tree-tailcall.c (process_assignment): Handle NEGATE_EXPR and MINUS_EXPR.
[gcc.git] / gcc / tree-tailcall.c
1 /* Tail call optimization on trees.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "function.h"
29 #include "tree-flow.h"
30 #include "tree-dump.h"
31 #include "gimple-pretty-print.h"
32 #include "except.h"
33 #include "tree-pass.h"
34 #include "flags.h"
35 #include "langhooks.h"
36 #include "dbgcnt.h"
37
38 /* The file implements the tail recursion elimination. It is also used to
39 analyze the tail calls in general, passing the results to the rtl level
40 where they are used for sibcall optimization.
41
42 In addition to the standard tail recursion elimination, we handle the most
43 trivial cases of making the call tail recursive by creating accumulators.
44 For example the following function
45
46 int sum (int n)
47 {
48 if (n > 0)
49 return n + sum (n - 1);
50 else
51 return 0;
52 }
53
54 is transformed into
55
56 int sum (int n)
57 {
58 int acc = 0;
59
60 while (n > 0)
61 acc += n--;
62
63 return acc;
64 }
65
66 To do this, we maintain two accumulators (a_acc and m_acc) that indicate
67 when we reach the return x statement, we should return a_acc + x * m_acc
68 instead. They are initially initialized to 0 and 1, respectively,
69 so the semantics of the function is obviously preserved. If we are
70 guaranteed that the value of the accumulator never change, we
71 omit the accumulator.
72
73 There are three cases how the function may exit. The first one is
74 handled in adjust_return_value, the other two in adjust_accumulator_values
75 (the second case is actually a special case of the third one and we
76 present it separately just for clarity):
77
78 1) Just return x, where x is not in any of the remaining special shapes.
79 We rewrite this to a gimple equivalent of return m_acc * x + a_acc.
80
81 2) return f (...), where f is the current function, is rewritten in a
82 classical tail-recursion elimination way, into assignment of arguments
83 and jump to the start of the function. Values of the accumulators
84 are unchanged.
85
86 3) return a + m * f(...), where a and m do not depend on call to f.
87 To preserve the semantics described before we want this to be rewritten
88 in such a way that we finally return
89
90 a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...).
91
92 I.e. we increase a_acc by a * m_acc, multiply m_acc by m and
93 eliminate the tail call to f. Special cases when the value is just
94 added or just multiplied are obtained by setting a = 0 or m = 1.
95
96 TODO -- it is possible to do similar tricks for other operations. */
97
98 /* A structure that describes the tailcall. */
99
100 struct tailcall
101 {
102 /* The iterator pointing to the call statement. */
103 gimple_stmt_iterator call_gsi;
104
105 /* True if it is a call to the current function. */
106 bool tail_recursion;
107
108 /* The return value of the caller is mult * f + add, where f is the return
109 value of the call. */
110 tree mult, add;
111
112 /* Next tailcall in the chain. */
113 struct tailcall *next;
114 };
115
116 /* The variables holding the value of multiplicative and additive
117 accumulator. */
118 static tree m_acc, a_acc;
119
120 static bool suitable_for_tail_opt_p (void);
121 static bool optimize_tail_call (struct tailcall *, bool);
122 static void eliminate_tail_call (struct tailcall *);
123 static void find_tail_calls (basic_block, struct tailcall **);
124
125 /* Returns false when the function is not suitable for tail call optimization
126 from some reason (e.g. if it takes variable number of arguments). */
127
128 static bool
129 suitable_for_tail_opt_p (void)
130 {
131 if (cfun->stdarg)
132 return false;
133
134 return true;
135 }
136 /* Returns false when the function is not suitable for tail call optimization
137 from some reason (e.g. if it takes variable number of arguments).
