re PR tree-optimization/58209 (ICE in extract_range_from_binary_expr, at tree-vrp...
[gcc.git] / gcc / tree-tailcall.c
1 /* Tail call optimization on trees.
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "tree.h"
25 #include "tm_p.h"
26 #include "basic-block.h"
27 #include "function.h"
28 #include "tree-flow.h"
29 #include "gimple-pretty-print.h"
30 #include "except.h"
31 #include "tree-pass.h"
32 #include "flags.h"
33 #include "langhooks.h"
34 #include "dbgcnt.h"
35 #include "target.h"
36 #include "cfgloop.h"
37 #include "common/common-target.h"
38
39 /* The file implements the tail recursion elimination. It is also used to
40 analyze the tail calls in general, passing the results to the rtl level
41 where they are used for sibcall optimization.
42
43 In addition to the standard tail recursion elimination, we handle the most
44 trivial cases of making the call tail recursive by creating accumulators.
45 For example the following function
46
47 int sum (int n)
48 {
49 if (n > 0)
50 return n + sum (n - 1);
51 else
52 return 0;
53 }
54
55 is transformed into
56
57 int sum (int n)
58 {
59 int acc = 0;
60
61 while (n > 0)
62 acc += n--;
63
64 return acc;
65 }
66
67 To do this, we maintain two accumulators (a_acc and m_acc) that indicate
68 when we reach the return x statement, we should return a_acc + x * m_acc
69 instead. They are initially initialized to 0 and 1, respectively,
70 so the semantics of the function is obviously preserved. If we are
71 guaranteed that the value of the accumulator never change, we
72 omit the accumulator.
73
74 There are three cases how the function may exit. The first one is
75 handled in adjust_return_value, the other two in adjust_accumulator_values
76 (the second case is actually a special case of the third one and we
77 present it separately just for clarity):
78
79 1) Just return x, where x is not in any of the remaining special shapes.
80 We rewrite this to a gimple equivalent of return m_acc * x + a_acc.
81
82 2) return f (...), where f is the current function, is rewritten in a
83 classical tail-recursion elimination way, into assignment of arguments
84 and jump to the start of the function. Values of the accumulators
85 are unchanged.
86
87 3) return a + m * f(...), where a and m do not depend on call to f.
88 To preserve the semantics described before we want this to be rewritten
89 in such a way that we finally return
90
91 a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...).
92
93 I.e. we increase a_acc by a * m_acc, multiply m_acc by m and
94 eliminate the tail call to f. Special cases when the value is just
95 added or just multiplied are obtained by setting a = 0 or m = 1.
96
97 TODO -- it is possible to do similar tricks for other operations. */
98
99 /* A structure that describes the tailcall. */
100
101 struct tailcall
102 {
103 /* The iterator pointing to the call statement. */
104 gimple_stmt_iterator call_gsi;
105
106 /* True if it is a call to the current function. */
107 bool tail_recursion;
108
109 /* The return value of the caller is mult * f + add, where f is the return
110 value of the call. */
111 tree mult, add;
112
113 /* Next tailcall in the chain. */
114 struct tailcall *next;
115 };
116
117 /* The variables holding the value of multiplicative and additive
118 accumulator. */
119 static tree m_acc, a_acc;
120
121 static bool suitable_for_tail_opt_p (void);
122 static bool optimize_tail_call (struct tailcall *, bool);
123 static void eliminate_tail_call (struct tailcall *);
124 static void find_tail_calls (basic_block, struct tailcall **);
125
126 /* Returns false when the function is not suitable for tail call optimization
127 from some reason (e.g. if it takes variable number of arguments). */
128
129 static bool
130 suitable_for_tail_opt_p (void)
131 {
132 if (cfun->stdarg)
133 return false;
134
135 return true;
136 }
137 /* Returns false when the function is not suitable for tail call optimization
138 from some reason (e.g. if it takes variable number of arguments).
