tree-vect-loop-manip.c (vect_create_cond_for_alias_checks): Tighten overlap check.
[gcc.git] / gcc / tree-vect-loop-manip.c
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 and Ira Rosen <irar@il.ibm.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-pretty-print.h"
31 #include "gimple-pretty-print.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "cfgloop.h"
35 #include "cfglayout.h"
36 #include "diagnostic-core.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-vectorizer.h"
39 #include "langhooks.h"
40
41 /*************************************************************************
42 Simple Loop Peeling Utilities
43
44 Utilities to support loop peeling for vectorization purposes.
45 *************************************************************************/
46
47
48 /* Renames the use *OP_P. */
49
50 static void
51 rename_use_op (use_operand_p op_p)
52 {
53 tree new_name;
54
55 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
56 return;
57
58 new_name = get_current_def (USE_FROM_PTR (op_p));
59
60 /* Something defined outside of the loop. */
61 if (!new_name)
62 return;
63
64 /* An ordinary ssa name defined in the loop. */
65
66 SET_USE (op_p, new_name);
67 }
68
69
70 /* Renames the variables in basic block BB. */
71
72 void
73 rename_variables_in_bb (basic_block bb)
74 {
75 gimple_stmt_iterator gsi;
76 gimple stmt;
77 use_operand_p use_p;
78 ssa_op_iter iter;
79 edge e;
80 edge_iterator ei;
81 struct loop *loop = bb->loop_father;
82
83 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
84 {
85 stmt = gsi_stmt (gsi);
86 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
87 rename_use_op (use_p);
88 }
89
90 FOR_EACH_EDGE (e, ei, bb->succs)
91 {
92 if (!flow_bb_inside_loop_p (loop, e->dest))
93 continue;
94 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
95 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi_stmt (gsi), e));
96 }
97 }
98
99
100 /* Renames variables in new generated LOOP. */
101
102 void
103 rename_variables_in_loop (struct loop *loop)
104 {
105 unsigned i;
106 basic_block *bbs;
107
108 bbs = get_loop_body (loop);
109
110 for (i = 0; i < loop->num_nodes; i++)
111 rename_variables_in_bb (bbs[i]);
112
113 free (bbs);
114 }
115
116 typedef struct
117 {
118 tree from, to;
119 basic_block bb;
120 } adjust_info;
121
122 DEF_VEC_O(adjust_info);
123 DEF_VEC_ALLOC_O_STACK(adjust_info);
124 #define VEC_adjust_info_stack_alloc(alloc) VEC_stack_alloc (adjust_info, alloc)
125
126 /* A stack of values to be adjusted in debug stmts. We have to
127 process them LIFO, so that the closest substitution applies. If we
128 processed them FIFO, without the stack, we might substitute uses
129 with a PHI DEF that would soon become non-dominant, and when we got
130 to the suitable one, it wouldn't have anything to substitute any
131 more. */
132 static VEC(adjust_info, stack) *adjust_vec;
133
134 /* Adjust any debug stmts that referenced AI->from values to use the
135 loop-closed AI->to, if the references are dominated by AI->bb and
136 not by the definition of AI->from. */
137
138 static void
139 adjust_debug_stmts_now (adjust_info *ai)
140 {
141 basic_block bbphi = ai->bb;
142 tree orig_def = ai->from;
143 tree new_def = ai->to;
144 imm_use_iterator imm_iter;
145 gimple stmt;
146 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
147
148 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
149
150 /* Adjust any debug stmts that held onto non-loop-closed
151 references. */
152 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
153 {
154 use_operand_p use_p;
155 basic_block bbuse;
156
157 if (!is_gimple_debug (stmt))
158 continue;
159
160 gcc_assert (gimple_debug_bind_p (stmt));
161
162 bbuse = gimple_bb (stmt);
163
164 if ((bbuse == bbphi
165 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
166 && !(bbuse == bbdef
167 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
168 {
169 if (new_def)
170 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
171 SET_USE (use_p, new_def);
172 else
173 {
174 gimple_debug_bind_reset_value (stmt);
175 update_stmt (stmt);
176 }
177 }
178 }
179 }
180
181 /* Adjust debug stmts as scheduled before. */
182
183 static void
184 adjust_vec_debug_stmts (void)
185 {
186 if (!MAY_HAVE_DEBUG_STMTS)
187 return;
188
189 gcc_assert (adjust_vec);
190
191 while (!VEC_empty (adjust_info, adjust_vec))
192 {
193 adjust_debug_stmts_now (VEC_last (adjust_info, adjust_vec));
194 VEC_pop (adjust_info, adjust_vec);
195 }
196
197 VEC_free (adjust_info, stack, adjust_vec);
198 }
199
200 /* Adjust any debug stmts that referenced FROM values to use the
201 loop-closed TO, if the references are dominated by BB and not by
202 the definition of FROM. If adjust_vec is non-NULL, adjustments
203 will be postponed until adjust_vec_debug_stmts is called. */
204
205 static void
206 adjust_debug_stmts (tree from, tree to, basic_block bb)
207 {
208 adjust_info ai;
209
210 if (MAY_HAVE_DEBUG_STMTS && TREE_CODE (from) == SSA_NAME
211 && SSA_NAME_VAR (from) != gimple_vop (cfun))
212 {
213 ai.from = from;
214 ai.to = to;
215 ai.bb = bb;
216
217 if (adjust_vec)
218 VEC_safe_push (adjust_info, stack, adjust_vec, &ai);
219 else
220 adjust_debug_stmts_now (&ai);
221 }
222 }
223
224 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
225 to adjust any debug stmts that referenced the old phi arg,
226 presumably non-loop-closed references left over from other
227 transformations. */
228
229 static void
230 adjust_phi_and_debug_stmts (gimple update_phi, edge e, tree new_def)
231 {
232 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
233
234 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
235
236 if (MAY_HAVE_DEBUG_STMTS)
237 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
238 gimple_bb (update_phi));
239 }
240
241
242 /* Update the PHI nodes of NEW_LOOP.
243
244 NEW_LOOP is a duplicate of ORIG_LOOP.
245 AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
246 AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
247 executes before it. */
248
249 static void
250 slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
251 struct loop *new_loop, bool after)
252 {
253 tree new_ssa_name;
254 gimple phi_new, phi_orig;
255 tree def;
256 edge orig_loop_latch = loop_latch_edge (orig_loop);
257 edge orig_entry_e = loop_preheader_edge (orig_loop);
258 edge new_loop_exit_e = single_exit (new_loop);
259 edge new_loop_entry_e = loop_preheader_edge (new_loop);
260 edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);
261 gimple_stmt_iterator gsi_new, gsi_orig;
262
263 /*
264 step 1. For each loop-header-phi:
265 Add the first phi argument for the phi in NEW_LOOP
266 (the one associated with the entry of NEW_LOOP)
267
268 step 2. For each loop-header-phi:
269 Add the second phi argument for the phi in NEW_LOOP
270 (the one associated with the latch of NEW_LOOP)
271
272 step 3. Update the phis in the successor block of NEW_LOOP.
273
274 case 1: NEW_LOOP was placed before ORIG_LOOP:
275 The successor block of NEW_LOOP is the header of ORIG_LOOP.
276 Updating the phis in the successor block can therefore be done
277 along with the scanning of the loop header phis, because the
278 header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
279 phi nodes, organized in the same order.
280
281 case 2: NEW_LOOP was placed after ORIG_LOOP:
282 The successor block of NEW_LOOP is the original exit block of
283 ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
284 We postpone updating these phis to a later stage (when
285 loop guards are added).
286 */
287
288
289 /* Scan the phis in the headers of the old and new loops
290 (they are organized in exactly the same order). */
291
292 for (gsi_new = gsi_start_phis (new_loop->header),
293 gsi_orig = gsi_start_phis (orig_loop->header);
294 !gsi_end_p (gsi_new) && !gsi_end_p (gsi_orig);
295 gsi_next (&gsi_new), gsi_next (&gsi_orig))
296 {
297 source_location locus;
298 phi_new = gsi_stmt (gsi_new);
299 phi_orig = gsi_stmt (gsi_orig);
300
301 /* step 1. */
302 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e);
303 locus = gimple_phi_arg_location_from_edge (phi_orig, entry_arg_e);
304 add_phi_arg (phi_new, def, new_loop_entry_e, locus);
305
306 /* step 2. */
307 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
308 locus = gimple_phi_arg_location_from_edge (phi_orig, orig_loop_latch);
309 if (TREE_CODE (def) != SSA_NAME)
310 continue;
311
312 new_ssa_name = get_current_def (def);
313 if (!new_ssa_name)
314 {
315 /* This only happens if there are no definitions
316 inside the loop. use the phi_result in this case. */
317 new_ssa_name = PHI_RESULT (phi_new);
318 }
319
320 /* An ordinary ssa name defined in the loop. */
321 add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop), locus);
322
323 /* Drop any debug references outside the loop, if they would
324 become ill-formed SSA. */
325 adjust_debug_stmts (def, NULL, single_exit (orig_loop)->dest);
326
327 /* step 3 (case 1). */
328 if (!after)
329 {
330 gcc_assert (new_loop_exit_e == orig_entry_e);
331 adjust_phi_and_debug_stmts (phi_orig, new_loop_exit_e, new_ssa_name);
332 }
333 }
334 }
335
336
337 /* Update PHI nodes for a guard of the LOOP.
338
339 Input:
340 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
341 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
342 originates from the guard-bb, skips LOOP and reaches the (unique) exit
343 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
344 We denote this bb NEW_MERGE_BB because before the guard code was added
345 it had a single predecessor (the LOOP header), and now it became a merge
346 point of two paths - the path that ends with the LOOP exit-edge, and
347 the path that ends with GUARD_EDGE.
348 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
349 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
350
351 ===> The CFG before the guard-code was added:
352 LOOP_header_bb:
353 loop_body
354 if (exit_loop) goto update_bb
355 else goto LOOP_header_bb
356 update_bb:
357
358 ==> The CFG after the guard-code was added:
359 guard_bb:
360 if (LOOP_guard_condition) goto new_merge_bb
361 else goto LOOP_header_bb
362 LOOP_header_bb:
363 loop_body
364 if (exit_loop_condition) goto new_merge_bb
365 else goto LOOP_header_bb
366 new_merge_bb:
367 goto update_bb
368 update_bb:
369
370 ==> The CFG after this function:
371 guard_bb:
372 if (LOOP_guard_condition) goto new_merge_bb
373 else goto LOOP_header_bb
374 LOOP_header_bb:
375 loop_body
376 if (exit_loop_condition) goto new_exit_bb
377 else goto LOOP_header_bb
378 new_exit_bb:
379 new_merge_bb:
380 goto update_bb
381 update_bb:
382
383 This function:
384 1. creates and updates the relevant phi nodes to account for the new
385 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
386 1.1. Create phi nodes at NEW_MERGE_BB.
