re PR target/69140 (stack alignment + O1 breaks with Microsoft ABI)
[gcc.git] / gcc / tree-vect-data-refs.c
1 /* Data References Analysis and Manipulation Utilities for Vectorization.
2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "predict.h"
31 #include "tm_p.h"
32 #include "ssa.h"
33 #include "optabs-tree.h"
34 #include "cgraph.h"
35 #include "dumpfile.h"
36 #include "alias.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
39 #include "tree-eh.h"
40 #include "gimplify.h"
41 #include "gimple-iterator.h"
42 #include "gimplify-me.h"
43 #include "tree-ssa-loop-ivopts.h"
44 #include "tree-ssa-loop-manip.h"
45 #include "tree-ssa-loop.h"
46 #include "cfgloop.h"
47 #include "tree-scalar-evolution.h"
48 #include "tree-vectorizer.h"
49 #include "expr.h"
50 #include "builtins.h"
51 #include "params.h"
52
53 /* Return true if load- or store-lanes optab OPTAB is implemented for
54 COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */
55
56 static bool
57 vect_lanes_optab_supported_p (const char *name, convert_optab optab,
58 tree vectype, unsigned HOST_WIDE_INT count)
59 {
60 machine_mode mode, array_mode;
61 bool limit_p;
62
63 mode = TYPE_MODE (vectype);
64 limit_p = !targetm.array_mode_supported_p (mode, count);
65 array_mode = mode_for_size (count * GET_MODE_BITSIZE (mode),
66 MODE_INT, limit_p);
67
68 if (array_mode == BLKmode)
69 {
70 if (dump_enabled_p ())
71 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
72 "no array mode for %s[" HOST_WIDE_INT_PRINT_DEC "]\n",
73 GET_MODE_NAME (mode), count);
74 return false;
75 }
76
77 if (convert_optab_handler (optab, array_mode, mode) == CODE_FOR_nothing)
78 {
79 if (dump_enabled_p ())
80 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
81 "cannot use %s<%s><%s>\n", name,
82 GET_MODE_NAME (array_mode), GET_MODE_NAME (mode));
83 return false;
84 }
85
86 if (dump_enabled_p ())
87 dump_printf_loc (MSG_NOTE, vect_location,
88 "can use %s<%s><%s>\n", name, GET_MODE_NAME (array_mode),
89 GET_MODE_NAME (mode));
90
91 return true;
92 }
93
94
95 /* Return the smallest scalar part of STMT.
96 This is used to determine the vectype of the stmt. We generally set the
97 vectype according to the type of the result (lhs). For stmts whose
98 result-type is different than the type of the arguments (e.g., demotion,
99 promotion), vectype will be reset appropriately (later). Note that we have
100 to visit the smallest datatype in this function, because that determines the
101 VF. If the smallest datatype in the loop is present only as the rhs of a
102 promotion operation - we'd miss it.
103 Such a case, where a variable of this datatype does not appear in the lhs
104 anywhere in the loop, can only occur if it's an invariant: e.g.:
105 'int_x = (int) short_inv', which we'd expect to have been optimized away by
106 invariant motion. However, we cannot rely on invariant motion to always
107 take invariants out of the loop, and so in the case of promotion we also
108 have to check the rhs.
109 LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
110 types. */
111
112 tree
113 vect_get_smallest_scalar_type (gimple *stmt, HOST_WIDE_INT *lhs_size_unit,
114 HOST_WIDE_INT *rhs_size_unit)
115 {
116 tree scalar_type = gimple_expr_type (stmt);
117 HOST_WIDE_INT lhs, rhs;
118
119 lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
120
121 if (is_gimple_assign (stmt)
122 && (gimple_assign_cast_p (stmt)
123 || gimple_assign_rhs_code (stmt) == WIDEN_MULT_EXPR
124 || gimple_assign_rhs_code (stmt) == WIDEN_LSHIFT_EXPR
125 || gimple_assign_rhs_code (stmt) == FLOAT_EXPR))
126 {
127 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
128
129 rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
130 if (rhs < lhs)
131 scalar_type = rhs_type;
132 }
133
134 *lhs_size_unit = lhs;
135 *rhs_size_unit = rhs;
136 return scalar_type;
137 }
138
139
140 /* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
141 tested at run-time. Return TRUE if DDR was successfully inserted.
142 Return false if versioning is not supported. */
143
144 static bool
145 vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
146 {
147 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
148
149 if ((unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS) == 0)
150 return false;
151
152 if (dump_enabled_p ())
153 {
154 dump_printf_loc (MSG_NOTE, vect_location,
155 "mark for run-time aliasing test between ");
156 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr)));
157 dump_printf (MSG_NOTE, " and ");
158 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr)));
159 dump_printf (MSG_NOTE, "\n");
160 }
161
162 if (optimize_loop_nest_for_size_p (loop))
163 {
164 if (dump_enabled_p ())
165 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
166 "versioning not supported when optimizing"
167 " for size.\n");
168 return false;
169 }
170
171 /* FORNOW: We don't support versioning with outer-loop vectorization. */
172 if (loop->inner)
173 {
174 if (dump_enabled_p ())
175 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
176 "versioning not yet supported for outer-loops.\n");
177 return false;
178 }
179
180 /* FORNOW: We don't support creating runtime alias tests for non-constant
181 step. */
182 if (TREE_CODE (DR_STEP (DDR_A (ddr))) != INTEGER_CST
183 || TREE_CODE (DR_STEP (DDR_B (ddr))) != INTEGER_CST)
184 {
185 if (dump_enabled_p ())
186 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
187 "versioning not yet supported for non-constant "
188 "step\n");
189 return false;
190 }
191
192 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).safe_push (ddr);
193 return true;
194 }
195
196
197 /* Function vect_analyze_data_ref_dependence.
198
199 Return TRUE if there (might) exist a dependence between a memory-reference
200 DRA and a memory-reference DRB. When versioning for alias may check a
201 dependence at run-time, return FALSE. Adjust *MAX_VF according to
202 the data dependence. */
203
204 static bool
205 vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
206 loop_vec_info loop_vinfo, int *max_vf)
207 {
208 unsigned int i;
209 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
210 struct data_reference *dra = DDR_A (ddr);
211 struct data_reference *drb = DDR_B (ddr);
212 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
213 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
214 lambda_vector dist_v;
215 unsigned int loop_depth;
216
217 /* In loop analysis all data references should be vectorizable. */
218 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
219 || !STMT_VINFO_VECTORIZABLE (stmtinfo_b))
220 gcc_unreachable ();
221
222 /* Independent data accesses. */
223 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
224 return false;
225
226 if (dra == drb
227 || (DR_IS_READ (dra) && DR_IS_READ (drb)))
228 return false;
229
230 /* Even if we have an anti-dependence then, as the vectorized loop covers at
231 least two scalar iterations, there is always also a true dependence.
232 As the vectorizer does not re-order loads and stores we can ignore
233 the anti-dependence if TBAA can disambiguate both DRs similar to the
234 case with known negative distance anti-dependences (positive
235 distance anti-dependences would violate TBAA constraints). */
236 if (((DR_IS_READ (dra) && DR_IS_WRITE (drb))
237 || (DR_IS_WRITE (dra) && DR_IS_READ (drb)))
238 && !alias_sets_conflict_p (get_alias_set (DR_REF (dra)),
239 get_alias_set (DR_REF (drb))))
240 return false;
241
242 /* Unknown data dependence. */
243 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
244 {
245 /* If user asserted safelen consecutive iterations can be
246 executed concurrently, assume independence. */
247 if (loop->safelen >= 2)
248 {
249 if (loop->safelen < *max_vf)
250 *max_vf = loop->safelen;
251 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
252 return false;
253 }
254
255 if (STMT_VINFO_GATHER_SCATTER_P (stmtinfo_a)
256 || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_b))
257 {
258 if (dump_enabled_p ())
259 {
260 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
261 "versioning for alias not supported for: "
262 "can't determine dependence between ");
263 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
264 DR_REF (dra));
265 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
266 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
267 DR_REF (drb));
268 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
269 }
270 return true;
271 }
272
273 if (dump_enabled_p ())
274 {
275 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
276 "versioning for alias required: "
277 "can't determine dependence between ");
278 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
279 DR_REF (dra));
280 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
281 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
282 DR_REF (drb));
283 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
284 }
285
286 /* Add to list of ddrs that need to be tested at run-time. */
287 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
288 }
289
290 /* Known data dependence. */
291 if (DDR_NUM_DIST_VECTS (ddr) == 0)
292 {
293 /* If user asserted safelen consecutive iterations can be
294 executed concurrently, assume independence. */
295 if (loop->safelen >= 2)
296 {
297 if (loop->safelen < *max_vf)
298 *max_vf = loop->safelen;
299 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
300 return false;
301 }
302
303 if (STMT_VINFO_GATHER_SCATTER_P (stmtinfo_a)
304 || STMT_VINFO_GATHER_SCATTER_P (stmtinfo_b))
305 {
306 if (dump_enabled_p ())
307 {
308 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
309 "versioning for alias not supported for: "
310 "bad dist vector for ");
311 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
312 DR_REF (dra));
313 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
314 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
315 DR_REF (drb));
316 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
317 }
318 return true;
319 }
320
321 if (dump_enabled_p ())
322 {
323 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
324 "versioning for alias required: "
325 "bad dist vector for ");
326 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
327 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
328 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
329 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
330 }
331 /* Add to list of ddrs that need to be tested at run-time. */
332 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
333 }
334
335 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
336 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
337 {
338 int dist = dist_v[loop_depth];
339
340 if (dump_enabled_p ())
341 dump_printf_loc (MSG_NOTE, vect_location,
342 "dependence distance = %d.\n", dist);
343
344 if (dist == 0)
345 {
346 if (dump_enabled_p ())
347 {
348 dump_printf_loc (MSG_NOTE, vect_location,
349 "dependence distance == 0 between ");
350 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
351 dump_printf (MSG_NOTE, " and ");
352 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
353 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
354 }
355
356 /* When we perform grouped accesses and perform implicit CSE
357 by detecting equal accesses and doing disambiguation with
358 runtime alias tests like for
359 .. = a[i];
360 .. = a[i+1];
361 a[i] = ..;
362 a[i+1] = ..;
363 *p = ..;
364 .. = a[i];
365 .. = a[i+1];
366 where we will end up loading { a[i], a[i+1] } once, make
367 sure that inserting group loads before the first load and
368 stores after the last store will do the right thing.
369 Similar for groups like
370 a[i] = ...;
371 ... = a[i];
372 a[i+1] = ...;
373 where loads from the group interleave with the store. */
374 if (STMT_VINFO_GROUPED_ACCESS (stmtinfo_a)
375 || STMT_VINFO_GROUPED_ACCESS (stmtinfo_b))
376 {
377 gimple *earlier_stmt;
378 earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
379 if (DR_IS_WRITE
380 (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
381 {
382 if (dump_enabled_p ())
383 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
384 "READ_WRITE dependence in interleaving."
385 "\n");
386 return true;
387 }
388 }
389
390 continue;
391 }
392
393 if (dist > 0 && DDR_REVERSED_P (ddr))
394 {
395 /* If DDR_REVERSED_P the order of the data-refs in DDR was
396 reversed (to make distance vector positive), and the actual
397 distance is negative. */
398 if (dump_enabled_p ())
399 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
400 "dependence distance negative.\n");
401 /* Record a negative dependence distance to later limit the
402 amount of stmt copying / unrolling we can perform.
403 Only need to handle read-after-write dependence. */
404 if (DR_IS_READ (drb)
405 && (STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) == 0
406 || STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) > (unsigned)dist))
407 STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) = dist;
408 continue;
409 }
410
411 if (abs (dist) >= 2
412 && abs (dist) < *max_vf)
413 {
414 /* The dependence distance requires reduction of the maximal
415 vectorization factor. */
416 *max_vf = abs (dist);
417 if (dump_enabled_p ())
418 dump_printf_loc (MSG_NOTE, vect_location,
419 "adjusting maximal vectorization factor to %i\n",
420 *max_vf);
421 }
422
423 if (abs (dist) >= *max_vf)
424 {
425 /* Dependence distance does not create dependence, as far as
426 vectorization is concerned, in this case. */
427 if (dump_enabled_p ())
428 dump_printf_loc (MSG_NOTE, vect_location,
429 "dependence distance >= VF.\n");
430 continue;
431 }
432
433 if (dump_enabled_p ())
434 {
435 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
436 "not vectorized, possible dependence "
437 "between data-refs ");
438 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
439 dump_printf (MSG_NOTE, " and ");
440 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
441 dump_printf (MSG_NOTE, "\n");
442 }
443
444 return true;
445 }
446
447 return false;
448 }
449
450 /* Function vect_analyze_data_ref_dependences.
451
452 Examine all the data references in the loop, and make sure there do not
453 exist any data dependences between them. Set *MAX_VF according to
454 the maximum vectorization factor the data dependences allow. */
455
456 bool
457 vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo, int *max_vf)
458 {
459 unsigned int i;
460 struct data_dependence_relation *ddr;
461
462 if (dump_enabled_p ())
463 dump_printf_loc (MSG_NOTE, vect_location,
464 "=== vect_analyze_data_ref_dependences ===\n");
465
466 LOOP_VINFO_DDRS (loop_vinfo)
467 .create (LOOP_VINFO_DATAREFS (loop_vinfo).length ()
468 * LOOP_VINFO_DATAREFS (loop_vinfo).length ());
469 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = true;
470 if (!compute_all_dependences (LOOP_VINFO_DATAREFS (loop_vinfo),
471 &LOOP_VINFO_DDRS (loop_vinfo),
472 LOOP_VINFO_LOOP_NEST (loop_vinfo), true))
473 return false;
474
475 FOR_EACH_VEC_ELT (LOOP_VINFO_DDRS (loop_vinfo), i, ddr)
476 if (vect_analyze_data_ref_dependence (ddr, loop_vinfo, max_vf))
477 return false;
478
479 return true;
480 }
481
482
483 /* Function vect_slp_analyze_data_ref_dependence.
484
485 Return TRUE if there (might) exist a dependence between a memory-reference
486 DRA and a memory-reference DRB. When versioning for alias may check a
487 dependence at run-time, return FALSE. Adjust *MAX_VF according to
488 the data dependence. */
489
490 static bool
491 vect_slp_analyze_data_ref_dependence (struct data_dependence_relation *ddr)
492 {
493 struct data_reference *dra = DDR_A (ddr);
494 struct data_reference *drb = DDR_B (ddr);
495
496 /* We need to check dependences of statements marked as unvectorizable
497 as well, they still can prohibit vectorization. */
498
499 /* Independent data accesses. */
500 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
501 return false;
502
503 if (dra == drb)
504 return false;
505
506 /* Read-read is OK. */
507 if (DR_IS_READ (dra) && DR_IS_READ (drb))
508 return false;
509
510 /* If dra and drb are part of the same interleaving chain consider
511 them independent. */
512 if (STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (DR_STMT (dra)))
513 && (GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (dra)))
514 == GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (drb)))))
515 return false;
516
517 /* Unknown data dependence. */
518 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
519 {
520 if (dump_enabled_p ())
521 {
522 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
523 "can't determine dependence between ");
524 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
525 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
526 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
527 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
528 }
529 }
530 else if (dump_enabled_p ())
531 {
532 dump_printf_loc (MSG_NOTE, vect_location,
533 "determined dependence between ");
534 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
535 dump_printf (MSG_NOTE, " and ");
536 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
537 dump_printf (MSG_NOTE, "\n");
538 }
539
540 return true;
541 }
542
543
544 /* Analyze dependences involved in the transform of SLP NODE. STORES
545 contain the vector of scalar stores of this instance if we are
546 disambiguating the loads. */
547
548 static bool
549 vect_slp_analyze_node_dependences (slp_instance instance, slp_tree node,
550 vec<gimple *> stores, gimple *last_store)
551 {
552 /* This walks over all stmts involved in the SLP load/store done
553 in NODE verifying we can sink them up to the last stmt in the
554 group. */
555 gimple *last_access = vect_find_last_scalar_stmt_in_slp (node);
556 for (unsigned k = 0; k < SLP_INSTANCE_GROUP_SIZE (instance); ++k)
557 {
558 gimple *access = SLP_TREE_SCALAR_STMTS (node)[k];
559 if (access == last_access)
560 continue;
561 data_reference *dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (access));
562 for (gimple_stmt_iterator gsi = gsi_for_stmt (access);
563 gsi_stmt (gsi) != last_access; gsi_next (&gsi))
564 {
565 gimple *stmt = gsi_stmt (gsi);
566 if (! gimple_vuse (stmt)
567 || (DR_IS_READ (dr_a) && ! gimple_vdef (stmt)))
568 continue;
569
570 /* If we couldn't record a (single) data reference for this
571 stmt we have to give up. */
572 /* ??? Here and below if dependence analysis fails we can resort
573 to the alias oracle which can handle more kinds of stmts. */
574 data_reference *dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt));
575 if (!dr_b)
576 return false;
577
578 /* If we run into a store of this same instance (we've just
579 marked those) then delay dependence checking until we run
580 into the last store because this is where it will have
581 been sunk to (and we verify if we can do that as well). */
582 if (gimple_visited_p (stmt))
583 {
584 if (stmt != last_store)
585 continue;
586 unsigned i;
587 gimple *store;
588 FOR_EACH_VEC_ELT (stores, i, store)
589 {
590 data_reference *store_dr
591 = STMT_VINFO_DATA_REF (vinfo_for_stmt (store));
592 ddr_p ddr = initialize_data_dependence_relation
593 (dr_a, store_dr, vNULL);
594 if (vect_slp_analyze_data_ref_dependence (ddr))
595 {
596 free_dependence_relation (ddr);
597 return false;
598 }
599 free_dependence_relation (ddr);
600 }
601 }
602
603 ddr_p ddr = initialize_data_dependence_relation (dr_a, dr_b, vNULL);
604 if (vect_slp_analyze_data_ref_dependence (ddr))
605 {
606 free_dependence_relation (ddr);
607 return false;
608 }
609 free_dependence_relation (ddr);
610 }
611 }
612 return true;
613 }
614
615
616 /* Function vect_analyze_data_ref_dependences.
617
618 Examine all the data references in the basic-block, and make sure there
619 do not exist any data dependences between them. Set *MAX_VF according to
620 the maximum vectorization factor the data dependences allow. */
621
622 bool
623 vect_slp_analyze_instance_dependence (slp_instance instance)
624 {
625 if (dump_enabled_p ())
626 dump_printf_loc (MSG_NOTE, vect_location,
627 "=== vect_slp_analyze_instance_dependence ===\n");
628
629 /* The stores of this instance are at the root of the SLP tree. */
630 slp_tree store = SLP_INSTANCE_TREE (instance);
631 if (! STMT_VINFO_DATA_REF (vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (store)[0])))
632 store = NULL;
633
634 /* Verify we can sink stores to the vectorized stmt insert location. */
635 gimple *last_store = NULL;
636 if (store)
637 {
638 if (! vect_slp_analyze_node_dependences (instance, store, vNULL, NULL))
639 return false;
640
641 /* Mark stores in this instance and remember the last one. */
642 last_store = vect_find_last_scalar_stmt_in_slp (store);
643 for (unsigned k = 0; k < SLP_INSTANCE_GROUP_SIZE (instance); ++k)
644 gimple_set_visited (SLP_TREE_SCALAR_STMTS (store)[k], true);
645 }
646
647 bool res = true;
648
649 /* Verify we can sink loads to the vectorized stmt insert location,
650 special-casing stores of this instance. */
651 slp_tree load;
652 unsigned int i;
653 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), i, load)
654 if (! vect_slp_analyze_node_dependences (instance, load,
655 store
656 ? SLP_TREE_SCALAR_STMTS (store)
657 : vNULL, last_store))
658 {
659 res = false;
660 break;
661 }
662
663 /* Unset the visited flag. */
664 if (store)
665 for (unsigned k = 0; k < SLP_INSTANCE_GROUP_SIZE (instance); ++k)
666 gimple_set_visited (SLP_TREE_SCALAR_STMTS (store)[k], false);
667
668 return res;
669 }
670
671 /* Function vect_compute_data_ref_alignment
672
673 Compute the misalignment of the data reference DR.
674
675 Output:
676 1. If during the misalignment computation it is found that the data reference
677 cannot be vectorized then false is returned.
678 2. DR_MISALIGNMENT (DR) is defined.
679
680 FOR NOW: No analysis is actually performed. Misalignment is calculated
681 only for trivial cases. TODO. */
682
683 bool
684 vect_compute_data_ref_alignment (struct data_reference *dr)
685 {
686 gimple *stmt = DR_STMT (dr);
687 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
688 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
689 struct loop *loop = NULL;
690 tree ref = DR_REF (dr);
691 tree vectype;
692 tree base, base_addr;
693 tree misalign = NULL_TREE;
694 tree aligned_to;
695 unsigned HOST_WIDE_INT alignment;
696
697 if (dump_enabled_p ())
698 dump_printf_loc (MSG_NOTE, vect_location,
699 "vect_compute_data_ref_alignment:\n");
700
701 if (loop_vinfo)
702 loop = LOOP_VINFO_LOOP (loop_vinfo);
703
704 /* Initialize misalignment to unknown. */
705 SET_DR_MISALIGNMENT (dr, -1);
706
707 if (tree_fits_shwi_p (DR_STEP (dr)))
708 misalign = DR_INIT (dr);
709 aligned_to = DR_ALIGNED_TO (dr);
710 base_addr = DR_BASE_ADDRESS (dr);
711 vectype = STMT_VINFO_VECTYPE (stmt_info);
712
713 /* In case the dataref is in an inner-loop of the loop that is being
714 vectorized (LOOP), we use the base and misalignment information
715 relative to the outer-loop (LOOP). This is ok only if the misalignment
716 stays the same throughout the execution of the inner-loop, which is why
717 we have to check that the stride of the dataref in the inner-loop evenly
718 divides by the vector size. */
719 if (loop && nested_in_vect_loop_p (loop, stmt))
720 {
721 tree step = DR_STEP (dr);
722
723 if (tree_fits_shwi_p (step)
724 && tree_to_shwi (step) % GET_MODE_SIZE (TYPE_MODE (vectype)) == 0)
725 {
726 if (dump_enabled_p ())
727 dump_printf_loc (MSG_NOTE, vect_location,
728 "inner step divides the vector-size.\n");
729 misalign = STMT_VINFO_DR_INIT (stmt_info);
730 aligned_to = STMT_VINFO_DR_ALIGNED_TO (stmt_info);
731 base_addr = STMT_VINFO_DR_BASE_ADDRESS (stmt_info);
732 }
733 else
734 {
735 if (dump_enabled_p ())
736 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
737 "inner step doesn't divide the vector-size.\n");
738 misalign = NULL_TREE;
739 }
740 }
741
742 /* Similarly we can only use base and misalignment information relative to
743 an innermost loop if the misalignment stays the same throughout the
744 execution of the loop. As above, this is the case if the stride of
745 the dataref evenly divides by the vector size. */
746 else
747 {
748 tree step = DR_STEP (dr);
749 unsigned vf = loop ? LOOP_VINFO_VECT_FACTOR (loop_vinfo) : 1;
750
751 if (tree_fits_shwi_p (step)
752 && ((tree_to_shwi (step) * vf)
753 % GET_MODE_SIZE (TYPE_MODE (vectype)) != 0))
754 {
755 if (dump_enabled_p ())
756 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
757 "step doesn't divide the vector-size.\n");
758 misalign = NULL_TREE;
759 }
760 }
761
762 /* To look at alignment of the base we have to preserve an inner MEM_REF
763 as that carries alignment information of the actual access. */
764 base = ref;
765 while (handled_component_p (base))
766 base = TREE_OPERAND (base, 0);
767 if (TREE_CODE (base) == MEM_REF)
768 base = build2 (MEM_REF, TREE_TYPE (base), base_addr,
769 build_int_cst (TREE_TYPE (TREE_OPERAND (base, 1)), 0));
770 unsigned int base_alignment = get_object_alignment (base);
771
772 if (base_alignment >= TYPE_ALIGN (TREE_TYPE (vectype)))
773 DR_VECT_AUX (dr)->base_element_aligned = true;
774
775 alignment = TYPE_ALIGN_UNIT (vectype);
776
777 if ((compare_tree_int (aligned_to, alignment) < 0)
778 || !misalign)
779 {
780 if (dump_enabled_p ())
781 {
782 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
783 "Unknown alignment for access: ");
784 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
785 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
786 }
787 return true;
788 }
789
790 if (base_alignment < TYPE_ALIGN (vectype))
791 {
792 /* Strip an inner MEM_REF to a bare decl if possible. */
793 if (TREE_CODE (base) == MEM_REF
794 && integer_zerop (TREE_OPERAND (base, 1))
795 && TREE_CODE (TREE_OPERAND (base, 0)) == ADDR_EXPR)
796 base = TREE_OPERAND (TREE_OPERAND (base, 0), 0);
797
798 if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype)))
799 {
800 if (dump_enabled_p ())
801 {
802 dump_printf_loc (MSG_NOTE, vect_location,
803 "can't force alignment of ref: ");
804 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
805 dump_printf (MSG_NOTE, "\n");
806 }
807 return true;
808 }
809
810 /* Force the alignment of the decl.
811 NOTE: This is the only change to the code we make during
812 the analysis phase, before deciding to vectorize the loop. */
813 if (dump_enabled_p ())
814 {
815 dump_printf_loc (MSG_NOTE, vect_location, "force alignment of ");
816 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
817 dump_printf (MSG_NOTE, "\n");
818 }
819
820 DR_VECT_AUX (dr)->base_decl = base;
821 DR_VECT_AUX (dr)->base_misaligned = true;
822 DR_VECT_AUX (dr)->base_element_aligned = true;
823 }
824
825 /* If this is a backward running DR then first access in the larger
826 vectype actually is N-1 elements before the address in the DR.
