system.h (dump_file): Do not define.
[gcc.git] / gcc / tree-tailcall.c
1 /* Tail call optimization on trees.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "tm_p.h"
27 #include "basic-block.h"
28 #include "function.h"
29 #include "tree-flow.h"
30 #include "gimple-pretty-print.h"
31 #include "except.h"
32 #include "tree-pass.h"
33 #include "flags.h"
34 #include "langhooks.h"
35 #include "dbgcnt.h"
36 #include "target.h"
37 #include "common/common-target.h"
38
39 /* The file implements the tail recursion elimination. It is also used to
40 analyze the tail calls in general, passing the results to the rtl level
41 where they are used for sibcall optimization.
42
43 In addition to the standard tail recursion elimination, we handle the most
44 trivial cases of making the call tail recursive by creating accumulators.
45 For example the following function
46
47 int sum (int n)
48 {
49 if (n > 0)
50 return n + sum (n - 1);
51 else
52 return 0;
53 }
54
55 is transformed into
56
57 int sum (int n)
58 {
59 int acc = 0;
60
61 while (n > 0)
62 acc += n--;
63
64 return acc;
65 }
66
67 To do this, we maintain two accumulators (a_acc and m_acc) that indicate
68 when we reach the return x statement, we should return a_acc + x * m_acc
69 instead. They are initially initialized to 0 and 1, respectively,
70 so the semantics of the function is obviously preserved. If we are
71 guaranteed that the value of the accumulator never change, we
72 omit the accumulator.
73
74 There are three cases how the function may exit. The first one is
75 handled in adjust_return_value, the other two in adjust_accumulator_values
76 (the second case is actually a special case of the third one and we
77 present it separately just for clarity):
78
79 1) Just return x, where x is not in any of the remaining special shapes.
80 We rewrite this to a gimple equivalent of return m_acc * x + a_acc.
81
82 2) return f (...), where f is the current function, is rewritten in a
83 classical tail-recursion elimination way, into assignment of arguments
84 and jump to the start of the function. Values of the accumulators
85 are unchanged.
86
87 3) return a + m * f(...), where a and m do not depend on call to f.
88 To preserve the semantics described before we want this to be rewritten
89 in such a way that we finally return
90
91 a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...).
92
93 I.e. we increase a_acc by a * m_acc, multiply m_acc by m and
94 eliminate the tail call to f. Special cases when the value is just
95 added or just multiplied are obtained by setting a = 0 or m = 1.
96
97 TODO -- it is possible to do similar tricks for other operations. */
98
99 /* A structure that describes the tailcall. */
100
101 struct tailcall
102 {
103 /* The iterator pointing to the call statement. */
104 gimple_stmt_iterator call_gsi;
105
106 /* True if it is a call to the current function. */
107 bool tail_recursion;
108
109 /* The return value of the caller is mult * f + add, where f is the return
110 value of the call. */
111 tree mult, add;
112
113 /* Next tailcall in the chain. */
114 struct tailcall *next;
115 };
116
117 /* The variables holding the value of multiplicative and additive
118 accumulator. */
119 static tree m_acc, a_acc;
120
121 static bool suitable_for_tail_opt_p (void);
122 static bool optimize_tail_call (struct tailcall *, bool);
123 static void eliminate_tail_call (struct tailcall *);
124 static void find_tail_calls (basic_block, struct tailcall **);
125
126 /* Returns false when the function is not suitable for tail call optimization
127 from some reason (e.g. if it takes variable number of arguments). */
128
129 static bool
130 suitable_for_tail_opt_p (void)
131 {
132 if (cfun->stdarg)
133 return false;
134
135 return true;
136 }
137 /* Returns false when the function is not suitable for tail call optimization
138 from some reason (e.g. if it takes variable number of arguments).
