tree-vect-data-refs.c (vect_analyze_data_refs): Remove debug newline.
[gcc.git] / gcc / tree-vect-loop-manip.c
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003-2016 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "cfghooks.h"
29 #include "tree-pass.h"
30 #include "ssa.h"
31 #include "fold-const.h"
32 #include "cfganal.h"
33 #include "gimplify.h"
34 #include "gimple-iterator.h"
35 #include "gimplify-me.h"
36 #include "tree-cfg.h"
37 #include "tree-ssa-loop-manip.h"
38 #include "tree-into-ssa.h"
39 #include "tree-ssa.h"
40 #include "cfgloop.h"
41 #include "tree-scalar-evolution.h"
42 #include "tree-vectorizer.h"
43
44 /*************************************************************************
45 Simple Loop Peeling Utilities
46
47 Utilities to support loop peeling for vectorization purposes.
48 *************************************************************************/
49
50
51 /* Renames the use *OP_P. */
52
53 static void
54 rename_use_op (use_operand_p op_p)
55 {
56 tree new_name;
57
58 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
59 return;
60
61 new_name = get_current_def (USE_FROM_PTR (op_p));
62
63 /* Something defined outside of the loop. */
64 if (!new_name)
65 return;
66
67 /* An ordinary ssa name defined in the loop. */
68
69 SET_USE (op_p, new_name);
70 }
71
72
73 /* Renames the variables in basic block BB. Allow renaming of PHI argumnets
74 on edges incoming from outer-block header if RENAME_FROM_OUTER_LOOP is
75 true. */
76
77 static void
78 rename_variables_in_bb (basic_block bb, bool rename_from_outer_loop)
79 {
80 gimple *stmt;
81 use_operand_p use_p;
82 ssa_op_iter iter;
83 edge e;
84 edge_iterator ei;
85 struct loop *loop = bb->loop_father;
86 struct loop *outer_loop = NULL;
87
88 if (rename_from_outer_loop)
89 {
90 gcc_assert (loop);
91 outer_loop = loop_outer (loop);
92 }
93
94 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
95 gsi_next (&gsi))
96 {
97 stmt = gsi_stmt (gsi);
98 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
99 rename_use_op (use_p);
100 }
101
102 FOR_EACH_EDGE (e, ei, bb->preds)
103 {
104 if (!flow_bb_inside_loop_p (loop, e->src)
105 && (!rename_from_outer_loop || e->src != outer_loop->header))
106 continue;
107 for (gphi_iterator gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
108 gsi_next (&gsi))
109 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi.phi (), e));
110 }
111 }
112
113
114 struct adjust_info
115 {
116 tree from, to;
117 basic_block bb;
118 };
119
120 /* A stack of values to be adjusted in debug stmts. We have to
121 process them LIFO, so that the closest substitution applies. If we
122 processed them FIFO, without the stack, we might substitute uses
123 with a PHI DEF that would soon become non-dominant, and when we got
124 to the suitable one, it wouldn't have anything to substitute any
125 more. */
126 static vec<adjust_info, va_heap> adjust_vec;
127
128 /* Adjust any debug stmts that referenced AI->from values to use the
129 loop-closed AI->to, if the references are dominated by AI->bb and
130 not by the definition of AI->from. */
131
132 static void
133 adjust_debug_stmts_now (adjust_info *ai)
134 {
135 basic_block bbphi = ai->bb;
136 tree orig_def = ai->from;
137 tree new_def = ai->to;
138 imm_use_iterator imm_iter;
139 gimple *stmt;
140 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
141
142 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
143
144 /* Adjust any debug stmts that held onto non-loop-closed
145 references. */
146 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
147 {
148 use_operand_p use_p;
149 basic_block bbuse;
150
151 if (!is_gimple_debug (stmt))
152 continue;
153
154 gcc_assert (gimple_debug_bind_p (stmt));
155
156 bbuse = gimple_bb (stmt);
157
158 if ((bbuse == bbphi
159 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
160 && !(bbuse == bbdef
161 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
162 {
163 if (new_def)
164 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
165 SET_USE (use_p, new_def);
166 else
167 {
168 gimple_debug_bind_reset_value (stmt);
169 update_stmt (stmt);
170 }
171 }
172 }
173 }
174
175 /* Adjust debug stmts as scheduled before. */
176
177 static void
178 adjust_vec_debug_stmts (void)
179 {
180 if (!MAY_HAVE_DEBUG_STMTS)
181 return;
182
183 gcc_assert (adjust_vec.exists ());
184
185 while (!adjust_vec.is_empty ())
186 {
187 adjust_debug_stmts_now (&adjust_vec.last ());
188 adjust_vec.pop ();
189 }
190
191 adjust_vec.release ();
192 }
193
194 /* Adjust any debug stmts that referenced FROM values to use the
195 loop-closed TO, if the references are dominated by BB and not by
196 the definition of FROM. If adjust_vec is non-NULL, adjustments
197 will be postponed until adjust_vec_debug_stmts is called. */
198
199 static void
200 adjust_debug_stmts (tree from, tree to, basic_block bb)
201 {
202 adjust_info ai;
203
204 if (MAY_HAVE_DEBUG_STMTS
205 && TREE_CODE (from) == SSA_NAME
206 && ! SSA_NAME_IS_DEFAULT_DEF (from)
207 && ! virtual_operand_p (from))
208 {
209 ai.from = from;
210 ai.to = to;
211 ai.bb = bb;
212
213 if (adjust_vec.exists ())
214 adjust_vec.safe_push (ai);
215 else
216 adjust_debug_stmts_now (&ai);
217 }
218 }
219
220 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
221 to adjust any debug stmts that referenced the old phi arg,
222 presumably non-loop-closed references left over from other
223 transformations. */
224
225 static void
226 adjust_phi_and_debug_stmts (gimple *update_phi, edge e, tree new_def)
227 {
228 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
229
230 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
231
232 if (MAY_HAVE_DEBUG_STMTS)
233 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
234 gimple_bb (update_phi));
235 }
236
237
238 /* Update PHI nodes for a guard of the LOOP.
239
240 Input:
241 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
242 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
243 originates from the guard-bb, skips LOOP and reaches the (unique) exit
244 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
245 We denote this bb NEW_MERGE_BB because before the guard code was added
246 it had a single predecessor (the LOOP header), and now it became a merge
247 point of two paths - the path that ends with the LOOP exit-edge, and
248 the path that ends with GUARD_EDGE.
249 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
250 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
251
252 ===> The CFG before the guard-code was added:
253 LOOP_header_bb:
254 loop_body
255 if (exit_loop) goto update_bb
256 else goto LOOP_header_bb
257 update_bb:
258
259 ==> The CFG after the guard-code was added:
260 guard_bb:
261 if (LOOP_guard_condition) goto new_merge_bb
262 else goto LOOP_header_bb
263 LOOP_header_bb:
264 loop_body
265 if (exit_loop_condition) goto new_merge_bb
266 else goto LOOP_header_bb
267 new_merge_bb:
268 goto update_bb
269 update_bb:
270
271 ==> The CFG after this function:
272 guard_bb:
273 if (LOOP_guard_condition) goto new_merge_bb
274 else goto LOOP_header_bb
275 LOOP_header_bb:
276 loop_body
277 if (exit_loop_condition) goto new_exit_bb
278 else goto LOOP_header_bb
279 new_exit_bb:
280 new_merge_bb:
281 goto update_bb
282 update_bb:
283
284 This function:
285 1. creates and updates the relevant phi nodes to account for the new
286 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
287 1.1. Create phi nodes at NEW_MERGE_BB.
288 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
289 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
290 2. preserves loop-closed-ssa-form by creating the required phi nodes
291 at the exit of LOOP (i.e, in NEW_EXIT_BB).
292
293 There are two flavors to this function:
294
295 slpeel_update_phi_nodes_for_guard1:
296 Here the guard controls whether we enter or skip LOOP, where LOOP is a
297 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
298 for variables that have phis in the loop header.
299
300 slpeel_update_phi_nodes_for_guard2:
301 Here the guard controls whether we enter or skip LOOP, where LOOP is an
302 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
303 for variables that have phis in the loop exit.
304
305 I.E., the overall structure is:
306
307 loop1_preheader_bb:
308 guard1 (goto loop1/merge1_bb)
309 loop1
310 loop1_exit_bb:
311 guard2 (goto merge1_bb/merge2_bb)
312 merge1_bb
313 loop2
314 loop2_exit_bb
315 merge2_bb
316 next_bb
317
318 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
319 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
320 that have phis in loop1->header).
321
322 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
323 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
324 that have phis in next_bb). It also adds some of these phis to
325 loop1_exit_bb.
326
327 slpeel_update_phi_nodes_for_guard1 is always called before
328 slpeel_update_phi_nodes_for_guard2. They are both needed in order
329 to create correct data-flow and loop-closed-ssa-form.
330
331 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
332 that change between iterations of a loop (and therefore have a phi-node
333 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
334 phis for variables that are used out of the loop (and therefore have
335 loop-closed exit phis). Some variables may be both updated between
336 iterations and used after the loop. This is why in loop1_exit_bb we
337 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
338 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
339
340 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
341 an original loop. i.e., we have:
342
343 orig_loop
344 guard_bb (goto LOOP/new_merge)
345 new_loop <-- LOOP
346 new_exit
347 new_merge
348 next_bb
349
350 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
351 have:
352
353 new_loop
354 guard_bb (goto LOOP/new_merge)
355 orig_loop <-- LOOP
356 new_exit
357 new_merge
358 next_bb
359
360 The SSA names defined in the original loop have a current
361 reaching definition that records the corresponding new ssa-name
362 used in the new duplicated loop copy.
363 */
364
365 /* Function slpeel_update_phi_nodes_for_guard1
366
367 Input:
368 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
369 - DEFS - a bitmap of ssa names to mark new names for which we recorded
370 information.