139 This test must pass in addition to suitable_for_tail_opt_p in order to make
140 tail call discovery happen. */
141
142 static bool
143 suitable_for_tail_call_opt_p (void)
144 {
145 tree param;
146
147 /* alloca (until we have stack slot life analysis) inhibits
148 sibling call optimizations, but not tail recursion. */
149 if (cfun->calls_alloca)
150 return false;
151
152 /* If we are using sjlj exceptions, we may need to add a call to
153 _Unwind_SjLj_Unregister at exit of the function. Which means
154 that we cannot do any sibcall transformations. */
155 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ
156 && current_function_has_exception_handlers ())
157 return false;
158
159 /* Any function that calls setjmp might have longjmp called from
160 any called function. ??? We really should represent this
161 properly in the CFG so that this needn't be special cased. */
162 if (cfun->calls_setjmp)
163 return false;
164
165 /* ??? It is OK if the argument of a function is taken in some cases,
166 but not in all cases. See PR15387 and PR19616. Revisit for 4.1. */
167 for (param = DECL_ARGUMENTS (current_function_decl);
168 param;
169 param = DECL_CHAIN (param))
170 if (TREE_ADDRESSABLE (param))
171 return false;
172
173 return true;
174 }
175
176 /* Checks whether the expression EXPR in stmt AT is independent of the
177 statement pointed to by GSI (in a sense that we already know EXPR's value
178 at GSI). We use the fact that we are only called from the chain of
179 basic blocks that have only single successor. Returns the expression
180 containing the value of EXPR at GSI. */
181
182 static tree
183 independent_of_stmt_p (tree expr, gimple at, gimple_stmt_iterator gsi)
184 {
185 basic_block bb, call_bb, at_bb;
186 edge e;
187 edge_iterator ei;
188
189 if (is_gimple_min_invariant (expr))
190 return expr;
191
192 if (TREE_CODE (expr) != SSA_NAME)
193 return NULL_TREE;
194
195 /* Mark the blocks in the chain leading to the end. */
196 at_bb = gimple_bb (at);
197 call_bb = gimple_bb (gsi_stmt (gsi));
198 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
199 bb->aux = &bb->aux;
200 bb->aux = &bb->aux;
201
202 while (1)
203 {
204 at = SSA_NAME_DEF_STMT (expr);
205 bb = gimple_bb (at);
206
207 /* The default definition or defined before the chain. */
208 if (!bb || !bb->aux)
209 break;
210
211 if (bb == call_bb)
212 {
213 for (; !gsi_end_p (gsi); gsi_next (&gsi))
214 if (gsi_stmt (gsi) == at)
215 break;
216
217 if (!gsi_end_p (gsi))
218 expr = NULL_TREE;
219 break;
220 }
221
222 if (gimple_code (at) != GIMPLE_PHI)
223 {
224 expr = NULL_TREE;
225 break;
226 }
227
228 FOR_EACH_EDGE (e, ei, bb->preds)
229 if (e->src->aux)
230 break;
231 gcc_assert (e);
232
233 expr = PHI_ARG_DEF_FROM_EDGE (at, e);
234 if (TREE_CODE (expr) != SSA_NAME)
235 {
236 /* The value is a constant. */
237 break;
238 }
239 }
240
241 /* Unmark the blocks. */
242 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
243 bb->aux = NULL;
244 bb->aux = NULL;
245
246 return expr;
247 }
248
249 /* Simulates the effect of an assignment STMT on the return value of the tail
250 recursive CALL passed in ASS_VAR. M and A are the multiplicative and the
251 additive factor for the real return value. */
252
253 static bool
254 process_assignment (gimple stmt, gimple_stmt_iterator call, tree *m,
255 tree *a, tree *ass_var)
256 {
257 tree op0, op1 = NULL_TREE, non_ass_var = NULL_TREE;
258 tree dest = gimple_assign_lhs (stmt);
259 enum tree_code code = gimple_assign_rhs_code (stmt);
260 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
261 tree src_var = gimple_assign_rhs1 (stmt);
262
263 /* See if this is a simple copy operation of an SSA name to the function
264 result. In that case we may have a simple tail call. Ignore type
265 conversions that can never produce extra code between the function
266 call and the function return. */
267 if ((rhs_class == GIMPLE_SINGLE_RHS || gimple_assign_cast_p (stmt))
268 && (TREE_CODE (src_var) == SSA_NAME))
269 {
270 /* Reject a tailcall if the type conversion might need
271 additional code. */
272 if (gimple_assign_cast_p (stmt)
273 && TYPE_MODE (TREE_TYPE (dest)) != TYPE_MODE (TREE_TYPE (src_var)))
274 return false;
275
276 if (src_var != *ass_var)
277 return false;
278
279 *ass_var = dest;
280 return true;
281 }
282
283 switch (rhs_class)
284 {
285 case GIMPLE_BINARY_RHS:
286 op1 = gimple_assign_rhs2 (stmt);
287
288 /* Fall through. */
289
290 case GIMPLE_UNARY_RHS:
291 op0 = gimple_assign_rhs1 (stmt);
292 break;
293
294 default:
295 return false;
296 }
297
298 /* Accumulator optimizations will reverse the order of operations.