827 Adjust misalign accordingly. */
828 if (tree_int_cst_sgn (DR_STEP (dr)) < 0)
829 {
830 tree offset = ssize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
831 /* DR_STEP(dr) is the same as -TYPE_SIZE of the scalar type,
832 otherwise we wouldn't be here. */
833 offset = fold_build2 (MULT_EXPR, ssizetype, offset, DR_STEP (dr));
834 /* PLUS because DR_STEP was negative. */
835 misalign = size_binop (PLUS_EXPR, misalign, offset);
836 }
837
838 SET_DR_MISALIGNMENT (dr,
839 wi::mod_floor (misalign, alignment, SIGNED).to_uhwi ());
840
841 if (dump_enabled_p ())
842 {
843 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
844 "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr));
845 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
846 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
847 }
848
849 return true;
850 }
851
852
853 /* Function vect_update_misalignment_for_peel
854
855 DR - the data reference whose misalignment is to be adjusted.
856 DR_PEEL - the data reference whose misalignment is being made
857 zero in the vector loop by the peel.
858 NPEEL - the number of iterations in the peel loop if the misalignment
859 of DR_PEEL is known at compile time. */
860
861 static void
862 vect_update_misalignment_for_peel (struct data_reference *dr,
863 struct data_reference *dr_peel, int npeel)
864 {
865 unsigned int i;
866 vec<dr_p> same_align_drs;
867 struct data_reference *current_dr;
868 int dr_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
869 int dr_peel_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr_peel))));
870 stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
871 stmt_vec_info peel_stmt_info = vinfo_for_stmt (DR_STMT (dr_peel));
872
873 /* For interleaved data accesses the step in the loop must be multiplied by
874 the size of the interleaving group. */
875 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
876 dr_size *= GROUP_SIZE (vinfo_for_stmt (GROUP_FIRST_ELEMENT (stmt_info)));
877 if (STMT_VINFO_GROUPED_ACCESS (peel_stmt_info))
878 dr_peel_size *= GROUP_SIZE (peel_stmt_info);
879
880 /* It can be assumed that the data refs with the same alignment as dr_peel
881 are aligned in the vector loop. */
882 same_align_drs
883 = STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel)));
884 FOR_EACH_VEC_ELT (same_align_drs, i, current_dr)
885 {
886 if (current_dr != dr)
887 continue;
888 gcc_assert (DR_MISALIGNMENT (dr) / dr_size ==
889 DR_MISALIGNMENT (dr_peel) / dr_peel_size);
890 SET_DR_MISALIGNMENT (dr, 0);
891 return;
892 }
893
894 if (known_alignment_for_access_p (dr)
895 && known_alignment_for_access_p (dr_peel))
896 {
897 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
898 int misal = DR_MISALIGNMENT (dr);
899 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
900 misal += negative ? -npeel * dr_size : npeel * dr_size;
901 misal &= (TYPE_ALIGN (vectype) / BITS_PER_UNIT) - 1;
902 SET_DR_MISALIGNMENT (dr, misal);
903 return;
904 }
905
906 if (dump_enabled_p ())
907 dump_printf_loc (MSG_NOTE, vect_location, "Setting misalignment to -1.\n");
908 SET_DR_MISALIGNMENT (dr, -1);
909 }
910
911
912 /* Function verify_data_ref_alignment
913
914 Return TRUE if DR can be handled with respect to alignment. */
915
916 static bool
917 verify_data_ref_alignment (data_reference_p dr)
918 {
919 enum dr_alignment_support supportable_dr_alignment
920 = vect_supportable_dr_alignment (dr, false);
921 if (!supportable_dr_alignment)
922 {
923 if (dump_enabled_p ())
924 {
925 if (DR_IS_READ (dr))
926 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
927 "not vectorized: unsupported unaligned load.");
928 else
929 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
930 "not vectorized: unsupported unaligned "
931 "store.");
932
933 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
934 DR_REF (dr));
935 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
936 }
937 return false;
938 }
939
940 if (supportable_dr_alignment != dr_aligned && dump_enabled_p ())
941 dump_printf_loc (MSG_NOTE, vect_location,
942 "Vectorizing an unaligned access.\n");
943
944 return true;
945 }
946
947 /* Function vect_verify_datarefs_alignment
948
949 Return TRUE if all data references in the loop can be
950 handled with respect to alignment. */
951
952 bool
953 vect_verify_datarefs_alignment (loop_vec_info vinfo)
954 {
955 vec<data_reference_p> datarefs = vinfo->datarefs;
956 struct data_reference *dr;
957 unsigned int i;
958
959 FOR_EACH_VEC_ELT (datarefs, i, dr)
960 {
961 gimple *stmt = DR_STMT (dr);
962 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
963
964 if (!STMT_VINFO_RELEVANT_P (stmt_info))
965 continue;
966
967 /* For interleaving, only the alignment of the first access matters. */
968 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
969 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
970 continue;
971
972 /* Strided accesses perform only component accesses, alignment is
973 irrelevant for them. */
974 if (STMT_VINFO_STRIDED_P (stmt_info)
975 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
976 continue;
977
978 if (! verify_data_ref_alignment (dr))
979 return false;
980 }
981
982 return true;
983 }
984
985 /* Given an memory reference EXP return whether its alignment is less
986 than its size. */
987
988 static bool
989 not_size_aligned (tree exp)
990 {
991 if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (exp))))
992 return true;
993
994 return (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (exp)))
995 > get_object_alignment (exp));
996 }
997
998 /* Function vector_alignment_reachable_p
999
1000 Return true if vector alignment for DR is reachable by peeling
1001 a few loop iterations. Return false otherwise. */
1002
1003 static bool
1004 vector_alignment_reachable_p (struct data_reference *dr)
1005 {
1006 gimple *stmt = DR_STMT (dr);
1007 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1008 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1009
1010 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1011 {
1012 /* For interleaved access we peel only if number of iterations in
1013 the prolog loop ({VF - misalignment}), is a multiple of the
1014 number of the interleaved accesses. */
1015 int elem_size, mis_in_elements;
1016 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
1017
1018 /* FORNOW: handle only known alignment. */
1019 if (!known_alignment_for_access_p (dr))
1020 return false;
1021
1022 elem_size = GET_MODE_SIZE (TYPE_MODE (vectype)) / nelements;
1023 mis_in_elements = DR_MISALIGNMENT (dr) / elem_size;
1024
1025 if ((nelements - mis_in_elements) % GROUP_SIZE (stmt_info))
1026 return false;
1027 }
1028
1029 /* If misalignment is known at the compile time then allow peeling
1030 only if natural alignment is reachable through peeling. */
1031 if (known_alignment_for_access_p (dr) && !aligned_access_p (dr))
1032 {
1033 HOST_WIDE_INT elmsize =
1034 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1035 if (dump_enabled_p ())
1036 {
1037 dump_printf_loc (MSG_NOTE, vect_location,
1038 "data size =" HOST_WIDE_INT_PRINT_DEC, elmsize);
1039 dump_printf (MSG_NOTE,
1040 ". misalignment = %d.\n", DR_MISALIGNMENT (dr));
1041 }
1042 if (DR_MISALIGNMENT (dr) % elmsize)
1043 {
1044 if (dump_enabled_p ())
1045 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1046 "data size does not divide the misalignment.\n");
1047 return false;
1048 }
1049 }
1050
1051 if (!known_alignment_for_access_p (dr))
1052 {
1053 tree type = TREE_TYPE (DR_REF (dr));
1054 bool is_packed = not_size_aligned (DR_REF (dr));
1055 if (dump_enabled_p ())
1056 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1057 "Unknown misalignment, is_packed = %d\n",is_packed);
1058 if ((TYPE_USER_ALIGN (type) && !is_packed)
1059 || targetm.vectorize.vector_alignment_reachable (type, is_packed))
1060 return true;
1061 else
1062 return false;
1063 }
1064
1065 return true;
1066 }
1067
1068
1069 /* Calculate the cost of the memory access represented by DR. */
1070
1071 static void
1072 vect_get_data_access_cost (struct data_reference *dr,
1073 unsigned int *inside_cost,
1074 unsigned int *outside_cost,
1075 stmt_vector_for_cost *body_cost_vec)
1076 {
1077 gimple *stmt = DR_STMT (dr);
1078 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1079 int nunits = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
1080 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1081 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1082 int ncopies = vf / nunits;
1083
1084 if (DR_IS_READ (dr))
1085 vect_get_load_cost (dr, ncopies, true, inside_cost, outside_cost,
1086 NULL, body_cost_vec, false);
1087 else
1088 vect_get_store_cost (dr, ncopies, inside_cost, body_cost_vec);
1089
1090 if (dump_enabled_p ())
1091 dump_printf_loc (MSG_NOTE, vect_location,
1092 "vect_get_data_access_cost: inside_cost = %d, "
1093 "outside_cost = %d.\n", *inside_cost, *outside_cost);
1094 }
1095
1096
1097 typedef struct _vect_peel_info
1098 {
1099 int npeel;
1100 struct data_reference *dr;
1101 unsigned int count;
1102 } *vect_peel_info;
1103
1104 typedef struct _vect_peel_extended_info
1105 {
1106 struct _vect_peel_info peel_info;
1107 unsigned int inside_cost;
1108 unsigned int outside_cost;
1109 stmt_vector_for_cost body_cost_vec;
1110 } *vect_peel_extended_info;
1111
1112
1113 /* Peeling hashtable helpers. */
1114
1115 struct peel_info_hasher : free_ptr_hash <_vect_peel_info>
1116 {
1117 static inline hashval_t hash (const _vect_peel_info *);
1118 static inline bool equal (const _vect_peel_info *, const _vect_peel_info *);
1119 };
1120
1121 inline hashval_t
1122 peel_info_hasher::hash (const _vect_peel_info *peel_info)
1123 {
1124 return (hashval_t) peel_info->npeel;
1125 }
1126
1127 inline bool
1128 peel_info_hasher::equal (const _vect_peel_info *a, const _vect_peel_info *b)
1129 {
1130 return (a->npeel == b->npeel);
1131 }
1132
1133
1134 /* Insert DR into peeling hash table with NPEEL as key. */
1135
1136 static void
1137 vect_peeling_hash_insert (hash_table<peel_info_hasher> *peeling_htab,
1138 loop_vec_info loop_vinfo, struct data_reference *dr,
1139 int npeel)
1140 {
1141 struct _vect_peel_info elem, *slot;
1142 _vect_peel_info **new_slot;
1143 bool supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1144
1145 elem.npeel = npeel;
1146 slot = peeling_htab->find (&elem);
1147 if (slot)
1148 slot->count++;
1149 else
1150 {
1151 slot = XNEW (struct _vect_peel_info);
1152 slot->npeel = npeel;
1153 slot->dr = dr;
1154 slot->count = 1;
1155 new_slot = peeling_htab->find_slot (slot, INSERT);
1156 *new_slot = slot;
1157 }
1158
1159 if (!supportable_dr_alignment
1160 && unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1161 slot->count += VECT_MAX_COST;
1162 }
1163
1164
1165 /* Traverse peeling hash table to find peeling option that aligns maximum
1166 number of data accesses. */
1167
1168 int
1169 vect_peeling_hash_get_most_frequent (_vect_peel_info **slot,
1170 _vect_peel_extended_info *max)
1171 {
1172 vect_peel_info elem = *slot;
1173
1174 if (elem->count > max->peel_info.count
1175 || (elem->count == max->peel_info.count
1176 && max->peel_info.npeel > elem->npeel))
1177 {
1178 max->peel_info.npeel = elem->npeel;
1179 max->peel_info.count = elem->count;
1180 max->peel_info.dr = elem->dr;
1181 }
1182
1183 return 1;
1184 }
1185
1186
1187 /* Traverse peeling hash table and calculate cost for each peeling option.
1188 Find the one with the lowest cost. */
1189
1190 int
1191 vect_peeling_hash_get_lowest_cost (_vect_peel_info **slot,
1192 _vect_peel_extended_info *min)
1193 {
1194 vect_peel_info elem = *slot;
1195 int save_misalignment, dummy;
1196 unsigned int inside_cost = 0, outside_cost = 0, i;
1197 gimple *stmt = DR_STMT (elem->dr);
1198 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1199 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1200 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1201 struct data_reference *dr;
1202 stmt_vector_for_cost prologue_cost_vec, body_cost_vec, epilogue_cost_vec;
1203
1204 prologue_cost_vec.create (2);
1205 body_cost_vec.create (2);
1206 epilogue_cost_vec.create (2);
1207
1208 FOR_EACH_VEC_ELT (datarefs, i, dr)
1209 {
1210 stmt = DR_STMT (dr);
1211 stmt_info = vinfo_for_stmt (stmt);
1212 /* For interleaving, only the alignment of the first access
1213 matters. */
1214 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1215 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1216 continue;
1217
1218 /* Strided accesses perform only component accesses, alignment is
1219 irrelevant for them. */
1220 if (STMT_VINFO_STRIDED_P (stmt_info)
1221 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1222 continue;
1223
1224 save_misalignment = DR_MISALIGNMENT (dr);
1225 vect_update_misalignment_for_peel (dr, elem->dr, elem->npeel);
1226 vect_get_data_access_cost (dr, &inside_cost, &outside_cost,
1227 &body_cost_vec);
1228 SET_DR_MISALIGNMENT (dr, save_misalignment);
1229 }
1230
1231 outside_cost += vect_get_known_peeling_cost
1232 (loop_vinfo, elem->npeel, &dummy,
1233 &LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
1234 &prologue_cost_vec, &epilogue_cost_vec);
1235
1236 /* Prologue and epilogue costs are added to the target model later.
1237 These costs depend only on the scalar iteration cost, the
1238 number of peeling iterations finally chosen, and the number of
1239 misaligned statements. So discard the information found here. */
1240 prologue_cost_vec.release ();
1241 epilogue_cost_vec.release ();
1242
1243 if (inside_cost < min->inside_cost
1244 || (inside_cost == min->inside_cost && outside_cost < min->outside_cost))
1245 {
1246 min->inside_cost = inside_cost;
1247 min->outside_cost = outside_cost;
1248 min->body_cost_vec.release ();
1249 min->body_cost_vec = body_cost_vec;
1250 min->peel_info.dr = elem->dr;
1251 min->peel_info.npeel = elem->npeel;
1252 }
1253 else
1254 body_cost_vec.release ();
1255
1256 return 1;
1257 }
1258
1259
1260 /* Choose best peeling option by traversing peeling hash table and either
1261 choosing an option with the lowest cost (if cost model is enabled) or the
1262 option that aligns as many accesses as possible. */
1263
1264 static struct data_reference *
1265 vect_peeling_hash_choose_best_peeling (hash_table<peel_info_hasher> *peeling_htab,
1266 loop_vec_info loop_vinfo,
1267 unsigned int *npeel,
1268 stmt_vector_for_cost *body_cost_vec)
1269 {
1270 struct _vect_peel_extended_info res;
1271
1272 res.peel_info.dr = NULL;
1273 res.body_cost_vec = stmt_vector_for_cost ();
1274
1275 if (!unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1276 {
1277 res.inside_cost = INT_MAX;
1278 res.outside_cost = INT_MAX;
1279 peeling_htab->traverse <_vect_peel_extended_info *,
1280 vect_peeling_hash_get_lowest_cost> (&res);
1281 }
1282 else
1283 {
1284 res.peel_info.count = 0;
1285 peeling_htab->traverse <_vect_peel_extended_info *,
1286 vect_peeling_hash_get_most_frequent> (&res);
1287 }
1288
1289 *npeel = res.peel_info.npeel;
1290 *body_cost_vec = res.body_cost_vec;
1291 return res.peel_info.dr;
1292 }
1293
1294
1295 /* Function vect_enhance_data_refs_alignment
1296
1297 This pass will use loop versioning and loop peeling in order to enhance
1298 the alignment of data references in the loop.
1299
1300 FOR NOW: we assume that whatever versioning/peeling takes place, only the
1301 original loop is to be vectorized. Any other loops that are created by
1302 the transformations performed in this pass - are not supposed to be
1303 vectorized. This restriction will be relaxed.
1304
1305 This pass will require a cost model to guide it whether to apply peeling
1306 or versioning or a combination of the two. For example, the scheme that
1307 intel uses when given a loop with several memory accesses, is as follows:
1308 choose one memory access ('p') which alignment you want to force by doing
1309 peeling. Then, either (1) generate a loop in which 'p' is aligned and all
1310 other accesses are not necessarily aligned, or (2) use loop versioning to
1311 generate one loop in which all accesses are aligned, and another loop in
1312 which only 'p' is necessarily aligned.
1313
1314 ("Automatic Intra-Register Vectorization for the Intel Architecture",
1315 Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
1316 Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
1317
1318 Devising a cost model is the most critical aspect of this work. It will
1319 guide us on which access to peel for, whether to use loop versioning, how
1320 many versions to create, etc. The cost model will probably consist of
1321 generic considerations as well as target specific considerations (on
1322 powerpc for example, misaligned stores are more painful than misaligned
1323 loads).
1324
1325 Here are the general steps involved in alignment enhancements:
1326
1327 -- original loop, before alignment analysis:
1328 for (i=0; i<N; i++){
1329 x = q[i]; # DR_MISALIGNMENT(q) = unknown
1330 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1331 }
1332
1333 -- After vect_compute_data_refs_alignment:
1334 for (i=0; i<N; i++){
1335 x = q[i]; # DR_MISALIGNMENT(q) = 3
1336 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1337 }
1338
1339 -- Possibility 1: we do loop versioning:
1340 if (p is aligned) {
1341 for (i=0; i<N; i++){ # loop 1A
1342 x = q[i]; # DR_MISALIGNMENT(q) = 3
1343 p[i] = y; # DR_MISALIGNMENT(p) = 0
1344 }
1345 }
1346 else {
1347 for (i=0; i<N; i++){ # loop 1B
1348 x = q[i]; # DR_MISALIGNMENT(q) = 3
1349 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1350 }
1351 }
1352
1353 -- Possibility 2: we do loop peeling:
1354 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1355 x = q[i];
1356 p[i] = y;
1357 }
1358 for (i = 3; i < N; i++){ # loop 2A
1359 x = q[i]; # DR_MISALIGNMENT(q) = 0
1360 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1361 }
1362
1363 -- Possibility 3: combination of loop peeling and versioning:
1364 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1365 x = q[i];
1366 p[i] = y;
1367 }
1368 if (p is aligned) {
1369 for (i = 3; i<N; i++){ # loop 3A
1370 x = q[i]; # DR_MISALIGNMENT(q) = 0
1371 p[i] = y; # DR_MISALIGNMENT(p) = 0
1372 }
1373 }
1374 else {
1375 for (i = 3; i<N; i++){ # loop 3B
1376 x = q[i]; # DR_MISALIGNMENT(q) = 0
1377 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1378 }
1379 }
1380
1381 These loops are later passed to loop_transform to be vectorized. The
1382 vectorizer will use the alignment information to guide the transformation
1383 (whether to generate regular loads/stores, or with special handling for
1384 misalignment). */
1385
1386 bool
1387 vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
1388 {
1389 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1390 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1391 enum dr_alignment_support supportable_dr_alignment;
1392 struct data_reference *dr0 = NULL, *first_store = NULL;
1393 struct data_reference *dr;
1394 unsigned int i, j;
1395 bool do_peeling = false;
1396 bool do_versioning = false;
1397 bool stat;
1398 gimple *stmt;
1399 stmt_vec_info stmt_info;
1400 unsigned int npeel = 0;
1401 bool all_misalignments_unknown = true;
1402 unsigned int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1403 unsigned possible_npeel_number = 1;
1404 tree vectype;
1405 unsigned int nelements, mis, same_align_drs_max = 0;
1406 stmt_vector_for_cost body_cost_vec = stmt_vector_for_cost ();
1407 hash_table<peel_info_hasher> peeling_htab (1);
1408
1409 if (dump_enabled_p ())
1410 dump_printf_loc (MSG_NOTE, vect_location,
1411 "=== vect_enhance_data_refs_alignment ===\n");
1412
1413 /* Reset data so we can safely be called multiple times. */
1414 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
1415 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = 0;
1416
1417 /* While cost model enhancements are expected in the future, the high level
1418 view of the code at this time is as follows:
1419
1420 A) If there is a misaligned access then see if peeling to align
1421 this access can make all data references satisfy
1422 vect_supportable_dr_alignment. If so, update data structures
1423 as needed and return true.
1424
1425 B) If peeling wasn't possible and there is a data reference with an
1426 unknown misalignment that does not satisfy vect_supportable_dr_alignment
1427 then see if loop versioning checks can be used to make all data
1428 references satisfy vect_supportable_dr_alignment. If so, update
1429 data structures as needed and return true.
1430
1431 C) If neither peeling nor versioning were successful then return false if
1432 any data reference does not satisfy vect_supportable_dr_alignment.
1433
1434 D) Return true (all data references satisfy vect_supportable_dr_alignment).
1435
1436 Note, Possibility 3 above (which is peeling and versioning together) is not
1437 being done at this time. */
1438
1439 /* (1) Peeling to force alignment. */
1440
1441 /* (1.1) Decide whether to perform peeling, and how many iterations to peel:
1442 Considerations:
1443 + How many accesses will become aligned due to the peeling
1444 - How many accesses will become unaligned due to the peeling,
1445 and the cost of misaligned accesses.
1446 - The cost of peeling (the extra runtime checks, the increase
1447 in code size). */
1448
1449 FOR_EACH_VEC_ELT (datarefs, i, dr)
1450 {
1451 stmt = DR_STMT (dr);
1452 stmt_info = vinfo_for_stmt (stmt);
1453
1454 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1455 continue;
1456
1457 /* For interleaving, only the alignment of the first access
1458 matters. */
1459 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1460 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1461 continue;
1462
1463 /* For invariant accesses there is nothing to enhance. */
1464 if (integer_zerop (DR_STEP (dr)))
1465 continue;
1466
1467 /* Strided accesses perform only component accesses, alignment is
1468 irrelevant for them. */
1469 if (STMT_VINFO_STRIDED_P (stmt_info)
1470 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1471 continue;
1472
1473 supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1474 do_peeling = vector_alignment_reachable_p (dr);
1475 if (do_peeling)
1476 {
1477 if (known_alignment_for_access_p (dr))
1478 {
1479 unsigned int npeel_tmp;
1480 bool negative = tree_int_cst_compare (DR_STEP (dr),
1481 size_zero_node) < 0;
1482
1483 /* Save info about DR in the hash table. */
1484 vectype = STMT_VINFO_VECTYPE (stmt_info);
1485 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1486 mis = DR_MISALIGNMENT (dr) / GET_MODE_SIZE (TYPE_MODE (
1487 TREE_TYPE (DR_REF (dr))));
1488 npeel_tmp = (negative
1489 ? (mis - nelements) : (nelements - mis))
1490 & (nelements - 1);
1491
1492 /* For multiple types, it is possible that the bigger type access
1493 will have more than one peeling option. E.g., a loop with two
1494 types: one of size (vector size / 4), and the other one of
1495 size (vector size / 8). Vectorization factor will 8. If both
1496 access are misaligned by 3, the first one needs one scalar
1497 iteration to be aligned, and the second one needs 5. But the
1498 the first one will be aligned also by peeling 5 scalar
1499 iterations, and in that case both accesses will be aligned.
1500 Hence, except for the immediate peeling amount, we also want
1501 to try to add full vector size, while we don't exceed
1502 vectorization factor.