139 This test must pass in addition to suitable_for_tail_opt_p in order to make
140 tail call discovery happen. */
141
142 static bool
143 suitable_for_tail_call_opt_p (void)
144 {
145 tree param;
146
147 /* alloca (until we have stack slot life analysis) inhibits
148 sibling call optimizations, but not tail recursion. */
149 if (cfun->calls_alloca)
150 return false;
151
152 /* If we are using sjlj exceptions, we may need to add a call to
153 _Unwind_SjLj_Unregister at exit of the function. Which means
154 that we cannot do any sibcall transformations. */
155 if (targetm_common.except_unwind_info (&global_options) == UI_SJLJ
156 && current_function_has_exception_handlers ())
157 return false;
158
159 /* Any function that calls setjmp might have longjmp called from
160 any called function. ??? We really should represent this
161 properly in the CFG so that this needn't be special cased. */
162 if (cfun->calls_setjmp)
163 return false;
164
165 /* ??? It is OK if the argument of a function is taken in some cases,
166 but not in all cases. See PR15387 and PR19616. Revisit for 4.1. */
167 for (param = DECL_ARGUMENTS (current_function_decl);
168 param;
169 param = DECL_CHAIN (param))
170 if (TREE_ADDRESSABLE (param))
171 return false;
172
173 return true;
174 }
175
176 /* Checks whether the expression EXPR in stmt AT is independent of the
177 statement pointed to by GSI (in a sense that we already know EXPR's value
178 at GSI). We use the fact that we are only called from the chain of
179 basic blocks that have only single successor. Returns the expression
180 containing the value of EXPR at GSI. */
181
182 static tree
183 independent_of_stmt_p (tree expr, gimple at, gimple_stmt_iterator gsi)
184 {
185 basic_block bb, call_bb, at_bb;
186 edge e;
187 edge_iterator ei;
188
189 if (is_gimple_min_invariant (expr))
190 return expr;
191
192 if (TREE_CODE (expr) != SSA_NAME)
193 return NULL_TREE;
194
195 /* Mark the blocks in the chain leading to the end. */
196 at_bb = gimple_bb (at);
197 call_bb = gimple_bb (gsi_stmt (gsi));
198 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
199 bb->aux = &bb->aux;
200 bb->aux = &bb->aux;
201
202 while (1)
203 {
204 at = SSA_NAME_DEF_STMT (expr);
205 bb = gimple_bb (at);
206
207 /* The default definition or defined before the chain. */
208 if (!bb || !bb->aux)
209 break;
210
211 if (bb == call_bb)
212 {
213 for (; !gsi_end_p (gsi); gsi_next (&gsi))
214 if (gsi_stmt (gsi) == at)
215 break;
216
217 if (!gsi_end_p (gsi))
218 expr = NULL_TREE;
219 break;
220 }
221
222 if (gimple_code (at) != GIMPLE_PHI)
223 {
224 expr = NULL_TREE;
225 break;
226 }
227
228 FOR_EACH_EDGE (e, ei, bb->preds)
229 if (e->src->aux)
230 break;
231 gcc_assert (e);
232
233 expr = PHI_ARG_DEF_FROM_EDGE (at, e);
234 if (TREE_CODE (expr) != SSA_NAME)
235 {
236 /* The value is a constant. */
237 break;
238 }
239 }
240
241 /* Unmark the blocks. */
242 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
243 bb->aux = NULL;
244 bb->aux = NULL;
245
246 return expr;
247 }
248
249 /* Simulates the effect of an assignment STMT on the return value of the tail
250 recursive CALL passed in ASS_VAR. M and A are the multiplicative and the
251 additive factor for the real return value. */
252
253 static bool
254 process_assignment (gimple stmt, gimple_stmt_iterator call, tree *m,
255 tree *a, tree *ass_var)
256 {
257 tree op0, op1 = NULL_TREE, non_ass_var = NULL_TREE;
258 tree dest = gimple_assign_lhs (stmt);
259 enum tree_code code = gimple_assign_rhs_code (stmt);
260 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
261 tree src_var = gimple_assign_rhs1 (stmt);
262
263 /* See if this is a simple copy operation of an SSA name to the function
264 result. In that case we may have a simple tail call. Ignore type
265 conversions that can never produce extra code between the function
266 call and the function return. */
267 if ((rhs_class == GIMPLE_SINGLE_RHS || gimple_assign_cast_p (stmt))
268 && (TREE_CODE (src_var) == SSA_NAME))
269 {
270 /* Reject a tailcall if the type conversion might need
271 additional code. */
272 if (gimple_assign_cast_p (stmt)
273 && TYPE_MODE (TREE_TYPE (dest)) != TYPE_MODE (TREE_TYPE (src_var)))
274 return false;
275
276 if (src_var != *ass_var)
277 return false;
278
279 *ass_var = dest;
280 return true;
281 }
282
283 switch (rhs_class)
284 {
285 case GIMPLE_BINARY_RHS:
286 op1 = gimple_assign_rhs2 (stmt);
287
288 /* Fall through. */
289
290 case GIMPLE_UNARY_RHS:
291 op0 = gimple_assign_rhs1 (stmt);
292 break;
293
294 default:
295 return false;
296 }
297
298 /* Accumulator optimizations will reverse the order of operations.