371
372 In the context of the overall structure, we have:
373
374 loop1_preheader_bb:
375 guard1 (goto loop1/merge1_bb)
376 LOOP-> loop1
377 loop1_exit_bb:
378 guard2 (goto merge1_bb/merge2_bb)
379 merge1_bb
380 loop2
381 loop2_exit_bb
382 merge2_bb
383 next_bb
384
385 For each name updated between loop iterations (i.e - for each name that has
386 an entry (loop-header) phi in LOOP) we create a new phi in:
387 1. merge1_bb (to account for the edge from guard1)
388 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
389 */
390
391 static void
392 slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
393 bool is_new_loop, basic_block *new_exit_bb)
394 {
395 gphi *orig_phi, *new_phi;
396 gphi *update_phi, *update_phi2;
397 tree guard_arg, loop_arg;
398 basic_block new_merge_bb = guard_edge->dest;
399 edge e = EDGE_SUCC (new_merge_bb, 0);
400 basic_block update_bb = e->dest;
401 basic_block orig_bb = loop->header;
402 edge new_exit_e;
403 tree current_new_name;
404 gphi_iterator gsi_orig, gsi_update;
405
406 /* Create new bb between loop and new_merge_bb. */
407 *new_exit_bb = split_edge (single_exit (loop));
408
409 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
410
411 for (gsi_orig = gsi_start_phis (orig_bb),
412 gsi_update = gsi_start_phis (update_bb);
413 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
414 gsi_next (&gsi_orig), gsi_next (&gsi_update))
415 {
416 source_location loop_locus, guard_locus;
417 tree new_res;
418 orig_phi = gsi_orig.phi ();
419 update_phi = gsi_update.phi ();
420
421 /** 1. Handle new-merge-point phis **/
422
423 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
424 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
425 new_phi = create_phi_node (new_res, new_merge_bb);
426
427 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
428 of LOOP. Set the two phi args in NEW_PHI for these edges: */
429 loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
430 loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
431 EDGE_SUCC (loop->latch,
432 0));
433 guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
434 guard_locus
435 = gimple_phi_arg_location_from_edge (orig_phi,
436 loop_preheader_edge (loop));
437
438 add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
439 add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);
440
441 /* 1.3. Update phi in successor block. */
442 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
443 || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
444 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
445 update_phi2 = new_phi;
446
447
448 /** 2. Handle loop-closed-ssa-form phis **/
449
450 if (virtual_operand_p (PHI_RESULT (orig_phi)))
451 continue;
452
453 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
454 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
455 new_phi = create_phi_node (new_res, *new_exit_bb);
456
457 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
458 add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);
459
460 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
461 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
462 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
463 PHI_RESULT (new_phi));
464
465 /* 2.4. Record the newly created name with set_current_def.
466 We want to find a name such that
467 name = get_current_def (orig_loop_name)
468 and to set its current definition as follows:
469 set_current_def (name, new_phi_name)
470
471 If LOOP is a new loop then loop_arg is already the name we're
472 looking for. If LOOP is the original loop, then loop_arg is
473 the orig_loop_name and the relevant name is recorded in its
474 current reaching definition. */
475 if (is_new_loop)
476 current_new_name = loop_arg;
477 else
478 {
479 current_new_name = get_current_def (loop_arg);
480 /* current_def is not available only if the variable does not
481 change inside the loop, in which case we also don't care
482 about recording a current_def for it because we won't be
483 trying to create loop-exit-phis for it. */
484 if (!current_new_name)
485 continue;
486 }
487 tree new_name = get_current_def (current_new_name);
488 /* Because of peeled_chrec optimization it is possible that we have
489 set this earlier. Verify the PHI has the same value. */
490 if (new_name)
491 {
492 gimple *phi = SSA_NAME_DEF_STMT (new_name);
493 gcc_assert (gimple_code (phi) == GIMPLE_PHI
494 && gimple_bb (phi) == *new_exit_bb
495 && (PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop))
496 == loop_arg));
497 continue;
498 }
499
500 set_current_def (current_new_name, PHI_RESULT (new_phi));
501 }
502 }
503
504
505 /* Function slpeel_update_phi_nodes_for_guard2
506
507 Input:
508 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
509
510 In the context of the overall structure, we have:
511
512 loop1_preheader_bb:
513 guard1 (goto loop1/merge1_bb)
514 loop1
515 loop1_exit_bb:
516 guard2 (goto merge1_bb/merge2_bb)
517 merge1_bb
518 LOOP-> loop2
519 loop2_exit_bb
520 merge2_bb
521 next_bb
522
523 For each name used out side the loop (i.e - for each name that has an exit
524 phi in next_bb) we create a new phi in:
525 1. merge2_bb (to account for the edge from guard_bb)
526 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
527 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
528 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
529 */
530
531 static void
532 slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
533 bool is_new_loop, basic_block *new_exit_bb)
534 {
535 gphi *orig_phi, *new_phi;
536 gphi *update_phi, *update_phi2;
537 tree guard_arg, loop_arg;
538 basic_block new_merge_bb = guard_edge->dest;
539 edge e = EDGE_SUCC (new_merge_bb, 0);
540 basic_block update_bb = e->dest;
541 edge new_exit_e;
542 tree orig_def, orig_def_new_name;
543 tree new_name, new_name2;
544 tree arg;
545 gphi_iterator gsi;
546
547 /* Create new bb between loop and new_merge_bb. */
548 *new_exit_bb = split_edge (single_exit (loop));
549
550 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
551
552 for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
553 {
554 tree new_res;
555 update_phi = gsi.phi ();
556 orig_phi = update_phi;
557 orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
558 /* This loop-closed-phi actually doesn't represent a use
559 out of the loop - the phi arg is a constant. */
560 if (TREE_CODE (orig_def) != SSA_NAME)
561 continue;
562 orig_def_new_name = get_current_def (orig_def);
563 arg = NULL_TREE;
564
565 /** 1. Handle new-merge-point phis **/
566
567 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
568 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
569 new_phi = create_phi_node (new_res, new_merge_bb);
570
571 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
572 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
573 new_name = orig_def;
574 new_name2 = NULL_TREE;
575 if (orig_def_new_name)
576 {
577 new_name = orig_def_new_name;
578 /* Some variables have both loop-entry-phis and loop-exit-phis.
579 Such variables were given yet newer names by phis placed in
580 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
581 new_name2 = get_current_def (get_current_def (orig_name)). */
582 new_name2 = get_current_def (new_name);
583 }
584
585 if (is_new_loop)
586 {
587 guard_arg = orig_def;
588 loop_arg = new_name;
589 }
590 else
591 {
592 guard_arg = new_name;
593 loop_arg = orig_def;
594 }
595 if (new_name2)
596 guard_arg = new_name2;
597
598 add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
599 add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
600
601 /* 1.3. Update phi in successor block. */
602 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
603 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
604 update_phi2 = new_phi;
605
606
607 /** 2. Handle loop-closed-ssa-form phis **/
608
609 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
610 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
611 new_phi = create_phi_node (new_res, *new_exit_bb);
612
613 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
614 add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);
615
616 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
617 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
618 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
619 PHI_RESULT (new_phi));
620
621
622 /** 3. Handle loop-closed-ssa-form phis for first loop **/
623
624 /* 3.1. Find the relevant names that need an exit-phi in
625 GUARD_BB, i.e. names for which
626 slpeel_update_phi_nodes_for_guard1 had not already created a
627 phi node. This is the case for names that are used outside
628 the loop (and therefore need an exit phi) but are not updated
629 across loop iterations (and therefore don't have a
630 loop-header-phi).
631
632 slpeel_update_phi_nodes_for_guard1 is responsible for
633 creating loop-exit phis in GUARD_BB for names that have a
634 loop-header-phi. When such a phi is created we also record
635 the new name in its current definition. If this new name
636 exists, then guard_arg was set to this new name (see 1.2
637 above). Therefore, if guard_arg is not this new name, this
638 is an indication that an exit-phi in GUARD_BB was not yet
639 created, so we take care of it here. */
640 if (guard_arg == new_name2)
641 continue;
642 arg = guard_arg;
643
644 /* 3.2. Generate new phi node in GUARD_BB: */
645 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
646 new_phi = create_phi_node (new_res, guard_edge->src);
647
648 /* 3.3. GUARD_BB has one incoming edge: */
649 gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
650 add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
651 UNKNOWN_LOCATION);
652
653 /* 3.4. Update phi in successor of GUARD_BB: */
654 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
655 == guard_arg);
656 adjust_phi_and_debug_stmts (update_phi2, guard_edge,
657 PHI_RESULT (new_phi));
658 }
659 }
660
661
662 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
663 that starts at zero, increases by one and its limit is NITERS.
664
665 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
666
667 void
668 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
669 {
670 tree indx_before_incr, indx_after_incr;
671 gcond *cond_stmt;
672 gcond *orig_cond;
673 edge exit_edge = single_exit (loop);
674 gimple_stmt_iterator loop_cond_gsi;
675 gimple_stmt_iterator incr_gsi;
676 bool insert_after;
677 tree init = build_int_cst (TREE_TYPE (niters), 0);
678 tree step = build_int_cst (TREE_TYPE (niters), 1);
679 source_location loop_loc;
680 enum tree_code code;
681
682 orig_cond = get_loop_exit_condition (loop);
683 gcc_assert (orig_cond);
684 loop_cond_gsi = gsi_for_stmt (orig_cond);
685
686 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
687 create_iv (init, step, NULL_TREE, loop,
688 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
689
690 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
691 true, NULL_TREE, true,
692 GSI_SAME_STMT);
693 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
694 true, GSI_SAME_STMT);
695
696 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
697 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
698 NULL_TREE);
699
700 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
701
702 /* Remove old loop exit test: */
703 gsi_remove (&loop_cond_gsi, true);
704 free_stmt_vec_info (orig_cond);
705
706 loop_loc = find_loop_location (loop);
707 if (dump_enabled_p ())
708 {
709 if (LOCATION_LOCUS (loop_loc) != UNKNOWN_LOCATION)
710 dump_printf (MSG_NOTE, "\nloop at %s:%d: ", LOCATION_FILE (loop_loc),
711 LOCATION_LINE (loop_loc));
712 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, cond_stmt, 0);
713 }
714 loop->nb_iterations = niters;
715 }
716
717 /* Helper routine of slpeel_tree_duplicate_loop_to_edge_cfg.
