc_arg = update_accumulator_with_ops (PLUS_EXPR, a_acc, var, gsi);
711 }
712
713 if (m)
714 m_acc_arg = update_accumulator_with_ops (MULT_EXPR, m_acc, m, gsi);
715
716 if (a_acc)
717 add_successor_phi_arg (back, a_acc, a_acc_arg);
718
719 if (m_acc)
720 add_successor_phi_arg (back, m_acc, m_acc_arg);
721 }
722
723 /* Adjust value of the return at the end of BB according to M and A
724 accumulators. */
725
726 static void
727 adjust_return_value (basic_block bb, tree m, tree a)
728 {
729 tree retval;
730 gimple ret_stmt = gimple_seq_last_stmt (bb_seq (bb));
731 gimple_stmt_iterator gsi = gsi_last_bb (bb);
732
733 gcc_assert (gimple_code (ret_stmt) == GIMPLE_RETURN);
734
735 retval = gimple_return_retval (ret_stmt);
736 if (!retval || retval == error_mark_node)
737 return;
738
739 if (m)
740 retval = adjust_return_value_with_ops (MULT_EXPR, "mul_tmp", m_acc, retval,
741 gsi);
742 if (a)
743 retval = adjust_return_value_with_ops (PLUS_EXPR, "acc_tmp", a_acc, retval,
744 gsi);
745 gimple_return_set_retval (ret_stmt, retval);
746 update_stmt (ret_stmt);
747 }
748
749 /* Subtract COUNT and FREQUENCY from the basic block and it's
750 outgoing edge. */
751 static void
752 decrease_profile (basic_block bb, gcov_type count, int frequency)
753 {
754 edge e;
755 bb->count -= count;
756 if (bb->count < 0)
757 bb->count = 0;
758 bb->frequency -= frequency;
759 if (bb->frequency < 0)
760 bb->frequency = 0;
761 if (!single_succ_p (bb))
762 {
763 gcc_assert (!EDGE_COUNT (bb->succs));
764 return;
765 }
766 e = single_succ_edge (bb);
767 e->count -= count;
768 if (e->count < 0)
769 e->count = 0;
770 }
771
772 /* Returns true if argument PARAM of the tail recursive call needs to be copied
773 when the call is eliminated. */
774
775 static bool
776 arg_needs_copy_p (tree param)
777 {
778 tree def;
779
780 if (!is_gimple_reg (param))
781 return false;
782
783 /* Parameters that are only defined but never used need not be copied. */
784 def = ssa_default_def (cfun, param);
785 if (!def)
786 return false;
787
788 return true;
789 }
790
791 /* Eliminates tail call described by T. TMP_VARS is a list of
792 temporary variables used to copy the function arguments. */
793
794 static void
795 eliminate_tail_call (struct tailcall *t)
796 {
797 tree param, rslt;
798 gimple stmt, call;
799 tree arg;
800 size_t idx;
801 basic_block bb, first;
802 edge e;
803 gimple phi;
804 gimple_stmt_iterator gsi;
805 gimple orig_stmt;
806
807 stmt = orig_stmt = gsi_stmt (t->call_gsi);
808 bb = gsi_bb (t->call_gsi);
809
810 if (dump_file && (dump_flags & TDF_DETAILS))
811 {
812 fprintf (dump_file, "Eliminated tail recursion in bb %d : ",
813 bb->index);
814 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
815 fprintf (dump_file, "\n");
816 }
817
818 gcc_assert (is_gimple_call (stmt));
819
820 first = single_succ (ENTRY_BLOCK_PTR);
821
822 /* Remove the code after call_gsi that will become unreachable. The
823 possibly unreachable code in other blocks is removed later in
824 cfg cleanup. */
825 gsi = t->call_gsi;
826 gsi_next (&gsi);
827 while (!gsi_end_p (gsi))
828 {
829 gimple t = gsi_stmt (gsi);
830 /* Do not remove the return statement, so that redirect_edge_and_branch
831 sees how the block ends. */
832 if (gimple_code (t) == GIMPLE_RETURN)
833 break;
834
835 gsi_remove (&gsi, true);
836 release_defs (t);
837 }
838
839 /* Number of executions of function has reduced by the tailcall. */
840 e = single_succ_edge (gsi_bb (t->call_gsi));
841 decrease_profile (EXIT_BLOCK_PTR, e->count, EDGE_FREQUENCY (e));
842 decrease_profile (ENTRY_BLOCK_PTR, e->count, EDGE_FREQUENCY (e));
843 if (e->dest != EXIT_BLOCK_PTR)
844 decrease_profile (e->dest, e->count, EDGE_FREQUENCY (e));
845
846 /* Replace the call by a jump to the start of function. */
847 e = redirect_edge_and_branch (single_succ_edge (gsi_bb (t->call_gsi)),
848 first);
849 gcc_assert (e);
850 PENDING_STMT (e) = NULL;
851
852 /* Add phi node entries for arguments. The ordering of the phi nodes should
853 be the same as the ordering of the arguments. */
854 for (param = DECL_ARGUMENTS (current_function_decl),
855 idx = 0, gsi = gsi_start_phis (first);
856 param;
857 param = DECL_CHAIN (param), idx++)
858 {
859 if (!arg_needs_copy_p (param))
860 continue;
861
862 arg = gimple_call_arg (stmt, idx);
863 phi = gsi_stmt (gsi);
864 gcc_assert (param == SSA_NAME_VAR (PHI_RESULT (phi)));
865
866 add_phi_arg (phi, arg, e, gimple_location (stmt));