1503 We do this automtically for cost model, since we calculate cost
1504 for every peeling option. */
1505 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1506 {
1507 if (STMT_SLP_TYPE (stmt_info))
1508 possible_npeel_number
1509 = (vf * GROUP_SIZE (stmt_info)) / nelements;
1510 else
1511 possible_npeel_number = vf / nelements;
1512 }
1513
1514 /* Handle the aligned case. We may decide to align some other
1515 access, making DR unaligned. */
1516 if (DR_MISALIGNMENT (dr) == 0)
1517 {
1518 npeel_tmp = 0;
1519 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1520 possible_npeel_number++;
1521 }
1522
1523 for (j = 0; j < possible_npeel_number; j++)
1524 {
1525 vect_peeling_hash_insert (&peeling_htab, loop_vinfo,
1526 dr, npeel_tmp);
1527 npeel_tmp += nelements;
1528 }
1529
1530 all_misalignments_unknown = false;
1531 /* Data-ref that was chosen for the case that all the
1532 misalignments are unknown is not relevant anymore, since we
1533 have a data-ref with known alignment. */
1534 dr0 = NULL;
1535 }
1536 else
1537 {
1538 /* If we don't know any misalignment values, we prefer
1539 peeling for data-ref that has the maximum number of data-refs
1540 with the same alignment, unless the target prefers to align
1541 stores over load. */
1542 if (all_misalignments_unknown)
1543 {
1544 unsigned same_align_drs
1545 = STMT_VINFO_SAME_ALIGN_REFS (stmt_info).length ();
1546 if (!dr0
1547 || same_align_drs_max < same_align_drs)
1548 {
1549 same_align_drs_max = same_align_drs;
1550 dr0 = dr;
1551 }
1552 /* For data-refs with the same number of related
1553 accesses prefer the one where the misalign
1554 computation will be invariant in the outermost loop. */
1555 else if (same_align_drs_max == same_align_drs)
1556 {
1557 struct loop *ivloop0, *ivloop;
1558 ivloop0 = outermost_invariant_loop_for_expr
1559 (loop, DR_BASE_ADDRESS (dr0));
1560 ivloop = outermost_invariant_loop_for_expr
1561 (loop, DR_BASE_ADDRESS (dr));
1562 if ((ivloop && !ivloop0)
1563 || (ivloop && ivloop0
1564 && flow_loop_nested_p (ivloop, ivloop0)))
1565 dr0 = dr;
1566 }
1567
1568 if (!first_store && DR_IS_WRITE (dr))
1569 first_store = dr;
1570 }
1571
1572 /* If there are both known and unknown misaligned accesses in the
1573 loop, we choose peeling amount according to the known
1574 accesses. */
1575 if (!supportable_dr_alignment)
1576 {
1577 dr0 = dr;
1578 if (!first_store && DR_IS_WRITE (dr))
1579 first_store = dr;
1580 }
1581 }
1582 }
1583 else
1584 {
1585 if (!aligned_access_p (dr))
1586 {
1587 if (dump_enabled_p ())
1588 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1589 "vector alignment may not be reachable\n");
1590 break;
1591 }
1592 }
1593 }
1594
1595 /* Check if we can possibly peel the loop. */
1596 if (!vect_can_advance_ivs_p (loop_vinfo)
1597 || !slpeel_can_duplicate_loop_p (loop, single_exit (loop))
1598 || loop->inner)
1599 do_peeling = false;
1600
1601 if (do_peeling
1602 && all_misalignments_unknown
1603 && vect_supportable_dr_alignment (dr0, false))
1604 {
1605 /* Check if the target requires to prefer stores over loads, i.e., if
1606 misaligned stores are more expensive than misaligned loads (taking
1607 drs with same alignment into account). */
1608 if (first_store && DR_IS_READ (dr0))
1609 {
1610 unsigned int load_inside_cost = 0, load_outside_cost = 0;
1611 unsigned int store_inside_cost = 0, store_outside_cost = 0;
1612 unsigned int load_inside_penalty = 0, load_outside_penalty = 0;
1613 unsigned int store_inside_penalty = 0, store_outside_penalty = 0;
1614 stmt_vector_for_cost dummy;
1615 dummy.create (2);
1616
1617 vect_get_data_access_cost (dr0, &load_inside_cost, &load_outside_cost,
1618 &dummy);
1619 vect_get_data_access_cost (first_store, &store_inside_cost,
1620 &store_outside_cost, &dummy);
1621
1622 dummy.release ();
1623
1624 /* Calculate the penalty for leaving FIRST_STORE unaligned (by
1625 aligning the load DR0). */
1626 load_inside_penalty = store_inside_cost;
1627 load_outside_penalty = store_outside_cost;
1628 for (i = 0;
1629 STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
1630 DR_STMT (first_store))).iterate (i, &dr);
1631 i++)
1632 if (DR_IS_READ (dr))
1633 {
1634 load_inside_penalty += load_inside_cost;
1635 load_outside_penalty += load_outside_cost;
1636 }
1637 else
1638 {
1639 load_inside_penalty += store_inside_cost;
1640 load_outside_penalty += store_outside_cost;
1641 }
1642
1643 /* Calculate the penalty for leaving DR0 unaligned (by
1644 aligning the FIRST_STORE). */
1645 store_inside_penalty = load_inside_cost;
1646 store_outside_penalty = load_outside_cost;
1647 for (i = 0;
1648 STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
1649 DR_STMT (dr0))).iterate (i, &dr);
1650 i++)
1651 if (DR_IS_READ (dr))
1652 {
1653 store_inside_penalty += load_inside_cost;
1654 store_outside_penalty += load_outside_cost;
1655 }
1656 else
1657 {
1658 store_inside_penalty += store_inside_cost;
1659 store_outside_penalty += store_outside_cost;
1660 }
1661
1662 if (load_inside_penalty > store_inside_penalty
1663 || (load_inside_penalty == store_inside_penalty
1664 && load_outside_penalty > store_outside_penalty))
1665 dr0 = first_store;
1666 }
1667
1668 /* In case there are only loads with different unknown misalignments, use
1669 peeling only if it may help to align other accesses in the loop or
1670 if it may help improving load bandwith when we'd end up using
1671 unaligned loads. */
1672 tree dr0_vt = STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr0)));
1673 if (!first_store
1674 && !STMT_VINFO_SAME_ALIGN_REFS (
1675 vinfo_for_stmt (DR_STMT (dr0))).length ()
1676 && (vect_supportable_dr_alignment (dr0, false)
1677 != dr_unaligned_supported
1678 || (builtin_vectorization_cost (vector_load, dr0_vt, 0)
1679 == builtin_vectorization_cost (unaligned_load, dr0_vt, -1))))
1680 do_peeling = false;
1681 }
1682
1683 if (do_peeling && !dr0)
1684 {
1685 /* Peeling is possible, but there is no data access that is not supported
1686 unless aligned. So we try to choose the best possible peeling. */
1687
1688 /* We should get here only if there are drs with known misalignment. */
1689 gcc_assert (!all_misalignments_unknown);
1690
1691 /* Choose the best peeling from the hash table. */
1692 dr0 = vect_peeling_hash_choose_best_peeling (&peeling_htab,
1693 loop_vinfo, &npeel,
1694 &body_cost_vec);
1695 if (!dr0 || !npeel)
1696 do_peeling = false;
1697 }
1698
1699 if (do_peeling)
1700 {
1701 stmt = DR_STMT (dr0);
1702 stmt_info = vinfo_for_stmt (stmt);
1703 vectype = STMT_VINFO_VECTYPE (stmt_info);
1704 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1705
1706 if (known_alignment_for_access_p (dr0))
1707 {
1708 bool negative = tree_int_cst_compare (DR_STEP (dr0),
1709 size_zero_node) < 0;
1710 if (!npeel)
1711 {
1712 /* Since it's known at compile time, compute the number of
1713 iterations in the peeled loop (the peeling factor) for use in
1714 updating DR_MISALIGNMENT values. The peeling factor is the
1715 vectorization factor minus the misalignment as an element
1716 count. */
1717 mis = DR_MISALIGNMENT (dr0);
1718 mis /= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr0))));
1719 npeel = ((negative ? mis - nelements : nelements - mis)
1720 & (nelements - 1));
1721 }
1722
1723 /* For interleaved data access every iteration accesses all the
1724 members of the group, therefore we divide the number of iterations
1725 by the group size. */
1726 stmt_info = vinfo_for_stmt (DR_STMT (dr0));
1727 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1728 npeel /= GROUP_SIZE (stmt_info);
1729
1730 if (dump_enabled_p ())
1731 dump_printf_loc (MSG_NOTE, vect_location,
1732 "Try peeling by %d\n", npeel);
1733 }
1734
1735 /* Ensure that all data refs can be vectorized after the peel. */
1736 FOR_EACH_VEC_ELT (datarefs, i, dr)
1737 {
1738 int save_misalignment;
1739
1740 if (dr == dr0)
1741 continue;
1742
1743 stmt = DR_STMT (dr);
1744 stmt_info = vinfo_for_stmt (stmt);
1745 /* For interleaving, only the alignment of the first access
1746 matters. */
1747 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1748 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1749 continue;
1750
1751 /* Strided accesses perform only component accesses, alignment is
1752 irrelevant for them. */
1753 if (STMT_VINFO_STRIDED_P (stmt_info)
1754 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1755 continue;
1756
1757 save_misalignment = DR_MISALIGNMENT (dr);
1758 vect_update_misalignment_for_peel (dr, dr0, npeel);
1759 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
1760 SET_DR_MISALIGNMENT (dr, save_misalignment);
1761
1762 if (!supportable_dr_alignment)
1763 {
1764 do_peeling = false;
1765 break;
1766 }
1767 }
1768
1769 if (do_peeling && known_alignment_for_access_p (dr0) && npeel == 0)
1770 {
1771 stat = vect_verify_datarefs_alignment (loop_vinfo);
1772 if (!stat)
1773 do_peeling = false;
1774 else
1775 {
1776 body_cost_vec.release ();
1777 return stat;
1778 }
1779 }
1780
1781 /* Cost model #1 - honor --param vect-max-peeling-for-alignment. */
1782 if (do_peeling)
1783 {
1784 unsigned max_allowed_peel
1785 = PARAM_VALUE (PARAM_VECT_MAX_PEELING_FOR_ALIGNMENT);
1786 if (max_allowed_peel != (unsigned)-1)
1787 {
1788 unsigned max_peel = npeel;
1789 if (max_peel == 0)
1790 {
1791 gimple *dr_stmt = DR_STMT (dr0);
1792 stmt_vec_info vinfo = vinfo_for_stmt (dr_stmt);
1793 tree vtype = STMT_VINFO_VECTYPE (vinfo);
1794 max_peel = TYPE_VECTOR_SUBPARTS (vtype) - 1;
1795 }
1796 if (max_peel > max_allowed_peel)
1797 {
1798 do_peeling = false;
1799 if (dump_enabled_p ())
1800 dump_printf_loc (MSG_NOTE, vect_location,
1801 "Disable peeling, max peels reached: %d\n", max_peel);
1802 }
1803 }
1804 }
1805
1806 /* Cost model #2 - if peeling may result in a remaining loop not
1807 iterating enough to be vectorized then do not peel. */
1808 if (do_peeling
1809 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
1810 {
1811 unsigned max_peel
1812 = npeel == 0 ? LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1 : npeel;
1813 if (LOOP_VINFO_INT_NITERS (loop_vinfo)
1814 < LOOP_VINFO_VECT_FACTOR (loop_vinfo) + max_peel)
1815 do_peeling = false;
1816 }
1817
1818 if (do_peeling)
1819 {
1820 /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
1821 If the misalignment of DR_i is identical to that of dr0 then set
1822 DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
1823 dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
1824 by the peeling factor times the element size of DR_i (MOD the
1825 vectorization factor times the size). Otherwise, the
1826 misalignment of DR_i must be set to unknown. */
1827 FOR_EACH_VEC_ELT (datarefs, i, dr)
1828 if (dr != dr0)
1829 vect_update_misalignment_for_peel (dr, dr0, npeel);
1830
1831 LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0;
1832 if (npeel)
1833 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = npeel;
1834 else
1835 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
1836 = DR_MISALIGNMENT (dr0);
1837 SET_DR_MISALIGNMENT (dr0, 0);
1838 if (dump_enabled_p ())
1839 {
1840 dump_printf_loc (MSG_NOTE, vect_location,
1841 "Alignment of access forced using peeling.\n");
1842 dump_printf_loc (MSG_NOTE, vect_location,
1843 "Peeling for alignment will be applied.\n");
1844 }
1845 /* The inside-loop cost will be accounted for in vectorizable_load
1846 and vectorizable_store correctly with adjusted alignments.
1847 Drop the body_cst_vec on the floor here. */
1848 body_cost_vec.release ();
1849
1850 stat = vect_verify_datarefs_alignment (loop_vinfo);
1851 gcc_assert (stat);
1852 return stat;
1853 }
1854 }
1855
1856 body_cost_vec.release ();
1857
1858 /* (2) Versioning to force alignment. */
1859
1860 /* Try versioning if:
1861 1) optimize loop for speed
1862 2) there is at least one unsupported misaligned data ref with an unknown
1863 misalignment, and
1864 3) all misaligned data refs with a known misalignment are supported, and
1865 4) the number of runtime alignment checks is within reason. */
1866
1867 do_versioning =
1868 optimize_loop_nest_for_speed_p (loop)
1869 && (!loop->inner); /* FORNOW */
1870
1871 if (do_versioning)
1872 {
1873 FOR_EACH_VEC_ELT (datarefs, i, dr)
1874 {
1875 stmt = DR_STMT (dr);
1876 stmt_info = vinfo_for_stmt (stmt);
1877
1878 /* For interleaving, only the alignment of the first access
1879 matters. */
1880 if (aligned_access_p (dr)
1881 || (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1882 && GROUP_FIRST_ELEMENT (stmt_info) != stmt))
1883 continue;
1884
1885 if (STMT_VINFO_STRIDED_P (stmt_info))
1886 {
1887 /* Strided loads perform only component accesses, alignment is
1888 irrelevant for them. */
1889 if (!STMT_VINFO_GROUPED_ACCESS (stmt_info))
1890 continue;
1891 do_versioning = false;
1892 break;
1893 }
1894
1895 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
1896
1897 if (!supportable_dr_alignment)
1898 {
1899 gimple *stmt;
1900 int mask;
1901 tree vectype;
1902
1903 if (known_alignment_for_access_p (dr)
1904 || LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ()
1905 >= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS))
1906 {
1907 do_versioning = false;
1908 break;
1909 }
1910
1911 stmt = DR_STMT (dr);
1912 vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
1913 gcc_assert (vectype);
1914
1915 /* The rightmost bits of an aligned address must be zeros.
1916 Construct the mask needed for this test. For example,
1917 GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
1918 mask must be 15 = 0xf. */
1919 mask = GET_MODE_SIZE (TYPE_MODE (vectype)) - 1;
1920
1921 /* FORNOW: use the same mask to test all potentially unaligned
1922 references in the loop. The vectorizer currently supports
1923 a single vector size, see the reference to
1924 GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
1925 vectorization factor is computed. */
1926 gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo)
1927 || LOOP_VINFO_PTR_MASK (loop_vinfo) == mask);
1928 LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
1929 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).safe_push (
1930 DR_STMT (dr));
1931 }
1932 }
1933
1934 /* Versioning requires at least one misaligned data reference. */
1935 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
1936 do_versioning = false;
1937 else if (!do_versioning)
1938 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
1939 }
1940
1941 if (do_versioning)
1942 {
1943 vec<gimple *> may_misalign_stmts
1944 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
1945 gimple *stmt;
1946
1947 /* It can now be assumed that the data references in the statements
1948 in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
1949 of the loop being vectorized. */
1950 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt)
1951 {
1952 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1953 dr = STMT_VINFO_DATA_REF (stmt_info);
1954 SET_DR_MISALIGNMENT (dr, 0);
1955 if (dump_enabled_p ())
1956 dump_printf_loc (MSG_NOTE, vect_location,
1957 "Alignment of access forced using versioning.\n");
1958 }
1959
1960 if (dump_enabled_p ())
1961 dump_printf_loc (MSG_NOTE, vect_location,
1962 "Versioning for alignment will be applied.\n");
1963
1964 /* Peeling and versioning can't be done together at this time. */
1965 gcc_assert (! (do_peeling && do_versioning));
1966
1967 stat = vect_verify_datarefs_alignment (loop_vinfo);
1968 gcc_assert (stat);
1969 return stat;
1970 }
1971
1972 /* This point is reached if neither peeling nor versioning is being done. */
1973 gcc_assert (! (do_peeling || do_versioning));
1974
1975 stat = vect_verify_datarefs_alignment (loop_vinfo);
1976 return stat;
1977 }
1978
1979
1980 /* Function vect_find_same_alignment_drs.
1981
1982 Update group and alignment relations according to the chosen
1983 vectorization factor. */
1984
1985 static void
1986 vect_find_same_alignment_drs (struct data_dependence_relation *ddr,
1987 loop_vec_info loop_vinfo)
1988 {
1989 unsigned int i;
1990 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1991 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1992 struct data_reference *dra = DDR_A (ddr);
1993 struct data_reference *drb = DDR_B (ddr);
1994 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
1995 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
1996 int dra_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dra))));
1997 int drb_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (drb))));
1998 lambda_vector dist_v;
1999 unsigned int loop_depth;
2000
2001 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
2002 return;
2003
2004 if (dra == drb)
2005 return;
2006
2007 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
2008 return;
2009
2010 /* Loop-based vectorization and known data dependence. */
2011 if (DDR_NUM_DIST_VECTS (ddr) == 0)
2012 return;
2013
2014 /* Data-dependence analysis reports a distance vector of zero
2015 for data-references that overlap only in the first iteration
2016 but have different sign step (see PR45764).
2017 So as a sanity check require equal DR_STEP. */
2018 if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
2019 return;
2020
2021 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
2022 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
2023 {
2024 int dist = dist_v[loop_depth];
2025
2026 if (dump_enabled_p ())
2027 dump_printf_loc (MSG_NOTE, vect_location,
2028 "dependence distance = %d.\n", dist);
2029
2030 /* Same loop iteration. */
2031 if (dist == 0
2032 || (dist % vectorization_factor == 0 && dra_size == drb_size))
2033 {
2034 /* Two references with distance zero have the same alignment. */
2035 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a).safe_push (drb);
2036 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b).safe_push (dra);
2037 if (dump_enabled_p ())
2038 {
2039 dump_printf_loc (MSG_NOTE, vect_location,
2040 "accesses have the same alignment.\n");
2041 dump_printf (MSG_NOTE,
2042 "dependence distance modulo vf == 0 between ");
2043 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
2044 dump_printf (MSG_NOTE, " and ");
2045 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
2046 dump_printf (MSG_NOTE, "\n");
2047 }
2048 }
2049 }
2050 }
2051
2052
2053 /* Function vect_analyze_data_refs_alignment
2054
2055 Analyze the alignment of the data-references in the loop.
2056 Return FALSE if a data reference is found that cannot be vectorized. */
2057
2058 bool
2059 vect_analyze_data_refs_alignment (loop_vec_info vinfo)
2060 {
2061 if (dump_enabled_p ())
2062 dump_printf_loc (MSG_NOTE, vect_location,
2063 "=== vect_analyze_data_refs_alignment ===\n");
2064
2065 /* Mark groups of data references with same alignment using
2066 data dependence information. */
2067 vec<ddr_p> ddrs = vinfo->ddrs;
2068 struct data_dependence_relation *ddr;
2069 unsigned int i;
2070
2071 FOR_EACH_VEC_ELT (ddrs, i, ddr)
2072 vect_find_same_alignment_drs (ddr, vinfo);
2073
2074 vec<data_reference_p> datarefs = vinfo->datarefs;
2075 struct data_reference *dr;
2076
2077 FOR_EACH_VEC_ELT (datarefs, i, dr)
2078 {
2079 stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
2080 if (STMT_VINFO_VECTORIZABLE (stmt_info)
2081 && !vect_compute_data_ref_alignment (dr))
2082 {
2083 /* Strided accesses perform only component accesses, misalignment
2084 information is irrelevant for them. */
2085 if (STMT_VINFO_STRIDED_P (stmt_info)
2086 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
2087 continue;
2088
2089 if (dump_enabled_p ())
2090 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2091 "not vectorized: can't calculate alignment "
2092 "for data ref.\n");
2093
2094 return false;
2095 }
2096 }
2097
2098 return true;
2099 }
2100
2101
2102 /* Analyze alignment of DRs of stmts in NODE. */
2103
2104 static bool
2105 vect_slp_analyze_and_verify_node_alignment (slp_tree node)
2106 {
2107 /* We vectorize from the first scalar stmt in the node unless
2108 the node is permuted in which case we start from the first
2109 element in the group. */
2110 gimple *first_stmt = SLP_TREE_SCALAR_STMTS (node)[0];
2111 data_reference_p first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
2112 if (SLP_TREE_LOAD_PERMUTATION (node).exists ())
2113 first_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (first_stmt));
2114
2115 data_reference_p dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
2116 if (! vect_compute_data_ref_alignment (dr)
2117 /* For creating the data-ref pointer we need alignment of the
2118 first element anyway. */
2119 || (dr != first_dr
2120 && ! vect_compute_data_ref_alignment (first_dr))
2121 || ! verify_data_ref_alignment (dr))
2122 {
2123 if (dump_enabled_p ())
2124 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2125 "not vectorized: bad data alignment in basic "
2126 "block.\n");
2127 return false;
2128 }
2129
2130 return true;
2131 }
2132
2133 /* Function vect_slp_analyze_instance_alignment
2134
2135 Analyze the alignment of the data-references in the SLP instance.
2136 Return FALSE if a data reference is found that cannot be vectorized. */
2137
2138 bool
2139 vect_slp_analyze_and_verify_instance_alignment (slp_instance instance)
2140 {
2141 if (dump_enabled_p ())
2142 dump_printf_loc (MSG_NOTE, vect_location,
2143 "=== vect_slp_analyze_and_verify_instance_alignment ===\n");
2144
2145 slp_tree node;
2146 unsigned i;
2147 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), i, node)
2148 if (! vect_slp_analyze_and_verify_node_alignment (node))
2149 return false;
2150
2151 node = SLP_INSTANCE_TREE (instance);
2152 if (STMT_VINFO_DATA_REF (vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (node)[0]))
2153 && ! vect_slp_analyze_and_verify_node_alignment
2154 (SLP_INSTANCE_TREE (instance)))
2155 return false;
2156
2157 return true;
2158 }
2159
2160
2161 /* Analyze groups of accesses: check that DR belongs to a group of
2162 accesses of legal size, step, etc. Detect gaps, single element
2163 interleaving, and other special cases. Set grouped access info.
2164 Collect groups of strided stores for further use in SLP analysis.
2165 Worker for vect_analyze_group_access. */
2166
2167 static bool
2168 vect_analyze_group_access_1 (struct data_reference *dr)
2169 {
2170 tree step = DR_STEP (dr);
2171 tree scalar_type = TREE_TYPE (DR_REF (dr));
2172 HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
2173 gimple *stmt = DR_STMT (dr);
2174 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2175 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2176 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2177 HOST_WIDE_INT dr_step = -1;
2178 HOST_WIDE_INT groupsize, last_accessed_element = 1;
2179 bool slp_impossible = false;
2180
2181 /* For interleaving, GROUPSIZE is STEP counted in elements, i.e., the
2182 size of the interleaving group (including gaps). */
2183 if (tree_fits_shwi_p (step))
2184 {
2185 dr_step = tree_to_shwi (step);
2186 /* Check that STEP is a multiple of type size. Otherwise there is
2187 a non-element-sized gap at the end of the group which we
2188 cannot represent in GROUP_GAP or GROUP_SIZE.
2189 ??? As we can handle non-constant step fine here we should
2190 simply remove uses of GROUP_GAP between the last and first
2191 element and instead rely on DR_STEP. GROUP_SIZE then would
2192 simply not include that gap. */
2193 if ((dr_step % type_size) != 0)
2194 {
2195 if (dump_enabled_p ())
2196 {
2197 dump_printf_loc (MSG_NOTE, vect_location,
2198 "Step ");
2199 dump_generic_expr (MSG_NOTE, TDF_SLIM, step);
2200 dump_printf (MSG_NOTE,
2201 " is not a multiple of the element size for ");
2202 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr));
2203 dump_printf (MSG_NOTE, "\n");
2204 }
2205 return false;
2206 }
2207 groupsize = absu_hwi (dr_step) / type_size;
2208 }
2209 else
2210 groupsize = 0;
2211
2212 /* Not consecutive access is possible only if it is a part of interleaving. */
2213 if (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
2214 {
2215 /* Check if it this DR is a part of interleaving, and is a single
2216 element of the group that is accessed in the loop. */
2217
2218 /* Gaps are supported only for loads. STEP must be a multiple of the type
2219 size. The size of the group must be a power of 2. */
2220 if (DR_IS_READ (dr)
2221 && (dr_step % type_size) == 0
2222 && groupsize > 0
2223 && exact_log2 (groupsize) != -1)
2224 {
2225 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = stmt;
2226 GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2227 if (dump_enabled_p ())
2228 {
2229 dump_printf_loc (MSG_NOTE, vect_location,
2230 "Detected single element interleaving ");
2231 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr));
2232 dump_printf (MSG_NOTE, " step ");
2233 dump_generic_expr (MSG_NOTE, TDF_SLIM, step);
2234 dump_printf (MSG_NOTE, "\n");
2235 }
2236
2237 return true;
2238 }
2239
2240 if (dump_enabled_p ())
2241 {
2242 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2243 "not consecutive access ");
2244 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
2245 }
2246
2247 if (bb_vinfo)
2248 {
2249 /* Mark the statement as unvectorizable. */
2250 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2251 return true;
2252 }
2253
2254 dump_printf_loc (MSG_NOTE, vect_location, "using strided accesses\n");
2255 STMT_VINFO_STRIDED_P (stmt_info) = true;
2256 return true;
2257 }
2258
2259 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) == stmt)
2260 {
2261 /* First stmt in the interleaving chain. Check the chain. */
2262 gimple *next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
2263 struct data_reference *data_ref = dr;
2264 unsigned int count = 1;
2265 tree prev_init = DR_INIT (data_ref);
2266 gimple *prev = stmt;
2267 HOST_WIDE_INT diff, gaps = 0;
2268
2269 while (next)
2270 {
2271 /* Skip same data-refs. In case that two or more stmts share
2272 data-ref (supported only for loads), we vectorize only the first
2273 stmt, and the rest get their vectorized loads from the first
2274 one. */
2275 if (!tree_int_cst_compare (DR_INIT (data_ref),
2276 DR_INIT (STMT_VINFO_DATA_REF (
2277 vinfo_for_stmt (next)))))
2278 {
2279 if (DR_IS_WRITE (data_ref))
2280 {
2281 if (dump_enabled_p ())
2282 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2283 "Two store stmts share the same dr.\n");
2284 return false;
2285 }
2286
2287 if (dump_enabled_p ())
2288 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2289 "Two or more load stmts share the same dr.\n");
2290
2291 /* For load use the same data-ref load. */
2292 GROUP_SAME_DR_STMT (vinfo_for_stmt (next)) = prev;
2293
2294 prev = next;
2295 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2296 continue;
2297 }
2298
2299 prev = next;
2300 data_ref = STMT_VINFO_DATA_REF (vinfo_for_stmt (next));
2301
2302 /* All group members have the same STEP by construction. */
2303 gcc_checking_assert (operand_equal_p (DR_STEP (data_ref), step, 0));
2304
2305 /* Check that the distance between two accesses is equal to the type
2306 size. Otherwise, we have gaps. */
2307 diff = (TREE_INT_CST_LOW (DR_INIT (data_ref))
2308 - TREE_INT_CST_LOW (prev_init)) / type_size;
2309 if (diff != 1)
2310 {
2311 /* FORNOW: SLP of accesses with gaps is not supported. */
2312 slp_impossible = true;
2313 if (DR_IS_WRITE (data_ref))
2314 {
2315 if (dump_enabled_p ())
2316 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2317 "interleaved store with gaps\n");
2318 return false;
2319 }
2320
2321 gaps += diff - 1;
2322 }
2323
2324 last_accessed_element += diff;
2325
2326 /* Store the gap from the previous member of the group. If there is no
2327 gap in the access, GROUP_GAP is always 1. */
2328 GROUP_GAP (vinfo_for_stmt (next)) = diff;
2329
2330 prev_init = DR_INIT (data_ref);
2331 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2332 /* Count the number of data-refs in the chain. */
2333 count++;
2334 }
2335
2336 if (groupsize == 0)
2337 groupsize = count + gaps;
2338
2339 if (groupsize > UINT_MAX)
2340 {
2341 if (dump_enabled_p ())
2342 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2343 "group is too large\n");
2344 return false;
2345 }
2346
2347 /* Check that the size of the interleaving is equal to count for stores,
2348 i.e., that there are no gaps. */
2349 if (groupsize != count
2350 && !DR_IS_READ (dr))
2351 {
2352 if (dump_enabled_p ())
2353 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2354 "interleaved store with gaps\n");
2355 return false;
2356 }
2357
2358 /* If there is a gap after the last load in the group it is the
2359 difference between the groupsize and the last accessed
2360 element.