138 This test must pass in addition to suitable_for_tail_opt_p in order to make
139 tail call discovery happen. */
140
141 static bool
142 suitable_for_tail_call_opt_p (void)
143 {
144 tree param;
145
146 /* alloca (until we have stack slot life analysis) inhibits
147 sibling call optimizations, but not tail recursion. */
148 if (cfun->calls_alloca)
149 return false;
150
151 /* If we are using sjlj exceptions, we may need to add a call to
152 _Unwind_SjLj_Unregister at exit of the function. Which means
153 that we cannot do any sibcall transformations. */
154 if (USING_SJLJ_EXCEPTIONS && current_function_has_exception_handlers ())
155 return false;
156
157 /* Any function that calls setjmp might have longjmp called from
158 any called function. ??? We really should represent this
159 properly in the CFG so that this needn't be special cased. */
160 if (cfun->calls_setjmp)
161 return false;
162
163 /* ??? It is OK if the argument of a function is taken in some cases,
164 but not in all cases. See PR15387 and PR19616. Revisit for 4.1. */
165 for (param = DECL_ARGUMENTS (current_function_decl);
166 param;
167 param = DECL_CHAIN (param))
168 if (TREE_ADDRESSABLE (param))
169 return false;
170
171 return true;
172 }
173
174 /* Checks whether the expression EXPR in stmt AT is independent of the
175 statement pointed to by GSI (in a sense that we already know EXPR's value
176 at GSI). We use the fact that we are only called from the chain of
177 basic blocks that have only single successor. Returns the expression
178 containing the value of EXPR at GSI. */
179
180 static tree
181 independent_of_stmt_p (tree expr, gimple at, gimple_stmt_iterator gsi)
182 {
183 basic_block bb, call_bb, at_bb;
184 edge e;
185 edge_iterator ei;
186
187 if (is_gimple_min_invariant (expr))
188 return expr;
189
190 if (TREE_CODE (expr) != SSA_NAME)
191 return NULL_TREE;
192
193 /* Mark the blocks in the chain leading to the end. */
194 at_bb = gimple_bb (at);
195 call_bb = gimple_bb (gsi_stmt (gsi));
196 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
197 bb->aux = &bb->aux;
198 bb->aux = &bb->aux;
199
200 while (1)
201 {
202 at = SSA_NAME_DEF_STMT (expr);
203 bb = gimple_bb (at);
204
205 /* The default definition or defined before the chain. */
206 if (!bb || !bb->aux)
207 break;
208
209 if (bb == call_bb)
210 {
211 for (; !gsi_end_p (gsi); gsi_next (&gsi))
212 if (gsi_stmt (gsi) == at)
213 break;
214
215 if (!gsi_end_p (gsi))
216 expr = NULL_TREE;
217 break;
218 }
219
220 if (gimple_code (at) != GIMPLE_PHI)
221 {
222 expr = NULL_TREE;
223 break;
224 }
225
226 FOR_EACH_EDGE (e, ei, bb->preds)
227 if (e->src->aux)
228 break;
229 gcc_assert (e);
230
231 expr = PHI_ARG_DEF_FROM_EDGE (at, e);
232 if (TREE_CODE (expr) != SSA_NAME)
233 {
234 /* The value is a constant. */
235 break;
236 }
237 }
238
239 /* Unmark the blocks. */
240 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
241 bb->aux = NULL;
242 bb->aux = NULL;
243
244 return expr;
245 }
246
247 /* Simulates the effect of an assignment STMT on the return value of the tail
248 recursive CALL passed in ASS_VAR. M and A are the multiplicative and the
249 additive factor for the real return value. */
250
251 static bool
252 process_assignment (gimple stmt, gimple_stmt_iterator call, tree *m,
253 tree *a, tree *ass_var)
254 {
255 tree op0, op1 = NULL_TREE, non_ass_var = NULL_TREE;
256 tree dest = gimple_assign_lhs (stmt);
257 enum tree_code code = gimple_assign_rhs_code (stmt);
258 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
259 tree src_var = gimple_assign_rhs1 (stmt);
260
261 /* See if this is a simple copy operation of an SSA name to the function
262 result. In that case we may have a simple tail call. Ignore type
263 conversions that can never produce extra code between the function
264 call and the function return. */
265 if ((rhs_class == GIMPLE_SINGLE_RHS || gimple_assign_cast_p (stmt))
266 && (TREE_CODE (src_var) == SSA_NAME))
267 {
268 /* Reject a tailcall if the type conversion might need
269 additional code. */
270 if (gimple_assign_cast_p (stmt)
271 && TYPE_MODE (TREE_TYPE (dest)) != TYPE_MODE (TREE_TYPE (src_var)))
272 return false;
273
274 if (src_var != *ass_var)
275 return false;
276
277 *ass_var = dest;
278 return true;
279 }
280
281 switch (rhs_class)
282 {
283 case GIMPLE_BINARY_RHS:
284 op1 = gimple_assign_rhs2 (stmt);
285
286 /* Fall through. */
287
288 case GIMPLE_UNARY_RHS:
289 op0 = gimple_assign_rhs1 (stmt);
290 break;
291
292 default:
293 return false;
294 }
295
296 /* Accumulator optimizations will reverse the order of operations.