299 We can only do that for floating-point types if we're assuming
300 that addition and multiplication are associative. */
301 if (!flag_associative_math)
302 if (FLOAT_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
303 return false;
304
305 if (rhs_class == GIMPLE_UNARY_RHS)
306 ;
307 else if (op0 == *ass_var
308 && (non_ass_var = independent_of_stmt_p (op1, stmt, call)))
309 ;
310 else if (op1 == *ass_var
311 && (non_ass_var = independent_of_stmt_p (op0, stmt, call)))
312 ;
313 else
314 return false;
315
316 switch (code)
317 {
318 case PLUS_EXPR:
319 *a = non_ass_var;
320 *ass_var = dest;
321 return true;
322
323 case POINTER_PLUS_EXPR:
324 if (op0 != *ass_var)
325 return false;
326 *a = non_ass_var;
327 *ass_var = dest;
328 return true;
329
330 case MULT_EXPR:
331 *m = non_ass_var;
332 *ass_var = dest;
333 return true;
334
335 case NEGATE_EXPR:
336 *m = build_minus_one_cst (TREE_TYPE (op0));
337 *ass_var = dest;
338 return true;
339
340 case MINUS_EXPR:
341 if (*ass_var == op0)
342 *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
343 else
344 {
345 *m = build_minus_one_cst (TREE_TYPE (non_ass_var));
346 *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
347 }
348
349 *ass_var = dest;
350 return true;
351
352 /* TODO -- Handle POINTER_PLUS_EXPR. */
353
354 default:
355 return false;
356 }
357 }
358
359 /* Propagate VAR through phis on edge E. */
360
361 static tree
362 propagate_through_phis (tree var, edge e)
363 {
364 basic_block dest = e->dest;
365 gimple_stmt_iterator gsi;
366
367 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
368 {
369 gimple phi = gsi_stmt (gsi);
370 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var)
371 return PHI_RESULT (phi);
372 }
373 return var;
374 }
375
376 /* Finds tailcalls falling into basic block BB. The list of found tailcalls is
377 added to the start of RET. */
378
379 static void
380 find_tail_calls (basic_block bb, struct tailcall **ret)
381 {
382 tree ass_var = NULL_TREE, ret_var, func, param;
383 gimple stmt, call = NULL;
384 gimple_stmt_iterator gsi, agsi;
385 bool tail_recursion;
386 struct tailcall *nw;
387 edge e;
388 tree m, a;
389 basic_block abb;
390 size_t idx;
391 tree var;
392
393 if (!single_succ_p (bb))
394 return;
395
396 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
397 {
398 stmt = gsi_stmt (gsi);
399
400 /* Ignore labels, returns, clobbers and debug stmts. */
401 if (gimple_code (stmt) == GIMPLE_LABEL
402 || gimple_code (stmt) == GIMPLE_RETURN
403 || gimple_clobber_p (stmt)
404 || is_gimple_debug (stmt))
405 continue;
406
407 /* Check for a call. */
408 if (is_gimple_call (stmt))
409 {
410 call = stmt;
411 ass_var = gimple_call_lhs (stmt);
412 break;
413 }
414
415 /* If the statement references memory or volatile operands, fail. */
416 if (gimple_references_memory_p (stmt)
417 || gimple_has_volatile_ops (stmt))
418 return;
419 }
420
421 if (gsi_end_p (gsi))
422 {
423 edge_iterator ei;
424 /* Recurse to the predecessors. */
425 FOR_EACH_EDGE (e, ei, bb->preds)
426 find_tail_calls (e->src, ret);
427
428 return;
429 }
430
431 /* If the LHS of our call is not just a simple register, we can't
432 transform this into a tail or sibling call. This situation happens,
433 in (e.g.) "*p = foo()" where foo returns a struct. In this case
434 we won't have a temporary here, but we need to carry out the side
435 effect anyway, so tailcall is impossible.