2361 When there is no gap, this difference should be 0. */
2362 GROUP_GAP (vinfo_for_stmt (stmt)) = groupsize - last_accessed_element;
2363
2364 GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2365 if (dump_enabled_p ())
2366 {
2367 dump_printf_loc (MSG_NOTE, vect_location,
2368 "Detected interleaving ");
2369 if (DR_IS_READ (dr))
2370 dump_printf (MSG_NOTE, "load ");
2371 else
2372 dump_printf (MSG_NOTE, "store ");
2373 dump_printf (MSG_NOTE, "of size %u starting with ",
2374 (unsigned)groupsize);
2375 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
2376 if (GROUP_GAP (vinfo_for_stmt (stmt)) != 0)
2377 dump_printf_loc (MSG_NOTE, vect_location,
2378 "There is a gap of %u elements after the group\n",
2379 GROUP_GAP (vinfo_for_stmt (stmt)));
2380 }
2381
2382 /* SLP: create an SLP data structure for every interleaving group of
2383 stores for further analysis in vect_analyse_slp. */
2384 if (DR_IS_WRITE (dr) && !slp_impossible)
2385 {
2386 if (loop_vinfo)
2387 LOOP_VINFO_GROUPED_STORES (loop_vinfo).safe_push (stmt);
2388 if (bb_vinfo)
2389 BB_VINFO_GROUPED_STORES (bb_vinfo).safe_push (stmt);
2390 }
2391 }
2392
2393 return true;
2394 }
2395
2396 /* Analyze groups of accesses: check that DR belongs to a group of
2397 accesses of legal size, step, etc. Detect gaps, single element
2398 interleaving, and other special cases. Set grouped access info.
2399 Collect groups of strided stores for further use in SLP analysis. */
2400
2401 static bool
2402 vect_analyze_group_access (struct data_reference *dr)
2403 {
2404 if (!vect_analyze_group_access_1 (dr))
2405 {
2406 /* Dissolve the group if present. */
2407 gimple *next;
2408 gimple *stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (dr)));
2409 while (stmt)
2410 {
2411 stmt_vec_info vinfo = vinfo_for_stmt (stmt);
2412 next = GROUP_NEXT_ELEMENT (vinfo);
2413 GROUP_FIRST_ELEMENT (vinfo) = NULL;
2414 GROUP_NEXT_ELEMENT (vinfo) = NULL;
2415 stmt = next;
2416 }
2417 return false;
2418 }
2419 return true;
2420 }
2421
2422 /* Analyze the access pattern of the data-reference DR.
2423 In case of non-consecutive accesses call vect_analyze_group_access() to
2424 analyze groups of accesses. */
2425
2426 static bool
2427 vect_analyze_data_ref_access (struct data_reference *dr)
2428 {
2429 tree step = DR_STEP (dr);
2430 tree scalar_type = TREE_TYPE (DR_REF (dr));
2431 gimple *stmt = DR_STMT (dr);
2432 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2433 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2434 struct loop *loop = NULL;
2435
2436 if (loop_vinfo)
2437 loop = LOOP_VINFO_LOOP (loop_vinfo);
2438
2439 if (loop_vinfo && !step)
2440 {
2441 if (dump_enabled_p ())
2442 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2443 "bad data-ref access in loop\n");
2444 return false;
2445 }
2446
2447 /* Allow loads with zero step in inner-loop vectorization. */
2448 if (loop_vinfo && integer_zerop (step))
2449 {
2450 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2451 if (!nested_in_vect_loop_p (loop, stmt))
2452 return DR_IS_READ (dr);
2453 /* Allow references with zero step for outer loops marked
2454 with pragma omp simd only - it guarantees absence of
2455 loop-carried dependencies between inner loop iterations. */
2456 if (!loop->force_vectorize)
2457 {
2458 if (dump_enabled_p ())
2459 dump_printf_loc (MSG_NOTE, vect_location,
2460 "zero step in inner loop of nest\n");
2461 return false;
2462 }
2463 }
2464
2465 if (loop && nested_in_vect_loop_p (loop, stmt))
2466 {
2467 /* Interleaved accesses are not yet supported within outer-loop
2468 vectorization for references in the inner-loop. */
2469 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2470
2471 /* For the rest of the analysis we use the outer-loop step. */
2472 step = STMT_VINFO_DR_STEP (stmt_info);
2473 if (integer_zerop (step))
2474 {
2475 if (dump_enabled_p ())
2476 dump_printf_loc (MSG_NOTE, vect_location,
2477 "zero step in outer loop.\n");
2478 return DR_IS_READ (dr);
2479 }
2480 }
2481
2482 /* Consecutive? */
2483 if (TREE_CODE (step) == INTEGER_CST)
2484 {
2485 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
2486 if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type))
2487 || (dr_step < 0
2488 && !compare_tree_int (TYPE_SIZE_UNIT (scalar_type), -dr_step)))
2489 {
2490 /* Mark that it is not interleaving. */
2491 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2492 return true;
2493 }
2494 }
2495
2496 if (loop && nested_in_vect_loop_p (loop, stmt))
2497 {
2498 if (dump_enabled_p ())
2499 dump_printf_loc (MSG_NOTE, vect_location,
2500 "grouped access in outer loop.\n");
2501 return false;
2502 }
2503
2504
2505 /* Assume this is a DR handled by non-constant strided load case. */
2506 if (TREE_CODE (step) != INTEGER_CST)
2507 return (STMT_VINFO_STRIDED_P (stmt_info)
2508 && (!STMT_VINFO_GROUPED_ACCESS (stmt_info)
2509 || vect_analyze_group_access (dr)));
2510
2511 /* Not consecutive access - check if it's a part of interleaving group. */
2512 return vect_analyze_group_access (dr);
2513 }
2514
2515
2516
2517 /* A helper function used in the comparator function to sort data
2518 references. T1 and T2 are two data references to be compared.
2519 The function returns -1, 0, or 1. */
2520
2521 static int
2522 compare_tree (tree t1, tree t2)
2523 {
2524 int i, cmp;
2525 enum tree_code code;
2526 char tclass;
2527
2528 if (t1 == t2)
2529 return 0;
2530 if (t1 == NULL)
2531 return -1;
2532 if (t2 == NULL)
2533 return 1;
2534
2535 STRIP_NOPS (t1);
2536 STRIP_NOPS (t2);
2537
2538 if (TREE_CODE (t1) != TREE_CODE (t2))
2539 return TREE_CODE (t1) < TREE_CODE (t2) ? -1 : 1;
2540
2541 code = TREE_CODE (t1);
2542 switch (code)
2543 {
2544 /* For const values, we can just use hash values for comparisons. */
2545 case INTEGER_CST:
2546 case REAL_CST:
2547 case FIXED_CST:
2548 case STRING_CST:
2549 case COMPLEX_CST:
2550 case VECTOR_CST:
2551 {
2552 hashval_t h1 = iterative_hash_expr (t1, 0);
2553 hashval_t h2 = iterative_hash_expr (t2, 0);
2554 if (h1 != h2)
2555 return h1 < h2 ? -1 : 1;
2556 break;
2557 }
2558
2559 case SSA_NAME:
2560 cmp = compare_tree (SSA_NAME_VAR (t1), SSA_NAME_VAR (t2));
2561 if (cmp != 0)
2562 return cmp;
2563
2564 if (SSA_NAME_VERSION (t1) != SSA_NAME_VERSION (t2))
2565 return SSA_NAME_VERSION (t1) < SSA_NAME_VERSION (t2) ? -1 : 1;
2566 break;
2567
2568 default:
2569 tclass = TREE_CODE_CLASS (code);
2570
2571 /* For var-decl, we could compare their UIDs. */
2572 if (tclass == tcc_declaration)
2573 {
2574 if (DECL_UID (t1) != DECL_UID (t2))
2575 return DECL_UID (t1) < DECL_UID (t2) ? -1 : 1;
2576 break;
2577 }
2578
2579 /* For expressions with operands, compare their operands recursively. */
2580 for (i = TREE_OPERAND_LENGTH (t1) - 1; i >= 0; --i)
2581 {
2582 cmp = compare_tree (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
2583 if (cmp != 0)
2584 return cmp;
2585 }
2586 }
2587
2588 return 0;
2589 }
2590
2591
2592 /* Compare two data-references DRA and DRB to group them into chunks
2593 suitable for grouping. */
2594
2595 static int
2596 dr_group_sort_cmp (const void *dra_, const void *drb_)
2597 {
2598 data_reference_p dra = *(data_reference_p *)const_cast<void *>(dra_);
2599 data_reference_p drb = *(data_reference_p *)const_cast<void *>(drb_);
2600 int cmp;
2601
2602 /* Stabilize sort. */
2603 if (dra == drb)
2604 return 0;
2605
2606 /* DRs in different loops never belong to the same group. */
2607 loop_p loopa = gimple_bb (DR_STMT (dra))->loop_father;
2608 loop_p loopb = gimple_bb (DR_STMT (drb))->loop_father;
2609 if (loopa != loopb)
2610 return loopa->num < loopb->num ? -1 : 1;
2611
2612 /* Ordering of DRs according to base. */
2613 if (!operand_equal_p (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb), 0))
2614 {
2615 cmp = compare_tree (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb));
2616 if (cmp != 0)
2617 return cmp;
2618 }
2619
2620 /* And according to DR_OFFSET. */
2621 if (!dr_equal_offsets_p (dra, drb))
2622 {
2623 cmp = compare_tree (DR_OFFSET (dra), DR_OFFSET (drb));
2624 if (cmp != 0)
2625 return cmp;
2626 }
2627
2628 /* Put reads before writes. */
2629 if (DR_IS_READ (dra) != DR_IS_READ (drb))
2630 return DR_IS_READ (dra) ? -1 : 1;
2631
2632 /* Then sort after access size. */
2633 if (!operand_equal_p (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
2634 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))), 0))
2635 {
2636 cmp = compare_tree (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
2637 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
2638 if (cmp != 0)
2639 return cmp;
2640 }
2641
2642 /* And after step. */
2643 if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
2644 {
2645 cmp = compare_tree (DR_STEP (dra), DR_STEP (drb));
2646 if (cmp != 0)
2647 return cmp;
2648 }
2649
2650 /* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */
2651 cmp = tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb));
2652 if (cmp == 0)
2653 return gimple_uid (DR_STMT (dra)) < gimple_uid (DR_STMT (drb)) ? -1 : 1;
2654 return cmp;
2655 }
2656
2657 /* Function vect_analyze_data_ref_accesses.
2658
2659 Analyze the access pattern of all the data references in the loop.
2660
2661 FORNOW: the only access pattern that is considered vectorizable is a
2662 simple step 1 (consecutive) access.
2663
2664 FORNOW: handle only arrays and pointer accesses. */
2665
2666 bool
2667 vect_analyze_data_ref_accesses (vec_info *vinfo)
2668 {
2669 unsigned int i;
2670 vec<data_reference_p> datarefs = vinfo->datarefs;
2671 struct data_reference *dr;
2672
2673 if (dump_enabled_p ())
2674 dump_printf_loc (MSG_NOTE, vect_location,
2675 "=== vect_analyze_data_ref_accesses ===\n");
2676
2677 if (datarefs.is_empty ())
2678 return true;
2679
2680 /* Sort the array of datarefs to make building the interleaving chains
2681 linear. Don't modify the original vector's order, it is needed for
2682 determining what dependencies are reversed. */
2683 vec<data_reference_p> datarefs_copy = datarefs.copy ();
2684 datarefs_copy.qsort (dr_group_sort_cmp);
2685
2686 /* Build the interleaving chains. */
2687 for (i = 0; i < datarefs_copy.length () - 1;)
2688 {
2689 data_reference_p dra = datarefs_copy[i];
2690 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
2691 stmt_vec_info lastinfo = NULL;
2692 for (i = i + 1; i < datarefs_copy.length (); ++i)
2693 {
2694 data_reference_p drb = datarefs_copy[i];
2695 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
2696
2697 /* ??? Imperfect sorting (non-compatible types, non-modulo
2698 accesses, same accesses) can lead to a group to be artificially
2699 split here as we don't just skip over those. If it really
2700 matters we can push those to a worklist and re-iterate
2701 over them. The we can just skip ahead to the next DR here. */
2702
2703 /* DRs in a different loop should not be put into the same
2704 interleaving group. */
2705 if (gimple_bb (DR_STMT (dra))->loop_father
2706 != gimple_bb (DR_STMT (drb))->loop_father)
2707 break;
2708
2709 /* Check that the data-refs have same first location (except init)
2710 and they are both either store or load (not load and store,
2711 not masked loads or stores). */
2712 if (DR_IS_READ (dra) != DR_IS_READ (drb)
2713 || !operand_equal_p (DR_BASE_ADDRESS (dra),
2714 DR_BASE_ADDRESS (drb), 0)
2715 || !dr_equal_offsets_p (dra, drb)
2716 || !gimple_assign_single_p (DR_STMT (dra))
2717 || !gimple_assign_single_p (DR_STMT (drb)))
2718 break;
2719
2720 /* Check that the data-refs have the same constant size. */
2721 tree sza = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra)));
2722 tree szb = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb)));
2723 if (!tree_fits_uhwi_p (sza)
2724 || !tree_fits_uhwi_p (szb)
2725 || !tree_int_cst_equal (sza, szb))
2726 break;
2727
2728 /* Check that the data-refs have the same step. */
2729 if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
2730 break;
2731
2732 /* Do not place the same access in the interleaving chain twice. */
2733 if (tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb)) == 0)
2734 break;
2735
2736 /* Check the types are compatible.
2737 ??? We don't distinguish this during sorting. */
2738 if (!types_compatible_p (TREE_TYPE (DR_REF (dra)),
2739 TREE_TYPE (DR_REF (drb))))
2740 break;
2741
2742 /* Sorting has ensured that DR_INIT (dra) <= DR_INIT (drb). */
2743 HOST_WIDE_INT init_a = TREE_INT_CST_LOW (DR_INIT (dra));
2744 HOST_WIDE_INT init_b = TREE_INT_CST_LOW (DR_INIT (drb));
2745 gcc_assert (init_a < init_b);
2746
2747 /* If init_b == init_a + the size of the type * k, we have an
2748 interleaving, and DRA is accessed before DRB. */
2749 HOST_WIDE_INT type_size_a = tree_to_uhwi (sza);
2750 if (type_size_a == 0
2751 || (init_b - init_a) % type_size_a != 0)
2752 break;
2753
2754 /* If we have a store, the accesses are adjacent. This splits
2755 groups into chunks we support (we don't support vectorization
2756 of stores with gaps). */
2757 if (!DR_IS_READ (dra)
2758 && (init_b - (HOST_WIDE_INT) TREE_INT_CST_LOW
2759 (DR_INIT (datarefs_copy[i-1]))
2760 != type_size_a))
2761 break;
2762
2763 /* If the step (if not zero or non-constant) is greater than the
2764 difference between data-refs' inits this splits groups into
2765 suitable sizes. */
2766 if (tree_fits_shwi_p (DR_STEP (dra)))
2767 {
2768 HOST_WIDE_INT step = tree_to_shwi (DR_STEP (dra));
2769 if (step != 0 && step <= (init_b - init_a))
2770 break;
2771 }
2772
2773 if (dump_enabled_p ())
2774 {
2775 dump_printf_loc (MSG_NOTE, vect_location,
2776 "Detected interleaving ");
2777 if (DR_IS_READ (dra))
2778 dump_printf (MSG_NOTE, "load ");
2779 else
2780 dump_printf (MSG_NOTE, "store ");
2781 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
2782 dump_printf (MSG_NOTE, " and ");
2783 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
2784 dump_printf (MSG_NOTE, "\n");
2785 }
2786
2787 /* Link the found element into the group list. */
2788 if (!GROUP_FIRST_ELEMENT (stmtinfo_a))
2789 {
2790 GROUP_FIRST_ELEMENT (stmtinfo_a) = DR_STMT (dra);
2791 lastinfo = stmtinfo_a;
2792 }
2793 GROUP_FIRST_ELEMENT (stmtinfo_b) = DR_STMT (dra);
2794 GROUP_NEXT_ELEMENT (lastinfo) = DR_STMT (drb);
2795 lastinfo = stmtinfo_b;
2796 }
2797 }
2798
2799 FOR_EACH_VEC_ELT (datarefs_copy, i, dr)
2800 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
2801 && !vect_analyze_data_ref_access (dr))
2802 {
2803 if (dump_enabled_p ())
2804 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2805 "not vectorized: complicated access pattern.\n");
2806
2807 if (is_a <bb_vec_info> (vinfo))
2808 {
2809 /* Mark the statement as not vectorizable. */
2810 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2811 continue;
2812 }
2813 else
2814 {
2815 datarefs_copy.release ();
2816 return false;
2817 }
2818 }
2819
2820 datarefs_copy.release ();
2821 return true;
2822 }
2823
2824
2825 /* Operator == between two dr_with_seg_len objects.
2826
2827 This equality operator is used to make sure two data refs
2828 are the same one so that we will consider to combine the
2829 aliasing checks of those two pairs of data dependent data
2830 refs. */
2831
2832 static bool
2833 operator == (const dr_with_seg_len& d1,
2834 const dr_with_seg_len& d2)
2835 {
2836 return operand_equal_p (DR_BASE_ADDRESS (d1.dr),
2837 DR_BASE_ADDRESS (d2.dr), 0)
2838 && compare_tree (d1.offset, d2.offset) == 0
2839 && compare_tree (d1.seg_len, d2.seg_len) == 0;
2840 }
2841
2842 /* Function comp_dr_with_seg_len_pair.
2843
2844 Comparison function for sorting objects of dr_with_seg_len_pair_t
2845 so that we can combine aliasing checks in one scan. */
2846
2847 static int
2848 comp_dr_with_seg_len_pair (const void *p1_, const void *p2_)
2849 {
2850 const dr_with_seg_len_pair_t* p1 = (const dr_with_seg_len_pair_t *) p1_;
2851 const dr_with_seg_len_pair_t* p2 = (const dr_with_seg_len_pair_t *) p2_;
2852
2853 const dr_with_seg_len &p11 = p1->first,
2854 &p12 = p1->second,
2855 &p21 = p2->first,
2856 &p22 = p2->second;
2857
2858 /* For DR pairs (a, b) and (c, d), we only consider to merge the alias checks
2859 if a and c have the same basic address snd step, and b and d have the same
2860 address and step. Therefore, if any a&c or b&d don't have the same address
2861 and step, we don't care the order of those two pairs after sorting. */
2862 int comp_res;
2863
2864 if ((comp_res = compare_tree (DR_BASE_ADDRESS (p11.dr),
2865 DR_BASE_ADDRESS (p21.dr))) != 0)
2866 return comp_res;
2867 if ((comp_res = compare_tree (DR_BASE_ADDRESS (p12.dr),
2868 DR_BASE_ADDRESS (p22.dr))) != 0)
2869 return comp_res;
2870 if ((comp_res = compare_tree (DR_STEP (p11.dr), DR_STEP (p21.dr))) != 0)
2871 return comp_res;
2872 if ((comp_res = compare_tree (DR_STEP (p12.dr), DR_STEP (p22.dr))) != 0)
2873 return comp_res;
2874 if ((comp_res = compare_tree (p11.offset, p21.offset)) != 0)
2875 return comp_res;
2876 if ((comp_res = compare_tree (p12.offset, p22.offset)) != 0)
2877 return comp_res;
2878
2879 return 0;
2880 }
2881
2882 /* Function vect_vfa_segment_size.
2883
2884 Create an expression that computes the size of segment
2885 that will be accessed for a data reference. The functions takes into
2886 account that realignment loads may access one more vector.
2887
2888 Input:
2889 DR: The data reference.
2890 LENGTH_FACTOR: segment length to consider.
2891
2892 Return an expression whose value is the size of segment which will be
2893 accessed by DR. */
2894
2895 static tree
2896 vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
2897 {
2898 tree segment_length;
2899
2900 if (integer_zerop (DR_STEP (dr)))
2901 segment_length = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
2902 else
2903 segment_length = size_binop (MULT_EXPR,
2904 fold_convert (sizetype, DR_STEP (dr)),
2905 fold_convert (sizetype, length_factor));
2906
2907 if (vect_supportable_dr_alignment (dr, false)
2908 == dr_explicit_realign_optimized)
2909 {
2910 tree vector_size = TYPE_SIZE_UNIT
2911 (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
2912
2913 segment_length = size_binop (PLUS_EXPR, segment_length, vector_size);
2914 }
2915 return segment_length;
2916 }
2917
2918 /* Function vect_prune_runtime_alias_test_list.
2919
2920 Prune a list of ddrs to be tested at run-time by versioning for alias.
2921 Merge several alias checks into one if possible.
2922 Return FALSE if resulting list of ddrs is longer then allowed by
2923 PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */
2924
2925 bool
2926 vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
2927 {
2928 vec<ddr_p> may_alias_ddrs =
2929 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
2930 vec<dr_with_seg_len_pair_t>& comp_alias_ddrs =
2931 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
2932 int vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2933 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2934
2935 ddr_p ddr;
2936 unsigned int i;
2937 tree length_factor;
2938
2939 if (dump_enabled_p ())
2940 dump_printf_loc (MSG_NOTE, vect_location,
2941 "=== vect_prune_runtime_alias_test_list ===\n");
2942
2943 if (may_alias_ddrs.is_empty ())
2944 return true;
2945
2946 /* Basically, for each pair of dependent data refs store_ptr_0
2947 and load_ptr_0, we create an expression:
2948
2949 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2950 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2951
2952 for aliasing checks. However, in some cases we can decrease
2953 the number of checks by combining two checks into one. For
2954 example, suppose we have another pair of data refs store_ptr_0
2955 and load_ptr_1, and if the following condition is satisfied:
2956
2957 load_ptr_0 < load_ptr_1 &&
2958 load_ptr_1 - load_ptr_0 - load_segment_length_0 < store_segment_length_0
2959
2960 (this condition means, in each iteration of vectorized loop,
2961 the accessed memory of store_ptr_0 cannot be between the memory
2962 of load_ptr_0 and load_ptr_1.)