297 We can only do that for floating-point types if we're assuming
298 that addition and multiplication are associative. */
299 if (!flag_associative_math)
300 if (FLOAT_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
301 return false;
302
303 if (rhs_class == GIMPLE_UNARY_RHS)
304 ;
305 else if (op0 == *ass_var
306 && (non_ass_var = independent_of_stmt_p (op1, stmt, call)))
307 ;
308 else if (op1 == *ass_var
309 && (non_ass_var = independent_of_stmt_p (op0, stmt, call)))
310 ;
311 else
312 return false;
313
314 switch (code)
315 {
316 case PLUS_EXPR:
317 *a = non_ass_var;
318 *ass_var = dest;
319 return true;
320
321 case MULT_EXPR:
322 *m = non_ass_var;
323 *ass_var = dest;
324 return true;
325
326 case NEGATE_EXPR:
327 if (FLOAT_TYPE_P (TREE_TYPE (op0)))
328 *m = build_real (TREE_TYPE (op0), dconstm1);
329 else
330 *m = build_int_cst (TREE_TYPE (op0), -1);
331
332 *ass_var = dest;
333 return true;
334
335 case MINUS_EXPR:
336 if (*ass_var == op0)
337 *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
338 else
339 {
340 if (FLOAT_TYPE_P (TREE_TYPE (non_ass_var)))
341 *m = build_real (TREE_TYPE (non_ass_var), dconstm1);
342 else
343 *m = build_int_cst (TREE_TYPE (non_ass_var), -1);
344
345 *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
346 }
347
348 *ass_var = dest;
349 return true;
350
351 /* TODO -- Handle POINTER_PLUS_EXPR. */
352
353 default:
354 return false;
355 }
356 }
357
358 /* Propagate VAR through phis on edge E. */
359
360 static tree
361 propagate_through_phis (tree var, edge e)
362 {
363 basic_block dest = e->dest;
364 gimple_stmt_iterator gsi;
365
366 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
367 {
368 gimple phi = gsi_stmt (gsi);
369 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var)
370 return PHI_RESULT (phi);
371 }
372 return var;
373 }
374
375 /* Finds tailcalls falling into basic block BB. The list of found tailcalls is
376 added to the start of RET. */
377
378 static void
379 find_tail_calls (basic_block bb, struct tailcall **ret)
380 {
381 tree ass_var = NULL_TREE, ret_var, func, param;
382 gimple stmt, call = NULL;
383 gimple_stmt_iterator gsi, agsi;
384 bool tail_recursion;
385 struct tailcall *nw;
386 edge e;
387 tree m, a;
388 basic_block abb;
389 size_t idx;
390 tree var;
391 referenced_var_iterator rvi;
392
393 if (!single_succ_p (bb))
394 return;
395
396 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
397 {
398 stmt = gsi_stmt (gsi);
399
400 /* Ignore labels. */
401 if (gimple_code (stmt) == GIMPLE_LABEL || is_gimple_debug (stmt))
402 continue;
403
404 /* Check for a call. */
405 if (is_gimple_call (stmt))
406 {
407 call = stmt;
408 ass_var = gimple_call_lhs (stmt);
409 break;
410 }
411
412 /* If the statement references memory or volatile operands, fail. */
413 if (gimple_references_memory_p (stmt)
414 || gimple_has_volatile_ops (stmt))
415 return;
416 }
417
418 if (gsi_end_p (gsi))
419 {
420 edge_iterator ei;
421 /* Recurse to the predecessors. */
422 FOR_EACH_EDGE (e, ei, bb->preds)
423 find_tail_calls (e->src, ret);
424
425 return;
426 }
427
428 /* If the LHS of our call is not just a simple register, we can't
429 transform this into a tail or sibling call. This situation happens,
430 in (e.g.) "*p = foo()" where foo returns a struct. In this case
431 we won't have a temporary here, but we need to carry out the side
432 effect anyway, so tailcall is impossible.
