omp-low.c (extract_omp_for_data): Use signed_type_for.
[gcc.git] / gcc / tree-vect-loop-manip.c
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2012
3 Free Software Foundation, Inc.
4 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 and Ira Rosen <irar@il.ibm.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-pretty-print.h"
31 #include "gimple-pretty-print.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "cfgloop.h"
35 #include "cfglayout.h"
36 #include "diagnostic-core.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-vectorizer.h"
39 #include "langhooks.h"
40
41 /*************************************************************************
42 Simple Loop Peeling Utilities
43
44 Utilities to support loop peeling for vectorization purposes.
45 *************************************************************************/
46
47
48 /* Renames the use *OP_P. */
49
50 static void
51 rename_use_op (use_operand_p op_p)
52 {
53 tree new_name;
54
55 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
56 return;
57
58 new_name = get_current_def (USE_FROM_PTR (op_p));
59
60 /* Something defined outside of the loop. */
61 if (!new_name)
62 return;
63
64 /* An ordinary ssa name defined in the loop. */
65
66 SET_USE (op_p, new_name);
67 }
68
69
70 /* Renames the variables in basic block BB. */
71
72 void
73 rename_variables_in_bb (basic_block bb)
74 {
75 gimple_stmt_iterator gsi;
76 gimple stmt;
77 use_operand_p use_p;
78 ssa_op_iter iter;
79 edge e;
80 edge_iterator ei;
81 struct loop *loop = bb->loop_father;
82
83 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
84 {
85 stmt = gsi_stmt (gsi);
86 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
87 rename_use_op (use_p);
88 }
89
90 FOR_EACH_EDGE (e, ei, bb->succs)
91 {
92 if (!flow_bb_inside_loop_p (loop, e->dest))
93 continue;
94 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
95 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi_stmt (gsi), e));
96 }
97 }
98
99
100 /* Renames variables in new generated LOOP. */
101
102 void
103 rename_variables_in_loop (struct loop *loop)
104 {
105 unsigned i;
106 basic_block *bbs;
107
108 bbs = get_loop_body (loop);
109
110 for (i = 0; i < loop->num_nodes; i++)
111 rename_variables_in_bb (bbs[i]);
112
113 free (bbs);
114 }
115
116 typedef struct
117 {
118 tree from, to;
119 basic_block bb;
120 } adjust_info;
121
122 DEF_VEC_O(adjust_info);
123 DEF_VEC_ALLOC_O_STACK(adjust_info);
124 #define VEC_adjust_info_stack_alloc(alloc) VEC_stack_alloc (adjust_info, alloc)
125
126 /* A stack of values to be adjusted in debug stmts. We have to
127 process them LIFO, so that the closest substitution applies. If we
128 processed them FIFO, without the stack, we might substitute uses
129 with a PHI DEF that would soon become non-dominant, and when we got
130 to the suitable one, it wouldn't have anything to substitute any
131 more. */
132 static VEC(adjust_info, stack) *adjust_vec;
133
134 /* Adjust any debug stmts that referenced AI->from values to use the
135 loop-closed AI->to, if the references are dominated by AI->bb and
136 not by the definition of AI->from. */
137
138 static void
139 adjust_debug_stmts_now (adjust_info *ai)
140 {
141 basic_block bbphi = ai->bb;
142 tree orig_def = ai->from;
143 tree new_def = ai->to;
144 imm_use_iterator imm_iter;
145 gimple stmt;
146 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
147
148 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
149
150 /* Adjust any debug stmts that held onto non-loop-closed
151 references. */
152 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
153 {
154 use_operand_p use_p;
155 basic_block bbuse;
156
157 if (!is_gimple_debug (stmt))
158 continue;
159
160 gcc_assert (gimple_debug_bind_p (stmt));
161
162 bbuse = gimple_bb (stmt);
163
164 if ((bbuse == bbphi
165 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
166 && !(bbuse == bbdef
167 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
168 {
169 if (new_def)
170 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
171 SET_USE (use_p, new_def);
172 else
173 {
174 gimple_debug_bind_reset_value (stmt);
175 update_stmt (stmt);
176 }
177 }
178 }
179 }
180
181 /* Adjust debug stmts as scheduled before. */
182
183 static void
184 adjust_vec_debug_stmts (void)
185 {
186 if (!MAY_HAVE_DEBUG_STMTS)
187 return;
188
189 gcc_assert (adjust_vec);
190
191 while (!VEC_empty (adjust_info, adjust_vec))
192 {
193 adjust_debug_stmts_now (VEC_last (adjust_info, adjust_vec));
194 VEC_pop (adjust_info, adjust_vec);
195 }
196
197 VEC_free (adjust_info, stack, adjust_vec);
198 }
199
200 /* Adjust any debug stmts that referenced FROM values to use the
201 loop-closed TO, if the references are dominated by BB and not by
202 the definition of FROM. If adjust_vec is non-NULL, adjustments
203 will be postponed until adjust_vec_debug_stmts is called. */
204
205 static void
206 adjust_debug_stmts (tree from, tree to, basic_block bb)
207 {
208 adjust_info ai;
209
210 if (MAY_HAVE_DEBUG_STMTS && TREE_CODE (from) == SSA_NAME
211 && SSA_NAME_VAR (from) != gimple_vop (cfun))
212 {
213 ai.from = from;
214 ai.to = to;
215 ai.bb = bb;
216
217 if (adjust_vec)
218 VEC_safe_push (adjust_info, stack, adjust_vec, &ai);
219 else
220 adjust_debug_stmts_now (&ai);
221 }
222 }
223
224 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
225 to adjust any debug stmts that referenced the old phi arg,
226 presumably non-loop-closed references left over from other
227 transformations. */
228
229 static void
230 adjust_phi_and_debug_stmts (gimple update_phi, edge e, tree new_def)
231 {
232 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
233
234 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
235
236 if (MAY_HAVE_DEBUG_STMTS)
237 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
238 gimple_bb (update_phi));
239 }
240
241
242 /* Update the PHI nodes of NEW_LOOP.
243
244 NEW_LOOP is a duplicate of ORIG_LOOP.
245 AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
246 AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
247 executes before it. */
248
249 static void
250 slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
251 struct loop *new_loop, bool after)
252 {
253 tree new_ssa_name;
254 gimple phi_new, phi_orig;
255 tree def;
256 edge orig_loop_latch = loop_latch_edge (orig_loop);
257 edge orig_entry_e = loop_preheader_edge (orig_loop);
258 edge new_loop_exit_e = single_exit (new_loop);
259 edge new_loop_entry_e = loop_preheader_edge (new_loop);
260 edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);
261 gimple_stmt_iterator gsi_new, gsi_orig;
262
263 /*
264 step 1. For each loop-header-phi:
265 Add the first phi argument for the phi in NEW_LOOP
266 (the one associated with the entry of NEW_LOOP)
267
268 step 2. For each loop-header-phi:
269 Add the second phi argument for the phi in NEW_LOOP
270 (the one associated with the latch of NEW_LOOP)
271
272 step 3. Update the phis in the successor block of NEW_LOOP.
273
274 case 1: NEW_LOOP was placed before ORIG_LOOP:
275 The successor block of NEW_LOOP is the header of ORIG_LOOP.
276 Updating the phis in the successor block can therefore be done
277 along with the scanning of the loop header phis, because the
278 header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
279 phi nodes, organized in the same order.
280
281 case 2: NEW_LOOP was placed after ORIG_LOOP:
282 The successor block of NEW_LOOP is the original exit block of
283 ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
284 We postpone updating these phis to a later stage (when
285 loop guards are added).