2963
2964 we then can use only the following expression to finish the
2965 alising checks between store_ptr_0 & load_ptr_0 and
2966 store_ptr_0 & load_ptr_1:
2967
2968 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2969 || (load_ptr_1 + load_segment_length_1 <= store_ptr_0))
2970
2971 Note that we only consider that load_ptr_0 and load_ptr_1 have the
2972 same basic address. */
2973
2974 comp_alias_ddrs.create (may_alias_ddrs.length ());
2975
2976 /* First, we collect all data ref pairs for aliasing checks. */
2977 FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
2978 {
2979 struct data_reference *dr_a, *dr_b;
2980 gimple *dr_group_first_a, *dr_group_first_b;
2981 tree segment_length_a, segment_length_b;
2982 gimple *stmt_a, *stmt_b;
2983
2984 dr_a = DDR_A (ddr);
2985 stmt_a = DR_STMT (DDR_A (ddr));
2986 dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
2987 if (dr_group_first_a)
2988 {
2989 stmt_a = dr_group_first_a;
2990 dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
2991 }
2992
2993 dr_b = DDR_B (ddr);
2994 stmt_b = DR_STMT (DDR_B (ddr));
2995 dr_group_first_b = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b));
2996 if (dr_group_first_b)
2997 {
2998 stmt_b = dr_group_first_b;
2999 dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
3000 }
3001
3002 if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
3003 length_factor = scalar_loop_iters;
3004 else
3005 length_factor = size_int (vect_factor);
3006 segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
3007 segment_length_b = vect_vfa_segment_size (dr_b, length_factor);
3008
3009 dr_with_seg_len_pair_t dr_with_seg_len_pair
3010 (dr_with_seg_len (dr_a, segment_length_a),
3011 dr_with_seg_len (dr_b, segment_length_b));
3012
3013 if (compare_tree (DR_BASE_ADDRESS (dr_a), DR_BASE_ADDRESS (dr_b)) > 0)
3014 std::swap (dr_with_seg_len_pair.first, dr_with_seg_len_pair.second);
3015
3016 comp_alias_ddrs.safe_push (dr_with_seg_len_pair);
3017 }
3018
3019 /* Second, we sort the collected data ref pairs so that we can scan
3020 them once to combine all possible aliasing checks. */
3021 comp_alias_ddrs.qsort (comp_dr_with_seg_len_pair);
3022
3023 /* Third, we scan the sorted dr pairs and check if we can combine
3024 alias checks of two neighbouring dr pairs. */
3025 for (size_t i = 1; i < comp_alias_ddrs.length (); ++i)
3026 {
3027 /* Deal with two ddrs (dr_a1, dr_b1) and (dr_a2, dr_b2). */
3028 dr_with_seg_len *dr_a1 = &comp_alias_ddrs[i-1].first,
3029 *dr_b1 = &comp_alias_ddrs[i-1].second,
3030 *dr_a2 = &comp_alias_ddrs[i].first,
3031 *dr_b2 = &comp_alias_ddrs[i].second;
3032
3033 /* Remove duplicate data ref pairs. */
3034 if (*dr_a1 == *dr_a2 && *dr_b1 == *dr_b2)
3035 {
3036 if (dump_enabled_p ())
3037 {
3038 dump_printf_loc (MSG_NOTE, vect_location,
3039 "found equal ranges ");
3040 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3041 DR_REF (dr_a1->dr));
3042 dump_printf (MSG_NOTE, ", ");
3043 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3044 DR_REF (dr_b1->dr));
3045 dump_printf (MSG_NOTE, " and ");
3046 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3047 DR_REF (dr_a2->dr));
3048 dump_printf (MSG_NOTE, ", ");
3049 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3050 DR_REF (dr_b2->dr));
3051 dump_printf (MSG_NOTE, "\n");
3052 }
3053
3054 comp_alias_ddrs.ordered_remove (i--);
3055 continue;
3056 }
3057
3058 if (*dr_a1 == *dr_a2 || *dr_b1 == *dr_b2)
3059 {
3060 /* We consider the case that DR_B1 and DR_B2 are same memrefs,
3061 and DR_A1 and DR_A2 are two consecutive memrefs. */
3062 if (*dr_a1 == *dr_a2)
3063 {
3064 std::swap (dr_a1, dr_b1);
3065 std::swap (dr_a2, dr_b2);
3066 }
3067
3068 if (!operand_equal_p (DR_BASE_ADDRESS (dr_a1->dr),
3069 DR_BASE_ADDRESS (dr_a2->dr),
3070 0)
3071 || !tree_fits_shwi_p (dr_a1->offset)
3072 || !tree_fits_shwi_p (dr_a2->offset))
3073 continue;
3074
3075 HOST_WIDE_INT diff = (tree_to_shwi (dr_a2->offset)
3076 - tree_to_shwi (dr_a1->offset));
3077
3078
3079 /* Now we check if the following condition is satisfied:
3080
3081 DIFF - SEGMENT_LENGTH_A < SEGMENT_LENGTH_B
3082
3083 where DIFF = DR_A2->OFFSET - DR_A1->OFFSET. However,
3084 SEGMENT_LENGTH_A or SEGMENT_LENGTH_B may not be constant so we
3085 have to make a best estimation. We can get the minimum value
3086 of SEGMENT_LENGTH_B as a constant, represented by MIN_SEG_LEN_B,
3087 then either of the following two conditions can guarantee the
3088 one above:
3089
3090 1: DIFF <= MIN_SEG_LEN_B
3091 2: DIFF - SEGMENT_LENGTH_A < MIN_SEG_LEN_B
3092
3093 */
3094
3095 HOST_WIDE_INT min_seg_len_b = (tree_fits_shwi_p (dr_b1->seg_len)
3096 ? tree_to_shwi (dr_b1->seg_len)
3097 : vect_factor);
3098
3099 if (diff <= min_seg_len_b
3100 || (tree_fits_shwi_p (dr_a1->seg_len)
3101 && diff - tree_to_shwi (dr_a1->seg_len) < min_seg_len_b))
3102 {
3103 if (dump_enabled_p ())
3104 {
3105 dump_printf_loc (MSG_NOTE, vect_location,
3106 "merging ranges for ");
3107 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3108 DR_REF (dr_a1->dr));
3109 dump_printf (MSG_NOTE, ", ");
3110 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3111 DR_REF (dr_b1->dr));
3112 dump_printf (MSG_NOTE, " and ");
3113 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3114 DR_REF (dr_a2->dr));
3115 dump_printf (MSG_NOTE, ", ");
3116 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3117 DR_REF (dr_b2->dr));
3118 dump_printf (MSG_NOTE, "\n");
3119 }
3120
3121 dr_a1->seg_len = size_binop (PLUS_EXPR,
3122 dr_a2->seg_len, size_int (diff));
3123 comp_alias_ddrs.ordered_remove (i--);
3124 }
3125 }
3126 }
3127
3128 dump_printf_loc (MSG_NOTE, vect_location,
3129 "improved number of alias checks from %d to %d\n",
3130 may_alias_ddrs.length (), comp_alias_ddrs.length ());
3131 if ((int) comp_alias_ddrs.length () >
3132 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS))
3133 return false;
3134
3135 return true;
3136 }
3137
3138 /* Check whether a non-affine read or write in stmt is suitable for gather load
3139 or scatter store and if so, return a builtin decl for that operation. */
3140
3141 tree
3142 vect_check_gather_scatter (gimple *stmt, loop_vec_info loop_vinfo, tree *basep,
3143 tree *offp, int *scalep)
3144 {
3145 HOST_WIDE_INT scale = 1, pbitpos, pbitsize;
3146 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3147 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3148 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
3149 tree offtype = NULL_TREE;
3150 tree decl, base, off;
3151 machine_mode pmode;
3152 int punsignedp, reversep, pvolatilep = 0;
3153
3154 base = DR_REF (dr);
3155 /* For masked loads/stores, DR_REF (dr) is an artificial MEM_REF,
3156 see if we can use the def stmt of the address. */
3157 if (is_gimple_call (stmt)
3158 && gimple_call_internal_p (stmt)
3159 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
3160 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
3161 && TREE_CODE (base) == MEM_REF
3162 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
3163 && integer_zerop (TREE_OPERAND (base, 1))
3164 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (base, 0)))
3165 {
3166 gimple *def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0));
3167 if (is_gimple_assign (def_stmt)
3168 && gimple_assign_rhs_code (def_stmt) == ADDR_EXPR)
3169 base = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0);
3170 }
3171
3172 /* The gather and scatter builtins need address of the form
3173 loop_invariant + vector * {1, 2, 4, 8}
3174 or
3175 loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }.
3176 Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture
3177 of loop invariants/SSA_NAMEs defined in the loop, with casts,
3178 multiplications and additions in it. To get a vector, we need
3179 a single SSA_NAME that will be defined in the loop and will
3180 contain everything that is not loop invariant and that can be
3181 vectorized. The following code attempts to find such a preexistng
3182 SSA_NAME OFF and put the loop invariants into a tree BASE
3183 that can be gimplified before the loop. */
3184 base = get_inner_reference (base, &pbitsize, &pbitpos, &off, &pmode,
3185 &punsignedp, &reversep, &pvolatilep, false);
3186 gcc_assert (base && (pbitpos % BITS_PER_UNIT) == 0 && !reversep);
3187
3188 if (TREE_CODE (base) == MEM_REF)
3189 {
3190 if (!integer_zerop (TREE_OPERAND (base, 1)))
3191 {
3192 if (off == NULL_TREE)
3193 {
3194 offset_int moff = mem_ref_offset (base);
3195 off = wide_int_to_tree (sizetype, moff);
3196 }
3197 else
3198 off = size_binop (PLUS_EXPR, off,
3199 fold_convert (sizetype, TREE_OPERAND (base, 1)));
3200 }
3201 base = TREE_OPERAND (base, 0);
3202 }
3203 else
3204 base = build_fold_addr_expr (base);
3205
3206 if (off == NULL_TREE)
3207 off = size_zero_node;
3208
3209 /* If base is not loop invariant, either off is 0, then we start with just
3210 the constant offset in the loop invariant BASE and continue with base
3211 as OFF, otherwise give up.
3212 We could handle that case by gimplifying the addition of base + off
3213 into some SSA_NAME and use that as off, but for now punt. */
3214 if (!expr_invariant_in_loop_p (loop, base))
3215 {
3216 if (!integer_zerop (off))
3217 return NULL_TREE;
3218 off = base;
3219 base = size_int (pbitpos / BITS_PER_UNIT);
3220 }
3221 /* Otherwise put base + constant offset into the loop invariant BASE
3222 and continue with OFF. */
3223 else
3224 {
3225 base = fold_convert (sizetype, base);
3226 base = size_binop (PLUS_EXPR, base, size_int (pbitpos / BITS_PER_UNIT));
3227 }
3228
3229 /* OFF at this point may be either a SSA_NAME or some tree expression
3230 from get_inner_reference. Try to peel off loop invariants from it
3231 into BASE as long as possible. */
3232 STRIP_NOPS (off);
3233 while (offtype == NULL_TREE)
3234 {
3235 enum tree_code code;
3236 tree op0, op1, add = NULL_TREE;
3237
3238 if (TREE_CODE (off) == SSA_NAME)
3239 {
3240 gimple *def_stmt = SSA_NAME_DEF_STMT (off);
3241
3242 if (expr_invariant_in_loop_p (loop, off))
3243 return NULL_TREE;
3244
3245 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
3246 break;
3247
3248 op0 = gimple_assign_rhs1 (def_stmt);
3249 code = gimple_assign_rhs_code (def_stmt);
3250 op1 = gimple_assign_rhs2 (def_stmt);
3251 }
3252 else
3253 {
3254 if (get_gimple_rhs_class (TREE_CODE (off)) == GIMPLE_TERNARY_RHS)
3255 return NULL_TREE;
3256 code = TREE_CODE (off);
3257 extract_ops_from_tree (off, &code, &op0, &op1);
3258 }
3259 switch (code)
3260 {
3261 case POINTER_PLUS_EXPR:
3262 case PLUS_EXPR:
3263 if (expr_invariant_in_loop_p (loop, op0))
3264 {
3265 add = op0;
3266 off = op1;
3267 do_add:
3268 add = fold_convert (sizetype, add);
3269 if (scale != 1)
3270 add = size_binop (MULT_EXPR, add, size_int (scale));
3271 base = size_binop (PLUS_EXPR, base, add);
3272 continue;
3273 }
3274 if (expr_invariant_in_loop_p (loop, op1))
3275 {
3276 add = op1;
3277 off = op0;
3278 goto do_add;
3279 }
3280 break;
3281 case MINUS_EXPR:
3282 if (expr_invariant_in_loop_p (loop, op1))
3283 {
3284 add = fold_convert (sizetype, op1);
3285 add = size_binop (MINUS_EXPR, size_zero_node, add);
3286 off = op0;
3287 goto do_add;
3288 }
3289 break;
3290 case MULT_EXPR:
3291 if (scale == 1 && tree_fits_shwi_p (op1))
3292 {
3293 scale = tree_to_shwi (op1);
3294 off = op0;
3295 continue;
3296 }
3297 break;
3298 case SSA_NAME:
3299 off = op0;
3300 continue;
3301 CASE_CONVERT:
3302 if (!POINTER_TYPE_P (TREE_TYPE (op0))
3303 && !INTEGRAL_TYPE_P (TREE_TYPE (op0)))
3304 break;
3305 if (TYPE_PRECISION (TREE_TYPE (op0))
3306 == TYPE_PRECISION (TREE_TYPE (off)))
3307 {
3308 off = op0;
3309 continue;
3310 }
3311 if (TYPE_PRECISION (TREE_TYPE (op0))
3312 < TYPE_PRECISION (TREE_TYPE (off)))
3313 {
3314 off = op0;
3315 offtype = TREE_TYPE (off);
3316 STRIP_NOPS (off);
3317 continue;
3318 }
3319 break;
3320 default:
3321 break;
3322 }
3323 break;
3324 }
3325
3326 /* If at the end OFF still isn't a SSA_NAME or isn't
3327 defined in the loop, punt. */
3328 if (TREE_CODE (off) != SSA_NAME
3329 || expr_invariant_in_loop_p (loop, off))
3330 return NULL_TREE;
3331
3332 if (offtype == NULL_TREE)
3333 offtype = TREE_TYPE (off);
3334
3335 if (DR_IS_READ (dr))
3336 decl = targetm.vectorize.builtin_gather (STMT_VINFO_VECTYPE (stmt_info),
3337 offtype, scale);
3338 else
3339 decl = targetm.vectorize.builtin_scatter (STMT_VINFO_VECTYPE (stmt_info),
3340 offtype, scale);
3341
3342 if (decl == NULL_TREE)
3343 return NULL_TREE;
3344
3345 if (basep)
3346 *basep = base;
3347 if (offp)
3348 *offp = off;
3349 if (scalep)
3350 *scalep = scale;
3351 return decl;
3352 }
3353
3354 /* Function vect_analyze_data_refs.
3355
3356 Find all the data references in the loop or basic block.
3357
3358 The general structure of the analysis of data refs in the vectorizer is as
3359 follows:
3360 1- vect_analyze_data_refs(loop/bb): call
3361 compute_data_dependences_for_loop/bb to find and analyze all data-refs
3362 in the loop/bb and their dependences.
3363 2- vect_analyze_dependences(): apply dependence testing using ddrs.
3364 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
3365 4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
3366
3367 */
3368
3369 bool
3370 vect_analyze_data_refs (vec_info *vinfo, int *min_vf)
3371 {
3372 struct loop *loop = NULL;
3373 unsigned int i;
3374 struct data_reference *dr;
3375 tree scalar_type;
3376
3377 if (dump_enabled_p ())
3378 dump_printf_loc (MSG_NOTE, vect_location,
3379 "=== vect_analyze_data_refs ===\n");
3380
3381 if (loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo))
3382 loop = LOOP_VINFO_LOOP (loop_vinfo);
3383
3384 /* Go through the data-refs, check that the analysis succeeded. Update
3385 pointer from stmt_vec_info struct to DR and vectype. */
3386
3387 vec<data_reference_p> datarefs = vinfo->datarefs;
3388 FOR_EACH_VEC_ELT (datarefs, i, dr)
3389 {
3390 gimple *stmt;
3391 stmt_vec_info stmt_info;
3392 tree base, offset, init;
3393 enum { SG_NONE, GATHER, SCATTER } gatherscatter = SG_NONE;
3394 bool simd_lane_access = false;
3395 int vf;
3396
3397 again:
3398 if (!dr || !DR_REF (dr))
3399 {
3400 if (dump_enabled_p ())
3401 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3402 "not vectorized: unhandled data-ref\n");
3403 return false;
3404 }
3405
3406 stmt = DR_STMT (dr);
3407 stmt_info = vinfo_for_stmt (stmt);
3408
3409 /* Discard clobbers from the dataref vector. We will remove
3410 clobber stmts during vectorization. */
3411 if (gimple_clobber_p (stmt))
3412 {
3413 free_data_ref (dr);
3414 if (i == datarefs.length () - 1)
3415 {
3416 datarefs.pop ();
3417 break;
3418 }
3419 datarefs.ordered_remove (i);
3420 dr = datarefs[i];
3421 goto again;
3422 }
3423
3424 /* Check that analysis of the data-ref succeeded. */
3425 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
3426 || !DR_STEP (dr))
3427 {
3428 bool maybe_gather
3429 = DR_IS_READ (dr)
3430 && !TREE_THIS_VOLATILE (DR_REF (dr))
3431 && targetm.vectorize.builtin_gather != NULL;
3432 bool maybe_scatter
3433 = DR_IS_WRITE (dr)
3434 && !TREE_THIS_VOLATILE (DR_REF (dr))
3435 && targetm.vectorize.builtin_scatter != NULL;
3436 bool maybe_simd_lane_access
3437 = is_a <loop_vec_info> (vinfo) && loop->simduid;
3438
3439 /* If target supports vector gather loads or scatter stores, or if
3440 this might be a SIMD lane access, see if they can't be used. */
3441 if (is_a <loop_vec_info> (vinfo)
3442 && (maybe_gather || maybe_scatter || maybe_simd_lane_access)
3443 && !nested_in_vect_loop_p (loop, stmt))
3444 {
3445 struct data_reference *newdr
3446 = create_data_ref (NULL, loop_containing_stmt (stmt),
3447 DR_REF (dr), stmt, maybe_scatter ? false : true);
3448 gcc_assert (newdr != NULL && DR_REF (newdr));
3449 if (DR_BASE_ADDRESS (newdr)
3450 && DR_OFFSET (newdr)
3451 && DR_INIT (newdr)
3452 && DR_STEP (newdr)
3453 && integer_zerop (DR_STEP (newdr)))
3454 {
3455 if (maybe_simd_lane_access)
3456 {
3457 tree off = DR_OFFSET (newdr);
3458 STRIP_NOPS (off);
3459 if (TREE_CODE (DR_INIT (newdr)) == INTEGER_CST
3460 && TREE_CODE (off) == MULT_EXPR
3461 && tree_fits_uhwi_p (TREE_OPERAND (off, 1)))
3462 {
3463 tree step = TREE_OPERAND (off, 1);
3464 off = TREE_OPERAND (off, 0);
3465 STRIP_NOPS (off);
3466 if (CONVERT_EXPR_P (off)
3467 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (off,
3468 0)))
3469 < TYPE_PRECISION (TREE_TYPE (off)))
3470 off = TREE_OPERAND (off, 0);
3471 if (TREE_CODE (off) == SSA_NAME)
3472 {
3473 gimple *def = SSA_NAME_DEF_STMT (off);
3474 tree reft = TREE_TYPE (DR_REF (newdr));
3475 if (is_gimple_call (def)
3476 && gimple_call_internal_p (def)
3477 && (gimple_call_internal_fn (def)
3478 == IFN_GOMP_SIMD_LANE))
3479 {
3480 tree arg = gimple_call_arg (def, 0);
3481 gcc_assert (TREE_CODE (arg) == SSA_NAME);
3482 arg = SSA_NAME_VAR (arg);
3483 if (arg == loop->simduid
3484 /* For now. */
3485 && tree_int_cst_equal
3486 (TYPE_SIZE_UNIT (reft),
3487 step))
3488 {
3489 DR_OFFSET (newdr) = ssize_int (0);
3490 DR_STEP (newdr) = step;
3491 DR_ALIGNED_TO (newdr)
3492 = size_int (BIGGEST_ALIGNMENT);
3493 dr = newdr;
3494 simd_lane_access = true;
3495 }
3496 }
3497 }
3498 }
3499 }
3500 if (!simd_lane_access && (maybe_gather || maybe_scatter))
3501 {
3502 dr = newdr;
3503 if (maybe_gather)
3504 gatherscatter = GATHER;
3505 else
3506 gatherscatter = SCATTER;
3507 }
3508 }
3509 if (gatherscatter == SG_NONE && !simd_lane_access)
3510 free_data_ref (newdr);
3511 }
3512
3513 if (gatherscatter == SG_NONE && !simd_lane_access)
3514 {
3515 if (dump_enabled_p ())
3516 {
3517 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3518 "not vectorized: data ref analysis "
3519 "failed ");
3520 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3521 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3522 }
3523
3524 if (is_a <bb_vec_info> (vinfo))
3525 break;
3526
3527 return false;
3528 }
3529 }
3530
3531 if (TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST)
3532 {
3533 if (dump_enabled_p ())
3534 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3535 "not vectorized: base addr of dr is a "
3536 "constant\n");
3537
3538 if (is_a <bb_vec_info> (vinfo))
3539 break;
3540
3541 if (gatherscatter != SG_NONE || simd_lane_access)
3542 free_data_ref (dr);
3543 return false;
3544 }
3545
3546 if (TREE_THIS_VOLATILE (DR_REF (dr)))
3547 {
3548 if (dump_enabled_p ())
3549 {
3550 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3551 "not vectorized: volatile type ");
3552 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3553 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3554 }
3555
3556 if (is_a <bb_vec_info> (vinfo))
3557 break;
3558
3559 return false;
3560 }
3561
3562 if (stmt_can_throw_internal (stmt))
3563 {
3564 if (dump_enabled_p ())
3565 {
3566 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3567 "not vectorized: statement can throw an "
3568 "exception ");
3569 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3570 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3571 }
3572
3573 if (is_a <bb_vec_info> (vinfo))
3574 break;
3575
3576 if (gatherscatter != SG_NONE || simd_lane_access)
3577 free_data_ref (dr);
3578 return false;
3579 }
3580
3581 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
3582 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
3583 {
3584 if (dump_enabled_p ())
3585 {
3586 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3587 "not vectorized: statement is bitfield "
3588 "access ");
3589 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3590 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3591 }
3592
3593 if (is_a <bb_vec_info> (vinfo))
3594 break;
3595
3596 if (gatherscatter != SG_NONE || simd_lane_access)
3597 free_data_ref (dr);
3598 return false;
3599 }
3600
3601 base = unshare_expr (DR_BASE_ADDRESS (dr));
3602 offset = unshare_expr (DR_OFFSET (dr));
3603 init = unshare_expr (DR_INIT (dr));
3604
3605 if (is_gimple_call (stmt)
3606 && (!gimple_call_internal_p (stmt)
3607 || (gimple_call_internal_fn (stmt) != IFN_MASK_LOAD
3608 && gimple_call_internal_fn (stmt) != IFN_MASK_STORE)))
3609 {
3610 if (dump_enabled_p ())
3611 {
3612 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3613 "not vectorized: dr in a call ");
3614 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3615 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3616 }
3617
3618 if (is_a <bb_vec_info> (vinfo))
3619 break;
3620
3621 if (gatherscatter != SG_NONE || simd_lane_access)
3622 free_data_ref (dr);
3623 return false;
3624 }
3625
3626 /* Update DR field in stmt_vec_info struct. */
3627
3628 /* If the dataref is in an inner-loop of the loop that is considered for
3629 for vectorization, we also want to analyze the access relative to
3630 the outer-loop (DR contains information only relative to the
3631 inner-most enclosing loop). We do that by building a reference to the
3632 first location accessed by the inner-loop, and analyze it relative to
3633 the outer-loop. */
3634 if (loop && nested_in_vect_loop_p (loop, stmt))
3635 {
3636 tree outer_step, outer_base, outer_init;
3637 HOST_WIDE_INT pbitsize, pbitpos;
3638 tree poffset;
3639 machine_mode pmode;
3640 int punsignedp, preversep, pvolatilep;
3641 affine_iv base_iv, offset_iv;
3642 tree dinit;
3643
3644 /* Build a reference to the first location accessed by the
3645 inner-loop: *(BASE+INIT). (The first location is actually
3646 BASE+INIT+OFFSET, but we add OFFSET separately later). */
3647 tree inner_base = build_fold_indirect_ref
3648 (fold_build_pointer_plus (base, init));
3649
3650 if (dump_enabled_p ())
3651 {
3652 dump_printf_loc (MSG_NOTE, vect_location,
3653 "analyze in outer-loop: ");
3654 dump_generic_expr (MSG_NOTE, TDF_SLIM, inner_base);
3655 dump_printf (MSG_NOTE, "\n");
3656 }
3657
3658 outer_base = get_inner_reference (inner_base, &pbitsize, &pbitpos,
3659 &poffset, &pmode, &punsignedp,
3660 &preversep, &pvolatilep, false);
3661 gcc_assert (outer_base != NULL_TREE);
3662
3663 if (pbitpos % BITS_PER_UNIT != 0)
3664 {
3665 if (dump_enabled_p ())
3666 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3667 "failed: bit offset alignment.\n");
3668 return false;
3669 }
3670
3671 if (preversep)
3672 {
3673 if (dump_enabled_p ())
3674 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3675 "failed: reverse storage order.\n");
3676 return false;
3677 }
3678
3679 outer_base = build_fold_addr_expr (outer_base);
3680 if (!simple_iv (loop, loop_containing_stmt (stmt), outer_base,
3681 &base_iv, false))
3682 {
3683 if (dump_enabled_p ())
3684 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3685 "failed: evolution of base is not affine.\n");
3686 return false;
3687 }
3688
3689 if (offset)
3690 {
3691 if (poffset)
3692 poffset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset,
3693 poffset);
3694 else
3695 poffset = offset;
3696 }
3697
3698 if (!poffset)
3699 {
3700 offset_iv.base = ssize_int (0);
3701 offset_iv.step = ssize_int (0);
3702 }
3703 else if (!simple_iv (loop, loop_containing_stmt (stmt), poffset,
3704 &offset_iv, false))
3705 {
3706 if (dump_enabled_p ())
3707 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3708 "evolution of offset is not affine.\n");
3709 return false;
3710 }
3711
3712 outer_init = ssize_int (pbitpos / BITS_PER_UNIT);
3713 split_constant_offset (base_iv.base, &base_iv.base, &dinit);
3714 outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
3715 split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
3716 outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
3717
3718 outer_step = size_binop (PLUS_EXPR,
3719 fold_convert (ssizetype, base_iv.step),
3720 fold_convert (ssizetype, offset_iv.step));
3721
3722 STMT_VINFO_DR_STEP (stmt_info) = outer_step;
3723 /* FIXME: Use canonicalize_base_object_address (base_iv.base); */
3724 STMT_VINFO_DR_BASE_ADDRESS (stmt_info) = base_iv.base;
3725 STMT_VINFO_DR_INIT (stmt_info) = outer_init;
3726 STMT_VINFO_DR_OFFSET (stmt_info) =
3727 fold_convert (ssizetype, offset_iv.base);
3728 STMT_VINFO_DR_ALIGNED_TO (stmt_info) =
3729 size_int (highest_pow2_factor (offset_iv.base));
3730
3731 if (dump_enabled_p ())
3732 {
3733 dump_printf_loc (MSG_NOTE, vect_location,
3734 "\touter base_address: ");
3735 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3736 STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
3737 dump_printf (MSG_NOTE, "\n\touter offset from base address: ");
3738 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3739 STMT_VINFO_DR_OFFSET (stmt_info));
3740 dump_printf (MSG_NOTE,
3741 "\n\touter constant offset from base address: ");
3742 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3743 STMT_VINFO_DR_INIT (stmt_info));
3744 dump_printf (MSG_NOTE, "\n\touter step: ");
3745 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3746 STMT_VINFO_DR_STEP (stmt_info));
3747 dump_printf (MSG_NOTE, "\n\touter aligned to: ");
3748 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3749 STMT_VINFO_DR_ALIGNED_TO (stmt_info));
3750 dump_printf (MSG_NOTE, "\n");
3751 }
3752 }
3753
3754 if (STMT_VINFO_DATA_REF (stmt_info))
3755 {
3756 if (dump_enabled_p ())
3757 {
3758 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3759 "not vectorized: more than one data ref "
3760 "in stmt: ");
3761 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3762 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3763 }
3764
3765 if (is_a <bb_vec_info> (vinfo))
3766 break;
3767
3768 if (gatherscatter != SG_NONE || simd_lane_access)
3769 free_data_ref (dr);
3770 return false;
3771 }
3772
3773 STMT_VINFO_DATA_REF (stmt_info) = dr;
3774 if (simd_lane_access)
3775 {
3776 STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) = true;
3777 free_data_ref (datarefs[i]);
3778 datarefs[i] = dr;
3779 }
3780
3781 /* Set vectype for STMT. */
3782 scalar_type = TREE_TYPE (DR_REF (dr));
3783 STMT_VINFO_VECTYPE (stmt_info)
3784 = get_vectype_for_scalar_type (scalar_type);
3785 if (!STMT_VINFO_VECTYPE (stmt_info))
3786 {
3787 if (dump_enabled_p ())
3788 {
3789 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3790 "not vectorized: no vectype for stmt: ");
3791 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3792 dump_printf (MSG_MISSED_OPTIMIZATION, " scalar_type: ");
3793 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_DETAILS,
3794 scalar_type);
3795 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3796 }
3797
3798 if (is_a <bb_vec_info> (vinfo))
3799 {
3800 /* No vector type is fine, the ref can still participate
3801 in dependence analysis, we just can't vectorize it. */
3802 STMT_VINFO_VECTORIZABLE (stmt_info) = false;
3803 continue;
3804 }
3805
3806 if (gatherscatter != SG_NONE || simd_lane_access)
3807 {
3808 STMT_VINFO_DATA_REF (stmt_info) = NULL;
3809 if (gatherscatter != SG_NONE)
3810 free_data_ref (dr);
3811 }
3812 return false;
3813 }
3814 else
3815 {
3816 if (dump_enabled_p ())
3817 {
3818 dump_printf_loc (MSG_NOTE, vect_location,
3819 "got vectype for stmt: ");
3820 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
3821 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3822 STMT_VINFO_VECTYPE (stmt_info));
3823 dump_printf (MSG_NOTE, "\n");
3824 }
3825 }
3826
3827 /* Adjust the minimal vectorization factor according to the
3828 vector type. */
3829 vf = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
3830 if (vf > *min_vf)
3831 *min_vf = vf;
3832
3833 if (gatherscatter != SG_NONE)
3834 {
3835 tree off;
3836 if (!vect_check_gather_scatter (stmt, as_a <loop_vec_info> (vinfo),
3837 NULL, &off, NULL)
3838 || get_vectype_for_scalar_type (TREE_TYPE (off)) == NULL_TREE)
3839 {
3840 STMT_VINFO_DATA_REF (stmt_info) = NULL;
3841 free_data_ref (dr);
3842 if (dump_enabled_p ())
3843 {
3844 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3845 (gatherscatter == GATHER) ?
