gimple.h (create_tmp_reg): Declare.
[gcc.git] / gcc / tree-tailcall.c
1 /* Tail call optimization on trees.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "rtl.h"
27 #include "tm_p.h"
28 #include "hard-reg-set.h"
29 #include "basic-block.h"
30 #include "function.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
33 #include "diagnostic.h"
34 #include "except.h"
35 #include "tree-pass.h"
36 #include "flags.h"
37 #include "langhooks.h"
38 #include "dbgcnt.h"
39
40 /* The file implements the tail recursion elimination. It is also used to
41 analyze the tail calls in general, passing the results to the rtl level
42 where they are used for sibcall optimization.
43
44 In addition to the standard tail recursion elimination, we handle the most
45 trivial cases of making the call tail recursive by creating accumulators.
46 For example the following function
47
48 int sum (int n)
49 {
50 if (n > 0)
51 return n + sum (n - 1);
52 else
53 return 0;
54 }
55
56 is transformed into
57
58 int sum (int n)
59 {
60 int acc = 0;
61
62 while (n > 0)
63 acc += n--;
64
65 return acc;
66 }
67
68 To do this, we maintain two accumulators (a_acc and m_acc) that indicate
69 when we reach the return x statement, we should return a_acc + x * m_acc
70 instead. They are initially initialized to 0 and 1, respectively,
71 so the semantics of the function is obviously preserved. If we are
72 guaranteed that the value of the accumulator never change, we
73 omit the accumulator.
74
75 There are three cases how the function may exit. The first one is
76 handled in adjust_return_value, the other two in adjust_accumulator_values
77 (the second case is actually a special case of the third one and we
78 present it separately just for clarity):
79
80 1) Just return x, where x is not in any of the remaining special shapes.
81 We rewrite this to a gimple equivalent of return m_acc * x + a_acc.
82
83 2) return f (...), where f is the current function, is rewritten in a
84 classical tail-recursion elimination way, into assignment of arguments
85 and jump to the start of the function. Values of the accumulators
86 are unchanged.
87
88 3) return a + m * f(...), where a and m do not depend on call to f.
89 To preserve the semantics described before we want this to be rewritten
90 in such a way that we finally return
91
92 a_acc + (a + m * f(...)) * m_acc = (a_acc + a * m_acc) + (m * m_acc) * f(...).
93
94 I.e. we increase a_acc by a * m_acc, multiply m_acc by m and
95 eliminate the tail call to f. Special cases when the value is just
96 added or just multiplied are obtained by setting a = 0 or m = 1.
97
98 TODO -- it is possible to do similar tricks for other operations. */
99
100 /* A structure that describes the tailcall. */
101
102 struct tailcall
103 {
104 /* The iterator pointing to the call statement. */
105 gimple_stmt_iterator call_gsi;
106
107 /* True if it is a call to the current function. */
108 bool tail_recursion;
109
110 /* The return value of the caller is mult * f + add, where f is the return
111 value of the call. */
112 tree mult, add;
113
114 /* Next tailcall in the chain. */
115 struct tailcall *next;
116 };
117
118 /* The variables holding the value of multiplicative and additive
119 accumulator. */
120 static tree m_acc, a_acc;
121
122 static bool suitable_for_tail_opt_p (void);
123 static bool optimize_tail_call (struct tailcall *, bool);
124 static void eliminate_tail_call (struct tailcall *);
125 static void find_tail_calls (basic_block, struct tailcall **);
126
127 /* Returns false when the function is not suitable for tail call optimization
128 from some reason (e.g. if it takes variable number of arguments). */
129
130 static bool
131 suitable_for_tail_opt_p (void)
132 {
133 if (cfun->stdarg)
134 return false;
135
136 return true;
137 }
138 /* Returns false when the function is not suitable for tail call optimization
139 from some reason (e.g. if it takes variable number of arguments).