286 */
287
288
289 /* Scan the phis in the headers of the old and new loops
290 (they are organized in exactly the same order). */
291
292 for (gsi_new = gsi_start_phis (new_loop->header),
293 gsi_orig = gsi_start_phis (orig_loop->header);
294 !gsi_end_p (gsi_new) && !gsi_end_p (gsi_orig);
295 gsi_next (&gsi_new), gsi_next (&gsi_orig))
296 {
297 source_location locus;
298 phi_new = gsi_stmt (gsi_new);
299 phi_orig = gsi_stmt (gsi_orig);
300
301 /* step 1. */
302 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e);
303 locus = gimple_phi_arg_location_from_edge (phi_orig, entry_arg_e);
304 add_phi_arg (phi_new, def, new_loop_entry_e, locus);
305
306 /* step 2. */
307 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
308 locus = gimple_phi_arg_location_from_edge (phi_orig, orig_loop_latch);
309 if (TREE_CODE (def) != SSA_NAME)
310 continue;
311
312 new_ssa_name = get_current_def (def);
313 if (!new_ssa_name)
314 {
315 /* This only happens if there are no definitions
316 inside the loop. use the phi_result in this case. */
317 new_ssa_name = PHI_RESULT (phi_new);
318 }
319
320 /* An ordinary ssa name defined in the loop. */
321 add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop), locus);
322
323 /* Drop any debug references outside the loop, if they would
324 become ill-formed SSA. */
325 adjust_debug_stmts (def, NULL, single_exit (orig_loop)->dest);
326
327 /* step 3 (case 1). */
328 if (!after)
329 {
330 gcc_assert (new_loop_exit_e == orig_entry_e);
331 adjust_phi_and_debug_stmts (phi_orig, new_loop_exit_e, new_ssa_name);
332 }
333 }
334 }
335
336
337 /* Update PHI nodes for a guard of the LOOP.
338
339 Input:
340 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
341 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
342 originates from the guard-bb, skips LOOP and reaches the (unique) exit
343 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
344 We denote this bb NEW_MERGE_BB because before the guard code was added
345 it had a single predecessor (the LOOP header), and now it became a merge
346 point of two paths - the path that ends with the LOOP exit-edge, and
347 the path that ends with GUARD_EDGE.
348 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
349 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
350
351 ===> The CFG before the guard-code was added:
352 LOOP_header_bb:
353 loop_body
354 if (exit_loop) goto update_bb
355 else goto LOOP_header_bb
356 update_bb:
357
358 ==> The CFG after the guard-code was added:
359 guard_bb:
360 if (LOOP_guard_condition) goto new_merge_bb
361 else goto LOOP_header_bb
362 LOOP_header_bb:
363 loop_body
364 if (exit_loop_condition) goto new_merge_bb
365 else goto LOOP_header_bb
366 new_merge_bb:
367 goto update_bb
368 update_bb:
369
370 ==> The CFG after this function:
371 guard_bb:
372 if (LOOP_guard_condition) goto new_merge_bb
373 else goto LOOP_header_bb
374 LOOP_header_bb:
375 loop_body
376 if (exit_loop_condition) goto new_exit_bb
377 else goto LOOP_header_bb
378 new_exit_bb:
379 new_merge_bb:
380 goto update_bb
381 update_bb:
382
383 This function:
384 1. creates and updates the relevant phi nodes to account for the new
385 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
386 1.1. Create phi nodes at NEW_MERGE_BB.
387 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
388 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
389 2. preserves loop-closed-ssa-form by creating the required phi nodes
390 at the exit of LOOP (i.e, in NEW_EXIT_BB).
391
392 There are two flavors to this function:
393
394 slpeel_update_phi_nodes_for_guard1:
395 Here the guard controls whether we enter or skip LOOP, where LOOP is a
396 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
397 for variables that have phis in the loop header.
398
399 slpeel_update_phi_nodes_for_guard2:
400 Here the guard controls whether we enter or skip LOOP, where LOOP is an
401 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
402 for variables that have phis in the loop exit.
403
404 I.E., the overall structure is:
405
406 loop1_preheader_bb:
407 guard1 (goto loop1/merge1_bb)
408 loop1
409 loop1_exit_bb:
410 guard2 (goto merge1_bb/merge2_bb)
411 merge1_bb
412 loop2
413 loop2_exit_bb
414 merge2_bb
415 next_bb
416
417 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
418 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
419 that have phis in loop1->header).
420
421 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
422 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
423 that have phis in next_bb). It also adds some of these phis to
424 loop1_exit_bb.
425
426 slpeel_update_phi_nodes_for_guard1 is always called before
427 slpeel_update_phi_nodes_for_guard2. They are both needed in order
428 to create correct data-flow and loop-closed-ssa-form.
429
430 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
431 that change between iterations of a loop (and therefore have a phi-node
432 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
433 phis for variables that are used out of the loop (and therefore have
434 loop-closed exit phis). Some variables may be both updated between
435 iterations and used after the loop. This is why in loop1_exit_bb we
436 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
437 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
438
439 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
440 an original loop. i.e., we have:
441
442 orig_loop
443 guard_bb (goto LOOP/new_merge)
444 new_loop <-- LOOP
445 new_exit
446 new_merge
447 next_bb
448
449 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
450 have:
451
452 new_loop
453 guard_bb (goto LOOP/new_merge)
454 orig_loop <-- LOOP
455 new_exit
456 new_merge
457 next_bb
458
459 The SSA names defined in the original loop have a current
460 reaching definition that that records the corresponding new
461 ssa-name used in the new duplicated loop copy.
462 */
463
464 /* Function slpeel_update_phi_nodes_for_guard1
465
466 Input:
467 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
468 - DEFS - a bitmap of ssa names to mark new names for which we recorded
469 information.
470
471 In the context of the overall structure, we have:
472
473 loop1_preheader_bb:
474 guard1 (goto loop1/merge1_bb)
475 LOOP-> loop1
476 loop1_exit_bb:
477 guard2 (goto merge1_bb/merge2_bb)
478 merge1_bb
479 loop2
480 loop2_exit_bb
481 merge2_bb
482 next_bb
483
484 For each name updated between loop iterations (i.e - for each name that has
485 an entry (loop-header) phi in LOOP) we create a new phi in:
486 1. merge1_bb (to account for the edge from guard1)
487 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
488 */
489
490 static void
491 slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
492 bool is_new_loop, basic_block *new_exit_bb,
493 bitmap *defs)
494 {
495 gimple orig_phi, new_phi;
496 gimple update_phi, update_phi2;
497 tree guard_arg, loop_arg;
498 basic_block new_merge_bb = guard_edge->dest;
499 edge e = EDGE_SUCC (new_merge_bb, 0);
500 basic_block update_bb = e->dest;
501 basic_block orig_bb = loop->header;
502 edge new_exit_e;
503 tree current_new_name;
504 gimple_stmt_iterator gsi_orig, gsi_update;
505
506 /* Create new bb between loop and new_merge_bb. */
507 *new_exit_bb = split_edge (single_exit (loop));
508
509 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
510
511 for (gsi_orig = gsi_start_phis (orig_bb),
512 gsi_update = gsi_start_phis (update_bb);
513 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
514 gsi_next (&gsi_orig), gsi_next (&gsi_update))
515 {
516 source_location loop_locus, guard_locus;
517 orig_phi = gsi_stmt (gsi_orig);
518 update_phi = gsi_stmt (gsi_update);
519
520 /** 1. Handle new-merge-point phis **/
521
522 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
523 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
524 new_merge_bb);
525
526 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
527 of LOOP. Set the two phi args in NEW_PHI for these edges: */
528 loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
529 loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
530 EDGE_SUCC (loop->latch,
531 0));
532 guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
533 guard_locus
534 = gimple_phi_arg_location_from_edge (orig_phi,
535 loop_preheader_edge (loop));
536
537 add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
538 add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);
539
540 /* 1.3. Update phi in successor block. */
541 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
542 || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
543 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
544 update_phi2 = new_phi;
545
546
547 /** 2. Handle loop-closed-ssa-form phis **/
548
549 if (!is_gimple_reg (PHI_RESULT (orig_phi)))
550 continue;
551
552 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
553 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
554 *new_exit_bb);
555
556 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
557 add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);
558
559 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
560 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
561 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
562 PHI_RESULT (new_phi));
563
564 /* 2.4. Record the newly created name with set_current_def.