436
437 ??? In some situations (when the struct is returned in memory via
438 invisible argument) we could deal with this, e.g. by passing 'p'
439 itself as that argument to foo, but it's too early to do this here,
440 and expand_call() will not handle it anyway. If it ever can, then
441 we need to revisit this here, to allow that situation. */
442 if (ass_var && !is_gimple_reg (ass_var))
443 return;
444
445 /* We found the call, check whether it is suitable. */
446 tail_recursion = false;
447 func = gimple_call_fndecl (call);
448 if (func == current_function_decl)
449 {
450 tree arg;
451
452 for (param = DECL_ARGUMENTS (func), idx = 0;
453 param && idx < gimple_call_num_args (call);
454 param = DECL_CHAIN (param), idx ++)
455 {
456 arg = gimple_call_arg (call, idx);
457 if (param != arg)
458 {
459 /* Make sure there are no problems with copying. The parameter
460 have a copyable type and the two arguments must have reasonably
461 equivalent types. The latter requirement could be relaxed if
462 we emitted a suitable type conversion statement. */
463 if (!is_gimple_reg_type (TREE_TYPE (param))
464 || !useless_type_conversion_p (TREE_TYPE (param),
465 TREE_TYPE (arg)))
466 break;
467
468 /* The parameter should be a real operand, so that phi node
469 created for it at the start of the function has the meaning
470 of copying the value. This test implies is_gimple_reg_type
471 from the previous condition, however this one could be
472 relaxed by being more careful with copying the new value
473 of the parameter (emitting appropriate GIMPLE_ASSIGN and
474 updating the virtual operands). */
475 if (!is_gimple_reg (param))
476 break;
477 }
478 }
479 if (idx == gimple_call_num_args (call) && !param)
480 tail_recursion = true;
481 }
482
483 /* Make sure the tail invocation of this function does not refer
484 to local variables. */
485 FOR_EACH_LOCAL_DECL (cfun, idx, var)
486 {
487 if (TREE_CODE (var) != PARM_DECL
488 && auto_var_in_fn_p (var, cfun->decl)
489 && (ref_maybe_used_by_stmt_p (call, var)
490 || call_may_clobber_ref_p (call, var)))
491 return;
492 }
493
494 /* Now check the statements after the call. None of them has virtual
495 operands, so they may only depend on the call through its return
496 value. The return value should also be dependent on each of them,
497 since we are running after dce. */
498 m = NULL_TREE;
499 a = NULL_TREE;
500
501 abb = bb;
502 agsi = gsi;
503 while (1)
504 {
505 tree tmp_a = NULL_TREE;
506 tree tmp_m = NULL_TREE;
507 gsi_next (&agsi);
508
509 while (gsi_end_p (agsi))
510 {
511 ass_var = propagate_through_phis (ass_var, single_succ_edge (abb));
512 abb = single_succ (abb);
513 agsi = gsi_start_bb (abb);
514 }
515
516 stmt = gsi_stmt (agsi);
517
518 if (gimple_code (stmt) == GIMPLE_LABEL)
519 continue;
520
521 if (gimple_code (stmt) == GIMPLE_RETURN)
522 break;
523
524 if (gimple_clobber_p (stmt))
525 continue;
526
527 if (is_gimple_debug (stmt))
528 continue;
529
530 if (gimple_code (stmt) != GIMPLE_ASSIGN)
531 return;
532
533 /* This is a gimple assign. */
534 if (! process_assignment (stmt, gsi, &tmp_m, &tmp_a, &ass_var))
535 return;
536
537 if (tmp_a)
538 {
539 tree type = TREE_TYPE (tmp_a);
540 if (a)
541 a = fold_build2 (PLUS_EXPR, type, fold_convert (type, a), tmp_a);
542 else
543 a = tmp_a;
544 }
545 if (tmp_m)
546 {
547 tree type = TREE_TYPE (tmp_m);
548 if (m)
549 m = fold_build2 (MULT_EXPR, type, fold_convert (type, m), tmp_m);
550 else
551 m = tmp_m;
552
553 if (a)
554 a = fold_build2 (MULT_EXPR, type, fold_convert (type, a), tmp_m);
555 }
556 }
557
558 /* See if this is a tail call we can handle. */
559 ret_var = gimple_return_retval (stmt);
560
561 /* We may proceed if there either is no return value, or the return value
562 is identical to the call's return. */
563 if (ret_var
564 && (ret_var != ass_var))
565 return;
566
567 /* If this is not a tail recursive call, we cannot handle addends or
568 multiplicands. */
569 if (!tail_recursion && (m || a))
570 return;
571
572 /* For pointers only allow additions. */
573 if (m && POINTER_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
574 return;
575
576 nw = XNEW (struct tailcall);