718 For all PHI arguments in FROM->dest and TO->dest from those
719 edges ensure that TO->dest PHI arguments have current_def
720 to that in from. */
721
722 static void
723 slpeel_duplicate_current_defs_from_edges (edge from, edge to)
724 {
725 gimple_stmt_iterator gsi_from, gsi_to;
726
727 for (gsi_from = gsi_start_phis (from->dest),
728 gsi_to = gsi_start_phis (to->dest);
729 !gsi_end_p (gsi_from) && !gsi_end_p (gsi_to);)
730 {
731 gimple *from_phi = gsi_stmt (gsi_from);
732 gimple *to_phi = gsi_stmt (gsi_to);
733 tree from_arg = PHI_ARG_DEF_FROM_EDGE (from_phi, from);
734 if (TREE_CODE (from_arg) != SSA_NAME)
735 {
736 gsi_next (&gsi_from);
737 continue;
738 }
739 tree to_arg = PHI_ARG_DEF_FROM_EDGE (to_phi, to);
740 if (TREE_CODE (to_arg) != SSA_NAME)
741 {
742 gsi_next (&gsi_to);
743 continue;
744 }
745 if (get_current_def (to_arg) == NULL_TREE)
746 set_current_def (to_arg, get_current_def (from_arg));
747 gsi_next (&gsi_from);
748 gsi_next (&gsi_to);
749 }
750 }
751
752
753 /* Given LOOP this function generates a new copy of it and puts it
754 on E which is either the entry or exit of LOOP. If SCALAR_LOOP is
755 non-NULL, assume LOOP and SCALAR_LOOP are equivalent and copy the
756 basic blocks from SCALAR_LOOP instead of LOOP, but to either the
757 entry or exit of LOOP. */
758
759 struct loop *
760 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop,
761 struct loop *scalar_loop, edge e)
762 {
763 struct loop *new_loop;
764 basic_block *new_bbs, *bbs;
765 bool at_exit;
766 bool was_imm_dom;
767 basic_block exit_dest;
768 edge exit, new_exit;
769 bool duplicate_outer_loop = false;
770
771 exit = single_exit (loop);
772 at_exit = (e == exit);
773 if (!at_exit && e != loop_preheader_edge (loop))
774 return NULL;
775
776 if (scalar_loop == NULL)
777 scalar_loop = loop;
778
779 bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
780 get_loop_body_with_size (scalar_loop, bbs, scalar_loop->num_nodes);
781 /* Allow duplication of outer loops. */
782 if (scalar_loop->inner)
783 duplicate_outer_loop = true;
784 /* Check whether duplication is possible. */
785 if (!can_copy_bbs_p (bbs, scalar_loop->num_nodes))
786 {
787 free (bbs);
788 return NULL;
789 }
790
791 /* Generate new loop structure. */
792 new_loop = duplicate_loop (scalar_loop, loop_outer (scalar_loop));
793 duplicate_subloops (scalar_loop, new_loop);
794
795 exit_dest = exit->dest;
796 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
797 exit_dest) == loop->header ?
798 true : false);
799
800 /* Also copy the pre-header, this avoids jumping through hoops to
801 duplicate the loop entry PHI arguments. Create an empty
802 pre-header unconditionally for this. */
803 basic_block preheader = split_edge (loop_preheader_edge (scalar_loop));
804 edge entry_e = single_pred_edge (preheader);
805 bbs[scalar_loop->num_nodes] = preheader;
806 new_bbs = XNEWVEC (basic_block, scalar_loop->num_nodes + 1);
807
808 exit = single_exit (scalar_loop);
809 copy_bbs (bbs, scalar_loop->num_nodes + 1, new_bbs,
810 &exit, 1, &new_exit, NULL,
811 e->src, true);
812 exit = single_exit (loop);
813 basic_block new_preheader = new_bbs[scalar_loop->num_nodes];
814
815 add_phi_args_after_copy (new_bbs, scalar_loop->num_nodes + 1, NULL);
816
817 if (scalar_loop != loop)
818 {
819 /* If we copied from SCALAR_LOOP rather than LOOP, SSA_NAMEs from
820 SCALAR_LOOP will have current_def set to SSA_NAMEs in the new_loop,
821 but LOOP will not. slpeel_update_phi_nodes_for_guard{1,2} expects
822 the LOOP SSA_NAMEs (on the exit edge and edge from latch to
823 header) to have current_def set, so copy them over. */
824 slpeel_duplicate_current_defs_from_edges (single_exit (scalar_loop),
825 exit);
826 slpeel_duplicate_current_defs_from_edges (EDGE_SUCC (scalar_loop->latch,
827 0),
828 EDGE_SUCC (loop->latch, 0));
829 }
830
831 if (at_exit) /* Add the loop copy at exit. */
832 {
833 if (scalar_loop != loop)
834 {
835 gphi_iterator gsi;
836 new_exit = redirect_edge_and_branch (new_exit, exit_dest);
837
838 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi);
839 gsi_next (&gsi))
840 {
841 gphi *phi = gsi.phi ();
842 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (phi, e);
843 location_t orig_locus
844 = gimple_phi_arg_location_from_edge (phi, e);
845
846 add_phi_arg (phi, orig_arg, new_exit, orig_locus);
847 }
848 }
849 redirect_edge_and_branch_force (e, new_preheader);
850 flush_pending_stmts (e);
851 set_immediate_dominator (CDI_DOMINATORS, new_preheader, e->src);
852 if (was_imm_dom || duplicate_outer_loop)
853 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_exit->src);
854
855 /* And remove the non-necessary forwarder again. Keep the other
856 one so we have a proper pre-header for the loop at the exit edge. */
857 redirect_edge_pred (single_succ_edge (preheader),
858 single_pred (preheader));
859 delete_basic_block (preheader);
860 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
861 loop_preheader_edge (scalar_loop)->src);
862 }
863 else /* Add the copy at entry. */
864 {
865 if (scalar_loop != loop)
866 {
867 /* Remove the non-necessary forwarder of scalar_loop again. */
868 redirect_edge_pred (single_succ_edge (preheader),
869 single_pred (preheader));
870 delete_basic_block (preheader);
871 set_immediate_dominator (CDI_DOMINATORS, scalar_loop->header,
872 loop_preheader_edge (scalar_loop)->src);
873 preheader = split_edge (loop_preheader_edge (loop));
874 entry_e = single_pred_edge (preheader);
875 }
876
877 redirect_edge_and_branch_force (entry_e, new_preheader);
878 flush_pending_stmts (entry_e);
879 set_immediate_dominator (CDI_DOMINATORS, new_preheader, entry_e->src);
880
881 redirect_edge_and_branch_force (new_exit, preheader);
882 flush_pending_stmts (new_exit);
883 set_immediate_dominator (CDI_DOMINATORS, preheader, new_exit->src);
884
885 /* And remove the non-necessary forwarder again. Keep the other
886 one so we have a proper pre-header for the loop at the exit edge. */
887 redirect_edge_pred (single_succ_edge (new_preheader),
888 single_pred (new_preheader));
889 delete_basic_block (new_preheader);
890 set_immediate_dominator (CDI_DOMINATORS, new_loop->header,
891 loop_preheader_edge (new_loop)->src);
892 }
893
894 for (unsigned i = 0; i < scalar_loop->num_nodes + 1; i++)
895 rename_variables_in_bb (new_bbs[i], duplicate_outer_loop);
896
897 if (scalar_loop != loop)
898 {
899 /* Update new_loop->header PHIs, so that on the preheader
900 edge they are the ones from loop rather than scalar_loop. */
901 gphi_iterator gsi_orig, gsi_new;
902 edge orig_e = loop_preheader_edge (loop);
903 edge new_e = loop_preheader_edge (new_loop);
904
905 for (gsi_orig = gsi_start_phis (loop->header),
906 gsi_new = gsi_start_phis (new_loop->header);
907 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_new);
908 gsi_next (&gsi_orig), gsi_next (&gsi_new))
909 {
910 gphi *orig_phi = gsi_orig.phi ();
911 gphi *new_phi = gsi_new.phi ();
912 tree orig_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, orig_e);
913 location_t orig_locus
914 = gimple_phi_arg_location_from_edge (orig_phi, orig_e);
915
916 add_phi_arg (new_phi, orig_arg, new_e, orig_locus);
917 }
918 }
919
920 free (new_bbs);
921 free (bbs);
922
923 checking_verify_dominators (CDI_DOMINATORS);
924
925 return new_loop;
926 }
927
928
929 /* Given the condition statement COND, put it as the last statement
930 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
931 Assumes that this is the single exit of the guarded loop.
932 Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
933
934 static edge
935 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
936 gimple_seq cond_expr_stmt_list,
937 basic_block exit_bb, basic_block dom_bb,
938 int probability)
939 {
940 gimple_stmt_iterator gsi;
941 edge new_e, enter_e;
942 gcond *cond_stmt;
943 gimple_seq gimplify_stmt_list = NULL;
944
945 enter_e = EDGE_SUCC (guard_bb, 0);
946 enter_e->flags &= ~EDGE_FALLTHRU;
947 enter_e->flags |= EDGE_FALSE_VALUE;
948 gsi = gsi_last_bb (guard_bb);
949
950 cond = force_gimple_operand_1 (cond, &gimplify_stmt_list, is_gimple_condexpr,
951 NULL_TREE);
952 if (gimplify_stmt_list)
953 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
954 cond_stmt = gimple_build_cond_from_tree (cond, NULL_TREE, NULL_TREE);
955 if (cond_expr_stmt_list)
956 gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);
957
958 gsi = gsi_last_bb (guard_bb);
959 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
960
961 /* Add new edge to connect guard block to the merge/loop-exit block. */
962 new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
963
964 new_e->count = guard_bb->count;
965 new_e->probability = probability;
966 new_e->count = apply_probability (enter_e->count, probability);
967 enter_e->count -= new_e->count;
968 enter_e->probability = inverse_probability (probability);
969 set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
970 return new_e;
971 }
972
973
974 /* This function verifies that the following restrictions apply to LOOP:
975 (1) it consists of exactly 2 basic blocks - header, and an empty latch
976 for innermost loop and 5 basic blocks for outer-loop.
977 (2) it is single entry, single exit
978 (3) its exit condition is the last stmt in the header
979 (4) E is the entry/exit edge of LOOP.