565 We want to find a name such that
566 name = get_current_def (orig_loop_name)
567 and to set its current definition as follows:
568 set_current_def (name, new_phi_name)
569
570 If LOOP is a new loop then loop_arg is already the name we're
571 looking for. If LOOP is the original loop, then loop_arg is
572 the orig_loop_name and the relevant name is recorded in its
573 current reaching definition. */
574 if (is_new_loop)
575 current_new_name = loop_arg;
576 else
577 {
578 current_new_name = get_current_def (loop_arg);
579 /* current_def is not available only if the variable does not
580 change inside the loop, in which case we also don't care
581 about recording a current_def for it because we won't be
582 trying to create loop-exit-phis for it. */
583 if (!current_new_name)
584 continue;
585 }
586 gcc_assert (get_current_def (current_new_name) == NULL_TREE);
587
588 set_current_def (current_new_name, PHI_RESULT (new_phi));
589 bitmap_set_bit (*defs, SSA_NAME_VERSION (current_new_name));
590 }
591 }
592
593
594 /* Function slpeel_update_phi_nodes_for_guard2
595
596 Input:
597 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
598
599 In the context of the overall structure, we have:
600
601 loop1_preheader_bb:
602 guard1 (goto loop1/merge1_bb)
603 loop1
604 loop1_exit_bb:
605 guard2 (goto merge1_bb/merge2_bb)
606 merge1_bb
607 LOOP-> loop2
608 loop2_exit_bb
609 merge2_bb
610 next_bb
611
612 For each name used out side the loop (i.e - for each name that has an exit
613 phi in next_bb) we create a new phi in:
614 1. merge2_bb (to account for the edge from guard_bb)
615 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
616 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
617 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
618 */
619
620 static void
621 slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
622 bool is_new_loop, basic_block *new_exit_bb)
623 {
624 gimple orig_phi, new_phi;
625 gimple update_phi, update_phi2;
626 tree guard_arg, loop_arg;
627 basic_block new_merge_bb = guard_edge->dest;
628 edge e = EDGE_SUCC (new_merge_bb, 0);
629 basic_block update_bb = e->dest;
630 edge new_exit_e;
631 tree orig_def, orig_def_new_name;
632 tree new_name, new_name2;
633 tree arg;
634 gimple_stmt_iterator gsi;
635
636 /* Create new bb between loop and new_merge_bb. */
637 *new_exit_bb = split_edge (single_exit (loop));
638
639 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
640
641 for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
642 {
643 update_phi = gsi_stmt (gsi);
644 orig_phi = update_phi;
645 orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
646 /* This loop-closed-phi actually doesn't represent a use
647 out of the loop - the phi arg is a constant. */
648 if (TREE_CODE (orig_def) != SSA_NAME)
649 continue;
650 orig_def_new_name = get_current_def (orig_def);
651 arg = NULL_TREE;
652
653 /** 1. Handle new-merge-point phis **/
654
655 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
656 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
657 new_merge_bb);
658
659 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
660 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
661 new_name = orig_def;
662 new_name2 = NULL_TREE;
663 if (orig_def_new_name)
664 {
665 new_name = orig_def_new_name;
666 /* Some variables have both loop-entry-phis and loop-exit-phis.
667 Such variables were given yet newer names by phis placed in
668 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
669 new_name2 = get_current_def (get_current_def (orig_name)). */
670 new_name2 = get_current_def (new_name);
671 }
672
673 if (is_new_loop)
674 {
675 guard_arg = orig_def;
676 loop_arg = new_name;
677 }
678 else
679 {
680 guard_arg = new_name;
681 loop_arg = orig_def;
682 }
683 if (new_name2)
684 guard_arg = new_name2;
685
686 add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
687 add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
688
689 /* 1.3. Update phi in successor block. */
690 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
691 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
692 update_phi2 = new_phi;
693
694
695 /** 2. Handle loop-closed-ssa-form phis **/
696
697 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
698 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
699 *new_exit_bb);
700
701 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
702 add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);
703
704 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
705 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
706 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
707 PHI_RESULT (new_phi));
708
709
710 /** 3. Handle loop-closed-ssa-form phis for first loop **/
711
712 /* 3.1. Find the relevant names that need an exit-phi in
713 GUARD_BB, i.e. names for which
714 slpeel_update_phi_nodes_for_guard1 had not already created a
715 phi node. This is the case for names that are used outside
716 the loop (and therefore need an exit phi) but are not updated
717 across loop iterations (and therefore don't have a
718 loop-header-phi).
719
720 slpeel_update_phi_nodes_for_guard1 is responsible for
721 creating loop-exit phis in GUARD_BB for names that have a
722 loop-header-phi. When such a phi is created we also record
723 the new name in its current definition. If this new name
724 exists, then guard_arg was set to this new name (see 1.2
725 above). Therefore, if guard_arg is not this new name, this
726 is an indication that an exit-phi in GUARD_BB was not yet
727 created, so we take care of it here. */
728 if (guard_arg == new_name2)
729 continue;
730 arg = guard_arg;
731
732 /* 3.2. Generate new phi node in GUARD_BB: */
733 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
734 guard_edge->src);
735
736 /* 3.3. GUARD_BB has one incoming edge: */
737 gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
738 add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
739 UNKNOWN_LOCATION);
740
741 /* 3.4. Update phi in successor of GUARD_BB: */
742 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
743 == guard_arg);
744 adjust_phi_and_debug_stmts (update_phi2, guard_edge,
745 PHI_RESULT (new_phi));
746 }
747 }
748
749
750 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
751 that starts at zero, increases by one and its limit is NITERS.
752
753 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
754
755 void
756 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
757 {
758 tree indx_before_incr, indx_after_incr;
759 gimple cond_stmt;
760 gimple orig_cond;
761 edge exit_edge = single_exit (loop);
762 gimple_stmt_iterator loop_cond_gsi;
763 gimple_stmt_iterator incr_gsi;
764 bool insert_after;
765 tree init = build_int_cst (TREE_TYPE (niters), 0);
766 tree step = build_int_cst (TREE_TYPE (niters), 1);
767 LOC loop_loc;
768 enum tree_code code;
769
770 orig_cond = get_loop_exit_condition (loop);
771 gcc_assert (orig_cond);
772 loop_cond_gsi = gsi_for_stmt (orig_cond);
773
774 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
775 create_iv (init, step, NULL_TREE, loop,
776 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
777
778 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
779 true, NULL_TREE, true,
780 GSI_SAME_STMT);
781 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
782 true, GSI_SAME_STMT);
783
784 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
785 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
786 NULL_TREE);
787
788 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
789
790 /* Remove old loop exit test: */
791 gsi_remove (&loop_cond_gsi, true);
792
793 loop_loc = find_loop_location (loop);
794 if (dump_file && (dump_flags & TDF_DETAILS))
795 {
796 if (loop_loc != UNKNOWN_LOC)
797 fprintf (dump_file, "\nloop at %s:%d: ",
798 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
799 print_gimple_stmt (dump_file, cond_stmt, 0, TDF_SLIM);
800 }
801
802 loop->nb_iterations = niters;
803 }
804
805
806 /* Given LOOP this function generates a new copy of it and puts it
807 on E which is either the entry or exit of LOOP. */
808
809 struct loop *
810 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, edge e)
811 {
812 struct loop *new_loop;
813 basic_block *new_bbs, *bbs;
814 bool at_exit;
815 bool was_imm_dom;
816 basic_block exit_dest;
817 gimple phi;
818 tree phi_arg;
819 edge exit, new_exit;
820 gimple_stmt_iterator gsi;
821
822 at_exit = (e == single_exit (loop));
823 if (!at_exit && e != loop_preheader_edge (loop))
824 return NULL;
825
826 bbs = get_loop_body (loop);
827
828 /* Check whether duplication is possible. */
829 if (!can_copy_bbs_p (bbs, loop->num_nodes))
830 {
831 free (bbs);
832 return NULL;
833 }
834
835 /* Generate new loop structure. */
836 new_loop = duplicate_loop (loop, loop_outer (loop));
837 if (!new_loop)
838 {
839 free (bbs);
840 return NULL;
841 }
842
843 exit_dest = single_exit (loop)->dest;
844 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
845 exit_dest) == loop->header ?