140 This test must pass in addition to suitable_for_tail_opt_p in order to make
141 tail call discovery happen. */
142
143 static bool
144 suitable_for_tail_call_opt_p (void)
145 {
146 tree param;
147
148 /* alloca (until we have stack slot life analysis) inhibits
149 sibling call optimizations, but not tail recursion. */
150 if (cfun->calls_alloca)
151 return false;
152
153 /* If we are using sjlj exceptions, we may need to add a call to
154 _Unwind_SjLj_Unregister at exit of the function. Which means
155 that we cannot do any sibcall transformations. */
156 if (USING_SJLJ_EXCEPTIONS && current_function_has_exception_handlers ())
157 return false;
158
159 /* Any function that calls setjmp might have longjmp called from
160 any called function. ??? We really should represent this
161 properly in the CFG so that this needn't be special cased. */
162 if (cfun->calls_setjmp)
163 return false;
164
165 /* ??? It is OK if the argument of a function is taken in some cases,
166 but not in all cases. See PR15387 and PR19616. Revisit for 4.1. */
167 for (param = DECL_ARGUMENTS (current_function_decl);
168 param;
169 param = TREE_CHAIN (param))
170 if (TREE_ADDRESSABLE (param))
171 return false;
172
173 return true;
174 }
175
176 /* Checks whether the expression EXPR in stmt AT is independent of the
177 statement pointed to by GSI (in a sense that we already know EXPR's value
178 at GSI). We use the fact that we are only called from the chain of
179 basic blocks that have only single successor. Returns the expression
180 containing the value of EXPR at GSI. */
181
182 static tree
183 independent_of_stmt_p (tree expr, gimple at, gimple_stmt_iterator gsi)
184 {
185 basic_block bb, call_bb, at_bb;
186 edge e;
187 edge_iterator ei;
188
189 if (is_gimple_min_invariant (expr))
190 return expr;
191
192 if (TREE_CODE (expr) != SSA_NAME)
193 return NULL_TREE;
194
195 /* Mark the blocks in the chain leading to the end. */
196 at_bb = gimple_bb (at);
197 call_bb = gimple_bb (gsi_stmt (gsi));
198 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
199 bb->aux = &bb->aux;
200 bb->aux = &bb->aux;
201
202 while (1)
203 {
204 at = SSA_NAME_DEF_STMT (expr);
205 bb = gimple_bb (at);
206
207 /* The default definition or defined before the chain. */
208 if (!bb || !bb->aux)
209 break;
210
211 if (bb == call_bb)
212 {
213 for (; !gsi_end_p (gsi); gsi_next (&gsi))
214 if (gsi_stmt (gsi) == at)
215 break;
216
217 if (!gsi_end_p (gsi))
218 expr = NULL_TREE;
219 break;
220 }
221
222 if (gimple_code (at) != GIMPLE_PHI)
223 {
224 expr = NULL_TREE;
225 break;
226 }
227
228 FOR_EACH_EDGE (e, ei, bb->preds)
229 if (e->src->aux)
230 break;
231 gcc_assert (e);
232
233 expr = PHI_ARG_DEF_FROM_EDGE (at, e);
234 if (TREE_CODE (expr) != SSA_NAME)
235 {
236 /* The value is a constant. */
237 break;
238 }
239 }
240
241 /* Unmark the blocks. */
242 for (bb = call_bb; bb != at_bb; bb = single_succ (bb))
243 bb->aux = NULL;
244 bb->aux = NULL;
245
246 return expr;
247 }
248
249 /* Simulates the effect of an assignment STMT on the return value of the tail
250 recursive CALL passed in ASS_VAR. M and A are the multiplicative and the
251 additive factor for the real return value. */
252
253 static bool
254 process_assignment (gimple stmt, gimple_stmt_iterator call, tree *m,
255 tree *a, tree *ass_var)
256 {
257 tree op0, op1, non_ass_var;
258 tree dest = gimple_assign_lhs (stmt);
259 enum tree_code code = gimple_assign_rhs_code (stmt);
260 enum gimple_rhs_class rhs_class = get_gimple_rhs_class (code);
261 tree src_var = gimple_assign_rhs1 (stmt);
262
263 /* See if this is a simple copy operation of an SSA name to the function
264 result. In that case we may have a simple tail call. Ignore type
265 conversions that can never produce extra code between the function
266 call and the function return. */
267 if ((rhs_class == GIMPLE_SINGLE_RHS || gimple_assign_cast_p (stmt))
268 && (TREE_CODE (src_var) == SSA_NAME))
269 {
270 /* Reject a tailcall if the type conversion might need
271 additional code. */
272 if (gimple_assign_cast_p (stmt)
273 && TYPE_MODE (TREE_TYPE (dest)) != TYPE_MODE (TREE_TYPE (src_var)))
274 return false;
275
276 if (src_var != *ass_var)
277 return false;
278
279 *ass_var = dest;
280 return true;
281 }
282
283 if (rhs_class != GIMPLE_BINARY_RHS)
284 return false;
285
286 /* Accumulator optimizations will reverse the order of operations.
