[Vectorizer] Split vect_gen_perm_mask into _checked and _any variants
[gcc.git] / gcc / tree-vect-data-refs.c
1 /* Data References Analysis and Manipulation Utilities for Vectorization.
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "stor-layout.h"
29 #include "tm_p.h"
30 #include "target.h"
31 #include "predict.h"
32 #include "vec.h"
33 #include "hashtab.h"
34 #include "hash-set.h"
35 #include "machmode.h"
36 #include "hard-reg-set.h"
37 #include "input.h"
38 #include "function.h"
39 #include "dominance.h"
40 #include "cfg.h"
41 #include "basic-block.h"
42 #include "gimple-pretty-print.h"
43 #include "tree-ssa-alias.h"
44 #include "internal-fn.h"
45 #include "tree-eh.h"
46 #include "gimple-expr.h"
47 #include "is-a.h"
48 #include "gimple.h"
49 #include "gimplify.h"
50 #include "gimple-iterator.h"
51 #include "gimplify-me.h"
52 #include "gimple-ssa.h"
53 #include "tree-phinodes.h"
54 #include "ssa-iterators.h"
55 #include "stringpool.h"
56 #include "tree-ssanames.h"
57 #include "tree-ssa-loop-ivopts.h"
58 #include "tree-ssa-loop-manip.h"
59 #include "tree-ssa-loop.h"
60 #include "dumpfile.h"
61 #include "cfgloop.h"
62 #include "tree-chrec.h"
63 #include "tree-scalar-evolution.h"
64 #include "tree-vectorizer.h"
65 #include "diagnostic-core.h"
66 #include "hash-map.h"
67 #include "plugin-api.h"
68 #include "ipa-ref.h"
69 #include "cgraph.h"
70 /* Need to include rtl.h, expr.h, etc. for optabs. */
71 #include "expr.h"
72 #include "insn-codes.h"
73 #include "optabs.h"
74 #include "builtins.h"
75 #include "varasm.h"
76
77 /* Return true if load- or store-lanes optab OPTAB is implemented for
78 COUNT vectors of type VECTYPE. NAME is the name of OPTAB. */
79
80 static bool
81 vect_lanes_optab_supported_p (const char *name, convert_optab optab,
82 tree vectype, unsigned HOST_WIDE_INT count)
83 {
84 machine_mode mode, array_mode;
85 bool limit_p;
86
87 mode = TYPE_MODE (vectype);
88 limit_p = !targetm.array_mode_supported_p (mode, count);
89 array_mode = mode_for_size (count * GET_MODE_BITSIZE (mode),
90 MODE_INT, limit_p);
91
92 if (array_mode == BLKmode)
93 {
94 if (dump_enabled_p ())
95 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
96 "no array mode for %s[" HOST_WIDE_INT_PRINT_DEC "]\n",
97 GET_MODE_NAME (mode), count);
98 return false;
99 }
100
101 if (convert_optab_handler (optab, array_mode, mode) == CODE_FOR_nothing)
102 {
103 if (dump_enabled_p ())
104 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
105 "cannot use %s<%s><%s>\n", name,
106 GET_MODE_NAME (array_mode), GET_MODE_NAME (mode));
107 return false;
108 }
109
110 if (dump_enabled_p ())
111 dump_printf_loc (MSG_NOTE, vect_location,
112 "can use %s<%s><%s>\n", name, GET_MODE_NAME (array_mode),
113 GET_MODE_NAME (mode));
114
115 return true;
116 }
117
118
119 /* Return the smallest scalar part of STMT.
120 This is used to determine the vectype of the stmt. We generally set the
121 vectype according to the type of the result (lhs). For stmts whose
122 result-type is different than the type of the arguments (e.g., demotion,
123 promotion), vectype will be reset appropriately (later). Note that we have
124 to visit the smallest datatype in this function, because that determines the
125 VF. If the smallest datatype in the loop is present only as the rhs of a
126 promotion operation - we'd miss it.
127 Such a case, where a variable of this datatype does not appear in the lhs
128 anywhere in the loop, can only occur if it's an invariant: e.g.:
129 'int_x = (int) short_inv', which we'd expect to have been optimized away by
130 invariant motion. However, we cannot rely on invariant motion to always
131 take invariants out of the loop, and so in the case of promotion we also
132 have to check the rhs.
133 LHS_SIZE_UNIT and RHS_SIZE_UNIT contain the sizes of the corresponding
134 types. */
135
136 tree
137 vect_get_smallest_scalar_type (gimple stmt, HOST_WIDE_INT *lhs_size_unit,
138 HOST_WIDE_INT *rhs_size_unit)
139 {
140 tree scalar_type = gimple_expr_type (stmt);
141 HOST_WIDE_INT lhs, rhs;
142
143 lhs = rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
144
145 if (is_gimple_assign (stmt)
146 && (gimple_assign_cast_p (stmt)
147 || gimple_assign_rhs_code (stmt) == WIDEN_MULT_EXPR
148 || gimple_assign_rhs_code (stmt) == WIDEN_LSHIFT_EXPR
149 || gimple_assign_rhs_code (stmt) == FLOAT_EXPR))
150 {
151 tree rhs_type = TREE_TYPE (gimple_assign_rhs1 (stmt));
152
153 rhs = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (rhs_type));
154 if (rhs < lhs)
155 scalar_type = rhs_type;
156 }
157
158 *lhs_size_unit = lhs;
159 *rhs_size_unit = rhs;
160 return scalar_type;
161 }
162
163
164 /* Insert DDR into LOOP_VINFO list of ddrs that may alias and need to be
165 tested at run-time. Return TRUE if DDR was successfully inserted.
166 Return false if versioning is not supported. */
167
168 static bool
169 vect_mark_for_runtime_alias_test (ddr_p ddr, loop_vec_info loop_vinfo)
170 {
171 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
172
173 if ((unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS) == 0)
174 return false;
175
176 if (dump_enabled_p ())
177 {
178 dump_printf_loc (MSG_NOTE, vect_location,
179 "mark for run-time aliasing test between ");
180 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_A (ddr)));
181 dump_printf (MSG_NOTE, " and ");
182 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (DDR_B (ddr)));
183 dump_printf (MSG_NOTE, "\n");
184 }
185
186 if (optimize_loop_nest_for_size_p (loop))
187 {
188 if (dump_enabled_p ())
189 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
190 "versioning not supported when optimizing"
191 " for size.\n");
192 return false;
193 }
194
195 /* FORNOW: We don't support versioning with outer-loop vectorization. */
196 if (loop->inner)
197 {
198 if (dump_enabled_p ())
199 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
200 "versioning not yet supported for outer-loops.\n");
201 return false;
202 }
203
204 /* FORNOW: We don't support creating runtime alias tests for non-constant
205 step. */
206 if (TREE_CODE (DR_STEP (DDR_A (ddr))) != INTEGER_CST
207 || TREE_CODE (DR_STEP (DDR_B (ddr))) != INTEGER_CST)
208 {
209 if (dump_enabled_p ())
210 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
211 "versioning not yet supported for non-constant "
212 "step\n");
213 return false;
214 }
215
216 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).safe_push (ddr);
217 return true;
218 }
219
220
221 /* Function vect_analyze_data_ref_dependence.
222
223 Return TRUE if there (might) exist a dependence between a memory-reference
224 DRA and a memory-reference DRB. When versioning for alias may check a
225 dependence at run-time, return FALSE. Adjust *MAX_VF according to
226 the data dependence. */
227
228 static bool
229 vect_analyze_data_ref_dependence (struct data_dependence_relation *ddr,
230 loop_vec_info loop_vinfo, int *max_vf)
231 {
232 unsigned int i;
233 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
234 struct data_reference *dra = DDR_A (ddr);
235 struct data_reference *drb = DDR_B (ddr);
236 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
237 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
238 lambda_vector dist_v;
239 unsigned int loop_depth;
240
241 /* In loop analysis all data references should be vectorizable. */
242 if (!STMT_VINFO_VECTORIZABLE (stmtinfo_a)
243 || !STMT_VINFO_VECTORIZABLE (stmtinfo_b))
244 gcc_unreachable ();
245
246 /* Independent data accesses. */
247 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
248 return false;
249
250 if (dra == drb
251 || (DR_IS_READ (dra) && DR_IS_READ (drb)))
252 return false;
253
254 /* Even if we have an anti-dependence then, as the vectorized loop covers at
255 least two scalar iterations, there is always also a true dependence.
256 As the vectorizer does not re-order loads and stores we can ignore
257 the anti-dependence if TBAA can disambiguate both DRs similar to the
258 case with known negative distance anti-dependences (positive
259 distance anti-dependences would violate TBAA constraints). */
260 if (((DR_IS_READ (dra) && DR_IS_WRITE (drb))
261 || (DR_IS_WRITE (dra) && DR_IS_READ (drb)))
262 && !alias_sets_conflict_p (get_alias_set (DR_REF (dra)),
263 get_alias_set (DR_REF (drb))))
264 return false;
265
266 /* Unknown data dependence. */
267 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
268 {
269 /* If user asserted safelen consecutive iterations can be
270 executed concurrently, assume independence. */
271 if (loop->safelen >= 2)
272 {
273 if (loop->safelen < *max_vf)
274 *max_vf = loop->safelen;
275 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
276 return false;
277 }
278
279 if (STMT_VINFO_GATHER_P (stmtinfo_a)
280 || STMT_VINFO_GATHER_P (stmtinfo_b))
281 {
282 if (dump_enabled_p ())
283 {
284 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
285 "versioning for alias not supported for: "
286 "can't determine dependence between ");
287 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
288 DR_REF (dra));
289 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
290 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
291 DR_REF (drb));
292 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
293 }
294 return true;
295 }
296
297 if (dump_enabled_p ())
298 {
299 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
300 "versioning for alias required: "
301 "can't determine dependence between ");
302 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
303 DR_REF (dra));
304 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
305 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
306 DR_REF (drb));
307 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
308 }
309
310 /* Add to list of ddrs that need to be tested at run-time. */
311 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
312 }
313
314 /* Known data dependence. */
315 if (DDR_NUM_DIST_VECTS (ddr) == 0)
316 {
317 /* If user asserted safelen consecutive iterations can be
318 executed concurrently, assume independence. */
319 if (loop->safelen >= 2)
320 {
321 if (loop->safelen < *max_vf)
322 *max_vf = loop->safelen;
323 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = false;
324 return false;
325 }
326
327 if (STMT_VINFO_GATHER_P (stmtinfo_a)
328 || STMT_VINFO_GATHER_P (stmtinfo_b))
329 {
330 if (dump_enabled_p ())
331 {
332 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
333 "versioning for alias not supported for: "
334 "bad dist vector for ");
335 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
336 DR_REF (dra));
337 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
338 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
339 DR_REF (drb));
340 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
341 }
342 return true;
343 }
344
345 if (dump_enabled_p ())
346 {
347 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
348 "versioning for alias required: "
349 "bad dist vector for ");
350 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
351 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
352 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
353 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
354 }
355 /* Add to list of ddrs that need to be tested at run-time. */
356 return !vect_mark_for_runtime_alias_test (ddr, loop_vinfo);
357 }
358
359 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
360 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
361 {
362 int dist = dist_v[loop_depth];
363
364 if (dump_enabled_p ())
365 dump_printf_loc (MSG_NOTE, vect_location,
366 "dependence distance = %d.\n", dist);
367
368 if (dist == 0)
369 {
370 if (dump_enabled_p ())
371 {
372 dump_printf_loc (MSG_NOTE, vect_location,
373 "dependence distance == 0 between ");
374 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
375 dump_printf (MSG_NOTE, " and ");
376 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
377 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
378 }
379
380 /* When we perform grouped accesses and perform implicit CSE
381 by detecting equal accesses and doing disambiguation with
382 runtime alias tests like for
383 .. = a[i];
384 .. = a[i+1];
385 a[i] = ..;
386 a[i+1] = ..;
387 *p = ..;
388 .. = a[i];
389 .. = a[i+1];
390 where we will end up loading { a[i], a[i+1] } once, make
391 sure that inserting group loads before the first load and
392 stores after the last store will do the right thing.
393 Similar for groups like
394 a[i] = ...;
395 ... = a[i];
396 a[i+1] = ...;
397 where loads from the group interleave with the store. */
398 if (STMT_VINFO_GROUPED_ACCESS (stmtinfo_a)
399 || STMT_VINFO_GROUPED_ACCESS (stmtinfo_b))
400 {
401 gimple earlier_stmt;
402 earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
403 if (DR_IS_WRITE
404 (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
405 {
406 if (dump_enabled_p ())
407 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
408 "READ_WRITE dependence in interleaving."
409 "\n");
410 return true;
411 }
412 }
413
414 continue;
415 }
416
417 if (dist > 0 && DDR_REVERSED_P (ddr))
418 {
419 /* If DDR_REVERSED_P the order of the data-refs in DDR was
420 reversed (to make distance vector positive), and the actual
421 distance is negative. */
422 if (dump_enabled_p ())
423 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
424 "dependence distance negative.\n");
425 /* Record a negative dependence distance to later limit the
426 amount of stmt copying / unrolling we can perform.
427 Only need to handle read-after-write dependence. */
428 if (DR_IS_READ (drb)
429 && (STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) == 0
430 || STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) > (unsigned)dist))
431 STMT_VINFO_MIN_NEG_DIST (stmtinfo_b) = dist;
432 continue;
433 }
434
435 if (abs (dist) >= 2
436 && abs (dist) < *max_vf)
437 {
438 /* The dependence distance requires reduction of the maximal
439 vectorization factor. */
440 *max_vf = abs (dist);
441 if (dump_enabled_p ())
442 dump_printf_loc (MSG_NOTE, vect_location,
443 "adjusting maximal vectorization factor to %i\n",
444 *max_vf);
445 }
446
447 if (abs (dist) >= *max_vf)
448 {
449 /* Dependence distance does not create dependence, as far as
450 vectorization is concerned, in this case. */
451 if (dump_enabled_p ())
452 dump_printf_loc (MSG_NOTE, vect_location,
453 "dependence distance >= VF.\n");
454 continue;
455 }
456
457 if (dump_enabled_p ())
458 {
459 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
460 "not vectorized, possible dependence "
461 "between data-refs ");
462 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
463 dump_printf (MSG_NOTE, " and ");
464 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
465 dump_printf (MSG_NOTE, "\n");
466 }
467
468 return true;
469 }
470
471 return false;
472 }
473
474 /* Function vect_analyze_data_ref_dependences.
475
476 Examine all the data references in the loop, and make sure there do not
477 exist any data dependences between them. Set *MAX_VF according to
478 the maximum vectorization factor the data dependences allow. */
479
480 bool
481 vect_analyze_data_ref_dependences (loop_vec_info loop_vinfo, int *max_vf)
482 {
483 unsigned int i;
484 struct data_dependence_relation *ddr;
485
486 if (dump_enabled_p ())
487 dump_printf_loc (MSG_NOTE, vect_location,
488 "=== vect_analyze_data_ref_dependences ===\n");
489
490 LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo) = true;
491 if (!compute_all_dependences (LOOP_VINFO_DATAREFS (loop_vinfo),
492 &LOOP_VINFO_DDRS (loop_vinfo),
493 LOOP_VINFO_LOOP_NEST (loop_vinfo), true))
494 return false;
495
496 FOR_EACH_VEC_ELT (LOOP_VINFO_DDRS (loop_vinfo), i, ddr)
497 if (vect_analyze_data_ref_dependence (ddr, loop_vinfo, max_vf))
498 return false;
499
500 return true;
501 }
502
503
504 /* Function vect_slp_analyze_data_ref_dependence.
505
506 Return TRUE if there (might) exist a dependence between a memory-reference
507 DRA and a memory-reference DRB. When versioning for alias may check a
508 dependence at run-time, return FALSE. Adjust *MAX_VF according to
509 the data dependence. */
510
511 static bool
512 vect_slp_analyze_data_ref_dependence (struct data_dependence_relation *ddr)
513 {
514 struct data_reference *dra = DDR_A (ddr);
515 struct data_reference *drb = DDR_B (ddr);
516
517 /* We need to check dependences of statements marked as unvectorizable
518 as well, they still can prohibit vectorization. */
519
520 /* Independent data accesses. */
521 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
522 return false;
523
524 if (dra == drb)
525 return false;
526
527 /* Read-read is OK. */
528 if (DR_IS_READ (dra) && DR_IS_READ (drb))
529 return false;
530
531 /* If dra and drb are part of the same interleaving chain consider
532 them independent. */
533 if (STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (DR_STMT (dra)))
534 && (GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (dra)))
535 == GROUP_FIRST_ELEMENT (vinfo_for_stmt (DR_STMT (drb)))))
536 return false;
537
538 /* Unknown data dependence. */
539 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
540 {
541 if (dump_enabled_p ())
542 {
543 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
544 "can't determine dependence between ");
545 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (dra));
546 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
547 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, DR_REF (drb));
548 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
549 }
550 }
551 else if (dump_enabled_p ())
552 {
553 dump_printf_loc (MSG_NOTE, vect_location,
554 "determined dependence between ");
555 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
556 dump_printf (MSG_NOTE, " and ");
557 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
558 dump_printf (MSG_NOTE, "\n");
559 }
560
561 /* We do not vectorize basic blocks with write-write dependencies. */
562 if (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))
563 return true;
564
565 /* If we have a read-write dependence check that the load is before the store.
566 When we vectorize basic blocks, vector load can be only before
567 corresponding scalar load, and vector store can be only after its
568 corresponding scalar store. So the order of the acceses is preserved in
569 case the load is before the store. */
570 gimple earlier_stmt = get_earlier_stmt (DR_STMT (dra), DR_STMT (drb));
571 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (earlier_stmt))))
572 {
573 /* That only holds for load-store pairs taking part in vectorization. */
574 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dra)))
575 && STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (drb))))
576 return false;
577 }
578
579 return true;
580 }
581
582
583 /* Function vect_analyze_data_ref_dependences.
584
585 Examine all the data references in the basic-block, and make sure there
586 do not exist any data dependences between them. Set *MAX_VF according to
587 the maximum vectorization factor the data dependences allow. */
588
589 bool
590 vect_slp_analyze_data_ref_dependences (bb_vec_info bb_vinfo)
591 {
592 struct data_dependence_relation *ddr;
593 unsigned int i;
594
595 if (dump_enabled_p ())
596 dump_printf_loc (MSG_NOTE, vect_location,
597 "=== vect_slp_analyze_data_ref_dependences ===\n");
598
599 if (!compute_all_dependences (BB_VINFO_DATAREFS (bb_vinfo),
600 &BB_VINFO_DDRS (bb_vinfo),
601 vNULL, true))
602 return false;
603
604 FOR_EACH_VEC_ELT (BB_VINFO_DDRS (bb_vinfo), i, ddr)
605 if (vect_slp_analyze_data_ref_dependence (ddr))
606 return false;
607
608 return true;
609 }
610
611
612 /* Function vect_compute_data_ref_alignment
613
614 Compute the misalignment of the data reference DR.
615
616 Output:
617 1. If during the misalignment computation it is found that the data reference
618 cannot be vectorized then false is returned.
619 2. DR_MISALIGNMENT (DR) is defined.
620
621 FOR NOW: No analysis is actually performed. Misalignment is calculated
622 only for trivial cases. TODO. */
623
624 static bool
625 vect_compute_data_ref_alignment (struct data_reference *dr)
626 {
627 gimple stmt = DR_STMT (dr);
628 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
629 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
630 struct loop *loop = NULL;
631 tree ref = DR_REF (dr);
632 tree vectype;
633 tree base, base_addr;
634 bool base_aligned;
635 tree misalign;
636 tree aligned_to, alignment;
637
638 if (dump_enabled_p ())
639 dump_printf_loc (MSG_NOTE, vect_location,
640 "vect_compute_data_ref_alignment:\n");
641
642 if (loop_vinfo)
643 loop = LOOP_VINFO_LOOP (loop_vinfo);
644
645 /* Initialize misalignment to unknown. */
646 SET_DR_MISALIGNMENT (dr, -1);
647
648 /* Strided loads perform only component accesses, misalignment information
649 is irrelevant for them. */
650 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
651 return true;
652
653 misalign = DR_INIT (dr);
654 aligned_to = DR_ALIGNED_TO (dr);
655 base_addr = DR_BASE_ADDRESS (dr);
656 vectype = STMT_VINFO_VECTYPE (stmt_info);
657
658 /* In case the dataref is in an inner-loop of the loop that is being
659 vectorized (LOOP), we use the base and misalignment information
660 relative to the outer-loop (LOOP). This is ok only if the misalignment
661 stays the same throughout the execution of the inner-loop, which is why
662 we have to check that the stride of the dataref in the inner-loop evenly
663 divides by the vector size. */
664 if (loop && nested_in_vect_loop_p (loop, stmt))
665 {
666 tree step = DR_STEP (dr);
667 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
668
669 if (dr_step % GET_MODE_SIZE (TYPE_MODE (vectype)) == 0)
670 {
671 if (dump_enabled_p ())
672 dump_printf_loc (MSG_NOTE, vect_location,
673 "inner step divides the vector-size.\n");
674 misalign = STMT_VINFO_DR_INIT (stmt_info);
675 aligned_to = STMT_VINFO_DR_ALIGNED_TO (stmt_info);
676 base_addr = STMT_VINFO_DR_BASE_ADDRESS (stmt_info);
677 }
678 else
679 {
680 if (dump_enabled_p ())
681 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
682 "inner step doesn't divide the vector-size.\n");
683 misalign = NULL_TREE;
684 }
685 }
686
687 /* Similarly, if we're doing basic-block vectorization, we can only use
688 base and misalignment information relative to an innermost loop if the
689 misalignment stays the same throughout the execution of the loop.
690 As above, this is the case if the stride of the dataref evenly divides
691 by the vector size. */
692 if (!loop)
693 {
694 tree step = DR_STEP (dr);
695 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
696
697 if (dr_step % GET_MODE_SIZE (TYPE_MODE (vectype)) != 0)
698 {
699 if (dump_enabled_p ())
700 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
701 "SLP: step doesn't divide the vector-size.\n");
702 misalign = NULL_TREE;
703 }
704 }
705
706 base = build_fold_indirect_ref (base_addr);
707 alignment = ssize_int (TYPE_ALIGN (vectype)/BITS_PER_UNIT);
708
709 if ((aligned_to && tree_int_cst_compare (aligned_to, alignment) < 0)
710 || !misalign)
711 {
712 if (dump_enabled_p ())
713 {
714 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
715 "Unknown alignment for access: ");
716 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, base);
717 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
718 }
719 return true;
720 }
721
722 if ((DECL_P (base)
723 && tree_int_cst_compare (ssize_int (DECL_ALIGN_UNIT (base)),
724 alignment) >= 0)
725 || (TREE_CODE (base_addr) == SSA_NAME
726 && tree_int_cst_compare (ssize_int (TYPE_ALIGN_UNIT (TREE_TYPE (
727 TREE_TYPE (base_addr)))),
728 alignment) >= 0)
729 || (get_pointer_alignment (base_addr) >= TYPE_ALIGN (vectype)))
730 base_aligned = true;
731 else
732 base_aligned = false;
733
734 if (!base_aligned)
735 {
736 /* Do not change the alignment of global variables here if
737 flag_section_anchors is enabled as we already generated
738 RTL for other functions. Most global variables should
739 have been aligned during the IPA increase_alignment pass. */
740 if (!vect_can_force_dr_alignment_p (base, TYPE_ALIGN (vectype))
741 || (TREE_STATIC (base) && flag_section_anchors))
742 {
743 if (dump_enabled_p ())
744 {
745 dump_printf_loc (MSG_NOTE, vect_location,
746 "can't force alignment of ref: ");
747 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
748 dump_printf (MSG_NOTE, "\n");
749 }
750 return true;
751 }
752
753 /* Force the alignment of the decl.
754 NOTE: This is the only change to the code we make during
755 the analysis phase, before deciding to vectorize the loop. */
756 if (dump_enabled_p ())
757 {
758 dump_printf_loc (MSG_NOTE, vect_location, "force alignment of ");
759 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
760 dump_printf (MSG_NOTE, "\n");
761 }
762
763 ((dataref_aux *)dr->aux)->base_decl = base;
764 ((dataref_aux *)dr->aux)->base_misaligned = true;
765 }
766
767 /* If this is a backward running DR then first access in the larger
768 vectype actually is N-1 elements before the address in the DR.
769 Adjust misalign accordingly. */
770 if (tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0)
771 {
772 tree offset = ssize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
773 /* DR_STEP(dr) is the same as -TYPE_SIZE of the scalar type,
774 otherwise we wouldn't be here. */
775 offset = fold_build2 (MULT_EXPR, ssizetype, offset, DR_STEP (dr));
776 /* PLUS because DR_STEP was negative. */
777 misalign = size_binop (PLUS_EXPR, misalign, offset);
778 }
779
780 /* Modulo alignment. */
781 misalign = size_binop (FLOOR_MOD_EXPR, misalign, alignment);
782
783 if (!tree_fits_uhwi_p (misalign))
784 {
785 /* Negative or overflowed misalignment value. */
786 if (dump_enabled_p ())
787 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
788 "unexpected misalign value\n");
789 return false;
790 }
791
792 SET_DR_MISALIGNMENT (dr, tree_to_uhwi (misalign));
793
794 if (dump_enabled_p ())
795 {
796 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
797 "misalign = %d bytes of ref ", DR_MISALIGNMENT (dr));
798 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, ref);
799 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
800 }
801
802 return true;
803 }
804
805
806 /* Function vect_compute_data_refs_alignment
807
808 Compute the misalignment of data references in the loop.
809 Return FALSE if a data reference is found that cannot be vectorized. */
810
811 static bool
812 vect_compute_data_refs_alignment (loop_vec_info loop_vinfo,
813 bb_vec_info bb_vinfo)
814 {
815 vec<data_reference_p> datarefs;
816 struct data_reference *dr;
817 unsigned int i;
818
819 if (loop_vinfo)
820 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
821 else
822 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
823
824 FOR_EACH_VEC_ELT (datarefs, i, dr)
825 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
826 && !vect_compute_data_ref_alignment (dr))
827 {
828 if (bb_vinfo)
829 {
830 /* Mark unsupported statement as unvectorizable. */
831 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
832 continue;
833 }
834 else
835 return false;
836 }
837
838 return true;
839 }
840
841
842 /* Function vect_update_misalignment_for_peel
843
844 DR - the data reference whose misalignment is to be adjusted.
845 DR_PEEL - the data reference whose misalignment is being made
846 zero in the vector loop by the peel.