846 true : false);
847
848 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
849
850 exit = single_exit (loop);
851 copy_bbs (bbs, loop->num_nodes, new_bbs,
852 &exit, 1, &new_exit, NULL,
853 e->src);
854
855 /* Duplicating phi args at exit bbs as coming
856 also from exit of duplicated loop. */
857 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi); gsi_next (&gsi))
858 {
859 phi = gsi_stmt (gsi);
860 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop));
861 if (phi_arg)
862 {
863 edge new_loop_exit_edge;
864 source_location locus;
865
866 locus = gimple_phi_arg_location_from_edge (phi, single_exit (loop));
867 if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch)
868 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1);
869 else
870 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0);
871
872 add_phi_arg (phi, phi_arg, new_loop_exit_edge, locus);
873 }
874 }
875
876 if (at_exit) /* Add the loop copy at exit. */
877 {
878 redirect_edge_and_branch_force (e, new_loop->header);
879 PENDING_STMT (e) = NULL;
880 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
881 if (was_imm_dom)
882 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
883 }
884 else /* Add the copy at entry. */
885 {
886 edge new_exit_e;
887 edge entry_e = loop_preheader_edge (loop);
888 basic_block preheader = entry_e->src;
889
890 if (!flow_bb_inside_loop_p (new_loop,
891 EDGE_SUCC (new_loop->header, 0)->dest))
892 new_exit_e = EDGE_SUCC (new_loop->header, 0);
893 else
894 new_exit_e = EDGE_SUCC (new_loop->header, 1);
895
896 redirect_edge_and_branch_force (new_exit_e, loop->header);
897 PENDING_STMT (new_exit_e) = NULL;
898 set_immediate_dominator (CDI_DOMINATORS, loop->header,
899 new_exit_e->src);
900
901 /* We have to add phi args to the loop->header here as coming
902 from new_exit_e edge. */
903 for (gsi = gsi_start_phis (loop->header);
904 !gsi_end_p (gsi);
905 gsi_next (&gsi))
906 {
907 phi = gsi_stmt (gsi);
908 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e);
909 if (phi_arg)
910 add_phi_arg (phi, phi_arg, new_exit_e,
911 gimple_phi_arg_location_from_edge (phi, entry_e));
912 }
913
914 redirect_edge_and_branch_force (entry_e, new_loop->header);
915 PENDING_STMT (entry_e) = NULL;
916 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
917 }
918
919 free (new_bbs);
920 free (bbs);
921
922 return new_loop;
923 }
924
925
926 /* Given the condition statement COND, put it as the last statement
927 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
928 Assumes that this is the single exit of the guarded loop.
929 Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
930
931 static edge
932 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
933 gimple_seq cond_expr_stmt_list,
934 basic_block exit_bb, basic_block dom_bb)
935 {
936 gimple_stmt_iterator gsi;
937 edge new_e, enter_e;
938 gimple cond_stmt;
939 gimple_seq gimplify_stmt_list = NULL;
940
941 enter_e = EDGE_SUCC (guard_bb, 0);
942 enter_e->flags &= ~EDGE_FALLTHRU;
943 enter_e->flags |= EDGE_FALSE_VALUE;
944 gsi = gsi_last_bb (guard_bb);
945
946 cond = force_gimple_operand (cond, &gimplify_stmt_list, true, NULL_TREE);
947 if (gimplify_stmt_list)
948 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
949 cond_stmt = gimple_build_cond (NE_EXPR,
950 cond, build_int_cst (TREE_TYPE (cond), 0),
951 NULL_TREE, NULL_TREE);
952 if (cond_expr_stmt_list)
953 gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);
954
955 gsi = gsi_last_bb (guard_bb);
956 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
957
958 /* Add new edge to connect guard block to the merge/loop-exit block. */
959 new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
960 set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
961 return new_e;
962 }
963
964
965 /* This function verifies that the following restrictions apply to LOOP:
966 (1) it is innermost
967 (2) it consists of exactly 2 basic blocks - header, and an empty latch.
968 (3) it is single entry, single exit
969 (4) its exit condition is the last stmt in the header
970 (5) E is the entry/exit edge of LOOP.
971 */
972
973 bool
974 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
975 {
976 edge exit_e = single_exit (loop);
977 edge entry_e = loop_preheader_edge (loop);
978 gimple orig_cond = get_loop_exit_condition (loop);
979 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
980
981 if (need_ssa_update_p (cfun))
982 return false;
983
984 if (loop->inner
985 /* All loops have an outer scope; the only case loop->outer is NULL is for
986 the function itself. */
987 || !loop_outer (loop)
988 || loop->num_nodes != 2
989 || !empty_block_p (loop->latch)
990 || !single_exit (loop)
991 /* Verify that new loop exit condition can be trivially modified. */
992 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
993 || (e != exit_e && e != entry_e))
994 return false;
995
996 return true;
997 }
998
999 #ifdef ENABLE_CHECKING
1000 static void
1001 slpeel_verify_cfg_after_peeling (struct loop *first_loop,
1002 struct loop *second_loop)
1003 {
1004 basic_block loop1_exit_bb = single_exit (first_loop)->dest;
1005 basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
1006 basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
1007
1008 /* A guard that controls whether the second_loop is to be executed or skipped
1009 is placed in first_loop->exit. first_loop->exit therefore has two
1010 successors - one is the preheader of second_loop, and the other is a bb
1011 after second_loop.
1012 */
1013 gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
1014
1015 /* 1. Verify that one of the successors of first_loop->exit is the preheader
1016 of second_loop. */
1017
1018 /* The preheader of new_loop is expected to have two predecessors:
1019 first_loop->exit and the block that precedes first_loop. */
1020
1021 gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
1022 && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
1023 && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
1024 || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
1025 && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
1026
1027 /* Verify that the other successor of first_loop->exit is after the
1028 second_loop. */
1029 /* TODO */
1030 }
1031 #endif
1032
1033 /* If the run time cost model check determines that vectorization is
1034 not profitable and hence scalar loop should be generated then set
1035 FIRST_NITERS to prologue peeled iterations. This will allow all the
1036 iterations to be executed in the prologue peeled scalar loop. */
1037
1038 static void
1039 set_prologue_iterations (basic_block bb_before_first_loop,
1040 tree *first_niters,
1041 struct loop *loop,
1042 unsigned int th)
1043 {
1044 edge e;
1045 basic_block cond_bb, then_bb;
1046 tree var, prologue_after_cost_adjust_name;
1047 gimple_stmt_iterator gsi;
1048 gimple newphi;
1049 edge e_true, e_false, e_fallthru;
1050 gimple cond_stmt;
1051 gimple_seq gimplify_stmt_list = NULL, stmts = NULL;
1052 tree cost_pre_condition = NULL_TREE;
1053 tree scalar_loop_iters =
1054 unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
1055
1056 e = single_pred_edge (bb_before_first_loop);
1057 cond_bb = split_edge(e);
1058
1059 e = single_pred_edge (bb_before_first_loop);
1060 then_bb = split_edge(e);
1061 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1062
1063 e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
1064 EDGE_FALSE_VALUE);
1065 set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
1066
1067 e_true = EDGE_PRED (then_bb, 0);
1068 e_true->flags &= ~EDGE_FALLTHRU;
1069 e_true->flags |= EDGE_TRUE_VALUE;
1070
1071 e_fallthru = EDGE_SUCC (then_bb, 0);
1072
1073 cost_pre_condition =
1074 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1075 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1076 cost_pre_condition =
1077 force_gimple_operand (cost_pre_condition, &gimplify_stmt_list,
1078 true, NULL_TREE);
1079 cond_stmt = gimple_build_cond (NE_EXPR, cost_pre_condition,
1080 build_int_cst (TREE_TYPE (cost_pre_condition),
1081 0), NULL_TREE, NULL_TREE);
1082
1083 gsi = gsi_last_bb (cond_bb);
1084 if (gimplify_stmt_list)
1085 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
1086
1087 gsi = gsi_last_bb (cond_bb);
1088 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1089
1090 var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
1091 "prologue_after_cost_adjust");
1092 add_referenced_var (var);
1093 prologue_after_cost_adjust_name =
1094 force_gimple_operand (scalar_loop_iters, &stmts, false, var);
1095
1096 gsi = gsi_last_bb (then_bb);
1097 if (stmts)
1098 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
1099
1100 newphi = create_phi_node (var, bb_before_first_loop);
1101 add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
1102 UNKNOWN_LOCATION);
1103 add_phi_arg (newphi, *first_niters, e_false, UNKNOWN_LOCATION);
1104
1105 *first_niters = PHI_RESULT (newphi);
1106 }
1107
1108 /* Function slpeel_tree_peel_loop_to_edge.
1109
1110 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
1111 that is placed on the entry (exit) edge E of LOOP. After this transformation
1112 we have two loops one after the other - first-loop iterates FIRST_NITERS
1113 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
1114 If the cost model indicates that it is profitable to emit a scalar
1115 loop instead of the vector one, then the prolog (epilog) loop will iterate
1116 for the entire unchanged scalar iterations of the loop.
1117
1118 Input:
1119 - LOOP: the loop to be peeled.
1120 - E: the exit or entry edge of LOOP.
1121 If it is the entry edge, we peel the first iterations of LOOP. In this
1122 case first-loop is LOOP, and second-loop is the newly created loop.
1123 If it is the exit edge, we peel the last iterations of LOOP. In this
1124 case, first-loop is the newly created loop, and second-loop is LOOP.
1125 - NITERS: the number of iterations that LOOP iterates.
1126 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1127 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
1128 for updating the loop bound of the first-loop to FIRST_NITERS. If it
1129 is false, the caller of this function may want to take care of this
1130 (this can be useful if we don't want new stmts added to first-loop).