387 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
388 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
389 2. preserves loop-closed-ssa-form by creating the required phi nodes
390 at the exit of LOOP (i.e, in NEW_EXIT_BB).
391
392 There are two flavors to this function:
393
394 slpeel_update_phi_nodes_for_guard1:
395 Here the guard controls whether we enter or skip LOOP, where LOOP is a
396 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
397 for variables that have phis in the loop header.
398
399 slpeel_update_phi_nodes_for_guard2:
400 Here the guard controls whether we enter or skip LOOP, where LOOP is an
401 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
402 for variables that have phis in the loop exit.
403
404 I.E., the overall structure is:
405
406 loop1_preheader_bb:
407 guard1 (goto loop1/merge1_bb)
408 loop1
409 loop1_exit_bb:
410 guard2 (goto merge1_bb/merge2_bb)
411 merge1_bb
412 loop2
413 loop2_exit_bb
414 merge2_bb
415 next_bb
416
417 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
418 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
419 that have phis in loop1->header).
420
421 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
422 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
423 that have phis in next_bb). It also adds some of these phis to
424 loop1_exit_bb.
425
426 slpeel_update_phi_nodes_for_guard1 is always called before
427 slpeel_update_phi_nodes_for_guard2. They are both needed in order
428 to create correct data-flow and loop-closed-ssa-form.
429
430 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
431 that change between iterations of a loop (and therefore have a phi-node
432 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
433 phis for variables that are used out of the loop (and therefore have
434 loop-closed exit phis). Some variables may be both updated between
435 iterations and used after the loop. This is why in loop1_exit_bb we
436 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
437 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
438
439 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
440 an original loop. i.e., we have:
441
442 orig_loop
443 guard_bb (goto LOOP/new_merge)
444 new_loop <-- LOOP
445 new_exit
446 new_merge
447 next_bb
448
449 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
450 have:
451
452 new_loop
453 guard_bb (goto LOOP/new_merge)
454 orig_loop <-- LOOP
455 new_exit
456 new_merge
457 next_bb
458
459 The SSA names defined in the original loop have a current
460 reaching definition that that records the corresponding new
461 ssa-name used in the new duplicated loop copy.
462 */
463
464 /* Function slpeel_update_phi_nodes_for_guard1
465
466 Input:
467 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
468 - DEFS - a bitmap of ssa names to mark new names for which we recorded
469 information.
470
471 In the context of the overall structure, we have:
472
473 loop1_preheader_bb:
474 guard1 (goto loop1/merge1_bb)
475 LOOP-> loop1
476 loop1_exit_bb:
477 guard2 (goto merge1_bb/merge2_bb)
478 merge1_bb
479 loop2
480 loop2_exit_bb
481 merge2_bb
482 next_bb
483
484 For each name updated between loop iterations (i.e - for each name that has
485 an entry (loop-header) phi in LOOP) we create a new phi in:
486 1. merge1_bb (to account for the edge from guard1)
487 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
488 */
489
490 static void
491 slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
492 bool is_new_loop, basic_block *new_exit_bb,
493 bitmap *defs)
494 {
495 gimple orig_phi, new_phi;
496 gimple update_phi, update_phi2;
497 tree guard_arg, loop_arg;
498 basic_block new_merge_bb = guard_edge->dest;
499 edge e = EDGE_SUCC (new_merge_bb, 0);
500 basic_block update_bb = e->dest;
501 basic_block orig_bb = loop->header;
502 edge new_exit_e;
503 tree current_new_name;
504 gimple_stmt_iterator gsi_orig, gsi_update;
505
506 /* Create new bb between loop and new_merge_bb. */
507 *new_exit_bb = split_edge (single_exit (loop));
508
509 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
510
511 for (gsi_orig = gsi_start_phis (orig_bb),
512 gsi_update = gsi_start_phis (update_bb);
513 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
514 gsi_next (&gsi_orig), gsi_next (&gsi_update))
515 {
516 source_location loop_locus, guard_locus;;
517 orig_phi = gsi_stmt (gsi_orig);
518 update_phi = gsi_stmt (gsi_update);
519
520 /** 1. Handle new-merge-point phis **/
521
522 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
523 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
524 new_merge_bb);
525
526 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
527 of LOOP. Set the two phi args in NEW_PHI for these edges: */
528 loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
529 loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
530 EDGE_SUCC (loop->latch,
531 0));
532 guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
533 guard_locus
534 = gimple_phi_arg_location_from_edge (orig_phi,
535 loop_preheader_edge (loop));
536
537 add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
538 add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);
539
540 /* 1.3. Update phi in successor block. */
541 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
542 || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
543 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
544 update_phi2 = new_phi;
545
546
547 /** 2. Handle loop-closed-ssa-form phis **/
548
549 if (!is_gimple_reg (PHI_RESULT (orig_phi)))
550 continue;
551
552 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
553 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
554 *new_exit_bb);
555
556 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
557 add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);
558
559 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
560 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
561 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
562 PHI_RESULT (new_phi));
563
564 /* 2.4. Record the newly created name with set_current_def.
565 We want to find a name such that
566 name = get_current_def (orig_loop_name)
567 and to set its current definition as follows:
568 set_current_def (name, new_phi_name)
569
570 If LOOP is a new loop then loop_arg is already the name we're
571 looking for. If LOOP is the original loop, then loop_arg is
572 the orig_loop_name and the relevant name is recorded in its
573 current reaching definition. */
574 if (is_new_loop)
575 current_new_name = loop_arg;
576 else
577 {
578 current_new_name = get_current_def (loop_arg);
579 /* current_def is not available only if the variable does not
580 change inside the loop, in which case we also don't care
581 about recording a current_def for it because we won't be
582 trying to create loop-exit-phis for it. */
583 if (!current_new_name)
584 continue;
585 }
586 gcc_assert (get_current_def (current_new_name) == NULL_TREE);
587
588 set_current_def (current_new_name, PHI_RESULT (new_phi));
589 bitmap_set_bit (*defs, SSA_NAME_VERSION (current_new_name));
590 }
591 }
592
593
594 /* Function slpeel_update_phi_nodes_for_guard2
595
596 Input:
597 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
598
599 In the context of the overall structure, we have:
600
601 loop1_preheader_bb:
602 guard1 (goto loop1/merge1_bb)
603 loop1
604 loop1_exit_bb:
605 guard2 (goto merge1_bb/merge2_bb)
606 merge1_bb
607 LOOP-> loop2
608 loop2_exit_bb
609 merge2_bb
610 next_bb
611
612 For each name used out side the loop (i.e - for each name that has an exit
613 phi in next_bb) we create a new phi in:
614 1. merge2_bb (to account for the edge from guard_bb)
615 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
616 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
617 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
618 */
619
620 static void
621 slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
622 bool is_new_loop, basic_block *new_exit_bb)
623 {
624 gimple orig_phi, new_phi;
625 gimple update_phi, update_phi2;
626 tree guard_arg, loop_arg;
627 basic_block new_merge_bb = guard_edge->dest;
628 edge e = EDGE_SUCC (new_merge_bb, 0);
629 basic_block update_bb = e->dest;
630 edge new_exit_e;
631 tree orig_def, orig_def_new_name;
632 tree new_name, new_name2;
633 tree arg;
634 gimple_stmt_iterator gsi;
635
636 /* Create new bb between loop and new_merge_bb. */
637 *new_exit_bb = split_edge (single_exit (loop));
638
639 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
640
641 for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
642 {
643 update_phi = gsi_stmt (gsi);
644 orig_phi = update_phi;
645 orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
646 /* This loop-closed-phi actually doesn't represent a use
647 out of the loop - the phi arg is a constant. */
648 if (TREE_CODE (orig_def) != SSA_NAME)
649 continue;
650 orig_def_new_name = get_current_def (orig_def);
651 arg = NULL_TREE;
652
653 /** 1. Handle new-merge-point phis **/
654
655 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
656 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
657 new_merge_bb);
658
659 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
660 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
661 new_name = orig_def;
662 new_name2 = NULL_TREE;
663 if (orig_def_new_name)
664 {
665 new_name = orig_def_new_name;
666 /* Some variables have both loop-entry-phis and loop-exit-phis.
667 Such variables were given yet newer names by phis placed in
668 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
669 new_name2 = get_current_def (get_current_def (orig_name)). */
670 new_name2 = get_current_def (new_name);
671 }
672
673 if (is_new_loop)
674 {
675 guard_arg = orig_def;
676 loop_arg = new_name;
677 }
678 else
679 {
680 guard_arg = new_name;
681 loop_arg = orig_def;
682 }
683 if (new_name2)
684 guard_arg = new_name2;
685
686 add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
687 add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
688
689 /* 1.3. Update phi in successor block. */
690 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
691 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
692 update_phi2 = new_phi;
693
694
695 /** 2. Handle loop-closed-ssa-form phis **/
696
697 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
698 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
699 *new_exit_bb);
700
701 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
702 add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);
703
704 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
705 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
706 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
707 PHI_RESULT (new_phi));
708
709
710 /** 3. Handle loop-closed-ssa-form phis for first loop **/
711
712 /* 3.1. Find the relevant names that need an exit-phi in
713 GUARD_BB, i.e. names for which
714 slpeel_update_phi_nodes_for_guard1 had not already created a
715 phi node. This is the case for names that are used outside
716 the loop (and therefore need an exit phi) but are not updated
717 across loop iterations (and therefore don't have a
718 loop-header-phi).