433
434 ??? In some situations (when the struct is returned in memory via
435 invisible argument) we could deal with this, e.g. by passing 'p'
436 itself as that argument to foo, but it's too early to do this here,
437 and expand_call() will not handle it anyway. If it ever can, then
438 we need to revisit this here, to allow that situation. */
439 if (ass_var && !is_gimple_reg (ass_var))
440 return;
441
442 /* We found the call, check whether it is suitable. */
443 tail_recursion = false;
444 func = gimple_call_fndecl (call);
445 if (func == current_function_decl)
446 {
447 tree arg;
448
449 for (param = DECL_ARGUMENTS (func), idx = 0;
450 param && idx < gimple_call_num_args (call);
451 param = DECL_CHAIN (param), idx ++)
452 {
453 arg = gimple_call_arg (call, idx);
454 if (param != arg)
455 {
456 /* Make sure there are no problems with copying. The parameter
457 have a copyable type and the two arguments must have reasonably
458 equivalent types. The latter requirement could be relaxed if
459 we emitted a suitable type conversion statement. */
460 if (!is_gimple_reg_type (TREE_TYPE (param))
461 || !useless_type_conversion_p (TREE_TYPE (param),
462 TREE_TYPE (arg)))
463 break;
464
465 /* The parameter should be a real operand, so that phi node
466 created for it at the start of the function has the meaning
467 of copying the value. This test implies is_gimple_reg_type
468 from the previous condition, however this one could be
469 relaxed by being more careful with copying the new value
470 of the parameter (emitting appropriate GIMPLE_ASSIGN and
471 updating the virtual operands). */
472 if (!is_gimple_reg (param))
473 break;
474 }
475 }
476 if (idx == gimple_call_num_args (call) && !param)
477 tail_recursion = true;
478 }
479
480 /* Make sure the tail invocation of this function does not refer
481 to local variables. */
482 FOR_EACH_REFERENCED_VAR (var, rvi)
483 {
484 if (TREE_CODE (var) != PARM_DECL
485 && auto_var_in_fn_p (var, cfun->decl)
486 && (ref_maybe_used_by_stmt_p (call, var)
487 || call_may_clobber_ref_p (call, var)))
488 return;
489 }
490
491 /* Now check the statements after the call. None of them has virtual
492 operands, so they may only depend on the call through its return
493 value. The return value should also be dependent on each of them,
494 since we are running after dce. */
495 m = NULL_TREE;
496 a = NULL_TREE;
497
498 abb = bb;
499 agsi = gsi;
500 while (1)
501 {
502 tree tmp_a = NULL_TREE;
503 tree tmp_m = NULL_TREE;
504 gsi_next (&agsi);
505
506 while (gsi_end_p (agsi))
507 {
508 ass_var = propagate_through_phis (ass_var, single_succ_edge (abb));
509 abb = single_succ (abb);
510 agsi = gsi_start_bb (abb);
511 }
512
513 stmt = gsi_stmt (agsi);
514
515 if (gimple_code (stmt) == GIMPLE_LABEL)
516 continue;
517
518 if (gimple_code (stmt) == GIMPLE_RETURN)
519 break;
520
521 if (is_gimple_debug (stmt))
522 continue;
523
524 if (gimple_code (stmt) != GIMPLE_ASSIGN)
525 return;
526
527 /* This is a gimple assign. */
528 if (! process_assignment (stmt, gsi, &tmp_m, &tmp_a, &ass_var))
529 return;
530
531 if (tmp_a)
532 {
533 if (a)
534 a = fold_build2 (PLUS_EXPR, TREE_TYPE (tmp_a), a, tmp_a);
535 else
536 a = tmp_a;
537 }
538 if (tmp_m)
539 {
540 if (m)
541 m = fold_build2 (MULT_EXPR, TREE_TYPE (tmp_m), m, tmp_m);
542 else
543 m = tmp_m;
544
545 if (a)
546 a = fold_build2 (MULT_EXPR, TREE_TYPE (tmp_m), a, tmp_m);
547 }
548 }
549
550 /* See if this is a tail call we can handle. */
551 ret_var = gimple_return_retval (stmt);
552
553 /* We may proceed if there either is no return value, or the return value
554 is identical to the call's return. */
555 if (ret_var
556 && (ret_var != ass_var))
557 return;
558
559 /* If this is not a tail recursive call, we cannot handle addends or
560 multiplicands. */
561 if (!tail_recursion && (m || a))
562 return;
563
564 nw = XNEW (struct tailcall);
565
566 nw->call_gsi = gsi;
567
568 nw->tail_recursion = tail_recursion;
569
570 nw->mult = m;
571 nw->add = a;
572
573 nw->next = *ret;
574 *ret = nw;
575 }
576
577 /* Helper to insert PHI_ARGH to the phi of VAR in the destination of edge E. */
578
579 static void
580 add_successor_phi_arg (edge e, tree var, tree phi_arg)