1131 - TH: cost model profitability threshold of iterations for vectorization.
1132 - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1133 during versioning and hence needs to occur during
1134 prologue generation or whether cost model check
1135 has not occurred during prologue generation and hence
1136 needs to occur during epilogue generation.
1137
1138
1139 Output:
1140 The function returns a pointer to the new loop-copy, or NULL if it failed
1141 to perform the transformation.
1142
1143 The function generates two if-then-else guards: one before the first loop,
1144 and the other before the second loop:
1145 The first guard is:
1146 if (FIRST_NITERS == 0) then skip the first loop,
1147 and go directly to the second loop.
1148 The second guard is:
1149 if (FIRST_NITERS == NITERS) then skip the second loop.
1150
1151 If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
1152 then the generated condition is combined with COND_EXPR and the
1153 statements in COND_EXPR_STMT_LIST are emitted together with it.
1154
1155 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1156 FORNOW the resulting code will not be in loop-closed-ssa form.
1157 */
1158
1159 static struct loop*
1160 slpeel_tree_peel_loop_to_edge (struct loop *loop,
1161 edge e, tree *first_niters,
1162 tree niters, bool update_first_loop_count,
1163 unsigned int th, bool check_profitability,
1164 tree cond_expr, gimple_seq cond_expr_stmt_list)
1165 {
1166 struct loop *new_loop = NULL, *first_loop, *second_loop;
1167 edge skip_e;
1168 tree pre_condition = NULL_TREE;
1169 bitmap definitions;
1170 basic_block bb_before_second_loop, bb_after_second_loop;
1171 basic_block bb_before_first_loop;
1172 basic_block bb_between_loops;
1173 basic_block new_exit_bb;
1174 gimple_stmt_iterator gsi;
1175 edge exit_e = single_exit (loop);
1176 LOC loop_loc;
1177 tree cost_pre_condition = NULL_TREE;
1178
1179 if (!slpeel_can_duplicate_loop_p (loop, e))
1180 return NULL;
1181
1182 /* We have to initialize cfg_hooks. Then, when calling
1183 cfg_hooks->split_edge, the function tree_split_edge
1184 is actually called and, when calling cfg_hooks->duplicate_block,
1185 the function tree_duplicate_bb is called. */
1186 gimple_register_cfg_hooks ();
1187
1188 /* If the loop has a virtual PHI, but exit bb doesn't, create a virtual PHI
1189 in the exit bb and rename all the uses after the loop. This simplifies
1190 the *guard[12] routines, which assume loop closed SSA form for all PHIs
1191 (but normally loop closed SSA form doesn't require virtual PHIs to be
1192 in the same form). Doing this early simplifies the checking what
1193 uses should be renamed. */
1194 for (gsi = gsi_start_phis (loop->header); !gsi_end_p (gsi); gsi_next (&gsi))
1195 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
1196 {
1197 gimple phi = gsi_stmt (gsi);
1198 for (gsi = gsi_start_phis (exit_e->dest);
1199 !gsi_end_p (gsi); gsi_next (&gsi))
1200 if (!is_gimple_reg (gimple_phi_result (gsi_stmt (gsi))))
1201 break;
1202 if (gsi_end_p (gsi))
1203 {
1204 gimple new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (phi)),
1205 exit_e->dest);
1206 tree vop = PHI_ARG_DEF_FROM_EDGE (phi, EDGE_SUCC (loop->latch, 0));
1207 imm_use_iterator imm_iter;
1208 gimple stmt;
1209 tree new_vop = make_ssa_name (SSA_NAME_VAR (PHI_RESULT (phi)),
1210 new_phi);
1211 use_operand_p use_p;
1212
1213 add_phi_arg (new_phi, vop, exit_e, UNKNOWN_LOCATION);
1214 gimple_phi_set_result (new_phi, new_vop);
1215 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, vop)
1216 if (stmt != new_phi && gimple_bb (stmt) != loop->header)
1217 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
1218 SET_USE (use_p, new_vop);
1219 }
1220 break;
1221 }
1222
1223 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1224 Resulting CFG would be:
1225
1226 first_loop:
1227 do {
1228 } while ...
1229
1230 second_loop:
1231 do {
1232 } while ...
1233
1234 orig_exit_bb:
1235 */
1236
1237 if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e)))
1238 {
1239 loop_loc = find_loop_location (loop);
1240 if (dump_file && (dump_flags & TDF_DETAILS))
1241 {
1242 if (loop_loc != UNKNOWN_LOC)
1243 fprintf (dump_file, "\n%s:%d: note: ",
1244 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
1245 fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n");
1246 }
1247 return NULL;
1248 }
1249
1250 if (MAY_HAVE_DEBUG_STMTS)
1251 {
1252 gcc_assert (!adjust_vec);
1253 adjust_vec = VEC_alloc (adjust_info, stack, 32);
1254 }
1255
1256 if (e == exit_e)
1257 {
1258 /* NEW_LOOP was placed after LOOP. */
1259 first_loop = loop;
1260 second_loop = new_loop;
1261 }
1262 else
1263 {
1264 /* NEW_LOOP was placed before LOOP. */
1265 first_loop = new_loop;
1266 second_loop = loop;
1267 }
1268
1269 definitions = ssa_names_to_replace ();
1270 slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
1271 rename_variables_in_loop (new_loop);
1272
1273
1274 /* 2. Add the guard code in one of the following ways:
1275
1276 2.a Add the guard that controls whether the first loop is executed.
1277 This occurs when this function is invoked for prologue or epilogue
1278 generation and when the cost model check can be done at compile time.
1279
1280 Resulting CFG would be:
1281
1282 bb_before_first_loop:
1283 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1284 GOTO first-loop
1285
1286 first_loop:
1287 do {
1288 } while ...
1289
1290 bb_before_second_loop:
1291
1292 second_loop:
1293 do {
1294 } while ...
1295
1296 orig_exit_bb:
1297
1298 2.b Add the cost model check that allows the prologue
1299 to iterate for the entire unchanged scalar
1300 iterations of the loop in the event that the cost
1301 model indicates that the scalar loop is more
1302 profitable than the vector one. This occurs when
1303 this function is invoked for prologue generation
1304 and the cost model check needs to be done at run
1305 time.
1306
1307 Resulting CFG after prologue peeling would be:
1308
1309 if (scalar_loop_iterations <= th)
1310 FIRST_NITERS = scalar_loop_iterations
1311
1312 bb_before_first_loop:
1313 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1314 GOTO first-loop
1315
1316 first_loop:
1317 do {
1318 } while ...
1319
1320 bb_before_second_loop:
1321
1322 second_loop:
1323 do {
1324 } while ...
1325
1326 orig_exit_bb:
1327
1328 2.c Add the cost model check that allows the epilogue
1329 to iterate for the entire unchanged scalar
1330 iterations of the loop in the event that the cost
1331 model indicates that the scalar loop is more
1332 profitable than the vector one. This occurs when
1333 this function is invoked for epilogue generation
1334 and the cost model check needs to be done at run
1335 time. This check is combined with any pre-existing
1336 check in COND_EXPR to avoid versioning.
1337
1338 Resulting CFG after prologue peeling would be:
1339
1340 bb_before_first_loop:
1341 if ((scalar_loop_iterations <= th)
1342 ||
1343 FIRST_NITERS == 0) GOTO bb_before_second_loop
1344 GOTO first-loop
1345
1346 first_loop:
1347 do {
1348 } while ...
1349
1350 bb_before_second_loop:
1351
1352 second_loop:
1353 do {
1354 } while ...
1355
1356 orig_exit_bb:
1357 */
1358
1359 bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
1360 bb_before_second_loop = split_edge (single_exit (first_loop));
1361
1362 /* Epilogue peeling. */
1363 if (!update_first_loop_count)
1364 {
1365 pre_condition =
1366 fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
1367 build_int_cst (TREE_TYPE (*first_niters), 0));
1368 if (check_profitability)
1369 {
1370 tree scalar_loop_iters
1371 = unshare_expr (LOOP_VINFO_NITERS_UNCHANGED
1372 (loop_vec_info_for_loop (loop)));
1373 cost_pre_condition =
1374 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1375 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1376
1377 pre_condition = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1378 cost_pre_condition, pre_condition);
1379 }
1380 if (cond_expr)
1381 {
1382 pre_condition =
1383 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1384 pre_condition,
1385 fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
1386 cond_expr));
1387 }
1388 }
1389
1390 /* Prologue peeling. */
1391 else
1392 {
1393 if (check_profitability)
1394 set_prologue_iterations (bb_before_first_loop, first_niters,
1395 loop, th);
1396
1397 pre_condition =
1398 fold_build2 (LE_EXPR, boolean_type_node, *first_niters,
1399 build_int_cst (TREE_TYPE (*first_niters), 0));
1400 }
1401
1402 skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
1403 cond_expr_stmt_list,
1404 bb_before_second_loop, bb_before_first_loop);
1405 slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1406 first_loop == new_loop,
1407 &new_exit_bb, &definitions);
1408
1409
1410 /* 3. Add the guard that controls whether the second loop is executed.