287 We can only do that for floating-point types if we're assuming
288 that addition and multiplication are associative. */
289 if (!flag_associative_math)
290 if (FLOAT_TYPE_P (TREE_TYPE (DECL_RESULT (current_function_decl))))
291 return false;
292
293 /* We only handle the code like
294
295 x = call ();
296 y = m * x;
297 z = y + a;
298 return z;
299
300 TODO -- Extend it for cases where the linear transformation of the output
301 is expressed in a more complicated way. */
302
303 op0 = gimple_assign_rhs1 (stmt);
304 op1 = gimple_assign_rhs2 (stmt);
305
306 if (op0 == *ass_var
307 && (non_ass_var = independent_of_stmt_p (op1, stmt, call)))
308 ;
309 else if (op1 == *ass_var
310 && (non_ass_var = independent_of_stmt_p (op0, stmt, call)))
311 ;
312 else
313 return false;
314
315 switch (code)
316 {
317 case PLUS_EXPR:
318 *a = non_ass_var;
319 *ass_var = dest;
320 return true;
321
322 case MULT_EXPR:
323 *m = non_ass_var;
324 *ass_var = dest;
325 return true;
326
327 /* TODO -- Handle other codes (NEGATE_EXPR, MINUS_EXPR,
328 POINTER_PLUS_EXPR). */
329
330 default:
331 return false;
332 }
333 }
334
335 /* Propagate VAR through phis on edge E. */
336
337 static tree
338 propagate_through_phis (tree var, edge e)
339 {
340 basic_block dest = e->dest;
341 gimple_stmt_iterator gsi;
342
343 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
344 {
345 gimple phi = gsi_stmt (gsi);
346 if (PHI_ARG_DEF_FROM_EDGE (phi, e) == var)
347 return PHI_RESULT (phi);
348 }
349 return var;
350 }
351
352 /* Finds tailcalls falling into basic block BB. The list of found tailcalls is
353 added to the start of RET. */
354
355 static void
356 find_tail_calls (basic_block bb, struct tailcall **ret)
357 {
358 tree ass_var = NULL_TREE, ret_var, func, param;
359 gimple stmt, call = NULL;
360 gimple_stmt_iterator gsi, agsi;
361 bool tail_recursion;
362 struct tailcall *nw;
363 edge e;
364 tree m, a;
365 basic_block abb;
366 size_t idx;
367 tree var;
368 referenced_var_iterator rvi;
369
370 if (!single_succ_p (bb))
371 return;
372
373 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
374 {
375 stmt = gsi_stmt (gsi);
376
377 /* Ignore labels. */
378 if (gimple_code (stmt) == GIMPLE_LABEL || is_gimple_debug (stmt))
379 continue;
380
381 /* Check for a call. */
382 if (is_gimple_call (stmt))
383 {
384 call = stmt;
385 ass_var = gimple_call_lhs (stmt);
386 break;
387 }
388
389 /* If the statement references memory or volatile operands, fail. */
390 if (gimple_references_memory_p (stmt)
391 || gimple_has_volatile_ops (stmt))
392 return;
393 }
394
395 if (gsi_end_p (gsi))
396 {
397 edge_iterator ei;
398 /* Recurse to the predecessors. */
399 FOR_EACH_EDGE (e, ei, bb->preds)
400 find_tail_calls (e->src, ret);
401
402 return;
403 }
404
405 /* If the LHS of our call is not just a simple register, we can't
406 transform this into a tail or sibling call. This situation happens,
407 in (e.g.) "*p = foo()" where foo returns a struct. In this case
408 we won't have a temporary here, but we need to carry out the side
409 effect anyway, so tailcall is impossible.