847 NPEEL - the number of iterations in the peel loop if the misalignment
848 of DR_PEEL is known at compile time. */
849
850 static void
851 vect_update_misalignment_for_peel (struct data_reference *dr,
852 struct data_reference *dr_peel, int npeel)
853 {
854 unsigned int i;
855 vec<dr_p> same_align_drs;
856 struct data_reference *current_dr;
857 int dr_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
858 int dr_peel_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr_peel))));
859 stmt_vec_info stmt_info = vinfo_for_stmt (DR_STMT (dr));
860 stmt_vec_info peel_stmt_info = vinfo_for_stmt (DR_STMT (dr_peel));
861
862 /* For interleaved data accesses the step in the loop must be multiplied by
863 the size of the interleaving group. */
864 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
865 dr_size *= GROUP_SIZE (vinfo_for_stmt (GROUP_FIRST_ELEMENT (stmt_info)));
866 if (STMT_VINFO_GROUPED_ACCESS (peel_stmt_info))
867 dr_peel_size *= GROUP_SIZE (peel_stmt_info);
868
869 /* It can be assumed that the data refs with the same alignment as dr_peel
870 are aligned in the vector loop. */
871 same_align_drs
872 = STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (DR_STMT (dr_peel)));
873 FOR_EACH_VEC_ELT (same_align_drs, i, current_dr)
874 {
875 if (current_dr != dr)
876 continue;
877 gcc_assert (DR_MISALIGNMENT (dr) / dr_size ==
878 DR_MISALIGNMENT (dr_peel) / dr_peel_size);
879 SET_DR_MISALIGNMENT (dr, 0);
880 return;
881 }
882
883 if (known_alignment_for_access_p (dr)
884 && known_alignment_for_access_p (dr_peel))
885 {
886 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
887 int misal = DR_MISALIGNMENT (dr);
888 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
889 misal += negative ? -npeel * dr_size : npeel * dr_size;
890 misal &= (TYPE_ALIGN (vectype) / BITS_PER_UNIT) - 1;
891 SET_DR_MISALIGNMENT (dr, misal);
892 return;
893 }
894
895 if (dump_enabled_p ())
896 dump_printf_loc (MSG_NOTE, vect_location, "Setting misalignment to -1.\n");
897 SET_DR_MISALIGNMENT (dr, -1);
898 }
899
900
901 /* Function vect_verify_datarefs_alignment
902
903 Return TRUE if all data references in the loop can be
904 handled with respect to alignment. */
905
906 bool
907 vect_verify_datarefs_alignment (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
908 {
909 vec<data_reference_p> datarefs;
910 struct data_reference *dr;
911 enum dr_alignment_support supportable_dr_alignment;
912 unsigned int i;
913
914 if (loop_vinfo)
915 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
916 else
917 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
918
919 FOR_EACH_VEC_ELT (datarefs, i, dr)
920 {
921 gimple stmt = DR_STMT (dr);
922 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
923
924 if (!STMT_VINFO_RELEVANT_P (stmt_info))
925 continue;
926
927 /* For interleaving, only the alignment of the first access matters.
928 Skip statements marked as not vectorizable. */
929 if ((STMT_VINFO_GROUPED_ACCESS (stmt_info)
930 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
931 || !STMT_VINFO_VECTORIZABLE (stmt_info))
932 continue;
933
934 /* Strided loads perform only component accesses, alignment is
935 irrelevant for them. */
936 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
937 continue;
938
939 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
940 if (!supportable_dr_alignment)
941 {
942 if (dump_enabled_p ())
943 {
944 if (DR_IS_READ (dr))
945 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
946 "not vectorized: unsupported unaligned load.");
947 else
948 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
949 "not vectorized: unsupported unaligned "
950 "store.");
951
952 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
953 DR_REF (dr));
954 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
955 }
956 return false;
957 }
958 if (supportable_dr_alignment != dr_aligned && dump_enabled_p ())
959 dump_printf_loc (MSG_NOTE, vect_location,
960 "Vectorizing an unaligned access.\n");
961 }
962 return true;
963 }
964
965 /* Given an memory reference EXP return whether its alignment is less
966 than its size. */
967
968 static bool
969 not_size_aligned (tree exp)
970 {
971 if (!tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (exp))))
972 return true;
973
974 return (tree_to_uhwi (TYPE_SIZE (TREE_TYPE (exp)))
975 > get_object_alignment (exp));
976 }
977
978 /* Function vector_alignment_reachable_p
979
980 Return true if vector alignment for DR is reachable by peeling
981 a few loop iterations. Return false otherwise. */
982
983 static bool
984 vector_alignment_reachable_p (struct data_reference *dr)
985 {
986 gimple stmt = DR_STMT (dr);
987 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
988 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
989
990 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
991 {
992 /* For interleaved access we peel only if number of iterations in
993 the prolog loop ({VF - misalignment}), is a multiple of the
994 number of the interleaved accesses. */
995 int elem_size, mis_in_elements;
996 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
997
998 /* FORNOW: handle only known alignment. */
999 if (!known_alignment_for_access_p (dr))
1000 return false;
1001
1002 elem_size = GET_MODE_SIZE (TYPE_MODE (vectype)) / nelements;
1003 mis_in_elements = DR_MISALIGNMENT (dr) / elem_size;
1004
1005 if ((nelements - mis_in_elements) % GROUP_SIZE (stmt_info))
1006 return false;
1007 }
1008
1009 /* If misalignment is known at the compile time then allow peeling
1010 only if natural alignment is reachable through peeling. */
1011 if (known_alignment_for_access_p (dr) && !aligned_access_p (dr))
1012 {
1013 HOST_WIDE_INT elmsize =
1014 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1015 if (dump_enabled_p ())
1016 {
1017 dump_printf_loc (MSG_NOTE, vect_location,
1018 "data size =" HOST_WIDE_INT_PRINT_DEC, elmsize);
1019 dump_printf (MSG_NOTE,
1020 ". misalignment = %d.\n", DR_MISALIGNMENT (dr));
1021 }
1022 if (DR_MISALIGNMENT (dr) % elmsize)
1023 {
1024 if (dump_enabled_p ())
1025 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1026 "data size does not divide the misalignment.\n");
1027 return false;
1028 }
1029 }
1030
1031 if (!known_alignment_for_access_p (dr))
1032 {
1033 tree type = TREE_TYPE (DR_REF (dr));
1034 bool is_packed = not_size_aligned (DR_REF (dr));
1035 if (dump_enabled_p ())
1036 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1037 "Unknown misalignment, is_packed = %d\n",is_packed);
1038 if ((TYPE_USER_ALIGN (type) && !is_packed)
1039 || targetm.vectorize.vector_alignment_reachable (type, is_packed))
1040 return true;
1041 else
1042 return false;
1043 }
1044
1045 return true;
1046 }
1047
1048
1049 /* Calculate the cost of the memory access represented by DR. */
1050
1051 static void
1052 vect_get_data_access_cost (struct data_reference *dr,
1053 unsigned int *inside_cost,
1054 unsigned int *outside_cost,
1055 stmt_vector_for_cost *body_cost_vec)
1056 {
1057 gimple stmt = DR_STMT (dr);
1058 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1059 int nunits = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
1060 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1061 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1062 int ncopies = vf / nunits;
1063
1064 if (DR_IS_READ (dr))
1065 vect_get_load_cost (dr, ncopies, true, inside_cost, outside_cost,
1066 NULL, body_cost_vec, false);
1067 else
1068 vect_get_store_cost (dr, ncopies, inside_cost, body_cost_vec);
1069
1070 if (dump_enabled_p ())
1071 dump_printf_loc (MSG_NOTE, vect_location,
1072 "vect_get_data_access_cost: inside_cost = %d, "
1073 "outside_cost = %d.\n", *inside_cost, *outside_cost);
1074 }
1075
1076
1077 /* Insert DR into peeling hash table with NPEEL as key. */
1078
1079 static void
1080 vect_peeling_hash_insert (loop_vec_info loop_vinfo, struct data_reference *dr,
1081 int npeel)
1082 {
1083 struct _vect_peel_info elem, *slot;
1084 _vect_peel_info **new_slot;
1085 bool supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1086
1087 elem.npeel = npeel;
1088 slot = LOOP_VINFO_PEELING_HTAB (loop_vinfo)->find (&elem);
1089 if (slot)
1090 slot->count++;
1091 else
1092 {
1093 slot = XNEW (struct _vect_peel_info);
1094 slot->npeel = npeel;
1095 slot->dr = dr;
1096 slot->count = 1;
1097 new_slot
1098 = LOOP_VINFO_PEELING_HTAB (loop_vinfo)->find_slot (slot, INSERT);
1099 *new_slot = slot;
1100 }
1101
1102 if (!supportable_dr_alignment
1103 && unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1104 slot->count += VECT_MAX_COST;
1105 }
1106
1107
1108 /* Traverse peeling hash table to find peeling option that aligns maximum
1109 number of data accesses. */
1110
1111 int
1112 vect_peeling_hash_get_most_frequent (_vect_peel_info **slot,
1113 _vect_peel_extended_info *max)
1114 {
1115 vect_peel_info elem = *slot;
1116
1117 if (elem->count > max->peel_info.count
1118 || (elem->count == max->peel_info.count
1119 && max->peel_info.npeel > elem->npeel))
1120 {
1121 max->peel_info.npeel = elem->npeel;
1122 max->peel_info.count = elem->count;
1123 max->peel_info.dr = elem->dr;
1124 }
1125
1126 return 1;
1127 }
1128
1129
1130 /* Traverse peeling hash table and calculate cost for each peeling option.
1131 Find the one with the lowest cost. */
1132
1133 int
1134 vect_peeling_hash_get_lowest_cost (_vect_peel_info **slot,
1135 _vect_peel_extended_info *min)
1136 {
1137 vect_peel_info elem = *slot;
1138 int save_misalignment, dummy;
1139 unsigned int inside_cost = 0, outside_cost = 0, i;
1140 gimple stmt = DR_STMT (elem->dr);
1141 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1142 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1143 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1144 struct data_reference *dr;
1145 stmt_vector_for_cost prologue_cost_vec, body_cost_vec, epilogue_cost_vec;
1146 int single_iter_cost;
1147
1148 prologue_cost_vec.create (2);
1149 body_cost_vec.create (2);
1150 epilogue_cost_vec.create (2);
1151
1152 FOR_EACH_VEC_ELT (datarefs, i, dr)
1153 {
1154 stmt = DR_STMT (dr);
1155 stmt_info = vinfo_for_stmt (stmt);
1156 /* For interleaving, only the alignment of the first access
1157 matters. */
1158 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1159 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1160 continue;
1161
1162 save_misalignment = DR_MISALIGNMENT (dr);
1163 vect_update_misalignment_for_peel (dr, elem->dr, elem->npeel);
1164 vect_get_data_access_cost (dr, &inside_cost, &outside_cost,
1165 &body_cost_vec);
1166 SET_DR_MISALIGNMENT (dr, save_misalignment);
1167 }
1168
1169 single_iter_cost = vect_get_single_scalar_iteration_cost (loop_vinfo);
1170 outside_cost += vect_get_known_peeling_cost (loop_vinfo, elem->npeel,
1171 &dummy, single_iter_cost,
1172 &prologue_cost_vec,
1173 &epilogue_cost_vec);
1174
1175 /* Prologue and epilogue costs are added to the target model later.
1176 These costs depend only on the scalar iteration cost, the
1177 number of peeling iterations finally chosen, and the number of
1178 misaligned statements. So discard the information found here. */
1179 prologue_cost_vec.release ();
1180 epilogue_cost_vec.release ();
1181
1182 if (inside_cost < min->inside_cost
1183 || (inside_cost == min->inside_cost && outside_cost < min->outside_cost))
1184 {
1185 min->inside_cost = inside_cost;
1186 min->outside_cost = outside_cost;
1187 min->body_cost_vec.release ();
1188 min->body_cost_vec = body_cost_vec;
1189 min->peel_info.dr = elem->dr;
1190 min->peel_info.npeel = elem->npeel;
1191 }
1192 else
1193 body_cost_vec.release ();
1194
1195 return 1;
1196 }
1197
1198
1199 /* Choose best peeling option by traversing peeling hash table and either
1200 choosing an option with the lowest cost (if cost model is enabled) or the
1201 option that aligns as many accesses as possible. */
1202
1203 static struct data_reference *
1204 vect_peeling_hash_choose_best_peeling (loop_vec_info loop_vinfo,
1205 unsigned int *npeel,
1206 stmt_vector_for_cost *body_cost_vec)
1207 {
1208 struct _vect_peel_extended_info res;
1209
1210 res.peel_info.dr = NULL;
1211 res.body_cost_vec = stmt_vector_for_cost ();
1212
1213 if (!unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1214 {
1215 res.inside_cost = INT_MAX;
1216 res.outside_cost = INT_MAX;
1217 LOOP_VINFO_PEELING_HTAB (loop_vinfo)
1218 ->traverse <_vect_peel_extended_info *,
1219 vect_peeling_hash_get_lowest_cost> (&res);
1220 }
1221 else
1222 {
1223 res.peel_info.count = 0;
1224 LOOP_VINFO_PEELING_HTAB (loop_vinfo)
1225 ->traverse <_vect_peel_extended_info *,
1226 vect_peeling_hash_get_most_frequent> (&res);
1227 }
1228
1229 *npeel = res.peel_info.npeel;
1230 *body_cost_vec = res.body_cost_vec;
1231 return res.peel_info.dr;
1232 }
1233
1234
1235 /* Function vect_enhance_data_refs_alignment
1236
1237 This pass will use loop versioning and loop peeling in order to enhance
1238 the alignment of data references in the loop.
1239
1240 FOR NOW: we assume that whatever versioning/peeling takes place, only the
1241 original loop is to be vectorized. Any other loops that are created by
1242 the transformations performed in this pass - are not supposed to be
1243 vectorized. This restriction will be relaxed.
1244
1245 This pass will require a cost model to guide it whether to apply peeling
1246 or versioning or a combination of the two. For example, the scheme that
1247 intel uses when given a loop with several memory accesses, is as follows:
1248 choose one memory access ('p') which alignment you want to force by doing
1249 peeling. Then, either (1) generate a loop in which 'p' is aligned and all
1250 other accesses are not necessarily aligned, or (2) use loop versioning to
1251 generate one loop in which all accesses are aligned, and another loop in
1252 which only 'p' is necessarily aligned.
1253
1254 ("Automatic Intra-Register Vectorization for the Intel Architecture",
1255 Aart J.C. Bik, Milind Girkar, Paul M. Grey and Ximmin Tian, International
1256 Journal of Parallel Programming, Vol. 30, No. 2, April 2002.)
1257
1258 Devising a cost model is the most critical aspect of this work. It will
1259 guide us on which access to peel for, whether to use loop versioning, how
1260 many versions to create, etc. The cost model will probably consist of
1261 generic considerations as well as target specific considerations (on
1262 powerpc for example, misaligned stores are more painful than misaligned
1263 loads).
1264
1265 Here are the general steps involved in alignment enhancements:
1266
1267 -- original loop, before alignment analysis:
1268 for (i=0; i<N; i++){
1269 x = q[i]; # DR_MISALIGNMENT(q) = unknown
1270 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1271 }
1272
1273 -- After vect_compute_data_refs_alignment:
1274 for (i=0; i<N; i++){
1275 x = q[i]; # DR_MISALIGNMENT(q) = 3
1276 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1277 }
1278
1279 -- Possibility 1: we do loop versioning:
1280 if (p is aligned) {
1281 for (i=0; i<N; i++){ # loop 1A
1282 x = q[i]; # DR_MISALIGNMENT(q) = 3
1283 p[i] = y; # DR_MISALIGNMENT(p) = 0
1284 }
1285 }
1286 else {
1287 for (i=0; i<N; i++){ # loop 1B
1288 x = q[i]; # DR_MISALIGNMENT(q) = 3
1289 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1290 }
1291 }
1292
1293 -- Possibility 2: we do loop peeling:
1294 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1295 x = q[i];
1296 p[i] = y;
1297 }
1298 for (i = 3; i < N; i++){ # loop 2A
1299 x = q[i]; # DR_MISALIGNMENT(q) = 0
1300 p[i] = y; # DR_MISALIGNMENT(p) = unknown
1301 }
1302
1303 -- Possibility 3: combination of loop peeling and versioning:
1304 for (i = 0; i < 3; i++){ # (scalar loop, not to be vectorized).
1305 x = q[i];
1306 p[i] = y;
1307 }
1308 if (p is aligned) {
1309 for (i = 3; i<N; i++){ # loop 3A
1310 x = q[i]; # DR_MISALIGNMENT(q) = 0
1311 p[i] = y; # DR_MISALIGNMENT(p) = 0
1312 }
1313 }
1314 else {
1315 for (i = 3; i<N; i++){ # loop 3B
1316 x = q[i]; # DR_MISALIGNMENT(q) = 0
1317 p[i] = y; # DR_MISALIGNMENT(p) = unaligned
1318 }
1319 }
1320
1321 These loops are later passed to loop_transform to be vectorized. The
1322 vectorizer will use the alignment information to guide the transformation
1323 (whether to generate regular loads/stores, or with special handling for
1324 misalignment). */
1325
1326 bool
1327 vect_enhance_data_refs_alignment (loop_vec_info loop_vinfo)
1328 {
1329 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1330 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1331 enum dr_alignment_support supportable_dr_alignment;
1332 struct data_reference *dr0 = NULL, *first_store = NULL;
1333 struct data_reference *dr;
1334 unsigned int i, j;
1335 bool do_peeling = false;
1336 bool do_versioning = false;
1337 bool stat;
1338 gimple stmt;
1339 stmt_vec_info stmt_info;
1340 unsigned int npeel = 0;
1341 bool all_misalignments_unknown = true;
1342 unsigned int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1343 unsigned possible_npeel_number = 1;
1344 tree vectype;
1345 unsigned int nelements, mis, same_align_drs_max = 0;
1346 stmt_vector_for_cost body_cost_vec = stmt_vector_for_cost ();
1347
1348 if (dump_enabled_p ())
1349 dump_printf_loc (MSG_NOTE, vect_location,
1350 "=== vect_enhance_data_refs_alignment ===\n");
1351
1352 /* While cost model enhancements are expected in the future, the high level
1353 view of the code at this time is as follows:
1354
1355 A) If there is a misaligned access then see if peeling to align
1356 this access can make all data references satisfy
1357 vect_supportable_dr_alignment. If so, update data structures
1358 as needed and return true.
1359
1360 B) If peeling wasn't possible and there is a data reference with an
1361 unknown misalignment that does not satisfy vect_supportable_dr_alignment
1362 then see if loop versioning checks can be used to make all data
1363 references satisfy vect_supportable_dr_alignment. If so, update
1364 data structures as needed and return true.
1365
1366 C) If neither peeling nor versioning were successful then return false if
1367 any data reference does not satisfy vect_supportable_dr_alignment.
1368
1369 D) Return true (all data references satisfy vect_supportable_dr_alignment).
1370
1371 Note, Possibility 3 above (which is peeling and versioning together) is not
1372 being done at this time. */
1373
1374 /* (1) Peeling to force alignment. */
1375
1376 /* (1.1) Decide whether to perform peeling, and how many iterations to peel:
1377 Considerations:
1378 + How many accesses will become aligned due to the peeling
1379 - How many accesses will become unaligned due to the peeling,
1380 and the cost of misaligned accesses.
1381 - The cost of peeling (the extra runtime checks, the increase
1382 in code size). */
1383
1384 FOR_EACH_VEC_ELT (datarefs, i, dr)
1385 {
1386 stmt = DR_STMT (dr);
1387 stmt_info = vinfo_for_stmt (stmt);
1388
1389 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1390 continue;
1391
1392 /* For interleaving, only the alignment of the first access
1393 matters. */
1394 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1395 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1396 continue;
1397
1398 /* For invariant accesses there is nothing to enhance. */
1399 if (integer_zerop (DR_STEP (dr)))
1400 continue;
1401
1402 /* Strided loads perform only component accesses, alignment is
1403 irrelevant for them. */
1404 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
1405 continue;
1406
1407 supportable_dr_alignment = vect_supportable_dr_alignment (dr, true);
1408 do_peeling = vector_alignment_reachable_p (dr);
1409 if (do_peeling)
1410 {
1411 if (known_alignment_for_access_p (dr))
1412 {
1413 unsigned int npeel_tmp;
1414 bool negative = tree_int_cst_compare (DR_STEP (dr),
1415 size_zero_node) < 0;
1416
1417 /* Save info about DR in the hash table. */
1418 if (!LOOP_VINFO_PEELING_HTAB (loop_vinfo))
1419 LOOP_VINFO_PEELING_HTAB (loop_vinfo)
1420 = new hash_table<peel_info_hasher> (1);
1421
1422 vectype = STMT_VINFO_VECTYPE (stmt_info);
1423 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1424 mis = DR_MISALIGNMENT (dr) / GET_MODE_SIZE (TYPE_MODE (
1425 TREE_TYPE (DR_REF (dr))));
1426 npeel_tmp = (negative
1427 ? (mis - nelements) : (nelements - mis))
1428 & (nelements - 1);
1429
1430 /* For multiple types, it is possible that the bigger type access
1431 will have more than one peeling option. E.g., a loop with two
1432 types: one of size (vector size / 4), and the other one of
1433 size (vector size / 8). Vectorization factor will 8. If both
1434 access are misaligned by 3, the first one needs one scalar
1435 iteration to be aligned, and the second one needs 5. But the
1436 the first one will be aligned also by peeling 5 scalar
1437 iterations, and in that case both accesses will be aligned.
1438 Hence, except for the immediate peeling amount, we also want
1439 to try to add full vector size, while we don't exceed
1440 vectorization factor.