1411 Resulting CFG would be:
1412
1413 bb_before_first_loop:
1414 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1415 GOTO first-loop
1416
1417 first_loop:
1418 do {
1419 } while ...
1420
1421 bb_between_loops:
1422 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1423 GOTO bb_before_second_loop
1424
1425 bb_before_second_loop:
1426
1427 second_loop:
1428 do {
1429 } while ...
1430
1431 bb_after_second_loop:
1432
1433 orig_exit_bb:
1434 */
1435
1436 bb_between_loops = new_exit_bb;
1437 bb_after_second_loop = split_edge (single_exit (second_loop));
1438
1439 pre_condition =
1440 fold_build2 (EQ_EXPR, boolean_type_node, *first_niters, niters);
1441 skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
1442 bb_after_second_loop, bb_before_first_loop);
1443 slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1444 second_loop == new_loop, &new_exit_bb);
1445
1446 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1447 */
1448 if (update_first_loop_count)
1449 slpeel_make_loop_iterate_ntimes (first_loop, *first_niters);
1450
1451 BITMAP_FREE (definitions);
1452 delete_update_ssa ();
1453
1454 adjust_vec_debug_stmts ();
1455
1456 return new_loop;
1457 }
1458
1459 /* Function vect_get_loop_location.
1460
1461 Extract the location of the loop in the source code.
1462 If the loop is not well formed for vectorization, an estimated
1463 location is calculated.
1464 Return the loop location if succeed and NULL if not. */
1465
1466 LOC
1467 find_loop_location (struct loop *loop)
1468 {
1469 gimple stmt = NULL;
1470 basic_block bb;
1471 gimple_stmt_iterator si;
1472
1473 if (!loop)
1474 return UNKNOWN_LOC;
1475
1476 stmt = get_loop_exit_condition (loop);
1477
1478 if (stmt && gimple_location (stmt) != UNKNOWN_LOC)
1479 return gimple_location (stmt);
1480
1481 /* If we got here the loop is probably not "well formed",
1482 try to estimate the loop location */
1483
1484 if (!loop->header)
1485 return UNKNOWN_LOC;
1486
1487 bb = loop->header;
1488
1489 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1490 {
1491 stmt = gsi_stmt (si);
1492 if (gimple_location (stmt) != UNKNOWN_LOC)
1493 return gimple_location (stmt);
1494 }
1495
1496 return UNKNOWN_LOC;
1497 }
1498
1499
1500 /* This function builds ni_name = number of iterations loop executes
1501 on the loop preheader. If SEQ is given the stmt is instead emitted
1502 there. */
1503
1504 static tree
1505 vect_build_loop_niters (loop_vec_info loop_vinfo, gimple_seq seq)
1506 {
1507 tree ni_name, var;
1508 gimple_seq stmts = NULL;
1509 edge pe;
1510 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1511 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
1512
1513 var = create_tmp_var (TREE_TYPE (ni), "niters");
1514 add_referenced_var (var);
1515 ni_name = force_gimple_operand (ni, &stmts, false, var);
1516
1517 pe = loop_preheader_edge (loop);
1518 if (stmts)
1519 {
1520 if (seq)
1521 gimple_seq_add_seq (&seq, stmts);
1522 else
1523 {
1524 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1525 gcc_assert (!new_bb);
1526 }
1527 }
1528
1529 return ni_name;
1530 }
1531
1532
1533 /* This function generates the following statements:
1534
1535 ni_name = number of iterations loop executes
1536 ratio = ni_name / vf
1537 ratio_mult_vf_name = ratio * vf
1538
1539 and places them at the loop preheader edge or in COND_EXPR_STMT_LIST
1540 if that is non-NULL. */
1541
1542 static void
1543 vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
1544 tree *ni_name_ptr,
1545 tree *ratio_mult_vf_name_ptr,
1546 tree *ratio_name_ptr,
1547 gimple_seq cond_expr_stmt_list)
1548 {
1549
1550 edge pe;
1551 basic_block new_bb;
1552 gimple_seq stmts;
1553 tree ni_name, ni_minus_gap_name;
1554 tree var;
1555 tree ratio_name;
1556 tree ratio_mult_vf_name;
1557 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1558 tree ni = LOOP_VINFO_NITERS (loop_vinfo);
1559 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1560 tree log_vf;
1561
1562 pe = loop_preheader_edge (loop);
1563
1564 /* Generate temporary variable that contains
1565 number of iterations loop executes. */
1566
1567 ni_name = vect_build_loop_niters (loop_vinfo, cond_expr_stmt_list);
1568 log_vf = build_int_cst (TREE_TYPE (ni), exact_log2 (vf));
1569
1570 /* If epilogue loop is required because of data accesses with gaps, we
1571 subtract one iteration from the total number of iterations here for
1572 correct calculation of RATIO. */
1573 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
1574 {
1575 ni_minus_gap_name = fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
1576 ni_name,
1577 build_one_cst (TREE_TYPE (ni_name)));
1578 if (!is_gimple_val (ni_minus_gap_name))
1579 {
1580 var = create_tmp_var (TREE_TYPE (ni), "ni_gap");
1581 add_referenced_var (var);
1582
1583 stmts = NULL;
1584 ni_minus_gap_name = force_gimple_operand (ni_minus_gap_name, &stmts,
1585 true, var);
1586 if (cond_expr_stmt_list)
1587 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1588 else
1589 {
1590 pe = loop_preheader_edge (loop);
1591 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1592 gcc_assert (!new_bb);
1593 }
1594 }
1595 }
1596 else
1597 ni_minus_gap_name = ni_name;
1598
1599 /* Create: ratio = ni >> log2(vf) */
1600
1601 ratio_name = fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_minus_gap_name),
1602 ni_minus_gap_name, log_vf);
1603 if (!is_gimple_val (ratio_name))
1604 {
1605 var = create_tmp_var (TREE_TYPE (ni), "bnd");
1606 add_referenced_var (var);
1607
1608 stmts = NULL;
1609 ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
1610 if (cond_expr_stmt_list)
1611 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1612 else
1613 {
1614 pe = loop_preheader_edge (loop);
1615 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1616 gcc_assert (!new_bb);
1617 }
1618 }
1619
1620 /* Create: ratio_mult_vf = ratio << log2 (vf). */
1621
1622 ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
1623 ratio_name, log_vf);
1624 if (!is_gimple_val (ratio_mult_vf_name))
1625 {
1626 var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
1627 add_referenced_var (var);
1628
1629 stmts = NULL;
1630 ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
1631 true, var);
1632 if (cond_expr_stmt_list)
1633 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1634 else
1635 {
1636 pe = loop_preheader_edge (loop);
1637 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1638 gcc_assert (!new_bb);
1639 }
1640 }
1641
1642 *ni_name_ptr = ni_name;
1643 *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
1644 *ratio_name_ptr = ratio_name;
1645
1646 return;
1647 }
1648
1649 /* Function vect_can_advance_ivs_p
1650
1651 In case the number of iterations that LOOP iterates is unknown at compile
1652 time, an epilog loop will be generated, and the loop induction variables
1653 (IVs) will be "advanced" to the value they are supposed to take just before
1654 the epilog loop. Here we check that the access function of the loop IVs
1655 and the expression that represents the loop bound are simple enough.