3846 "not vectorized: not suitable for gather "
3847 "load " :
3848 "not vectorized: not suitable for scatter "
3849 "store ");
3850 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3851 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3852 }
3853 return false;
3854 }
3855
3856 free_data_ref (datarefs[i]);
3857 datarefs[i] = dr;
3858 STMT_VINFO_GATHER_SCATTER_P (stmt_info) = gatherscatter;
3859 }
3860
3861 else if (is_a <loop_vec_info> (vinfo)
3862 && TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
3863 {
3864 if (nested_in_vect_loop_p (loop, stmt))
3865 {
3866 if (dump_enabled_p ())
3867 {
3868 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3869 "not vectorized: not suitable for strided "
3870 "load ");
3871 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3872 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3873 }
3874 return false;
3875 }
3876 STMT_VINFO_STRIDED_P (stmt_info) = true;
3877 }
3878 }
3879
3880 /* If we stopped analysis at the first dataref we could not analyze
3881 when trying to vectorize a basic-block mark the rest of the datarefs
3882 as not vectorizable and truncate the vector of datarefs. That
3883 avoids spending useless time in analyzing their dependence. */
3884 if (i != datarefs.length ())
3885 {
3886 gcc_assert (is_a <bb_vec_info> (vinfo));
3887 for (unsigned j = i; j < datarefs.length (); ++j)
3888 {
3889 data_reference_p dr = datarefs[j];
3890 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
3891 free_data_ref (dr);
3892 }
3893 datarefs.truncate (i);
3894 }
3895
3896 return true;
3897 }
3898
3899
3900 /* Function vect_get_new_vect_var.
3901
3902 Returns a name for a new variable. The current naming scheme appends the
3903 prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
3904 the name of vectorizer generated variables, and appends that to NAME if
3905 provided. */
3906
3907 tree
3908 vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
3909 {
3910 const char *prefix;
3911 tree new_vect_var;
3912
3913 switch (var_kind)
3914 {
3915 case vect_simple_var:
3916 prefix = "vect";
3917 break;
3918 case vect_scalar_var:
3919 prefix = "stmp";
3920 break;
3921 case vect_mask_var:
3922 prefix = "mask";
3923 break;
3924 case vect_pointer_var:
3925 prefix = "vectp";
3926 break;
3927 default:
3928 gcc_unreachable ();
3929 }
3930
3931 if (name)
3932 {
3933 char* tmp = concat (prefix, "_", name, NULL);
3934 new_vect_var = create_tmp_reg (type, tmp);
3935 free (tmp);
3936 }
3937 else
3938 new_vect_var = create_tmp_reg (type, prefix);
3939
3940 return new_vect_var;
3941 }
3942
3943 /* Like vect_get_new_vect_var but return an SSA name. */
3944
3945 tree
3946 vect_get_new_ssa_name (tree type, enum vect_var_kind var_kind, const char *name)
3947 {
3948 const char *prefix;
3949 tree new_vect_var;
3950
3951 switch (var_kind)
3952 {
3953 case vect_simple_var:
3954 prefix = "vect";
3955 break;
3956 case vect_scalar_var:
3957 prefix = "stmp";
3958 break;
3959 case vect_pointer_var:
3960 prefix = "vectp";
3961 break;
3962 default:
3963 gcc_unreachable ();
3964 }
3965
3966 if (name)
3967 {
3968 char* tmp = concat (prefix, "_", name, NULL);
3969 new_vect_var = make_temp_ssa_name (type, NULL, tmp);
3970 free (tmp);
3971 }
3972 else
3973 new_vect_var = make_temp_ssa_name (type, NULL, prefix);
3974
3975 return new_vect_var;
3976 }
3977
3978 /* Duplicate ptr info and set alignment/misaligment on NAME from DR. */
3979
3980 static void
3981 vect_duplicate_ssa_name_ptr_info (tree name, data_reference *dr,
3982 stmt_vec_info stmt_info)
3983 {
3984 duplicate_ssa_name_ptr_info (name, DR_PTR_INFO (dr));
3985 unsigned int align = TYPE_ALIGN_UNIT (STMT_VINFO_VECTYPE (stmt_info));
3986 int misalign = DR_MISALIGNMENT (dr);
3987 if (misalign == -1)
3988 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (name));
3989 else
3990 set_ptr_info_alignment (SSA_NAME_PTR_INFO (name), align, misalign);
3991 }
3992
3993 /* Function vect_create_addr_base_for_vector_ref.
3994
3995 Create an expression that computes the address of the first memory location
3996 that will be accessed for a data reference.
3997
3998 Input:
3999 STMT: The statement containing the data reference.
4000 NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
4001 OFFSET: Optional. If supplied, it is be added to the initial address.
4002 LOOP: Specify relative to which loop-nest should the address be computed.
4003 For example, when the dataref is in an inner-loop nested in an
4004 outer-loop that is now being vectorized, LOOP can be either the
4005 outer-loop, or the inner-loop. The first memory location accessed
4006 by the following dataref ('in' points to short):
4007
4008 for (i=0; i<N; i++)
4009 for (j=0; j<M; j++)
4010 s += in[i+j]
4011
4012 is as follows:
4013 if LOOP=i_loop: &in (relative to i_loop)
4014 if LOOP=j_loop: &in+i*2B (relative to j_loop)
4015 BYTE_OFFSET: Optional, defaulted to NULL. If supplied, it is added to the
4016 initial address. Unlike OFFSET, which is number of elements to
4017 be added, BYTE_OFFSET is measured in bytes.
4018
4019 Output:
4020 1. Return an SSA_NAME whose value is the address of the memory location of
4021 the first vector of the data reference.
4022 2. If new_stmt_list is not NULL_TREE after return then the caller must insert
4023 these statement(s) which define the returned SSA_NAME.
4024
4025 FORNOW: We are only handling array accesses with step 1. */
4026
4027 tree
4028 vect_create_addr_base_for_vector_ref (gimple *stmt,
4029 gimple_seq *new_stmt_list,
4030 tree offset,
4031 struct loop *loop,
4032 tree byte_offset)
4033 {
4034 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4035 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4036 tree data_ref_base;
4037 const char *base_name;
4038 tree addr_base;
4039 tree dest;
4040 gimple_seq seq = NULL;
4041 tree base_offset;
4042 tree init;
4043 tree vect_ptr_type;
4044 tree step = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
4045 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4046
4047 if (loop_vinfo && loop && loop != (gimple_bb (stmt))->loop_father)
4048 {
4049 struct loop *outer_loop = LOOP_VINFO_LOOP (loop_vinfo);
4050
4051 gcc_assert (nested_in_vect_loop_p (outer_loop, stmt));
4052
4053 data_ref_base = unshare_expr (STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
4054 base_offset = unshare_expr (STMT_VINFO_DR_OFFSET (stmt_info));
4055 init = unshare_expr (STMT_VINFO_DR_INIT (stmt_info));
4056 }
4057 else
4058 {
4059 data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
4060 base_offset = unshare_expr (DR_OFFSET (dr));
4061 init = unshare_expr (DR_INIT (dr));
4062 }
4063
4064 if (loop_vinfo)
4065 base_name = get_name (data_ref_base);
4066 else
4067 {
4068 base_offset = ssize_int (0);
4069 init = ssize_int (0);
4070 base_name = get_name (DR_REF (dr));
4071 }
4072
4073 /* Create base_offset */
4074 base_offset = size_binop (PLUS_EXPR,
4075 fold_convert (sizetype, base_offset),
4076 fold_convert (sizetype, init));
4077
4078 if (offset)
4079 {
4080 offset = fold_build2 (MULT_EXPR, sizetype,
4081 fold_convert (sizetype, offset), step);
4082 base_offset = fold_build2 (PLUS_EXPR, sizetype,
4083 base_offset, offset);
4084 }
4085 if (byte_offset)
4086 {
4087 byte_offset = fold_convert (sizetype, byte_offset);
4088 base_offset = fold_build2 (PLUS_EXPR, sizetype,
4089 base_offset, byte_offset);
4090 }
4091
4092 /* base + base_offset */
4093 if (loop_vinfo)
4094 addr_base = fold_build_pointer_plus (data_ref_base, base_offset);
4095 else
4096 {
4097 addr_base = build1 (ADDR_EXPR,
4098 build_pointer_type (TREE_TYPE (DR_REF (dr))),
4099 unshare_expr (DR_REF (dr)));
4100 }
4101
4102 vect_ptr_type = build_pointer_type (STMT_VINFO_VECTYPE (stmt_info));
4103 dest = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var, base_name);
4104 addr_base = force_gimple_operand (addr_base, &seq, true, dest);
4105 gimple_seq_add_seq (new_stmt_list, seq);
4106
4107 if (DR_PTR_INFO (dr)
4108 && TREE_CODE (addr_base) == SSA_NAME
4109 && !SSA_NAME_PTR_INFO (addr_base))
4110 {
4111 vect_duplicate_ssa_name_ptr_info (addr_base, dr, stmt_info);
4112 if (offset || byte_offset)
4113 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (addr_base));
4114 }
4115
4116 if (dump_enabled_p ())
4117 {
4118 dump_printf_loc (MSG_NOTE, vect_location, "created ");
4119 dump_generic_expr (MSG_NOTE, TDF_SLIM, addr_base);
4120 dump_printf (MSG_NOTE, "\n");
4121 }
4122
4123 return addr_base;
4124 }
4125
4126
4127 /* Function vect_create_data_ref_ptr.
4128
4129 Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first
4130 location accessed in the loop by STMT, along with the def-use update
4131 chain to appropriately advance the pointer through the loop iterations.
4132 Also set aliasing information for the pointer. This pointer is used by
4133 the callers to this function to create a memory reference expression for
4134 vector load/store access.
4135
4136 Input:
4137 1. STMT: a stmt that references memory. Expected to be of the form
4138 GIMPLE_ASSIGN <name, data-ref> or
4139 GIMPLE_ASSIGN <data-ref, name>.
4140 2. AGGR_TYPE: the type of the reference, which should be either a vector
4141 or an array.
4142 3. AT_LOOP: the loop where the vector memref is to be created.
4143 4. OFFSET (optional): an offset to be added to the initial address accessed
4144 by the data-ref in STMT.
4145 5. BSI: location where the new stmts are to be placed if there is no loop
4146 6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain
4147 pointing to the initial address.
4148 7. BYTE_OFFSET (optional, defaults to NULL): a byte offset to be added
4149 to the initial address accessed by the data-ref in STMT. This is
4150 similar to OFFSET, but OFFSET is counted in elements, while BYTE_OFFSET
4151 in bytes.
4152
4153 Output:
4154 1. Declare a new ptr to vector_type, and have it point to the base of the
4155 data reference (initial addressed accessed by the data reference).
4156 For example, for vector of type V8HI, the following code is generated:
4157
4158 v8hi *ap;
4159 ap = (v8hi *)initial_address;
4160
4161 if OFFSET is not supplied:
4162 initial_address = &a[init];
4163 if OFFSET is supplied:
4164 initial_address = &a[init + OFFSET];
4165 if BYTE_OFFSET is supplied:
4166 initial_address = &a[init] + BYTE_OFFSET;
4167
4168 Return the initial_address in INITIAL_ADDRESS.
4169
4170 2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
4171 update the pointer in each iteration of the loop.
4172
4173 Return the increment stmt that updates the pointer in PTR_INCR.
4174
4175 3. Set INV_P to true if the access pattern of the data reference in the
4176 vectorized loop is invariant. Set it to false otherwise.
4177
4178 4. Return the pointer. */
4179
4180 tree
4181 vect_create_data_ref_ptr (gimple *stmt, tree aggr_type, struct loop *at_loop,
4182 tree offset, tree *initial_address,
4183 gimple_stmt_iterator *gsi, gimple **ptr_incr,
4184 bool only_init, bool *inv_p, tree byte_offset)
4185 {
4186 const char *base_name;
4187 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4188 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4189 struct loop *loop = NULL;
4190 bool nested_in_vect_loop = false;
4191 struct loop *containing_loop = NULL;
4192 tree aggr_ptr_type;
4193 tree aggr_ptr;
4194 tree new_temp;
4195 gimple_seq new_stmt_list = NULL;
4196 edge pe = NULL;
4197 basic_block new_bb;
4198 tree aggr_ptr_init;
4199 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4200 tree aptr;
4201 gimple_stmt_iterator incr_gsi;
4202 bool insert_after;
4203 tree indx_before_incr, indx_after_incr;
4204 gimple *incr;
4205 tree step;
4206 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4207
4208 gcc_assert (TREE_CODE (aggr_type) == ARRAY_TYPE
4209 || TREE_CODE (aggr_type) == VECTOR_TYPE);
4210
4211 if (loop_vinfo)
4212 {
4213 loop = LOOP_VINFO_LOOP (loop_vinfo);
4214 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4215 containing_loop = (gimple_bb (stmt))->loop_father;
4216 pe = loop_preheader_edge (loop);
4217 }
4218 else
4219 {
4220 gcc_assert (bb_vinfo);
4221 only_init = true;
4222 *ptr_incr = NULL;
4223 }
4224
4225 /* Check the step (evolution) of the load in LOOP, and record
4226 whether it's invariant. */
4227 if (nested_in_vect_loop)
4228 step = STMT_VINFO_DR_STEP (stmt_info);
4229 else
4230 step = DR_STEP (STMT_VINFO_DATA_REF (stmt_info));
4231
4232 if (integer_zerop (step))
4233 *inv_p = true;
4234 else
4235 *inv_p = false;
4236
4237 /* Create an expression for the first address accessed by this load
4238 in LOOP. */
4239 base_name = get_name (DR_BASE_ADDRESS (dr));
4240
4241 if (dump_enabled_p ())
4242 {
4243 tree dr_base_type = TREE_TYPE (DR_BASE_OBJECT (dr));
4244 dump_printf_loc (MSG_NOTE, vect_location,
4245 "create %s-pointer variable to type: ",
4246 get_tree_code_name (TREE_CODE (aggr_type)));
4247 dump_generic_expr (MSG_NOTE, TDF_SLIM, aggr_type);
4248 if (TREE_CODE (dr_base_type) == ARRAY_TYPE)
4249 dump_printf (MSG_NOTE, " vectorizing an array ref: ");
4250 else if (TREE_CODE (dr_base_type) == VECTOR_TYPE)
4251 dump_printf (MSG_NOTE, " vectorizing a vector ref: ");
4252 else if (TREE_CODE (dr_base_type) == RECORD_TYPE)
4253 dump_printf (MSG_NOTE, " vectorizing a record based array ref: ");
4254 else
4255 dump_printf (MSG_NOTE, " vectorizing a pointer ref: ");
4256 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_BASE_OBJECT (dr));
4257 dump_printf (MSG_NOTE, "\n");
4258 }
4259
4260 /* (1) Create the new aggregate-pointer variable.
4261 Vector and array types inherit the alias set of their component
4262 type by default so we need to use a ref-all pointer if the data
4263 reference does not conflict with the created aggregated data
4264 reference because it is not addressable. */
4265 bool need_ref_all = false;
4266 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
4267 get_alias_set (DR_REF (dr))))
4268 need_ref_all = true;
4269 /* Likewise for any of the data references in the stmt group. */
4270 else if (STMT_VINFO_GROUP_SIZE (stmt_info) > 1)
4271 {
4272 gimple *orig_stmt = STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_info);
4273 do
4274 {
4275 stmt_vec_info sinfo = vinfo_for_stmt (orig_stmt);
4276 struct data_reference *sdr = STMT_VINFO_DATA_REF (sinfo);
4277 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
4278 get_alias_set (DR_REF (sdr))))
4279 {
4280 need_ref_all = true;
4281 break;
4282 }
4283 orig_stmt = STMT_VINFO_GROUP_NEXT_ELEMENT (sinfo);
4284 }
4285 while (orig_stmt);
4286 }
4287 aggr_ptr_type = build_pointer_type_for_mode (aggr_type, ptr_mode,
4288 need_ref_all);
4289 aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var, base_name);
4290
4291
4292 /* Note: If the dataref is in an inner-loop nested in LOOP, and we are
4293 vectorizing LOOP (i.e., outer-loop vectorization), we need to create two
4294 def-use update cycles for the pointer: one relative to the outer-loop
4295 (LOOP), which is what steps (3) and (4) below do. The other is relative
4296 to the inner-loop (which is the inner-most loop containing the dataref),
4297 and this is done be step (5) below.
4298
4299 When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
4300 inner-most loop, and so steps (3),(4) work the same, and step (5) is
4301 redundant. Steps (3),(4) create the following:
4302
4303 vp0 = &base_addr;
4304 LOOP: vp1 = phi(vp0,vp2)
4305 ...
4306 ...
4307 vp2 = vp1 + step
4308 goto LOOP
4309
4310 If there is an inner-loop nested in loop, then step (5) will also be
4311 applied, and an additional update in the inner-loop will be created:
4312
4313 vp0 = &base_addr;
4314 LOOP: vp1 = phi(vp0,vp2)
4315 ...
4316 inner: vp3 = phi(vp1,vp4)
4317 vp4 = vp3 + inner_step
4318 if () goto inner
4319 ...
4320 vp2 = vp1 + step
4321 if () goto LOOP */
4322
4323 /* (2) Calculate the initial address of the aggregate-pointer, and set
4324 the aggregate-pointer to point to it before the loop. */
4325
4326 /* Create: (&(base[init_val+offset]+byte_offset) in the loop preheader. */
4327
4328 new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
4329 offset, loop, byte_offset);
4330 if (new_stmt_list)
4331 {
4332 if (pe)
4333 {
4334 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
4335 gcc_assert (!new_bb);
4336 }
4337 else
4338 gsi_insert_seq_before (gsi, new_stmt_list, GSI_SAME_STMT);
4339 }
4340
4341 *initial_address = new_temp;
4342 aggr_ptr_init = new_temp;
4343
4344 /* (3) Handle the updating of the aggregate-pointer inside the loop.
4345 This is needed when ONLY_INIT is false, and also when AT_LOOP is the
4346 inner-loop nested in LOOP (during outer-loop vectorization). */
4347
4348 /* No update in loop is required. */
4349 if (only_init && (!loop_vinfo || at_loop == loop))
4350 aptr = aggr_ptr_init;
4351 else
4352 {
4353 /* The step of the aggregate pointer is the type size. */
4354 tree iv_step = TYPE_SIZE_UNIT (aggr_type);
4355 /* One exception to the above is when the scalar step of the load in
4356 LOOP is zero. In this case the step here is also zero. */
4357 if (*inv_p)
4358 iv_step = size_zero_node;
4359 else if (tree_int_cst_sgn (step) == -1)
4360 iv_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv_step), iv_step);
4361
4362 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
4363
4364 create_iv (aggr_ptr_init,
4365 fold_convert (aggr_ptr_type, iv_step),
4366 aggr_ptr, loop, &incr_gsi, insert_after,
4367 &indx_before_incr, &indx_after_incr);
4368 incr = gsi_stmt (incr_gsi);
4369 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo));
4370
4371 /* Copy the points-to information if it exists. */
4372 if (DR_PTR_INFO (dr))
4373 {
4374 vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr, stmt_info);
4375 vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr, stmt_info);
4376 }
4377 if (ptr_incr)
4378 *ptr_incr = incr;
4379
4380 aptr = indx_before_incr;
4381 }
4382
4383 if (!nested_in_vect_loop || only_init)
4384 return aptr;
4385
4386
4387 /* (4) Handle the updating of the aggregate-pointer inside the inner-loop
4388 nested in LOOP, if exists. */
4389
4390 gcc_assert (nested_in_vect_loop);
4391 if (!only_init)
4392 {
4393 standard_iv_increment_position (containing_loop, &incr_gsi,
4394 &insert_after);
4395 create_iv (aptr, fold_convert (aggr_ptr_type, DR_STEP (dr)), aggr_ptr,
4396 containing_loop, &incr_gsi, insert_after, &indx_before_incr,
4397 &indx_after_incr);
4398 incr = gsi_stmt (incr_gsi);
4399 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo));
4400
4401 /* Copy the points-to information if it exists. */
4402 if (DR_PTR_INFO (dr))
4403 {
4404 vect_duplicate_ssa_name_ptr_info (indx_before_incr, dr, stmt_info);
4405 vect_duplicate_ssa_name_ptr_info (indx_after_incr, dr, stmt_info);
4406 }
4407 if (ptr_incr)
4408 *ptr_incr = incr;
4409
4410 return indx_before_incr;
4411 }
4412 else
4413 gcc_unreachable ();
4414 }
4415
4416
4417 /* Function bump_vector_ptr
4418
4419 Increment a pointer (to a vector type) by vector-size. If requested,
4420 i.e. if PTR-INCR is given, then also connect the new increment stmt
4421 to the existing def-use update-chain of the pointer, by modifying
4422 the PTR_INCR as illustrated below:
4423
4424 The pointer def-use update-chain before this function:
4425 DATAREF_PTR = phi (p_0, p_2)
4426 ....
4427 PTR_INCR: p_2 = DATAREF_PTR + step
4428
4429 The pointer def-use update-chain after this function:
4430 DATAREF_PTR = phi (p_0, p_2)
4431 ....
4432 NEW_DATAREF_PTR = DATAREF_PTR + BUMP
4433 ....
4434 PTR_INCR: p_2 = NEW_DATAREF_PTR + step
4435
4436 Input:
4437 DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
4438 in the loop.
4439 PTR_INCR - optional. The stmt that updates the pointer in each iteration of
4440 the loop. The increment amount across iterations is expected
4441 to be vector_size.
4442 BSI - location where the new update stmt is to be placed.
4443 STMT - the original scalar memory-access stmt that is being vectorized.
4444 BUMP - optional. The offset by which to bump the pointer. If not given,
4445 the offset is assumed to be vector_size.
4446
4447 Output: Return NEW_DATAREF_PTR as illustrated above.
4448
4449 */
4450
4451 tree
4452 bump_vector_ptr (tree dataref_ptr, gimple *ptr_incr, gimple_stmt_iterator *gsi,
4453 gimple *stmt, tree bump)
4454 {
4455 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4456 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4457 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4458 tree update = TYPE_SIZE_UNIT (vectype);
4459 gassign *incr_stmt;
4460 ssa_op_iter iter;
4461 use_operand_p use_p;
4462 tree new_dataref_ptr;
4463
4464 if (bump)
4465 update = bump;
4466
4467 if (TREE_CODE (dataref_ptr) == SSA_NAME)
4468 new_dataref_ptr = copy_ssa_name (dataref_ptr);
4469 else
4470 new_dataref_ptr = make_ssa_name (TREE_TYPE (dataref_ptr));
4471 incr_stmt = gimple_build_assign (new_dataref_ptr, POINTER_PLUS_EXPR,
4472 dataref_ptr, update);
4473 vect_finish_stmt_generation (stmt, incr_stmt, gsi);
4474
4475 /* Copy the points-to information if it exists. */
4476 if (DR_PTR_INFO (dr))
4477 {
4478 duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
4479 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (new_dataref_ptr));
4480 }
4481
4482 if (!ptr_incr)
4483 return new_dataref_ptr;
4484
4485 /* Update the vector-pointer's cross-iteration increment. */
4486 FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
4487 {
4488 tree use = USE_FROM_PTR (use_p);
4489
4490 if (use == dataref_ptr)
4491 SET_USE (use_p, new_dataref_ptr);
4492 else
4493 gcc_assert (tree_int_cst_compare (use, update) == 0);
4494 }
4495
4496 return new_dataref_ptr;
4497 }
4498
4499
4500 /* Function vect_create_destination_var.
4501
4502 Create a new temporary of type VECTYPE. */
4503
4504 tree
4505 vect_create_destination_var (tree scalar_dest, tree vectype)
4506 {
4507 tree vec_dest;
4508 const char *name;
4509 char *new_name;
4510 tree type;
4511 enum vect_var_kind kind;
4512
4513 kind = vectype
4514 ? VECTOR_BOOLEAN_TYPE_P (vectype)
4515 ? vect_mask_var
4516 : vect_simple_var
4517 : vect_scalar_var;
4518 type = vectype ? vectype : TREE_TYPE (scalar_dest);
4519
4520 gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
4521
4522 name = get_name (scalar_dest);
4523 if (name)
4524 new_name = xasprintf ("%s_%u", name, SSA_NAME_VERSION (scalar_dest));
4525 else
4526 new_name = xasprintf ("_%u", SSA_NAME_VERSION (scalar_dest));
4527 vec_dest = vect_get_new_vect_var (type, kind, new_name);
4528 free (new_name);
4529
4530 return vec_dest;
4531 }
4532
4533 /* Function vect_grouped_store_supported.