719
720 slpeel_update_phi_nodes_for_guard1 is responsible for
721 creating loop-exit phis in GUARD_BB for names that have a
722 loop-header-phi. When such a phi is created we also record
723 the new name in its current definition. If this new name
724 exists, then guard_arg was set to this new name (see 1.2
725 above). Therefore, if guard_arg is not this new name, this
726 is an indication that an exit-phi in GUARD_BB was not yet
727 created, so we take care of it here. */
728 if (guard_arg == new_name2)
729 continue;
730 arg = guard_arg;
731
732 /* 3.2. Generate new phi node in GUARD_BB: */
733 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
734 guard_edge->src);
735
736 /* 3.3. GUARD_BB has one incoming edge: */
737 gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
738 add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
739 UNKNOWN_LOCATION);
740
741 /* 3.4. Update phi in successor of GUARD_BB: */
742 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
743 == guard_arg);
744 adjust_phi_and_debug_stmts (update_phi2, guard_edge,
745 PHI_RESULT (new_phi));
746 }
747 }
748
749
750 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
751 that starts at zero, increases by one and its limit is NITERS.
752
753 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
754
755 void
756 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
757 {
758 tree indx_before_incr, indx_after_incr;
759 gimple cond_stmt;
760 gimple orig_cond;
761 edge exit_edge = single_exit (loop);
762 gimple_stmt_iterator loop_cond_gsi;
763 gimple_stmt_iterator incr_gsi;
764 bool insert_after;
765 tree init = build_int_cst (TREE_TYPE (niters), 0);
766 tree step = build_int_cst (TREE_TYPE (niters), 1);
767 LOC loop_loc;
768 enum tree_code code;
769
770 orig_cond = get_loop_exit_condition (loop);
771 gcc_assert (orig_cond);
772 loop_cond_gsi = gsi_for_stmt (orig_cond);
773
774 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
775 create_iv (init, step, NULL_TREE, loop,
776 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
777
778 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
779 true, NULL_TREE, true,
780 GSI_SAME_STMT);
781 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
782 true, GSI_SAME_STMT);
783
784 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
785 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
786 NULL_TREE);
787
788 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
789
790 /* Remove old loop exit test: */
791 gsi_remove (&loop_cond_gsi, true);
792
793 loop_loc = find_loop_location (loop);
794 if (dump_file && (dump_flags & TDF_DETAILS))
795 {
796 if (loop_loc != UNKNOWN_LOC)
797 fprintf (dump_file, "\nloop at %s:%d: ",
798 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
799 print_gimple_stmt (dump_file, cond_stmt, 0, TDF_SLIM);
800 }
801
802 loop->nb_iterations = niters;
803 }
804
805
806 /* Given LOOP this function generates a new copy of it and puts it
807 on E which is either the entry or exit of LOOP. */
808
809 struct loop *
810 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, edge e)
811 {
812 struct loop *new_loop;
813 basic_block *new_bbs, *bbs;
814 bool at_exit;
815 bool was_imm_dom;
816 basic_block exit_dest;
817 gimple phi;
818 tree phi_arg;
819 edge exit, new_exit;
820 gimple_stmt_iterator gsi;
821
822 at_exit = (e == single_exit (loop));
823 if (!at_exit && e != loop_preheader_edge (loop))
824 return NULL;
825
826 bbs = get_loop_body (loop);
827
828 /* Check whether duplication is possible. */
829 if (!can_copy_bbs_p (bbs, loop->num_nodes))
830 {
831 free (bbs);
832 return NULL;
833 }
834
835 /* Generate new loop structure. */
836 new_loop = duplicate_loop (loop, loop_outer (loop));
837 if (!new_loop)
838 {
839 free (bbs);
840 return NULL;
841 }
842
843 exit_dest = single_exit (loop)->dest;
844 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
845 exit_dest) == loop->header ?
846 true : false);
847
848 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
849
850 exit = single_exit (loop);
851 copy_bbs (bbs, loop->num_nodes, new_bbs,
852 &exit, 1, &new_exit, NULL,
853 e->src);
854
855 /* Duplicating phi args at exit bbs as coming
856 also from exit of duplicated loop. */
857 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi); gsi_next (&gsi))
858 {
859 phi = gsi_stmt (gsi);
860 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop));
861 if (phi_arg)
862 {
863 edge new_loop_exit_edge;
864 source_location locus;
865
866 locus = gimple_phi_arg_location_from_edge (phi, single_exit (loop));
867 if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch)
868 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1);
869 else
870 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0);
871
872 add_phi_arg (phi, phi_arg, new_loop_exit_edge, locus);
873 }
874 }
875
876 if (at_exit) /* Add the loop copy at exit. */
877 {
878 redirect_edge_and_branch_force (e, new_loop->header);
879 PENDING_STMT (e) = NULL;
880 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
881 if (was_imm_dom)
882 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
883 }
884 else /* Add the copy at entry. */
885 {
886 edge new_exit_e;
887 edge entry_e = loop_preheader_edge (loop);
888 basic_block preheader = entry_e->src;
889
890 if (!flow_bb_inside_loop_p (new_loop,
891 EDGE_SUCC (new_loop->header, 0)->dest))
892 new_exit_e = EDGE_SUCC (new_loop->header, 0);
893 else
894 new_exit_e = EDGE_SUCC (new_loop->header, 1);
895
896 redirect_edge_and_branch_force (new_exit_e, loop->header);
897 PENDING_STMT (new_exit_e) = NULL;
898 set_immediate_dominator (CDI_DOMINATORS, loop->header,
899 new_exit_e->src);
900
901 /* We have to add phi args to the loop->header here as coming
902 from new_exit_e edge. */
903 for (gsi = gsi_start_phis (loop->header);
904 !gsi_end_p (gsi);
905 gsi_next (&gsi))
906 {
907 phi = gsi_stmt (gsi);
908 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e);
909 if (phi_arg)
910 add_phi_arg (phi, phi_arg, new_exit_e,
911 gimple_phi_arg_location_from_edge (phi, entry_e));
912 }
913
914 redirect_edge_and_branch_force (entry_e, new_loop->header);
915 PENDING_STMT (entry_e) = NULL;
916 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
917 }
918
919 free (new_bbs);
920 free (bbs);
921
922 return new_loop;
923 }
924
925
926 /* Given the condition statement COND, put it as the last statement
927 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
928 Assumes that this is the single exit of the guarded loop.
929 Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
930
931 static edge
932 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
933 gimple_seq cond_expr_stmt_list,
934 basic_block exit_bb, basic_block dom_bb)
935 {
936 gimple_stmt_iterator gsi;
937 edge new_e, enter_e;
938 gimple cond_stmt;
939 gimple_seq gimplify_stmt_list = NULL;
940
941 enter_e = EDGE_SUCC (guard_bb, 0);
942 enter_e->flags &= ~EDGE_FALLTHRU;
943 enter_e->flags |= EDGE_FALSE_VALUE;
944 gsi = gsi_last_bb (guard_bb);
945
946 cond = force_gimple_operand (cond, &gimplify_stmt_list, true, NULL_TREE);
947 if (gimplify_stmt_list)
948 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
949 cond_stmt = gimple_build_cond (NE_EXPR,
950 cond, build_int_cst (TREE_TYPE (cond), 0),
951 NULL_TREE, NULL_TREE);
952 if (cond_expr_stmt_list)
953 gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);
954
955 gsi = gsi_last_bb (guard_bb);
956 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
957
958 /* Add new edge to connect guard block to the merge/loop-exit block. */
959 new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
960 set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
961 return new_e;
962 }
963
964
965 /* This function verifies that the following restrictions apply to LOOP:
966 (1) it is innermost
967 (2) it consists of exactly 2 basic blocks - header, and an empty latch.
968 (3) it is single entry, single exit
969 (4) its exit condition is the last stmt in the header
970 (5) E is the entry/exit edge of LOOP.
971 */
972
973 bool
974 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
975 {
976 edge exit_e = single_exit (loop);
977 edge entry_e = loop_preheader_edge (loop);
978 gimple orig_cond = get_loop_exit_condition (loop);
979 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
980
981 if (need_ssa_update_p (cfun))
982 return false;
983
984 if (loop->inner
985 /* All loops have an outer scope; the only case loop->outer is NULL is for
986 the function itself. */
987 || !loop_outer (loop)
988 || loop->num_nodes != 2
989 || !empty_block_p (loop->latch)
990 || !single_exit (loop)
991 /* Verify that new loop exit condition can be trivially modified. */
992 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
993 || (e != exit_e && e != entry_e))
994 return false;
995
996 return true;
997 }
998
999 #ifdef ENABLE_CHECKING
1000 static void
1001 slpeel_verify_cfg_after_peeling (struct loop *first_loop,
1002 struct loop *second_loop)
1003 {
1004 basic_block loop1_exit_bb = single_exit (first_loop)->dest;
1005 basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
1006 basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
1007
1008 /* A guard that controls whether the second_loop is to be executed or skipped
1009 is placed in first_loop->exit. first_loop->exit therefore has two
1010 successors - one is the preheader of second_loop, and the other is a bb
1011 after second_loop.
1012 */
1013 gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
1014
1015 /* 1. Verify that one of the successors of first_loop->exit is the preheader
1016 of second_loop. */
1017
1018 /* The preheader of new_loop is expected to have two predecessors:
1019 first_loop->exit and the block that precedes first_loop. */
1020
1021 gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
1022 && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
1023 && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
1024 || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
1025 && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
1026
1027 /* Verify that the other successor of first_loop->exit is after the
1028 second_loop. */
1029 /* TODO */
1030 }
1031 #endif
1032
1033 /* If the run time cost model check determines that vectorization is
1034 not profitable and hence scalar loop should be generated then set
1035 FIRST_NITERS to prologue peeled iterations. This will allow all the
1036 iterations to be executed in the prologue peeled scalar loop. */
1037
1038 static void
1039 set_prologue_iterations (basic_block bb_before_first_loop,
1040 tree first_niters,
1041 struct loop *loop,
1042 unsigned int th)
1043 {
1044 edge e;
1045 basic_block cond_bb, then_bb;
1046 tree var, prologue_after_cost_adjust_name;
1047 gimple_stmt_iterator gsi;
1048 gimple newphi;
1049 edge e_true, e_false, e_fallthru;
1050 gimple cond_stmt;
1051 gimple_seq gimplify_stmt_list = NULL, stmts = NULL;
1052 tree cost_pre_condition = NULL_TREE;
1053 tree scalar_loop_iters =
1054 unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
1055
1056 e = single_pred_edge (bb_before_first_loop);
1057 cond_bb = split_edge(e);
1058
1059 e = single_pred_edge (bb_before_first_loop);
1060 then_bb = split_edge(e);
1061 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1062
1063 e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
1064 EDGE_FALSE_VALUE);
1065 set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
1066
1067 e_true = EDGE_PRED (then_bb, 0);
1068 e_true->flags &= ~EDGE_FALLTHRU;
1069 e_true->flags |= EDGE_TRUE_VALUE;
1070
1071 e_fallthru = EDGE_SUCC (then_bb, 0);
1072
1073 cost_pre_condition =
1074 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1075 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1076 cost_pre_condition =
1077 force_gimple_operand (cost_pre_condition, &gimplify_stmt_list,
1078 true, NULL_TREE);
1079 cond_stmt = gimple_build_cond (NE_EXPR, cost_pre_condition,
1080 build_int_cst (TREE_TYPE (cost_pre_condition),
1081 0), NULL_TREE, NULL_TREE);
1082
1083 gsi = gsi_last_bb (cond_bb);
1084 if (gimplify_stmt_list)
1085 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
1086
1087 gsi = gsi_last_bb (cond_bb);
1088 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1089
1090 var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
1091 "prologue_after_cost_adjust");
1092 add_referenced_var (var);
1093 prologue_after_cost_adjust_name =
1094 force_gimple_operand (scalar_loop_iters, &stmts, false, var);
1095
1096 gsi = gsi_last_bb (then_bb);
1097 if (stmts)
1098 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
1099
1100 newphi = create_phi_node (var, bb_before_first_loop);
1101 add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
1102 UNKNOWN_LOCATION);
1103 add_phi_arg (newphi, first_niters, e_false, UNKNOWN_LOCATION);
1104
1105 first_niters = PHI_RESULT (newphi);
1106 }
1107
1108 /* Function slpeel_tree_peel_loop_to_edge.