410
411 ??? In some situations (when the struct is returned in memory via
412 invisible argument) we could deal with this, e.g. by passing 'p'
413 itself as that argument to foo, but it's too early to do this here,
414 and expand_call() will not handle it anyway. If it ever can, then
415 we need to revisit this here, to allow that situation. */
416 if (ass_var && !is_gimple_reg (ass_var))
417 return;
418
419 /* We found the call, check whether it is suitable. */
420 tail_recursion = false;
421 func = gimple_call_fndecl (call);
422 if (func == current_function_decl)
423 {
424 tree arg;
425
426 for (param = DECL_ARGUMENTS (func), idx = 0;
427 param && idx < gimple_call_num_args (call);
428 param = TREE_CHAIN (param), idx ++)
429 {
430 arg = gimple_call_arg (call, idx);
431 if (param != arg)
432 {
433 /* Make sure there are no problems with copying. The parameter
434 have a copyable type and the two arguments must have reasonably
435 equivalent types. The latter requirement could be relaxed if
436 we emitted a suitable type conversion statement. */
437 if (!is_gimple_reg_type (TREE_TYPE (param))
438 || !useless_type_conversion_p (TREE_TYPE (param),
439 TREE_TYPE (arg)))
440 break;
441
442 /* The parameter should be a real operand, so that phi node
443 created for it at the start of the function has the meaning
444 of copying the value. This test implies is_gimple_reg_type
445 from the previous condition, however this one could be
446 relaxed by being more careful with copying the new value
447 of the parameter (emitting appropriate GIMPLE_ASSIGN and
448 updating the virtual operands). */
449 if (!is_gimple_reg (param))
450 break;
451 }
452 }
453 if (idx == gimple_call_num_args (call) && !param)
454 tail_recursion = true;
455 }
456
457 /* Make sure the tail invocation of this function does not refer
458 to local variables. */
459 FOR_EACH_REFERENCED_VAR (var, rvi)
460 {
461 if (!is_global_var (var)
462 && ref_maybe_used_by_stmt_p (call, var))
463 return;
464 }
465
466 /* Now check the statements after the call. None of them has virtual
467 operands, so they may only depend on the call through its return
468 value. The return value should also be dependent on each of them,
469 since we are running after dce. */
470 m = NULL_TREE;
471 a = NULL_TREE;
472
473 abb = bb;
474 agsi = gsi;
475 while (1)
476 {
477 tree tmp_a = NULL_TREE;
478 tree tmp_m = NULL_TREE;
479 gsi_next (&agsi);
480
481 while (gsi_end_p (agsi))
482 {
483 ass_var = propagate_through_phis (ass_var, single_succ_edge (abb));
484 abb = single_succ (abb);
485 agsi = gsi_start_bb (abb);
486 }
487
488 stmt = gsi_stmt (agsi);
489
490 if (gimple_code (stmt) == GIMPLE_LABEL)
491 continue;
492
493 if (gimple_code (stmt) == GIMPLE_RETURN)
494 break;
495
496 if (is_gimple_debug (stmt))
497 continue;
498
499 if (gimple_code (stmt) != GIMPLE_ASSIGN)
500 return;
501
502 /* This is a gimple assign. */
503 if (! process_assignment (stmt, gsi, &tmp_m, &tmp_a, &ass_var))
504 return;
505
506 if (tmp_a)
507 {
508 if (a)
509 a = fold_build2 (PLUS_EXPR, TREE_TYPE (tmp_a), a, tmp_a);
510 else
511 a = tmp_a;
512 }
513 if (tmp_m)
514 {
515 if (m)
516 m = fold_build2 (MULT_EXPR, TREE_TYPE (tmp_m), m, tmp_m);
517 else
518 m = tmp_m;
519
520 if (a)
521 a = fold_build2 (MULT_EXPR, TREE_TYPE (tmp_m), a, tmp_m);
522 }
523 }
524
525 /* See if this is a tail call we can handle. */
526 ret_var = gimple_return_retval (stmt);
527
528 /* We may proceed if there either is no return value, or the return value
529 is identical to the call's return. */
530 if (ret_var
531 && (ret_var != ass_var))
532 return;
533
534 /* If this is not a tail recursive call, we cannot handle addends or
535 multiplicands. */
536 if (!tail_recursion && (m || a))
537 return;
538
539 nw = XNEW (struct tailcall);
540
541 nw->call_gsi = gsi;
542
543 nw->tail_recursion = tail_recursion;
544
545 nw->mult = m;
546 nw->add = a;
547
548 nw->next = *ret;
549 *ret = nw;
550 }
551
552 /* Helper to insert PHI_ARGH to the phi of VAR in the destination of edge E. */
553
554 static void
555 add_successor_phi_arg (edge e, tree var, tree phi_arg)
556 {
557 gimple_stmt_iterator gsi;
558