980 */
981
982 bool
983 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
984 {
985 edge exit_e = single_exit (loop);
986 edge entry_e = loop_preheader_edge (loop);
987 gcond *orig_cond = get_loop_exit_condition (loop);
988 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
989 unsigned int num_bb = loop->inner? 5 : 2;
990
991 /* All loops have an outer scope; the only case loop->outer is NULL is for
992 the function itself. */
993 if (!loop_outer (loop)
994 || loop->num_nodes != num_bb
995 || !empty_block_p (loop->latch)
996 || !single_exit (loop)
997 /* Verify that new loop exit condition can be trivially modified. */
998 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
999 || (e != exit_e && e != entry_e))
1000 return false;
1001
1002 return true;
1003 }
1004
1005 static void
1006 slpeel_checking_verify_cfg_after_peeling (struct loop *first_loop,
1007 struct loop *second_loop)
1008 {
1009 if (!flag_checking)
1010 return;
1011
1012 basic_block loop1_exit_bb = single_exit (first_loop)->dest;
1013 basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
1014 basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
1015
1016 /* A guard that controls whether the second_loop is to be executed or skipped
1017 is placed in first_loop->exit. first_loop->exit therefore has two
1018 successors - one is the preheader of second_loop, and the other is a bb
1019 after second_loop.
1020 */
1021 gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
1022
1023 /* 1. Verify that one of the successors of first_loop->exit is the preheader
1024 of second_loop. */
1025
1026 /* The preheader of new_loop is expected to have two predecessors:
1027 first_loop->exit and the block that precedes first_loop. */
1028
1029 gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
1030 && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
1031 && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
1032 || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
1033 && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
1034
1035 /* Verify that the other successor of first_loop->exit is after the
1036 second_loop. */
1037 /* TODO */
1038 }
1039
1040 /* If the run time cost model check determines that vectorization is
1041 not profitable and hence scalar loop should be generated then set
1042 FIRST_NITERS to prologue peeled iterations. This will allow all the
1043 iterations to be executed in the prologue peeled scalar loop. */
1044
1045 static void
1046 set_prologue_iterations (basic_block bb_before_first_loop,
1047 tree *first_niters,
1048 struct loop *loop,
1049 unsigned int th,
1050 int probability)
1051 {
1052 edge e;
1053 basic_block cond_bb, then_bb;
1054 tree var, prologue_after_cost_adjust_name;
1055 gimple_stmt_iterator gsi;
1056 gphi *newphi;
1057 edge e_true, e_false, e_fallthru;
1058 gcond *cond_stmt;
1059 gimple_seq stmts = NULL;
1060 tree cost_pre_condition = NULL_TREE;
1061 tree scalar_loop_iters =
1062 unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
1063
1064 e = single_pred_edge (bb_before_first_loop);
1065 cond_bb = split_edge (e);
1066
1067 e = single_pred_edge (bb_before_first_loop);
1068 then_bb = split_edge (e);
1069 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1070
1071 e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
1072 EDGE_FALSE_VALUE);
1073 set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
1074
1075 e_true = EDGE_PRED (then_bb, 0);
1076 e_true->flags &= ~EDGE_FALLTHRU;
1077 e_true->flags |= EDGE_TRUE_VALUE;
1078
1079 e_true->probability = probability;
1080 e_false->probability = inverse_probability (probability);
1081 e_true->count = apply_probability (cond_bb->count, probability);
1082 e_false->count = cond_bb->count - e_true->count;
1083 then_bb->frequency = EDGE_FREQUENCY (e_true);
1084 then_bb->count = e_true->count;
1085
1086 e_fallthru = EDGE_SUCC (then_bb, 0);
1087 e_fallthru->count = then_bb->count;
1088
1089 gsi = gsi_last_bb (cond_bb);
1090 cost_pre_condition =
1091 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1092 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1093 cost_pre_condition =
1094 force_gimple_operand_gsi_1 (&gsi, cost_pre_condition, is_gimple_condexpr,
1095 NULL_TREE, false, GSI_CONTINUE_LINKING);
1096 cond_stmt = gimple_build_cond_from_tree (cost_pre_condition,
1097 NULL_TREE, NULL_TREE);
1098 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1099
1100 var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
1101 "prologue_after_cost_adjust");
1102 prologue_after_cost_adjust_name =
1103 force_gimple_operand (scalar_loop_iters, &stmts, false, var);
1104
1105 gsi = gsi_last_bb (then_bb);
1106 if (stmts)
1107 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
1108
1109 newphi = create_phi_node (var, bb_before_first_loop);
1110 add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
1111 UNKNOWN_LOCATION);
1112 add_phi_arg (newphi, *first_niters, e_false, UNKNOWN_LOCATION);
1113
1114 *first_niters = PHI_RESULT (newphi);
1115 }
1116
1117 /* Function slpeel_tree_peel_loop_to_edge.
1118
1119 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
1120 that is placed on the entry (exit) edge E of LOOP. After this transformation
1121 we have two loops one after the other - first-loop iterates FIRST_NITERS
1122 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
1123 If the cost model indicates that it is profitable to emit a scalar
1124 loop instead of the vector one, then the prolog (epilog) loop will iterate
1125 for the entire unchanged scalar iterations of the loop.
1126
1127 Input:
1128 - LOOP: the loop to be peeled.
1129 - SCALAR_LOOP: if non-NULL, the alternate loop from which basic blocks
1130 should be copied.
1131 - E: the exit or entry edge of LOOP.
1132 If it is the entry edge, we peel the first iterations of LOOP. In this
1133 case first-loop is LOOP, and second-loop is the newly created loop.
1134 If it is the exit edge, we peel the last iterations of LOOP. In this
1135 case, first-loop is the newly created loop, and second-loop is LOOP.
1136 - NITERS: the number of iterations that LOOP iterates.
1137 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1138 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
1139 for updating the loop bound of the first-loop to FIRST_NITERS. If it
1140 is false, the caller of this function may want to take care of this
1141 (this can be useful if we don't want new stmts added to first-loop).
1142 - TH: cost model profitability threshold of iterations for vectorization.
1143 - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1144 during versioning and hence needs to occur during
1145 prologue generation or whether cost model check
1146 has not occurred during prologue generation and hence
1147 needs to occur during epilogue generation.
1148 - BOUND1 is the upper bound on number of iterations of the first loop (if known)
1149 - BOUND2 is the upper bound on number of iterations of the second loop (if known)
1150
1151
1152 Output:
1153 The function returns a pointer to the new loop-copy, or NULL if it failed
1154 to perform the transformation.
1155
1156 The function generates two if-then-else guards: one before the first loop,
1157 and the other before the second loop:
1158 The first guard is:
1159 if (FIRST_NITERS == 0) then skip the first loop,
1160 and go directly to the second loop.
1161 The second guard is:
1162 if (FIRST_NITERS == NITERS) then skip the second loop.
1163
1164 If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
1165 then the generated condition is combined with COND_EXPR and the
1166 statements in COND_EXPR_STMT_LIST are emitted together with it.
1167
1168 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1169 FORNOW the resulting code will not be in loop-closed-ssa form.
1170 */
1171
1172 static struct loop *
1173 slpeel_tree_peel_loop_to_edge (struct loop *loop, struct loop *scalar_loop,
1174 edge e, tree *first_niters,
1175 tree niters, bool update_first_loop_count,
1176 unsigned int th, bool check_profitability,
1177 tree cond_expr, gimple_seq cond_expr_stmt_list,
1178 int bound1, int bound2)
1179 {
1180 struct loop *new_loop = NULL, *first_loop, *second_loop;
1181 edge skip_e;
1182 tree pre_condition = NULL_TREE;
1183 basic_block bb_before_second_loop, bb_after_second_loop;
1184 basic_block bb_before_first_loop;
1185 basic_block bb_between_loops;
1186 basic_block new_exit_bb;
1187 gphi_iterator gsi;
1188 edge exit_e = single_exit (loop);
1189 source_location loop_loc;
1190 /* There are many aspects to how likely the first loop is going to be executed.
1191 Without histogram we can't really do good job. Simply set it to
1192 2/3, so the first loop is not reordered to the end of function and
1193 the hot path through stays short. */
1194 int first_guard_probability = 2 * REG_BR_PROB_BASE / 3;
1195 int second_guard_probability = 2 * REG_BR_PROB_BASE / 3;
1196 int probability_of_second_loop;
1197
1198 if (!slpeel_can_duplicate_loop_p (loop, e))
1199 return NULL;
1200
1201 /* We might have a queued need to update virtual SSA form. As we
1202 delete the update SSA machinery below after doing a regular
1203 incremental SSA update during loop copying make sure we don't
1204 lose that fact.
1205 ??? Needing to update virtual SSA form by renaming is unfortunate
1206 but not all of the vectorizer code inserting new loads / stores
1207 properly assigns virtual operands to those statements. */
1208 update_ssa (TODO_update_ssa_only_virtuals);
1209
1210 /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
1211 in the exit bb and rename all the uses after the loop. This simplifies
1212 the *guard[12] routines, which assume loop closed SSA form for all PHIs
1213 (but normally loop closed SSA form doesn't require virtual PHIs to be
1214 in the same form). Doing this early simplifies the checking what
1215 uses should be renamed. */
1216 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1217 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1218 {
1219 gphi *phi = gsi.phi ();
1220 for (gsi = gsi_start_phis (exit_e->dest);
1221 !gsi_end_p (gsi); gsi_next (&gsi))
1222 if (virtual_operand_p (gimple_phi_result (gsi_stmt (gsi))))
1223 break;
1224 if (gsi_end_p (gsi))
1225 {
1226 tree new_vop = copy_ssa_name (PHI_RESULT (phi));
1227 gphi *new_phi = create_phi_node (new_vop, exit_e->dest);
1228 tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
1229 imm_use_iterator imm_iter;
1230 gimple *stmt;
1231 use_operand_p use_p;
1232
1233 add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
1234 gimple_phi_set_result (new_phi, new_vop);
1235 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
1236 if (stmt != new_phi
1237 && !flow_bb_inside_loop_p (loop, gimple_bb (stmt)))
1238 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1239 SET_USE (use_p, new_vop);
1240 }
1241 break;
1242 }
1243
1244 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1245 Resulting CFG would be:
1246
1247 first_loop:
1248 do {
1249 } while ...
1250
1251 second_loop:
1252 do {
1253 } while ...