1109
1110 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
1111 that is placed on the entry (exit) edge E of LOOP. After this transformation
1112 we have two loops one after the other - first-loop iterates FIRST_NITERS
1113 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
1114 If the cost model indicates that it is profitable to emit a scalar
1115 loop instead of the vector one, then the prolog (epilog) loop will iterate
1116 for the entire unchanged scalar iterations of the loop.
1117
1118 Input:
1119 - LOOP: the loop to be peeled.
1120 - E: the exit or entry edge of LOOP.
1121 If it is the entry edge, we peel the first iterations of LOOP. In this
1122 case first-loop is LOOP, and second-loop is the newly created loop.
1123 If it is the exit edge, we peel the last iterations of LOOP. In this
1124 case, first-loop is the newly created loop, and second-loop is LOOP.
1125 - NITERS: the number of iterations that LOOP iterates.
1126 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1127 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
1128 for updating the loop bound of the first-loop to FIRST_NITERS. If it
1129 is false, the caller of this function may want to take care of this
1130 (this can be useful if we don't want new stmts added to first-loop).
1131 - TH: cost model profitability threshold of iterations for vectorization.
1132 - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1133 during versioning and hence needs to occur during
1134 prologue generation or whether cost model check
1135 has not occurred during prologue generation and hence
1136 needs to occur during epilogue generation.
1137
1138
1139 Output:
1140 The function returns a pointer to the new loop-copy, or NULL if it failed
1141 to perform the transformation.
1142
1143 The function generates two if-then-else guards: one before the first loop,
1144 and the other before the second loop:
1145 The first guard is:
1146 if (FIRST_NITERS == 0) then skip the first loop,
1147 and go directly to the second loop.
1148 The second guard is:
1149 if (FIRST_NITERS == NITERS) then skip the second loop.
1150
1151 If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
1152 then the generated condition is combined with COND_EXPR and the
1153 statements in COND_EXPR_STMT_LIST are emitted together with it.
1154
1155 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1156 FORNOW the resulting code will not be in loop-closed-ssa form.
1157 */
1158
1159 static struct loop*
1160 slpeel_tree_peel_loop_to_edge (struct loop *loop,
1161 edge e, tree first_niters,
1162 tree niters, bool update_first_loop_count,
1163 unsigned int th, bool check_profitability,
1164 tree cond_expr, gimple_seq cond_expr_stmt_list)
1165 {
1166 struct loop *new_loop = NULL, *first_loop, *second_loop;
1167 edge skip_e;
1168 tree pre_condition = NULL_TREE;
1169 bitmap definitions;
1170 basic_block bb_before_second_loop, bb_after_second_loop;
1171 basic_block bb_before_first_loop;
1172 basic_block bb_between_loops;
1173 basic_block new_exit_bb;
1174 edge exit_e = single_exit (loop);
1175 LOC loop_loc;
1176 tree cost_pre_condition = NULL_TREE;
1177
1178 if (!slpeel_can_duplicate_loop_p (loop, e))
1179 return NULL;
1180
1181 /* We have to initialize cfg_hooks. Then, when calling
1182 cfg_hooks->split_edge, the function tree_split_edge
1183 is actually called and, when calling cfg_hooks->duplicate_block,
1184 the function tree_duplicate_bb is called. */
1185 gimple_register_cfg_hooks ();
1186
1187
1188 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1189 Resulting CFG would be:
1190
1191 first_loop:
1192 do {
1193 } while ...
1194
1195 second_loop:
1196 do {
1197 } while ...
1198
1199 orig_exit_bb:
1200 */
1201
1202 if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e)))
1203 {
1204 loop_loc = find_loop_location (loop);
1205 if (dump_file && (dump_flags & TDF_DETAILS))
1206 {
1207 if (loop_loc != UNKNOWN_LOC)
1208 fprintf (dump_file, "\n%s:%d: note: ",
1209 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
1210 fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n");
1211 }
1212 return NULL;
1213 }
1214
1215 if (MAY_HAVE_DEBUG_STMTS)
1216 {
1217 gcc_assert (!adjust_vec);
1218 adjust_vec = VEC_alloc (adjust_info, stack, 32);
1219 }
1220
1221 if (e == exit_e)
1222 {
1223 /* NEW_LOOP was placed after LOOP. */
1224 first_loop = loop;
1225 second_loop = new_loop;
1226 }
1227 else
1228 {
1229 /* NEW_LOOP was placed before LOOP. */
1230 first_loop = new_loop;
1231 second_loop = loop;
1232 }
1233
1234 definitions = ssa_names_to_replace ();
1235 slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
1236 rename_variables_in_loop (new_loop);
1237
1238
1239 /* 2. Add the guard code in one of the following ways:
1240
1241 2.a Add the guard that controls whether the first loop is executed.
1242 This occurs when this function is invoked for prologue or epilogue
1243 generation and when the cost model check can be done at compile time.
1244
1245 Resulting CFG would be:
1246
1247 bb_before_first_loop:
1248 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1249 GOTO first-loop
1250
1251 first_loop:
1252 do {
1253 } while ...
1254
1255 bb_before_second_loop:
1256
1257 second_loop:
1258 do {
1259 } while ...
1260
1261 orig_exit_bb:
1262
1263 2.b Add the cost model check that allows the prologue
1264 to iterate for the entire unchanged scalar
1265 iterations of the loop in the event that the cost
1266 model indicates that the scalar loop is more
1267 profitable than the vector one. This occurs when
1268 this function is invoked for prologue generation
1269 and the cost model check needs to be done at run
1270 time.
1271
1272 Resulting CFG after prologue peeling would be:
1273
1274 if (scalar_loop_iterations <= th)
1275 FIRST_NITERS = scalar_loop_iterations
1276
1277 bb_before_first_loop:
1278 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1279 GOTO first-loop
1280
1281 first_loop:
1282 do {
1283 } while ...
1284
1285 bb_before_second_loop:
1286
1287 second_loop:
1288 do {
1289 } while ...
1290
1291 orig_exit_bb:
1292
1293 2.c Add the cost model check that allows the epilogue
1294 to iterate for the entire unchanged scalar
1295 iterations of the loop in the event that the cost
1296 model indicates that the scalar loop is more
1297 profitable than the vector one. This occurs when
1298 this function is invoked for epilogue generation
1299 and the cost model check needs to be done at run
1300 time. This check is combined with any pre-existing
1301 check in COND_EXPR to avoid versioning.
1302
1303 Resulting CFG after prologue peeling would be:
1304
1305 bb_before_first_loop:
1306 if ((scalar_loop_iterations <= th)
1307 ||
1308 FIRST_NITERS == 0) GOTO bb_before_second_loop
1309 GOTO first-loop
1310
1311 first_loop:
1312 do {
1313 } while ...
1314
1315 bb_before_second_loop:
1316
1317 second_loop:
1318 do {
1319 } while ...
1320
1321 orig_exit_bb:
1322 */
1323
1324 bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
1325 bb_before_second_loop = split_edge (single_exit (first_loop));
1326
1327 /* Epilogue peeling. */
1328 if (!update_first_loop_count)
1329 {
1330 pre_condition =
1331 fold_build2 (LE_EXPR, boolean_type_node, first_niters,
1332 build_int_cst (TREE_TYPE (first_niters), 0));
1333 if (check_profitability)
1334 {
1335 tree scalar_loop_iters
1336 = unshare_expr (LOOP_VINFO_NITERS_UNCHANGED
1337 (loop_vec_info_for_loop (loop)));
1338 cost_pre_condition =
1339 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1340 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1341
1342 pre_condition = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1343 cost_pre_condition, pre_condition);
1344 }
1345 if (cond_expr)
1346 {
1347 pre_condition =
1348 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1349 pre_condition,
1350 fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
1351 cond_expr));
1352 }
1353 }
1354
1355 /* Prologue peeling. */
1356 else
1357 {
1358 if (check_profitability)
1359 set_prologue_iterations (bb_before_first_loop, first_niters,
1360 loop, th);
1361
1362 pre_condition =
1363 fold_build2 (LE_EXPR, boolean_type_node, first_niters,
1364 build_int_cst (TREE_TYPE (first_niters), 0));
1365 }
1366
1367 skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
1368 cond_expr_stmt_list,
1369 bb_before_second_loop, bb_before_first_loop);
1370 slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1371 first_loop == new_loop,
1372 &new_exit_bb, &definitions);
1373
1374
1375 /* 3. Add the guard that controls whether the second loop is executed.
1376 Resulting CFG would be:
1377
1378 bb_before_first_loop:
1379 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1380 GOTO first-loop
1381
1382 first_loop:
1383 do {
1384 } while ...
1385
1386 bb_between_loops:
1387 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1388 GOTO bb_before_second_loop
1389
1390 bb_before_second_loop:
1391
1392 second_loop:
1393 do {
1394 } while ...