299 We can only do that for floating-point types if we're assuming
300 that addition and multiplication are associative. */
301 if (!flag_associative_math)
302 if (FLOAT_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
303 return false;
304
305 if (rhs_class == GIMPLE_UNARY_RHS)
306 ;
307 else if (op0 == *ass_var
308 && (non_ass_var = independent_of_stmt_p (op1, stmt, call)))
309 ;
310 else if (op1 == *ass_var
311 && (non_ass_var = independent_of_stmt_p (op0, stmt, call)))
312 ;
313 else
314 return false;
315
316 switch (code)
317 {
318 case PLUS_EXPR:
319 *a = non_ass_var;
320 *ass_var = dest;
321 return true;
322
323 case MULT_EXPR:
324 *m = non_ass_var;
325 *ass_var = dest;
326 return true;
327
328 case NEGATE_EXPR:
329 if (FLOAT_TYPE_P (TREE_TYPE (op0)))
330 *m = build_real (TREE_TYPE (op0), dconstm1);
331 else
332 *m = build_int_cst (TREE_TYPE (op0), -1);
333
334 *ass_var = dest;
335 return true;
336
337 case MINUS_EXPR:
338 if (*ass_var == op0)
339 *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
340 else
341 {
342 if (FLOAT_TYPE_P (TREE_TYPE (non_ass_var)))
343 *m = build_real (TREE_TYPE (non_ass_var), dconstm1);
344 else
345 *m = build_int_cst (TREE_TYPE (non_ass_var), -1);
346
347 *a = fold_build1 (NEGATE_EXPR, TREE_TYPE (non_ass_var), non_ass_var);
348 }
349
350 *ass_var = dest;
351 return true;
352
353 /* TODO -- Handle POINTER_PLUS_EXPR. */
354
355 default:
356 return false;
357 }
358 }
359
360 /* Propagate VAR through phis on edge E. */
361
362 static tree
363 propagate_through_phis (tree var, edge e)
364 {
365 basic_block dest = e->dest;
366 gimple_stmt_iterator gsi;
367
368 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
369 {
370 gimple phi = gsi_stmt (gsi);
371 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var)
372 return PHI_RESULT (phi);
373 }
374 return var;
375 }
376
377 /* Finds tailcalls falling into basic block BB. The list of found tailcalls is
378 added to the start of RET. */
379
380 static void
381 find_tail_calls (basic_block bb, struct tailcall **ret)
382 {
383 tree ass_var = NULL_TREE, ret_var, func, param;
384 gimple stmt, call = NULL;
385 gimple_stmt_iterator gsi, agsi;
386 bool tail_recursion;
387 struct tailcall *nw;
388 edge e;
389 tree m, a;
390 basic_block abb;
391 size_t idx;
392 tree var;
393 referenced_var_iterator rvi;
394
395 if (!single_succ_p (bb))
396 return;
397
398 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
399 {
400 stmt = gsi_stmt (gsi);
401
402 /* Ignore labels, returns, clobbers and debug stmts. */
403 if (gimple_code (stmt) == GIMPLE_LABEL
404 || gimple_code (stmt) == GIMPLE_RETURN
405 || gimple_clobber_p (stmt)
406 || is_gimple_debug (stmt))
407 continue;
408
409 /* Check for a call. */
410 if (is_gimple_call (stmt))
411 {
412 call = stmt;
413 ass_var = gimple_call_lhs (stmt);
414 break;
415 }
416
417 /* If the statement references memory or volatile operands, fail. */
418 if (gimple_references_memory_p (stmt)
419 || gimple_has_volatile_ops (stmt))
420 return;
421 }
422
423 if (gsi_end_p (gsi))
424 {
425 edge_iterator ei;
426 /* Recurse to the predecessors. */
427 FOR_EACH_EDGE (e, ei, bb->preds)
428 find_tail_calls (e->src, ret);
429
430 return;
431 }
432
433 /* If the LHS of our call is not just a simple register, we can't
434 transform this into a tail or sibling call. This situation happens,
435 in (e.g.) "*p = foo()" where foo returns a struct. In this case
436 we won't have a temporary here, but we need to carry out the side
437 effect anyway, so tailcall is impossible.