4534
4535 Returns TRUE if interleave high and interleave low permutations
4536 are supported, and FALSE otherwise. */
4537
4538 bool
4539 vect_grouped_store_supported (tree vectype, unsigned HOST_WIDE_INT count)
4540 {
4541 machine_mode mode = TYPE_MODE (vectype);
4542
4543 /* vect_permute_store_chain requires the group size to be equal to 3 or
4544 be a power of two. */
4545 if (count != 3 && exact_log2 (count) == -1)
4546 {
4547 if (dump_enabled_p ())
4548 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4549 "the size of the group of accesses"
4550 " is not a power of 2 or not eqaul to 3\n");
4551 return false;
4552 }
4553
4554 /* Check that the permutation is supported. */
4555 if (VECTOR_MODE_P (mode))
4556 {
4557 unsigned int i, nelt = GET_MODE_NUNITS (mode);
4558 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4559
4560 if (count == 3)
4561 {
4562 unsigned int j0 = 0, j1 = 0, j2 = 0;
4563 unsigned int i, j;
4564
4565 for (j = 0; j < 3; j++)
4566 {
4567 int nelt0 = ((3 - j) * nelt) % 3;
4568 int nelt1 = ((3 - j) * nelt + 1) % 3;
4569 int nelt2 = ((3 - j) * nelt + 2) % 3;
4570 for (i = 0; i < nelt; i++)
4571 {
4572 if (3 * i + nelt0 < nelt)
4573 sel[3 * i + nelt0] = j0++;
4574 if (3 * i + nelt1 < nelt)
4575 sel[3 * i + nelt1] = nelt + j1++;
4576 if (3 * i + nelt2 < nelt)
4577 sel[3 * i + nelt2] = 0;
4578 }
4579 if (!can_vec_perm_p (mode, false, sel))
4580 {
4581 if (dump_enabled_p ())
4582 dump_printf (MSG_MISSED_OPTIMIZATION,
4583 "permutaion op not supported by target.\n");
4584 return false;
4585 }
4586
4587 for (i = 0; i < nelt; i++)
4588 {
4589 if (3 * i + nelt0 < nelt)
4590 sel[3 * i + nelt0] = 3 * i + nelt0;
4591 if (3 * i + nelt1 < nelt)
4592 sel[3 * i + nelt1] = 3 * i + nelt1;
4593 if (3 * i + nelt2 < nelt)
4594 sel[3 * i + nelt2] = nelt + j2++;
4595 }
4596 if (!can_vec_perm_p (mode, false, sel))
4597 {
4598 if (dump_enabled_p ())
4599 dump_printf (MSG_MISSED_OPTIMIZATION,
4600 "permutaion op not supported by target.\n");
4601 return false;
4602 }
4603 }
4604 return true;
4605 }
4606 else
4607 {
4608 /* If length is not equal to 3 then only power of 2 is supported. */
4609 gcc_assert (exact_log2 (count) != -1);
4610
4611 for (i = 0; i < nelt / 2; i++)
4612 {
4613 sel[i * 2] = i;
4614 sel[i * 2 + 1] = i + nelt;
4615 }
4616 if (can_vec_perm_p (mode, false, sel))
4617 {
4618 for (i = 0; i < nelt; i++)
4619 sel[i] += nelt / 2;
4620 if (can_vec_perm_p (mode, false, sel))
4621 return true;
4622 }
4623 }
4624 }
4625
4626 if (dump_enabled_p ())
4627 dump_printf (MSG_MISSED_OPTIMIZATION,
4628 "permutaion op not supported by target.\n");
4629 return false;
4630 }
4631
4632
4633 /* Return TRUE if vec_store_lanes is available for COUNT vectors of
4634 type VECTYPE. */
4635
4636 bool
4637 vect_store_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
4638 {
4639 return vect_lanes_optab_supported_p ("vec_store_lanes",
4640 vec_store_lanes_optab,
4641 vectype, count);
4642 }
4643
4644
4645 /* Function vect_permute_store_chain.
4646
4647 Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
4648 a power of 2 or equal to 3, generate interleave_high/low stmts to reorder
4649 the data correctly for the stores. Return the final references for stores
4650 in RESULT_CHAIN.
4651
4652 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
4653 The input is 4 vectors each containing 8 elements. We assign a number to
4654 each element, the input sequence is:
4655
4656 1st vec: 0 1 2 3 4 5 6 7
4657 2nd vec: 8 9 10 11 12 13 14 15
4658 3rd vec: 16 17 18 19 20 21 22 23
4659 4th vec: 24 25 26 27 28 29 30 31
4660
4661 The output sequence should be:
4662
4663 1st vec: 0 8 16 24 1 9 17 25
4664 2nd vec: 2 10 18 26 3 11 19 27
4665 3rd vec: 4 12 20 28 5 13 21 30
4666 4th vec: 6 14 22 30 7 15 23 31
4667
4668 i.e., we interleave the contents of the four vectors in their order.
4669
4670 We use interleave_high/low instructions to create such output. The input of
4671 each interleave_high/low operation is two vectors:
4672 1st vec 2nd vec
4673 0 1 2 3 4 5 6 7
4674 the even elements of the result vector are obtained left-to-right from the
4675 high/low elements of the first vector. The odd elements of the result are
4676 obtained left-to-right from the high/low elements of the second vector.
4677 The output of interleave_high will be: 0 4 1 5
4678 and of interleave_low: 2 6 3 7
4679
4680
4681 The permutation is done in log LENGTH stages. In each stage interleave_high
4682 and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
4683 where the first argument is taken from the first half of DR_CHAIN and the
4684 second argument from it's second half.
4685 In our example,
4686
4687 I1: interleave_high (1st vec, 3rd vec)
4688 I2: interleave_low (1st vec, 3rd vec)
4689 I3: interleave_high (2nd vec, 4th vec)
4690 I4: interleave_low (2nd vec, 4th vec)
4691
4692 The output for the first stage is:
4693
4694 I1: 0 16 1 17 2 18 3 19
4695 I2: 4 20 5 21 6 22 7 23
4696 I3: 8 24 9 25 10 26 11 27
4697 I4: 12 28 13 29 14 30 15 31
4698
4699 The output of the second stage, i.e. the final result is:
4700
4701 I1: 0 8 16 24 1 9 17 25
4702 I2: 2 10 18 26 3 11 19 27
4703 I3: 4 12 20 28 5 13 21 30
4704 I4: 6 14 22 30 7 15 23 31. */
4705
4706 void
4707 vect_permute_store_chain (vec<tree> dr_chain,
4708 unsigned int length,
4709 gimple *stmt,
4710 gimple_stmt_iterator *gsi,
4711 vec<tree> *result_chain)
4712 {
4713 tree vect1, vect2, high, low;
4714 gimple *perm_stmt;
4715 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
4716 tree perm_mask_low, perm_mask_high;
4717 tree data_ref;
4718 tree perm3_mask_low, perm3_mask_high;
4719 unsigned int i, n, log_length = exact_log2 (length);
4720 unsigned int j, nelt = TYPE_VECTOR_SUBPARTS (vectype);
4721 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4722
4723 result_chain->quick_grow (length);
4724 memcpy (result_chain->address (), dr_chain.address (),
4725 length * sizeof (tree));
4726
4727 if (length == 3)
4728 {
4729 unsigned int j0 = 0, j1 = 0, j2 = 0;
4730
4731 for (j = 0; j < 3; j++)
4732 {
4733 int nelt0 = ((3 - j) * nelt) % 3;
4734 int nelt1 = ((3 - j) * nelt + 1) % 3;
4735 int nelt2 = ((3 - j) * nelt + 2) % 3;
4736
4737 for (i = 0; i < nelt; i++)
4738 {
4739 if (3 * i + nelt0 < nelt)
4740 sel[3 * i + nelt0] = j0++;
4741 if (3 * i + nelt1 < nelt)
4742 sel[3 * i + nelt1] = nelt + j1++;
4743 if (3 * i + nelt2 < nelt)
4744 sel[3 * i + nelt2] = 0;
4745 }
4746 perm3_mask_low = vect_gen_perm_mask_checked (vectype, sel);
4747
4748 for (i = 0; i < nelt; i++)
4749 {
4750 if (3 * i + nelt0 < nelt)
4751 sel[3 * i + nelt0] = 3 * i + nelt0;
4752 if (3 * i + nelt1 < nelt)
4753 sel[3 * i + nelt1] = 3 * i + nelt1;
4754 if (3 * i + nelt2 < nelt)
4755 sel[3 * i + nelt2] = nelt + j2++;
4756 }
4757 perm3_mask_high = vect_gen_perm_mask_checked (vectype, sel);
4758
4759 vect1 = dr_chain[0];
4760 vect2 = dr_chain[1];
4761
4762 /* Create interleaving stmt:
4763 low = VEC_PERM_EXPR <vect1, vect2,
4764 {j, nelt, *, j + 1, nelt + j + 1, *,
4765 j + 2, nelt + j + 2, *, ...}> */
4766 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
4767 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1,
4768 vect2, perm3_mask_low);
4769 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4770
4771 vect1 = data_ref;
4772 vect2 = dr_chain[2];
4773 /* Create interleaving stmt:
4774 low = VEC_PERM_EXPR <vect1, vect2,
4775 {0, 1, nelt + j, 3, 4, nelt + j + 1,
4776 6, 7, nelt + j + 2, ...}> */
4777 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
4778 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect1,
4779 vect2, perm3_mask_high);
4780 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4781 (*result_chain)[j] = data_ref;
4782 }
4783 }
4784 else
4785 {
4786 /* If length is not equal to 3 then only power of 2 is supported. */
4787 gcc_assert (exact_log2 (length) != -1);
4788
4789 for (i = 0, n = nelt / 2; i < n; i++)
4790 {
4791 sel[i * 2] = i;
4792 sel[i * 2 + 1] = i + nelt;
4793 }
4794 perm_mask_high = vect_gen_perm_mask_checked (vectype, sel);
4795
4796 for (i = 0; i < nelt; i++)
4797 sel[i] += nelt / 2;
4798 perm_mask_low = vect_gen_perm_mask_checked (vectype, sel);
4799
4800 for (i = 0, n = log_length; i < n; i++)
4801 {
4802 for (j = 0; j < length/2; j++)
4803 {
4804 vect1 = dr_chain[j];
4805 vect2 = dr_chain[j+length/2];
4806
4807 /* Create interleaving stmt:
4808 high = VEC_PERM_EXPR <vect1, vect2, {0, nelt, 1, nelt+1,
4809 ...}> */
4810 high = make_temp_ssa_name (vectype, NULL, "vect_inter_high");
4811 perm_stmt = gimple_build_assign (high, VEC_PERM_EXPR, vect1,
4812 vect2, perm_mask_high);
4813 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4814 (*result_chain)[2*j] = high;
4815
4816 /* Create interleaving stmt:
4817 low = VEC_PERM_EXPR <vect1, vect2,
4818 {nelt/2, nelt*3/2, nelt/2+1, nelt*3/2+1,
4819 ...}> */
4820 low = make_temp_ssa_name (vectype, NULL, "vect_inter_low");
4821 perm_stmt = gimple_build_assign (low, VEC_PERM_EXPR, vect1,
4822 vect2, perm_mask_low);
4823 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4824 (*result_chain)[2*j+1] = low;
4825 }
4826 memcpy (dr_chain.address (), result_chain->address (),
4827 length * sizeof (tree));
4828 }
4829 }
4830 }
4831
4832 /* Function vect_setup_realignment
4833
4834 This function is called when vectorizing an unaligned load using
4835 the dr_explicit_realign[_optimized] scheme.
4836 This function generates the following code at the loop prolog:
4837
4838 p = initial_addr;
4839 x msq_init = *(floor(p)); # prolog load
4840 realignment_token = call target_builtin;
4841 loop:
4842 x msq = phi (msq_init, ---)
4843
4844 The stmts marked with x are generated only for the case of
4845 dr_explicit_realign_optimized.
4846
4847 The code above sets up a new (vector) pointer, pointing to the first
4848 location accessed by STMT, and a "floor-aligned" load using that pointer.
4849 It also generates code to compute the "realignment-token" (if the relevant
4850 target hook was defined), and creates a phi-node at the loop-header bb
4851 whose arguments are the result of the prolog-load (created by this
4852 function) and the result of a load that takes place in the loop (to be
4853 created by the caller to this function).
4854
4855 For the case of dr_explicit_realign_optimized:
4856 The caller to this function uses the phi-result (msq) to create the
4857 realignment code inside the loop, and sets up the missing phi argument,
4858 as follows:
4859 loop:
4860 msq = phi (msq_init, lsq)
4861 lsq = *(floor(p')); # load in loop
4862 result = realign_load (msq, lsq, realignment_token);
4863
4864 For the case of dr_explicit_realign:
4865 loop:
4866 msq = *(floor(p)); # load in loop
4867 p' = p + (VS-1);
4868 lsq = *(floor(p')); # load in loop
4869 result = realign_load (msq, lsq, realignment_token);
4870
4871 Input:
4872 STMT - (scalar) load stmt to be vectorized. This load accesses
4873 a memory location that may be unaligned.
4874 BSI - place where new code is to be inserted.
4875 ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
4876 is used.
4877
4878 Output:
4879 REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
4880 target hook, if defined.
4881 Return value - the result of the loop-header phi node. */
4882
4883 tree
4884 vect_setup_realignment (gimple *stmt, gimple_stmt_iterator *gsi,
4885 tree *realignment_token,
4886 enum dr_alignment_support alignment_support_scheme,
4887 tree init_addr,
4888 struct loop **at_loop)
4889 {
4890 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4891 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4892 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4893 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4894 struct loop *loop = NULL;
4895 edge pe = NULL;
4896 tree scalar_dest = gimple_assign_lhs (stmt);
4897 tree vec_dest;
4898 gimple *inc;
4899 tree ptr;
4900 tree data_ref;
4901 basic_block new_bb;
4902 tree msq_init = NULL_TREE;
4903 tree new_temp;
4904 gphi *phi_stmt;
4905 tree msq = NULL_TREE;
4906 gimple_seq stmts = NULL;
4907 bool inv_p;
4908 bool compute_in_loop = false;
4909 bool nested_in_vect_loop = false;
4910 struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
4911 struct loop *loop_for_initial_load = NULL;
4912
4913 if (loop_vinfo)
4914 {
4915 loop = LOOP_VINFO_LOOP (loop_vinfo);
4916 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4917 }
4918
4919 gcc_assert (alignment_support_scheme == dr_explicit_realign
4920 || alignment_support_scheme == dr_explicit_realign_optimized);
4921
4922 /* We need to generate three things:
4923 1. the misalignment computation
4924 2. the extra vector load (for the optimized realignment scheme).
4925 3. the phi node for the two vectors from which the realignment is
4926 done (for the optimized realignment scheme). */
4927
4928 /* 1. Determine where to generate the misalignment computation.
4929
4930 If INIT_ADDR is NULL_TREE, this indicates that the misalignment
4931 calculation will be generated by this function, outside the loop (in the
4932 preheader). Otherwise, INIT_ADDR had already been computed for us by the
4933 caller, inside the loop.
4934
4935 Background: If the misalignment remains fixed throughout the iterations of
4936 the loop, then both realignment schemes are applicable, and also the
4937 misalignment computation can be done outside LOOP. This is because we are
4938 vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
4939 are a multiple of VS (the Vector Size), and therefore the misalignment in
4940 different vectorized LOOP iterations is always the same.
4941 The problem arises only if the memory access is in an inner-loop nested
4942 inside LOOP, which is now being vectorized using outer-loop vectorization.
4943 This is the only case when the misalignment of the memory access may not
4944 remain fixed throughout the iterations of the inner-loop (as explained in
4945 detail in vect_supportable_dr_alignment). In this case, not only is the
4946 optimized realignment scheme not applicable, but also the misalignment
4947 computation (and generation of the realignment token that is passed to
4948 REALIGN_LOAD) have to be done inside the loop.
4949
4950 In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
4951 or not, which in turn determines if the misalignment is computed inside
4952 the inner-loop, or outside LOOP. */
4953
4954 if (init_addr != NULL_TREE || !loop_vinfo)
4955 {
4956 compute_in_loop = true;
4957 gcc_assert (alignment_support_scheme == dr_explicit_realign);
4958 }
4959
4960
4961 /* 2. Determine where to generate the extra vector load.
4962
4963 For the optimized realignment scheme, instead of generating two vector
4964 loads in each iteration, we generate a single extra vector load in the
4965 preheader of the loop, and in each iteration reuse the result of the
4966 vector load from the previous iteration. In case the memory access is in
4967 an inner-loop nested inside LOOP, which is now being vectorized using
4968 outer-loop vectorization, we need to determine whether this initial vector
4969 load should be generated at the preheader of the inner-loop, or can be
4970 generated at the preheader of LOOP. If the memory access has no evolution
4971 in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
4972 to be generated inside LOOP (in the preheader of the inner-loop). */
4973
4974 if (nested_in_vect_loop)
4975 {
4976 tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
4977 bool invariant_in_outerloop =
4978 (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
4979 loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
4980 }
4981 else
4982 loop_for_initial_load = loop;
4983 if (at_loop)
4984 *at_loop = loop_for_initial_load;
4985
4986 if (loop_for_initial_load)
4987 pe = loop_preheader_edge (loop_for_initial_load);
4988
4989 /* 3. For the case of the optimized realignment, create the first vector
4990 load at the loop preheader. */
4991
4992 if (alignment_support_scheme == dr_explicit_realign_optimized)
4993 {
4994 /* Create msq_init = *(floor(p1)) in the loop preheader */
4995 gassign *new_stmt;
4996
4997 gcc_assert (!compute_in_loop);
4998 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4999 ptr = vect_create_data_ref_ptr (stmt, vectype, loop_for_initial_load,
5000 NULL_TREE, &init_addr, NULL, &inc,
5001 true, &inv_p);
5002 if (TREE_CODE (ptr) == SSA_NAME)
5003 new_temp = copy_ssa_name (ptr);
5004 else
5005 new_temp = make_ssa_name (TREE_TYPE (ptr));
5006 new_stmt = gimple_build_assign
5007 (new_temp, BIT_AND_EXPR, ptr,
5008 build_int_cst (TREE_TYPE (ptr),
5009 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
5010 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
5011 gcc_assert (!new_bb);
5012 data_ref
5013 = build2 (MEM_REF, TREE_TYPE (vec_dest), new_temp,
5014 build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0));
5015 new_stmt = gimple_build_assign (vec_dest, data_ref);
5016 new_temp = make_ssa_name (vec_dest, new_stmt);
5017 gimple_assign_set_lhs (new_stmt, new_temp);
5018 if (pe)
5019 {
5020 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
5021 gcc_assert (!new_bb);
5022 }
5023 else
5024 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
5025
5026 msq_init = gimple_assign_lhs (new_stmt);
5027 }
5028
5029 /* 4. Create realignment token using a target builtin, if available.
5030 It is done either inside the containing loop, or before LOOP (as
5031 determined above). */
5032
5033 if (targetm.vectorize.builtin_mask_for_load)
5034 {
5035 gcall *new_stmt;
5036 tree builtin_decl;
5037
5038 /* Compute INIT_ADDR - the initial addressed accessed by this memref. */
5039 if (!init_addr)
5040 {
5041 /* Generate the INIT_ADDR computation outside LOOP. */
5042 init_addr = vect_create_addr_base_for_vector_ref (stmt, &stmts,
5043 NULL_TREE, loop);
5044 if (loop)
5045 {
5046 pe = loop_preheader_edge (loop);
5047 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
5048 gcc_assert (!new_bb);
5049 }
5050 else
5051 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
5052 }
5053
5054 builtin_decl = targetm.vectorize.builtin_mask_for_load ();
5055 new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
5056 vec_dest =
5057 vect_create_destination_var (scalar_dest,
5058 gimple_call_return_type (new_stmt));
5059 new_temp = make_ssa_name (vec_dest, new_stmt);
5060 gimple_call_set_lhs (new_stmt, new_temp);
5061
5062 if (compute_in_loop)
5063 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
5064 else
5065 {
5066 /* Generate the misalignment computation outside LOOP. */
5067 pe = loop_preheader_edge (loop);
5068 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
5069 gcc_assert (!new_bb);
5070 }
5071
5072 *realignment_token = gimple_call_lhs (new_stmt);
5073
5074 /* The result of the CALL_EXPR to this builtin is determined from
5075 the value of the parameter and no global variables are touched
5076 which makes the builtin a "const" function. Requiring the
5077 builtin to have the "const" attribute makes it unnecessary
5078 to call mark_call_clobbered. */
5079 gcc_assert (TREE_READONLY (builtin_decl));
5080 }
5081
5082 if (alignment_support_scheme == dr_explicit_realign)
5083 return msq;
5084
5085 gcc_assert (!compute_in_loop);
5086 gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
5087
5088
5089 /* 5. Create msq = phi <msq_init, lsq> in loop */
5090
5091 pe = loop_preheader_edge (containing_loop);
5092 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5093 msq = make_ssa_name (vec_dest);
5094 phi_stmt = create_phi_node (msq, containing_loop->header);
5095 add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION);
5096
5097 return msq;
5098 }
5099
5100
5101 /* Function vect_grouped_load_supported.
5102
5103 Returns TRUE if even and odd permutations are supported,
5104 and FALSE otherwise. */
5105
5106 bool
5107 vect_grouped_load_supported (tree vectype, unsigned HOST_WIDE_INT count)
5108 {
5109 machine_mode mode = TYPE_MODE (vectype);
5110
5111 /* vect_permute_load_chain requires the group size to be equal to 3 or
5112 be a power of two. */
5113 if (count != 3 && exact_log2 (count) == -1)
5114 {
5115 if (dump_enabled_p ())
5116 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5117 "the size of the group of accesses"
5118 " is not a power of 2 or not equal to 3\n");
5119 return false;
5120 }
5121
5122 /* Check that the permutation is supported. */
5123 if (VECTOR_MODE_P (mode))
5124 {
5125 unsigned int i, j, nelt = GET_MODE_NUNITS (mode);
5126 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
5127
5128 if (count == 3)
5129 {
5130 unsigned int k;
5131 for (k = 0; k < 3; k++)
5132 {
5133 for (i = 0; i < nelt; i++)
5134 if (3 * i + k < 2 * nelt)
5135 sel[i] = 3 * i + k;
5136 else
5137 sel[i] = 0;
5138 if (!can_vec_perm_p (mode, false, sel))
5139 {
5140 if (dump_enabled_p ())
5141 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5142 "shuffle of 3 loads is not supported by"
5143 " target\n");
5144 return false;
5145 }
5146 for (i = 0, j = 0; i < nelt; i++)
5147 if (3 * i + k < 2 * nelt)
5148 sel[i] = i;
5149 else
5150 sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
5151 if (!can_vec_perm_p (mode, false, sel))
5152 {
5153 if (dump_enabled_p ())
5154 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5155 "shuffle of 3 loads is not supported by"
5156 " target\n");
5157 return false;
5158 }
5159 }
5160 return true;
5161 }
5162 else
5163 {
5164 /* If length is not equal to 3 then only power of 2 is supported. */
5165 gcc_assert (exact_log2 (count) != -1);
5166 for (i = 0; i < nelt; i++)
5167 sel[i] = i * 2;
5168 if (can_vec_perm_p (mode, false, sel))
5169 {
5170 for (i = 0; i < nelt; i++)
5171 sel[i] = i * 2 + 1;
5172 if (can_vec_perm_p (mode, false, sel))
5173 return true;
5174 }
5175 }
5176 }
5177
5178 if (dump_enabled_p ())
5179 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5180 "extract even/odd not supported by target\n");
5181 return false;
5182 }
5183
5184 /* Return TRUE if vec_load_lanes is available for COUNT vectors of
5185 type VECTYPE. */
5186
5187 bool
5188 vect_load_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
5189 {
5190 return vect_lanes_optab_supported_p ("vec_load_lanes",
5191 vec_load_lanes_optab,
5192 vectype, count);
5193 }
5194
5195 /* Function vect_permute_load_chain.
5196
5197 Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
5198 a power of 2 or equal to 3, generate extract_even/odd stmts to reorder
5199 the input data correctly. Return the final references for loads in
5200 RESULT_CHAIN.
5201
5202 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
5203 The input is 4 vectors each containing 8 elements. We assign a number to each
5204 element, the input sequence is:
5205
5206 1st vec: 0 1 2 3 4 5 6 7
5207 2nd vec: 8 9 10 11 12 13 14 15
5208 3rd vec: 16 17 18 19 20 21 22 23
5209 4th vec: 24 25 26 27 28 29 30 31
5210
5211 The output sequence should be:
5212
5213 1st vec: 0 4 8 12 16 20 24 28
5214 2nd vec: 1 5 9 13 17 21 25 29
5215 3rd vec: 2 6 10 14 18 22 26 30
5216 4th vec: 3 7 11 15 19 23 27 31
5217
5218 i.e., the first output vector should contain the first elements of each
5219 interleaving group, etc.