1395
1396 bb_after_second_loop:
1397
1398 orig_exit_bb:
1399 */
1400
1401 bb_between_loops = new_exit_bb;
1402 bb_after_second_loop = split_edge (single_exit (second_loop));
1403
1404 pre_condition =
1405 fold_build2 (EQ_EXPR, boolean_type_node, first_niters, niters);
1406 skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
1407 bb_after_second_loop, bb_before_first_loop);
1408 slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1409 second_loop == new_loop, &new_exit_bb);
1410
1411 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1412 */
1413 if (update_first_loop_count)
1414 slpeel_make_loop_iterate_ntimes (first_loop, first_niters);
1415
1416 BITMAP_FREE (definitions);
1417 delete_update_ssa ();
1418
1419 adjust_vec_debug_stmts ();
1420
1421 return new_loop;
1422 }
1423
1424 /* Function vect_get_loop_location.
1425
1426 Extract the location of the loop in the source code.
1427 If the loop is not well formed for vectorization, an estimated
1428 location is calculated.
1429 Return the loop location if succeed and NULL if not. */
1430
1431 LOC
1432 find_loop_location (struct loop *loop)
1433 {
1434 gimple stmt = NULL;
1435 basic_block bb;
1436 gimple_stmt_iterator si;
1437
1438 if (!loop)
1439 return UNKNOWN_LOC;
1440
1441 stmt = get_loop_exit_condition (loop);
1442
1443 if (stmt && gimple_location (stmt) != UNKNOWN_LOC)
1444 return gimple_location (stmt);
1445
1446 /* If we got here the loop is probably not "well formed",
1447 try to estimate the loop location */
1448
1449 if (!loop->header)
1450 return UNKNOWN_LOC;
1451
1452 bb = loop->header;
1453
1454 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1455 {
1456 stmt = gsi_stmt (si);
1457 if (gimple_location (stmt) != UNKNOWN_LOC)
1458 return gimple_location (stmt);
1459 }
1460
1461 return UNKNOWN_LOC;
1462 }
1463
1464
1465 /* This function builds ni_name = number of iterations loop executes
1466 on the loop preheader. If SEQ is given the stmt is instead emitted
1467 there. */
1468
1469 static tree
1470 vect_build_loop_niters (loop_vec_info loop_vinfo, gimple_seq seq)
1471 {
1472 tree ni_name, var;
1473 gimple_seq stmts = NULL;
1474 edge pe;
1475 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1476 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
1477
1478 var = create_tmp_var (TREE_TYPE (ni), "niters");
1479 add_referenced_var (var);
1480 ni_name = force_gimple_operand (ni, &stmts, false, var);
1481
1482 pe = loop_preheader_edge (loop);
1483 if (stmts)
1484 {
1485 if (seq)
1486 gimple_seq_add_seq (&seq, stmts);
1487 else
1488 {
1489 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1490 gcc_assert (!new_bb);
1491 }
1492 }
1493
1494 return ni_name;
1495 }
1496
1497
1498 /* This function generates the following statements:
1499
1500 ni_name = number of iterations loop executes
1501 ratio = ni_name / vf
1502 ratio_mult_vf_name = ratio * vf
1503
1504 and places them at the loop preheader edge or in COND_EXPR_STMT_LIST
1505 if that is non-NULL. */
1506
1507 static void
1508 vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
1509 tree *ni_name_ptr,
1510 tree *ratio_mult_vf_name_ptr,
1511 tree *ratio_name_ptr,
1512 gimple_seq cond_expr_stmt_list)
1513 {
1514
1515 edge pe;
1516 basic_block new_bb;
1517 gimple_seq stmts;
1518 tree ni_name, ni_minus_gap_name;
1519 tree var;
1520 tree ratio_name;
1521 tree ratio_mult_vf_name;
1522 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1523 tree ni = LOOP_VINFO_NITERS (loop_vinfo);
1524 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1525 tree log_vf;
1526
1527 pe = loop_preheader_edge (loop);
1528
1529 /* Generate temporary variable that contains
1530 number of iterations loop executes. */
1531
1532 ni_name = vect_build_loop_niters (loop_vinfo, cond_expr_stmt_list);
1533 log_vf = build_int_cst (TREE_TYPE (ni), exact_log2 (vf));
1534
1535 /* If epilogue loop is required because of data accesses with gaps, we
1536 subtract one iteration from the total number of iterations here for
1537 correct calculation of RATIO. */
1538 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1539 {
1540 ni_minus_gap_name = fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
1541 ni_name,
1542 build_one_cst (TREE_TYPE (ni_name)));
1543 if (!is_gimple_val (ni_minus_gap_name))
1544 {
1545 var = create_tmp_var (TREE_TYPE (ni), "ni_gap");
1546 add_referenced_var (var);
1547
1548 stmts = NULL;
1549 ni_minus_gap_name = force_gimple_operand (ni_minus_gap_name, &stmts,
1550 true, var);
1551 if (cond_expr_stmt_list)
1552 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1553 else
1554 {
1555 pe = loop_preheader_edge (loop);
1556 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1557 gcc_assert (!new_bb);
1558 }
1559 }
1560 }
1561 else
1562 ni_minus_gap_name = ni_name;
1563
1564 /* Create: ratio = ni >> log2(vf) */
1565
1566 ratio_name = fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_minus_gap_name),
1567 ni_minus_gap_name, log_vf);
1568 if (!is_gimple_val (ratio_name))
1569 {
1570 var = create_tmp_var (TREE_TYPE (ni), "bnd");
1571 add_referenced_var (var);
1572
1573 stmts = NULL;
1574 ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
1575 if (cond_expr_stmt_list)
1576 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1577 else
1578 {
1579 pe = loop_preheader_edge (loop);
1580 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1581 gcc_assert (!new_bb);
1582 }
1583 }
1584
1585 /* Create: ratio_mult_vf = ratio << log2 (vf). */
1586
1587 ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
1588 ratio_name, log_vf);
1589 if (!is_gimple_val (ratio_mult_vf_name))
1590 {
1591 var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
1592 add_referenced_var (var);
1593
1594 stmts = NULL;
1595 ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
1596 true, var);
1597 if (cond_expr_stmt_list)
1598 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1599 else
1600 {
1601 pe = loop_preheader_edge (loop);
1602 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1603 gcc_assert (!new_bb);
1604 }
1605 }
1606
1607 *ni_name_ptr = ni_name;
1608 *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
1609 *ratio_name_ptr = ratio_name;
1610
1611 return;
1612 }
1613
1614 /* Function vect_can_advance_ivs_p
1615
1616 In case the number of iterations that LOOP iterates is unknown at compile
1617 time, an epilog loop will be generated, and the loop induction variables
1618 (IVs) will be "advanced" to the value they are supposed to take just before
1619 the epilog loop. Here we check that the access function of the loop IVs
1620 and the expression that represents the loop bound are simple enough.
1621 These restrictions will be relaxed in the future. */
1622
1623 bool
1624 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1625 {
1626 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1627 basic_block bb = loop->header;
1628 gimple phi;
1629 gimple_stmt_iterator gsi;
1630
1631 /* Analyze phi functions of the loop header. */
1632
1633 if (vect_print_dump_info (REPORT_DETAILS))
1634 fprintf (vect_dump, "vect_can_advance_ivs_p:");
1635
1636 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1637 {
1638 tree access_fn = NULL;
1639 tree evolution_part;
1640
1641 phi = gsi_stmt (gsi);
1642 if (vect_print_dump_info (REPORT_DETAILS))
1643 {
1644 fprintf (vect_dump, "Analyze phi: ");
1645 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1646 }
1647
1648 /* Skip virtual phi's. The data dependences that are associated with
1649 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
1650
1651 if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
1652 {
1653 if (vect_print_dump_info (REPORT_DETAILS))
1654 fprintf (vect_dump, "virtual phi. skip.");
1655 continue;
1656 }
1657
1658 /* Skip reduction phis. */
1659
1660 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1661 {
1662 if (vect_print_dump_info (REPORT_DETAILS))
1663 fprintf (vect_dump, "reduc phi. skip.");
1664 continue;
1665 }
1666
1667 /* Analyze the evolution function. */
1668
1669 access_fn = instantiate_parameters
1670 (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
1671
1672 if (!access_fn)
1673 {
1674 if (vect_print_dump_info (REPORT_DETAILS))
1675 fprintf (vect_dump, "No Access function.");
1676 return false;
1677 }
1678
1679 if (vect_print_dump_info (REPORT_DETAILS))
1680 {
1681 fprintf (vect_dump, "Access function of PHI: ");
1682 print_generic_expr (vect_dump, access_fn, TDF_SLIM);
1683 }
1684
1685 evolution_part = evolution_part_in_loop_num (access_fn, loop->num);
1686
1687 if (evolution_part == NULL_TREE)
1688 {
1689 if (vect_print_dump_info (REPORT_DETAILS))
1690 fprintf (vect_dump, "No evolution.");
1691 return false;
1692 }
1693
1694 /* FORNOW: We do not transform initial conditions of IVs
1695 which evolution functions are a polynomial of degree >= 2. */
1696
1697 if (tree_is_chrec (evolution_part))
1698 return false;
1699 }
1700
1701 return true;
1702 }
1703
1704
1705 /* Function vect_update_ivs_after_vectorizer.
1706
1707 "Advance" the induction variables of LOOP to the value they should take
1708 after the execution of LOOP. This is currently necessary because the
1709 vectorizer does not handle induction variables that are used after the
1710 loop. Such a situation occurs when the last iterations of LOOP are
1711 peeled, because:
1712 1. We introduced new uses after LOOP for IVs that were not originally used
1713 after LOOP: the IVs of LOOP are now used by an epilog loop.
1714 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1715 times, whereas the loop IVs should be bumped N times.
1716
1717 Input:
1718 - LOOP - a loop that is going to be vectorized. The last few iterations
1719 of LOOP were peeled.
1720 - NITERS - the number of iterations that LOOP executes (before it is
1721 vectorized). i.e, the number of times the ivs should be bumped.
1722 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1723 coming out from LOOP on which there are uses of the LOOP ivs
1724 (this is the path from LOOP->exit to epilog_loop->preheader).
1725
1726 The new definitions of the ivs are placed in LOOP->exit.
1727 The phi args associated with the edge UPDATE_E in the bb
1728 UPDATE_E->dest are updated accordingly.
1729
1730 Assumption 1: Like the rest of the vectorizer, this function assumes
1731 a single loop exit that has a single predecessor.