438
439 ??? In some situations (when the struct is returned in memory via
440 invisible argument) we could deal with this, e.g. by passing 'p'
441 itself as that argument to foo, but it's too early to do this here,
442 and expand_call() will not handle it anyway. If it ever can, then
443 we need to revisit this here, to allow that situation. */
444 if (ass_var && !is_gimple_reg (ass_var))
445 return;
446
447 /* We found the call, check whether it is suitable. */
448 tail_recursion = false;
449 func = gimple_call_fndecl (call);
450 if (func == current_function_decl)
451 {
452 tree arg;
453
454 for (param = DECL_ARGUMENTS (func), idx = 0;
455 param && idx < gimple_call_num_args (call);
456 param = DECL_CHAIN (param), idx ++)
457 {
458 arg = gimple_call_arg (call, idx);
459 if (param != arg)
460 {
461 /* Make sure there are no problems with copying. The parameter
462 have a copyable type and the two arguments must have reasonably
463 equivalent types. The latter requirement could be relaxed if
464 we emitted a suitable type conversion statement. */
465 if (!is_gimple_reg_type (TREE_TYPE (param))
466 || !useless_type_conversion_p (TREE_TYPE (param),
467 TREE_TYPE (arg)))
468 break;
469
470 /* The parameter should be a real operand, so that phi node
471 created for it at the start of the function has the meaning
472 of copying the value. This test implies is_gimple_reg_type
473 from the previous condition, however this one could be
474 relaxed by being more careful with copying the new value
475 of the parameter (emitting appropriate GIMPLE_ASSIGN and
476 updating the virtual operands). */
477 if (!is_gimple_reg (param))
478 break;
479 }
480 }
481 if (idx == gimple_call_num_args (call) && !param)
482 tail_recursion = true;
483 }
484
485 /* Make sure the tail invocation of this function does not refer
486 to local variables. */
487 FOR_EACH_REFERENCED_VAR (cfun, var, rvi)
488 {
489 if (TREE_CODE (var) != PARM_DECL
490 && auto_var_in_fn_p (var, cfun->decl)
491 && (ref_maybe_used_by_stmt_p (call, var)
492 || call_may_clobber_ref_p (call, var)))
493 return;
494 }
495
496 /* Now check the statements after the call. None of them has virtual
497 operands, so they may only depend on the call through its return
498 value. The return value should also be dependent on each of them,
499 since we are running after dce. */
500 m = NULL_TREE;
501 a = NULL_TREE;
502
503 abb = bb;
504 agsi = gsi;
505 while (1)
506 {
507 tree tmp_a = NULL_TREE;
508 tree tmp_m = NULL_TREE;
509 gsi_next (&agsi);
510
511 while (gsi_end_p (agsi))
512 {
513 ass_var = propagate_through_phis (ass_var, single_succ_edge (abb));
514 abb = single_succ (abb);
515 agsi = gsi_start_bb (abb);
516 }
517
518 stmt = gsi_stmt (agsi);
519
520 if (gimple_code (stmt) == GIMPLE_LABEL)
521 continue;
522
523 if (gimple_code (stmt) == GIMPLE_RETURN)
524 break;
525
526 if (gimple_clobber_p (stmt))
527 continue;
528
529 if (is_gimple_debug (stmt))
530 continue;
531
532 if (gimple_code (stmt) != GIMPLE_ASSIGN)
533 return;
534
535 /* This is a gimple assign. */
536 if (! process_assignment (stmt, gsi, &tmp_m, &tmp_a, &ass_var))
537 return;
538
539 if (tmp_a)
540 {
541 tree type = TREE_TYPE (tmp_a);
542 if (a)
543 a = fold_build2 (PLUS_EXPR, type, fold_convert (type, a), tmp_a);
544 else
545 a = tmp_a;
546 }
547 if (tmp_m)
548 {
549 tree type = TREE_TYPE (tmp_m);
550 if (m)
551 m = fold_build2 (MULT_EXPR, type, fold_convert (type, m), tmp_m);
552 else
553 m = tmp_m;
554
555 if (a)
556 a = fold_build2 (MULT_EXPR, type, fold_convert (type, a), tmp_m);
557 }
558 }
559
560 /* See if this is a tail call we can handle. */
561 ret_var = gimple_return_retval (stmt);
562
563 /* We may proceed if there either is no return value, or the return value
564 is identical to the call's return. */
565 if (ret_var
566 && (ret_var != ass_var))
567 return;
568
569 /* If this is not a tail recursive call, we cannot handle addends or
570 multiplicands. */
571 if (!tail_recursion && (m || a))
572 return;
573
574 nw = XNEW (struct tailcall);
575
576 nw->call_gsi = gsi;
577
578 nw->tail_recursion = tail_recursion;
579
580 nw->mult = m;
581 nw->add = a;
582
583 nw->next = *ret;
584 *ret = nw;
585 }
586
587 /* Helper to insert PHI_ARGH to the phi of VAR in the destination of edge E. */