581 {
582 gimple_stmt_iterator gsi;
583
584 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
585 if (PHI_RESULT (gsi_stmt (gsi)) == var)
586 break;
587
588 gcc_assert (!gsi_end_p (gsi));
589 add_phi_arg (gsi_stmt (gsi), phi_arg, e, UNKNOWN_LOCATION);
590 }
591
592 /* Creates a GIMPLE statement which computes the operation specified by
593 CODE, OP0 and OP1 to a new variable with name LABEL and inserts the
594 statement in the position specified by GSI and UPDATE. Returns the
595 tree node of the statement's result. */
596
597 static tree
598 adjust_return_value_with_ops (enum tree_code code, const char *label,
599 tree acc, tree op1, gimple_stmt_iterator gsi)
600 {
601
602 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
603 tree tmp = create_tmp_reg (ret_type, label);
604 gimple stmt;
605 tree result;
606
607 add_referenced_var (tmp);
608
609 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1)))
610 stmt = gimple_build_assign_with_ops (code, tmp, acc, op1);
611 else
612 {
613 tree rhs = fold_convert (TREE_TYPE (acc),
614 fold_build2 (code,
615 TREE_TYPE (op1),
616 fold_convert (TREE_TYPE (op1), acc),
617 op1));
618 rhs = force_gimple_operand_gsi (&gsi, rhs,
619 false, NULL, true, GSI_CONTINUE_LINKING);
620 stmt = gimple_build_assign (NULL_TREE, rhs);
621 }
622
623 result = make_ssa_name (tmp, stmt);
624 gimple_assign_set_lhs (stmt, result);
625 update_stmt (stmt);
626 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
627 return result;
628 }
629
630 /* Creates a new GIMPLE statement that adjusts the value of accumulator ACC by
631 the computation specified by CODE and OP1 and insert the statement
632 at the position specified by GSI as a new statement. Returns new SSA name
633 of updated accumulator. */
634
635 static tree
636 update_accumulator_with_ops (enum tree_code code, tree acc, tree op1,
637 gimple_stmt_iterator gsi)
638 {
639 gimple stmt;
640 tree var;
641 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1)))
642 stmt = gimple_build_assign_with_ops (code, SSA_NAME_VAR (acc), acc, op1);
643 else
644 {
645 tree rhs = fold_convert (TREE_TYPE (acc),
646 fold_build2 (code,
647 TREE_TYPE (op1),
648 fold_convert (TREE_TYPE (op1), acc),
649 op1));
650 rhs = force_gimple_operand_gsi (&gsi, rhs,
651 false, NULL, false, GSI_CONTINUE_LINKING);
652 stmt = gimple_build_assign (NULL_TREE, rhs);
653 }
654 var = make_ssa_name (SSA_NAME_VAR (acc), stmt);
655 gimple_assign_set_lhs (stmt, var);
656 update_stmt (stmt);
657 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
658 return var;
659 }
660
661 /* Adjust the accumulator values according to A and M after GSI, and update
662 the phi nodes on edge BACK. */
663
664 static void
665 adjust_accumulator_values (gimple_stmt_iterator gsi, tree m, tree a, edge back)
666 {
667 tree var, a_acc_arg, m_acc_arg;
668
669 if (m)
670 m = force_gimple_operand_gsi (&gsi, m, true, NULL, true, GSI_SAME_STMT);
671 if (a)
672 a = force_gimple_operand_gsi (&gsi, a, true, NULL, true, GSI_SAME_STMT);
673
674 a_acc_arg = a_acc;
675 m_acc_arg = m_acc;
676 if (a)
677 {
678 if (m_acc)
679 {
680 if (integer_onep (a))
681 var = m_acc;
682 else
683 var = adjust_return_value_with_ops (MULT_EXPR, "acc_tmp", m_acc,
684 a, gsi);
685 }
686 else
687 var = a;
688
689 a_acc_arg = update_accumulator_with_ops (PLUS_EXPR, a_acc, var, gsi);
690 }
691
692 if (m)
693 m_acc_arg = update_accumulator_with_ops (MULT_EXPR, m_acc, m, gsi);
694
695 if (a_acc)
696 add_successor_phi_arg (back, a_acc, a_acc_arg);
697
698 if (m_acc)
699 add_successor_phi_arg (back, m_acc, m_acc_arg);
700 }
701
702 /* Adjust value of the return at the end of BB according to M and A
703 accumulators. */
704
705 static void
706 adjust_return_value (basic_block bb, tree m, tree a)
707 {
708 tree retval;
709 gimple ret_stmt = gimple_seq_last_stmt (bb_seq (bb));
710 gimple_stmt_iterator gsi = gsi_last_bb (bb);
711
712 gcc_assert (gimple_code (ret_stmt) == GIMPLE_RETURN);
713
714 retval = gimple_return_retval (ret_stmt);
715 if (!retval || retval == error_mark_node)
716 return;
717
718 if (m)
719 retval = adjust_return_value_with_ops (MULT_EXPR, "mul_tmp", m_acc, retval,
720 gsi);
721 if (a)