867 gsi_next (&gsi);
868 }
869
870 /* Update the values of accumulators. */
871 adjust_accumulator_values (t->call_gsi, t->mult, t->add, e);
872
873 call = gsi_stmt (t->call_gsi);
874 rslt = gimple_call_lhs (call);
875 if (rslt != NULL_TREE)
876 {
877 /* Result of the call will no longer be defined. So adjust the
878 SSA_NAME_DEF_STMT accordingly. */
879 SSA_NAME_DEF_STMT (rslt) = gimple_build_nop ();
880 }
881
882 gsi_remove (&t->call_gsi, true);
883 release_defs (call);
884 }
885
886 /* Optimizes the tailcall described by T. If OPT_TAILCALLS is true, also
887 mark the tailcalls for the sibcall optimization. */
888
889 static bool
890 optimize_tail_call (struct tailcall *t, bool opt_tailcalls)
891 {
892 if (t->tail_recursion)
893 {
894 eliminate_tail_call (t);
895 return true;
896 }
897
898 if (opt_tailcalls)
899 {
900 gimple stmt = gsi_stmt (t->call_gsi);
901
902 gimple_call_set_tail (stmt, true);
903 if (dump_file && (dump_flags & TDF_DETAILS))
904 {
905 fprintf (dump_file, "Found tail call ");
906 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
907 fprintf (dump_file, " in bb %i\n", (gsi_bb (t->call_gsi))->index);
908 }
909 }
910
911 return false;
912 }
913
914 /* Creates a tail-call accumulator of the same type as the return type of the
915 current function. LABEL is the name used to creating the temporary
916 variable for the accumulator. The accumulator will be inserted in the
917 phis of a basic block BB with single predecessor with an initial value
918 INIT converted to the current function return type. */
919
920 static tree
921 create_tailcall_accumulator (const char *label, basic_block bb, tree init)
922 {
923 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
924 if (POINTER_TYPE_P (ret_type))
925 ret_type = sizetype;
926
927 tree tmp = make_temp_ssa_name (ret_type, NULL, label);
928 gimple phi;
929
930 phi = create_phi_node (tmp, bb);
931 /* RET_TYPE can be a float when -ffast-maths is enabled. */
932 add_phi_arg (phi, fold_convert (ret_type, init), single_pred_edge (bb),
933 UNKNOWN_LOCATION);
934 return PHI_RESULT (phi);
935 }
936
937 /* Optimizes tail calls in the function, turning the tail recursion
938 into iteration. */
939
940 static unsigned int
941 tree_optimize_tail_calls_1 (bool opt_tailcalls)
942 {
943 edge e;
944 bool phis_constructed = false;
945 struct tailcall *tailcalls = NULL, *act, *next;
946 bool changed = false;
947 basic_block first = single_succ (ENTRY_BLOCK_PTR);
948 tree param;
949 gimple stmt;
950 edge_iterator ei;
951
952 if (!suitable_for_tail_opt_p ())
953 return 0;
954 if (opt_tailcalls)
955 opt_tailcalls = suitable_for_tail_call_opt_p ();
956
957 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
958 {
959 /* Only traverse the normal exits, i.e. those that end with return
960 statement. */
961 stmt = last_stmt (e->src);
962
963 if (stmt
964 && gimple_code (stmt) == GIMPLE_RETURN)
965 find_tail_calls (e->src, &tailcalls);
966 }
967
968 /* Construct the phi nodes and accumulators if necessary. */
969 a_acc = m_acc = NULL_TREE;
970 for (act = tailcalls; act; act = act->next)
971 {
972 if (!act->tail_recursion)
973 continue;
974
975 if (!phis_constructed)
976 {
977 /* Ensure that there is only one predecessor of the block
978 or if there are existing degenerate PHI nodes. */
979 if (!single_pred_p (first)
980 || !gimple_seq_empty_p (phi_nodes (first)))
981 first = split_edge (single_succ_edge (ENTRY_BLOCK_PTR));
982
983 /* Copy the args if needed. */
984 for (param = DECL_ARGUMENTS (current_function_decl);
985 param;
986 param = DECL_CHAIN (param))
987 if (arg_needs_copy_p (param))
988 {
989 tree name = ssa_default_def (cfun, param);
990 tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name));
991 gimple phi;
992
993 set_ssa_default_def (cfun, param, new_name);
994 phi = create_phi_node (name, first);
995 add_phi_arg (phi, new_name, single_pred_edge (first),
996 EXPR_LOCATION (param));
997 }
998 phis_constructed = true;
999 }
1000
1001 if (act->add && !a_acc)
1002 a_acc = create_tailcall_accumulator ("add_acc", first,
1003 integer_zero_node);
1004
1005 if (act->mult && !m_acc)
1006 m_acc = create_tailcall_accumulator ("mult_acc", first,
1007 integer_one_node);
1008 }
1009
1010 if (a_acc || m_acc)
1011 {
1012 /* When the tail call elimination using accumulators is performed,
1013 statements adding the accumulated value are inserted at all exits.