1656 These restrictions will be relaxed in the future. */
1657
1658 bool
1659 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1660 {
1661 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1662 basic_block bb = loop->header;
1663 gimple phi;
1664 gimple_stmt_iterator gsi;
1665
1666 /* Analyze phi functions of the loop header. */
1667
1668 if (vect_print_dump_info (REPORT_DETAILS))
1669 fprintf (vect_dump, "vect_can_advance_ivs_p:");
1670
1671 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1672 {
1673 tree access_fn = NULL;
1674 tree evolution_part;
1675
1676 phi = gsi_stmt (gsi);
1677 if (vect_print_dump_info (REPORT_DETAILS))
1678 {
1679 fprintf (vect_dump, "Analyze phi: ");
1680 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1681 }
1682
1683 /* Skip virtual phi's. The data dependences that are associated with
1684 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
1685
1686 if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
1687 {
1688 if (vect_print_dump_info (REPORT_DETAILS))
1689 fprintf (vect_dump, "virtual phi. skip.");
1690 continue;
1691 }
1692
1693 /* Skip reduction phis. */
1694
1695 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1696 {
1697 if (vect_print_dump_info (REPORT_DETAILS))
1698 fprintf (vect_dump, "reduc phi. skip.");
1699 continue;
1700 }
1701
1702 /* Analyze the evolution function. */
1703
1704 access_fn = instantiate_parameters
1705 (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
1706
1707 if (!access_fn)
1708 {
1709 if (vect_print_dump_info (REPORT_DETAILS))
1710 fprintf (vect_dump, "No Access function.");
1711 return false;
1712 }
1713
1714 if (vect_print_dump_info (REPORT_DETAILS))
1715 {
1716 fprintf (vect_dump, "Access function of PHI: ");
1717 print_generic_expr (vect_dump, access_fn, TDF_SLIM);
1718 }
1719
1720 evolution_part = evolution_part_in_loop_num (access_fn, loop->num);
1721
1722 if (evolution_part == NULL_TREE)
1723 {
1724 if (vect_print_dump_info (REPORT_DETAILS))
1725 fprintf (vect_dump, "No evolution.");
1726 return false;
1727 }
1728
1729 /* FORNOW: We do not transform initial conditions of IVs
1730 which evolution functions are a polynomial of degree >= 2. */
1731
1732 if (tree_is_chrec (evolution_part))
1733 return false;
1734 }
1735
1736 return true;
1737 }
1738
1739
1740 /* Function vect_update_ivs_after_vectorizer.
1741
1742 "Advance" the induction variables of LOOP to the value they should take
1743 after the execution of LOOP. This is currently necessary because the
1744 vectorizer does not handle induction variables that are used after the
1745 loop. Such a situation occurs when the last iterations of LOOP are
1746 peeled, because:
1747 1. We introduced new uses after LOOP for IVs that were not originally used
1748 after LOOP: the IVs of LOOP are now used by an epilog loop.
1749 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1750 times, whereas the loop IVs should be bumped N times.
1751
1752 Input:
1753 - LOOP - a loop that is going to be vectorized. The last few iterations
1754 of LOOP were peeled.
1755 - NITERS - the number of iterations that LOOP executes (before it is
1756 vectorized). i.e, the number of times the ivs should be bumped.
1757 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1758 coming out from LOOP on which there are uses of the LOOP ivs
1759 (this is the path from LOOP->exit to epilog_loop->preheader).
1760
1761 The new definitions of the ivs are placed in LOOP->exit.
1762 The phi args associated with the edge UPDATE_E in the bb
1763 UPDATE_E->dest are updated accordingly.
1764
1765 Assumption 1: Like the rest of the vectorizer, this function assumes
1766 a single loop exit that has a single predecessor.
1767
1768 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1769 organized in the same order.
1770
1771 Assumption 3: The access function of the ivs is simple enough (see
1772 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1773
1774 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1775 coming out of LOOP on which the ivs of LOOP are used (this is the path
1776 that leads to the epilog loop; other paths skip the epilog loop). This
1777 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1778 needs to have its phis updated.
1779 */
1780
1781 static void
1782 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
1783 edge update_e)
1784 {
1785 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1786 basic_block exit_bb = single_exit (loop)->dest;
1787 gimple phi, phi1;
1788 gimple_stmt_iterator gsi, gsi1;
1789 basic_block update_bb = update_e->dest;
1790
1791 /* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */
1792
1793 /* Make sure there exists a single-predecessor exit bb: */
1794 gcc_assert (single_pred_p (exit_bb));
1795
1796 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1797 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1798 gsi_next (&gsi), gsi_next (&gsi1))
1799 {
1800 tree access_fn = NULL;
1801 tree evolution_part;
1802 tree init_expr;
1803 tree step_expr, off;
1804 tree type;
1805 tree var, ni, ni_name;
1806 gimple_stmt_iterator last_gsi;
1807
1808 phi = gsi_stmt (gsi);
1809 phi1 = gsi_stmt (gsi1);
1810 if (vect_print_dump_info (REPORT_DETAILS))
1811 {
1812 fprintf (vect_dump, "vect_update_ivs_after_vectorizer: phi: ");
1813 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1814 }
1815
1816 /* Skip virtual phi's. */
1817 if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
1818 {
1819 if (vect_print_dump_info (REPORT_DETAILS))
1820 fprintf (vect_dump, "virtual phi. skip.");
1821 continue;
1822 }
1823
1824 /* Skip reduction phis. */
1825 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1826 {
1827 if (vect_print_dump_info (REPORT_DETAILS))
1828 fprintf (vect_dump, "reduc phi. skip.");
1829 continue;
1830 }
1831
1832 access_fn = analyze_scalar_evolution (loop, PHI_RESULT (phi));
1833 gcc_assert (access_fn);
1834 /* We can end up with an access_fn like
1835 (short int) {(short unsigned int) i_49, +, 1}_1
1836 for further analysis we need to strip the outer cast but we
1837 need to preserve the original type. */
1838 type = TREE_TYPE (access_fn);
1839 STRIP_NOPS (access_fn);
1840 evolution_part =
1841 unshare_expr (evolution_part_in_loop_num (access_fn, loop->num));
1842 gcc_assert (evolution_part != NULL_TREE);
1843
1844 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1845 of degree >= 2 or exponential. */
1846 gcc_assert (!tree_is_chrec (evolution_part));
1847
1848 step_expr = evolution_part;
1849 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn,
1850 loop->num));
1851 init_expr = fold_convert (type, init_expr);
1852
1853 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1854 fold_convert (TREE_TYPE (step_expr), niters),
1855 step_expr);
1856 if (POINTER_TYPE_P (TREE_TYPE (init_expr)))
1857 ni = fold_build_pointer_plus (init_expr, off);
1858 else
1859 ni = fold_build2 (PLUS_EXPR, TREE_TYPE (init_expr),
1860 init_expr,
1861 fold_convert (TREE_TYPE (init_expr), off));
1862
1863 var = create_tmp_var (TREE_TYPE (init_expr), "tmp");
1864 add_referenced_var (var);
1865
1866 last_gsi = gsi_last_bb (exit_bb);
1867 ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
1868 true, GSI_SAME_STMT);
1869
1870 /* Fix phi expressions in the successor bb. */
1871 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
1872 }
1873 }
1874
1875 /* Return the more conservative threshold between the
1876 min_profitable_iters returned by the cost model and the user
1877 specified threshold, if provided. */
1878
1879 static unsigned int
1880 conservative_cost_threshold (loop_vec_info loop_vinfo,
1881 int min_profitable_iters)
1882 {
1883 unsigned int th;
1884 int min_scalar_loop_bound;
1885
1886 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1887 * LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 1);
1888
1889 /* Use the cost model only if it is more conservative than user specified
1890 threshold. */
1891 th = (unsigned) min_scalar_loop_bound;
1892 if (min_profitable_iters
1893 && (!min_scalar_loop_bound
1894 || min_profitable_iters > min_scalar_loop_bound))
1895 th = (unsigned) min_profitable_iters;
1896
1897 if (th && vect_print_dump_info (REPORT_COST))
1898 fprintf (vect_dump, "Profitability threshold is %u loop iterations.", th);
1899
1900 return th;