722 retval = adjust_return_value_with_ops (PLUS_EXPR, "acc_tmp", a_acc, retval,
723 gsi);
724 gimple_return_set_retval (ret_stmt, retval);
725 update_stmt (ret_stmt);
726 }
727
728 /* Subtract COUNT and FREQUENCY from the basic block and it's
729 outgoing edge. */
730 static void
731 decrease_profile (basic_block bb, gcov_type count, int frequency)
732 {
733 edge e;
734 bb->count -= count;
735 if (bb->count < 0)
736 bb->count = 0;
737 bb->frequency -= frequency;
738 if (bb->frequency < 0)
739 bb->frequency = 0;
740 if (!single_succ_p (bb))
741 {
742 gcc_assert (!EDGE_COUNT (bb->succs));
743 return;
744 }
745 e = single_succ_edge (bb);
746 e->count -= count;
747 if (e->count < 0)
748 e->count = 0;
749 }
750
751 /* Returns true if argument PARAM of the tail recursive call needs to be copied
752 when the call is eliminated. */
753
754 static bool
755 arg_needs_copy_p (tree param)
756 {
757 tree def;
758
759 if (!is_gimple_reg (param) || !var_ann (param))
760 return false;
761
762 /* Parameters that are only defined but never used need not be copied. */
763 def = gimple_default_def (cfun, param);
764 if (!def)
765 return false;
766
767 return true;
768 }
769
770 /* Eliminates tail call described by T. TMP_VARS is a list of
771 temporary variables used to copy the function arguments. */
772
773 static void
774 eliminate_tail_call (struct tailcall *t)
775 {
776 tree param, rslt;
777 gimple stmt, call;
778 tree arg;
779 size_t idx;
780 basic_block bb, first;
781 edge e;
782 gimple phi;
783 gimple_stmt_iterator gsi;
784 gimple orig_stmt;
785
786 stmt = orig_stmt = gsi_stmt (t->call_gsi);
787 bb = gsi_bb (t->call_gsi);
788
789 if (dump_file && (dump_flags & TDF_DETAILS))
790 {
791 fprintf (dump_file, "Eliminated tail recursion in bb %d : ",
792 bb->index);
793 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
794 fprintf (dump_file, "\n");
795 }
796
797 gcc_assert (is_gimple_call (stmt));
798
799 first = single_succ (ENTRY_BLOCK_PTR);
800
801 /* Remove the code after call_gsi that will become unreachable. The
802 possibly unreachable code in other blocks is removed later in
803 cfg cleanup. */
804 gsi = t->call_gsi;
805 gsi_next (&gsi);
806 while (!gsi_end_p (gsi))
807 {
808 gimple t = gsi_stmt (gsi);
809 /* Do not remove the return statement, so that redirect_edge_and_branch
810 sees how the block ends. */
811 if (gimple_code (t) == GIMPLE_RETURN)
812 break;
813
814 gsi_remove (&gsi, true);
815 release_defs (t);
816 }
817
818 /* Number of executions of function has reduced by the tailcall. */
819 e = single_succ_edge (gsi_bb (t->call_gsi));
820 decrease_profile (EXIT_BLOCK_PTR, e->count, EDGE_FREQUENCY (e));
821 decrease_profile (ENTRY_BLOCK_PTR, e->count, EDGE_FREQUENCY (e));
822 if (e->dest != EXIT_BLOCK_PTR)
823 decrease_profile (e->dest, e->count, EDGE_FREQUENCY (e));
824
825 /* Replace the call by a jump to the start of function. */
826 e = redirect_edge_and_branch (single_succ_edge (gsi_bb (t->call_gsi)),
827 first);
828 gcc_assert (e);
829 PENDING_STMT (e) = NULL;
830
831 /* Add phi node entries for arguments. The ordering of the phi nodes should
832 be the same as the ordering of the arguments. */
833 for (param = DECL_ARGUMENTS (current_function_decl),
834 idx = 0, gsi = gsi_start_phis (first);
835 param;
836 param = DECL_CHAIN (param), idx++)
837 {
838 if (!arg_needs_copy_p (param))
839 continue;
840
841 arg = gimple_call_arg (stmt, idx);
842 phi = gsi_stmt (gsi);
843 gcc_assert (param == SSA_NAME_VAR (PHI_RESULT (phi)));
844
845 add_phi_arg (phi, arg, e, gimple_location (stmt));
846 gsi_next (&gsi);
847 }
848
849 /* Update the values of accumulators. */
850 adjust_accumulator_values (t->call_gsi, t->mult, t->add, e);
851
852 call = gsi_stmt (t->call_gsi);
853 rslt = gimple_call_lhs (call);
854 if (rslt != NULL_TREE)
855 {
856 /* Result of the call will no longer be defined. So adjust the
857 SSA_NAME_DEF_STMT accordingly. */
858 SSA_NAME_DEF_STMT (rslt) = gimple_build_nop ();
859 }
860
861 gsi_remove (&t->call_gsi, true);
862 release_defs (call);
863 }
864
865 /* Add phi nodes for the virtual operands defined in the function to the
866 header of the loop created by tail recursion elimination.