588
589 static void
590 add_successor_phi_arg (edge e, tree var, tree phi_arg)
591 {
592 gimple_stmt_iterator gsi;
593
594 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
595 if (PHI_RESULT (gsi_stmt (gsi)) == var)
596 break;
597
598 gcc_assert (!gsi_end_p (gsi));
599 add_phi_arg (gsi_stmt (gsi), phi_arg, e, UNKNOWN_LOCATION);
600 }
601
602 /* Creates a GIMPLE statement which computes the operation specified by
603 CODE, OP0 and OP1 to a new variable with name LABEL and inserts the
604 statement in the position specified by GSI and UPDATE. Returns the
605 tree node of the statement's result. */
606
607 static tree
608 adjust_return_value_with_ops (enum tree_code code, const char *label,
609 tree acc, tree op1, gimple_stmt_iterator gsi)
610 {
611
612 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
613 tree tmp = create_tmp_reg (ret_type, label);
614 gimple stmt;
615 tree result;
616
617 add_referenced_var (tmp);
618
619 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1)))
620 stmt = gimple_build_assign_with_ops (code, tmp, acc, op1);
621 else
622 {
623 tree rhs = fold_convert (TREE_TYPE (acc),
624 fold_build2 (code,
625 TREE_TYPE (op1),
626 fold_convert (TREE_TYPE (op1), acc),
627 op1));
628 rhs = force_gimple_operand_gsi (&gsi, rhs,
629 false, NULL, true, GSI_CONTINUE_LINKING);
630 stmt = gimple_build_assign (NULL_TREE, rhs);
631 }
632
633 result = make_ssa_name (tmp, stmt);
634 gimple_assign_set_lhs (stmt, result);
635 update_stmt (stmt);
636 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
637 return result;
638 }
639
640 /* Creates a new GIMPLE statement that adjusts the value of accumulator ACC by
641 the computation specified by CODE and OP1 and insert the statement
642 at the position specified by GSI as a new statement. Returns new SSA name
643 of updated accumulator. */
644
645 static tree
646 update_accumulator_with_ops (enum tree_code code, tree acc, tree op1,
647 gimple_stmt_iterator gsi)
648 {
649 gimple stmt;
650 tree var;
651 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1)))
652 stmt = gimple_build_assign_with_ops (code, SSA_NAME_VAR (acc), acc, op1);
653 else
654 {
655 tree rhs = fold_convert (TREE_TYPE (acc),
656 fold_build2 (code,
657 TREE_TYPE (op1),
658 fold_convert (TREE_TYPE (op1), acc),
659 op1));
660 rhs = force_gimple_operand_gsi (&gsi, rhs,
661 false, NULL, false, GSI_CONTINUE_LINKING);
662 stmt = gimple_build_assign (NULL_TREE, rhs);
663 }
664 var = make_ssa_name (SSA_NAME_VAR (acc), stmt);
665 gimple_assign_set_lhs (stmt, var);
666 update_stmt (stmt);
667 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
668 return var;
669 }
670
671 /* Adjust the accumulator values according to A and M after GSI, and update
672 the phi nodes on edge BACK. */
673
674 static void
675 adjust_accumulator_values (gimple_stmt_iterator gsi, tree m, tree a, edge back)
676 {
677 tree var, a_acc_arg, m_acc_arg;
678
679 if (m)
680 m = force_gimple_operand_gsi (&gsi, m, true, NULL, true, GSI_SAME_STMT);
681 if (a)
682 a = force_gimple_operand_gsi (&gsi, a, true, NULL, true, GSI_SAME_STMT);
683
684 a_acc_arg = a_acc;
685 m_acc_arg = m_acc;
686 if (a)
687 {
688 if (m_acc)
689 {
690 if (integer_onep (a))
691 var = m_acc;
692 else
693 var = adjust_return_value_with_ops (MULT_EXPR, "acc_tmp", m_acc,
694 a, gsi);
695 }
696 else
697 var = a;
698
699 a_acc_arg = update_accumulator_with_ops (PLUS_EXPR, a_acc, var, gsi);
700 }
701
702 if (m)
703 m_acc_arg = update_accumulator_with_ops (MULT_EXPR, m_acc, m, gsi);
704
705 if (a_acc)
706 add_successor_phi_arg (back, a_acc, a_acc_arg);
707
708 if (m_acc)
709 add_successor_phi_arg (back, m_acc, m_acc_arg);
710 }
711
712 /* Adjust value of the return at the end of BB according to M and A
713 accumulators. */
714
715 static void
716 adjust_return_value (basic_block bb, tree m, tree a)
717 {
718 tree retval;
719 gimple ret_stmt = gimple_seq_last_stmt (bb_seq (bb));
720 gimple_stmt_iterator gsi = gsi_last_bb (bb);
721
722 gcc_assert (gimple_code (ret_stmt) == GIMPLE_RETURN);
723
724 retval = gimple_return_retval (ret_stmt);
725 if (!retval || retval == error_mark_node)
726 return;
727
728 if (m)
729 retval = adjust_return_value_with_ops (MULT_EXPR, "mul_tmp", m_acc, retval,