1441 We do this automtically for cost model, since we calculate cost
1442 for every peeling option. */
1443 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1444 possible_npeel_number = vf /nelements;
1445
1446 /* Handle the aligned case. We may decide to align some other
1447 access, making DR unaligned. */
1448 if (DR_MISALIGNMENT (dr) == 0)
1449 {
1450 npeel_tmp = 0;
1451 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
1452 possible_npeel_number++;
1453 }
1454
1455 for (j = 0; j < possible_npeel_number; j++)
1456 {
1457 gcc_assert (npeel_tmp <= vf);
1458 vect_peeling_hash_insert (loop_vinfo, dr, npeel_tmp);
1459 npeel_tmp += nelements;
1460 }
1461
1462 all_misalignments_unknown = false;
1463 /* Data-ref that was chosen for the case that all the
1464 misalignments are unknown is not relevant anymore, since we
1465 have a data-ref with known alignment. */
1466 dr0 = NULL;
1467 }
1468 else
1469 {
1470 /* If we don't know any misalignment values, we prefer
1471 peeling for data-ref that has the maximum number of data-refs
1472 with the same alignment, unless the target prefers to align
1473 stores over load. */
1474 if (all_misalignments_unknown)
1475 {
1476 unsigned same_align_drs
1477 = STMT_VINFO_SAME_ALIGN_REFS (stmt_info).length ();
1478 if (!dr0
1479 || same_align_drs_max < same_align_drs)
1480 {
1481 same_align_drs_max = same_align_drs;
1482 dr0 = dr;
1483 }
1484 /* For data-refs with the same number of related
1485 accesses prefer the one where the misalign
1486 computation will be invariant in the outermost loop. */
1487 else if (same_align_drs_max == same_align_drs)
1488 {
1489 struct loop *ivloop0, *ivloop;
1490 ivloop0 = outermost_invariant_loop_for_expr
1491 (loop, DR_BASE_ADDRESS (dr0));
1492 ivloop = outermost_invariant_loop_for_expr
1493 (loop, DR_BASE_ADDRESS (dr));
1494 if ((ivloop && !ivloop0)
1495 || (ivloop && ivloop0
1496 && flow_loop_nested_p (ivloop, ivloop0)))
1497 dr0 = dr;
1498 }
1499
1500 if (!first_store && DR_IS_WRITE (dr))
1501 first_store = dr;
1502 }
1503
1504 /* If there are both known and unknown misaligned accesses in the
1505 loop, we choose peeling amount according to the known
1506 accesses. */
1507 if (!supportable_dr_alignment)
1508 {
1509 dr0 = dr;
1510 if (!first_store && DR_IS_WRITE (dr))
1511 first_store = dr;
1512 }
1513 }
1514 }
1515 else
1516 {
1517 if (!aligned_access_p (dr))
1518 {
1519 if (dump_enabled_p ())
1520 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1521 "vector alignment may not be reachable\n");
1522 break;
1523 }
1524 }
1525 }
1526
1527 /* Check if we can possibly peel the loop. */
1528 if (!vect_can_advance_ivs_p (loop_vinfo)
1529 || !slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
1530 do_peeling = false;
1531
1532 /* If we don't know how many times the peeling loop will run
1533 assume it will run VF-1 times and disable peeling if the remaining
1534 iters are less than the vectorization factor. */
1535 if (do_peeling
1536 && all_misalignments_unknown
1537 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1538 && (LOOP_VINFO_INT_NITERS (loop_vinfo)
1539 < 2 * (unsigned) LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1))
1540 do_peeling = false;
1541
1542 if (do_peeling
1543 && all_misalignments_unknown
1544 && vect_supportable_dr_alignment (dr0, false))
1545 {
1546 /* Check if the target requires to prefer stores over loads, i.e., if
1547 misaligned stores are more expensive than misaligned loads (taking
1548 drs with same alignment into account). */
1549 if (first_store && DR_IS_READ (dr0))
1550 {
1551 unsigned int load_inside_cost = 0, load_outside_cost = 0;
1552 unsigned int store_inside_cost = 0, store_outside_cost = 0;
1553 unsigned int load_inside_penalty = 0, load_outside_penalty = 0;
1554 unsigned int store_inside_penalty = 0, store_outside_penalty = 0;
1555 stmt_vector_for_cost dummy;
1556 dummy.create (2);
1557
1558 vect_get_data_access_cost (dr0, &load_inside_cost, &load_outside_cost,
1559 &dummy);
1560 vect_get_data_access_cost (first_store, &store_inside_cost,
1561 &store_outside_cost, &dummy);
1562
1563 dummy.release ();
1564
1565 /* Calculate the penalty for leaving FIRST_STORE unaligned (by
1566 aligning the load DR0). */
1567 load_inside_penalty = store_inside_cost;
1568 load_outside_penalty = store_outside_cost;
1569 for (i = 0;
1570 STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
1571 DR_STMT (first_store))).iterate (i, &dr);
1572 i++)
1573 if (DR_IS_READ (dr))
1574 {
1575 load_inside_penalty += load_inside_cost;
1576 load_outside_penalty += load_outside_cost;
1577 }
1578 else
1579 {
1580 load_inside_penalty += store_inside_cost;
1581 load_outside_penalty += store_outside_cost;
1582 }
1583
1584 /* Calculate the penalty for leaving DR0 unaligned (by
1585 aligning the FIRST_STORE). */
1586 store_inside_penalty = load_inside_cost;
1587 store_outside_penalty = load_outside_cost;
1588 for (i = 0;
1589 STMT_VINFO_SAME_ALIGN_REFS (vinfo_for_stmt (
1590 DR_STMT (dr0))).iterate (i, &dr);
1591 i++)
1592 if (DR_IS_READ (dr))
1593 {
1594 store_inside_penalty += load_inside_cost;
1595 store_outside_penalty += load_outside_cost;
1596 }
1597 else
1598 {
1599 store_inside_penalty += store_inside_cost;
1600 store_outside_penalty += store_outside_cost;
1601 }
1602
1603 if (load_inside_penalty > store_inside_penalty
1604 || (load_inside_penalty == store_inside_penalty
1605 && load_outside_penalty > store_outside_penalty))
1606 dr0 = first_store;
1607 }
1608
1609 /* In case there are only loads with different unknown misalignments, use
1610 peeling only if it may help to align other accesses in the loop. */
1611 if (!first_store
1612 && !STMT_VINFO_SAME_ALIGN_REFS (
1613 vinfo_for_stmt (DR_STMT (dr0))).length ()
1614 && vect_supportable_dr_alignment (dr0, false)
1615 != dr_unaligned_supported)
1616 do_peeling = false;
1617 }
1618
1619 if (do_peeling && !dr0)
1620 {
1621 /* Peeling is possible, but there is no data access that is not supported
1622 unless aligned. So we try to choose the best possible peeling. */
1623
1624 /* We should get here only if there are drs with known misalignment. */
1625 gcc_assert (!all_misalignments_unknown);
1626
1627 /* Choose the best peeling from the hash table. */
1628 dr0 = vect_peeling_hash_choose_best_peeling (loop_vinfo, &npeel,
1629 &body_cost_vec);
1630 if (!dr0 || !npeel)
1631 do_peeling = false;
1632
1633 /* If peeling by npeel will result in a remaining loop not iterating
1634 enough to be vectorized then do not peel. */
1635 if (do_peeling
1636 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1637 && (LOOP_VINFO_INT_NITERS (loop_vinfo)
1638 < LOOP_VINFO_VECT_FACTOR (loop_vinfo) + npeel))
1639 do_peeling = false;
1640 }
1641
1642 if (do_peeling)
1643 {
1644 stmt = DR_STMT (dr0);
1645 stmt_info = vinfo_for_stmt (stmt);
1646 vectype = STMT_VINFO_VECTYPE (stmt_info);
1647 nelements = TYPE_VECTOR_SUBPARTS (vectype);
1648
1649 if (known_alignment_for_access_p (dr0))
1650 {
1651 bool negative = tree_int_cst_compare (DR_STEP (dr0),
1652 size_zero_node) < 0;
1653 if (!npeel)
1654 {
1655 /* Since it's known at compile time, compute the number of
1656 iterations in the peeled loop (the peeling factor) for use in
1657 updating DR_MISALIGNMENT values. The peeling factor is the
1658 vectorization factor minus the misalignment as an element
1659 count. */
1660 mis = DR_MISALIGNMENT (dr0);
1661 mis /= GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr0))));
1662 npeel = ((negative ? mis - nelements : nelements - mis)
1663 & (nelements - 1));
1664 }
1665
1666 /* For interleaved data access every iteration accesses all the
1667 members of the group, therefore we divide the number of iterations
1668 by the group size. */
1669 stmt_info = vinfo_for_stmt (DR_STMT (dr0));
1670 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1671 npeel /= GROUP_SIZE (stmt_info);
1672
1673 if (dump_enabled_p ())
1674 dump_printf_loc (MSG_NOTE, vect_location,
1675 "Try peeling by %d\n", npeel);
1676 }
1677
1678 /* Ensure that all data refs can be vectorized after the peel. */
1679 FOR_EACH_VEC_ELT (datarefs, i, dr)
1680 {
1681 int save_misalignment;
1682
1683 if (dr == dr0)
1684 continue;
1685
1686 stmt = DR_STMT (dr);
1687 stmt_info = vinfo_for_stmt (stmt);
1688 /* For interleaving, only the alignment of the first access
1689 matters. */
1690 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1691 && GROUP_FIRST_ELEMENT (stmt_info) != stmt)
1692 continue;
1693
1694 /* Strided loads perform only component accesses, alignment is
1695 irrelevant for them. */
1696 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
1697 continue;
1698
1699 save_misalignment = DR_MISALIGNMENT (dr);
1700 vect_update_misalignment_for_peel (dr, dr0, npeel);
1701 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
1702 SET_DR_MISALIGNMENT (dr, save_misalignment);
1703
1704 if (!supportable_dr_alignment)
1705 {
1706 do_peeling = false;
1707 break;
1708 }
1709 }
1710
1711 if (do_peeling && known_alignment_for_access_p (dr0) && npeel == 0)
1712 {
1713 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1714 if (!stat)
1715 do_peeling = false;
1716 else
1717 {
1718 body_cost_vec.release ();
1719 return stat;
1720 }
1721 }
1722
1723 if (do_peeling)
1724 {
1725 unsigned max_allowed_peel
1726 = PARAM_VALUE (PARAM_VECT_MAX_PEELING_FOR_ALIGNMENT);
1727 if (max_allowed_peel != (unsigned)-1)
1728 {
1729 unsigned max_peel = npeel;
1730 if (max_peel == 0)
1731 {
1732 gimple dr_stmt = DR_STMT (dr0);
1733 stmt_vec_info vinfo = vinfo_for_stmt (dr_stmt);
1734 tree vtype = STMT_VINFO_VECTYPE (vinfo);
1735 max_peel = TYPE_VECTOR_SUBPARTS (vtype) - 1;
1736 }
1737 if (max_peel > max_allowed_peel)
1738 {
1739 do_peeling = false;
1740 if (dump_enabled_p ())
1741 dump_printf_loc (MSG_NOTE, vect_location,
1742 "Disable peeling, max peels reached: %d\n", max_peel);
1743 }
1744 }
1745 }
1746
1747 if (do_peeling)
1748 {
1749 stmt_info_for_cost *si;
1750 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
1751
1752 /* (1.2) Update the DR_MISALIGNMENT of each data reference DR_i.
1753 If the misalignment of DR_i is identical to that of dr0 then set
1754 DR_MISALIGNMENT (DR_i) to zero. If the misalignment of DR_i and
1755 dr0 are known at compile time then increment DR_MISALIGNMENT (DR_i)
1756 by the peeling factor times the element size of DR_i (MOD the
1757 vectorization factor times the size). Otherwise, the
1758 misalignment of DR_i must be set to unknown. */
1759 FOR_EACH_VEC_ELT (datarefs, i, dr)
1760 if (dr != dr0)
1761 vect_update_misalignment_for_peel (dr, dr0, npeel);
1762
1763 LOOP_VINFO_UNALIGNED_DR (loop_vinfo) = dr0;
1764 if (npeel)
1765 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) = npeel;
1766 else
1767 LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
1768 = DR_MISALIGNMENT (dr0);
1769 SET_DR_MISALIGNMENT (dr0, 0);
1770 if (dump_enabled_p ())
1771 {
1772 dump_printf_loc (MSG_NOTE, vect_location,
1773 "Alignment of access forced using peeling.\n");
1774 dump_printf_loc (MSG_NOTE, vect_location,
1775 "Peeling for alignment will be applied.\n");
1776 }
1777 /* We've delayed passing the inside-loop peeling costs to the
1778 target cost model until we were sure peeling would happen.
1779 Do so now. */
1780 if (body_cost_vec.exists ())
1781 {
1782 FOR_EACH_VEC_ELT (body_cost_vec, i, si)
1783 {
1784 struct _stmt_vec_info *stmt_info
1785 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
1786 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
1787 si->misalign, vect_body);
1788 }
1789 body_cost_vec.release ();
1790 }
1791
1792 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1793 gcc_assert (stat);
1794 return stat;
1795 }
1796 }
1797
1798 body_cost_vec.release ();
1799
1800 /* (2) Versioning to force alignment. */
1801
1802 /* Try versioning if:
1803 1) optimize loop for speed
1804 2) there is at least one unsupported misaligned data ref with an unknown
1805 misalignment, and
1806 3) all misaligned data refs with a known misalignment are supported, and
1807 4) the number of runtime alignment checks is within reason. */
1808
1809 do_versioning =
1810 optimize_loop_nest_for_speed_p (loop)
1811 && (!loop->inner); /* FORNOW */
1812
1813 if (do_versioning)
1814 {
1815 FOR_EACH_VEC_ELT (datarefs, i, dr)
1816 {
1817 stmt = DR_STMT (dr);
1818 stmt_info = vinfo_for_stmt (stmt);
1819
1820 /* For interleaving, only the alignment of the first access
1821 matters. */
1822 if (aligned_access_p (dr)
1823 || (STMT_VINFO_GROUPED_ACCESS (stmt_info)
1824 && GROUP_FIRST_ELEMENT (stmt_info) != stmt))
1825 continue;
1826
1827 /* Strided loads perform only component accesses, alignment is
1828 irrelevant for them. */
1829 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
1830 continue;
1831
1832 supportable_dr_alignment = vect_supportable_dr_alignment (dr, false);
1833
1834 if (!supportable_dr_alignment)
1835 {
1836 gimple stmt;
1837 int mask;
1838 tree vectype;
1839
1840 if (known_alignment_for_access_p (dr)
1841 || LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ()
1842 >= (unsigned) PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS))
1843 {
1844 do_versioning = false;
1845 break;
1846 }
1847
1848 stmt = DR_STMT (dr);
1849 vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
1850 gcc_assert (vectype);
1851
1852 /* The rightmost bits of an aligned address must be zeros.
1853 Construct the mask needed for this test. For example,
1854 GET_MODE_SIZE for the vector mode V4SI is 16 bytes so the
1855 mask must be 15 = 0xf. */
1856 mask = GET_MODE_SIZE (TYPE_MODE (vectype)) - 1;
1857
1858 /* FORNOW: use the same mask to test all potentially unaligned
1859 references in the loop. The vectorizer currently supports
1860 a single vector size, see the reference to
1861 GET_MODE_NUNITS (TYPE_MODE (vectype)) where the
1862 vectorization factor is computed. */
1863 gcc_assert (!LOOP_VINFO_PTR_MASK (loop_vinfo)
1864 || LOOP_VINFO_PTR_MASK (loop_vinfo) == mask);
1865 LOOP_VINFO_PTR_MASK (loop_vinfo) = mask;
1866 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).safe_push (
1867 DR_STMT (dr));
1868 }
1869 }
1870
1871 /* Versioning requires at least one misaligned data reference. */
1872 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
1873 do_versioning = false;
1874 else if (!do_versioning)
1875 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).truncate (0);
1876 }
1877
1878 if (do_versioning)
1879 {
1880 vec<gimple> may_misalign_stmts
1881 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
1882 gimple stmt;
1883
1884 /* It can now be assumed that the data references in the statements
1885 in LOOP_VINFO_MAY_MISALIGN_STMTS will be aligned in the version
1886 of the loop being vectorized. */
1887 FOR_EACH_VEC_ELT (may_misalign_stmts, i, stmt)
1888 {
1889 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1890 dr = STMT_VINFO_DATA_REF (stmt_info);
1891 SET_DR_MISALIGNMENT (dr, 0);
1892 if (dump_enabled_p ())
1893 dump_printf_loc (MSG_NOTE, vect_location,
1894 "Alignment of access forced using versioning.\n");
1895 }
1896
1897 if (dump_enabled_p ())
1898 dump_printf_loc (MSG_NOTE, vect_location,
1899 "Versioning for alignment will be applied.\n");
1900
1901 /* Peeling and versioning can't be done together at this time. */
1902 gcc_assert (! (do_peeling && do_versioning));
1903
1904 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1905 gcc_assert (stat);
1906 return stat;
1907 }
1908
1909 /* This point is reached if neither peeling nor versioning is being done. */
1910 gcc_assert (! (do_peeling || do_versioning));
1911
1912 stat = vect_verify_datarefs_alignment (loop_vinfo, NULL);
1913 return stat;
1914 }
1915
1916
1917 /* Function vect_find_same_alignment_drs.
1918
1919 Update group and alignment relations according to the chosen
1920 vectorization factor. */
1921
1922 static void
1923 vect_find_same_alignment_drs (struct data_dependence_relation *ddr,
1924 loop_vec_info loop_vinfo)
1925 {
1926 unsigned int i;
1927 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1928 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1929 struct data_reference *dra = DDR_A (ddr);
1930 struct data_reference *drb = DDR_B (ddr);
1931 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
1932 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
1933 int dra_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dra))));
1934 int drb_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (drb))));
1935 lambda_vector dist_v;
1936 unsigned int loop_depth;
1937
1938 if (DDR_ARE_DEPENDENT (ddr) == chrec_known)
1939 return;
1940
1941 if (dra == drb)
1942 return;
1943
1944 if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
1945 return;
1946
1947 /* Loop-based vectorization and known data dependence. */
1948 if (DDR_NUM_DIST_VECTS (ddr) == 0)
1949 return;
1950
1951 /* Data-dependence analysis reports a distance vector of zero
1952 for data-references that overlap only in the first iteration
1953 but have different sign step (see PR45764).
1954 So as a sanity check require equal DR_STEP. */
1955 if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
1956 return;
1957
1958 loop_depth = index_in_loop_nest (loop->num, DDR_LOOP_NEST (ddr));
1959 FOR_EACH_VEC_ELT (DDR_DIST_VECTS (ddr), i, dist_v)
1960 {
1961 int dist = dist_v[loop_depth];
1962
1963 if (dump_enabled_p ())
1964 dump_printf_loc (MSG_NOTE, vect_location,
1965 "dependence distance = %d.\n", dist);
1966
1967 /* Same loop iteration. */
1968 if (dist == 0
1969 || (dist % vectorization_factor == 0 && dra_size == drb_size))
1970 {
1971 /* Two references with distance zero have the same alignment. */
1972 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_a).safe_push (drb);
1973 STMT_VINFO_SAME_ALIGN_REFS (stmtinfo_b).safe_push (dra);
1974 if (dump_enabled_p ())
1975 {
1976 dump_printf_loc (MSG_NOTE, vect_location,
1977 "accesses have the same alignment.\n");
1978 dump_printf (MSG_NOTE,
1979 "dependence distance modulo vf == 0 between ");
1980 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
1981 dump_printf (MSG_NOTE, " and ");
1982 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
1983 dump_printf (MSG_NOTE, "\n");
1984 }
1985 }
1986 }
1987 }
1988
1989
1990 /* Function vect_analyze_data_refs_alignment
1991
1992 Analyze the alignment of the data-references in the loop.
1993 Return FALSE if a data reference is found that cannot be vectorized. */
1994
1995 bool
1996 vect_analyze_data_refs_alignment (loop_vec_info loop_vinfo,
1997 bb_vec_info bb_vinfo)
1998 {
1999 if (dump_enabled_p ())
2000 dump_printf_loc (MSG_NOTE, vect_location,
2001 "=== vect_analyze_data_refs_alignment ===\n");
2002
2003 /* Mark groups of data references with same alignment using
2004 data dependence information. */
2005 if (loop_vinfo)
2006 {
2007 vec<ddr_p> ddrs = LOOP_VINFO_DDRS (loop_vinfo);
2008 struct data_dependence_relation *ddr;
2009 unsigned int i;
2010
2011 FOR_EACH_VEC_ELT (ddrs, i, ddr)
2012 vect_find_same_alignment_drs (ddr, loop_vinfo);
2013 }
2014
2015 if (!vect_compute_data_refs_alignment (loop_vinfo, bb_vinfo))
2016 {
2017 if (dump_enabled_p ())
2018 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2019 "not vectorized: can't calculate alignment "
2020 "for data ref.\n");
2021 return false;
2022 }
2023
2024 return true;
2025 }
2026
2027
2028 /* Analyze groups of accesses: check that DR belongs to a group of
2029 accesses of legal size, step, etc. Detect gaps, single element
2030 interleaving, and other special cases. Set grouped access info.
2031 Collect groups of strided stores for further use in SLP analysis. */
2032
2033 static bool
2034 vect_analyze_group_access (struct data_reference *dr)
2035 {
2036 tree step = DR_STEP (dr);
2037 tree scalar_type = TREE_TYPE (DR_REF (dr));
2038 HOST_WIDE_INT type_size = TREE_INT_CST_LOW (TYPE_SIZE_UNIT (scalar_type));
2039 gimple stmt = DR_STMT (dr);
2040 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2041 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2042 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2043 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
2044 HOST_WIDE_INT groupsize, last_accessed_element = 1;
2045 bool slp_impossible = false;
2046 struct loop *loop = NULL;
2047
2048 if (loop_vinfo)
2049 loop = LOOP_VINFO_LOOP (loop_vinfo);
2050
2051 /* For interleaving, GROUPSIZE is STEP counted in elements, i.e., the
2052 size of the interleaving group (including gaps). */
2053 groupsize = absu_hwi (dr_step) / type_size;
2054
2055 /* Not consecutive access is possible only if it is a part of interleaving. */
2056 if (!GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
2057 {
2058 /* Check if it this DR is a part of interleaving, and is a single
2059 element of the group that is accessed in the loop. */
2060
2061 /* Gaps are supported only for loads. STEP must be a multiple of the type
2062 size. The size of the group must be a power of 2. */
2063 if (DR_IS_READ (dr)
2064 && (dr_step % type_size) == 0
2065 && groupsize > 0
2066 && exact_log2 (groupsize) != -1)
2067 {
2068 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = stmt;
2069 GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2070 if (dump_enabled_p ())
2071 {
2072 dump_printf_loc (MSG_NOTE, vect_location,
2073 "Detected single element interleaving ");
2074 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr));
2075 dump_printf (MSG_NOTE, " step ");
2076 dump_generic_expr (MSG_NOTE, TDF_SLIM, step);
2077 dump_printf (MSG_NOTE, "\n");
2078 }
2079
2080 if (loop_vinfo)
2081 {
2082 if (dump_enabled_p ())
2083 dump_printf_loc (MSG_NOTE, vect_location,
2084 "Data access with gaps requires scalar "
2085 "epilogue loop\n");
2086 if (loop->inner)
2087 {
2088 if (dump_enabled_p ())
2089 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2090 "Peeling for outer loop is not"
2091 " supported\n");
2092 return false;
2093 }
2094
2095 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
2096 }
2097
2098 return true;
2099 }
2100
2101 if (dump_enabled_p ())
2102 {
2103 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2104 "not consecutive access ");
2105 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
2106 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2107 }
2108
2109 if (bb_vinfo)
2110 {
2111 /* Mark the statement as unvectorizable. */
2112 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2113 return true;
2114 }
2115
2116 return false;
2117 }
2118
2119 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) == stmt)
2120 {
2121 /* First stmt in the interleaving chain. Check the chain. */
2122 gimple next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
2123 struct data_reference *data_ref = dr;
2124 unsigned int count = 1;
2125 tree prev_init = DR_INIT (data_ref);
2126 gimple prev = stmt;
2127 HOST_WIDE_INT diff, gaps = 0;
2128 unsigned HOST_WIDE_INT count_in_bytes;
2129
2130 while (next)
2131 {
2132 /* Skip same data-refs. In case that two or more stmts share
2133 data-ref (supported only for loads), we vectorize only the first
2134 stmt, and the rest get their vectorized loads from the first
2135 one. */
2136 if (!tree_int_cst_compare (DR_INIT (data_ref),
2137 DR_INIT (STMT_VINFO_DATA_REF (
2138 vinfo_for_stmt (next)))))
2139 {
2140 if (DR_IS_WRITE (data_ref))
2141 {
2142 if (dump_enabled_p ())
2143 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2144 "Two store stmts share the same dr.\n");
2145 return false;
2146 }
2147
2148 /* For load use the same data-ref load. */
2149 GROUP_SAME_DR_STMT (vinfo_for_stmt (next)) = prev;
2150
2151 prev = next;
2152 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2153 continue;
2154 }
2155
2156 prev = next;
2157 data_ref = STMT_VINFO_DATA_REF (vinfo_for_stmt (next));
2158
2159 /* All group members have the same STEP by construction. */
2160 gcc_checking_assert (operand_equal_p (DR_STEP (data_ref), step, 0));
2161
2162 /* Check that the distance between two accesses is equal to the type
2163 size. Otherwise, we have gaps. */
2164 diff = (TREE_INT_CST_LOW (DR_INIT (data_ref))
2165 - TREE_INT_CST_LOW (prev_init)) / type_size;
2166 if (diff != 1)
2167 {
2168 /* FORNOW: SLP of accesses with gaps is not supported. */
2169 slp_impossible = true;
2170 if (DR_IS_WRITE (data_ref))
2171 {
2172 if (dump_enabled_p ())
2173 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2174 "interleaved store with gaps\n");
2175 return false;
2176 }
2177
2178 gaps += diff - 1;
2179 }
2180
2181 last_accessed_element += diff;
2182
2183 /* Store the gap from the previous member of the group. If there is no
2184 gap in the access, GROUP_GAP is always 1. */
2185 GROUP_GAP (vinfo_for_stmt (next)) = diff;
2186
2187 prev_init = DR_INIT (data_ref);
2188 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
2189 /* Count the number of data-refs in the chain. */
2190 count++;
2191 }
2192
2193 /* COUNT is the number of accesses found, we multiply it by the size of
2194 the type to get COUNT_IN_BYTES. */
2195 count_in_bytes = type_size * count;
2196
2197 /* Check that the size of the interleaving (including gaps) is not
2198 greater than STEP. */
2199 if (dr_step != 0
2200 && absu_hwi (dr_step) < count_in_bytes + gaps * type_size)
2201 {
2202 if (dump_enabled_p ())
2203 {
2204 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2205 "interleaving size is greater than step for ");
2206 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
2207 DR_REF (dr));
2208 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2209 }
2210 return false;
2211 }
2212
2213 /* Check that the size of the interleaving is equal to STEP for stores,
2214 i.e., that there are no gaps. */
2215 if (dr_step != 0
2216 && absu_hwi (dr_step) != count_in_bytes)
2217 {
2218 if (DR_IS_READ (dr))
2219 {
2220 slp_impossible = true;
2221 /* There is a gap after the last load in the group. This gap is a
2222 difference between the groupsize and the number of elements.
2223 When there is no gap, this difference should be 0. */
2224 GROUP_GAP (vinfo_for_stmt (stmt)) = groupsize - count;
2225 }
2226 else
2227 {
2228 if (dump_enabled_p ())
2229 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2230 "interleaved store with gaps\n");
2231 return false;
2232 }
2233 }
2234
2235 /* Check that STEP is a multiple of type size. */
2236 if (dr_step != 0
2237 && (dr_step % type_size) != 0)
2238 {
2239 if (dump_enabled_p ())
2240 {
2241 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2242 "step is not a multiple of type size: step ");
2243 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, step);
2244 dump_printf (MSG_MISSED_OPTIMIZATION, " size ");
2245 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
2246 TYPE_SIZE_UNIT (scalar_type));
2247 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2248 }
2249 return false;
2250 }
2251
2252 if (groupsize == 0)
2253 groupsize = count;
2254
2255 GROUP_SIZE (vinfo_for_stmt (stmt)) = groupsize;
2256 if (dump_enabled_p ())
2257 dump_printf_loc (MSG_NOTE, vect_location,
2258 "Detected interleaving of size %d\n", (int)groupsize);
2259
2260 /* SLP: create an SLP data structure for every interleaving group of
2261 stores for further analysis in vect_analyse_slp. */
2262 if (DR_IS_WRITE (dr) && !slp_impossible)
2263 {
2264 if (loop_vinfo)
2265 LOOP_VINFO_GROUPED_STORES (loop_vinfo).safe_push (stmt);
2266 if (bb_vinfo)
2267 BB_VINFO_GROUPED_STORES (bb_vinfo).safe_push (stmt);
2268 }
2269
2270 /* There is a gap in the end of the group. */
2271 if (groupsize - last_accessed_element > 0 && loop_vinfo)
2272 {
2273 if (dump_enabled_p ())
2274 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2275 "Data access with gaps requires scalar "
2276 "epilogue loop\n");
2277 if (loop->inner)
2278 {
2279 if (dump_enabled_p ())
2280 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2281 "Peeling for outer loop is not supported\n");
2282 return false;
2283 }
2284
2285 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
2286 }
2287 }
2288
2289 return true;
2290 }
2291
2292
2293 /* Analyze the access pattern of the data-reference DR.
2294 In case of non-consecutive accesses call vect_analyze_group_access() to
2295 analyze groups of accesses. */
2296
2297 static bool
2298 vect_analyze_data_ref_access (struct data_reference *dr)
2299 {
2300 tree step = DR_STEP (dr);
2301 tree scalar_type = TREE_TYPE (DR_REF (dr));
2302 gimple stmt = DR_STMT (dr);
2303 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2304 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2305 struct loop *loop = NULL;
2306
2307 if (loop_vinfo)
2308 loop = LOOP_VINFO_LOOP (loop_vinfo);
2309
2310 if (loop_vinfo && !step)
2311 {
2312 if (dump_enabled_p ())
2313 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2314 "bad data-ref access in loop\n");
2315 return false;
2316 }
2317
2318 /* Allow invariant loads in not nested loops. */
2319 if (loop_vinfo && integer_zerop (step))
2320 {
2321 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2322 if (nested_in_vect_loop_p (loop, stmt))
2323 {
2324 if (dump_enabled_p ())
2325 dump_printf_loc (MSG_NOTE, vect_location,
2326 "zero step in inner loop of nest\n");
2327 return false;
2328 }
2329 return DR_IS_READ (dr);
2330 }
2331
2332 if (loop && nested_in_vect_loop_p (loop, stmt))
2333 {
2334 /* Interleaved accesses are not yet supported within outer-loop
2335 vectorization for references in the inner-loop. */
2336 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2337
2338 /* For the rest of the analysis we use the outer-loop step. */
2339 step = STMT_VINFO_DR_STEP (stmt_info);
2340 if (integer_zerop (step))
2341 {
2342 if (dump_enabled_p ())
2343 dump_printf_loc (MSG_NOTE, vect_location,
2344 "zero step in outer loop.\n");
2345 if (DR_IS_READ (dr))
2346 return true;
2347 else
2348 return false;
2349 }
2350 }
2351
2352 /* Consecutive? */
2353 if (TREE_CODE (step) == INTEGER_CST)
2354 {
2355 HOST_WIDE_INT dr_step = TREE_INT_CST_LOW (step);
2356 if (!tree_int_cst_compare (step, TYPE_SIZE_UNIT (scalar_type))
2357 || (dr_step < 0
2358 && !compare_tree_int (TYPE_SIZE_UNIT (scalar_type), -dr_step)))
2359 {
2360 /* Mark that it is not interleaving. */
2361 GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) = NULL;
2362 return true;
2363 }
2364 }
2365
2366 if (loop && nested_in_vect_loop_p (loop, stmt))
2367 {
2368 if (dump_enabled_p ())
2369 dump_printf_loc (MSG_NOTE, vect_location,
2370 "grouped access in outer loop.\n");
2371 return false;
2372 }
2373
2374 /* Assume this is a DR handled by non-constant strided load case. */
2375 if (TREE_CODE (step) != INTEGER_CST)
2376 return STMT_VINFO_STRIDE_LOAD_P (stmt_info);
2377
2378 /* Not consecutive access - check if it's a part of interleaving group. */
2379 return vect_analyze_group_access (dr);
2380 }
2381
2382
2383
2384 /* A helper function used in the comparator function to sort data
2385 references. T1 and T2 are two data references to be compared.