867
868 Originally, we used to add phi nodes only for call clobbered variables,
869 as the value of the non-call clobbered ones obviously cannot be used
870 or changed within the recursive call. However, the local variables
871 from multiple calls now share the same location, so the virtual ssa form
872 requires us to say that the location dies on further iterations of the loop,
873 which requires adding phi nodes.
874 */
875 static void
876 add_virtual_phis (void)
877 {
878 referenced_var_iterator rvi;
879 tree var;
880
881 /* The problematic part is that there is no way how to know what
882 to put into phi nodes (there in fact does not have to be such
883 ssa name available). A solution would be to have an artificial
884 use/kill for all virtual operands in EXIT node. Unless we have
885 this, we cannot do much better than to rebuild the ssa form for
886 possibly affected virtual ssa names from scratch. */
887
888 FOR_EACH_REFERENCED_VAR (var, rvi)
889 {
890 if (!is_gimple_reg (var) && gimple_default_def (cfun, var) != NULL_TREE)
891 mark_sym_for_renaming (var);
892 }
893 }
894
895 /* Optimizes the tailcall described by T. If OPT_TAILCALLS is true, also
896 mark the tailcalls for the sibcall optimization. */
897
898 static bool
899 optimize_tail_call (struct tailcall *t, bool opt_tailcalls)
900 {
901 if (t->tail_recursion)
902 {
903 eliminate_tail_call (t);
904 return true;
905 }
906
907 if (opt_tailcalls)
908 {
909 gimple stmt = gsi_stmt (t->call_gsi);
910
911 gimple_call_set_tail (stmt, true);
912 if (dump_file && (dump_flags & TDF_DETAILS))
913 {
914 fprintf (dump_file, "Found tail call ");
915 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
916 fprintf (dump_file, " in bb %i\n", (gsi_bb (t->call_gsi))->index);
917 }
918 }
919
920 return false;
921 }
922
923 /* Creates a tail-call accumulator of the same type as the return type of the
924 current function. LABEL is the name used to creating the temporary
925 variable for the accumulator. The accumulator will be inserted in the
926 phis of a basic block BB with single predecessor with an initial value
927 INIT converted to the current function return type. */
928
929 static tree
930 create_tailcall_accumulator (const char *label, basic_block bb, tree init)
931 {
932 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
933 tree tmp = create_tmp_reg (ret_type, label);
934 gimple phi;
935
936 add_referenced_var (tmp);
937 phi = create_phi_node (tmp, bb);
938 /* RET_TYPE can be a float when -ffast-maths is enabled. */
939 add_phi_arg (phi, fold_convert (ret_type, init), single_pred_edge (bb),
940 UNKNOWN_LOCATION);
941 return PHI_RESULT (phi);
942 }
943
944 /* Optimizes tail calls in the function, turning the tail recursion
945 into iteration. */
946
947 static unsigned int
948 tree_optimize_tail_calls_1 (bool opt_tailcalls)
949 {
950 edge e;
951 bool phis_constructed = false;
952 struct tailcall *tailcalls = NULL, *act, *next;
953 bool changed = false;
954 basic_block first = single_succ (ENTRY_BLOCK_PTR);
955 tree param;
956 gimple stmt;
957 edge_iterator ei;
958
959 if (!suitable_for_tail_opt_p ())
960 return 0;
961 if (opt_tailcalls)
962 opt_tailcalls = suitable_for_tail_call_opt_p ();
963
964 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
965 {
966 /* Only traverse the normal exits, i.e. those that end with return
967 statement. */
968 stmt = last_stmt (e->src);
969
970 if (stmt
971 && gimple_code (stmt) == GIMPLE_RETURN)