1254
1255 orig_exit_bb:
1256 */
1257
1258 if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, scalar_loop,
1259 e)))
1260 {
1261 loop_loc = find_loop_location (loop);
1262 dump_printf_loc (MSG_MISSED_OPTIMIZATION, loop_loc,
1263 "tree_duplicate_loop_to_edge_cfg failed.\n");
1264 return NULL;
1265 }
1266
1267 if (MAY_HAVE_DEBUG_STMTS)
1268 {
1269 gcc_assert (!adjust_vec.exists ());
1270 adjust_vec.create (32);
1271 }
1272
1273 if (e == exit_e)
1274 {
1275 /* NEW_LOOP was placed after LOOP. */
1276 first_loop = loop;
1277 second_loop = new_loop;
1278 }
1279 else
1280 {
1281 /* NEW_LOOP was placed before LOOP. */
1282 first_loop = new_loop;
1283 second_loop = loop;
1284 }
1285
1286 /* 2. Add the guard code in one of the following ways:
1287
1288 2.a Add the guard that controls whether the first loop is executed.
1289 This occurs when this function is invoked for prologue or epilogue
1290 generation and when the cost model check can be done at compile time.
1291
1292 Resulting CFG would be:
1293
1294 bb_before_first_loop:
1295 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1296 GOTO first-loop
1297
1298 first_loop:
1299 do {
1300 } while ...
1301
1302 bb_before_second_loop:
1303
1304 second_loop:
1305 do {
1306 } while ...
1307
1308 orig_exit_bb:
1309
1310 2.b Add the cost model check that allows the prologue
1311 to iterate for the entire unchanged scalar
1312 iterations of the loop in the event that the cost
1313 model indicates that the scalar loop is more
1314 profitable than the vector one. This occurs when
1315 this function is invoked for prologue generation
1316 and the cost model check needs to be done at run
1317 time.
1318
1319 Resulting CFG after prologue peeling would be:
1320
1321 if (scalar_loop_iterations <= th)
1322 FIRST_NITERS = scalar_loop_iterations
1323
1324 bb_before_first_loop:
1325 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1326 GOTO first-loop
1327
1328 first_loop:
1329 do {
1330 } while ...
1331
1332 bb_before_second_loop:
1333
1334 second_loop:
1335 do {
1336 } while ...
1337
1338 orig_exit_bb:
1339
1340 2.c Add the cost model check that allows the epilogue
1341 to iterate for the entire unchanged scalar
1342 iterations of the loop in the event that the cost
1343 model indicates that the scalar loop is more
1344 profitable than the vector one. This occurs when
1345 this function is invoked for epilogue generation
1346 and the cost model check needs to be done at run
1347 time. This check is combined with any pre-existing
1348 check in COND_EXPR to avoid versioning.
1349
1350 Resulting CFG after prologue peeling would be:
1351
1352 bb_before_first_loop:
1353 if ((scalar_loop_iterations <= th)
1354 ||
1355 FIRST_NITERS == 0) GOTO bb_before_second_loop
1356 GOTO first-loop
1357
1358 first_loop:
1359 do {
1360 } while ...
1361
1362 bb_before_second_loop:
1363
1364 second_loop:
1365 do {
1366 } while ...
1367
1368 orig_exit_bb:
1369 */
1370
1371 bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
1372 /* Loop copying insterted a forwarder block for us here. */
1373 bb_before_second_loop = single_exit (first_loop)->dest;
1374
1375 probability_of_second_loop = (inverse_probability (first_guard_probability)
1376 + combine_probabilities (second_guard_probability,
1377 first_guard_probability));
1378 /* Theoretically preheader edge of first loop and exit edge should have
1379 same frequencies. Loop exit probablities are however easy to get wrong.
1380 It is safer to copy value from original loop entry. */
1381 bb_before_second_loop->frequency
1382 = combine_probabilities (bb_before_first_loop->frequency,
1383 probability_of_second_loop);
1384 bb_before_second_loop->count
1385 = apply_probability (bb_before_first_loop->count,
1386 probability_of_second_loop);
1387 single_succ_edge (bb_before_second_loop)->count
1388 = bb_before_second_loop->count;
1389
1390 /* Epilogue peeling. */
1391 if (!update_first_loop_count)
1392 {
1393 loop_vec_info loop_vinfo = loop_vec_info_for_loop (loop);
1394 tree scalar_loop_iters = LOOP_VINFO_NITERSM1 (loop_vinfo);
1395 unsigned limit = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1;
1396 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1397 limit = limit + 1;
1398 if (check_profitability
1399 && th > limit)
1400 limit = th;
1401 pre_condition =
1402 fold_build2 (LT_EXPR, boolean_type_node, scalar_loop_iters,
1403 build_int_cst (TREE_TYPE (scalar_loop_iters), limit));
1404 if (cond_expr)
1405 {
1406 pre_condition =
1407 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1408 pre_condition,
1409 fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
1410 cond_expr));
1411 }
1412 }
1413
1414 /* Prologue peeling. */
1415 else
1416 {
1417 if (check_profitability)
1418 set_prologue_iterations (bb_before_first_loop, first_niters,
1419 loop, th, first_guard_probability);
1420
1421 pre_condition =
1422 fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
1423 build_int_cst (TREE_TYPE (*first_niters), 0));
1424 }
1425
1426 skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
1427 cond_expr_stmt_list,
1428 bb_before_second_loop, bb_before_first_loop,
1429 inverse_probability (first_guard_probability));
1430 scale_loop_profile (first_loop, first_guard_probability,
1431 check_profitability && (int)th > bound1 ? th : bound1);
1432 slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1433 first_loop == new_loop,
1434 &new_exit_bb);
1435
1436
1437 /* 3. Add the guard that controls whether the second loop is executed.
1438 Resulting CFG would be:
1439
1440 bb_before_first_loop:
1441 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1442 GOTO first-loop
1443
1444 first_loop:
1445 do {
1446 } while ...
1447
1448 bb_between_loops:
1449 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1450 GOTO bb_before_second_loop
1451
1452 bb_before_second_loop:
1453
1454 second_loop:
1455 do {
1456 } while ...
1457
1458 bb_after_second_loop:
1459
1460 orig_exit_bb:
1461 */
1462
1463 bb_between_loops = new_exit_bb;
1464 bb_after_second_loop = split_edge (single_exit (second_loop));
1465
1466 pre_condition =
1467 fold_build2 (EQ_EXPR, boolean_type_node, *first_niters, niters);
1468 skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
1469 bb_after_second_loop, bb_before_first_loop,
1470 inverse_probability (second_guard_probability));
1471 scale_loop_profile (second_loop, probability_of_second_loop, bound2);
1472 slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1473 second_loop == new_loop, &new_exit_bb);
1474
1475 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1476 */
1477 if (update_first_loop_count)
1478 slpeel_make_loop_iterate_ntimes (first_loop, *first_niters);
1479
1480 delete_update_ssa ();
1481
1482 adjust_vec_debug_stmts ();
1483
1484 return new_loop;
1485 }
1486
1487 /* Function vect_get_loop_location.
1488
1489 Extract the location of the loop in the source code.
1490 If the loop is not well formed for vectorization, an estimated
1491 location is calculated.
1492 Return the loop location if succeed and NULL if not. */
1493
1494 source_location
1495 find_loop_location (struct loop *loop)
1496 {
1497 gimple *stmt = NULL;
1498 basic_block bb;
1499 gimple_stmt_iterator si;
1500
1501 if (!loop)
1502 return UNKNOWN_LOCATION;
1503
1504 stmt = get_loop_exit_condition (loop);
1505
1506 if (stmt
1507 && LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1508 return gimple_location (stmt);
1509
1510 /* If we got here the loop is probably not "well formed",
1511 try to estimate the loop location */
1512
1513 if (!loop->header)
1514 return UNKNOWN_LOCATION;
1515
1516 bb = loop->header;
1517
1518 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1519 {
1520 stmt = gsi_stmt (si);
1521 if (LOCATION_LOCUS (gimple_location (stmt)) > BUILTINS_LOCATION)
1522 return gimple_location (stmt);
1523 }
1524
1525 return UNKNOWN_LOCATION;
1526 }
1527
1528
1529 /* Function vect_can_advance_ivs_p
1530
1531 In case the number of iterations that LOOP iterates is unknown at compile
1532 time, an epilog loop will be generated, and the loop induction variables
1533 (IVs) will be "advanced" to the value they are supposed to take just before
1534 the epilog loop. Here we check that the access function of the loop IVs
1535 and the expression that represents the loop bound are simple enough.
1536 These restrictions will be relaxed in the future. */
1537
1538 bool
1539 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1540 {
1541 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1542 basic_block bb = loop->header;
1543 gimple *phi;
1544 gphi_iterator gsi;
1545
1546 /* Analyze phi functions of the loop header. */
1547
1548 if (dump_enabled_p ())
1549 dump_printf_loc (MSG_NOTE, vect_location, "vect_can_advance_ivs_p:\n");
1550 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1551 {
1552 tree evolution_part;
1553
1554 phi = gsi.phi ();
1555 if (dump_enabled_p ())
1556 {
1557 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
1558 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1559 }
1560
1561 /* Skip virtual phi's. The data dependences that are associated with
1562 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
1563
1564 if (virtual_operand_p (PHI_RESULT (phi)))
1565 {
1566 if (dump_enabled_p ())
1567 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1568 "virtual phi. skip.\n");
1569 continue;
1570 }
1571
1572 /* Skip reduction phis. */
1573
1574 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1575 {
1576 if (dump_enabled_p ())
1577 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1578 "reduc phi. skip.\n");
1579 continue;
1580 }
1581
1582 /* Analyze the evolution function. */
1583
1584 evolution_part
1585 = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (vinfo_for_stmt (phi));
1586 if (evolution_part == NULL_TREE)
1587 {
1588 if (dump_enabled_p ())
1589 dump_printf (MSG_MISSED_OPTIMIZATION,
1590 "No access function or evolution.\n");
1591 return false;
1592 }
1593
1594 /* FORNOW: We do not transform initial conditions of IVs
1595 which evolution functions are a polynomial of degree >= 2. */
1596
1597 if (tree_is_chrec (evolution_part))
1598 return false;
1599 }
1600
1601 return true;
1602 }
1603
1604
1605 /* Function vect_update_ivs_after_vectorizer.
1606
1607 "Advance" the induction variables of LOOP to the value they should take
1608 after the execution of LOOP. This is currently necessary because the
1609 vectorizer does not handle induction variables that are used after the
1610 loop. Such a situation occurs when the last iterations of LOOP are
1611 peeled, because:
1612 1. We introduced new uses after LOOP for IVs that were not originally used
1613 after LOOP: the IVs of LOOP are now used by an epilog loop.