5220
5221 We use extract_even/odd instructions to create such output. The input of
5222 each extract_even/odd operation is two vectors
5223 1st vec 2nd vec
5224 0 1 2 3 4 5 6 7
5225
5226 and the output is the vector of extracted even/odd elements. The output of
5227 extract_even will be: 0 2 4 6
5228 and of extract_odd: 1 3 5 7
5229
5230
5231 The permutation is done in log LENGTH stages. In each stage extract_even
5232 and extract_odd stmts are created for each pair of vectors in DR_CHAIN in
5233 their order. In our example,
5234
5235 E1: extract_even (1st vec, 2nd vec)
5236 E2: extract_odd (1st vec, 2nd vec)
5237 E3: extract_even (3rd vec, 4th vec)
5238 E4: extract_odd (3rd vec, 4th vec)
5239
5240 The output for the first stage will be:
5241
5242 E1: 0 2 4 6 8 10 12 14
5243 E2: 1 3 5 7 9 11 13 15
5244 E3: 16 18 20 22 24 26 28 30
5245 E4: 17 19 21 23 25 27 29 31
5246
5247 In order to proceed and create the correct sequence for the next stage (or
5248 for the correct output, if the second stage is the last one, as in our
5249 example), we first put the output of extract_even operation and then the
5250 output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
5251 The input for the second stage is:
5252
5253 1st vec (E1): 0 2 4 6 8 10 12 14
5254 2nd vec (E3): 16 18 20 22 24 26 28 30
5255 3rd vec (E2): 1 3 5 7 9 11 13 15
5256 4th vec (E4): 17 19 21 23 25 27 29 31
5257
5258 The output of the second stage:
5259
5260 E1: 0 4 8 12 16 20 24 28
5261 E2: 2 6 10 14 18 22 26 30
5262 E3: 1 5 9 13 17 21 25 29
5263 E4: 3 7 11 15 19 23 27 31
5264
5265 And RESULT_CHAIN after reordering:
5266
5267 1st vec (E1): 0 4 8 12 16 20 24 28
5268 2nd vec (E3): 1 5 9 13 17 21 25 29
5269 3rd vec (E2): 2 6 10 14 18 22 26 30
5270 4th vec (E4): 3 7 11 15 19 23 27 31. */
5271
5272 static void
5273 vect_permute_load_chain (vec<tree> dr_chain,
5274 unsigned int length,
5275 gimple *stmt,
5276 gimple_stmt_iterator *gsi,
5277 vec<tree> *result_chain)
5278 {
5279 tree data_ref, first_vect, second_vect;
5280 tree perm_mask_even, perm_mask_odd;
5281 tree perm3_mask_low, perm3_mask_high;
5282 gimple *perm_stmt;
5283 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
5284 unsigned int i, j, log_length = exact_log2 (length);
5285 unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
5286 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
5287
5288 result_chain->quick_grow (length);
5289 memcpy (result_chain->address (), dr_chain.address (),
5290 length * sizeof (tree));
5291
5292 if (length == 3)
5293 {
5294 unsigned int k;
5295
5296 for (k = 0; k < 3; k++)
5297 {
5298 for (i = 0; i < nelt; i++)
5299 if (3 * i + k < 2 * nelt)
5300 sel[i] = 3 * i + k;
5301 else
5302 sel[i] = 0;
5303 perm3_mask_low = vect_gen_perm_mask_checked (vectype, sel);
5304
5305 for (i = 0, j = 0; i < nelt; i++)
5306 if (3 * i + k < 2 * nelt)
5307 sel[i] = i;
5308 else
5309 sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
5310
5311 perm3_mask_high = vect_gen_perm_mask_checked (vectype, sel);
5312
5313 first_vect = dr_chain[0];
5314 second_vect = dr_chain[1];
5315
5316 /* Create interleaving stmt (low part of):
5317 low = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
5318 ...}> */
5319 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
5320 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect,
5321 second_vect, perm3_mask_low);
5322 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5323
5324 /* Create interleaving stmt (high part of):
5325 high = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
5326 ...}> */
5327 first_vect = data_ref;
5328 second_vect = dr_chain[2];
5329 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
5330 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, first_vect,
5331 second_vect, perm3_mask_high);
5332 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5333 (*result_chain)[k] = data_ref;
5334 }
5335 }
5336 else
5337 {
5338 /* If length is not equal to 3 then only power of 2 is supported. */
5339 gcc_assert (exact_log2 (length) != -1);
5340
5341 for (i = 0; i < nelt; ++i)
5342 sel[i] = i * 2;
5343 perm_mask_even = vect_gen_perm_mask_checked (vectype, sel);
5344
5345 for (i = 0; i < nelt; ++i)
5346 sel[i] = i * 2 + 1;
5347 perm_mask_odd = vect_gen_perm_mask_checked (vectype, sel);
5348
5349 for (i = 0; i < log_length; i++)
5350 {
5351 for (j = 0; j < length; j += 2)
5352 {
5353 first_vect = dr_chain[j];
5354 second_vect = dr_chain[j+1];
5355
5356 /* data_ref = permute_even (first_data_ref, second_data_ref); */
5357 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_even");
5358 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5359 first_vect, second_vect,
5360 perm_mask_even);
5361 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5362 (*result_chain)[j/2] = data_ref;
5363
5364 /* data_ref = permute_odd (first_data_ref, second_data_ref); */
5365 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_odd");
5366 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5367 first_vect, second_vect,
5368 perm_mask_odd);
5369 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5370 (*result_chain)[j/2+length/2] = data_ref;
5371 }
5372 memcpy (dr_chain.address (), result_chain->address (),
5373 length * sizeof (tree));
5374 }
5375 }
5376 }
5377
5378 /* Function vect_shift_permute_load_chain.
5379
5380 Given a chain of loads in DR_CHAIN of LENGTH 2 or 3, generate
5381 sequence of stmts to reorder the input data accordingly.
5382 Return the final references for loads in RESULT_CHAIN.
5383 Return true if successed, false otherwise.
5384
5385 E.g., LENGTH is 3 and the scalar type is short, i.e., VF is 8.
5386 The input is 3 vectors each containing 8 elements. We assign a
5387 number to each element, the input sequence is:
5388
5389 1st vec: 0 1 2 3 4 5 6 7
5390 2nd vec: 8 9 10 11 12 13 14 15
5391 3rd vec: 16 17 18 19 20 21 22 23
5392
5393 The output sequence should be:
5394
5395 1st vec: 0 3 6 9 12 15 18 21
5396 2nd vec: 1 4 7 10 13 16 19 22
5397 3rd vec: 2 5 8 11 14 17 20 23
5398
5399 We use 3 shuffle instructions and 3 * 3 - 1 shifts to create such output.
5400
5401 First we shuffle all 3 vectors to get correct elements order:
5402
5403 1st vec: ( 0 3 6) ( 1 4 7) ( 2 5)
5404 2nd vec: ( 8 11 14) ( 9 12 15) (10 13)
5405 3rd vec: (16 19 22) (17 20 23) (18 21)
5406
5407 Next we unite and shift vector 3 times:
5408
5409 1st step:
5410 shift right by 6 the concatenation of:
5411 "1st vec" and "2nd vec"
5412 ( 0 3 6) ( 1 4 7) |( 2 5) _ ( 8 11 14) ( 9 12 15)| (10 13)
5413 "2nd vec" and "3rd vec"
5414 ( 8 11 14) ( 9 12 15) |(10 13) _ (16 19 22) (17 20 23)| (18 21)
5415 "3rd vec" and "1st vec"
5416 (16 19 22) (17 20 23) |(18 21) _ ( 0 3 6) ( 1 4 7)| ( 2 5)
5417 | New vectors |
5418
5419 So that now new vectors are:
5420
5421 1st vec: ( 2 5) ( 8 11 14) ( 9 12 15)
5422 2nd vec: (10 13) (16 19 22) (17 20 23)
5423 3rd vec: (18 21) ( 0 3 6) ( 1 4 7)
5424
5425 2nd step:
5426 shift right by 5 the concatenation of:
5427 "1st vec" and "3rd vec"
5428 ( 2 5) ( 8 11 14) |( 9 12 15) _ (18 21) ( 0 3 6)| ( 1 4 7)
5429 "2nd vec" and "1st vec"
5430 (10 13) (16 19 22) |(17 20 23) _ ( 2 5) ( 8 11 14)| ( 9 12 15)
5431 "3rd vec" and "2nd vec"
5432 (18 21) ( 0 3 6) |( 1 4 7) _ (10 13) (16 19 22)| (17 20 23)
5433 | New vectors |
5434
5435 So that now new vectors are:
5436
5437 1st vec: ( 9 12 15) (18 21) ( 0 3 6)
5438 2nd vec: (17 20 23) ( 2 5) ( 8 11 14)
5439 3rd vec: ( 1 4 7) (10 13) (16 19 22) READY
5440
5441 3rd step:
5442 shift right by 5 the concatenation of:
5443 "1st vec" and "1st vec"
5444 ( 9 12 15) (18 21) |( 0 3 6) _ ( 9 12 15) (18 21)| ( 0 3 6)
5445 shift right by 3 the concatenation of:
5446 "2nd vec" and "2nd vec"
5447 (17 20 23) |( 2 5) ( 8 11 14) _ (17 20 23)| ( 2 5) ( 8 11 14)
5448 | New vectors |
5449
5450 So that now all vectors are READY:
5451 1st vec: ( 0 3 6) ( 9 12 15) (18 21)
5452 2nd vec: ( 2 5) ( 8 11 14) (17 20 23)
5453 3rd vec: ( 1 4 7) (10 13) (16 19 22)
5454
5455 This algorithm is faster than one in vect_permute_load_chain if:
5456 1. "shift of a concatination" is faster than general permutation.
5457 This is usually so.
5458 2. The TARGET machine can't execute vector instructions in parallel.
5459 This is because each step of the algorithm depends on previous.
5460 The algorithm in vect_permute_load_chain is much more parallel.
5461
5462 The algorithm is applicable only for LOAD CHAIN LENGTH less than VF.
5463 */
5464
5465 static bool
5466 vect_shift_permute_load_chain (vec<tree> dr_chain,
5467 unsigned int length,
5468 gimple *stmt,
5469 gimple_stmt_iterator *gsi,
5470 vec<tree> *result_chain)
5471 {
5472 tree vect[3], vect_shift[3], data_ref, first_vect, second_vect;
5473 tree perm2_mask1, perm2_mask2, perm3_mask;
5474 tree select_mask, shift1_mask, shift2_mask, shift3_mask, shift4_mask;
5475 gimple *perm_stmt;
5476
5477 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
5478 unsigned int i;
5479 unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
5480 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
5481 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5482 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5483
5484 result_chain->quick_grow (length);
5485 memcpy (result_chain->address (), dr_chain.address (),
5486 length * sizeof (tree));
5487
5488 if (exact_log2 (length) != -1 && LOOP_VINFO_VECT_FACTOR (loop_vinfo) > 4)
5489 {
5490 unsigned int j, log_length = exact_log2 (length);
5491 for (i = 0; i < nelt / 2; ++i)
5492 sel[i] = i * 2;
5493 for (i = 0; i < nelt / 2; ++i)
5494 sel[nelt / 2 + i] = i * 2 + 1;
5495 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5496 {
5497 if (dump_enabled_p ())
5498 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5499 "shuffle of 2 fields structure is not \
5500 supported by target\n");
5501 return false;
5502 }
5503 perm2_mask1 = vect_gen_perm_mask_checked (vectype, sel);
5504
5505 for (i = 0; i < nelt / 2; ++i)
5506 sel[i] = i * 2 + 1;
5507 for (i = 0; i < nelt / 2; ++i)
5508 sel[nelt / 2 + i] = i * 2;
5509 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5510 {
5511 if (dump_enabled_p ())
5512 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5513 "shuffle of 2 fields structure is not \
5514 supported by target\n");
5515 return false;
5516 }
5517 perm2_mask2 = vect_gen_perm_mask_checked (vectype, sel);
5518
5519 /* Generating permutation constant to shift all elements.
5520 For vector length 8 it is {4 5 6 7 8 9 10 11}. */
5521 for (i = 0; i < nelt; i++)
5522 sel[i] = nelt / 2 + i;
5523 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5524 {
5525 if (dump_enabled_p ())
5526 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5527 "shift permutation is not supported by target\n");
5528 return false;
5529 }
5530 shift1_mask = vect_gen_perm_mask_checked (vectype, sel);
5531
5532 /* Generating permutation constant to select vector from 2.
5533 For vector length 8 it is {0 1 2 3 12 13 14 15}. */
5534 for (i = 0; i < nelt / 2; i++)
5535 sel[i] = i;
5536 for (i = nelt / 2; i < nelt; i++)
5537 sel[i] = nelt + i;
5538 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5539 {
5540 if (dump_enabled_p ())
5541 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5542 "select is not supported by target\n");
5543 return false;
5544 }
5545 select_mask = vect_gen_perm_mask_checked (vectype, sel);
5546
5547 for (i = 0; i < log_length; i++)
5548 {
5549 for (j = 0; j < length; j += 2)
5550 {
5551 first_vect = dr_chain[j];
5552 second_vect = dr_chain[j + 1];
5553
5554 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
5555 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5556 first_vect, first_vect,
5557 perm2_mask1);
5558 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5559 vect[0] = data_ref;
5560
5561 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
5562 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5563 second_vect, second_vect,
5564 perm2_mask2);
5565 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5566 vect[1] = data_ref;
5567
5568 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift");
5569 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5570 vect[0], vect[1], shift1_mask);
5571 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5572 (*result_chain)[j/2 + length/2] = data_ref;
5573
5574 data_ref = make_temp_ssa_name (vectype, NULL, "vect_select");
5575 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5576 vect[0], vect[1], select_mask);
5577 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5578 (*result_chain)[j/2] = data_ref;
5579 }
5580 memcpy (dr_chain.address (), result_chain->address (),
5581 length * sizeof (tree));
5582 }
5583 return true;
5584 }
5585 if (length == 3 && LOOP_VINFO_VECT_FACTOR (loop_vinfo) > 2)
5586 {
5587 unsigned int k = 0, l = 0;
5588
5589 /* Generating permutation constant to get all elements in rigth order.
5590 For vector length 8 it is {0 3 6 1 4 7 2 5}. */
5591 for (i = 0; i < nelt; i++)
5592 {
5593 if (3 * k + (l % 3) >= nelt)
5594 {
5595 k = 0;
5596 l += (3 - (nelt % 3));
5597 }
5598 sel[i] = 3 * k + (l % 3);
5599 k++;
5600 }
5601 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5602 {
5603 if (dump_enabled_p ())
5604 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5605 "shuffle of 3 fields structure is not \
5606 supported by target\n");
5607 return false;
5608 }
5609 perm3_mask = vect_gen_perm_mask_checked (vectype, sel);
5610
5611 /* Generating permutation constant to shift all elements.
5612 For vector length 8 it is {6 7 8 9 10 11 12 13}. */
5613 for (i = 0; i < nelt; i++)
5614 sel[i] = 2 * (nelt / 3) + (nelt % 3) + i;
5615 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5616 {
5617 if (dump_enabled_p ())
5618 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5619 "shift permutation is not supported by target\n");
5620 return false;
5621 }
5622 shift1_mask = vect_gen_perm_mask_checked (vectype, sel);
5623
5624 /* Generating permutation constant to shift all elements.
5625 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
5626 for (i = 0; i < nelt; i++)
5627 sel[i] = 2 * (nelt / 3) + 1 + i;
5628 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5629 {
5630 if (dump_enabled_p ())
5631 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5632 "shift permutation is not supported by target\n");
5633 return false;
5634 }
5635 shift2_mask = vect_gen_perm_mask_checked (vectype, sel);
5636
5637 /* Generating permutation constant to shift all elements.
5638 For vector length 8 it is {3 4 5 6 7 8 9 10}. */
5639 for (i = 0; i < nelt; i++)
5640 sel[i] = (nelt / 3) + (nelt % 3) / 2 + i;
5641 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5642 {
5643 if (dump_enabled_p ())
5644 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5645 "shift permutation is not supported by target\n");
5646 return false;
5647 }
5648 shift3_mask = vect_gen_perm_mask_checked (vectype, sel);
5649
5650 /* Generating permutation constant to shift all elements.
5651 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
5652 for (i = 0; i < nelt; i++)
5653 sel[i] = 2 * (nelt / 3) + (nelt % 3) / 2 + i;
5654 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5655 {
5656 if (dump_enabled_p ())
5657 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5658 "shift permutation is not supported by target\n");
5659 return false;
5660 }
5661 shift4_mask = vect_gen_perm_mask_checked (vectype, sel);
5662
5663 for (k = 0; k < 3; k++)
5664 {
5665 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3");
5666 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5667 dr_chain[k], dr_chain[k],
5668 perm3_mask);
5669 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5670 vect[k] = data_ref;
5671 }
5672
5673 for (k = 0; k < 3; k++)
5674 {
5675 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift1");
5676 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5677 vect[k % 3], vect[(k + 1) % 3],
5678 shift1_mask);
5679 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5680 vect_shift[k] = data_ref;
5681 }
5682
5683 for (k = 0; k < 3; k++)
5684 {
5685 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift2");
5686 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR,
5687 vect_shift[(4 - k) % 3],
5688 vect_shift[(3 - k) % 3],
5689 shift2_mask);
5690 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5691 vect[k] = data_ref;
5692 }
5693
5694 (*result_chain)[3 - (nelt % 3)] = vect[2];
5695
5696 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift3");
5697 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[0],
5698 vect[0], shift3_mask);
5699 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5700 (*result_chain)[nelt % 3] = data_ref;
5701
5702 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift4");
5703 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, vect[1],
5704 vect[1], shift4_mask);
5705 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5706 (*result_chain)[0] = data_ref;
5707 return true;
5708 }
5709 return false;
5710 }
5711
5712 /* Function vect_transform_grouped_load.
5713
5714 Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
5715 to perform their permutation and ascribe the result vectorized statements to
5716 the scalar statements.
5717 */
5718
5719 void
5720 vect_transform_grouped_load (gimple *stmt, vec<tree> dr_chain, int size,
5721 gimple_stmt_iterator *gsi)
5722 {
5723 machine_mode mode;
5724 vec<tree> result_chain = vNULL;
5725
5726 /* DR_CHAIN contains input data-refs that are a part of the interleaving.
5727 RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
5728 vectors, that are ready for vector computation. */
5729 result_chain.create (size);
5730
5731 /* If reassociation width for vector type is 2 or greater target machine can
5732 execute 2 or more vector instructions in parallel. Otherwise try to
5733 get chain for loads group using vect_shift_permute_load_chain. */
5734 mode = TYPE_MODE (STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt)));
5735 if (targetm.sched.reassociation_width (VEC_PERM_EXPR, mode) > 1
5736 || exact_log2 (size) != -1
5737 || !vect_shift_permute_load_chain (dr_chain, size, stmt,
5738 gsi, &result_chain))
5739 vect_permute_load_chain (dr_chain, size, stmt, gsi, &result_chain);
5740 vect_record_grouped_load_vectors (stmt, result_chain);
5741 result_chain.release ();
5742 }
5743
5744 /* RESULT_CHAIN contains the output of a group of grouped loads that were
5745 generated as part of the vectorization of STMT. Assign the statement
5746 for each vector to the associated scalar statement. */
5747
5748 void
5749 vect_record_grouped_load_vectors (gimple *stmt, vec<tree> result_chain)
5750 {
5751 gimple *first_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt));
5752 gimple *next_stmt, *new_stmt;
5753 unsigned int i, gap_count;
5754 tree tmp_data_ref;
5755
5756 /* Put a permuted data-ref in the VECTORIZED_STMT field.
5757 Since we scan the chain starting from it's first node, their order
5758 corresponds the order of data-refs in RESULT_CHAIN. */
5759 next_stmt = first_stmt;
5760 gap_count = 1;
5761 FOR_EACH_VEC_ELT (result_chain, i, tmp_data_ref)
5762 {
5763 if (!next_stmt)
5764 break;
5765
5766 /* Skip the gaps. Loads created for the gaps will be removed by dead
5767 code elimination pass later. No need to check for the first stmt in
5768 the group, since it always exists.
5769 GROUP_GAP is the number of steps in elements from the previous
5770 access (if there is no gap GROUP_GAP is 1). We skip loads that
5771 correspond to the gaps. */
5772 if (next_stmt != first_stmt
5773 && gap_count < GROUP_GAP (vinfo_for_stmt (next_stmt)))
5774 {
5775 gap_count++;
5776 continue;
5777 }
5778
5779 while (next_stmt)
5780 {
5781 new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
5782 /* We assume that if VEC_STMT is not NULL, this is a case of multiple
5783 copies, and we put the new vector statement in the first available
5784 RELATED_STMT. */
5785 if (!STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)))
5786 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)) = new_stmt;
5787 else
5788 {
5789 if (!GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
5790 {
5791 gimple *prev_stmt =
5792 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt));
5793 gimple *rel_stmt =
5794 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt));
5795 while (rel_stmt)
5796 {
5797 prev_stmt = rel_stmt;
5798 rel_stmt =
5799 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (rel_stmt));
5800 }
5801
5802 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt)) =
5803 new_stmt;
5804 }
5805 }
5806
5807 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
5808 gap_count = 1;
5809 /* If NEXT_STMT accesses the same DR as the previous statement,
5810 put the same TMP_DATA_REF as its vectorized statement; otherwise
5811 get the next data-ref from RESULT_CHAIN. */
5812 if (!next_stmt || !GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
5813 break;
5814 }
5815 }
5816 }
5817
5818 /* Function vect_force_dr_alignment_p.
5819
5820 Returns whether the alignment of a DECL can be forced to be aligned
5821 on ALIGNMENT bit boundary. */
5822
5823 bool
5824 vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
5825 {
5826 if (TREE_CODE (decl) != VAR_DECL)
5827 return false;
5828
5829 if (decl_in_symtab_p (decl)
5830 && !symtab_node::get (decl)->can_increase_alignment_p ())
5831 return false;
5832
5833 if (TREE_STATIC (decl))
5834 return (alignment <= MAX_OFILE_ALIGNMENT);
5835 else
5836 return (alignment <= MAX_STACK_ALIGNMENT);
5837 }
5838
5839
5840 /* Return whether the data reference DR is supported with respect to its
5841 alignment.
5842 If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even
5843 it is aligned, i.e., check if it is possible to vectorize it with different
5844 alignment. */
5845
5846 enum dr_alignment_support
5847 vect_supportable_dr_alignment (struct data_reference *dr,
5848 bool check_aligned_accesses)
5849 {
5850 gimple *stmt = DR_STMT (dr);
5851 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5852 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5853 machine_mode mode = TYPE_MODE (vectype);
5854 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5855 struct loop *vect_loop = NULL;
5856 bool nested_in_vect_loop = false;
5857
5858 if (aligned_access_p (dr) && !check_aligned_accesses)
5859 return dr_aligned;
5860
5861 /* For now assume all conditional loads/stores support unaligned
5862 access without any special code. */
5863 if (is_gimple_call (stmt)
5864 && gimple_call_internal_p (stmt)
5865 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
5866 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE))
5867 return dr_unaligned_supported;
5868
5869 if (loop_vinfo)
5870 {
5871 vect_loop = LOOP_VINFO_LOOP (loop_vinfo);
5872 nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
5873 }
5874
5875 /* Possibly unaligned access. */
5876
5877 /* We can choose between using the implicit realignment scheme (generating
5878 a misaligned_move stmt) and the explicit realignment scheme (generating
5879 aligned loads with a REALIGN_LOAD). There are two variants to the
5880 explicit realignment scheme: optimized, and unoptimized.
5881 We can optimize the realignment only if the step between consecutive
5882 vector loads is equal to the vector size. Since the vector memory
5883 accesses advance in steps of VS (Vector Size) in the vectorized loop, it
5884 is guaranteed that the misalignment amount remains the same throughout the
5885 execution of the vectorized loop. Therefore, we can create the
5886 "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
5887 at the loop preheader.
5888
5889 However, in the case of outer-loop vectorization, when vectorizing a
5890 memory access in the inner-loop nested within the LOOP that is now being
5891 vectorized, while it is guaranteed that the misalignment of the
5892 vectorized memory access will remain the same in different outer-loop
5893 iterations, it is *not* guaranteed that is will remain the same throughout
5894 the execution of the inner-loop. This is because the inner-loop advances
5895 with the original scalar step (and not in steps of VS). If the inner-loop
5896 step happens to be a multiple of VS, then the misalignment remains fixed
5897 and we can use the optimized realignment scheme. For example:
5898
5899 for (i=0; i<N; i++)
5900 for (j=0; j<M; j++)
5901 s += a[i+j];
5902
5903 When vectorizing the i-loop in the above example, the step between
5904 consecutive vector loads is 1, and so the misalignment does not remain
5905 fixed across the execution of the inner-loop, and the realignment cannot
5906 be optimized (as illustrated in the following pseudo vectorized loop):
5907
5908 for (i=0; i<N; i+=4)
5909 for (j=0; j<M; j++){
5910 vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
5911 // when j is {0,1,2,3,4,5,6,7,...} respectively.
5912 // (assuming that we start from an aligned address).
5913 }
5914
5915 We therefore have to use the unoptimized realignment scheme:
5916
5917 for (i=0; i<N; i+=4)
5918 for (j=k; j<M; j+=4)
5919 vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
5920 // that the misalignment of the initial address is
5921 // 0).
5922
5923 The loop can then be vectorized as follows:
5924
5925 for (k=0; k<4; k++){
5926 rt = get_realignment_token (&vp[k]);
5927 for (i=0; i<N; i+=4){
5928 v1 = vp[i+k];
5929 for (j=k; j<M; j+=4){
5930 v2 = vp[i+j+VS-1];
5931 va = REALIGN_LOAD <v1,v2,rt>;
5932 vs += va;
5933 v1 = v2;
5934 }
5935 }
5936 } */
5937
5938 if (DR_IS_READ (dr))
5939 {
5940 bool is_packed = false;
5941 tree type = (TREE_TYPE (DR_REF (dr)));
5942
5943 if (optab_handler (vec_realign_load_optab, mode) != CODE_FOR_nothing
5944 && (!targetm.vectorize.builtin_mask_for_load
5945 || targetm.vectorize.builtin_mask_for_load ()))
5946 {
5947 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5948 if ((nested_in_vect_loop
5949 && (TREE_INT_CST_LOW (DR_STEP (dr))
5950 != GET_MODE_SIZE (TYPE_MODE (vectype))))
5951 || !loop_vinfo)
5952 return dr_explicit_realign;
5953 else
5954 return dr_explicit_realign_optimized;
5955 }
5956 if (!known_alignment_for_access_p (dr))
5957 is_packed = not_size_aligned (DR_REF (dr));
5958
5959 if ((TYPE_USER_ALIGN (type) && !is_packed)
5960 || targetm.vectorize.
5961 support_vector_misalignment (mode, type,
5962 DR_MISALIGNMENT (dr), is_packed))
5963 /* Can't software pipeline the loads, but can at least do them. */
5964 return dr_unaligned_supported;
5965 }
5966 else
5967 {
5968 bool is_packed = false;
5969 tree type = (TREE_TYPE (DR_REF (dr)));
5970
5971 if (!known_alignment_for_access_p (dr))
5972 is_packed = not_size_aligned (DR_REF (dr));
5973
5974 if ((TYPE_USER_ALIGN (type) && !is_packed)
5975 || targetm.vectorize.
5976 support_vector_misalignment (mode, type,
5977 DR_MISALIGNMENT (dr), is_packed))
5978 return dr_unaligned_supported;
5979 }
5980
5981 /* Unsupported. */
5982 return dr_unaligned_unsupported;
5983 }