972 find_tail_calls (e->src, &tailcalls);
973 }
974
975 /* Construct the phi nodes and accumulators if necessary. */
976 a_acc = m_acc = NULL_TREE;
977 for (act = tailcalls; act; act = act->next)
978 {
979 if (!act->tail_recursion)
980 continue;
981
982 if (!phis_constructed)
983 {
984 /* Ensure that there is only one predecessor of the block
985 or if there are existing degenerate PHI nodes. */
986 if (!single_pred_p (first)
987 || !gimple_seq_empty_p (phi_nodes (first)))
988 first = split_edge (single_succ_edge (ENTRY_BLOCK_PTR));
989
990 /* Copy the args if needed. */
991 for (param = DECL_ARGUMENTS (current_function_decl);
992 param;
993 param = DECL_CHAIN (param))
994 if (arg_needs_copy_p (param))
995 {
996 tree name = gimple_default_def (cfun, param);
997 tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name));
998 gimple phi;
999
1000 set_default_def (param, new_name);
1001 phi = create_phi_node (name, first);
1002 SSA_NAME_DEF_STMT (name) = phi;
1003 add_phi_arg (phi, new_name, single_pred_edge (first),
1004 EXPR_LOCATION (param));
1005 }
1006 phis_constructed = true;
1007 }
1008
1009 if (act->add && !a_acc)
1010 a_acc = create_tailcall_accumulator ("add_acc", first,
1011 integer_zero_node);
1012
1013 if (act->mult && !m_acc)
1014 m_acc = create_tailcall_accumulator ("mult_acc", first,
1015 integer_one_node);
1016 }
1017
1018 for (; tailcalls; tailcalls = next)
1019 {
1020 next = tailcalls->next;
1021 changed |= optimize_tail_call (tailcalls, opt_tailcalls);
1022 free (tailcalls);
1023 }
1024
1025 if (a_acc || m_acc)
1026 {
1027 /* Modify the remaining return statements. */
1028 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1029 {
1030 stmt = last_stmt (e->src);
1031
1032 if (stmt
1033 && gimple_code (stmt) == GIMPLE_RETURN)
1034 adjust_return_value (e->src, m_acc, a_acc);
1035 }
1036 }
1037
1038 if (changed)
1039 free_dominance_info (CDI_DOMINATORS);
1040
1041 if (phis_constructed)
1042 add_virtual_phis ();
1043 if (changed)
1044 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
1045 return 0;
1046 }
1047
1048 static unsigned int
1049 execute_tail_recursion (void)
1050 {
1051 return tree_optimize_tail_calls_1 (false);
1052 }
1053
1054 static bool
1055 gate_tail_calls (void)
1056 {
1057 return flag_optimize_sibling_calls != 0 && dbg_cnt (tail_call);
1058 }
1059
1060 static unsigned int
1061 execute_tail_calls (void)
1062 {
1063 return tree_optimize_tail_calls_1 (true);
1064 }
1065
1066 struct gimple_opt_pass pass_tail_recursion =
1067 {
1068 {
1069 GIMPLE_PASS,
1070 "tailr", /* name */
1071 gate_tail_calls, /* gate */
1072 execute_tail_recursion, /* execute */
1073 NULL, /* sub */
1074 NULL, /* next */
1075 0, /* static_pass_number */
1076 TV_NONE, /* tv_id */
1077 PROP_cfg | PROP_ssa, /* properties_required */
1078 0, /* properties_provided */
1079 0, /* properties_destroyed */
1080 0, /* todo_flags_start */
1081 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1082 }
1083 };
1084
1085 struct gimple_opt_pass pass_tail_calls =
1086 {
1087 {
1088 GIMPLE_PASS,
1089 "tailc", /* name */
1090 gate_tail_calls, /* gate */
1091 execute_tail_calls, /* execute */
1092 NULL, /* sub */
1093 NULL, /* next */
1094 0, /* static_pass_number */
1095 TV_NONE, /* tv_id */
1096 PROP_cfg | PROP_ssa, /* properties_required */
1097 0, /* properties_provided */
1098 0, /* properties_destroyed */
1099 0, /* todo_flags_start */
1100 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1101 }
1102 };