1614 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1615 times, whereas the loop IVs should be bumped N times.
1616
1617 Input:
1618 - LOOP - a loop that is going to be vectorized. The last few iterations
1619 of LOOP were peeled.
1620 - NITERS - the number of iterations that LOOP executes (before it is
1621 vectorized). i.e, the number of times the ivs should be bumped.
1622 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1623 coming out from LOOP on which there are uses of the LOOP ivs
1624 (this is the path from LOOP->exit to epilog_loop->preheader).
1625
1626 The new definitions of the ivs are placed in LOOP->exit.
1627 The phi args associated with the edge UPDATE_E in the bb
1628 UPDATE_E->dest are updated accordingly.
1629
1630 Assumption 1: Like the rest of the vectorizer, this function assumes
1631 a single loop exit that has a single predecessor.
1632
1633 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1634 organized in the same order.
1635
1636 Assumption 3: The access function of the ivs is simple enough (see
1637 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1638
1639 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1640 coming out of LOOP on which the ivs of LOOP are used (this is the path
1641 that leads to the epilog loop; other paths skip the epilog loop). This
1642 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1643 needs to have its phis updated.
1644 */
1645
1646 static void
1647 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
1648 edge update_e)
1649 {
1650 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1651 basic_block exit_bb = single_exit (loop)->dest;
1652 gphi *phi, *phi1;
1653 gphi_iterator gsi, gsi1;
1654 basic_block update_bb = update_e->dest;
1655
1656 gcc_checking_assert (vect_can_advance_ivs_p (loop_vinfo));
1657
1658 /* Make sure there exists a single-predecessor exit bb: */
1659 gcc_assert (single_pred_p (exit_bb));
1660
1661 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1662 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1663 gsi_next (&gsi), gsi_next (&gsi1))
1664 {
1665 tree init_expr;
1666 tree step_expr, off;
1667 tree type;
1668 tree var, ni, ni_name;
1669 gimple_stmt_iterator last_gsi;
1670 stmt_vec_info stmt_info;
1671
1672 phi = gsi.phi ();
1673 phi1 = gsi1.phi ();
1674 if (dump_enabled_p ())
1675 {
1676 dump_printf_loc (MSG_NOTE, vect_location,
1677 "vect_update_ivs_after_vectorizer: phi: ");
1678 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1679 }
1680
1681 /* Skip virtual phi's. */
1682 if (virtual_operand_p (PHI_RESULT (phi)))
1683 {
1684 if (dump_enabled_p ())
1685 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1686 "virtual phi. skip.\n");
1687 continue;
1688 }
1689
1690 /* Skip reduction phis. */
1691 stmt_info = vinfo_for_stmt (phi);
1692 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
1693 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_double_reduction_def)
1694 {
1695 if (dump_enabled_p ())
1696 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1697 "reduc phi. skip.\n");
1698 continue;
1699 }
1700
1701 type = TREE_TYPE (gimple_phi_result (phi));
1702 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
1703 step_expr = unshare_expr (step_expr);
1704
1705 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1706 of degree >= 2 or exponential. */
1707 gcc_assert (!tree_is_chrec (step_expr));
1708
1709 init_expr = PHI_ARG_DEF_FROM_EDGE (phi, loop_preheader_edge (loop));
1710
1711 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1712 fold_convert (TREE_TYPE (step_expr), niters),
1713 step_expr);
1714 if (POINTER_TYPE_P (type))
1715 ni = fold_build_pointer_plus (init_expr, off);
1716 else
1717 ni = fold_build2 (PLUS_EXPR, type,
1718 init_expr, fold_convert (type, off));
1719
1720 var = create_tmp_var (type, "tmp");
1721
1722 last_gsi = gsi_last_bb (exit_bb);
1723 ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
1724 true, GSI_SAME_STMT);
1725
1726 /* Fix phi expressions in the successor bb. */
1727 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
1728 }
1729 }
1730
1731 /* Function vect_do_peeling_for_loop_bound
1732
1733 Peel the last iterations of the loop represented by LOOP_VINFO.
1734 The peeled iterations form a new epilog loop. Given that the loop now
1735 iterates NITERS times, the new epilog loop iterates
1736 NITERS % VECTORIZATION_FACTOR times.
1737
1738 The original loop will later be made to iterate
1739 NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
1740
1741 COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
1742 test. */
1743
1744 void
1745 vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo,
1746 tree ni_name, tree ratio_mult_vf_name,
1747 unsigned int th, bool check_profitability)
1748 {
1749 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1750 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
1751 struct loop *new_loop;
1752 edge update_e;
1753 basic_block preheader;
1754 int loop_num;
1755 int max_iter;
1756 tree cond_expr = NULL_TREE;
1757 gimple_seq cond_expr_stmt_list = NULL;
1758
1759 if (dump_enabled_p ())
1760 dump_printf_loc (MSG_NOTE, vect_location,
1761 "=== vect_do_peeling_for_loop_bound ===\n");
1762
1763 initialize_original_copy_tables ();
1764
1765 loop_num = loop->num;
1766
1767 new_loop
1768 = slpeel_tree_peel_loop_to_edge (loop, scalar_loop, single_exit (loop),
1769 &ratio_mult_vf_name, ni_name, false,
1770 th, check_profitability,
1771 cond_expr, cond_expr_stmt_list,
1772 0, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1773 gcc_assert (new_loop);
1774 gcc_assert (loop_num == loop->num);
1775 slpeel_checking_verify_cfg_after_peeling (loop, new_loop);
1776
1777 /* A guard that controls whether the new_loop is to be executed or skipped
1778 is placed in LOOP->exit. LOOP->exit therefore has two successors - one
1779 is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
1780 is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
1781 is on the path where the LOOP IVs are used and need to be updated. */
1782
1783 preheader = loop_preheader_edge (new_loop)->src;
1784 if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
1785 update_e = EDGE_PRED (preheader, 0);
1786 else
1787 update_e = EDGE_PRED (preheader, 1);
1788
1789 /* Update IVs of original loop as if they were advanced
1790 by ratio_mult_vf_name steps. */
1791 vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
1792
1793 /* For vectorization factor N, we need to copy last N-1 values in epilogue
1794 and this means N-2 loopback edge executions.
1795
1796 PEELING_FOR_GAPS works by subtracting last iteration and thus the epilogue
1797 will execute at least LOOP_VINFO_VECT_FACTOR times. */
1798 max_iter = (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
1799 ? LOOP_VINFO_VECT_FACTOR (loop_vinfo) * 2
1800 : LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 2;
1801 if (check_profitability)
1802 max_iter = MAX (max_iter, (int) th - 1);
1803 record_niter_bound (new_loop, max_iter, false, true);
1804 dump_printf (MSG_NOTE,
1805 "Setting upper bound of nb iterations for epilogue "
1806 "loop to %d\n", max_iter);
1807
1808 /* After peeling we have to reset scalar evolution analyzer. */
1809 scev_reset ();
1810
1811 free_original_copy_tables ();
1812 }
1813
1814
1815 /* Function vect_gen_niters_for_prolog_loop
1816
1817 Set the number of iterations for the loop represented by LOOP_VINFO
1818 to the minimum between LOOP_NITERS (the original iteration count of the loop)
1819 and the misalignment of DR - the data reference recorded in
1820 LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
1821 this loop, the data reference DR will refer to an aligned location.
1822
1823 The following computation is generated:
1824
1825 If the misalignment of DR is known at compile time:
1826 addr_mis = int mis = DR_MISALIGNMENT (dr);
1827 Else, compute address misalignment in bytes:
1828 addr_mis = addr & (vectype_align - 1)
1829
1830 prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
1831
1832 (elem_size = element type size; an element is the scalar element whose type
1833 is the inner type of the vectype)
1834
1835 When the step of the data-ref in the loop is not 1 (as in interleaved data
1836 and SLP), the number of iterations of the prolog must be divided by the step
1837 (which is equal to the size of interleaved group).
1838
1839 The above formulas assume that VF == number of elements in the vector. This
1840 may not hold when there are multiple-types in the loop.