1732
1733 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1734 organized in the same order.
1735
1736 Assumption 3: The access function of the ivs is simple enough (see
1737 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1738
1739 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1740 coming out of LOOP on which the ivs of LOOP are used (this is the path
1741 that leads to the epilog loop; other paths skip the epilog loop). This
1742 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1743 needs to have its phis updated.
1744 */
1745
1746 static void
1747 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
1748 edge update_e)
1749 {
1750 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1751 basic_block exit_bb = single_exit (loop)->dest;
1752 gimple phi, phi1;
1753 gimple_stmt_iterator gsi, gsi1;
1754 basic_block update_bb = update_e->dest;
1755
1756 /* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */
1757
1758 /* Make sure there exists a single-predecessor exit bb: */
1759 gcc_assert (single_pred_p (exit_bb));
1760
1761 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1762 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1763 gsi_next (&gsi), gsi_next (&gsi1))
1764 {
1765 tree access_fn = NULL;
1766 tree evolution_part;
1767 tree init_expr;
1768 tree step_expr, off;
1769 tree type;
1770 tree var, ni, ni_name;
1771 gimple_stmt_iterator last_gsi;
1772
1773 phi = gsi_stmt (gsi);
1774 phi1 = gsi_stmt (gsi1);
1775 if (vect_print_dump_info (REPORT_DETAILS))
1776 {
1777 fprintf (vect_dump, "vect_update_ivs_after_vectorizer: phi: ");
1778 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1779 }
1780
1781 /* Skip virtual phi's. */
1782 if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
1783 {
1784 if (vect_print_dump_info (REPORT_DETAILS))
1785 fprintf (vect_dump, "virtual phi. skip.");
1786 continue;
1787 }
1788
1789 /* Skip reduction phis. */
1790 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1791 {
1792 if (vect_print_dump_info (REPORT_DETAILS))
1793 fprintf (vect_dump, "reduc phi. skip.");
1794 continue;
1795 }
1796
1797 access_fn = analyze_scalar_evolution (loop, PHI_RESULT (phi));
1798 gcc_assert (access_fn);
1799 /* We can end up with an access_fn like
1800 (short int) {(short unsigned int) i_49, +, 1}_1
1801 for further analysis we need to strip the outer cast but we
1802 need to preserve the original type. */
1803 type = TREE_TYPE (access_fn);
1804 STRIP_NOPS (access_fn);
1805 evolution_part =
1806 unshare_expr (evolution_part_in_loop_num (access_fn, loop->num));
1807 gcc_assert (evolution_part != NULL_TREE);
1808
1809 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1810 of degree >= 2 or exponential. */
1811 gcc_assert (!tree_is_chrec (evolution_part));
1812
1813 step_expr = evolution_part;
1814 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn,
1815 loop->num));
1816 init_expr = fold_convert (type, init_expr);
1817
1818 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1819 fold_convert (TREE_TYPE (step_expr), niters),
1820 step_expr);
1821 if (POINTER_TYPE_P (TREE_TYPE (init_expr)))
1822 ni = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (init_expr),
1823 init_expr,
1824 fold_convert (sizetype, off));
1825 else
1826 ni = fold_build2 (PLUS_EXPR, TREE_TYPE (init_expr),
1827 init_expr,
1828 fold_convert (TREE_TYPE (init_expr), off));
1829
1830 var = create_tmp_var (TREE_TYPE (init_expr), "tmp");
1831 add_referenced_var (var);
1832
1833 last_gsi = gsi_last_bb (exit_bb);
1834 ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
1835 true, GSI_SAME_STMT);
1836
1837 /* Fix phi expressions in the successor bb. */
1838 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
1839 }
1840 }
1841
1842 /* Return the more conservative threshold between the
1843 min_profitable_iters returned by the cost model and the user
1844 specified threshold, if provided. */
1845
1846 static unsigned int
1847 conservative_cost_threshold (loop_vec_info loop_vinfo,
1848 int min_profitable_iters)
1849 {
1850 unsigned int th;
1851 int min_scalar_loop_bound;
1852
1853 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1854 * LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 1);
1855
1856 /* Use the cost model only if it is more conservative than user specified
1857 threshold. */
1858 th = (unsigned) min_scalar_loop_bound;
1859 if (min_profitable_iters
1860 && (!min_scalar_loop_bound
1861 || min_profitable_iters > min_scalar_loop_bound))
1862 th = (unsigned) min_profitable_iters;
1863
1864 if (th && vect_print_dump_info (REPORT_COST))
1865 fprintf (vect_dump, "Profitability threshold is %u loop iterations.", th);
1866
1867 return th;
1868 }
1869
1870 /* Function vect_do_peeling_for_loop_bound
1871
1872 Peel the last iterations of the loop represented by LOOP_VINFO.
1873 The peeled iterations form a new epilog loop. Given that the loop now
1874 iterates NITERS times, the new epilog loop iterates
1875 NITERS % VECTORIZATION_FACTOR times.
1876
1877 The original loop will later be made to iterate
1878 NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
1879
1880 COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
1881 test. */
1882
1883 void
1884 vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
1885 tree cond_expr, gimple_seq cond_expr_stmt_list)
1886 {
1887 tree ni_name, ratio_mult_vf_name;
1888 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1889 struct loop *new_loop;
1890 edge update_e;
1891 basic_block preheader;
1892 int loop_num;
1893 bool check_profitability = false;
1894 unsigned int th = 0;
1895 int min_profitable_iters;
1896
1897 if (vect_print_dump_info (REPORT_DETAILS))
1898 fprintf (vect_dump, "=== vect_do_peeling_for_loop_bound ===");
1899
1900 initialize_original_copy_tables ();
1901
1902 /* Generate the following variables on the preheader of original loop:
1903
1904 ni_name = number of iteration the original loop executes
1905 ratio = ni_name / vf
1906 ratio_mult_vf_name = ratio * vf */
1907 vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
1908 &ratio_mult_vf_name, ratio,
1909 cond_expr_stmt_list);
1910
1911 loop_num = loop->num;
1912
1913 /* If cost model check not done during versioning and
1914 peeling for alignment. */
1915 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
1916 && !LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo)
1917 && !LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo)
1918 && !cond_expr)
1919 {
1920 check_profitability = true;
1921
1922 /* Get profitability threshold for vectorized loop. */
1923 min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
1924
1925 th = conservative_cost_threshold (loop_vinfo,
1926 min_profitable_iters);
1927 }
1928
1929 new_loop = slpeel_tree_peel_loop_to_edge (loop, single_exit (loop),
1930 ratio_mult_vf_name, ni_name, false,
1931 th, check_profitability,
1932 cond_expr, cond_expr_stmt_list);
1933 gcc_assert (new_loop);
1934 gcc_assert (loop_num == loop->num);
1935 #ifdef ENABLE_CHECKING
1936 slpeel_verify_cfg_after_peeling (loop, new_loop);
1937 #endif
1938
1939 /* A guard that controls whether the new_loop is to be executed or skipped
1940 is placed in LOOP->exit. LOOP->exit therefore has two successors - one
1941 is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
1942 is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
1943 is on the path where the LOOP IVs are used and need to be updated. */
1944
1945 preheader = loop_preheader_edge (new_loop)->src;
1946 if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
1947 update_e = EDGE_PRED (preheader, 0);
1948 else
1949 update_e = EDGE_PRED (preheader, 1);
1950
1951 /* Update IVs of original loop as if they were advanced
1952 by ratio_mult_vf_name steps. */
1953 vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
1954
1955 /* After peeling we have to reset scalar evolution analyzer. */
1956 scev_reset ();
1957
1958 free_original_copy_tables ();
1959 }
1960
1961
1962 /* Function vect_gen_niters_for_prolog_loop
1963
1964 Set the number of iterations for the loop represented by LOOP_VINFO
1965 to the minimum between LOOP_NITERS (the original iteration count of the loop)
1966 and the misalignment of DR - the data reference recorded in
1967 LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
1968 this loop, the data reference DR will refer to an aligned location.
1969
1970 The following computation is generated:
1971
1972 If the misalignment of DR is known at compile time:
1973 addr_mis = int mis = DR_MISALIGNMENT (dr);
1974 Else, compute address misalignment in bytes:
1975 addr_mis = addr & (vectype_size - 1)
1976
1977 prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
1978
1979 (elem_size = element type size; an element is the scalar element whose type
1980 is the inner type of the vectype)
1981
1982 When the step of the data-ref in the loop is not 1 (as in interleaved data
1983 and SLP), the number of iterations of the prolog must be divided by the step
1984 (which is equal to the size of interleaved group).
1985
1986 The above formulas assume that VF == number of elements in the vector. This
1987 may not hold when there are multiple-types in the loop.