2386 The function returns -1, 0, or 1. */
2387
2388 static int
2389 compare_tree (tree t1, tree t2)
2390 {
2391 int i, cmp;
2392 enum tree_code code;
2393 char tclass;
2394
2395 if (t1 == t2)
2396 return 0;
2397 if (t1 == NULL)
2398 return -1;
2399 if (t2 == NULL)
2400 return 1;
2401
2402
2403 if (TREE_CODE (t1) != TREE_CODE (t2))
2404 return TREE_CODE (t1) < TREE_CODE (t2) ? -1 : 1;
2405
2406 code = TREE_CODE (t1);
2407 switch (code)
2408 {
2409 /* For const values, we can just use hash values for comparisons. */
2410 case INTEGER_CST:
2411 case REAL_CST:
2412 case FIXED_CST:
2413 case STRING_CST:
2414 case COMPLEX_CST:
2415 case VECTOR_CST:
2416 {
2417 hashval_t h1 = iterative_hash_expr (t1, 0);
2418 hashval_t h2 = iterative_hash_expr (t2, 0);
2419 if (h1 != h2)
2420 return h1 < h2 ? -1 : 1;
2421 break;
2422 }
2423
2424 case SSA_NAME:
2425 cmp = compare_tree (SSA_NAME_VAR (t1), SSA_NAME_VAR (t2));
2426 if (cmp != 0)
2427 return cmp;
2428
2429 if (SSA_NAME_VERSION (t1) != SSA_NAME_VERSION (t2))
2430 return SSA_NAME_VERSION (t1) < SSA_NAME_VERSION (t2) ? -1 : 1;
2431 break;
2432
2433 default:
2434 tclass = TREE_CODE_CLASS (code);
2435
2436 /* For var-decl, we could compare their UIDs. */
2437 if (tclass == tcc_declaration)
2438 {
2439 if (DECL_UID (t1) != DECL_UID (t2))
2440 return DECL_UID (t1) < DECL_UID (t2) ? -1 : 1;
2441 break;
2442 }
2443
2444 /* For expressions with operands, compare their operands recursively. */
2445 for (i = TREE_OPERAND_LENGTH (t1) - 1; i >= 0; --i)
2446 {
2447 cmp = compare_tree (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
2448 if (cmp != 0)
2449 return cmp;
2450 }
2451 }
2452
2453 return 0;
2454 }
2455
2456
2457 /* Compare two data-references DRA and DRB to group them into chunks
2458 suitable for grouping. */
2459
2460 static int
2461 dr_group_sort_cmp (const void *dra_, const void *drb_)
2462 {
2463 data_reference_p dra = *(data_reference_p *)const_cast<void *>(dra_);
2464 data_reference_p drb = *(data_reference_p *)const_cast<void *>(drb_);
2465 int cmp;
2466
2467 /* Stabilize sort. */
2468 if (dra == drb)
2469 return 0;
2470
2471 /* Ordering of DRs according to base. */
2472 if (!operand_equal_p (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb), 0))
2473 {
2474 cmp = compare_tree (DR_BASE_ADDRESS (dra), DR_BASE_ADDRESS (drb));
2475 if (cmp != 0)
2476 return cmp;
2477 }
2478
2479 /* And according to DR_OFFSET. */
2480 if (!dr_equal_offsets_p (dra, drb))
2481 {
2482 cmp = compare_tree (DR_OFFSET (dra), DR_OFFSET (drb));
2483 if (cmp != 0)
2484 return cmp;
2485 }
2486
2487 /* Put reads before writes. */
2488 if (DR_IS_READ (dra) != DR_IS_READ (drb))
2489 return DR_IS_READ (dra) ? -1 : 1;
2490
2491 /* Then sort after access size. */
2492 if (!operand_equal_p (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
2493 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))), 0))
2494 {
2495 cmp = compare_tree (TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra))),
2496 TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb))));
2497 if (cmp != 0)
2498 return cmp;
2499 }
2500
2501 /* And after step. */
2502 if (!operand_equal_p (DR_STEP (dra), DR_STEP (drb), 0))
2503 {
2504 cmp = compare_tree (DR_STEP (dra), DR_STEP (drb));
2505 if (cmp != 0)
2506 return cmp;
2507 }
2508
2509 /* Then sort after DR_INIT. In case of identical DRs sort after stmt UID. */
2510 cmp = tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb));
2511 if (cmp == 0)
2512 return gimple_uid (DR_STMT (dra)) < gimple_uid (DR_STMT (drb)) ? -1 : 1;
2513 return cmp;
2514 }
2515
2516 /* Function vect_analyze_data_ref_accesses.
2517
2518 Analyze the access pattern of all the data references in the loop.
2519
2520 FORNOW: the only access pattern that is considered vectorizable is a
2521 simple step 1 (consecutive) access.
2522
2523 FORNOW: handle only arrays and pointer accesses. */
2524
2525 bool
2526 vect_analyze_data_ref_accesses (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
2527 {
2528 unsigned int i;
2529 vec<data_reference_p> datarefs;
2530 struct data_reference *dr;
2531
2532 if (dump_enabled_p ())
2533 dump_printf_loc (MSG_NOTE, vect_location,
2534 "=== vect_analyze_data_ref_accesses ===\n");
2535
2536 if (loop_vinfo)
2537 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2538 else
2539 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
2540
2541 if (datarefs.is_empty ())
2542 return true;
2543
2544 /* Sort the array of datarefs to make building the interleaving chains
2545 linear. Don't modify the original vector's order, it is needed for
2546 determining what dependencies are reversed. */
2547 vec<data_reference_p> datarefs_copy = datarefs.copy ();
2548 datarefs_copy.qsort (dr_group_sort_cmp);
2549
2550 /* Build the interleaving chains. */
2551 for (i = 0; i < datarefs_copy.length () - 1;)
2552 {
2553 data_reference_p dra = datarefs_copy[i];
2554 stmt_vec_info stmtinfo_a = vinfo_for_stmt (DR_STMT (dra));
2555 stmt_vec_info lastinfo = NULL;
2556 for (i = i + 1; i < datarefs_copy.length (); ++i)
2557 {
2558 data_reference_p drb = datarefs_copy[i];
2559 stmt_vec_info stmtinfo_b = vinfo_for_stmt (DR_STMT (drb));
2560
2561 /* ??? Imperfect sorting (non-compatible types, non-modulo
2562 accesses, same accesses) can lead to a group to be artificially
2563 split here as we don't just skip over those. If it really
2564 matters we can push those to a worklist and re-iterate
2565 over them. The we can just skip ahead to the next DR here. */
2566
2567 /* Check that the data-refs have same first location (except init)
2568 and they are both either store or load (not load and store,
2569 not masked loads or stores). */
2570 if (DR_IS_READ (dra) != DR_IS_READ (drb)
2571 || !operand_equal_p (DR_BASE_ADDRESS (dra),
2572 DR_BASE_ADDRESS (drb), 0)
2573 || !dr_equal_offsets_p (dra, drb)
2574 || !gimple_assign_single_p (DR_STMT (dra))
2575 || !gimple_assign_single_p (DR_STMT (drb)))
2576 break;
2577
2578 /* Check that the data-refs have the same constant size and step. */
2579 tree sza = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dra)));
2580 tree szb = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (drb)));
2581 if (!tree_fits_uhwi_p (sza)
2582 || !tree_fits_uhwi_p (szb)
2583 || !tree_int_cst_equal (sza, szb)
2584 || !tree_fits_shwi_p (DR_STEP (dra))
2585 || !tree_fits_shwi_p (DR_STEP (drb))
2586 || !tree_int_cst_equal (DR_STEP (dra), DR_STEP (drb)))
2587 break;
2588
2589 /* Do not place the same access in the interleaving chain twice. */
2590 if (tree_int_cst_compare (DR_INIT (dra), DR_INIT (drb)) == 0)
2591 break;
2592
2593 /* Check the types are compatible.
2594 ??? We don't distinguish this during sorting. */
2595 if (!types_compatible_p (TREE_TYPE (DR_REF (dra)),
2596 TREE_TYPE (DR_REF (drb))))
2597 break;
2598
2599 /* Sorting has ensured that DR_INIT (dra) <= DR_INIT (drb). */
2600 HOST_WIDE_INT init_a = TREE_INT_CST_LOW (DR_INIT (dra));
2601 HOST_WIDE_INT init_b = TREE_INT_CST_LOW (DR_INIT (drb));
2602 gcc_assert (init_a < init_b);
2603
2604 /* If init_b == init_a + the size of the type * k, we have an
2605 interleaving, and DRA is accessed before DRB. */
2606 HOST_WIDE_INT type_size_a = tree_to_uhwi (sza);
2607 if ((init_b - init_a) % type_size_a != 0)
2608 break;
2609
2610 /* The step (if not zero) is greater than the difference between
2611 data-refs' inits. This splits groups into suitable sizes. */
2612 HOST_WIDE_INT step = tree_to_shwi (DR_STEP (dra));
2613 if (step != 0 && step <= (init_b - init_a))
2614 break;
2615
2616 if (dump_enabled_p ())
2617 {
2618 dump_printf_loc (MSG_NOTE, vect_location,
2619 "Detected interleaving ");
2620 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dra));
2621 dump_printf (MSG_NOTE, " and ");
2622 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (drb));
2623 dump_printf (MSG_NOTE, "\n");
2624 }
2625
2626 /* Link the found element into the group list. */
2627 if (!GROUP_FIRST_ELEMENT (stmtinfo_a))
2628 {
2629 GROUP_FIRST_ELEMENT (stmtinfo_a) = DR_STMT (dra);
2630 lastinfo = stmtinfo_a;
2631 }
2632 GROUP_FIRST_ELEMENT (stmtinfo_b) = DR_STMT (dra);
2633 GROUP_NEXT_ELEMENT (lastinfo) = DR_STMT (drb);
2634 lastinfo = stmtinfo_b;
2635 }
2636 }
2637
2638 FOR_EACH_VEC_ELT (datarefs_copy, i, dr)
2639 if (STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr)))
2640 && !vect_analyze_data_ref_access (dr))
2641 {
2642 if (dump_enabled_p ())
2643 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2644 "not vectorized: complicated access pattern.\n");
2645
2646 if (bb_vinfo)
2647 {
2648 /* Mark the statement as not vectorizable. */
2649 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
2650 continue;
2651 }
2652 else
2653 {
2654 datarefs_copy.release ();
2655 return false;
2656 }
2657 }
2658
2659 datarefs_copy.release ();
2660 return true;
2661 }
2662
2663
2664 /* Operator == between two dr_with_seg_len objects.
2665
2666 This equality operator is used to make sure two data refs
2667 are the same one so that we will consider to combine the
2668 aliasing checks of those two pairs of data dependent data
2669 refs. */
2670
2671 static bool
2672 operator == (const dr_with_seg_len& d1,
2673 const dr_with_seg_len& d2)
2674 {
2675 return operand_equal_p (DR_BASE_ADDRESS (d1.dr),
2676 DR_BASE_ADDRESS (d2.dr), 0)
2677 && compare_tree (d1.offset, d2.offset) == 0
2678 && compare_tree (d1.seg_len, d2.seg_len) == 0;
2679 }
2680
2681 /* Function comp_dr_with_seg_len_pair.
2682
2683 Comparison function for sorting objects of dr_with_seg_len_pair_t
2684 so that we can combine aliasing checks in one scan. */
2685
2686 static int
2687 comp_dr_with_seg_len_pair (const void *p1_, const void *p2_)
2688 {
2689 const dr_with_seg_len_pair_t* p1 = (const dr_with_seg_len_pair_t *) p1_;
2690 const dr_with_seg_len_pair_t* p2 = (const dr_with_seg_len_pair_t *) p2_;
2691
2692 const dr_with_seg_len &p11 = p1->first,
2693 &p12 = p1->second,
2694 &p21 = p2->first,
2695 &p22 = p2->second;
2696
2697 /* For DR pairs (a, b) and (c, d), we only consider to merge the alias checks
2698 if a and c have the same basic address snd step, and b and d have the same
2699 address and step. Therefore, if any a&c or b&d don't have the same address
2700 and step, we don't care the order of those two pairs after sorting. */
2701 int comp_res;
2702
2703 if ((comp_res = compare_tree (DR_BASE_ADDRESS (p11.dr),
2704 DR_BASE_ADDRESS (p21.dr))) != 0)
2705 return comp_res;
2706 if ((comp_res = compare_tree (DR_BASE_ADDRESS (p12.dr),
2707 DR_BASE_ADDRESS (p22.dr))) != 0)
2708 return comp_res;
2709 if ((comp_res = compare_tree (DR_STEP (p11.dr), DR_STEP (p21.dr))) != 0)
2710 return comp_res;
2711 if ((comp_res = compare_tree (DR_STEP (p12.dr), DR_STEP (p22.dr))) != 0)
2712 return comp_res;
2713 if ((comp_res = compare_tree (p11.offset, p21.offset)) != 0)
2714 return comp_res;
2715 if ((comp_res = compare_tree (p12.offset, p22.offset)) != 0)
2716 return comp_res;
2717
2718 return 0;
2719 }
2720
2721 /* Function vect_vfa_segment_size.
2722
2723 Create an expression that computes the size of segment
2724 that will be accessed for a data reference. The functions takes into
2725 account that realignment loads may access one more vector.
2726
2727 Input:
2728 DR: The data reference.
2729 LENGTH_FACTOR: segment length to consider.
2730
2731 Return an expression whose value is the size of segment which will be
2732 accessed by DR. */
2733
2734 static tree
2735 vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
2736 {
2737 tree segment_length;
2738
2739 if (integer_zerop (DR_STEP (dr)))
2740 segment_length = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
2741 else
2742 segment_length = size_binop (MULT_EXPR,
2743 fold_convert (sizetype, DR_STEP (dr)),
2744 fold_convert (sizetype, length_factor));
2745
2746 if (vect_supportable_dr_alignment (dr, false)
2747 == dr_explicit_realign_optimized)
2748 {
2749 tree vector_size = TYPE_SIZE_UNIT
2750 (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
2751
2752 segment_length = size_binop (PLUS_EXPR, segment_length, vector_size);
2753 }
2754 return segment_length;
2755 }
2756
2757 /* Function vect_prune_runtime_alias_test_list.
2758
2759 Prune a list of ddrs to be tested at run-time by versioning for alias.
2760 Merge several alias checks into one if possible.
2761 Return FALSE if resulting list of ddrs is longer then allowed by
2762 PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS, otherwise return TRUE. */
2763
2764 bool
2765 vect_prune_runtime_alias_test_list (loop_vec_info loop_vinfo)
2766 {
2767 vec<ddr_p> may_alias_ddrs =
2768 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
2769 vec<dr_with_seg_len_pair_t>& comp_alias_ddrs =
2770 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
2771 int vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2772 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2773
2774 ddr_p ddr;
2775 unsigned int i;
2776 tree length_factor;
2777
2778 if (dump_enabled_p ())
2779 dump_printf_loc (MSG_NOTE, vect_location,
2780 "=== vect_prune_runtime_alias_test_list ===\n");
2781
2782 if (may_alias_ddrs.is_empty ())
2783 return true;
2784
2785 /* Basically, for each pair of dependent data refs store_ptr_0
2786 and load_ptr_0, we create an expression:
2787
2788 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2789 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2790
2791 for aliasing checks. However, in some cases we can decrease
2792 the number of checks by combining two checks into one. For
2793 example, suppose we have another pair of data refs store_ptr_0
2794 and load_ptr_1, and if the following condition is satisfied:
2795
2796 load_ptr_0 < load_ptr_1 &&
2797 load_ptr_1 - load_ptr_0 - load_segment_length_0 < store_segment_length_0
2798
2799 (this condition means, in each iteration of vectorized loop,
2800 the accessed memory of store_ptr_0 cannot be between the memory
2801 of load_ptr_0 and load_ptr_1.)
2802
2803 we then can use only the following expression to finish the
2804 alising checks between store_ptr_0 & load_ptr_0 and
2805 store_ptr_0 & load_ptr_1:
2806
2807 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2808 || (load_ptr_1 + load_segment_length_1 <= store_ptr_0))
2809
2810 Note that we only consider that load_ptr_0 and load_ptr_1 have the
2811 same basic address. */
2812
2813 comp_alias_ddrs.create (may_alias_ddrs.length ());
2814
2815 /* First, we collect all data ref pairs for aliasing checks. */
2816 FOR_EACH_VEC_ELT (may_alias_ddrs, i, ddr)
2817 {
2818 struct data_reference *dr_a, *dr_b;
2819 gimple dr_group_first_a, dr_group_first_b;
2820 tree segment_length_a, segment_length_b;
2821 gimple stmt_a, stmt_b;
2822
2823 dr_a = DDR_A (ddr);
2824 stmt_a = DR_STMT (DDR_A (ddr));
2825 dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
2826 if (dr_group_first_a)
2827 {
2828 stmt_a = dr_group_first_a;
2829 dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
2830 }
2831
2832 dr_b = DDR_B (ddr);
2833 stmt_b = DR_STMT (DDR_B (ddr));
2834 dr_group_first_b = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b));
2835 if (dr_group_first_b)
2836 {
2837 stmt_b = dr_group_first_b;
2838 dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
2839 }
2840
2841 if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
2842 length_factor = scalar_loop_iters;
2843 else
2844 length_factor = size_int (vect_factor);
2845 segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
2846 segment_length_b = vect_vfa_segment_size (dr_b, length_factor);
2847
2848 dr_with_seg_len_pair_t dr_with_seg_len_pair
2849 (dr_with_seg_len (dr_a, segment_length_a),
2850 dr_with_seg_len (dr_b, segment_length_b));
2851
2852 if (compare_tree (DR_BASE_ADDRESS (dr_a), DR_BASE_ADDRESS (dr_b)) > 0)
2853 std::swap (dr_with_seg_len_pair.first, dr_with_seg_len_pair.second);
2854
2855 comp_alias_ddrs.safe_push (dr_with_seg_len_pair);
2856 }
2857
2858 /* Second, we sort the collected data ref pairs so that we can scan
2859 them once to combine all possible aliasing checks. */
2860 comp_alias_ddrs.qsort (comp_dr_with_seg_len_pair);
2861
2862 /* Third, we scan the sorted dr pairs and check if we can combine
2863 alias checks of two neighbouring dr pairs. */
2864 for (size_t i = 1; i < comp_alias_ddrs.length (); ++i)
2865 {
2866 /* Deal with two ddrs (dr_a1, dr_b1) and (dr_a2, dr_b2). */
2867 dr_with_seg_len *dr_a1 = &comp_alias_ddrs[i-1].first,
2868 *dr_b1 = &comp_alias_ddrs[i-1].second,
2869 *dr_a2 = &comp_alias_ddrs[i].first,
2870 *dr_b2 = &comp_alias_ddrs[i].second;
2871
2872 /* Remove duplicate data ref pairs. */
2873 if (*dr_a1 == *dr_a2 && *dr_b1 == *dr_b2)
2874 {
2875 if (dump_enabled_p ())
2876 {
2877 dump_printf_loc (MSG_NOTE, vect_location,
2878 "found equal ranges ");
2879 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2880 DR_REF (dr_a1->dr));
2881 dump_printf (MSG_NOTE, ", ");
2882 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2883 DR_REF (dr_b1->dr));
2884 dump_printf (MSG_NOTE, " and ");
2885 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2886 DR_REF (dr_a2->dr));
2887 dump_printf (MSG_NOTE, ", ");
2888 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2889 DR_REF (dr_b2->dr));
2890 dump_printf (MSG_NOTE, "\n");
2891 }
2892
2893 comp_alias_ddrs.ordered_remove (i--);
2894 continue;
2895 }
2896
2897 if (*dr_a1 == *dr_a2 || *dr_b1 == *dr_b2)
2898 {
2899 /* We consider the case that DR_B1 and DR_B2 are same memrefs,
2900 and DR_A1 and DR_A2 are two consecutive memrefs. */
2901 if (*dr_a1 == *dr_a2)
2902 {
2903 std::swap (dr_a1, dr_b1);
2904 std::swap (dr_a2, dr_b2);
2905 }
2906
2907 if (!operand_equal_p (DR_BASE_ADDRESS (dr_a1->dr),
2908 DR_BASE_ADDRESS (dr_a2->dr),
2909 0)
2910 || !tree_fits_shwi_p (dr_a1->offset)
2911 || !tree_fits_shwi_p (dr_a2->offset))
2912 continue;
2913
2914 HOST_WIDE_INT diff = (tree_to_shwi (dr_a2->offset)
2915 - tree_to_shwi (dr_a1->offset));
2916
2917
2918 /* Now we check if the following condition is satisfied:
2919
2920 DIFF - SEGMENT_LENGTH_A < SEGMENT_LENGTH_B
2921
2922 where DIFF = DR_A2->OFFSET - DR_A1->OFFSET. However,
2923 SEGMENT_LENGTH_A or SEGMENT_LENGTH_B may not be constant so we
2924 have to make a best estimation. We can get the minimum value
2925 of SEGMENT_LENGTH_B as a constant, represented by MIN_SEG_LEN_B,
2926 then either of the following two conditions can guarantee the
2927 one above:
2928
2929 1: DIFF <= MIN_SEG_LEN_B
2930 2: DIFF - SEGMENT_LENGTH_A < MIN_SEG_LEN_B
2931
2932 */
2933
2934 HOST_WIDE_INT min_seg_len_b = (tree_fits_shwi_p (dr_b1->seg_len)
2935 ? tree_to_shwi (dr_b1->seg_len)
2936 : vect_factor);
2937
2938 if (diff <= min_seg_len_b
2939 || (tree_fits_shwi_p (dr_a1->seg_len)
2940 && diff - tree_to_shwi (dr_a1->seg_len) < min_seg_len_b))
2941 {
2942 if (dump_enabled_p ())
2943 {
2944 dump_printf_loc (MSG_NOTE, vect_location,
2945 "merging ranges for ");
2946 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2947 DR_REF (dr_a1->dr));
2948 dump_printf (MSG_NOTE, ", ");
2949 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2950 DR_REF (dr_b1->dr));
2951 dump_printf (MSG_NOTE, " and ");
2952 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2953 DR_REF (dr_a2->dr));
2954 dump_printf (MSG_NOTE, ", ");
2955 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2956 DR_REF (dr_b2->dr));
2957 dump_printf (MSG_NOTE, "\n");
2958 }
2959
2960 dr_a1->seg_len = size_binop (PLUS_EXPR,
2961 dr_a2->seg_len, size_int (diff));
2962 comp_alias_ddrs.ordered_remove (i--);
2963 }
2964 }
2965 }
2966
2967 dump_printf_loc (MSG_NOTE, vect_location,
2968 "improved number of alias checks from %d to %d\n",
2969 may_alias_ddrs.length (), comp_alias_ddrs.length ());
2970 if ((int) comp_alias_ddrs.length () >
2971 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS))
2972 return false;
2973
2974 return true;
2975 }
2976
2977 /* Check whether a non-affine read in stmt is suitable for gather load
2978 and if so, return a builtin decl for that operation. */
2979
2980 tree
2981 vect_check_gather (gimple stmt, loop_vec_info loop_vinfo, tree *basep,
2982 tree *offp, int *scalep)
2983 {
2984 HOST_WIDE_INT scale = 1, pbitpos, pbitsize;
2985 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2986 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2987 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
2988 tree offtype = NULL_TREE;
2989 tree decl, base, off;
2990 machine_mode pmode;
2991 int punsignedp, pvolatilep;
2992
2993 base = DR_REF (dr);
2994 /* For masked loads/stores, DR_REF (dr) is an artificial MEM_REF,
2995 see if we can use the def stmt of the address. */
2996 if (is_gimple_call (stmt)
2997 && gimple_call_internal_p (stmt)
2998 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
2999 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
3000 && TREE_CODE (base) == MEM_REF
3001 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME
3002 && integer_zerop (TREE_OPERAND (base, 1))
3003 && !expr_invariant_in_loop_p (loop, TREE_OPERAND (base, 0)))
3004 {
3005 gimple def_stmt = SSA_NAME_DEF_STMT (TREE_OPERAND (base, 0));
3006 if (is_gimple_assign (def_stmt)
3007 && gimple_assign_rhs_code (def_stmt) == ADDR_EXPR)
3008 base = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0);
3009 }
3010
3011 /* The gather builtins need address of the form
3012 loop_invariant + vector * {1, 2, 4, 8}
3013 or
3014 loop_invariant + sign_extend (vector) * { 1, 2, 4, 8 }.
3015 Unfortunately DR_BASE_ADDRESS/DR_OFFSET can be a mixture
3016 of loop invariants/SSA_NAMEs defined in the loop, with casts,
3017 multiplications and additions in it. To get a vector, we need
3018 a single SSA_NAME that will be defined in the loop and will
3019 contain everything that is not loop invariant and that can be
3020 vectorized. The following code attempts to find such a preexistng
3021 SSA_NAME OFF and put the loop invariants into a tree BASE
3022 that can be gimplified before the loop. */
3023 base = get_inner_reference (base, &pbitsize, &pbitpos, &off,
3024 &pmode, &punsignedp, &pvolatilep, false);
3025 gcc_assert (base != NULL_TREE && (pbitpos % BITS_PER_UNIT) == 0);
3026
3027 if (TREE_CODE (base) == MEM_REF)
3028 {
3029 if (!integer_zerop (TREE_OPERAND (base, 1)))
3030 {
3031 if (off == NULL_TREE)
3032 {
3033 offset_int moff = mem_ref_offset (base);
3034 off = wide_int_to_tree (sizetype, moff);
3035 }
3036 else
3037 off = size_binop (PLUS_EXPR, off,
3038 fold_convert (sizetype, TREE_OPERAND (base, 1)));
3039 }
3040 base = TREE_OPERAND (base, 0);
3041 }
3042 else
3043 base = build_fold_addr_expr (base);
3044
3045 if (off == NULL_TREE)
3046 off = size_zero_node;
3047
3048 /* If base is not loop invariant, either off is 0, then we start with just
3049 the constant offset in the loop invariant BASE and continue with base
3050 as OFF, otherwise give up.