730 gsi);
731 if (a)
732 retval = adjust_return_value_with_ops (PLUS_EXPR, "acc_tmp", a_acc, retval,
733 gsi);
734 gimple_return_set_retval (ret_stmt, retval);
735 update_stmt (ret_stmt);
736 }
737
738 /* Subtract COUNT and FREQUENCY from the basic block and it's
739 outgoing edge. */
740 static void
741 decrease_profile (basic_block bb, gcov_type count, int frequency)
742 {
743 edge e;
744 bb->count -= count;
745 if (bb->count < 0)
746 bb->count = 0;
747 bb->frequency -= frequency;
748 if (bb->frequency < 0)
749 bb->frequency = 0;
750 if (!single_succ_p (bb))
751 {
752 gcc_assert (!EDGE_COUNT (bb->succs));
753 return;
754 }
755 e = single_succ_edge (bb);
756 e->count -= count;
757 if (e->count < 0)
758 e->count = 0;
759 }
760
761 /* Returns true if argument PARAM of the tail recursive call needs to be copied
762 when the call is eliminated. */
763
764 static bool
765 arg_needs_copy_p (tree param)
766 {
767 tree def;
768
769 if (!is_gimple_reg (param) || !var_ann (param))
770 return false;
771
772 /* Parameters that are only defined but never used need not be copied. */
773 def = gimple_default_def (cfun, param);
774 if (!def)
775 return false;
776
777 return true;
778 }
779
780 /* Eliminates tail call described by T. TMP_VARS is a list of
781 temporary variables used to copy the function arguments. */
782
783 static void
784 eliminate_tail_call (struct tailcall *t)
785 {
786 tree param, rslt;
787 gimple stmt, call;
788 tree arg;
789 size_t idx;
790 basic_block bb, first;
791 edge e;
792 gimple phi;
793 gimple_stmt_iterator gsi;
794 gimple orig_stmt;
795
796 stmt = orig_stmt = gsi_stmt (t->call_gsi);
797 bb = gsi_bb (t->call_gsi);
798
799 if (dump_file && (dump_flags & TDF_DETAILS))
800 {
801 fprintf (dump_file, "Eliminated tail recursion in bb %d : ",
802 bb->index);
803 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
804 fprintf (dump_file, "\n");
805 }
806
807 gcc_assert (is_gimple_call (stmt));
808
809 first = single_succ (ENTRY_BLOCK_PTR);
810
811 /* Remove the code after call_gsi that will become unreachable. The
812 possibly unreachable code in other blocks is removed later in
813 cfg cleanup. */
814 gsi = t->call_gsi;
815 gsi_next (&gsi);
816 while (!gsi_end_p (gsi))
817 {
818 gimple t = gsi_stmt (gsi);
819 /* Do not remove the return statement, so that redirect_edge_and_branch
820 sees how the block ends. */
821 if (gimple_code (t) == GIMPLE_RETURN)
822 break;
823
824 gsi_remove (&gsi, true);
825 release_defs (t);
826 }
827
828 /* Number of executions of function has reduced by the tailcall. */
829 e = single_succ_edge (gsi_bb (t->call_gsi));
830 decrease_profile (EXIT_BLOCK_PTR, e->count, EDGE_FREQUENCY (e));
831 decrease_profile (ENTRY_BLOCK_PTR, e->count, EDGE_FREQUENCY (e));
832 if (e->dest != EXIT_BLOCK_PTR)
833 decrease_profile (e->dest, e->count, EDGE_FREQUENCY (e));
834
835 /* Replace the call by a jump to the start of function. */
836 e = redirect_edge_and_branch (single_succ_edge (gsi_bb (t->call_gsi)),
837 first);
838 gcc_assert (e);
839 PENDING_STMT (e) = NULL;
840
841 /* Add phi node entries for arguments. The ordering of the phi nodes should
842 be the same as the ordering of the arguments. */
843 for (param = DECL_ARGUMENTS (current_function_decl),
844 idx = 0, gsi = gsi_start_phis (first);
845 param;
846 param = DECL_CHAIN (param), idx++)
847 {
848 if (!arg_needs_copy_p (param))
849 continue;
850
851 arg = gimple_call_arg (stmt, idx);
852 phi = gsi_stmt (gsi);
853 gcc_assert (param == SSA_NAME_VAR (PHI_RESULT (phi)));
854
855 add_phi_arg (phi, arg, e, gimple_location (stmt));
856 gsi_next (&gsi);
857 }
858
859 /* Update the values of accumulators. */
860 adjust_accumulator_values (t->call_gsi, t->mult, t->add, e);
861
862 call = gsi_stmt (t->call_gsi);
863 rslt = gimple_call_lhs (call);
864 if (rslt != NULL_TREE)
865 {
866 /* Result of the call will no longer be defined. So adjust the
867 SSA_NAME_DEF_STMT accordingly. */
868 SSA_NAME_DEF_STMT (rslt) = gimple_build_nop ();
869 }
870
871 gsi_remove (&t->call_gsi, true);
872 release_defs (call);
873 }
874
875 /* Add phi nodes for the virtual operands defined in the function to the
876 header of the loop created by tail recursion elimination.