1841 In this case, for some data-references in the loop the VF does not represent
1842 the number of elements that fit in the vector. Therefore, instead of VF we
1843 use TYPE_VECTOR_SUBPARTS. */
1844
1845 static tree
1846 vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters, int *bound)
1847 {
1848 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1849 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1850 tree var;
1851 gimple_seq stmts;
1852 tree iters, iters_name;
1853 edge pe;
1854 basic_block new_bb;
1855 gimple *dr_stmt = DR_STMT (dr);
1856 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
1857 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1858 int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
1859 tree niters_type = TREE_TYPE (loop_niters);
1860 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
1861
1862 pe = loop_preheader_edge (loop);
1863
1864 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1865 {
1866 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1867
1868 if (dump_enabled_p ())
1869 dump_printf_loc (MSG_NOTE, vect_location,
1870 "known peeling = %d.\n", npeel);
1871
1872 iters = build_int_cst (niters_type, npeel);
1873 *bound = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
1874 }
1875 else
1876 {
1877 gimple_seq new_stmts = NULL;
1878 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
1879 tree offset = negative
1880 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : size_zero_node;
1881 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
1882 &new_stmts, offset, loop);
1883 tree type = unsigned_type_for (TREE_TYPE (start_addr));
1884 tree vectype_align_minus_1 = build_int_cst (type, vectype_align - 1);
1885 HOST_WIDE_INT elem_size =
1886 int_cst_value (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
1887 tree elem_size_log = build_int_cst (type, exact_log2 (elem_size));
1888 tree nelements_minus_1 = build_int_cst (type, nelements - 1);
1889 tree nelements_tree = build_int_cst (type, nelements);
1890 tree byte_misalign;
1891 tree elem_misalign;
1892
1893 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
1894 gcc_assert (!new_bb);
1895
1896 /* Create: byte_misalign = addr & (vectype_align - 1) */
1897 byte_misalign =
1898 fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
1899 vectype_align_minus_1);
1900
1901 /* Create: elem_misalign = byte_misalign / element_size */
1902 elem_misalign =
1903 fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
1904
1905 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
1906 if (negative)
1907 iters = fold_build2 (MINUS_EXPR, type, elem_misalign, nelements_tree);
1908 else
1909 iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
1910 iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
1911 iters = fold_convert (niters_type, iters);
1912 *bound = nelements;
1913 }
1914
1915 /* Create: prolog_loop_niters = min (iters, loop_niters) */
1916 /* If the loop bound is known at compile time we already verified that it is
1917 greater than vf; since the misalignment ('iters') is at most vf, there's
1918 no need to generate the MIN_EXPR in this case. */
1919 if (TREE_CODE (loop_niters) != INTEGER_CST)
1920 iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
1921
1922 if (dump_enabled_p ())
1923 {
1924 dump_printf_loc (MSG_NOTE, vect_location,
1925 "niters for prolog loop: ");
1926 dump_generic_expr (MSG_NOTE, TDF_SLIM, iters);
1927 dump_printf (MSG_NOTE, "\n");
1928 }
1929
1930 var = create_tmp_var (niters_type, "prolog_loop_niters");
1931 stmts = NULL;
1932 iters_name = force_gimple_operand (iters, &stmts, false, var);
1933
1934 /* Insert stmt on loop preheader edge. */
1935 if (stmts)
1936 {
1937 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1938 gcc_assert (!new_bb);
1939 }
1940
1941 return iters_name;
1942 }
1943
1944
1945 /* Function vect_update_init_of_dr
1946
1947 NITERS iterations were peeled from LOOP. DR represents a data reference
1948 in LOOP. This function updates the information recorded in DR to
1949 account for the fact that the first NITERS iterations had already been
1950 executed. Specifically, it updates the OFFSET field of DR. */
1951
1952 static void
1953 vect_update_init_of_dr (struct data_reference *dr, tree niters)
1954 {
1955 tree offset = DR_OFFSET (dr);
1956
1957 niters = fold_build2 (MULT_EXPR, sizetype,
1958 fold_convert (sizetype, niters),
1959 fold_convert (sizetype, DR_STEP (dr)));
1960 offset = fold_build2 (PLUS_EXPR, sizetype,
1961 fold_convert (sizetype, offset), niters);
1962 DR_OFFSET (dr) = offset;
1963 }
1964
1965
1966 /* Function vect_update_inits_of_drs
1967
1968 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
1969 This function updates the information recorded for the data references in
1970 the loop to account for the fact that the first NITERS iterations had
1971 already been executed. Specifically, it updates the initial_condition of
1972 the access_function of all the data_references in the loop. */
1973
1974 static void
1975 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
1976 {
1977 unsigned int i;
1978 vec<data_reference_p> datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
1979 struct data_reference *dr;
1980
1981 if (dump_enabled_p ())
1982 dump_printf_loc (MSG_NOTE, vect_location,
1983 "=== vect_update_inits_of_dr ===\n");
1984
1985 FOR_EACH_VEC_ELT (datarefs, i, dr)
1986 vect_update_init_of_dr (dr, niters);
1987 }
1988
1989
1990 /* Function vect_do_peeling_for_alignment
1991
1992 Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
1993 'niters' is set to the misalignment of one of the data references in the
1994 loop, thereby forcing it to refer to an aligned location at the beginning
1995 of the execution of this loop. The data reference for which we are
1996 peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
1997
1998 void
1999 vect_do_peeling_for_alignment (loop_vec_info loop_vinfo, tree ni_name,
2000 unsigned int th, bool check_profitability)
2001 {
2002 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2003 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2004 tree niters_of_prolog_loop;
2005 tree wide_prolog_niters;
2006 struct loop *new_loop;
2007 int max_iter;
2008 int bound = 0;
2009
2010 if (dump_enabled_p ())
2011 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2012 "loop peeled for vectorization to enhance"
2013 " alignment\n");
2014
2015 initialize_original_copy_tables ();
2016
2017 gimple_seq stmts = NULL;
2018 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
2019 niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo,
2020 ni_name,
2021 &bound);
2022
2023 /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
2024 new_loop =
2025 slpeel_tree_peel_loop_to_edge (loop, scalar_loop,
2026 loop_preheader_edge (loop),
2027 &niters_of_prolog_loop, ni_name, true,
2028 th, check_profitability, NULL_TREE, NULL,
2029 bound, 0);
2030
2031 gcc_assert (new_loop);
2032 slpeel_checking_verify_cfg_after_peeling (new_loop, loop);
2033 /* For vectorization factor N, we need to copy at most N-1 values
2034 for alignment and this means N-2 loopback edge executions. */
2035 max_iter = LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 2;
2036 if (check_profitability)
2037 max_iter = MAX (max_iter, (int) th - 1);
2038 record_niter_bound (new_loop, max_iter, false, true);
2039 dump_printf (MSG_NOTE,
2040 "Setting upper bound of nb iterations for prologue "
2041 "loop to %d\n", max_iter);
2042
2043 /* Update number of times loop executes. */
2044 LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
2045 TREE_TYPE (ni_name), ni_name, niters_of_prolog_loop);
2046 LOOP_VINFO_NITERSM1 (loop_vinfo) = fold_build2 (MINUS_EXPR,
2047 TREE_TYPE (ni_name),
2048 LOOP_VINFO_NITERSM1 (loop_vinfo), niters_of_prolog_loop);
2049
2050 if (types_compatible_p (sizetype, TREE_TYPE (niters_of_prolog_loop)))
2051 wide_prolog_niters = niters_of_prolog_loop;
2052 else
2053 {
2054 gimple_seq seq = NULL;
2055 edge pe = loop_preheader_edge (loop);
2056 tree wide_iters = fold_convert (sizetype, niters_of_prolog_loop);
2057 tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
2058 wide_prolog_niters = force_gimple_operand (wide_iters, &seq, false,
2059 var);
2060 if (seq)
2061 {
2062 /* Insert stmt on loop preheader edge. */
2063 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
2064 gcc_assert (!new_bb);
2065 }
2066 }
2067
2068 /* Update the init conditions of the access functions of all data refs. */
2069 vect_update_inits_of_drs (loop_vinfo, wide_prolog_niters);
2070
2071 /* After peeling we have to reset scalar evolution analyzer. */
2072 scev_reset ();
2073
2074 free_original_copy_tables ();
2075 }
2076
2077
2078 /* Function vect_create_cond_for_align_checks.
2079
2080 Create a conditional expression that represents the alignment checks for
2081 all of data references (array element references) whose alignment must be
2082 checked at runtime.
2083
2084 Input:
2085 COND_EXPR - input conditional expression. New conditions will be chained
2086 with logical AND operation.
2087 LOOP_VINFO - two fields of the loop information are used.
2088 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2089 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2090
2091 Output:
2092 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2093 expression.
2094 The returned value is the conditional expression to be used in the if
2095 statement that controls which version of the loop gets executed at runtime.
2096
2097 The algorithm makes two assumptions:
2098 1) The number of bytes "n" in a vector is a power of 2.
2099 2) An address "a" is aligned if a%n is zero and that this
2100 test can be done as a&(n-1) == 0. For example, for 16
2101 byte vectors the test is a&0xf == 0. */
2102
2103 static void
2104 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2105 tree *cond_expr,
2106 gimple_seq *cond_expr_stmt_list)
2107 {
2108 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2109 vec<gimple *> may_misalign_stmts
2110 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2111 gimple *ref_stmt;
2112 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2113 tree mask_cst;
2114 unsigned int i;
2115 tree int_ptrsize_type;
2116 char tmp_name[20];
2117 tree or_tmp_name = NULL_TREE;
2118 tree and_tmp_name;
2119 gimple *and_stmt;
2120 tree ptrsize_zero;
2121 tree part_cond_expr;
2122
2123 /* Check that mask is one less than a power of 2, i.e., mask is
2124 all zeros followed by all ones. */
2125 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2126
2127 int_ptrsize_type = signed_type_for (ptr_type_node);
2128
2129 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2130 of the first vector of the i'th data reference. */
2131
2132 FOR_EACH_VEC_ELT (may_misalign_stmts, i, ref_stmt)
2133 {
2134 gimple_seq new_stmt_list = NULL;
2135 tree addr_base;
2136 tree addr_tmp_name;
2137 tree new_or_tmp_name;
2138 gimple *addr_stmt, *or_stmt;
2139 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2140 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2141 bool negative = tree_int_cst_compare
2142 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2143 tree offset = negative
2144 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : size_zero_node;
2145
2146 /* create: addr_tmp = (int)(address_of_first_vector) */
2147 addr_base =
2148 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2149 offset, loop);
2150 if (new_stmt_list != NULL)
2151 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2152
2153 sprintf (tmp_name, "addr2int%d", i);
2154 addr_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2155 addr_stmt = gimple_build_assign (addr_tmp_name, NOP_EXPR, addr_base);
2156 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2157
2158 /* The addresses are OR together. */
2159
2160 if (or_tmp_name != NULL_TREE)
2161 {
2162 /* create: or_tmp = or_tmp | addr_tmp */
2163 sprintf (tmp_name, "orptrs%d", i);
2164 new_or_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, tmp_name);
2165 or_stmt = gimple_build_assign (new_or_tmp_name, BIT_IOR_EXPR,
2166 or_tmp_name, addr_tmp_name);
2167 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2168 or_tmp_name = new_or_tmp_name;
2169 }
2170 else
2171 or_tmp_name = addr_tmp_name;
2172
2173 } /* end for i */
2174
2175 mask_cst = build_int_cst (int_ptrsize_type, mask);
2176
2177 /* create: and_tmp = or_tmp & mask */
2178 and_tmp_name = make_temp_ssa_name (int_ptrsize_type, NULL, "andmask");
2179
2180 and_stmt = gimple_build_assign (and_tmp_name, BIT_AND_EXPR,
2181 or_tmp_name, mask_cst);
2182 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2183
2184 /* Make and_tmp the left operand of the conditional test against zero.
2185 if and_tmp has a nonzero bit then some address is unaligned. */
2186 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2187 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2188 and_tmp_name, ptrsize_zero);
2189 if (*cond_expr)
2190 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2191 *cond_expr, part_cond_expr);
2192 else
2193 *cond_expr = part_cond_expr;
2194 }
2195
2196 /* Function vect_create_cond_for_alias_checks.
2197
2198 Create a conditional expression that represents the run-time checks for
2199 overlapping of address ranges represented by a list of data references
2200 relations passed as input.
2201
2202 Input:
2203 COND_EXPR - input conditional expression. New conditions will be chained
2204 with logical AND operation. If it is NULL, then the function
2205 is used to return the number of alias checks.
2206 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2207 to be checked.