1988 In this case, for some data-references in the loop the VF does not represent
1989 the number of elements that fit in the vector. Therefore, instead of VF we
1990 use TYPE_VECTOR_SUBPARTS. */
1991
1992 static tree
1993 vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters,
1994 tree *wide_prolog_niters)
1995 {
1996 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
1997 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1998 tree var;
1999 gimple_seq stmts;
2000 tree iters, iters_name;
2001 edge pe;
2002 basic_block new_bb;
2003 gimple dr_stmt = DR_STMT (dr);
2004 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
2005 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2006 int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
2007 tree niters_type = TREE_TYPE (loop_niters);
2008 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
2009
2010 pe = loop_preheader_edge (loop);
2011
2012 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2013 {
2014 int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
2015
2016 if (vect_print_dump_info (REPORT_DETAILS))
2017 fprintf (vect_dump, "known peeling = %d.", npeel);
2018
2019 iters = build_int_cst (niters_type, npeel);
2020 }
2021 else
2022 {
2023 gimple_seq new_stmts = NULL;
2024 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
2025 tree offset = negative
2026 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
2027 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
2028 &new_stmts, offset, loop);
2029 tree ptr_type = TREE_TYPE (start_addr);
2030 tree size = TYPE_SIZE (ptr_type);
2031 tree type = lang_hooks.types.type_for_size (tree_low_cst (size, 1), 1);
2032 tree vectype_size_minus_1 = build_int_cst (type, vectype_align - 1);
2033 tree elem_size_log =
2034 build_int_cst (type, exact_log2 (vectype_align/nelements));
2035 tree nelements_minus_1 = build_int_cst (type, nelements - 1);
2036 tree nelements_tree = build_int_cst (type, nelements);
2037 tree byte_misalign;
2038 tree elem_misalign;
2039
2040 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
2041 gcc_assert (!new_bb);
2042
2043 /* Create: byte_misalign = addr & (vectype_size - 1) */
2044 byte_misalign =
2045 fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
2046 vectype_size_minus_1);
2047
2048 /* Create: elem_misalign = byte_misalign / element_size */
2049 elem_misalign =
2050 fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
2051
2052 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
2053 if (negative)
2054 iters = fold_build2 (MINUS_EXPR, type, elem_misalign, nelements_tree);
2055 else
2056 iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
2057 iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
2058 iters = fold_convert (niters_type, iters);
2059 }
2060
2061 /* Create: prolog_loop_niters = min (iters, loop_niters) */
2062 /* If the loop bound is known at compile time we already verified that it is
2063 greater than vf; since the misalignment ('iters') is at most vf, there's
2064 no need to generate the MIN_EXPR in this case. */
2065 if (TREE_CODE (loop_niters) != INTEGER_CST)
2066 iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
2067
2068 if (vect_print_dump_info (REPORT_DETAILS))
2069 {
2070 fprintf (vect_dump, "niters for prolog loop: ");
2071 print_generic_expr (vect_dump, iters, TDF_SLIM);
2072 }
2073
2074 var = create_tmp_var (niters_type, "prolog_loop_niters");
2075 add_referenced_var (var);
2076 stmts = NULL;
2077 iters_name = force_gimple_operand (iters, &stmts, false, var);
2078 if (types_compatible_p (sizetype, niters_type))
2079 *wide_prolog_niters = iters_name;
2080 else
2081 {
2082 gimple_seq seq = NULL;
2083 tree wide_iters = fold_convert (sizetype, iters);
2084 var = create_tmp_var (sizetype, "prolog_loop_niters");
2085 add_referenced_var (var);
2086 *wide_prolog_niters = force_gimple_operand (wide_iters, &seq, false,
2087 var);
2088 if (seq)
2089 gimple_seq_add_seq (&stmts, seq);
2090 }
2091
2092 /* Insert stmt on loop preheader edge. */
2093 if (stmts)
2094 {
2095 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
2096 gcc_assert (!new_bb);
2097 }
2098
2099 return iters_name;
2100 }
2101
2102
2103 /* Function vect_update_init_of_dr
2104
2105 NITERS iterations were peeled from LOOP. DR represents a data reference
2106 in LOOP. This function updates the information recorded in DR to
2107 account for the fact that the first NITERS iterations had already been
2108 executed. Specifically, it updates the OFFSET field of DR. */
2109
2110 static void
2111 vect_update_init_of_dr (struct data_reference *dr, tree niters)
2112 {
2113 tree offset = DR_OFFSET (dr);
2114
2115 niters = fold_build2 (MULT_EXPR, sizetype,
2116 fold_convert (sizetype, niters),
2117 fold_convert (sizetype, DR_STEP (dr)));
2118 offset = fold_build2 (PLUS_EXPR, sizetype,
2119 fold_convert (sizetype, offset), niters);
2120 DR_OFFSET (dr) = offset;
2121 }
2122
2123
2124 /* Function vect_update_inits_of_drs
2125
2126 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
2127 This function updates the information recorded for the data references in
2128 the loop to account for the fact that the first NITERS iterations had
2129 already been executed. Specifically, it updates the initial_condition of
2130 the access_function of all the data_references in the loop. */
2131
2132 static void
2133 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
2134 {
2135 unsigned int i;
2136 VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2137 struct data_reference *dr;
2138
2139 if (vect_print_dump_info (REPORT_DETAILS))
2140 fprintf (vect_dump, "=== vect_update_inits_of_dr ===");
2141
2142 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
2143 vect_update_init_of_dr (dr, niters);
2144 }
2145
2146
2147 /* Function vect_do_peeling_for_alignment
2148
2149 Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
2150 'niters' is set to the misalignment of one of the data references in the
2151 loop, thereby forcing it to refer to an aligned location at the beginning
2152 of the execution of this loop. The data reference for which we are
2153 peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
2154
2155 void
2156 vect_do_peeling_for_alignment (loop_vec_info loop_vinfo)
2157 {
2158 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2159 tree niters_of_prolog_loop, ni_name;
2160 tree n_iters;
2161 tree wide_prolog_niters;
2162 struct loop *new_loop;
2163 unsigned int th = 0;
2164 int min_profitable_iters;
2165
2166 if (vect_print_dump_info (REPORT_DETAILS))
2167 fprintf (vect_dump, "=== vect_do_peeling_for_alignment ===");
2168
2169 initialize_original_copy_tables ();
2170
2171 ni_name = vect_build_loop_niters (loop_vinfo, NULL);
2172 niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo, ni_name,
2173 &wide_prolog_niters);
2174
2175
2176 /* Get profitability threshold for vectorized loop. */
2177 min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
2178 th = conservative_cost_threshold (loop_vinfo,
2179 min_profitable_iters);
2180
2181 /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
2182 new_loop =
2183 slpeel_tree_peel_loop_to_edge (loop, loop_preheader_edge (loop),
2184 niters_of_prolog_loop, ni_name, true,
2185 th, true, NULL_TREE, NULL);
2186
2187 gcc_assert (new_loop);
2188 #ifdef ENABLE_CHECKING
2189 slpeel_verify_cfg_after_peeling (new_loop, loop);
2190 #endif
2191
2192 /* Update number of times loop executes. */
2193 n_iters = LOOP_VINFO_NITERS (loop_vinfo);
2194 LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
2195 TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);
2196
2197 /* Update the init conditions of the access functions of all data refs. */
2198 vect_update_inits_of_drs (loop_vinfo, wide_prolog_niters);
2199
2200 /* After peeling we have to reset scalar evolution analyzer. */
2201 scev_reset ();
2202
2203 free_original_copy_tables ();
2204 }
2205
2206
2207 /* Function vect_create_cond_for_align_checks.
2208
2209 Create a conditional expression that represents the alignment checks for
2210 all of data references (array element references) whose alignment must be
2211 checked at runtime.
2212
2213 Input:
2214 COND_EXPR - input conditional expression. New conditions will be chained
2215 with logical AND operation.
2216 LOOP_VINFO - two fields of the loop information are used.
2217 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2218 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2219
2220 Output:
2221 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2222 expression.
2223 The returned value is the conditional expression to be used in the if
2224 statement that controls which version of the loop gets executed at runtime.
2225
2226 The algorithm makes two assumptions:
2227 1) The number of bytes "n" in a vector is a power of 2.
2228 2) An address "a" is aligned if a%n is zero and that this
2229 test can be done as a&(n-1) == 0. For example, for 16
2230 byte vectors the test is a&0xf == 0. */
2231
2232 static void
2233 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2234 tree *cond_expr,
2235 gimple_seq *cond_expr_stmt_list)
2236 {
2237 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2238 VEC(gimple,heap) *may_misalign_stmts
2239 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2240 gimple ref_stmt;
2241 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2242 tree mask_cst;
2243 unsigned int i;
2244 tree psize;
2245 tree int_ptrsize_type;
2246 char tmp_name[20];
2247 tree or_tmp_name = NULL_TREE;
2248 tree and_tmp, and_tmp_name;
2249 gimple and_stmt;
2250 tree ptrsize_zero;
2251 tree part_cond_expr;
2252
2253 /* Check that mask is one less than a power of 2, i.e., mask is
2254 all zeros followed by all ones. */
2255 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2256
2257 /* CHECKME: what is the best integer or unsigned type to use to hold a
2258 cast from a pointer value? */
2259 psize = TYPE_SIZE (ptr_type_node);
2260 int_ptrsize_type
2261 = lang_hooks.types.type_for_size (tree_low_cst (psize, 1), 0);
2262
2263 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2264 of the first vector of the i'th data reference. */
2265
2266 FOR_EACH_VEC_ELT (gimple, may_misalign_stmts, i, ref_stmt)
2267 {
2268 gimple_seq new_stmt_list = NULL;
2269 tree addr_base;
2270 tree addr_tmp, addr_tmp_name;
2271 tree or_tmp, new_or_tmp_name;
2272 gimple addr_stmt, or_stmt;
2273 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2274 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2275 bool negative = tree_int_cst_compare
2276 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2277 tree offset = negative
2278 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
2279
2280 /* create: addr_tmp = (int)(address_of_first_vector) */
2281 addr_base =
2282 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2283 offset, loop);
2284 if (new_stmt_list != NULL)
2285 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2286
2287 sprintf (tmp_name, "%s%d", "addr2int", i);
2288 addr_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
2289 add_referenced_var (addr_tmp);
2290 addr_tmp_name = make_ssa_name (addr_tmp, NULL);
2291 addr_stmt = gimple_build_assign_with_ops (NOP_EXPR, addr_tmp_name,
2292 addr_base, NULL_TREE);
2293 SSA_NAME_DEF_STMT (addr_tmp_name) = addr_stmt;
2294 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2295
2296 /* The addresses are OR together. */
2297
2298 if (or_tmp_name != NULL_TREE)
2299 {
2300 /* create: or_tmp = or_tmp | addr_tmp */
2301 sprintf (tmp_name, "%s%d", "orptrs", i);
2302 or_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
2303 add_referenced_var (or_tmp);
2304 new_or_tmp_name = make_ssa_name (or_tmp, NULL);
2305 or_stmt = gimple_build_assign_with_ops (BIT_IOR_EXPR,
2306 new_or_tmp_name,
2307 or_tmp_name, addr_tmp_name);
2308 SSA_NAME_DEF_STMT (new_or_tmp_name) = or_stmt;
2309 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2310 or_tmp_name = new_or_tmp_name;
2311 }
2312 else
2313 or_tmp_name = addr_tmp_name;
2314
2315 } /* end for i */
2316
2317 mask_cst = build_int_cst (int_ptrsize_type, mask);
2318
2319 /* create: and_tmp = or_tmp & mask */
2320 and_tmp = create_tmp_var (int_ptrsize_type, "andmask" );
2321 add_referenced_var (and_tmp);
2322 and_tmp_name = make_ssa_name (and_tmp, NULL);
2323
2324 and_stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, and_tmp_name,
2325 or_tmp_name, mask_cst);
2326 SSA_NAME_DEF_STMT (and_tmp_name) = and_stmt;
2327 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2328
2329 /* Make and_tmp the left operand of the conditional test against zero.