577
578 nw->call_gsi = gsi;
579
580 nw->tail_recursion = tail_recursion;
581
582 nw->mult = m;
583 nw->add = a;
584
585 nw->next = *ret;
586 *ret = nw;
587 }
588
589 /* Helper to insert PHI_ARGH to the phi of VAR in the destination of edge E. */
590
591 static void
592 add_successor_phi_arg (edge e, tree var, tree phi_arg)
593 {
594 gimple_stmt_iterator gsi;
595
596 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
597 if (PHI_RESULT (gsi_stmt (gsi)) == var)
598 break;
599
600 gcc_assert (!gsi_end_p (gsi));
601 add_phi_arg (gsi_stmt (gsi), phi_arg, e, UNKNOWN_LOCATION);
602 }
603
604 /* Creates a GIMPLE statement which computes the operation specified by
605 CODE, ACC and OP1 to a new variable with name LABEL and inserts the
606 statement in the position specified by GSI. Returns the
607 tree node of the statement's result. */
608
609 static tree
610 adjust_return_value_with_ops (enum tree_code code, const char *label,
611 tree acc, tree op1, gimple_stmt_iterator gsi)
612 {
613
614 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
615 tree result = make_temp_ssa_name (ret_type, NULL, label);
616 gimple stmt;
617
618 if (POINTER_TYPE_P (ret_type))
619 {
620 gcc_assert (code == PLUS_EXPR && TREE_TYPE (acc) == sizetype);
621 code = POINTER_PLUS_EXPR;
622 }
623 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1))
624 && code != POINTER_PLUS_EXPR)
625 stmt = gimple_build_assign_with_ops (code, result, acc, op1);
626 else
627 {
628 tree tem;
629 if (code == POINTER_PLUS_EXPR)
630 tem = fold_build2 (code, TREE_TYPE (op1), op1, acc);
631 else
632 tem = fold_build2 (code, TREE_TYPE (op1),
633 fold_convert (TREE_TYPE (op1), acc), op1);
634 tree rhs = fold_convert (ret_type, tem);
635 rhs = force_gimple_operand_gsi (&gsi, rhs,
636 false, NULL, true, GSI_SAME_STMT);
637 stmt = gimple_build_assign (result, rhs);
638 }
639
640 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
641 return result;
642 }
643
644 /* Creates a new GIMPLE statement that adjusts the value of accumulator ACC by
645 the computation specified by CODE and OP1 and insert the statement
646 at the position specified by GSI as a new statement. Returns new SSA name
647 of updated accumulator. */
648
649 static tree
650 update_accumulator_with_ops (enum tree_code code, tree acc, tree op1,
651 gimple_stmt_iterator gsi)
652 {
653 gimple stmt;
654 tree var = copy_ssa_name (acc, NULL);
655 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1)))
656 stmt = gimple_build_assign_with_ops (code, var, acc, op1);
657 else
658 {
659 tree rhs = fold_convert (TREE_TYPE (acc),
660 fold_build2 (code,
661 TREE_TYPE (op1),
662 fold_convert (TREE_TYPE (op1), acc),
663 op1));
664 rhs = force_gimple_operand_gsi (&gsi, rhs,
665 false, NULL, false, GSI_CONTINUE_LINKING);
666 stmt = gimple_build_assign (var, rhs);
667 }
668 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
669 return var;
670 }
671
672 /* Adjust the accumulator values according to A and M after GSI, and update
673 the phi nodes on edge BACK. */
674
675 static void
676 adjust_accumulator_values (gimple_stmt_iterator gsi, tree m, tree a, edge back)
677 {
678 tree var, a_acc_arg, m_acc_arg;
679
680 if (m)
681 m = force_gimple_operand_gsi (&gsi, m, true, NULL, true, GSI_SAME_STMT);
682 if (a)
683 a = force_gimple_operand_gsi (&gsi, a, true, NULL, true, GSI_SAME_STMT);
684
685 a_acc_arg = a_acc;
686 m_acc_arg = m_acc;
687 if (a)
688 {
689 if (m_acc)
690 {
691 if (integer_onep (a))
692 var = m_acc;
693 else
694 var = adjust_return_value_with_ops (MULT_EXPR, "acc_tmp", m_acc,
695 a, gsi);
696 }
697 else
698 var = a;
699
700 a_acc_arg = update_accumulator_with_ops (PLUS_EXPR, a_acc, var, gsi);
701 }
702
703 if (m)
704 m_acc_arg = update_accumulator_with_ops (MULT_EXPR, m_acc, m, gsi);
705
706 if (a_acc)
707 add_successor_phi_arg (back, a_acc, a_acc_arg);
708
709 if (m_acc)
710 add_successor_phi_arg (back, m_acc, m_acc_arg);
711 }
712
713 /* Adjust value of the return at the end of BB according to M and A
714 accumulators. */
715
716 static void
717 adjust_return_value (basic_block bb, tree m, tree a)
718 {
719 tree retval;