559 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
560 if (PHI_RESULT (gsi_stmt (gsi)) == var)
561 break;
562
563 gcc_assert (!gsi_end_p (gsi));
564 add_phi_arg (gsi_stmt (gsi), phi_arg, e, UNKNOWN_LOCATION);
565 }
566
567 /* Creates a GIMPLE statement which computes the operation specified by
568 CODE, OP0 and OP1 to a new variable with name LABEL and inserts the
569 statement in the position specified by GSI and UPDATE. Returns the
570 tree node of the statement's result. */
571
572 static tree
573 adjust_return_value_with_ops (enum tree_code code, const char *label,
574 tree acc, tree op1, gimple_stmt_iterator gsi)
575 {
576
577 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
578 tree tmp = create_tmp_reg (ret_type, label);
579 gimple stmt;
580 tree result;
581
582 add_referenced_var (tmp);
583
584 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1)))
585 stmt = gimple_build_assign_with_ops (code, tmp, acc, op1);
586 else
587 {
588 tree rhs = fold_convert (TREE_TYPE (acc),
589 fold_build2 (code,
590 TREE_TYPE (op1),
591 fold_convert (TREE_TYPE (op1), acc),
592 op1));
593 rhs = force_gimple_operand_gsi (&gsi, rhs,
594 false, NULL, true, GSI_CONTINUE_LINKING);
595 stmt = gimple_build_assign (NULL_TREE, rhs);
596 }
597
598 result = make_ssa_name (tmp, stmt);
599 gimple_assign_set_lhs (stmt, result);
600 update_stmt (stmt);
601 gsi_insert_before (&gsi, stmt, GSI_NEW_STMT);
602 return result;
603 }
604
605 /* Creates a new GIMPLE statement that adjusts the value of accumulator ACC by
606 the computation specified by CODE and OP1 and insert the statement
607 at the position specified by GSI as a new statement. Returns new SSA name
608 of updated accumulator. */
609
610 static tree
611 update_accumulator_with_ops (enum tree_code code, tree acc, tree op1,
612 gimple_stmt_iterator gsi)
613 {
614 gimple stmt;
615 tree var;
616 if (types_compatible_p (TREE_TYPE (acc), TREE_TYPE (op1)))
617 stmt = gimple_build_assign_with_ops (code, SSA_NAME_VAR (acc), acc, op1);
618 else
619 {
620 tree rhs = fold_convert (TREE_TYPE (acc),
621 fold_build2 (code,
622 TREE_TYPE (op1),
623 fold_convert (TREE_TYPE (op1), acc),
624 op1));
625 rhs = force_gimple_operand_gsi (&gsi, rhs,
626 false, NULL, false, GSI_CONTINUE_LINKING);
627 stmt = gimple_build_assign (NULL_TREE, rhs);
628 }
629 var = make_ssa_name (SSA_NAME_VAR (acc), stmt);
630 gimple_assign_set_lhs (stmt, var);
631 update_stmt (stmt);
632 gsi_insert_after (&gsi, stmt, GSI_NEW_STMT);
633 return var;
634 }
635
636 /* Adjust the accumulator values according to A and M after GSI, and update
637 the phi nodes on edge BACK. */
638
639 static void
640 adjust_accumulator_values (gimple_stmt_iterator gsi, tree m, tree a, edge back)
641 {
642 tree var, a_acc_arg, m_acc_arg;
643
644 if (m)
645 m = force_gimple_operand_gsi (&gsi, m, true, NULL, true, GSI_SAME_STMT);
646 if (a)
647 a = force_gimple_operand_gsi (&gsi, a, true, NULL, true, GSI_SAME_STMT);
648
649 a_acc_arg = a_acc;
650 m_acc_arg = m_acc;
651 if (a)
652 {
653 if (m_acc)
654 {
655 if (integer_onep (a))
656 var = m_acc;
657 else
658 var = adjust_return_value_with_ops (MULT_EXPR, "acc_tmp", m_acc,
659 a, gsi);
660 }
661 else
662 var = a;
663
664 a_acc_arg = update_accumulator_with_ops (PLUS_EXPR, a_acc, var, gsi);
665 }
666
667 if (m)
668 m_acc_arg = update_accumulator_with_ops (MULT_EXPR, m_acc, m, gsi);
669
670 if (a_acc)
671 add_successor_phi_arg (back, a_acc, a_acc_arg);
672
673 if (m_acc)
674 add_successor_phi_arg (back, m_acc, m_acc_arg);
675 }
676
677 /* Adjust value of the return at the end of BB according to M and A
678 accumulators. */
679
680 static void
681 adjust_return_value (basic_block bb, tree m, tree a)
682 {
683 tree retval;
684 gimple ret_stmt = gimple_seq_last_stmt (bb_seq (bb));
685 gimple_stmt_iterator gsi = gsi_last_bb (bb);
686
687 gcc_assert (gimple_code (ret_stmt) == GIMPLE_RETURN);
688
689 retval = gimple_return_retval (ret_stmt);
690 if (!retval || retval == error_mark_node)
691 return;
692
693 if (m)
694 retval = adjust_return_value_with_ops (MULT_EXPR, "mul_tmp", m_acc, retval,
695 gsi);
696 if (a)