1014 This turns all other tail calls to non-tail ones. */
1015 opt_tailcalls = false;
1016 }
1017
1018 for (; tailcalls; tailcalls = next)
1019 {
1020 next = tailcalls->next;
1021 changed |= optimize_tail_call (tailcalls, opt_tailcalls);
1022 free (tailcalls);
1023 }
1024
1025 if (a_acc || m_acc)
1026 {
1027 /* Modify the remaining return statements. */
1028 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1029 {
1030 stmt = last_stmt (e->src);
1031
1032 if (stmt
1033 && gimple_code (stmt) == GIMPLE_RETURN)
1034 adjust_return_value (e->src, m_acc, a_acc);
1035 }
1036 }
1037
1038 if (changed)
1039 {
1040 /* We may have created new loops. Make them magically appear. */
1041 if (current_loops)
1042 loops_state_set (LOOPS_NEED_FIXUP);
1043 free_dominance_info (CDI_DOMINATORS);
1044 }
1045
1046 /* Add phi nodes for the virtual operands defined in the function to the
1047 header of the loop created by tail recursion elimination. Do so
1048 by triggering the SSA renamer. */
1049 if (phis_constructed)
1050 mark_virtual_operands_for_renaming (cfun);
1051
1052 if (changed)
1053 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
1054 return 0;
1055 }
1056
1057 static unsigned int
1058 execute_tail_recursion (void)
1059 {
1060 return tree_optimize_tail_calls_1 (false);
1061 }
1062
1063 static bool
1064 gate_tail_calls (void)
1065 {
1066 return flag_optimize_sibling_calls != 0 && dbg_cnt (tail_call);
1067 }
1068
1069 static unsigned int
1070 execute_tail_calls (void)
1071 {
1072 return tree_optimize_tail_calls_1 (true);
1073 }
1074
1075 namespace {
1076
1077 const pass_data pass_data_tail_recursion =
1078 {
1079 GIMPLE_PASS, /* type */
1080 "tailr", /* name */
1081 OPTGROUP_NONE, /* optinfo_flags */
1082 true, /* has_gate */
1083 true, /* has_execute */
1084 TV_NONE, /* tv_id */
1085 ( PROP_cfg | PROP_ssa ), /* properties_required */
1086 0, /* properties_provided */
1087 0, /* properties_destroyed */
1088 0, /* todo_flags_start */
1089 TODO_verify_ssa, /* todo_flags_finish */
1090 };
1091
1092 class pass_tail_recursion : public gimple_opt_pass
1093 {
1094 public:
1095 pass_tail_recursion (gcc::context *ctxt)
1096 : gimple_opt_pass (pass_data_tail_recursion, ctxt)
1097 {}
1098
1099 /* opt_pass methods: */
1100 opt_pass * clone () { return new pass_tail_recursion (m_ctxt); }
1101 bool gate () { return gate_tail_calls (); }
1102 unsigned int execute () { return execute_tail_recursion (); }
1103
1104 }; // class pass_tail_recursion
1105
1106 } // anon namespace
1107
1108 gimple_opt_pass *
1109 make_pass_tail_recursion (gcc::context *ctxt)
1110 {
1111 return new pass_tail_recursion (ctxt);
1112 }
1113
1114 namespace {
1115
1116 const pass_data pass_data_tail_calls =
1117 {
1118 GIMPLE_PASS, /* type */
1119 "tailc", /* name */
1120 OPTGROUP_NONE, /* optinfo_flags */
1121 true, /* has_gate */
1122 true, /* has_execute */
1123 TV_NONE, /* tv_id */
1124 ( PROP_cfg | PROP_ssa ), /* properties_required */
1125 0, /* properties_provided */
1126 0, /* properties_destroyed */
1127 0, /* todo_flags_start */
1128 TODO_verify_ssa, /* todo_flags_finish */
1129 };
1130
1131 class pass_tail_calls : public gimple_opt_pass
1132 {
1133 public:
1134 pass_tail_calls (gcc::context *ctxt)
1135 : gimple_opt_pass (pass_data_tail_calls, ctxt)
1136 {}
1137
1138 /* opt_pass methods: */
1139 bool gate () { return gate_tail_calls (); }
1140 unsigned int execute () { return execute_tail_calls (); }
1141
1142 }; // class pass_tail_calls
1143
1144 } // anon namespace
1145
1146 gimple_opt_pass *
1147 make_pass_tail_calls (gcc::context *ctxt)
1148 {
1149 return new pass_tail_calls (ctxt);
1150 }