2208
2209 Output:
2210 COND_EXPR - conditional expression.
2211
2212 The returned COND_EXPR is the conditional expression to be used in the if
2213 statement that controls which version of the loop gets executed at runtime.
2214 */
2215
2216 void
2217 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo, tree * cond_expr)
2218 {
2219 vec<dr_with_seg_len_pair_t> comp_alias_ddrs =
2220 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo);
2221 tree part_cond_expr;
2222
2223 /* Create expression
2224 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2225 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2226 &&
2227 ...
2228 &&
2229 ((store_ptr_n + store_segment_length_n) <= load_ptr_n)
2230 || (load_ptr_n + load_segment_length_n) <= store_ptr_n)) */
2231
2232 if (comp_alias_ddrs.is_empty ())
2233 return;
2234
2235 for (size_t i = 0, s = comp_alias_ddrs.length (); i < s; ++i)
2236 {
2237 const dr_with_seg_len& dr_a = comp_alias_ddrs[i].first;
2238 const dr_with_seg_len& dr_b = comp_alias_ddrs[i].second;
2239 tree segment_length_a = dr_a.seg_len;
2240 tree segment_length_b = dr_b.seg_len;
2241
2242 tree addr_base_a
2243 = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_a.dr), dr_a.offset);
2244 tree addr_base_b
2245 = fold_build_pointer_plus (DR_BASE_ADDRESS (dr_b.dr), dr_b.offset);
2246
2247 if (dump_enabled_p ())
2248 {
2249 dump_printf_loc (MSG_NOTE, vect_location,
2250 "create runtime check for data references ");
2251 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_a.dr));
2252 dump_printf (MSG_NOTE, " and ");
2253 dump_generic_expr (MSG_NOTE, TDF_SLIM, DR_REF (dr_b.dr));
2254 dump_printf (MSG_NOTE, "\n");
2255 }
2256
2257 tree seg_a_min = addr_base_a;
2258 tree seg_a_max = fold_build_pointer_plus (addr_base_a, segment_length_a);
2259 /* For negative step, we need to adjust address range by TYPE_SIZE_UNIT
2260 bytes, e.g., int a[3] -> a[1] range is [a+4, a+16) instead of
2261 [a, a+12) */
2262 if (tree_int_cst_compare (DR_STEP (dr_a.dr), size_zero_node) < 0)
2263 {
2264 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_a.dr)));
2265 seg_a_min = fold_build_pointer_plus (seg_a_max, unit_size);
2266 seg_a_max = fold_build_pointer_plus (addr_base_a, unit_size);
2267 }
2268
2269 tree seg_b_min = addr_base_b;
2270 tree seg_b_max = fold_build_pointer_plus (addr_base_b, segment_length_b);
2271 if (tree_int_cst_compare (DR_STEP (dr_b.dr), size_zero_node) < 0)
2272 {
2273 tree unit_size = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr_b.dr)));
2274 seg_b_min = fold_build_pointer_plus (seg_b_max, unit_size);
2275 seg_b_max = fold_build_pointer_plus (addr_base_b, unit_size);
2276 }
2277
2278 part_cond_expr =
2279 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
2280 fold_build2 (LE_EXPR, boolean_type_node, seg_a_max, seg_b_min),
2281 fold_build2 (LE_EXPR, boolean_type_node, seg_b_max, seg_a_min));
2282
2283 if (*cond_expr)
2284 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2285 *cond_expr, part_cond_expr);
2286 else
2287 *cond_expr = part_cond_expr;
2288 }
2289
2290 if (dump_enabled_p ())
2291 dump_printf_loc (MSG_NOTE, vect_location,
2292 "created %u versioning for alias checks.\n",
2293 comp_alias_ddrs.length ());
2294 }
2295
2296
2297 /* Function vect_loop_versioning.
2298
2299 If the loop has data references that may or may not be aligned or/and
2300 has data reference relations whose independence was not proven then
2301 two versions of the loop need to be generated, one which is vectorized
2302 and one which isn't. A test is then generated to control which of the
2303 loops is executed. The test checks for the alignment of all of the
2304 data references that may or may not be aligned. An additional
2305 sequence of runtime tests is generated for each pairs of DDRs whose
2306 independence was not proven. The vectorized version of loop is
2307 executed only if both alias and alignment tests are passed.
2308
2309 The test generated to check which version of loop is executed
2310 is modified to also check for profitability as indicated by the
2311 cost model initially.
2312
2313 The versioning precondition(s) are placed in *COND_EXPR and
2314 *COND_EXPR_STMT_LIST. */
2315
2316 void
2317 vect_loop_versioning (loop_vec_info loop_vinfo,
2318 unsigned int th, bool check_profitability)
2319 {
2320 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2321 struct loop *scalar_loop = LOOP_VINFO_SCALAR_LOOP (loop_vinfo);
2322 basic_block condition_bb;
2323 gphi_iterator gsi;
2324 gimple_stmt_iterator cond_exp_gsi;
2325 basic_block merge_bb;
2326 basic_block new_exit_bb;
2327 edge new_exit_e, e;
2328 gphi *orig_phi, *new_phi;
2329 tree cond_expr = NULL_TREE;
2330 gimple_seq cond_expr_stmt_list = NULL;
2331 tree arg;
2332 unsigned prob = 4 * REG_BR_PROB_BASE / 5;
2333 gimple_seq gimplify_stmt_list = NULL;
2334 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2335 bool version_align = LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo);
2336 bool version_alias = LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo);
2337
2338 if (check_profitability)
2339 {
2340 cond_expr = fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
2341 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
2342 cond_expr = force_gimple_operand_1 (cond_expr, &cond_expr_stmt_list,
2343 is_gimple_condexpr, NULL_TREE);
2344 }
2345
2346 if (version_align)
2347 vect_create_cond_for_align_checks (loop_vinfo, &cond_expr,
2348 &cond_expr_stmt_list);
2349
2350 if (version_alias)
2351 vect_create_cond_for_alias_checks (loop_vinfo, &cond_expr);
2352
2353 cond_expr = force_gimple_operand_1 (cond_expr, &gimplify_stmt_list,
2354 is_gimple_condexpr, NULL_TREE);
2355 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
2356
2357 initialize_original_copy_tables ();
2358 if (scalar_loop)
2359 {
2360 edge scalar_e;
2361 basic_block preheader, scalar_preheader;
2362
2363 /* We don't want to scale SCALAR_LOOP's frequencies, we need to
2364 scale LOOP's frequencies instead. */
2365 loop_version (scalar_loop, cond_expr, &condition_bb,
2366 prob, REG_BR_PROB_BASE, REG_BR_PROB_BASE - prob, true);
2367 scale_loop_frequencies (loop, prob, REG_BR_PROB_BASE);
2368 /* CONDITION_BB was created above SCALAR_LOOP's preheader,
2369 while we need to move it above LOOP's preheader. */
2370 e = loop_preheader_edge (loop);
2371 scalar_e = loop_preheader_edge (scalar_loop);
2372 gcc_assert (empty_block_p (e->src)
2373 && single_pred_p (e->src));
2374 gcc_assert (empty_block_p (scalar_e->src)
2375 && single_pred_p (scalar_e->src));
2376 gcc_assert (single_pred_p (condition_bb));
2377 preheader = e->src;
2378 scalar_preheader = scalar_e->src;
2379 scalar_e = find_edge (condition_bb, scalar_preheader);
2380 e = single_pred_edge (preheader);
2381 redirect_edge_and_branch_force (single_pred_edge (condition_bb),
2382 scalar_preheader);
2383 redirect_edge_and_branch_force (scalar_e, preheader);
2384 redirect_edge_and_branch_force (e, condition_bb);
2385 set_immediate_dominator (CDI_DOMINATORS, condition_bb,
2386 single_pred (condition_bb));
2387 set_immediate_dominator (CDI_DOMINATORS, scalar_preheader,
2388 single_pred (scalar_preheader));
2389 set_immediate_dominator (CDI_DOMINATORS, preheader,
2390 condition_bb);
2391 }
2392 else
2393 loop_version (loop, cond_expr, &condition_bb,
2394 prob, prob, REG_BR_PROB_BASE - prob, true);
2395
2396 if (LOCATION_LOCUS (vect_location) != UNKNOWN_LOCATION
2397 && dump_enabled_p ())
2398 {
2399 if (version_alias)
2400 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2401 "loop versioned for vectorization because of "
2402 "possible aliasing\n");
2403 if (version_align)
2404 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
2405 "loop versioned for vectorization to enhance "
2406 "alignment\n");
2407
2408 }
2409 free_original_copy_tables ();
2410
2411 /* Loop versioning violates an assumption we try to maintain during
2412 vectorization - that the loop exit block has a single predecessor.
2413 After versioning, the exit block of both loop versions is the same
2414 basic block (i.e. it has two predecessors). Just in order to simplify
2415 following transformations in the vectorizer, we fix this situation
2416 here by adding a new (empty) block on the exit-edge of the loop,
2417 with the proper loop-exit phis to maintain loop-closed-form.
2418 If loop versioning wasn't done from loop, but scalar_loop instead,
2419 merge_bb will have already just a single successor. */
2420
2421 merge_bb = single_exit (loop)->dest;
2422 if (scalar_loop == NULL || EDGE_COUNT (merge_bb->preds) >= 2)
2423 {
2424 gcc_assert (EDGE_COUNT (merge_bb->preds) >= 2);
2425 new_exit_bb = split_edge (single_exit (loop));
2426 new_exit_e = single_exit (loop);
2427 e = EDGE_SUCC (new_exit_bb, 0);
2428
2429 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2430 {
2431 tree new_res;
2432 orig_phi = gsi.phi ();
2433 new_res = copy_ssa_name (PHI_RESULT (orig_phi));
2434 new_phi = create_phi_node (new_res, new_exit_bb);
2435 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
2436 add_phi_arg (new_phi, arg, new_exit_e,
2437 gimple_phi_arg_location_from_edge (orig_phi, e));
2438 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
2439 }
2440 }
2441
2442 /* End loop-exit-fixes after versioning. */
2443
2444 if (cond_expr_stmt_list)
2445 {
2446 cond_exp_gsi = gsi_last_bb (condition_bb);
2447 gsi_insert_seq_before (&cond_exp_gsi, cond_expr_stmt_list,
2448 GSI_SAME_STMT);
2449 }
2450 update_ssa (TODO_update_ssa);
2451 }