3051 We could handle that case by gimplifying the addition of base + off
3052 into some SSA_NAME and use that as off, but for now punt. */
3053 if (!expr_invariant_in_loop_p (loop, base))
3054 {
3055 if (!integer_zerop (off))
3056 return NULL_TREE;
3057 off = base;
3058 base = size_int (pbitpos / BITS_PER_UNIT);
3059 }
3060 /* Otherwise put base + constant offset into the loop invariant BASE
3061 and continue with OFF. */
3062 else
3063 {
3064 base = fold_convert (sizetype, base);
3065 base = size_binop (PLUS_EXPR, base, size_int (pbitpos / BITS_PER_UNIT));
3066 }
3067
3068 /* OFF at this point may be either a SSA_NAME or some tree expression
3069 from get_inner_reference. Try to peel off loop invariants from it
3070 into BASE as long as possible. */
3071 STRIP_NOPS (off);
3072 while (offtype == NULL_TREE)
3073 {
3074 enum tree_code code;
3075 tree op0, op1, add = NULL_TREE;
3076
3077 if (TREE_CODE (off) == SSA_NAME)
3078 {
3079 gimple def_stmt = SSA_NAME_DEF_STMT (off);
3080
3081 if (expr_invariant_in_loop_p (loop, off))
3082 return NULL_TREE;
3083
3084 if (gimple_code (def_stmt) != GIMPLE_ASSIGN)
3085 break;
3086
3087 op0 = gimple_assign_rhs1 (def_stmt);
3088 code = gimple_assign_rhs_code (def_stmt);
3089 op1 = gimple_assign_rhs2 (def_stmt);
3090 }
3091 else
3092 {
3093 if (get_gimple_rhs_class (TREE_CODE (off)) == GIMPLE_TERNARY_RHS)
3094 return NULL_TREE;
3095 code = TREE_CODE (off);
3096 extract_ops_from_tree (off, &code, &op0, &op1);
3097 }
3098 switch (code)
3099 {
3100 case POINTER_PLUS_EXPR:
3101 case PLUS_EXPR:
3102 if (expr_invariant_in_loop_p (loop, op0))
3103 {
3104 add = op0;
3105 off = op1;
3106 do_add:
3107 add = fold_convert (sizetype, add);
3108 if (scale != 1)
3109 add = size_binop (MULT_EXPR, add, size_int (scale));
3110 base = size_binop (PLUS_EXPR, base, add);
3111 continue;
3112 }
3113 if (expr_invariant_in_loop_p (loop, op1))
3114 {
3115 add = op1;
3116 off = op0;
3117 goto do_add;
3118 }
3119 break;
3120 case MINUS_EXPR:
3121 if (expr_invariant_in_loop_p (loop, op1))
3122 {
3123 add = fold_convert (sizetype, op1);
3124 add = size_binop (MINUS_EXPR, size_zero_node, add);
3125 off = op0;
3126 goto do_add;
3127 }
3128 break;
3129 case MULT_EXPR:
3130 if (scale == 1 && tree_fits_shwi_p (op1))
3131 {
3132 scale = tree_to_shwi (op1);
3133 off = op0;
3134 continue;
3135 }
3136 break;
3137 case SSA_NAME:
3138 off = op0;
3139 continue;
3140 CASE_CONVERT:
3141 if (!POINTER_TYPE_P (TREE_TYPE (op0))
3142 && !INTEGRAL_TYPE_P (TREE_TYPE (op0)))
3143 break;
3144 if (TYPE_PRECISION (TREE_TYPE (op0))
3145 == TYPE_PRECISION (TREE_TYPE (off)))
3146 {
3147 off = op0;
3148 continue;
3149 }
3150 if (TYPE_PRECISION (TREE_TYPE (op0))
3151 < TYPE_PRECISION (TREE_TYPE (off)))
3152 {
3153 off = op0;
3154 offtype = TREE_TYPE (off);
3155 STRIP_NOPS (off);
3156 continue;
3157 }
3158 break;
3159 default:
3160 break;
3161 }
3162 break;
3163 }
3164
3165 /* If at the end OFF still isn't a SSA_NAME or isn't
3166 defined in the loop, punt. */
3167 if (TREE_CODE (off) != SSA_NAME
3168 || expr_invariant_in_loop_p (loop, off))
3169 return NULL_TREE;
3170
3171 if (offtype == NULL_TREE)
3172 offtype = TREE_TYPE (off);
3173
3174 decl = targetm.vectorize.builtin_gather (STMT_VINFO_VECTYPE (stmt_info),
3175 offtype, scale);
3176 if (decl == NULL_TREE)
3177 return NULL_TREE;
3178
3179 if (basep)
3180 *basep = base;
3181 if (offp)
3182 *offp = off;
3183 if (scalep)
3184 *scalep = scale;
3185 return decl;
3186 }
3187
3188 /* Function vect_analyze_data_refs.
3189
3190 Find all the data references in the loop or basic block.
3191
3192 The general structure of the analysis of data refs in the vectorizer is as
3193 follows:
3194 1- vect_analyze_data_refs(loop/bb): call
3195 compute_data_dependences_for_loop/bb to find and analyze all data-refs
3196 in the loop/bb and their dependences.
3197 2- vect_analyze_dependences(): apply dependence testing using ddrs.
3198 3- vect_analyze_drs_alignment(): check that ref_stmt.alignment is ok.
3199 4- vect_analyze_drs_access(): check that ref_stmt.step is ok.
3200
3201 */
3202
3203 bool
3204 vect_analyze_data_refs (loop_vec_info loop_vinfo,
3205 bb_vec_info bb_vinfo,
3206 int *min_vf, unsigned *n_stmts)
3207 {
3208 struct loop *loop = NULL;
3209 basic_block bb = NULL;
3210 unsigned int i;
3211 vec<data_reference_p> datarefs;
3212 struct data_reference *dr;
3213 tree scalar_type;
3214
3215 if (dump_enabled_p ())
3216 dump_printf_loc (MSG_NOTE, vect_location,
3217 "=== vect_analyze_data_refs ===\n");
3218
3219 if (loop_vinfo)
3220 {
3221 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
3222
3223 loop = LOOP_VINFO_LOOP (loop_vinfo);
3224 datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
3225 if (!find_loop_nest (loop, &LOOP_VINFO_LOOP_NEST (loop_vinfo)))
3226 {
3227 if (dump_enabled_p ())
3228 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3229 "not vectorized: loop contains function calls"
3230 " or data references that cannot be analyzed\n");
3231 return false;
3232 }
3233
3234 for (i = 0; i < loop->num_nodes; i++)
3235 {
3236 gimple_stmt_iterator gsi;
3237
3238 for (gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi); gsi_next (&gsi))
3239 {
3240 gimple stmt = gsi_stmt (gsi);
3241 if (is_gimple_debug (stmt))
3242 continue;
3243 ++*n_stmts;
3244 if (!find_data_references_in_stmt (loop, stmt, &datarefs))
3245 {
3246 if (is_gimple_call (stmt) && loop->safelen)
3247 {
3248 tree fndecl = gimple_call_fndecl (stmt), op;
3249 if (fndecl != NULL_TREE)
3250 {
3251 struct cgraph_node *node = cgraph_node::get (fndecl);
3252 if (node != NULL && node->simd_clones != NULL)
3253 {
3254 unsigned int j, n = gimple_call_num_args (stmt);
3255 for (j = 0; j < n; j++)
3256 {
3257 op = gimple_call_arg (stmt, j);
3258 if (DECL_P (op)
3259 || (REFERENCE_CLASS_P (op)
3260 && get_base_address (op)))
3261 break;
3262 }
3263 op = gimple_call_lhs (stmt);
3264 /* Ignore #pragma omp declare simd functions
3265 if they don't have data references in the
3266 call stmt itself. */
3267 if (j == n
3268 && !(op
3269 && (DECL_P (op)
3270 || (REFERENCE_CLASS_P (op)
3271 && get_base_address (op)))))
3272 continue;
3273 }
3274 }
3275 }
3276 LOOP_VINFO_DATAREFS (loop_vinfo) = datarefs;
3277 if (dump_enabled_p ())
3278 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3279 "not vectorized: loop contains function "
3280 "calls or data references that cannot "
3281 "be analyzed\n");
3282 return false;
3283 }
3284 }
3285 }
3286
3287 LOOP_VINFO_DATAREFS (loop_vinfo) = datarefs;
3288 }
3289 else
3290 {
3291 gimple_stmt_iterator gsi;
3292
3293 bb = BB_VINFO_BB (bb_vinfo);
3294 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3295 {
3296 gimple stmt = gsi_stmt (gsi);
3297 if (is_gimple_debug (stmt))
3298 continue;
3299 ++*n_stmts;
3300 if (!find_data_references_in_stmt (NULL, stmt,
3301 &BB_VINFO_DATAREFS (bb_vinfo)))
3302 {
3303 /* Mark the rest of the basic-block as unvectorizable. */
3304 for (; !gsi_end_p (gsi); gsi_next (&gsi))
3305 {
3306 stmt = gsi_stmt (gsi);
3307 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (stmt)) = false;
3308 }
3309 break;
3310 }
3311 }
3312
3313 datarefs = BB_VINFO_DATAREFS (bb_vinfo);
3314 }
3315
3316 /* Go through the data-refs, check that the analysis succeeded. Update
3317 pointer from stmt_vec_info struct to DR and vectype. */
3318
3319 FOR_EACH_VEC_ELT (datarefs, i, dr)
3320 {
3321 gimple stmt;
3322 stmt_vec_info stmt_info;
3323 tree base, offset, init;
3324 bool gather = false;
3325 bool simd_lane_access = false;
3326 int vf;
3327
3328 again:
3329 if (!dr || !DR_REF (dr))
3330 {
3331 if (dump_enabled_p ())
3332 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3333 "not vectorized: unhandled data-ref\n");
3334 return false;
3335 }
3336
3337 stmt = DR_STMT (dr);
3338 stmt_info = vinfo_for_stmt (stmt);
3339
3340 /* Discard clobbers from the dataref vector. We will remove
3341 clobber stmts during vectorization. */
3342 if (gimple_clobber_p (stmt))
3343 {
3344 free_data_ref (dr);
3345 if (i == datarefs.length () - 1)
3346 {
3347 datarefs.pop ();
3348 break;
3349 }
3350 datarefs.ordered_remove (i);
3351 dr = datarefs[i];
3352 goto again;
3353 }
3354
3355 /* Check that analysis of the data-ref succeeded. */
3356 if (!DR_BASE_ADDRESS (dr) || !DR_OFFSET (dr) || !DR_INIT (dr)
3357 || !DR_STEP (dr))
3358 {
3359 bool maybe_gather
3360 = DR_IS_READ (dr)
3361 && !TREE_THIS_VOLATILE (DR_REF (dr))
3362 && targetm.vectorize.builtin_gather != NULL;
3363 bool maybe_simd_lane_access
3364 = loop_vinfo && loop->simduid;
3365
3366 /* If target supports vector gather loads, or if this might be
3367 a SIMD lane access, see if they can't be used. */
3368 if (loop_vinfo
3369 && (maybe_gather || maybe_simd_lane_access)
3370 && !nested_in_vect_loop_p (loop, stmt))
3371 {
3372 struct data_reference *newdr
3373 = create_data_ref (NULL, loop_containing_stmt (stmt),
3374 DR_REF (dr), stmt, true);
3375 gcc_assert (newdr != NULL && DR_REF (newdr));
3376 if (DR_BASE_ADDRESS (newdr)
3377 && DR_OFFSET (newdr)
3378 && DR_INIT (newdr)
3379 && DR_STEP (newdr)
3380 && integer_zerop (DR_STEP (newdr)))
3381 {
3382 if (maybe_simd_lane_access)
3383 {
3384 tree off = DR_OFFSET (newdr);
3385 STRIP_NOPS (off);
3386 if (TREE_CODE (DR_INIT (newdr)) == INTEGER_CST
3387 && TREE_CODE (off) == MULT_EXPR
3388 && tree_fits_uhwi_p (TREE_OPERAND (off, 1)))
3389 {
3390 tree step = TREE_OPERAND (off, 1);
3391 off = TREE_OPERAND (off, 0);
3392 STRIP_NOPS (off);
3393 if (CONVERT_EXPR_P (off)
3394 && TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (off,
3395 0)))
3396 < TYPE_PRECISION (TREE_TYPE (off)))
3397 off = TREE_OPERAND (off, 0);
3398 if (TREE_CODE (off) == SSA_NAME)
3399 {
3400 gimple def = SSA_NAME_DEF_STMT (off);
3401 tree reft = TREE_TYPE (DR_REF (newdr));
3402 if (is_gimple_call (def)
3403 && gimple_call_internal_p (def)
3404 && (gimple_call_internal_fn (def)
3405 == IFN_GOMP_SIMD_LANE))
3406 {
3407 tree arg = gimple_call_arg (def, 0);
3408 gcc_assert (TREE_CODE (arg) == SSA_NAME);
3409 arg = SSA_NAME_VAR (arg);
3410 if (arg == loop->simduid
3411 /* For now. */
3412 && tree_int_cst_equal
3413 (TYPE_SIZE_UNIT (reft),
3414 step))
3415 {
3416 DR_OFFSET (newdr) = ssize_int (0);
3417 DR_STEP (newdr) = step;
3418 DR_ALIGNED_TO (newdr)
3419 = size_int (BIGGEST_ALIGNMENT);
3420 dr = newdr;
3421 simd_lane_access = true;
3422 }
3423 }
3424 }
3425 }
3426 }
3427 if (!simd_lane_access && maybe_gather)
3428 {
3429 dr = newdr;
3430 gather = true;
3431 }
3432 }
3433 if (!gather && !simd_lane_access)
3434 free_data_ref (newdr);
3435 }
3436
3437 if (!gather && !simd_lane_access)
3438 {
3439 if (dump_enabled_p ())
3440 {
3441 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3442 "not vectorized: data ref analysis "
3443 "failed ");
3444 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3445 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3446 }
3447
3448 if (bb_vinfo)
3449 break;
3450
3451 return false;
3452 }
3453 }
3454
3455 if (TREE_CODE (DR_BASE_ADDRESS (dr)) == INTEGER_CST)
3456 {
3457 if (dump_enabled_p ())
3458 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3459 "not vectorized: base addr of dr is a "
3460 "constant\n");
3461
3462 if (bb_vinfo)
3463 break;
3464
3465 if (gather || simd_lane_access)
3466 free_data_ref (dr);
3467 return false;
3468 }
3469
3470 if (TREE_THIS_VOLATILE (DR_REF (dr)))
3471 {
3472 if (dump_enabled_p ())
3473 {
3474 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3475 "not vectorized: volatile type ");
3476 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3477 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3478 }
3479
3480 if (bb_vinfo)
3481 break;
3482
3483 return false;
3484 }
3485
3486 if (stmt_can_throw_internal (stmt))
3487 {
3488 if (dump_enabled_p ())
3489 {
3490 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3491 "not vectorized: statement can throw an "
3492 "exception ");
3493 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3494 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3495 }
3496
3497 if (bb_vinfo)
3498 break;
3499
3500 if (gather || simd_lane_access)
3501 free_data_ref (dr);
3502 return false;
3503 }
3504
3505 if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
3506 && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
3507 {
3508 if (dump_enabled_p ())
3509 {
3510 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3511 "not vectorized: statement is bitfield "
3512 "access ");
3513 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3514 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3515 }
3516
3517 if (bb_vinfo)
3518 break;
3519
3520 if (gather || simd_lane_access)
3521 free_data_ref (dr);
3522 return false;
3523 }
3524
3525 base = unshare_expr (DR_BASE_ADDRESS (dr));
3526 offset = unshare_expr (DR_OFFSET (dr));
3527 init = unshare_expr (DR_INIT (dr));
3528
3529 if (is_gimple_call (stmt)
3530 && (!gimple_call_internal_p (stmt)
3531 || (gimple_call_internal_fn (stmt) != IFN_MASK_LOAD
3532 && gimple_call_internal_fn (stmt) != IFN_MASK_STORE)))
3533 {
3534 if (dump_enabled_p ())
3535 {
3536 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3537 "not vectorized: dr in a call ");
3538 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3539 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3540 }
3541
3542 if (bb_vinfo)
3543 break;
3544
3545 if (gather || simd_lane_access)
3546 free_data_ref (dr);
3547 return false;
3548 }
3549
3550 /* Update DR field in stmt_vec_info struct. */
3551
3552 /* If the dataref is in an inner-loop of the loop that is considered for
3553 for vectorization, we also want to analyze the access relative to
3554 the outer-loop (DR contains information only relative to the
3555 inner-most enclosing loop). We do that by building a reference to the
3556 first location accessed by the inner-loop, and analyze it relative to
3557 the outer-loop. */
3558 if (loop && nested_in_vect_loop_p (loop, stmt))
3559 {
3560 tree outer_step, outer_base, outer_init;
3561 HOST_WIDE_INT pbitsize, pbitpos;
3562 tree poffset;
3563 machine_mode pmode;
3564 int punsignedp, pvolatilep;
3565 affine_iv base_iv, offset_iv;
3566 tree dinit;
3567
3568 /* Build a reference to the first location accessed by the
3569 inner-loop: *(BASE+INIT). (The first location is actually
3570 BASE+INIT+OFFSET, but we add OFFSET separately later). */
3571 tree inner_base = build_fold_indirect_ref
3572 (fold_build_pointer_plus (base, init));
3573
3574 if (dump_enabled_p ())
3575 {
3576 dump_printf_loc (MSG_NOTE, vect_location,
3577 "analyze in outer-loop: ");
3578 dump_generic_expr (MSG_NOTE, TDF_SLIM, inner_base);
3579 dump_printf (MSG_NOTE, "\n");
3580 }
3581
3582 outer_base = get_inner_reference (inner_base, &pbitsize, &pbitpos,
3583 &poffset, &pmode, &punsignedp, &pvolatilep, false);
3584 gcc_assert (outer_base != NULL_TREE);
3585
3586 if (pbitpos % BITS_PER_UNIT != 0)
3587 {
3588 if (dump_enabled_p ())
3589 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3590 "failed: bit offset alignment.\n");
3591 return false;
3592 }
3593
3594 outer_base = build_fold_addr_expr (outer_base);
3595 if (!simple_iv (loop, loop_containing_stmt (stmt), outer_base,
3596 &base_iv, false))
3597 {
3598 if (dump_enabled_p ())
3599 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3600 "failed: evolution of base is not affine.\n");
3601 return false;
3602 }
3603
3604 if (offset)
3605 {
3606 if (poffset)
3607 poffset = fold_build2 (PLUS_EXPR, TREE_TYPE (offset), offset,
3608 poffset);
3609 else
3610 poffset = offset;
3611 }
3612
3613 if (!poffset)
3614 {
3615 offset_iv.base = ssize_int (0);
3616 offset_iv.step = ssize_int (0);
3617 }
3618 else if (!simple_iv (loop, loop_containing_stmt (stmt), poffset,
3619 &offset_iv, false))
3620 {
3621 if (dump_enabled_p ())
3622 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3623 "evolution of offset is not affine.\n");
3624 return false;
3625 }
3626
3627 outer_init = ssize_int (pbitpos / BITS_PER_UNIT);
3628 split_constant_offset (base_iv.base, &base_iv.base, &dinit);
3629 outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
3630 split_constant_offset (offset_iv.base, &offset_iv.base, &dinit);
3631 outer_init = size_binop (PLUS_EXPR, outer_init, dinit);
3632
3633 outer_step = size_binop (PLUS_EXPR,
3634 fold_convert (ssizetype, base_iv.step),
3635 fold_convert (ssizetype, offset_iv.step));
3636
3637 STMT_VINFO_DR_STEP (stmt_info) = outer_step;
3638 /* FIXME: Use canonicalize_base_object_address (base_iv.base); */
3639 STMT_VINFO_DR_BASE_ADDRESS (stmt_info) = base_iv.base;
3640 STMT_VINFO_DR_INIT (stmt_info) = outer_init;
3641 STMT_VINFO_DR_OFFSET (stmt_info) =
3642 fold_convert (ssizetype, offset_iv.base);
3643 STMT_VINFO_DR_ALIGNED_TO (stmt_info) =
3644 size_int (highest_pow2_factor (offset_iv.base));
3645
3646 if (dump_enabled_p ())
3647 {
3648 dump_printf_loc (MSG_NOTE, vect_location,
3649 "\touter base_address: ");
3650 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3651 STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
3652 dump_printf (MSG_NOTE, "\n\touter offset from base address: ");
3653 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3654 STMT_VINFO_DR_OFFSET (stmt_info));
3655 dump_printf (MSG_NOTE,
3656 "\n\touter constant offset from base address: ");
3657 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3658 STMT_VINFO_DR_INIT (stmt_info));
3659 dump_printf (MSG_NOTE, "\n\touter step: ");
3660 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3661 STMT_VINFO_DR_STEP (stmt_info));
3662 dump_printf (MSG_NOTE, "\n\touter aligned to: ");
3663 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3664 STMT_VINFO_DR_ALIGNED_TO (stmt_info));
3665 dump_printf (MSG_NOTE, "\n");
3666 }
3667 }
3668
3669 if (STMT_VINFO_DATA_REF (stmt_info))
3670 {
3671 if (dump_enabled_p ())
3672 {
3673 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3674 "not vectorized: more than one data ref "
3675 "in stmt: ");
3676 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3677 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3678 }
3679
3680 if (bb_vinfo)
3681 break;
3682
3683 if (gather || simd_lane_access)
3684 free_data_ref (dr);
3685 return false;
3686 }
3687
3688 STMT_VINFO_DATA_REF (stmt_info) = dr;
3689 if (simd_lane_access)
3690 {
3691 STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info) = true;
3692 free_data_ref (datarefs[i]);
3693 datarefs[i] = dr;
3694 }
3695
3696 /* Set vectype for STMT. */
3697 scalar_type = TREE_TYPE (DR_REF (dr));
3698 STMT_VINFO_VECTYPE (stmt_info)
3699 = get_vectype_for_scalar_type (scalar_type);
3700 if (!STMT_VINFO_VECTYPE (stmt_info))
3701 {
3702 if (dump_enabled_p ())
3703 {
3704 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3705 "not vectorized: no vectype for stmt: ");
3706 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3707 dump_printf (MSG_MISSED_OPTIMIZATION, " scalar_type: ");
3708 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_DETAILS,
3709 scalar_type);
3710 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3711 }
3712
3713 if (bb_vinfo)
3714 break;
3715
3716 if (gather || simd_lane_access)
3717 {
3718 STMT_VINFO_DATA_REF (stmt_info) = NULL;
3719 if (gather)
3720 free_data_ref (dr);
3721 }
3722 return false;
3723 }
3724 else
3725 {
3726 if (dump_enabled_p ())
3727 {
3728 dump_printf_loc (MSG_NOTE, vect_location,
3729 "got vectype for stmt: ");
3730 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
3731 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3732 STMT_VINFO_VECTYPE (stmt_info));
3733 dump_printf (MSG_NOTE, "\n");
3734 }
3735 }
3736
3737 /* Adjust the minimal vectorization factor according to the
3738 vector type. */
3739 vf = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
3740 if (vf > *min_vf)
3741 *min_vf = vf;
3742
3743 if (gather)
3744 {
3745 tree off;
3746
3747 gather = 0 != vect_check_gather (stmt, loop_vinfo, NULL, &off, NULL);
3748 if (gather
3749 && get_vectype_for_scalar_type (TREE_TYPE (off)) == NULL_TREE)
3750 gather = false;
3751 if (!gather)
3752 {
3753 STMT_VINFO_DATA_REF (stmt_info) = NULL;
3754 free_data_ref (dr);
3755 if (dump_enabled_p ())
3756 {
3757 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3758 "not vectorized: not suitable for gather "
3759 "load ");
3760 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3761 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3762 }
3763 return false;
3764 }
3765
3766 datarefs[i] = dr;
3767 STMT_VINFO_GATHER_P (stmt_info) = true;
3768 }
3769 else if (loop_vinfo
3770 && TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
3771 {
3772 if (nested_in_vect_loop_p (loop, stmt)
3773 || !DR_IS_READ (dr))
3774 {
3775 if (dump_enabled_p ())
3776 {
3777 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3778 "not vectorized: not suitable for strided "
3779 "load ");
3780 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3781 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3782 }
3783 return false;
3784 }
3785 STMT_VINFO_STRIDE_LOAD_P (stmt_info) = true;
3786 }
3787 }
3788
3789 /* If we stopped analysis at the first dataref we could not analyze
3790 when trying to vectorize a basic-block mark the rest of the datarefs
3791 as not vectorizable and truncate the vector of datarefs. That
3792 avoids spending useless time in analyzing their dependence. */
3793 if (i != datarefs.length ())
3794 {
3795 gcc_assert (bb_vinfo != NULL);
3796 for (unsigned j = i; j < datarefs.length (); ++j)
3797 {
3798 data_reference_p dr = datarefs[j];
3799 STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (DR_STMT (dr))) = false;
3800 free_data_ref (dr);
3801 }
3802 datarefs.truncate (i);
3803 }
3804
3805 return true;
3806 }
3807
3808
3809 /* Function vect_get_new_vect_var.
3810
3811 Returns a name for a new variable. The current naming scheme appends the
3812 prefix "vect_" or "vect_p" (depending on the value of VAR_KIND) to
3813 the name of vectorizer generated variables, and appends that to NAME if
3814 provided. */
3815
3816 tree
3817 vect_get_new_vect_var (tree type, enum vect_var_kind var_kind, const char *name)
3818 {
3819 const char *prefix;
3820 tree new_vect_var;
3821
3822 switch (var_kind)
3823 {
3824 case vect_simple_var:
3825 prefix = "vect";
3826 break;
3827 case vect_scalar_var:
3828 prefix = "stmp";
3829 break;
3830 case vect_pointer_var:
3831 prefix = "vectp";
3832 break;
3833 default:
3834 gcc_unreachable ();
3835 }
3836
3837 if (name)
3838 {
3839 char* tmp = concat (prefix, "_", name, NULL);
3840 new_vect_var = create_tmp_reg (type, tmp);
3841 free (tmp);
3842 }
3843 else
3844 new_vect_var = create_tmp_reg (type, prefix);
3845
3846 return new_vect_var;
3847 }
3848
3849
3850 /* Function vect_create_addr_base_for_vector_ref.