720 gimple ret_stmt = gimple_seq_last_stmt (bb_seq (bb));
721 gimple_stmt_iterator gsi = gsi_last_bb (bb);
722
723 gcc_assert (gimple_code (ret_stmt) == GIMPLE_RETURN);
724
725 retval = gimple_return_retval (ret_stmt);
726 if (!retval || retval == error_mark_node)
727 return;
728
729 if (m)
730 retval = adjust_return_value_with_ops (MULT_EXPR, "mul_tmp", m_acc, retval,
731 gsi);
732 if (a)
733 retval = adjust_return_value_with_ops (PLUS_EXPR, "acc_tmp", a_acc, retval,
734 gsi);
735 gimple_return_set_retval (ret_stmt, retval);
736 update_stmt (ret_stmt);
737 }
738
739 /* Subtract COUNT and FREQUENCY from the basic block and it's
740 outgoing edge. */
741 static void
742 decrease_profile (basic_block bb, gcov_type count, int frequency)
743 {
744 edge e;
745 bb->count -= count;
746 if (bb->count < 0)
747 bb->count = 0;
748 bb->frequency -= frequency;
749 if (bb->frequency < 0)
750 bb->frequency = 0;
751 if (!single_succ_p (bb))
752 {
753 gcc_assert (!EDGE_COUNT (bb->succs));
754 return;
755 }
756 e = single_succ_edge (bb);
757 e->count -= count;
758 if (e->count < 0)
759 e->count = 0;
760 }
761
762 /* Returns true if argument PARAM of the tail recursive call needs to be copied
763 when the call is eliminated. */
764
765 static bool
766 arg_needs_copy_p (tree param)
767 {
768 tree def;
769
770 if (!is_gimple_reg (param))
771 return false;
772
773 /* Parameters that are only defined but never used need not be copied. */
774 def = ssa_default_def (cfun, param);
775 if (!def)
776 return false;
777
778 return true;
779 }
780
781 /* Eliminates tail call described by T. TMP_VARS is a list of
782 temporary variables used to copy the function arguments. */
783
784 static void
785 eliminate_tail_call (struct tailcall *t)
786 {
787 tree param, rslt;
788 gimple stmt, call;
789 tree arg;
790 size_t idx;
791 basic_block bb, first;
792 edge e;
793 gimple phi;
794 gimple_stmt_iterator gsi;
795 gimple orig_stmt;
796
797 stmt = orig_stmt = gsi_stmt (t->call_gsi);
798 bb = gsi_bb (t->call_gsi);
799
800 if (dump_file && (dump_flags & TDF_DETAILS))
801 {
802 fprintf (dump_file, "Eliminated tail recursion in bb %d : ",
803 bb->index);
804 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
805 fprintf (dump_file, "\n");
806 }
807
808 gcc_assert (is_gimple_call (stmt));
809
810 first = single_succ (ENTRY_BLOCK_PTR);
811
812 /* Remove the code after call_gsi that will become unreachable. The
813 possibly unreachable code in other blocks is removed later in
814 cfg cleanup. */
815 gsi = t->call_gsi;
816 gsi_next (&gsi);
817 while (!gsi_end_p (gsi))
818 {
819 gimple t = gsi_stmt (gsi);
820 /* Do not remove the return statement, so that redirect_edge_and_branch
821 sees how the block ends. */
822 if (gimple_code (t) == GIMPLE_RETURN)
823 break;
824
825 gsi_remove (&gsi, true);
826 release_defs (t);
827 }
828
829 /* Number of executions of function has reduced by the tailcall. */
830 e = single_succ_edge (gsi_bb (t->call_gsi));
831 decrease_profile (EXIT_BLOCK_PTR, e->count, EDGE_FREQUENCY (e));
832 decrease_profile (ENTRY_BLOCK_PTR, e->count, EDGE_FREQUENCY (e));
833 if (e->dest != EXIT_BLOCK_PTR)
834 decrease_profile (e->dest, e->count, EDGE_FREQUENCY (e));
835
836 /* Replace the call by a jump to the start of function. */
837 e = redirect_edge_and_branch (single_succ_edge (gsi_bb (t->call_gsi)),
838 first);
839 gcc_assert (e);
840 PENDING_STMT (e) = NULL;
841
842 /* Add phi node entries for arguments. The ordering of the phi nodes should
843 be the same as the ordering of the arguments. */
844 for (param = DECL_ARGUMENTS (current_function_decl),
845 idx = 0, gsi = gsi_start_phis (first);
846 param;
847 param = DECL_CHAIN (param), idx++)
848 {
849 if (!arg_needs_copy_p (param))
850 continue;
851
852 arg = gimple_call_arg (stmt, idx);
853 phi = gsi_stmt (gsi);
854 gcc_assert (param == SSA_NAME_VAR (PHI_RESULT (phi)));
855
856 add_phi_arg (phi, arg, e, gimple_location (stmt));
857 gsi_next (&gsi);
858 }
859
860 /* Update the values of accumulators. */
861 adjust_accumulator_values (t->call_gsi, t->mult, t->add, e);
862
863 call = gsi_stmt (t->call_gsi);
864 rslt = gimple_call_lhs (call);
865 if (rslt != NULL_TREE)