877
878 Originally, we used to add phi nodes only for call clobbered variables,
879 as the value of the non-call clobbered ones obviously cannot be used
880 or changed within the recursive call. However, the local variables
881 from multiple calls now share the same location, so the virtual ssa form
882 requires us to say that the location dies on further iterations of the loop,
883 which requires adding phi nodes.
884 */
885 static void
886 add_virtual_phis (void)
887 {
888 referenced_var_iterator rvi;
889 tree var;
890
891 /* The problematic part is that there is no way how to know what
892 to put into phi nodes (there in fact does not have to be such
893 ssa name available). A solution would be to have an artificial
894 use/kill for all virtual operands in EXIT node. Unless we have
895 this, we cannot do much better than to rebuild the ssa form for
896 possibly affected virtual ssa names from scratch. */
897
898 FOR_EACH_REFERENCED_VAR (cfun, var, rvi)
899 {
900 if (!is_gimple_reg (var) && gimple_default_def (cfun, var) != NULL_TREE)
901 mark_sym_for_renaming (var);
902 }
903 }
904
905 /* Optimizes the tailcall described by T. If OPT_TAILCALLS is true, also
906 mark the tailcalls for the sibcall optimization. */
907
908 static bool
909 optimize_tail_call (struct tailcall *t, bool opt_tailcalls)
910 {
911 if (t->tail_recursion)
912 {
913 eliminate_tail_call (t);
914 return true;
915 }
916
917 if (opt_tailcalls)
918 {
919 gimple stmt = gsi_stmt (t->call_gsi);
920
921 gimple_call_set_tail (stmt, true);
922 if (dump_file && (dump_flags & TDF_DETAILS))
923 {
924 fprintf (dump_file, "Found tail call ");
925 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
926 fprintf (dump_file, " in bb %i\n", (gsi_bb (t->call_gsi))->index);
927 }
928 }
929
930 return false;
931 }
932
933 /* Creates a tail-call accumulator of the same type as the return type of the
934 current function. LABEL is the name used to creating the temporary
935 variable for the accumulator. The accumulator will be inserted in the
936 phis of a basic block BB with single predecessor with an initial value
937 INIT converted to the current function return type. */
938
939 static tree
940 create_tailcall_accumulator (const char *label, basic_block bb, tree init)
941 {
942 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
943 tree tmp = create_tmp_reg (ret_type, label);
944 gimple phi;
945
946 add_referenced_var (tmp);
947 phi = create_phi_node (tmp, bb);
948 /* RET_TYPE can be a float when -ffast-maths is enabled. */
949 add_phi_arg (phi, fold_convert (ret_type, init), single_pred_edge (bb),
950 UNKNOWN_LOCATION);
951 return PHI_RESULT (phi);
952 }
953
954 /* Optimizes tail calls in the function, turning the tail recursion
955 into iteration. */
956
957 static unsigned int
958 tree_optimize_tail_calls_1 (bool opt_tailcalls)
959 {
960 edge e;
961 bool phis_constructed = false;
962 struct tailcall *tailcalls = NULL, *act, *next;
963 bool changed = false;
964 basic_block first = single_succ (ENTRY_BLOCK_PTR);
965 tree param;
966 gimple stmt;
967 edge_iterator ei;
968
969 if (!suitable_for_tail_opt_p ())
970 return 0;
971 if (opt_tailcalls)
972 opt_tailcalls = suitable_for_tail_call_opt_p ();
973
974 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
975 {
976 /* Only traverse the normal exits, i.e. those that end with return
977 statement. */
978 stmt = last_stmt (e->src);
979
980 if (stmt
981 && gimple_code (stmt) == GIMPLE_RETURN)
982 find_tail_calls (e->src, &tailcalls);
983 }
984
985 /* Construct the phi nodes and accumulators if necessary. */