3851
3852 Create an expression that computes the address of the first memory location
3853 that will be accessed for a data reference.
3854
3855 Input:
3856 STMT: The statement containing the data reference.
3857 NEW_STMT_LIST: Must be initialized to NULL_TREE or a statement list.
3858 OFFSET: Optional. If supplied, it is be added to the initial address.
3859 LOOP: Specify relative to which loop-nest should the address be computed.
3860 For example, when the dataref is in an inner-loop nested in an
3861 outer-loop that is now being vectorized, LOOP can be either the
3862 outer-loop, or the inner-loop. The first memory location accessed
3863 by the following dataref ('in' points to short):
3864
3865 for (i=0; i<N; i++)
3866 for (j=0; j<M; j++)
3867 s += in[i+j]
3868
3869 is as follows:
3870 if LOOP=i_loop: &in (relative to i_loop)
3871 if LOOP=j_loop: &in+i*2B (relative to j_loop)
3872 BYTE_OFFSET: Optional, defaulted to NULL. If supplied, it is added to the
3873 initial address. Unlike OFFSET, which is number of elements to
3874 be added, BYTE_OFFSET is measured in bytes.
3875
3876 Output:
3877 1. Return an SSA_NAME whose value is the address of the memory location of
3878 the first vector of the data reference.
3879 2. If new_stmt_list is not NULL_TREE after return then the caller must insert
3880 these statement(s) which define the returned SSA_NAME.
3881
3882 FORNOW: We are only handling array accesses with step 1. */
3883
3884 tree
3885 vect_create_addr_base_for_vector_ref (gimple stmt,
3886 gimple_seq *new_stmt_list,
3887 tree offset,
3888 struct loop *loop,
3889 tree byte_offset)
3890 {
3891 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3892 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
3893 tree data_ref_base;
3894 const char *base_name;
3895 tree addr_base;
3896 tree dest;
3897 gimple_seq seq = NULL;
3898 tree base_offset;
3899 tree init;
3900 tree vect_ptr_type;
3901 tree step = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
3902 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3903
3904 if (loop_vinfo && loop && loop != (gimple_bb (stmt))->loop_father)
3905 {
3906 struct loop *outer_loop = LOOP_VINFO_LOOP (loop_vinfo);
3907
3908 gcc_assert (nested_in_vect_loop_p (outer_loop, stmt));
3909
3910 data_ref_base = unshare_expr (STMT_VINFO_DR_BASE_ADDRESS (stmt_info));
3911 base_offset = unshare_expr (STMT_VINFO_DR_OFFSET (stmt_info));
3912 init = unshare_expr (STMT_VINFO_DR_INIT (stmt_info));
3913 }
3914 else
3915 {
3916 data_ref_base = unshare_expr (DR_BASE_ADDRESS (dr));
3917 base_offset = unshare_expr (DR_OFFSET (dr));
3918 init = unshare_expr (DR_INIT (dr));
3919 }
3920
3921 if (loop_vinfo)
3922 base_name = get_name (data_ref_base);
3923 else
3924 {
3925 base_offset = ssize_int (0);
3926 init = ssize_int (0);
3927 base_name = get_name (DR_REF (dr));
3928 }
3929
3930 /* Create base_offset */
3931 base_offset = size_binop (PLUS_EXPR,
3932 fold_convert (sizetype, base_offset),
3933 fold_convert (sizetype, init));
3934
3935 if (offset)
3936 {
3937 offset = fold_build2 (MULT_EXPR, sizetype,
3938 fold_convert (sizetype, offset), step);
3939 base_offset = fold_build2 (PLUS_EXPR, sizetype,
3940 base_offset, offset);
3941 }
3942 if (byte_offset)
3943 {
3944 byte_offset = fold_convert (sizetype, byte_offset);
3945 base_offset = fold_build2 (PLUS_EXPR, sizetype,
3946 base_offset, byte_offset);
3947 }
3948
3949 /* base + base_offset */
3950 if (loop_vinfo)
3951 addr_base = fold_build_pointer_plus (data_ref_base, base_offset);
3952 else
3953 {
3954 addr_base = build1 (ADDR_EXPR,
3955 build_pointer_type (TREE_TYPE (DR_REF (dr))),
3956 unshare_expr (DR_REF (dr)));
3957 }
3958
3959 vect_ptr_type = build_pointer_type (STMT_VINFO_VECTYPE (stmt_info));
3960 addr_base = fold_convert (vect_ptr_type, addr_base);
3961 dest = vect_get_new_vect_var (vect_ptr_type, vect_pointer_var, base_name);
3962 addr_base = force_gimple_operand (addr_base, &seq, false, dest);
3963 gimple_seq_add_seq (new_stmt_list, seq);
3964
3965 if (DR_PTR_INFO (dr)
3966 && TREE_CODE (addr_base) == SSA_NAME)
3967 {
3968 duplicate_ssa_name_ptr_info (addr_base, DR_PTR_INFO (dr));
3969 unsigned int align = TYPE_ALIGN_UNIT (STMT_VINFO_VECTYPE (stmt_info));
3970 int misalign = DR_MISALIGNMENT (dr);
3971 if (offset || byte_offset || (misalign == -1))
3972 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (addr_base));
3973 else
3974 set_ptr_info_alignment (SSA_NAME_PTR_INFO (addr_base), align, misalign);
3975 }
3976
3977 if (dump_enabled_p ())
3978 {
3979 dump_printf_loc (MSG_NOTE, vect_location, "created ");
3980 dump_generic_expr (MSG_NOTE, TDF_SLIM, addr_base);
3981 dump_printf (MSG_NOTE, "\n");
3982 }
3983
3984 return addr_base;
3985 }
3986
3987
3988 /* Function vect_create_data_ref_ptr.
3989
3990 Create a new pointer-to-AGGR_TYPE variable (ap), that points to the first
3991 location accessed in the loop by STMT, along with the def-use update
3992 chain to appropriately advance the pointer through the loop iterations.
3993 Also set aliasing information for the pointer. This pointer is used by
3994 the callers to this function to create a memory reference expression for
3995 vector load/store access.
3996
3997 Input:
3998 1. STMT: a stmt that references memory. Expected to be of the form
3999 GIMPLE_ASSIGN <name, data-ref> or
4000 GIMPLE_ASSIGN <data-ref, name>.
4001 2. AGGR_TYPE: the type of the reference, which should be either a vector
4002 or an array.
4003 3. AT_LOOP: the loop where the vector memref is to be created.
4004 4. OFFSET (optional): an offset to be added to the initial address accessed
4005 by the data-ref in STMT.
4006 5. BSI: location where the new stmts are to be placed if there is no loop
4007 6. ONLY_INIT: indicate if ap is to be updated in the loop, or remain
4008 pointing to the initial address.
4009 7. BYTE_OFFSET (optional, defaults to NULL): a byte offset to be added
4010 to the initial address accessed by the data-ref in STMT. This is
4011 similar to OFFSET, but OFFSET is counted in elements, while BYTE_OFFSET
4012 in bytes.
4013
4014 Output:
4015 1. Declare a new ptr to vector_type, and have it point to the base of the
4016 data reference (initial addressed accessed by the data reference).
4017 For example, for vector of type V8HI, the following code is generated:
4018
4019 v8hi *ap;
4020 ap = (v8hi *)initial_address;
4021
4022 if OFFSET is not supplied:
4023 initial_address = &a[init];
4024 if OFFSET is supplied:
4025 initial_address = &a[init + OFFSET];
4026 if BYTE_OFFSET is supplied:
4027 initial_address = &a[init] + BYTE_OFFSET;
4028
4029 Return the initial_address in INITIAL_ADDRESS.
4030
4031 2. If ONLY_INIT is true, just return the initial pointer. Otherwise, also
4032 update the pointer in each iteration of the loop.
4033
4034 Return the increment stmt that updates the pointer in PTR_INCR.
4035
4036 3. Set INV_P to true if the access pattern of the data reference in the
4037 vectorized loop is invariant. Set it to false otherwise.
4038
4039 4. Return the pointer. */
4040
4041 tree
4042 vect_create_data_ref_ptr (gimple stmt, tree aggr_type, struct loop *at_loop,
4043 tree offset, tree *initial_address,
4044 gimple_stmt_iterator *gsi, gimple *ptr_incr,
4045 bool only_init, bool *inv_p, tree byte_offset)
4046 {
4047 const char *base_name;
4048 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4049 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4050 struct loop *loop = NULL;
4051 bool nested_in_vect_loop = false;
4052 struct loop *containing_loop = NULL;
4053 tree aggr_ptr_type;
4054 tree aggr_ptr;
4055 tree new_temp;
4056 gimple vec_stmt;
4057 gimple_seq new_stmt_list = NULL;
4058 edge pe = NULL;
4059 basic_block new_bb;
4060 tree aggr_ptr_init;
4061 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4062 tree aptr;
4063 gimple_stmt_iterator incr_gsi;
4064 bool insert_after;
4065 tree indx_before_incr, indx_after_incr;
4066 gimple incr;
4067 tree step;
4068 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4069
4070 gcc_assert (TREE_CODE (aggr_type) == ARRAY_TYPE
4071 || TREE_CODE (aggr_type) == VECTOR_TYPE);
4072
4073 if (loop_vinfo)
4074 {
4075 loop = LOOP_VINFO_LOOP (loop_vinfo);
4076 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4077 containing_loop = (gimple_bb (stmt))->loop_father;
4078 pe = loop_preheader_edge (loop);
4079 }
4080 else
4081 {
4082 gcc_assert (bb_vinfo);
4083 only_init = true;
4084 *ptr_incr = NULL;
4085 }
4086
4087 /* Check the step (evolution) of the load in LOOP, and record
4088 whether it's invariant. */
4089 if (nested_in_vect_loop)
4090 step = STMT_VINFO_DR_STEP (stmt_info);
4091 else
4092 step = DR_STEP (STMT_VINFO_DATA_REF (stmt_info));
4093
4094 if (integer_zerop (step))
4095 *inv_p = true;
4096 else
4097 *inv_p = false;
4098
4099 /* Create an expression for the first address accessed by this load
4100 in LOOP. */
4101 base_name = get_name (DR_BASE_ADDRESS (dr));
4102
4103 if (dump_enabled_p ())
4104 {
4105 tree dr_base_type = TREE_TYPE (DR_BASE_OBJECT (dr));
4106 dump_printf_loc (MSG_NOTE, vect_location,
4107 "create %s-pointer variable to type: ",
4108 get_tree_code_name (TREE_CODE (aggr_type)));
4109 dump_generic_expr (MSG_NOTE, TDF_SLIM, aggr_type);
4110 if (TREE_CODE (dr_base_type) == ARRAY_TYPE)
4111 dump_printf (MSG_NOTE, " vectorizing an array ref: ");
4112 else if (TREE_CODE (dr_base_type) == VECTOR_TYPE)
4113 dump_printf (MSG_NOTE, " vectorizing a vector ref: ");
4114 else if (TREE_CODE (dr_base_type) == RECORD_TYPE)
4115 dump_printf (MSG_NOTE, " vectorizing a record based array ref: ");
4116 else
4117 dump_printf (MSG_NOTE, " vectorizing a pointer ref: ");
4118 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_BASE_OBJECT (dr));
4119 dump_printf (MSG_NOTE, "\n");
4120 }
4121
4122 /* (1) Create the new aggregate-pointer variable.
4123 Vector and array types inherit the alias set of their component
4124 type by default so we need to use a ref-all pointer if the data
4125 reference does not conflict with the created aggregated data
4126 reference because it is not addressable. */
4127 bool need_ref_all = false;
4128 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
4129 get_alias_set (DR_REF (dr))))
4130 need_ref_all = true;
4131 /* Likewise for any of the data references in the stmt group. */
4132 else if (STMT_VINFO_GROUP_SIZE (stmt_info) > 1)
4133 {
4134 gimple orig_stmt = STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_info);
4135 do
4136 {
4137 stmt_vec_info sinfo = vinfo_for_stmt (orig_stmt);
4138 struct data_reference *sdr = STMT_VINFO_DATA_REF (sinfo);
4139 if (!alias_sets_conflict_p (get_alias_set (aggr_type),
4140 get_alias_set (DR_REF (sdr))))
4141 {
4142 need_ref_all = true;
4143 break;
4144 }
4145 orig_stmt = STMT_VINFO_GROUP_NEXT_ELEMENT (sinfo);
4146 }
4147 while (orig_stmt);
4148 }
4149 aggr_ptr_type = build_pointer_type_for_mode (aggr_type, ptr_mode,
4150 need_ref_all);
4151 aggr_ptr = vect_get_new_vect_var (aggr_ptr_type, vect_pointer_var, base_name);
4152
4153
4154 /* Note: If the dataref is in an inner-loop nested in LOOP, and we are
4155 vectorizing LOOP (i.e., outer-loop vectorization), we need to create two
4156 def-use update cycles for the pointer: one relative to the outer-loop
4157 (LOOP), which is what steps (3) and (4) below do. The other is relative
4158 to the inner-loop (which is the inner-most loop containing the dataref),
4159 and this is done be step (5) below.
4160
4161 When vectorizing inner-most loops, the vectorized loop (LOOP) is also the
4162 inner-most loop, and so steps (3),(4) work the same, and step (5) is
4163 redundant. Steps (3),(4) create the following:
4164
4165 vp0 = &base_addr;
4166 LOOP: vp1 = phi(vp0,vp2)
4167 ...
4168 ...
4169 vp2 = vp1 + step
4170 goto LOOP
4171
4172 If there is an inner-loop nested in loop, then step (5) will also be
4173 applied, and an additional update in the inner-loop will be created:
4174
4175 vp0 = &base_addr;
4176 LOOP: vp1 = phi(vp0,vp2)
4177 ...
4178 inner: vp3 = phi(vp1,vp4)
4179 vp4 = vp3 + inner_step
4180 if () goto inner
4181 ...
4182 vp2 = vp1 + step
4183 if () goto LOOP */
4184
4185 /* (2) Calculate the initial address of the aggregate-pointer, and set
4186 the aggregate-pointer to point to it before the loop. */
4187
4188 /* Create: (&(base[init_val+offset]+byte_offset) in the loop preheader. */
4189
4190 new_temp = vect_create_addr_base_for_vector_ref (stmt, &new_stmt_list,
4191 offset, loop, byte_offset);
4192 if (new_stmt_list)
4193 {
4194 if (pe)
4195 {
4196 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmt_list);
4197 gcc_assert (!new_bb);
4198 }
4199 else
4200 gsi_insert_seq_before (gsi, new_stmt_list, GSI_SAME_STMT);
4201 }
4202
4203 *initial_address = new_temp;
4204
4205 /* Create: p = (aggr_type *) initial_base */
4206 if (TREE_CODE (new_temp) != SSA_NAME
4207 || !useless_type_conversion_p (aggr_ptr_type, TREE_TYPE (new_temp)))
4208 {
4209 vec_stmt = gimple_build_assign (aggr_ptr,
4210 fold_convert (aggr_ptr_type, new_temp));
4211 aggr_ptr_init = make_ssa_name (aggr_ptr, vec_stmt);
4212 /* Copy the points-to information if it exists. */
4213 if (DR_PTR_INFO (dr))
4214 duplicate_ssa_name_ptr_info (aggr_ptr_init, DR_PTR_INFO (dr));
4215 gimple_assign_set_lhs (vec_stmt, aggr_ptr_init);
4216 if (pe)
4217 {
4218 new_bb = gsi_insert_on_edge_immediate (pe, vec_stmt);
4219 gcc_assert (!new_bb);
4220 }
4221 else
4222 gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
4223 }
4224 else
4225 aggr_ptr_init = new_temp;
4226
4227 /* (3) Handle the updating of the aggregate-pointer inside the loop.
4228 This is needed when ONLY_INIT is false, and also when AT_LOOP is the
4229 inner-loop nested in LOOP (during outer-loop vectorization). */
4230
4231 /* No update in loop is required. */
4232 if (only_init && (!loop_vinfo || at_loop == loop))
4233 aptr = aggr_ptr_init;
4234 else
4235 {
4236 /* The step of the aggregate pointer is the type size. */
4237 tree iv_step = TYPE_SIZE_UNIT (aggr_type);
4238 /* One exception to the above is when the scalar step of the load in
4239 LOOP is zero. In this case the step here is also zero. */
4240 if (*inv_p)
4241 iv_step = size_zero_node;
4242 else if (tree_int_cst_sgn (step) == -1)
4243 iv_step = fold_build1 (NEGATE_EXPR, TREE_TYPE (iv_step), iv_step);
4244
4245 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
4246
4247 create_iv (aggr_ptr_init,
4248 fold_convert (aggr_ptr_type, iv_step),
4249 aggr_ptr, loop, &incr_gsi, insert_after,
4250 &indx_before_incr, &indx_after_incr);
4251 incr = gsi_stmt (incr_gsi);
4252 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
4253
4254 /* Copy the points-to information if it exists. */
4255 if (DR_PTR_INFO (dr))
4256 {
4257 duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
4258 duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
4259 }
4260 if (ptr_incr)
4261 *ptr_incr = incr;
4262
4263 aptr = indx_before_incr;
4264 }
4265
4266 if (!nested_in_vect_loop || only_init)
4267 return aptr;
4268
4269
4270 /* (4) Handle the updating of the aggregate-pointer inside the inner-loop
4271 nested in LOOP, if exists. */
4272
4273 gcc_assert (nested_in_vect_loop);
4274 if (!only_init)
4275 {
4276 standard_iv_increment_position (containing_loop, &incr_gsi,
4277 &insert_after);
4278 create_iv (aptr, fold_convert (aggr_ptr_type, DR_STEP (dr)), aggr_ptr,
4279 containing_loop, &incr_gsi, insert_after, &indx_before_incr,
4280 &indx_after_incr);
4281 incr = gsi_stmt (incr_gsi);
4282 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
4283
4284 /* Copy the points-to information if it exists. */
4285 if (DR_PTR_INFO (dr))
4286 {
4287 duplicate_ssa_name_ptr_info (indx_before_incr, DR_PTR_INFO (dr));
4288 duplicate_ssa_name_ptr_info (indx_after_incr, DR_PTR_INFO (dr));
4289 }
4290 if (ptr_incr)
4291 *ptr_incr = incr;
4292
4293 return indx_before_incr;
4294 }
4295 else
4296 gcc_unreachable ();
4297 }
4298
4299
4300 /* Function bump_vector_ptr
4301
4302 Increment a pointer (to a vector type) by vector-size. If requested,
4303 i.e. if PTR-INCR is given, then also connect the new increment stmt
4304 to the existing def-use update-chain of the pointer, by modifying
4305 the PTR_INCR as illustrated below:
4306
4307 The pointer def-use update-chain before this function:
4308 DATAREF_PTR = phi (p_0, p_2)
4309 ....
4310 PTR_INCR: p_2 = DATAREF_PTR + step
4311
4312 The pointer def-use update-chain after this function:
4313 DATAREF_PTR = phi (p_0, p_2)
4314 ....
4315 NEW_DATAREF_PTR = DATAREF_PTR + BUMP
4316 ....
4317 PTR_INCR: p_2 = NEW_DATAREF_PTR + step
4318
4319 Input:
4320 DATAREF_PTR - ssa_name of a pointer (to vector type) that is being updated
4321 in the loop.
4322 PTR_INCR - optional. The stmt that updates the pointer in each iteration of
4323 the loop. The increment amount across iterations is expected
4324 to be vector_size.
4325 BSI - location where the new update stmt is to be placed.
4326 STMT - the original scalar memory-access stmt that is being vectorized.
4327 BUMP - optional. The offset by which to bump the pointer. If not given,
4328 the offset is assumed to be vector_size.
4329
4330 Output: Return NEW_DATAREF_PTR as illustrated above.
4331
4332 */
4333
4334 tree
4335 bump_vector_ptr (tree dataref_ptr, gimple ptr_incr, gimple_stmt_iterator *gsi,
4336 gimple stmt, tree bump)
4337 {
4338 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4339 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4340 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4341 tree update = TYPE_SIZE_UNIT (vectype);
4342 gimple incr_stmt;
4343 ssa_op_iter iter;
4344 use_operand_p use_p;
4345 tree new_dataref_ptr;
4346
4347 if (bump)
4348 update = bump;
4349
4350 new_dataref_ptr = copy_ssa_name (dataref_ptr, NULL);
4351 incr_stmt = gimple_build_assign_with_ops (POINTER_PLUS_EXPR, new_dataref_ptr,
4352 dataref_ptr, update);
4353 vect_finish_stmt_generation (stmt, incr_stmt, gsi);
4354
4355 /* Copy the points-to information if it exists. */
4356 if (DR_PTR_INFO (dr))
4357 {
4358 duplicate_ssa_name_ptr_info (new_dataref_ptr, DR_PTR_INFO (dr));
4359 mark_ptr_info_alignment_unknown (SSA_NAME_PTR_INFO (new_dataref_ptr));
4360 }
4361
4362 if (!ptr_incr)
4363 return new_dataref_ptr;
4364
4365 /* Update the vector-pointer's cross-iteration increment. */
4366 FOR_EACH_SSA_USE_OPERAND (use_p, ptr_incr, iter, SSA_OP_USE)
4367 {
4368 tree use = USE_FROM_PTR (use_p);
4369
4370 if (use == dataref_ptr)
4371 SET_USE (use_p, new_dataref_ptr);
4372 else
4373 gcc_assert (tree_int_cst_compare (use, update) == 0);
4374 }
4375
4376 return new_dataref_ptr;
4377 }
4378
4379
4380 /* Function vect_create_destination_var.
4381
4382 Create a new temporary of type VECTYPE. */
4383
4384 tree
4385 vect_create_destination_var (tree scalar_dest, tree vectype)
4386 {
4387 tree vec_dest;
4388 const char *name;
4389 char *new_name;
4390 tree type;
4391 enum vect_var_kind kind;
4392
4393 kind = vectype ? vect_simple_var : vect_scalar_var;
4394 type = vectype ? vectype : TREE_TYPE (scalar_dest);
4395
4396 gcc_assert (TREE_CODE (scalar_dest) == SSA_NAME);
4397
4398 name = get_name (scalar_dest);
4399 if (name)
4400 asprintf (&new_name, "%s_%u", name, SSA_NAME_VERSION (scalar_dest));
4401 else
4402 asprintf (&new_name, "_%u", SSA_NAME_VERSION (scalar_dest));
4403 vec_dest = vect_get_new_vect_var (type, kind, new_name);
4404 free (new_name);
4405
4406 return vec_dest;
4407 }
4408
4409 /* Function vect_grouped_store_supported.
4410
4411 Returns TRUE if interleave high and interleave low permutations
4412 are supported, and FALSE otherwise. */
4413
4414 bool
4415 vect_grouped_store_supported (tree vectype, unsigned HOST_WIDE_INT count)
4416 {
4417 machine_mode mode = TYPE_MODE (vectype);
4418
4419 /* vect_permute_store_chain requires the group size to be equal to 3 or
4420 be a power of two. */
4421 if (count != 3 && exact_log2 (count) == -1)
4422 {
4423 if (dump_enabled_p ())
4424 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4425 "the size of the group of accesses"
4426 " is not a power of 2 or not eqaul to 3\n");
4427 return false;
4428 }
4429
4430 /* Check that the permutation is supported. */
4431 if (VECTOR_MODE_P (mode))
4432 {
4433 unsigned int i, nelt = GET_MODE_NUNITS (mode);
4434 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4435
4436 if (count == 3)
4437 {
4438 unsigned int j0 = 0, j1 = 0, j2 = 0;
4439 unsigned int i, j;
4440
4441 for (j = 0; j < 3; j++)
4442 {
4443 int nelt0 = ((3 - j) * nelt) % 3;
4444 int nelt1 = ((3 - j) * nelt + 1) % 3;
4445 int nelt2 = ((3 - j) * nelt + 2) % 3;
4446 for (i = 0; i < nelt; i++)
4447 {
4448 if (3 * i + nelt0 < nelt)
4449 sel[3 * i + nelt0] = j0++;
4450 if (3 * i + nelt1 < nelt)
4451 sel[3 * i + nelt1] = nelt + j1++;
4452 if (3 * i + nelt2 < nelt)
4453 sel[3 * i + nelt2] = 0;
4454 }
4455 if (!can_vec_perm_p (mode, false, sel))
4456 {
4457 if (dump_enabled_p ())
4458 dump_printf (MSG_MISSED_OPTIMIZATION,
4459 "permutaion op not supported by target.\n");
4460 return false;
4461 }
4462
4463 for (i = 0; i < nelt; i++)
4464 {
4465 if (3 * i + nelt0 < nelt)
4466 sel[3 * i + nelt0] = 3 * i + nelt0;
4467 if (3 * i + nelt1 < nelt)
4468 sel[3 * i + nelt1] = 3 * i + nelt1;
4469 if (3 * i + nelt2 < nelt)
4470 sel[3 * i + nelt2] = nelt + j2++;
4471 }
4472 if (!can_vec_perm_p (mode, false, sel))
4473 {
4474 if (dump_enabled_p ())
4475 dump_printf (MSG_MISSED_OPTIMIZATION,
4476 "permutaion op not supported by target.\n");
4477 return false;
4478 }
4479 }
4480 return true;
4481 }
4482 else
4483 {
4484 /* If length is not equal to 3 then only power of 2 is supported. */
4485 gcc_assert (exact_log2 (count) != -1);
4486
4487 for (i = 0; i < nelt / 2; i++)
4488 {
4489 sel[i * 2] = i;
4490 sel[i * 2 + 1] = i + nelt;
4491 }
4492 if (can_vec_perm_p (mode, false, sel))
4493 {
4494 for (i = 0; i < nelt; i++)
4495 sel[i] += nelt / 2;
4496 if (can_vec_perm_p (mode, false, sel))
4497 return true;
4498 }
4499 }
4500 }
4501
4502 if (dump_enabled_p ())
4503 dump_printf (MSG_MISSED_OPTIMIZATION,
4504 "permutaion op not supported by target.\n");
4505 return false;
4506 }
4507
4508
4509 /* Return TRUE if vec_store_lanes is available for COUNT vectors of
4510 type VECTYPE. */
4511
4512 bool
4513 vect_store_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
4514 {
4515 return vect_lanes_optab_supported_p ("vec_store_lanes",
4516 vec_store_lanes_optab,
4517 vectype, count);
4518 }
4519
4520
4521 /* Function vect_permute_store_chain.