866 {
867 /* Result of the call will no longer be defined. So adjust the
868 SSA_NAME_DEF_STMT accordingly. */
869 SSA_NAME_DEF_STMT (rslt) = gimple_build_nop ();
870 }
871
872 gsi_remove (&t->call_gsi, true);
873 release_defs (call);
874 }
875
876 /* Optimizes the tailcall described by T. If OPT_TAILCALLS is true, also
877 mark the tailcalls for the sibcall optimization. */
878
879 static bool
880 optimize_tail_call (struct tailcall *t, bool opt_tailcalls)
881 {
882 if (t->tail_recursion)
883 {
884 eliminate_tail_call (t);
885 return true;
886 }
887
888 if (opt_tailcalls)
889 {
890 gimple stmt = gsi_stmt (t->call_gsi);
891
892 gimple_call_set_tail (stmt, true);
893 if (dump_file && (dump_flags & TDF_DETAILS))
894 {
895 fprintf (dump_file, "Found tail call ");
896 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
897 fprintf (dump_file, " in bb %i\n", (gsi_bb (t->call_gsi))->index);
898 }
899 }
900
901 return false;
902 }
903
904 /* Creates a tail-call accumulator of the same type as the return type of the
905 current function. LABEL is the name used to creating the temporary
906 variable for the accumulator. The accumulator will be inserted in the
907 phis of a basic block BB with single predecessor with an initial value
908 INIT converted to the current function return type. */
909
910 static tree
911 create_tailcall_accumulator (const char *label, basic_block bb, tree init)
912 {
913 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
914 if (POINTER_TYPE_P (ret_type))
915 ret_type = sizetype;
916
917 tree tmp = make_temp_ssa_name (ret_type, NULL, label);
918 gimple phi;
919
920 phi = create_phi_node (tmp, bb);
921 /* RET_TYPE can be a float when -ffast-maths is enabled. */
922 add_phi_arg (phi, fold_convert (ret_type, init), single_pred_edge (bb),
923 UNKNOWN_LOCATION);
924 return PHI_RESULT (phi);
925 }
926
927 /* Optimizes tail calls in the function, turning the tail recursion
928 into iteration. */
929
930 static unsigned int
931 tree_optimize_tail_calls_1 (bool opt_tailcalls)
932 {
933 edge e;
934 bool phis_constructed = false;
935 struct tailcall *tailcalls = NULL, *act, *next;
936 bool changed = false;
937 basic_block first = single_succ (ENTRY_BLOCK_PTR);
938 tree param;
939 gimple stmt;
940 edge_iterator ei;
941
942 if (!suitable_for_tail_opt_p ())
943 return 0;
944 if (opt_tailcalls)
945 opt_tailcalls = suitable_for_tail_call_opt_p ();
946
947 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
948 {
949 /* Only traverse the normal exits, i.e. those that end with return
950 statement. */
951 stmt = last_stmt (e->src);
952
953 if (stmt
954 && gimple_code (stmt) == GIMPLE_RETURN)
955 find_tail_calls (e->src, &tailcalls);
956 }
957
958 /* Construct the phi nodes and accumulators if necessary. */
959 a_acc = m_acc = NULL_TREE;
960 for (act = tailcalls; act; act = act->next)
961 {
962 if (!act->tail_recursion)
963 continue;
964
965 if (!phis_constructed)
966 {
967 /* Ensure that there is only one predecessor of the block
968 or if there are existing degenerate PHI nodes. */
969 if (!single_pred_p (first)
970 || !gimple_seq_empty_p (phi_nodes (first)))
971 first = split_edge (single_succ_edge (ENTRY_BLOCK_PTR));
972
973 /* Copy the args if needed. */
974 for (param = DECL_ARGUMENTS (current_function_decl);
975 param;
976 param = DECL_CHAIN (param))
977 if (arg_needs_copy_p (param))
978 {
979 tree name = ssa_default_def (cfun, param);
980 tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name));
981 gimple phi;
982
983 set_ssa_default_def (cfun, param, new_name);
984 phi = create_phi_node (name, first);
985 add_phi_arg (phi, new_name, single_pred_edge (first),
986 EXPR_LOCATION (param));
987 }
988 phis_constructed = true;
989 }
990
991 if (act->add && !a_acc)
992 a_acc = create_tailcall_accumulator ("add_acc", first,
993 integer_zero_node);
994
995 if (act->mult && !m_acc)
996 m_acc = create_tailcall_accumulator ("mult_acc", first,
997 integer_one_node);
998 }
999
1000 if (a_acc || m_acc)
1001 {
1002 /* When the tail call elimination using accumulators is performed,
1003 statements adding the accumulated value are inserted at all exits.