697 retval = adjust_return_value_with_ops (PLUS_EXPR, "acc_tmp", a_acc, retval,
698 gsi);
699 gimple_return_set_retval (ret_stmt, retval);
700 update_stmt (ret_stmt);
701 }
702
703 /* Subtract COUNT and FREQUENCY from the basic block and it's
704 outgoing edge. */
705 static void
706 decrease_profile (basic_block bb, gcov_type count, int frequency)
707 {
708 edge e;
709 bb->count -= count;
710 if (bb->count < 0)
711 bb->count = 0;
712 bb->frequency -= frequency;
713 if (bb->frequency < 0)
714 bb->frequency = 0;
715 if (!single_succ_p (bb))
716 {
717 gcc_assert (!EDGE_COUNT (bb->succs));
718 return;
719 }
720 e = single_succ_edge (bb);
721 e->count -= count;
722 if (e->count < 0)
723 e->count = 0;
724 }
725
726 /* Returns true if argument PARAM of the tail recursive call needs to be copied
727 when the call is eliminated. */
728
729 static bool
730 arg_needs_copy_p (tree param)
731 {
732 tree def;
733
734 if (!is_gimple_reg (param) || !var_ann (param))
735 return false;
736
737 /* Parameters that are only defined but never used need not be copied. */
738 def = gimple_default_def (cfun, param);
739 if (!def)
740 return false;
741
742 return true;
743 }
744
745 /* Eliminates tail call described by T. TMP_VARS is a list of
746 temporary variables used to copy the function arguments. */
747
748 static void
749 eliminate_tail_call (struct tailcall *t)
750 {
751 tree param, rslt;
752 gimple stmt, call;
753 tree arg;
754 size_t idx;
755 basic_block bb, first;
756 edge e;
757 gimple phi;
758 gimple_stmt_iterator gsi;
759 gimple orig_stmt;
760
761 stmt = orig_stmt = gsi_stmt (t->call_gsi);
762 bb = gsi_bb (t->call_gsi);
763
764 if (dump_file && (dump_flags & TDF_DETAILS))
765 {
766 fprintf (dump_file, "Eliminated tail recursion in bb %d : ",
767 bb->index);
768 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
769 fprintf (dump_file, "\n");
770 }
771
772 gcc_assert (is_gimple_call (stmt));
773
774 first = single_succ (ENTRY_BLOCK_PTR);
775
776 /* Remove the code after call_gsi that will become unreachable. The
777 possibly unreachable code in other blocks is removed later in
778 cfg cleanup. */
779 gsi = t->call_gsi;
780 gsi_next (&gsi);
781 while (!gsi_end_p (gsi))
782 {
783 gimple t = gsi_stmt (gsi);
784 /* Do not remove the return statement, so that redirect_edge_and_branch
785 sees how the block ends. */
786 if (gimple_code (t) == GIMPLE_RETURN)
787 break;
788
789 gsi_remove (&gsi, true);
790 release_defs (t);
791 }
792
793 /* Number of executions of function has reduced by the tailcall. */
794 e = single_succ_edge (gsi_bb (t->call_gsi));
795 decrease_profile (EXIT_BLOCK_PTR, e->count, EDGE_FREQUENCY (e));
796 decrease_profile (ENTRY_BLOCK_PTR, e->count, EDGE_FREQUENCY (e));
797 if (e->dest != EXIT_BLOCK_PTR)
798 decrease_profile (e->dest, e->count, EDGE_FREQUENCY (e));
799
800 /* Replace the call by a jump to the start of function. */
801 e = redirect_edge_and_branch (single_succ_edge (gsi_bb (t->call_gsi)),
802 first);
803 gcc_assert (e);
804 PENDING_STMT (e) = NULL;
805
806 /* Add phi node entries for arguments. The ordering of the phi nodes should
807 be the same as the ordering of the arguments. */
808 for (param = DECL_ARGUMENTS (current_function_decl),
809 idx = 0, gsi = gsi_start_phis (first);
810 param;
811 param = TREE_CHAIN (param), idx++)
812 {
813 if (!arg_needs_copy_p (param))
814 continue;
815
816 arg = gimple_call_arg (stmt, idx);
817 phi = gsi_stmt (gsi);
818 gcc_assert (param == SSA_NAME_VAR (PHI_RESULT (phi)));
819
820 add_phi_arg (phi, arg, e, gimple_location (stmt));
821 gsi_next (&gsi);
822 }
823
824 /* Update the values of accumulators. */
825 adjust_accumulator_values (t->call_gsi, t->mult, t->add, e);
826
827 call = gsi_stmt (t->call_gsi);
828 rslt = gimple_call_lhs (call);
829 if (rslt != NULL_TREE)
830 {
831 /* Result of the call will no longer be defined. So adjust the
832 SSA_NAME_DEF_STMT accordingly. */
833 SSA_NAME_DEF_STMT (rslt) = gimple_build_nop ();
834 }
835
836 gsi_remove (&t->call_gsi, true);
837 release_defs (call);
838 }
839
840 /* Add phi nodes for the virtual operands defined in the function to the
841 header of the loop created by tail recursion elimination.