4522
4523 Given a chain of interleaved stores in DR_CHAIN of LENGTH that must be
4524 a power of 2 or equal to 3, generate interleave_high/low stmts to reorder
4525 the data correctly for the stores. Return the final references for stores
4526 in RESULT_CHAIN.
4527
4528 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
4529 The input is 4 vectors each containing 8 elements. We assign a number to
4530 each element, the input sequence is:
4531
4532 1st vec: 0 1 2 3 4 5 6 7
4533 2nd vec: 8 9 10 11 12 13 14 15
4534 3rd vec: 16 17 18 19 20 21 22 23
4535 4th vec: 24 25 26 27 28 29 30 31
4536
4537 The output sequence should be:
4538
4539 1st vec: 0 8 16 24 1 9 17 25
4540 2nd vec: 2 10 18 26 3 11 19 27
4541 3rd vec: 4 12 20 28 5 13 21 30
4542 4th vec: 6 14 22 30 7 15 23 31
4543
4544 i.e., we interleave the contents of the four vectors in their order.
4545
4546 We use interleave_high/low instructions to create such output. The input of
4547 each interleave_high/low operation is two vectors:
4548 1st vec 2nd vec
4549 0 1 2 3 4 5 6 7
4550 the even elements of the result vector are obtained left-to-right from the
4551 high/low elements of the first vector. The odd elements of the result are
4552 obtained left-to-right from the high/low elements of the second vector.
4553 The output of interleave_high will be: 0 4 1 5
4554 and of interleave_low: 2 6 3 7
4555
4556
4557 The permutation is done in log LENGTH stages. In each stage interleave_high
4558 and interleave_low stmts are created for each pair of vectors in DR_CHAIN,
4559 where the first argument is taken from the first half of DR_CHAIN and the
4560 second argument from it's second half.
4561 In our example,
4562
4563 I1: interleave_high (1st vec, 3rd vec)
4564 I2: interleave_low (1st vec, 3rd vec)
4565 I3: interleave_high (2nd vec, 4th vec)
4566 I4: interleave_low (2nd vec, 4th vec)
4567
4568 The output for the first stage is:
4569
4570 I1: 0 16 1 17 2 18 3 19
4571 I2: 4 20 5 21 6 22 7 23
4572 I3: 8 24 9 25 10 26 11 27
4573 I4: 12 28 13 29 14 30 15 31
4574
4575 The output of the second stage, i.e. the final result is:
4576
4577 I1: 0 8 16 24 1 9 17 25
4578 I2: 2 10 18 26 3 11 19 27
4579 I3: 4 12 20 28 5 13 21 30
4580 I4: 6 14 22 30 7 15 23 31. */
4581
4582 void
4583 vect_permute_store_chain (vec<tree> dr_chain,
4584 unsigned int length,
4585 gimple stmt,
4586 gimple_stmt_iterator *gsi,
4587 vec<tree> *result_chain)
4588 {
4589 tree vect1, vect2, high, low;
4590 gimple perm_stmt;
4591 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
4592 tree perm_mask_low, perm_mask_high;
4593 tree data_ref;
4594 tree perm3_mask_low, perm3_mask_high;
4595 unsigned int i, n, log_length = exact_log2 (length);
4596 unsigned int j, nelt = TYPE_VECTOR_SUBPARTS (vectype);
4597 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
4598
4599 result_chain->quick_grow (length);
4600 memcpy (result_chain->address (), dr_chain.address (),
4601 length * sizeof (tree));
4602
4603 if (length == 3)
4604 {
4605 unsigned int j0 = 0, j1 = 0, j2 = 0;
4606
4607 for (j = 0; j < 3; j++)
4608 {
4609 int nelt0 = ((3 - j) * nelt) % 3;
4610 int nelt1 = ((3 - j) * nelt + 1) % 3;
4611 int nelt2 = ((3 - j) * nelt + 2) % 3;
4612
4613 for (i = 0; i < nelt; i++)
4614 {
4615 if (3 * i + nelt0 < nelt)
4616 sel[3 * i + nelt0] = j0++;
4617 if (3 * i + nelt1 < nelt)
4618 sel[3 * i + nelt1] = nelt + j1++;
4619 if (3 * i + nelt2 < nelt)
4620 sel[3 * i + nelt2] = 0;
4621 }
4622 perm3_mask_low = vect_gen_perm_mask_checked (vectype, sel);
4623
4624 for (i = 0; i < nelt; i++)
4625 {
4626 if (3 * i + nelt0 < nelt)
4627 sel[3 * i + nelt0] = 3 * i + nelt0;
4628 if (3 * i + nelt1 < nelt)
4629 sel[3 * i + nelt1] = 3 * i + nelt1;
4630 if (3 * i + nelt2 < nelt)
4631 sel[3 * i + nelt2] = nelt + j2++;
4632 }
4633 perm3_mask_high = vect_gen_perm_mask_checked (vectype, sel);
4634
4635 vect1 = dr_chain[0];
4636 vect2 = dr_chain[1];
4637
4638 /* Create interleaving stmt:
4639 low = VEC_PERM_EXPR <vect1, vect2,
4640 {j, nelt, *, j + 1, nelt + j + 1, *,
4641 j + 2, nelt + j + 2, *, ...}> */
4642 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
4643 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
4644 vect1, vect2,
4645 perm3_mask_low);
4646 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4647
4648 vect1 = data_ref;
4649 vect2 = dr_chain[2];
4650 /* Create interleaving stmt:
4651 low = VEC_PERM_EXPR <vect1, vect2,
4652 {0, 1, nelt + j, 3, 4, nelt + j + 1,
4653 6, 7, nelt + j + 2, ...}> */
4654 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
4655 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
4656 vect1, vect2,
4657 perm3_mask_high);
4658 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4659 (*result_chain)[j] = data_ref;
4660 }
4661 }
4662 else
4663 {
4664 /* If length is not equal to 3 then only power of 2 is supported. */
4665 gcc_assert (exact_log2 (length) != -1);
4666
4667 for (i = 0, n = nelt / 2; i < n; i++)
4668 {
4669 sel[i * 2] = i;
4670 sel[i * 2 + 1] = i + nelt;
4671 }
4672 perm_mask_high = vect_gen_perm_mask_checked (vectype, sel);
4673
4674 for (i = 0; i < nelt; i++)
4675 sel[i] += nelt / 2;
4676 perm_mask_low = vect_gen_perm_mask_checked (vectype, sel);
4677
4678 for (i = 0, n = log_length; i < n; i++)
4679 {
4680 for (j = 0; j < length/2; j++)
4681 {
4682 vect1 = dr_chain[j];
4683 vect2 = dr_chain[j+length/2];
4684
4685 /* Create interleaving stmt:
4686 high = VEC_PERM_EXPR <vect1, vect2, {0, nelt, 1, nelt+1,
4687 ...}> */
4688 high = make_temp_ssa_name (vectype, NULL, "vect_inter_high");
4689 perm_stmt
4690 = gimple_build_assign_with_ops (VEC_PERM_EXPR, high,
4691 vect1, vect2, perm_mask_high);
4692 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4693 (*result_chain)[2*j] = high;
4694
4695 /* Create interleaving stmt:
4696 low = VEC_PERM_EXPR <vect1, vect2,
4697 {nelt/2, nelt*3/2, nelt/2+1, nelt*3/2+1,
4698 ...}> */
4699 low = make_temp_ssa_name (vectype, NULL, "vect_inter_low");
4700 perm_stmt
4701 = gimple_build_assign_with_ops (VEC_PERM_EXPR, low,
4702 vect1, vect2, perm_mask_low);
4703 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4704 (*result_chain)[2*j+1] = low;
4705 }
4706 memcpy (dr_chain.address (), result_chain->address (),
4707 length * sizeof (tree));
4708 }
4709 }
4710 }
4711
4712 /* Function vect_setup_realignment
4713
4714 This function is called when vectorizing an unaligned load using
4715 the dr_explicit_realign[_optimized] scheme.
4716 This function generates the following code at the loop prolog:
4717
4718 p = initial_addr;
4719 x msq_init = *(floor(p)); # prolog load
4720 realignment_token = call target_builtin;
4721 loop:
4722 x msq = phi (msq_init, ---)
4723
4724 The stmts marked with x are generated only for the case of
4725 dr_explicit_realign_optimized.
4726
4727 The code above sets up a new (vector) pointer, pointing to the first
4728 location accessed by STMT, and a "floor-aligned" load using that pointer.
4729 It also generates code to compute the "realignment-token" (if the relevant
4730 target hook was defined), and creates a phi-node at the loop-header bb
4731 whose arguments are the result of the prolog-load (created by this
4732 function) and the result of a load that takes place in the loop (to be
4733 created by the caller to this function).
4734
4735 For the case of dr_explicit_realign_optimized:
4736 The caller to this function uses the phi-result (msq) to create the
4737 realignment code inside the loop, and sets up the missing phi argument,
4738 as follows:
4739 loop:
4740 msq = phi (msq_init, lsq)
4741 lsq = *(floor(p')); # load in loop
4742 result = realign_load (msq, lsq, realignment_token);
4743
4744 For the case of dr_explicit_realign:
4745 loop:
4746 msq = *(floor(p)); # load in loop
4747 p' = p + (VS-1);
4748 lsq = *(floor(p')); # load in loop
4749 result = realign_load (msq, lsq, realignment_token);
4750
4751 Input:
4752 STMT - (scalar) load stmt to be vectorized. This load accesses
4753 a memory location that may be unaligned.
4754 BSI - place where new code is to be inserted.
4755 ALIGNMENT_SUPPORT_SCHEME - which of the two misalignment handling schemes
4756 is used.
4757
4758 Output:
4759 REALIGNMENT_TOKEN - the result of a call to the builtin_mask_for_load
4760 target hook, if defined.
4761 Return value - the result of the loop-header phi node. */
4762
4763 tree
4764 vect_setup_realignment (gimple stmt, gimple_stmt_iterator *gsi,
4765 tree *realignment_token,
4766 enum dr_alignment_support alignment_support_scheme,
4767 tree init_addr,
4768 struct loop **at_loop)
4769 {
4770 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4771 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4772 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4773 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
4774 struct loop *loop = NULL;
4775 edge pe = NULL;
4776 tree scalar_dest = gimple_assign_lhs (stmt);
4777 tree vec_dest;
4778 gimple inc;
4779 tree ptr;
4780 tree data_ref;
4781 gimple new_stmt;
4782 basic_block new_bb;
4783 tree msq_init = NULL_TREE;
4784 tree new_temp;
4785 gimple phi_stmt;
4786 tree msq = NULL_TREE;
4787 gimple_seq stmts = NULL;
4788 bool inv_p;
4789 bool compute_in_loop = false;
4790 bool nested_in_vect_loop = false;
4791 struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
4792 struct loop *loop_for_initial_load = NULL;
4793
4794 if (loop_vinfo)
4795 {
4796 loop = LOOP_VINFO_LOOP (loop_vinfo);
4797 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4798 }
4799
4800 gcc_assert (alignment_support_scheme == dr_explicit_realign
4801 || alignment_support_scheme == dr_explicit_realign_optimized);
4802
4803 /* We need to generate three things:
4804 1. the misalignment computation
4805 2. the extra vector load (for the optimized realignment scheme).
4806 3. the phi node for the two vectors from which the realignment is
4807 done (for the optimized realignment scheme). */
4808
4809 /* 1. Determine where to generate the misalignment computation.
4810
4811 If INIT_ADDR is NULL_TREE, this indicates that the misalignment
4812 calculation will be generated by this function, outside the loop (in the
4813 preheader). Otherwise, INIT_ADDR had already been computed for us by the
4814 caller, inside the loop.
4815
4816 Background: If the misalignment remains fixed throughout the iterations of
4817 the loop, then both realignment schemes are applicable, and also the
4818 misalignment computation can be done outside LOOP. This is because we are
4819 vectorizing LOOP, and so the memory accesses in LOOP advance in steps that
4820 are a multiple of VS (the Vector Size), and therefore the misalignment in
4821 different vectorized LOOP iterations is always the same.
4822 The problem arises only if the memory access is in an inner-loop nested
4823 inside LOOP, which is now being vectorized using outer-loop vectorization.
4824 This is the only case when the misalignment of the memory access may not
4825 remain fixed throughout the iterations of the inner-loop (as explained in
4826 detail in vect_supportable_dr_alignment). In this case, not only is the
4827 optimized realignment scheme not applicable, but also the misalignment
4828 computation (and generation of the realignment token that is passed to
4829 REALIGN_LOAD) have to be done inside the loop.
4830
4831 In short, INIT_ADDR indicates whether we are in a COMPUTE_IN_LOOP mode
4832 or not, which in turn determines if the misalignment is computed inside
4833 the inner-loop, or outside LOOP. */
4834
4835 if (init_addr != NULL_TREE || !loop_vinfo)
4836 {
4837 compute_in_loop = true;
4838 gcc_assert (alignment_support_scheme == dr_explicit_realign);
4839 }
4840
4841
4842 /* 2. Determine where to generate the extra vector load.
4843
4844 For the optimized realignment scheme, instead of generating two vector
4845 loads in each iteration, we generate a single extra vector load in the
4846 preheader of the loop, and in each iteration reuse the result of the
4847 vector load from the previous iteration. In case the memory access is in
4848 an inner-loop nested inside LOOP, which is now being vectorized using
4849 outer-loop vectorization, we need to determine whether this initial vector
4850 load should be generated at the preheader of the inner-loop, or can be
4851 generated at the preheader of LOOP. If the memory access has no evolution
4852 in LOOP, it can be generated in the preheader of LOOP. Otherwise, it has
4853 to be generated inside LOOP (in the preheader of the inner-loop). */
4854
4855 if (nested_in_vect_loop)
4856 {
4857 tree outerloop_step = STMT_VINFO_DR_STEP (stmt_info);
4858 bool invariant_in_outerloop =
4859 (tree_int_cst_compare (outerloop_step, size_zero_node) == 0);
4860 loop_for_initial_load = (invariant_in_outerloop ? loop : loop->inner);
4861 }
4862 else
4863 loop_for_initial_load = loop;
4864 if (at_loop)
4865 *at_loop = loop_for_initial_load;
4866
4867 if (loop_for_initial_load)
4868 pe = loop_preheader_edge (loop_for_initial_load);
4869
4870 /* 3. For the case of the optimized realignment, create the first vector
4871 load at the loop preheader. */
4872
4873 if (alignment_support_scheme == dr_explicit_realign_optimized)
4874 {
4875 /* Create msq_init = *(floor(p1)) in the loop preheader */
4876
4877 gcc_assert (!compute_in_loop);
4878 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4879 ptr = vect_create_data_ref_ptr (stmt, vectype, loop_for_initial_load,
4880 NULL_TREE, &init_addr, NULL, &inc,
4881 true, &inv_p);
4882 new_temp = copy_ssa_name (ptr, NULL);
4883 new_stmt = gimple_build_assign_with_ops
4884 (BIT_AND_EXPR, new_temp, ptr,
4885 build_int_cst (TREE_TYPE (ptr),
4886 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
4887 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4888 gcc_assert (!new_bb);
4889 data_ref
4890 = build2 (MEM_REF, TREE_TYPE (vec_dest), new_temp,
4891 build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0));
4892 new_stmt = gimple_build_assign (vec_dest, data_ref);
4893 new_temp = make_ssa_name (vec_dest, new_stmt);
4894 gimple_assign_set_lhs (new_stmt, new_temp);
4895 if (pe)
4896 {
4897 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4898 gcc_assert (!new_bb);
4899 }
4900 else
4901 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
4902
4903 msq_init = gimple_assign_lhs (new_stmt);
4904 }
4905
4906 /* 4. Create realignment token using a target builtin, if available.
4907 It is done either inside the containing loop, or before LOOP (as
4908 determined above). */
4909
4910 if (targetm.vectorize.builtin_mask_for_load)
4911 {
4912 tree builtin_decl;
4913
4914 /* Compute INIT_ADDR - the initial addressed accessed by this memref. */
4915 if (!init_addr)
4916 {
4917 /* Generate the INIT_ADDR computation outside LOOP. */
4918 init_addr = vect_create_addr_base_for_vector_ref (stmt, &stmts,
4919 NULL_TREE, loop);
4920 if (loop)
4921 {
4922 pe = loop_preheader_edge (loop);
4923 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
4924 gcc_assert (!new_bb);
4925 }
4926 else
4927 gsi_insert_seq_before (gsi, stmts, GSI_SAME_STMT);
4928 }
4929
4930 builtin_decl = targetm.vectorize.builtin_mask_for_load ();
4931 new_stmt = gimple_build_call (builtin_decl, 1, init_addr);
4932 vec_dest =
4933 vect_create_destination_var (scalar_dest,
4934 gimple_call_return_type (new_stmt));
4935 new_temp = make_ssa_name (vec_dest, new_stmt);
4936 gimple_call_set_lhs (new_stmt, new_temp);
4937
4938 if (compute_in_loop)
4939 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
4940 else
4941 {
4942 /* Generate the misalignment computation outside LOOP. */
4943 pe = loop_preheader_edge (loop);
4944 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
4945 gcc_assert (!new_bb);
4946 }
4947
4948 *realignment_token = gimple_call_lhs (new_stmt);
4949
4950 /* The result of the CALL_EXPR to this builtin is determined from
4951 the value of the parameter and no global variables are touched
4952 which makes the builtin a "const" function. Requiring the
4953 builtin to have the "const" attribute makes it unnecessary
4954 to call mark_call_clobbered. */
4955 gcc_assert (TREE_READONLY (builtin_decl));
4956 }
4957
4958 if (alignment_support_scheme == dr_explicit_realign)
4959 return msq;
4960
4961 gcc_assert (!compute_in_loop);
4962 gcc_assert (alignment_support_scheme == dr_explicit_realign_optimized);
4963
4964
4965 /* 5. Create msq = phi <msq_init, lsq> in loop */
4966
4967 pe = loop_preheader_edge (containing_loop);
4968 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4969 msq = make_ssa_name (vec_dest, NULL);
4970 phi_stmt = create_phi_node (msq, containing_loop->header);
4971 add_phi_arg (phi_stmt, msq_init, pe, UNKNOWN_LOCATION);
4972
4973 return msq;
4974 }
4975
4976
4977 /* Function vect_grouped_load_supported.
4978
4979 Returns TRUE if even and odd permutations are supported,
4980 and FALSE otherwise. */
4981
4982 bool
4983 vect_grouped_load_supported (tree vectype, unsigned HOST_WIDE_INT count)
4984 {
4985 machine_mode mode = TYPE_MODE (vectype);
4986
4987 /* vect_permute_load_chain requires the group size to be equal to 3 or
4988 be a power of two. */
4989 if (count != 3 && exact_log2 (count) == -1)
4990 {
4991 if (dump_enabled_p ())
4992 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4993 "the size of the group of accesses"
4994 " is not a power of 2 or not equal to 3\n");
4995 return false;
4996 }
4997
4998 /* Check that the permutation is supported. */
4999 if (VECTOR_MODE_P (mode))
5000 {
5001 unsigned int i, j, nelt = GET_MODE_NUNITS (mode);
5002 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
5003
5004 if (count == 3)
5005 {
5006 unsigned int k;
5007 for (k = 0; k < 3; k++)
5008 {
5009 for (i = 0; i < nelt; i++)
5010 if (3 * i + k < 2 * nelt)
5011 sel[i] = 3 * i + k;
5012 else
5013 sel[i] = 0;
5014 if (!can_vec_perm_p (mode, false, sel))
5015 {
5016 if (dump_enabled_p ())
5017 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5018 "shuffle of 3 loads is not supported by"
5019 " target\n");
5020 return false;
5021 }
5022 for (i = 0, j = 0; i < nelt; i++)
5023 if (3 * i + k < 2 * nelt)
5024 sel[i] = i;
5025 else
5026 sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
5027 if (!can_vec_perm_p (mode, false, sel))
5028 {
5029 if (dump_enabled_p ())
5030 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5031 "shuffle of 3 loads is not supported by"
5032 " target\n");
5033 return false;
5034 }
5035 }
5036 return true;
5037 }
5038 else
5039 {
5040 /* If length is not equal to 3 then only power of 2 is supported. */
5041 gcc_assert (exact_log2 (count) != -1);
5042 for (i = 0; i < nelt; i++)
5043 sel[i] = i * 2;
5044 if (can_vec_perm_p (mode, false, sel))
5045 {
5046 for (i = 0; i < nelt; i++)
5047 sel[i] = i * 2 + 1;
5048 if (can_vec_perm_p (mode, false, sel))
5049 return true;
5050 }
5051 }
5052 }
5053
5054 if (dump_enabled_p ())
5055 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5056 "extract even/odd not supported by target\n");
5057 return false;
5058 }
5059
5060 /* Return TRUE if vec_load_lanes is available for COUNT vectors of
5061 type VECTYPE. */
5062
5063 bool
5064 vect_load_lanes_supported (tree vectype, unsigned HOST_WIDE_INT count)
5065 {
5066 return vect_lanes_optab_supported_p ("vec_load_lanes",
5067 vec_load_lanes_optab,
5068 vectype, count);
5069 }
5070
5071 /* Function vect_permute_load_chain.
5072
5073 Given a chain of interleaved loads in DR_CHAIN of LENGTH that must be
5074 a power of 2 or equal to 3, generate extract_even/odd stmts to reorder
5075 the input data correctly. Return the final references for loads in
5076 RESULT_CHAIN.
5077
5078 E.g., LENGTH is 4 and the scalar type is short, i.e., VF is 8.
5079 The input is 4 vectors each containing 8 elements. We assign a number to each
5080 element, the input sequence is:
5081
5082 1st vec: 0 1 2 3 4 5 6 7
5083 2nd vec: 8 9 10 11 12 13 14 15
5084 3rd vec: 16 17 18 19 20 21 22 23
5085 4th vec: 24 25 26 27 28 29 30 31
5086
5087 The output sequence should be:
5088
5089 1st vec: 0 4 8 12 16 20 24 28
5090 2nd vec: 1 5 9 13 17 21 25 29
5091 3rd vec: 2 6 10 14 18 22 26 30
5092 4th vec: 3 7 11 15 19 23 27 31
5093
5094 i.e., the first output vector should contain the first elements of each
5095 interleaving group, etc.
5096
5097 We use extract_even/odd instructions to create such output. The input of
5098 each extract_even/odd operation is two vectors
5099 1st vec 2nd vec
5100 0 1 2 3 4 5 6 7
5101
5102 and the output is the vector of extracted even/odd elements. The output of
5103 extract_even will be: 0 2 4 6
5104 and of extract_odd: 1 3 5 7
5105
5106
5107 The permutation is done in log LENGTH stages. In each stage extract_even
5108 and extract_odd stmts are created for each pair of vectors in DR_CHAIN in
5109 their order. In our example,
5110
5111 E1: extract_even (1st vec, 2nd vec)
5112 E2: extract_odd (1st vec, 2nd vec)
5113 E3: extract_even (3rd vec, 4th vec)
5114 E4: extract_odd (3rd vec, 4th vec)
5115
5116 The output for the first stage will be:
5117
5118 E1: 0 2 4 6 8 10 12 14
5119 E2: 1 3 5 7 9 11 13 15
5120 E3: 16 18 20 22 24 26 28 30
5121 E4: 17 19 21 23 25 27 29 31
5122
5123 In order to proceed and create the correct sequence for the next stage (or
5124 for the correct output, if the second stage is the last one, as in our
5125 example), we first put the output of extract_even operation and then the
5126 output of extract_odd in RESULT_CHAIN (which is then copied to DR_CHAIN).
5127 The input for the second stage is:
5128
5129 1st vec (E1): 0 2 4 6 8 10 12 14
5130 2nd vec (E3): 16 18 20 22 24 26 28 30
5131 3rd vec (E2): 1 3 5 7 9 11 13 15
5132 4th vec (E4): 17 19 21 23 25 27 29 31
5133
5134 The output of the second stage:
5135
5136 E1: 0 4 8 12 16 20 24 28
5137 E2: 2 6 10 14 18 22 26 30
5138 E3: 1 5 9 13 17 21 25 29
5139 E4: 3 7 11 15 19 23 27 31
5140
5141 And RESULT_CHAIN after reordering:
5142
5143 1st vec (E1): 0 4 8 12 16 20 24 28
5144 2nd vec (E3): 1 5 9 13 17 21 25 29
5145 3rd vec (E2): 2 6 10 14 18 22 26 30
5146 4th vec (E4): 3 7 11 15 19 23 27 31. */
5147
5148 static void
5149 vect_permute_load_chain (vec<tree> dr_chain,
5150 unsigned int length,
5151 gimple stmt,
5152 gimple_stmt_iterator *gsi,
5153 vec<tree> *result_chain)
5154 {
5155 tree data_ref, first_vect, second_vect;
5156 tree perm_mask_even, perm_mask_odd;
5157 tree perm3_mask_low, perm3_mask_high;
5158 gimple perm_stmt;
5159 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
5160 unsigned int i, j, log_length = exact_log2 (length);
5161 unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
5162 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
5163
5164 result_chain->quick_grow (length);
5165 memcpy (result_chain->address (), dr_chain.address (),
5166 length * sizeof (tree));
5167
5168 if (length == 3)
5169 {
5170 unsigned int k;
5171
5172 for (k = 0; k < 3; k++)
5173 {
5174 for (i = 0; i < nelt; i++)
5175 if (3 * i + k < 2 * nelt)
5176 sel[i] = 3 * i + k;
5177 else
5178 sel[i] = 0;
5179 perm3_mask_low = vect_gen_perm_mask_checked (vectype, sel);
5180
5181 for (i = 0, j = 0; i < nelt; i++)
5182 if (3 * i + k < 2 * nelt)
5183 sel[i] = i;
5184 else
5185 sel[i] = nelt + ((nelt + k) % 3) + 3 * (j++);
5186
5187 perm3_mask_high = vect_gen_perm_mask_checked (vectype, sel);
5188
5189 first_vect = dr_chain[0];
5190 second_vect = dr_chain[1];
5191
5192 /* Create interleaving stmt (low part of):
5193 low = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
5194 ...}> */
5195 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_low");
5196 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5197 first_vect, second_vect,
5198 perm3_mask_low);
5199 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5200
5201 /* Create interleaving stmt (high part of):
5202 high = VEC_PERM_EXPR <first_vect, second_vect2, {k, 3 + k, 6 + k,
5203 ...}> */
5204 first_vect = data_ref;
5205 second_vect = dr_chain[2];
5206 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3_high");
5207 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5208 first_vect, second_vect,
5209 perm3_mask_high);
5210 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5211 (*result_chain)[k] = data_ref;
5212 }
5213 }
5214 else
5215 {
5216 /* If length is not equal to 3 then only power of 2 is supported. */
5217 gcc_assert (exact_log2 (length) != -1);
5218
5219 for (i = 0; i < nelt; ++i)
5220 sel[i] = i * 2;
5221 perm_mask_even = vect_gen_perm_mask_checked (vectype, sel);
5222
5223 for (i = 0; i < nelt; ++i)
5224 sel[i] = i * 2 + 1;
5225 perm_mask_odd = vect_gen_perm_mask_checked (vectype, sel);
5226
5227 for (i = 0; i < log_length; i++)
5228 {
5229 for (j = 0; j < length; j += 2)
5230 {
5231 first_vect = dr_chain[j];
5232 second_vect = dr_chain[j+1];
5233
5234 /* data_ref = permute_even (first_data_ref, second_data_ref); */
5235 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_even");
5236 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5237 first_vect, second_vect,
5238 perm_mask_even);
5239 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5240 (*result_chain)[j/2] = data_ref;
5241
5242 /* data_ref = permute_odd (first_data_ref, second_data_ref); */
5243 data_ref = make_temp_ssa_name (vectype, NULL, "vect_perm_odd");
5244 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5245 first_vect, second_vect,
5246 perm_mask_odd);
5247 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5248 (*result_chain)[j/2+length/2] = data_ref;
5249 }
5250 memcpy (dr_chain.address (), result_chain->address (),
5251 length * sizeof (tree));
5252 }
5253 }
5254 }
5255
5256 /* Function vect_shift_permute_load_chain.