1004 This turns all other tail calls to non-tail ones. */
1005 opt_tailcalls = false;
1006 }
1007
1008 for (; tailcalls; tailcalls = next)
1009 {
1010 next = tailcalls->next;
1011 changed |= optimize_tail_call (tailcalls, opt_tailcalls);
1012 free (tailcalls);
1013 }
1014
1015 if (a_acc || m_acc)
1016 {
1017 /* Modify the remaining return statements. */
1018 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1019 {
1020 stmt = last_stmt (e->src);
1021
1022 if (stmt
1023 && gimple_code (stmt) == GIMPLE_RETURN)
1024 adjust_return_value (e->src, m_acc, a_acc);
1025 }
1026 }
1027
1028 if (changed)
1029 {
1030 /* We may have created new loops. Make them magically appear. */
1031 if (current_loops)
1032 loops_state_set (LOOPS_NEED_FIXUP);
1033 free_dominance_info (CDI_DOMINATORS);
1034 }
1035
1036 /* Add phi nodes for the virtual operands defined in the function to the
1037 header of the loop created by tail recursion elimination. Do so
1038 by triggering the SSA renamer. */
1039 if (phis_constructed)
1040 mark_virtual_operands_for_renaming (cfun);
1041
1042 if (changed)
1043 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
1044 return 0;
1045 }
1046
1047 static unsigned int
1048 execute_tail_recursion (void)
1049 {
1050 return tree_optimize_tail_calls_1 (false);
1051 }
1052
1053 static bool
1054 gate_tail_calls (void)
1055 {
1056 return flag_optimize_sibling_calls != 0 && dbg_cnt (tail_call);
1057 }
1058
1059 static unsigned int
1060 execute_tail_calls (void)
1061 {
1062 return tree_optimize_tail_calls_1 (true);
1063 }
1064
1065 namespace {
1066
1067 const pass_data pass_data_tail_recursion =
1068 {
1069 GIMPLE_PASS, /* type */
1070 "tailr", /* name */
1071 OPTGROUP_NONE, /* optinfo_flags */
1072 true, /* has_gate */
1073 true, /* has_execute */
1074 TV_NONE, /* tv_id */
1075 ( PROP_cfg | PROP_ssa ), /* properties_required */
1076 0, /* properties_provided */
1077 0, /* properties_destroyed */
1078 0, /* todo_flags_start */
1079 TODO_verify_ssa, /* todo_flags_finish */
1080 };
1081
1082 class pass_tail_recursion : public gimple_opt_pass
1083 {
1084 public:
1085 pass_tail_recursion(gcc::context *ctxt)
1086 : gimple_opt_pass(pass_data_tail_recursion, ctxt)
1087 {}
1088
1089 /* opt_pass methods: */
1090 opt_pass * clone () { return new pass_tail_recursion (ctxt_); }
1091 bool gate () { return gate_tail_calls (); }
1092 unsigned int execute () { return execute_tail_recursion (); }
1093
1094 }; // class pass_tail_recursion
1095
1096 } // anon namespace
1097
1098 gimple_opt_pass *
1099 make_pass_tail_recursion (gcc::context *ctxt)
1100 {
1101 return new pass_tail_recursion (ctxt);
1102 }
1103
1104 namespace {
1105
1106 const pass_data pass_data_tail_calls =
1107 {
1108 GIMPLE_PASS, /* type */
1109 "tailc", /* name */
1110 OPTGROUP_NONE, /* optinfo_flags */
1111 true, /* has_gate */
1112 true, /* has_execute */
1113 TV_NONE, /* tv_id */
1114 ( PROP_cfg | PROP_ssa ), /* properties_required */
1115 0, /* properties_provided */
1116 0, /* properties_destroyed */
1117 0, /* todo_flags_start */
1118 TODO_verify_ssa, /* todo_flags_finish */
1119 };
1120
1121 class pass_tail_calls : public gimple_opt_pass
1122 {
1123 public:
1124 pass_tail_calls(gcc::context *ctxt)
1125 : gimple_opt_pass(pass_data_tail_calls, ctxt)
1126 {}
1127
1128 /* opt_pass methods: */
1129 bool gate () { return gate_tail_calls (); }
1130 unsigned int execute () { return execute_tail_calls (); }
1131
1132 }; // class pass_tail_calls
1133
1134 } // anon namespace
1135
1136 gimple_opt_pass *
1137 make_pass_tail_calls (gcc::context *ctxt)
1138 {
1139 return new pass_tail_calls (ctxt);
1140 }