2330 if and_tmp has a nonzero bit then some address is unaligned. */
2331 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2332 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2333 and_tmp_name, ptrsize_zero);
2334 if (*cond_expr)
2335 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2336 *cond_expr, part_cond_expr);
2337 else
2338 *cond_expr = part_cond_expr;
2339 }
2340
2341
2342 /* Function vect_vfa_segment_size.
2343
2344 Create an expression that computes the size of segment
2345 that will be accessed for a data reference. The functions takes into
2346 account that realignment loads may access one more vector.
2347
2348 Input:
2349 DR: The data reference.
2350 LENGTH_FACTOR: segment length to consider.
2351
2352 Return an expression whose value is the size of segment which will be
2353 accessed by DR. */
2354
2355 static tree
2356 vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
2357 {
2358 tree segment_length;
2359 segment_length = size_binop (MULT_EXPR,
2360 fold_convert (sizetype, DR_STEP (dr)),
2361 fold_convert (sizetype, length_factor));
2362 if (vect_supportable_dr_alignment (dr, false)
2363 == dr_explicit_realign_optimized)
2364 {
2365 tree vector_size = TYPE_SIZE_UNIT
2366 (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
2367
2368 segment_length = size_binop (PLUS_EXPR, segment_length, vector_size);
2369 }
2370 return segment_length;
2371 }
2372
2373
2374 /* Function vect_create_cond_for_alias_checks.
2375
2376 Create a conditional expression that represents the run-time checks for
2377 overlapping of address ranges represented by a list of data references
2378 relations passed as input.
2379
2380 Input:
2381 COND_EXPR - input conditional expression. New conditions will be chained
2382 with logical AND operation.
2383 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2384 to be checked.
2385
2386 Output:
2387 COND_EXPR - conditional expression.
2388 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2389 expression.
2390
2391
2392 The returned value is the conditional expression to be used in the if
2393 statement that controls which version of the loop gets executed at runtime.
2394 */
2395
2396 static void
2397 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo,
2398 tree * cond_expr,
2399 gimple_seq * cond_expr_stmt_list)
2400 {
2401 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2402 VEC (ddr_p, heap) * may_alias_ddrs =
2403 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
2404 int vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2405 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2406
2407 ddr_p ddr;
2408 unsigned int i;
2409 tree part_cond_expr, length_factor;
2410
2411 /* Create expression
2412 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2413 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2414 &&
2415 ...
2416 &&
2417 ((store_ptr_n + store_segment_length_n) <= load_ptr_n)
2418 || (load_ptr_n + load_segment_length_n) <= store_ptr_n)) */
2419
2420 if (VEC_empty (ddr_p, may_alias_ddrs))
2421 return;
2422
2423 FOR_EACH_VEC_ELT (ddr_p, may_alias_ddrs, i, ddr)
2424 {
2425 struct data_reference *dr_a, *dr_b;
2426 gimple dr_group_first_a, dr_group_first_b;
2427 tree addr_base_a, addr_base_b;
2428 tree segment_length_a, segment_length_b;
2429 gimple stmt_a, stmt_b;
2430 tree seg_a_min, seg_a_max, seg_b_min, seg_b_max;
2431
2432 dr_a = DDR_A (ddr);
2433 stmt_a = DR_STMT (DDR_A (ddr));
2434 dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
2435 if (dr_group_first_a)
2436 {
2437 stmt_a = dr_group_first_a;
2438 dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
2439 }
2440
2441 dr_b = DDR_B (ddr);
2442 stmt_b = DR_STMT (DDR_B (ddr));
2443 dr_group_first_b = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b));
2444 if (dr_group_first_b)
2445 {
2446 stmt_b = dr_group_first_b;
2447 dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
2448 }
2449
2450 addr_base_a =
2451 vect_create_addr_base_for_vector_ref (stmt_a, cond_expr_stmt_list,
2452 NULL_TREE, loop);
2453 addr_base_b =
2454 vect_create_addr_base_for_vector_ref (stmt_b, cond_expr_stmt_list,
2455 NULL_TREE, loop);
2456
2457 if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
2458 length_factor = scalar_loop_iters;
2459 else
2460 length_factor = size_int (vect_factor);
2461 segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
2462 segment_length_b = vect_vfa_segment_size (dr_b, length_factor);
2463
2464 if (vect_print_dump_info (REPORT_DR_DETAILS))
2465 {
2466 fprintf (vect_dump,
2467 "create runtime check for data references ");
2468 print_generic_expr (vect_dump, DR_REF (dr_a), TDF_SLIM);
2469 fprintf (vect_dump, " and ");
2470 print_generic_expr (vect_dump, DR_REF (dr_b), TDF_SLIM);
2471 }
2472
2473 seg_a_min = addr_base_a;
2474 seg_a_max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (addr_base_a),
2475 addr_base_a, segment_length_a);
2476 if (tree_int_cst_compare (DR_STEP (dr_a), size_zero_node) < 0)
2477 seg_a_min = seg_a_max, seg_a_max = addr_base_a;
2478
2479 seg_b_min = addr_base_b;
2480 seg_b_max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (addr_base_b),
2481 addr_base_b, segment_length_b);
2482 if (tree_int_cst_compare (DR_STEP (dr_b), size_zero_node) < 0)
2483 seg_b_min = seg_b_max, seg_b_max = addr_base_b;
2484
2485 part_cond_expr =
2486 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
2487 fold_build2 (LE_EXPR, boolean_type_node, seg_a_max, seg_b_min),
2488 fold_build2 (LE_EXPR, boolean_type_node, seg_b_max, seg_a_min));
2489
2490 if (*cond_expr)
2491 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2492 *cond_expr, part_cond_expr);
2493 else
2494 *cond_expr = part_cond_expr;
2495 }
2496
2497 if (vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
2498 fprintf (vect_dump, "created %u versioning for alias checks.\n",
2499 VEC_length (ddr_p, may_alias_ddrs));
2500 }
2501
2502
2503 /* Function vect_loop_versioning.
2504
2505 If the loop has data references that may or may not be aligned or/and
2506 has data reference relations whose independence was not proven then
2507 two versions of the loop need to be generated, one which is vectorized
2508 and one which isn't. A test is then generated to control which of the
2509 loops is executed. The test checks for the alignment of all of the
2510 data references that may or may not be aligned. An additional
2511 sequence of runtime tests is generated for each pairs of DDRs whose
2512 independence was not proven. The vectorized version of loop is
2513 executed only if both alias and alignment tests are passed.
2514
2515 The test generated to check which version of loop is executed
2516 is modified to also check for profitability as indicated by the
2517 cost model initially.
2518
2519 The versioning precondition(s) are placed in *COND_EXPR and
2520 *COND_EXPR_STMT_LIST. If DO_VERSIONING is true versioning is
2521 also performed, otherwise only the conditions are generated. */
2522
2523 void
2524 vect_loop_versioning (loop_vec_info loop_vinfo, bool do_versioning,
2525 tree *cond_expr, gimple_seq *cond_expr_stmt_list)
2526 {
2527 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2528 basic_block condition_bb;
2529 gimple_stmt_iterator gsi, cond_exp_gsi;
2530 basic_block merge_bb;
2531 basic_block new_exit_bb;
2532 edge new_exit_e, e;
2533 gimple orig_phi, new_phi;
2534 tree arg;
2535 unsigned prob = 4 * REG_BR_PROB_BASE / 5;
2536 gimple_seq gimplify_stmt_list = NULL;
2537 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2538 int min_profitable_iters = 0;
2539 unsigned int th;
2540
2541 /* Get profitability threshold for vectorized loop. */
2542 min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
2543
2544 th = conservative_cost_threshold (loop_vinfo,
2545 min_profitable_iters);
2546
2547 *cond_expr =
2548 fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
2549 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
2550
2551 *cond_expr = force_gimple_operand (*cond_expr, cond_expr_stmt_list,
2552 false, NULL_TREE);
2553
2554 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2555 vect_create_cond_for_align_checks (loop_vinfo, cond_expr,
2556 cond_expr_stmt_list);
2557
2558 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2559 vect_create_cond_for_alias_checks (loop_vinfo, cond_expr,
2560 cond_expr_stmt_list);
2561
2562 *cond_expr =
2563 fold_build2 (NE_EXPR, boolean_type_node, *cond_expr, integer_zero_node);
2564 *cond_expr =
2565 force_gimple_operand (*cond_expr, &gimplify_stmt_list, true, NULL_TREE);
2566 gimple_seq_add_seq (cond_expr_stmt_list, gimplify_stmt_list);
2567
2568 /* If we only needed the extra conditions and a new loop copy
2569 bail out here. */
2570 if (!do_versioning)
2571 return;
2572
2573 initialize_original_copy_tables ();
2574 loop_version (loop, *cond_expr, &condition_bb,
2575 prob, prob, REG_BR_PROB_BASE - prob, true);
2576 free_original_copy_tables();
2577
2578 /* Loop versioning violates an assumption we try to maintain during
2579 vectorization - that the loop exit block has a single predecessor.
2580 After versioning, the exit block of both loop versions is the same
2581 basic block (i.e. it has two predecessors). Just in order to simplify
2582 following transformations in the vectorizer, we fix this situation
2583 here by adding a new (empty) block on the exit-edge of the loop,
2584 with the proper loop-exit phis to maintain loop-closed-form. */
2585
2586 merge_bb = single_exit (loop)->dest;
2587 gcc_assert (EDGE_COUNT (merge_bb->preds) == 2);
2588 new_exit_bb = split_edge (single_exit (loop));
2589 new_exit_e = single_exit (loop);
2590 e = EDGE_SUCC (new_exit_bb, 0);
2591
2592 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2593 {
2594 orig_phi = gsi_stmt (gsi);
2595 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
2596 new_exit_bb);
2597 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
2598 add_phi_arg (new_phi, arg, new_exit_e,
2599 gimple_phi_arg_location_from_edge (orig_phi, e));
2600 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
2601 }
2602
2603 /* End loop-exit-fixes after versioning. */
2604
2605 update_ssa (TODO_update_ssa);
2606 if (*cond_expr_stmt_list)
2607 {
2608 cond_exp_gsi = gsi_last_bb (condition_bb);
2609 gsi_insert_seq_before (&cond_exp_gsi, *cond_expr_stmt_list,
2610 GSI_SAME_STMT);
2611 *cond_expr_stmt_list = NULL;
2612 }
2613 *cond_expr = NULL_TREE;
2614 }
2615