842
843 Originally, we used to add phi nodes only for call clobbered variables,
844 as the value of the non-call clobbered ones obviously cannot be used
845 or changed within the recursive call. However, the local variables
846 from multiple calls now share the same location, so the virtual ssa form
847 requires us to say that the location dies on further iterations of the loop,
848 which requires adding phi nodes.
849 */
850 static void
851 add_virtual_phis (void)
852 {
853 referenced_var_iterator rvi;
854 tree var;
855
856 /* The problematic part is that there is no way how to know what
857 to put into phi nodes (there in fact does not have to be such
858 ssa name available). A solution would be to have an artificial
859 use/kill for all virtual operands in EXIT node. Unless we have
860 this, we cannot do much better than to rebuild the ssa form for
861 possibly affected virtual ssa names from scratch. */
862
863 FOR_EACH_REFERENCED_VAR (var, rvi)
864 {
865 if (!is_gimple_reg (var) && gimple_default_def (cfun, var) != NULL_TREE)
866 mark_sym_for_renaming (var);
867 }
868 }
869
870 /* Optimizes the tailcall described by T. If OPT_TAILCALLS is true, also
871 mark the tailcalls for the sibcall optimization. */
872
873 static bool
874 optimize_tail_call (struct tailcall *t, bool opt_tailcalls)
875 {
876 if (t->tail_recursion)
877 {
878 eliminate_tail_call (t);
879 return true;
880 }
881
882 if (opt_tailcalls)
883 {
884 gimple stmt = gsi_stmt (t->call_gsi);
885
886 gimple_call_set_tail (stmt, true);
887 if (dump_file && (dump_flags & TDF_DETAILS))
888 {
889 fprintf (dump_file, "Found tail call ");
890 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
891 fprintf (dump_file, " in bb %i\n", (gsi_bb (t->call_gsi))->index);
892 }
893 }
894
895 return false;
896 }
897
898 /* Creates a tail-call accumulator of the same type as the return type of the
899 current function. LABEL is the name used to creating the temporary
900 variable for the accumulator. The accumulator will be inserted in the
901 phis of a basic block BB with single predecessor with an initial value
902 INIT converted to the current function return type. */
903
904 static tree
905 create_tailcall_accumulator (const char *label, basic_block bb, tree init)
906 {
907 tree ret_type = TREE_TYPE (DECL_RESULT (current_function_decl));
908 tree tmp = create_tmp_reg (ret_type, label);
909 gimple phi;
910
911 add_referenced_var (tmp);
912 phi = create_phi_node (tmp, bb);
913 /* RET_TYPE can be a float when -ffast-maths is enabled. */
914 add_phi_arg (phi, fold_convert (ret_type, init), single_pred_edge (bb),
915 UNKNOWN_LOCATION);
916 return PHI_RESULT (phi);
917 }
918
919 /* Optimizes tail calls in the function, turning the tail recursion
920 into iteration. */
921
922 static unsigned int
923 tree_optimize_tail_calls_1 (bool opt_tailcalls)
924 {
925 edge e;
926 bool phis_constructed = false;
927 struct tailcall *tailcalls = NULL, *act, *next;
928 bool changed = false;
929 basic_block first = single_succ (ENTRY_BLOCK_PTR);
930 tree param;
931 gimple stmt;
932 edge_iterator ei;
933
934 if (!suitable_for_tail_opt_p ())
935 return 0;
936 if (opt_tailcalls)
937 opt_tailcalls = suitable_for_tail_call_opt_p ();
938
939 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
940 {
941 /* Only traverse the normal exits, i.e. those that end with return
942 statement. */
943 stmt = last_stmt (e->src);
944
945 if (stmt
946 && gimple_code (stmt) == GIMPLE_RETURN)