986 a_acc = m_acc = NULL_TREE;
987 for (act = tailcalls; act; act = act->next)
988 {
989 if (!act->tail_recursion)
990 continue;
991
992 if (!phis_constructed)
993 {
994 /* Ensure that there is only one predecessor of the block
995 or if there are existing degenerate PHI nodes. */
996 if (!single_pred_p (first)
997 || !gimple_seq_empty_p (phi_nodes (first)))
998 first = split_edge (single_succ_edge (ENTRY_BLOCK_PTR));
999
1000 /* Copy the args if needed. */
1001 for (param = DECL_ARGUMENTS (current_function_decl);
1002 param;
1003 param = DECL_CHAIN (param))
1004 if (arg_needs_copy_p (param))
1005 {
1006 tree name = gimple_default_def (cfun, param);
1007 tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name));
1008 gimple phi;
1009
1010 set_default_def (param, new_name);
1011 phi = create_phi_node (name, first);
1012 SSA_NAME_DEF_STMT (name) = phi;
1013 add_phi_arg (phi, new_name, single_pred_edge (first),
1014 EXPR_LOCATION (param));
1015 }
1016 phis_constructed = true;
1017 }
1018
1019 if (act->add && !a_acc)
1020 a_acc = create_tailcall_accumulator ("add_acc", first,
1021 integer_zero_node);
1022
1023 if (act->mult && !m_acc)
1024 m_acc = create_tailcall_accumulator ("mult_acc", first,
1025 integer_one_node);
1026 }
1027
1028 if (a_acc || m_acc)
1029 {
1030 /* When the tail call elimination using accumulators is performed,
1031 statements adding the accumulated value are inserted at all exits.
1032 This turns all other tail calls to non-tail ones. */
1033 opt_tailcalls = false;
1034 }
1035
1036 for (; tailcalls; tailcalls = next)
1037 {
1038 next = tailcalls->next;
1039 changed |= optimize_tail_call (tailcalls, opt_tailcalls);
1040 free (tailcalls);
1041 }
1042
1043 if (a_acc || m_acc)
1044 {
1045 /* Modify the remaining return statements. */
1046 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1047 {
1048 stmt = last_stmt (e->src);
1049
1050 if (stmt
1051 && gimple_code (stmt) == GIMPLE_RETURN)
1052 adjust_return_value (e->src, m_acc, a_acc);
1053 }
1054 }
1055
1056 if (changed)
1057 free_dominance_info (CDI_DOMINATORS);
1058
1059 if (phis_constructed)
1060 add_virtual_phis ();
1061 if (changed)
1062 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
1063 return 0;
1064 }
1065
1066 static unsigned int
1067 execute_tail_recursion (void)
1068 {
1069 return tree_optimize_tail_calls_1 (false);
1070 }
1071
1072 static bool
1073 gate_tail_calls (void)
1074 {
1075 return flag_optimize_sibling_calls != 0 && dbg_cnt (tail_call);
1076 }
1077
1078 static unsigned int
1079 execute_tail_calls (void)
1080 {
1081 return tree_optimize_tail_calls_1 (true);
1082 }
1083
1084 struct gimple_opt_pass pass_tail_recursion =
1085 {
1086 {
1087 GIMPLE_PASS,
1088 "tailr", /* name */
1089 gate_tail_calls, /* gate */
1090 execute_tail_recursion, /* execute */
1091 NULL, /* sub */
1092 NULL, /* next */
1093 0, /* static_pass_number */
1094 TV_NONE, /* tv_id */
1095 PROP_cfg | PROP_ssa, /* properties_required */
1096 0, /* properties_provided */
1097 0, /* properties_destroyed */
1098 0, /* todo_flags_start */
1099 TODO_verify_ssa /* todo_flags_finish */
1100 }
1101 };
1102
1103 struct gimple_opt_pass pass_tail_calls =
1104 {
1105 {
1106 GIMPLE_PASS,
1107 "tailc", /* name */
1108 gate_tail_calls, /* gate */
1109 execute_tail_calls, /* execute */
1110 NULL, /* sub */
1111 NULL, /* next */
1112 0, /* static_pass_number */
1113 TV_NONE, /* tv_id */
1114 PROP_cfg | PROP_ssa, /* properties_required */
1115 0, /* properties_provided */
1116 0, /* properties_destroyed */
1117 0, /* todo_flags_start */
1118 TODO_verify_ssa /* todo_flags_finish */
1119 }
1120 };