5257
5258 Given a chain of loads in DR_CHAIN of LENGTH 2 or 3, generate
5259 sequence of stmts to reorder the input data accordingly.
5260 Return the final references for loads in RESULT_CHAIN.
5261 Return true if successed, false otherwise.
5262
5263 E.g., LENGTH is 3 and the scalar type is short, i.e., VF is 8.
5264 The input is 3 vectors each containing 8 elements. We assign a
5265 number to each element, the input sequence is:
5266
5267 1st vec: 0 1 2 3 4 5 6 7
5268 2nd vec: 8 9 10 11 12 13 14 15
5269 3rd vec: 16 17 18 19 20 21 22 23
5270
5271 The output sequence should be:
5272
5273 1st vec: 0 3 6 9 12 15 18 21
5274 2nd vec: 1 4 7 10 13 16 19 22
5275 3rd vec: 2 5 8 11 14 17 20 23
5276
5277 We use 3 shuffle instructions and 3 * 3 - 1 shifts to create such output.
5278
5279 First we shuffle all 3 vectors to get correct elements order:
5280
5281 1st vec: ( 0 3 6) ( 1 4 7) ( 2 5)
5282 2nd vec: ( 8 11 14) ( 9 12 15) (10 13)
5283 3rd vec: (16 19 22) (17 20 23) (18 21)
5284
5285 Next we unite and shift vector 3 times:
5286
5287 1st step:
5288 shift right by 6 the concatenation of:
5289 "1st vec" and "2nd vec"
5290 ( 0 3 6) ( 1 4 7) |( 2 5) _ ( 8 11 14) ( 9 12 15)| (10 13)
5291 "2nd vec" and "3rd vec"
5292 ( 8 11 14) ( 9 12 15) |(10 13) _ (16 19 22) (17 20 23)| (18 21)
5293 "3rd vec" and "1st vec"
5294 (16 19 22) (17 20 23) |(18 21) _ ( 0 3 6) ( 1 4 7)| ( 2 5)
5295 | New vectors |
5296
5297 So that now new vectors are:
5298
5299 1st vec: ( 2 5) ( 8 11 14) ( 9 12 15)
5300 2nd vec: (10 13) (16 19 22) (17 20 23)
5301 3rd vec: (18 21) ( 0 3 6) ( 1 4 7)
5302
5303 2nd step:
5304 shift right by 5 the concatenation of:
5305 "1st vec" and "3rd vec"
5306 ( 2 5) ( 8 11 14) |( 9 12 15) _ (18 21) ( 0 3 6)| ( 1 4 7)
5307 "2nd vec" and "1st vec"
5308 (10 13) (16 19 22) |(17 20 23) _ ( 2 5) ( 8 11 14)| ( 9 12 15)
5309 "3rd vec" and "2nd vec"
5310 (18 21) ( 0 3 6) |( 1 4 7) _ (10 13) (16 19 22)| (17 20 23)
5311 | New vectors |
5312
5313 So that now new vectors are:
5314
5315 1st vec: ( 9 12 15) (18 21) ( 0 3 6)
5316 2nd vec: (17 20 23) ( 2 5) ( 8 11 14)
5317 3rd vec: ( 1 4 7) (10 13) (16 19 22) READY
5318
5319 3rd step:
5320 shift right by 5 the concatenation of:
5321 "1st vec" and "1st vec"
5322 ( 9 12 15) (18 21) |( 0 3 6) _ ( 9 12 15) (18 21)| ( 0 3 6)
5323 shift right by 3 the concatenation of:
5324 "2nd vec" and "2nd vec"
5325 (17 20 23) |( 2 5) ( 8 11 14) _ (17 20 23)| ( 2 5) ( 8 11 14)
5326 | New vectors |
5327
5328 So that now all vectors are READY:
5329 1st vec: ( 0 3 6) ( 9 12 15) (18 21)
5330 2nd vec: ( 2 5) ( 8 11 14) (17 20 23)
5331 3rd vec: ( 1 4 7) (10 13) (16 19 22)
5332
5333 This algorithm is faster than one in vect_permute_load_chain if:
5334 1. "shift of a concatination" is faster than general permutation.
5335 This is usually so.
5336 2. The TARGET machine can't execute vector instructions in parallel.
5337 This is because each step of the algorithm depends on previous.
5338 The algorithm in vect_permute_load_chain is much more parallel.
5339
5340 The algorithm is applicable only for LOAD CHAIN LENGTH less than VF.
5341 */
5342
5343 static bool
5344 vect_shift_permute_load_chain (vec<tree> dr_chain,
5345 unsigned int length,
5346 gimple stmt,
5347 gimple_stmt_iterator *gsi,
5348 vec<tree> *result_chain)
5349 {
5350 tree vect[3], vect_shift[3], data_ref, first_vect, second_vect;
5351 tree perm2_mask1, perm2_mask2, perm3_mask;
5352 tree select_mask, shift1_mask, shift2_mask, shift3_mask, shift4_mask;
5353 gimple perm_stmt;
5354
5355 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
5356 unsigned int i;
5357 unsigned nelt = TYPE_VECTOR_SUBPARTS (vectype);
5358 unsigned char *sel = XALLOCAVEC (unsigned char, nelt);
5359 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5360 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5361
5362 result_chain->quick_grow (length);
5363 memcpy (result_chain->address (), dr_chain.address (),
5364 length * sizeof (tree));
5365
5366 if (exact_log2 (length) != -1 && LOOP_VINFO_VECT_FACTOR (loop_vinfo) > 4)
5367 {
5368 unsigned int j, log_length = exact_log2 (length);
5369 for (i = 0; i < nelt / 2; ++i)
5370 sel[i] = i * 2;
5371 for (i = 0; i < nelt / 2; ++i)
5372 sel[nelt / 2 + i] = i * 2 + 1;
5373 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5374 {
5375 if (dump_enabled_p ())
5376 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5377 "shuffle of 2 fields structure is not \
5378 supported by target\n");
5379 return false;
5380 }
5381 perm2_mask1 = vect_gen_perm_mask_checked (vectype, sel);
5382
5383 for (i = 0; i < nelt / 2; ++i)
5384 sel[i] = i * 2 + 1;
5385 for (i = 0; i < nelt / 2; ++i)
5386 sel[nelt / 2 + i] = i * 2;
5387 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5388 {
5389 if (dump_enabled_p ())
5390 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5391 "shuffle of 2 fields structure is not \
5392 supported by target\n");
5393 return false;
5394 }
5395 perm2_mask2 = vect_gen_perm_mask_checked (vectype, sel);
5396
5397 /* Generating permutation constant to shift all elements.
5398 For vector length 8 it is {4 5 6 7 8 9 10 11}. */
5399 for (i = 0; i < nelt; i++)
5400 sel[i] = nelt / 2 + i;
5401 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5402 {
5403 if (dump_enabled_p ())
5404 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5405 "shift permutation is not supported by target\n");
5406 return false;
5407 }
5408 shift1_mask = vect_gen_perm_mask_checked (vectype, sel);
5409
5410 /* Generating permutation constant to select vector from 2.
5411 For vector length 8 it is {0 1 2 3 12 13 14 15}. */
5412 for (i = 0; i < nelt / 2; i++)
5413 sel[i] = i;
5414 for (i = nelt / 2; i < nelt; i++)
5415 sel[i] = nelt + i;
5416 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5417 {
5418 if (dump_enabled_p ())
5419 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5420 "select is not supported by target\n");
5421 return false;
5422 }
5423 select_mask = vect_gen_perm_mask_checked (vectype, sel);
5424
5425 for (i = 0; i < log_length; i++)
5426 {
5427 for (j = 0; j < length; j += 2)
5428 {
5429 first_vect = dr_chain[j];
5430 second_vect = dr_chain[j + 1];
5431
5432 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
5433 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5434 first_vect, first_vect,
5435 perm2_mask1);
5436 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5437 vect[0] = data_ref;
5438
5439 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle2");
5440 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5441 second_vect, second_vect,
5442 perm2_mask2);
5443 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5444 vect[1] = data_ref;
5445
5446 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift");
5447 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5448 vect[0], vect[1],
5449 shift1_mask);
5450 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5451 (*result_chain)[j/2 + length/2] = data_ref;
5452
5453 data_ref = make_temp_ssa_name (vectype, NULL, "vect_select");
5454 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5455 vect[0], vect[1],
5456 select_mask);
5457 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5458 (*result_chain)[j/2] = data_ref;
5459 }
5460 memcpy (dr_chain.address (), result_chain->address (),
5461 length * sizeof (tree));
5462 }
5463 return true;
5464 }
5465 if (length == 3 && LOOP_VINFO_VECT_FACTOR (loop_vinfo) > 2)
5466 {
5467 unsigned int k = 0, l = 0;
5468
5469 /* Generating permutation constant to get all elements in rigth order.
5470 For vector length 8 it is {0 3 6 1 4 7 2 5}. */
5471 for (i = 0; i < nelt; i++)
5472 {
5473 if (3 * k + (l % 3) >= nelt)
5474 {
5475 k = 0;
5476 l += (3 - (nelt % 3));
5477 }
5478 sel[i] = 3 * k + (l % 3);
5479 k++;
5480 }
5481 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5482 {
5483 if (dump_enabled_p ())
5484 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5485 "shuffle of 3 fields structure is not \
5486 supported by target\n");
5487 return false;
5488 }
5489 perm3_mask = vect_gen_perm_mask_checked (vectype, sel);
5490
5491 /* Generating permutation constant to shift all elements.
5492 For vector length 8 it is {6 7 8 9 10 11 12 13}. */
5493 for (i = 0; i < nelt; i++)
5494 sel[i] = 2 * (nelt / 3) + (nelt % 3) + i;
5495 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5496 {
5497 if (dump_enabled_p ())
5498 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5499 "shift permutation is not supported by target\n");
5500 return false;
5501 }
5502 shift1_mask = vect_gen_perm_mask_checked (vectype, sel);
5503
5504 /* Generating permutation constant to shift all elements.
5505 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
5506 for (i = 0; i < nelt; i++)
5507 sel[i] = 2 * (nelt / 3) + 1 + i;
5508 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5509 {
5510 if (dump_enabled_p ())
5511 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5512 "shift permutation is not supported by target\n");
5513 return false;
5514 }
5515 shift2_mask = vect_gen_perm_mask_checked (vectype, sel);
5516
5517 /* Generating permutation constant to shift all elements.
5518 For vector length 8 it is {3 4 5 6 7 8 9 10}. */
5519 for (i = 0; i < nelt; i++)
5520 sel[i] = (nelt / 3) + (nelt % 3) / 2 + i;
5521 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5522 {
5523 if (dump_enabled_p ())
5524 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5525 "shift permutation is not supported by target\n");
5526 return false;
5527 }
5528 shift3_mask = vect_gen_perm_mask_checked (vectype, sel);
5529
5530 /* Generating permutation constant to shift all elements.
5531 For vector length 8 it is {5 6 7 8 9 10 11 12}. */
5532 for (i = 0; i < nelt; i++)
5533 sel[i] = 2 * (nelt / 3) + (nelt % 3) / 2 + i;
5534 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5535 {
5536 if (dump_enabled_p ())
5537 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5538 "shift permutation is not supported by target\n");
5539 return false;
5540 }
5541 shift4_mask = vect_gen_perm_mask_checked (vectype, sel);
5542
5543 for (k = 0; k < 3; k++)
5544 {
5545 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shuffle3");
5546 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5547 dr_chain[k], dr_chain[k],
5548 perm3_mask);
5549 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5550 vect[k] = data_ref;
5551 }
5552
5553 for (k = 0; k < 3; k++)
5554 {
5555 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift1");
5556 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5557 vect[k % 3],
5558 vect[(k + 1) % 3],
5559 shift1_mask);
5560 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5561 vect_shift[k] = data_ref;
5562 }
5563
5564 for (k = 0; k < 3; k++)
5565 {
5566 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift2");
5567 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5568 vect_shift[(4 - k) % 3],
5569 vect_shift[(3 - k) % 3],
5570 shift2_mask);
5571 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5572 vect[k] = data_ref;
5573 }
5574
5575 (*result_chain)[3 - (nelt % 3)] = vect[2];
5576
5577 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift3");
5578 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5579 vect[0], vect[0],
5580 shift3_mask);
5581 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5582 (*result_chain)[nelt % 3] = data_ref;
5583
5584 data_ref = make_temp_ssa_name (vectype, NULL, "vect_shift4");
5585 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
5586 vect[1], vect[1],
5587 shift4_mask);
5588 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5589 (*result_chain)[0] = data_ref;
5590 return true;
5591 }
5592 return false;
5593 }
5594
5595 /* Function vect_transform_grouped_load.
5596
5597 Given a chain of input interleaved data-refs (in DR_CHAIN), build statements
5598 to perform their permutation and ascribe the result vectorized statements to
5599 the scalar statements.
5600 */
5601
5602 void
5603 vect_transform_grouped_load (gimple stmt, vec<tree> dr_chain, int size,
5604 gimple_stmt_iterator *gsi)
5605 {
5606 machine_mode mode;
5607 vec<tree> result_chain = vNULL;
5608
5609 /* DR_CHAIN contains input data-refs that are a part of the interleaving.
5610 RESULT_CHAIN is the output of vect_permute_load_chain, it contains permuted
5611 vectors, that are ready for vector computation. */
5612 result_chain.create (size);
5613
5614 /* If reassociation width for vector type is 2 or greater target machine can
5615 execute 2 or more vector instructions in parallel. Otherwise try to
5616 get chain for loads group using vect_shift_permute_load_chain. */
5617 mode = TYPE_MODE (STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt)));
5618 if (targetm.sched.reassociation_width (VEC_PERM_EXPR, mode) > 1
5619 || !vect_shift_permute_load_chain (dr_chain, size, stmt,
5620 gsi, &result_chain))
5621 vect_permute_load_chain (dr_chain, size, stmt, gsi, &result_chain);
5622 vect_record_grouped_load_vectors (stmt, result_chain);
5623 result_chain.release ();
5624 }
5625
5626 /* RESULT_CHAIN contains the output of a group of grouped loads that were
5627 generated as part of the vectorization of STMT. Assign the statement
5628 for each vector to the associated scalar statement. */
5629
5630 void
5631 vect_record_grouped_load_vectors (gimple stmt, vec<tree> result_chain)
5632 {
5633 gimple first_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt));
5634 gimple next_stmt, new_stmt;
5635 unsigned int i, gap_count;
5636 tree tmp_data_ref;
5637
5638 /* Put a permuted data-ref in the VECTORIZED_STMT field.
5639 Since we scan the chain starting from it's first node, their order
5640 corresponds the order of data-refs in RESULT_CHAIN. */
5641 next_stmt = first_stmt;
5642 gap_count = 1;
5643 FOR_EACH_VEC_ELT (result_chain, i, tmp_data_ref)
5644 {
5645 if (!next_stmt)
5646 break;
5647
5648 /* Skip the gaps. Loads created for the gaps will be removed by dead
5649 code elimination pass later. No need to check for the first stmt in
5650 the group, since it always exists.
5651 GROUP_GAP is the number of steps in elements from the previous
5652 access (if there is no gap GROUP_GAP is 1). We skip loads that
5653 correspond to the gaps. */
5654 if (next_stmt != first_stmt
5655 && gap_count < GROUP_GAP (vinfo_for_stmt (next_stmt)))
5656 {
5657 gap_count++;
5658 continue;
5659 }
5660
5661 while (next_stmt)
5662 {
5663 new_stmt = SSA_NAME_DEF_STMT (tmp_data_ref);
5664 /* We assume that if VEC_STMT is not NULL, this is a case of multiple
5665 copies, and we put the new vector statement in the first available
5666 RELATED_STMT. */
5667 if (!STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)))
5668 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt)) = new_stmt;
5669 else
5670 {
5671 if (!GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
5672 {
5673 gimple prev_stmt =
5674 STMT_VINFO_VEC_STMT (vinfo_for_stmt (next_stmt));
5675 gimple rel_stmt =
5676 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt));
5677 while (rel_stmt)
5678 {
5679 prev_stmt = rel_stmt;
5680 rel_stmt =
5681 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (rel_stmt));
5682 }
5683
5684 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (prev_stmt)) =
5685 new_stmt;
5686 }
5687 }
5688
5689 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
5690 gap_count = 1;
5691 /* If NEXT_STMT accesses the same DR as the previous statement,
5692 put the same TMP_DATA_REF as its vectorized statement; otherwise
5693 get the next data-ref from RESULT_CHAIN. */
5694 if (!next_stmt || !GROUP_SAME_DR_STMT (vinfo_for_stmt (next_stmt)))
5695 break;
5696 }
5697 }
5698 }
5699
5700 /* Function vect_force_dr_alignment_p.
5701
5702 Returns whether the alignment of a DECL can be forced to be aligned
5703 on ALIGNMENT bit boundary. */
5704
5705 bool
5706 vect_can_force_dr_alignment_p (const_tree decl, unsigned int alignment)
5707 {
5708 if (TREE_CODE (decl) != VAR_DECL)
5709 return false;
5710
5711 /* With -fno-toplevel-reorder we may have already output the constant. */
5712 if (TREE_ASM_WRITTEN (decl))
5713 return false;
5714
5715 /* Constant pool entries may be shared and not properly merged by LTO. */
5716 if (DECL_IN_CONSTANT_POOL (decl))
5717 return false;
5718
5719 if (TREE_PUBLIC (decl) || DECL_EXTERNAL (decl))
5720 {
5721 symtab_node *snode;
5722
5723 /* We cannot change alignment of symbols that may bind to symbols
5724 in other translation unit that may contain a definition with lower
5725 alignment. */
5726 if (!decl_binds_to_current_def_p (decl))
5727 return false;
5728
5729 /* When compiling partition, be sure the symbol is not output by other
5730 partition. */
5731 snode = symtab_node::get (decl);
5732 if (flag_ltrans
5733 && (snode->in_other_partition
5734 || snode->get_partitioning_class () == SYMBOL_DUPLICATE))
5735 return false;
5736 }
5737
5738 /* Do not override the alignment as specified by the ABI when the used
5739 attribute is set. */
5740 if (DECL_PRESERVE_P (decl))
5741 return false;
5742
5743 /* Do not override explicit alignment set by the user when an explicit
5744 section name is also used. This is a common idiom used by many
5745 software projects. */
5746 if (TREE_STATIC (decl)
5747 && DECL_SECTION_NAME (decl) != NULL
5748 && !symtab_node::get (decl)->implicit_section)
5749 return false;
5750
5751 /* If symbol is an alias, we need to check that target is OK. */
5752 if (TREE_STATIC (decl))
5753 {
5754 tree target = symtab_node::get (decl)->ultimate_alias_target ()->decl;
5755 if (target != decl)
5756 {
5757 if (DECL_PRESERVE_P (target))
5758 return false;
5759 decl = target;
5760 }
5761 }
5762
5763 if (TREE_STATIC (decl))
5764 return (alignment <= MAX_OFILE_ALIGNMENT);
5765 else
5766 return (alignment <= MAX_STACK_ALIGNMENT);
5767 }
5768
5769
5770 /* Return whether the data reference DR is supported with respect to its
5771 alignment.
5772 If CHECK_ALIGNED_ACCESSES is TRUE, check if the access is supported even
5773 it is aligned, i.e., check if it is possible to vectorize it with different
5774 alignment. */
5775
5776 enum dr_alignment_support
5777 vect_supportable_dr_alignment (struct data_reference *dr,
5778 bool check_aligned_accesses)
5779 {
5780 gimple stmt = DR_STMT (dr);
5781 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5782 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5783 machine_mode mode = TYPE_MODE (vectype);
5784 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5785 struct loop *vect_loop = NULL;
5786 bool nested_in_vect_loop = false;
5787
5788 if (aligned_access_p (dr) && !check_aligned_accesses)
5789 return dr_aligned;
5790
5791 /* For now assume all conditional loads/stores support unaligned
5792 access without any special code. */
5793 if (is_gimple_call (stmt)
5794 && gimple_call_internal_p (stmt)
5795 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
5796 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE))
5797 return dr_unaligned_supported;
5798
5799 if (loop_vinfo)
5800 {
5801 vect_loop = LOOP_VINFO_LOOP (loop_vinfo);
5802 nested_in_vect_loop = nested_in_vect_loop_p (vect_loop, stmt);
5803 }
5804
5805 /* Possibly unaligned access. */
5806
5807 /* We can choose between using the implicit realignment scheme (generating
5808 a misaligned_move stmt) and the explicit realignment scheme (generating
5809 aligned loads with a REALIGN_LOAD). There are two variants to the
5810 explicit realignment scheme: optimized, and unoptimized.
5811 We can optimize the realignment only if the step between consecutive
5812 vector loads is equal to the vector size. Since the vector memory
5813 accesses advance in steps of VS (Vector Size) in the vectorized loop, it
5814 is guaranteed that the misalignment amount remains the same throughout the
5815 execution of the vectorized loop. Therefore, we can create the
5816 "realignment token" (the permutation mask that is passed to REALIGN_LOAD)
5817 at the loop preheader.
5818
5819 However, in the case of outer-loop vectorization, when vectorizing a
5820 memory access in the inner-loop nested within the LOOP that is now being
5821 vectorized, while it is guaranteed that the misalignment of the
5822 vectorized memory access will remain the same in different outer-loop
5823 iterations, it is *not* guaranteed that is will remain the same throughout
5824 the execution of the inner-loop. This is because the inner-loop advances
5825 with the original scalar step (and not in steps of VS). If the inner-loop
5826 step happens to be a multiple of VS, then the misalignment remains fixed
5827 and we can use the optimized realignment scheme. For example:
5828
5829 for (i=0; i<N; i++)
5830 for (j=0; j<M; j++)
5831 s += a[i+j];
5832
5833 When vectorizing the i-loop in the above example, the step between
5834 consecutive vector loads is 1, and so the misalignment does not remain
5835 fixed across the execution of the inner-loop, and the realignment cannot
5836 be optimized (as illustrated in the following pseudo vectorized loop):
5837
5838 for (i=0; i<N; i+=4)
5839 for (j=0; j<M; j++){
5840 vs += vp[i+j]; // misalignment of &vp[i+j] is {0,1,2,3,0,1,2,3,...}
5841 // when j is {0,1,2,3,4,5,6,7,...} respectively.
5842 // (assuming that we start from an aligned address).
5843 }
5844
5845 We therefore have to use the unoptimized realignment scheme:
5846
5847 for (i=0; i<N; i+=4)
5848 for (j=k; j<M; j+=4)
5849 vs += vp[i+j]; // misalignment of &vp[i+j] is always k (assuming
5850 // that the misalignment of the initial address is
5851 // 0).
5852
5853 The loop can then be vectorized as follows:
5854
5855 for (k=0; k<4; k++){
5856 rt = get_realignment_token (&vp[k]);
5857 for (i=0; i<N; i+=4){
5858 v1 = vp[i+k];
5859 for (j=k; j<M; j+=4){
5860 v2 = vp[i+j+VS-1];
5861 va = REALIGN_LOAD <v1,v2,rt>;
5862 vs += va;
5863 v1 = v2;
5864 }
5865 }
5866 } */
5867
5868 if (DR_IS_READ (dr))
5869 {
5870 bool is_packed = false;
5871 tree type = (TREE_TYPE (DR_REF (dr)));
5872
5873 if (optab_handler (vec_realign_load_optab, mode) != CODE_FOR_nothing
5874 && (!targetm.vectorize.builtin_mask_for_load
5875 || targetm.vectorize.builtin_mask_for_load ()))
5876 {
5877 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5878 if ((nested_in_vect_loop
5879 && (TREE_INT_CST_LOW (DR_STEP (dr))
5880 != GET_MODE_SIZE (TYPE_MODE (vectype))))
5881 || !loop_vinfo)
5882 return dr_explicit_realign;
5883 else
5884 return dr_explicit_realign_optimized;
5885 }
5886 if (!known_alignment_for_access_p (dr))
5887 is_packed = not_size_aligned (DR_REF (dr));
5888
5889 if ((TYPE_USER_ALIGN (type) && !is_packed)
5890 || targetm.vectorize.
5891 support_vector_misalignment (mode, type,
5892 DR_MISALIGNMENT (dr), is_packed))
5893 /* Can't software pipeline the loads, but can at least do them. */
5894 return dr_unaligned_supported;
5895 }
5896 else
5897 {
5898 bool is_packed = false;
5899 tree type = (TREE_TYPE (DR_REF (dr)));
5900
5901 if (!known_alignment_for_access_p (dr))
5902 is_packed = not_size_aligned (DR_REF (dr));
5903
5904 if ((TYPE_USER_ALIGN (type) && !is_packed)
5905 || targetm.vectorize.
5906 support_vector_misalignment (mode, type,
5907 DR_MISALIGNMENT (dr), is_packed))
5908 return dr_unaligned_supported;
5909 }
5910
5911 /* Unsupported. */
5912 return dr_unaligned_unsupported;
5913 }