947 find_tail_calls (e->src, &tailcalls);
948 }
949
950 /* Construct the phi nodes and accumulators if necessary. */
951 a_acc = m_acc = NULL_TREE;
952 for (act = tailcalls; act; act = act->next)
953 {
954 if (!act->tail_recursion)
955 continue;
956
957 if (!phis_constructed)
958 {
959 /* Ensure that there is only one predecessor of the block
960 or if there are existing degenerate PHI nodes. */
961 if (!single_pred_p (first)
962 || !gimple_seq_empty_p (phi_nodes (first)))
963 first = split_edge (single_succ_edge (ENTRY_BLOCK_PTR));
964
965 /* Copy the args if needed. */
966 for (param = DECL_ARGUMENTS (current_function_decl);
967 param;
968 param = TREE_CHAIN (param))
969 if (arg_needs_copy_p (param))
970 {
971 tree name = gimple_default_def (cfun, param);
972 tree new_name = make_ssa_name (param, SSA_NAME_DEF_STMT (name));
973 gimple phi;
974
975 set_default_def (param, new_name);
976 phi = create_phi_node (name, first);
977 SSA_NAME_DEF_STMT (name) = phi;
978 add_phi_arg (phi, new_name, single_pred_edge (first),
979 EXPR_LOCATION (param));
980 }
981 phis_constructed = true;
982 }
983
984 if (act->add && !a_acc)
985 a_acc = create_tailcall_accumulator ("add_acc", first,
986 integer_zero_node);
987
988 if (act->mult && !m_acc)
989 m_acc = create_tailcall_accumulator ("mult_acc", first,
990 integer_one_node);
991 }
992
993 for (; tailcalls; tailcalls = next)
994 {
995 next = tailcalls->next;
996 changed |= optimize_tail_call (tailcalls, opt_tailcalls);
997 free (tailcalls);
998 }
999
1000 if (a_acc || m_acc)
1001 {
1002 /* Modify the remaining return statements. */
1003 FOR_EACH_EDGE (e, ei, EXIT_BLOCK_PTR->preds)
1004 {
1005 stmt = last_stmt (e->src);
1006
1007 if (stmt
1008 && gimple_code (stmt) == GIMPLE_RETURN)
1009 adjust_return_value (e->src, m_acc, a_acc);
1010 }
1011 }
1012
1013 if (changed)
1014 free_dominance_info (CDI_DOMINATORS);
1015
1016 if (phis_constructed)
1017 add_virtual_phis ();
1018 if (changed)
1019 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
1020 return 0;
1021 }
1022
1023 static unsigned int
1024 execute_tail_recursion (void)
1025 {
1026 return tree_optimize_tail_calls_1 (false);
1027 }
1028
1029 static bool
1030 gate_tail_calls (void)
1031 {
1032 return flag_optimize_sibling_calls != 0 && dbg_cnt (tail_call);
1033 }
1034
1035 static unsigned int
1036 execute_tail_calls (void)
1037 {
1038 return tree_optimize_tail_calls_1 (true);
1039 }
1040
1041 struct gimple_opt_pass pass_tail_recursion =
1042 {
1043 {
1044 GIMPLE_PASS,
1045 "tailr", /* name */
1046 gate_tail_calls, /* gate */
1047 execute_tail_recursion, /* execute */
1048 NULL, /* sub */
1049 NULL, /* next */
1050 0, /* static_pass_number */
1051 TV_NONE, /* tv_id */
1052 PROP_cfg | PROP_ssa, /* properties_required */
1053 0, /* properties_provided */
1054 0, /* properties_destroyed */
1055 0, /* todo_flags_start */
1056 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1057 }
1058 };
1059
1060 struct gimple_opt_pass pass_tail_calls =
1061 {
1062 {
1063 GIMPLE_PASS,
1064 "tailc", /* name */
1065 gate_tail_calls, /* gate */
1066 execute_tail_calls, /* execute */
1067 NULL, /* sub */
1068 NULL, /* next */
1069 0, /* static_pass_number */
1070 TV_NONE, /* tv_id */
1071 PROP_cfg | PROP_ssa, /* properties_required */
1072 0, /* properties_provided */
1073 0, /* properties_destroyed */
1074 0, /* todo_flags_start */
1075 TODO_dump_func | TODO_verify_ssa /* todo_flags_finish */
1076 }
1077 };