1901 }
1902
1903 /* Function vect_do_peeling_for_loop_bound
1904
1905 Peel the last iterations of the loop represented by LOOP_VINFO.
1906 The peeled iterations form a new epilog loop. Given that the loop now
1907 iterates NITERS times, the new epilog loop iterates
1908 NITERS % VECTORIZATION_FACTOR times.
1909
1910 The original loop will later be made to iterate
1911 NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
1912
1913 COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
1914 test. */
1915
1916 void
1917 vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
1918 tree cond_expr, gimple_seq cond_expr_stmt_list)
1919 {
1920 tree ni_name, ratio_mult_vf_name;
1921 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1922 struct loop *new_loop;
1923 edge update_e;
1924 basic_block preheader;
1925 int loop_num;
1926 bool check_profitability = false;
1927 unsigned int th = 0;
1928 int min_profitable_iters;
1929
1930 if (vect_print_dump_info (REPORT_DETAILS))
1931 fprintf (vect_dump, "=== vect_do_peeling_for_loop_bound ===");
1932
1933 initialize_original_copy_tables ();
1934
1935 /* Generate the following variables on the preheader of original loop:
1936
1937 ni_name = number of iteration the original loop executes
1938 ratio = ni_name / vf
1939 ratio_mult_vf_name = ratio * vf */
1940 vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
1941 &ratio_mult_vf_name, ratio,
1942 cond_expr_stmt_list);
1943
1944 loop_num = loop->num;
1945
1946 /* If cost model check not done during versioning and
1947 peeling for alignment. */
1948 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
1949 && !LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo)
1950 && !LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo)
1951 && !cond_expr)
1952 {
1953 check_profitability = true;
1954
1955 /* Get profitability threshold for vectorized loop. */
1956 min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
1957
1958 th = conservative_cost_threshold (loop_vinfo,
1959 min_profitable_iters);
1960 }
1961
1962 new_loop = slpeel_tree_peel_loop_to_edge (loop, single_exit (loop),
1963 &ratio_mult_vf_name, ni_name, false,
1964 th, check_profitability,
1965 cond_expr, cond_expr_stmt_list);
1966 gcc_assert (new_loop);
1967 gcc_assert (loop_num == loop->num);
1968 #ifdef ENABLE_CHECKING
1969 slpeel_verify_cfg_after_peeling (loop, new_loop);
1970 #endif
1971
1972 /* A guard that controls whether the new_loop is to be executed or skipped
1973 is placed in LOOP->exit. LOOP->exit therefore has two successors - one
1974 is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
1975 is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
1976 is on the path where the LOOP IVs are used and need to be updated. */
1977
1978 preheader = loop_preheader_edge (new_loop)->src;
1979 if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
1980 update_e = EDGE_PRED (preheader, 0);
1981 else
1982 update_e = EDGE_PRED (preheader, 1);
1983
1984 /* Update IVs of original loop as if they were advanced
1985 by ratio_mult_vf_name steps. */
1986 vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
1987
1988 /* After peeling we have to reset scalar evolution analyzer. */
1989 scev_reset ();
1990
1991 free_original_copy_tables ();
1992 }
1993
1994
1995 /* Function vect_gen_niters_for_prolog_loop
1996
1997 Set the number of iterations for the loop represented by LOOP_VINFO
1998 to the minimum between LOOP_NITERS (the original iteration count of the loop)
1999 and the misalignment of DR - the data reference recorded in
2000 LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
2001 this loop, the data reference DR will refer to an aligned location.
2002
2003 The following computation is generated:
2004
2005 If the misalignment of DR is known at compile time:
2006 addr_mis = int mis = DR_MISALIGNMENT (dr);
2007 Else, compute address misalignment in bytes:
2008 addr_mis = addr & (vectype_size - 1)
2009
2010 prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
2011
2012 (elem_size = element type size; an element is the scalar element whose type
2013 is the inner type of the vectype)
2014
2015 When the step of the data-ref in the loop is not 1 (as in interleaved data
2016 and SLP), the number of iterations of the prolog must be divided by the step
2017 (which is equal to the size of interleaved group).
2018
2019 The above formulas assume that VF == number of elements in the vector. This
2020 may not hold when there are multiple-types in the loop.
2021 In this case, for some data-references in the loop the VF does not represent
2022 the number of elements that fit in the vector. Therefore, instead of VF we
2023 use TYPE_VECTOR_SUBPARTS. */
2024
2025 static tree
2026 vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters)
2027 {
2028 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2029 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2030 tree var;
2031 gimple_seq stmts;
2032 tree iters, iters_name;
2033 edge pe;
2034 basic_block new_bb;
2035 gimple dr_stmt = DR_STMT (dr);
2036 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
2037 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2038 int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
2039 tree niters_type = TREE_TYPE (loop_niters);
2040 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
2041
2042 pe = loop_preheader_edge (loop);
2043
2044 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2045 {
2046 int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
2047
2048 if (vect_print_dump_info (REPORT_DETAILS))
2049 fprintf (vect_dump, "known peeling = %d.", npeel);
2050
2051 iters = build_int_cst (niters_type, npeel);
2052 }
2053 else
2054 {
2055 gimple_seq new_stmts = NULL;
2056 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
2057 tree offset = negative
2058 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
2059 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
2060 &new_stmts, offset, loop);
2061 tree type = unsigned_type_for (TREE_TYPE (start_addr));
2062 tree vectype_size_minus_1 = build_int_cst (type, vectype_align - 1);
2063 tree elem_size_log =
2064 build_int_cst (type, exact_log2 (vectype_align/nelements));
2065 tree nelements_minus_1 = build_int_cst (type, nelements - 1);
2066 tree nelements_tree = build_int_cst (type, nelements);
2067 tree byte_misalign;
2068 tree elem_misalign;
2069
2070 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
2071 gcc_assert (!new_bb);
2072
2073 /* Create: byte_misalign = addr & (vectype_size - 1) */
2074 byte_misalign =
2075 fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
2076 vectype_size_minus_1);
2077
2078 /* Create: elem_misalign = byte_misalign / element_size */
2079 elem_misalign =
2080 fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
2081
2082 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
2083 if (negative)
2084 iters = fold_build2 (MINUS_EXPR, type, elem_misalign, nelements_tree);
2085 else
2086 iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
2087 iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
2088 iters = fold_convert (niters_type, iters);
2089 }
2090
2091 /* Create: prolog_loop_niters = min (iters, loop_niters) */
2092 /* If the loop bound is known at compile time we already verified that it is
2093 greater than vf; since the misalignment ('iters') is at most vf, there's
2094 no need to generate the MIN_EXPR in this case. */
2095 if (TREE_CODE (loop_niters) != INTEGER_CST)
2096 iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
2097
2098 if (vect_print_dump_info (REPORT_DETAILS))
2099 {
2100 fprintf (vect_dump, "niters for prolog loop: ");
2101 print_generic_expr (vect_dump, iters, TDF_SLIM);
2102 }
2103
2104 var = create_tmp_var (niters_type, "prolog_loop_niters");
2105 add_referenced_var (var);
2106 stmts = NULL;
2107 iters_name = force_gimple_operand (iters, &stmts, false, var);
2108
2109 /* Insert stmt on loop preheader edge. */
2110 if (stmts)
2111 {
2112 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
2113 gcc_assert (!new_bb);
2114 }
2115
2116 return iters_name;
2117 }
2118
2119
2120 /* Function vect_update_init_of_dr
2121
2122 NITERS iterations were peeled from LOOP. DR represents a data reference
2123 in LOOP. This function updates the information recorded in DR to
2124 account for the fact that the first NITERS iterations had already been
2125 executed. Specifically, it updates the OFFSET field of DR. */
2126
2127 static void
2128 vect_update_init_of_dr (struct data_reference *dr, tree niters)
2129 {
2130 tree offset = DR_OFFSET (dr);
2131
2132 niters = fold_build2 (MULT_EXPR, sizetype,
2133 fold_convert (sizetype, niters),
2134 fold_convert (sizetype, DR_STEP (dr)));
2135 offset = fold_build2 (PLUS_EXPR, sizetype,
2136 fold_convert (sizetype, offset), niters);
2137 DR_OFFSET (dr) = offset;
2138 }
2139
2140
2141 /* Function vect_update_inits_of_drs
2142
2143 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
2144 This function updates the information recorded for the data references in
2145 the loop to account for the fact that the first NITERS iterations had
2146 already been executed. Specifically, it updates the initial_condition of
2147 the access_function of all the data_references in the loop. */
2148
2149 static void
2150 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
2151 {
2152 unsigned int i;
2153 VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2154 struct data_reference *dr;
2155
2156 if (vect_print_dump_info (REPORT_DETAILS))
2157 fprintf (vect_dump, "=== vect_update_inits_of_dr ===");
2158
2159 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
2160 vect_update_init_of_dr (dr, niters);
2161 }
2162
2163
2164 /* Function vect_do_peeling_for_alignment
2165
2166 Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
2167 'niters' is set to the misalignment of one of the data references in the
2168 loop, thereby forcing it to refer to an aligned location at the beginning
2169 of the execution of this loop. The data reference for which we are
2170 peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
2171
2172 void
2173 vect_do_peeling_for_alignment (loop_vec_info loop_vinfo)
2174 {
2175 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2176 tree niters_of_prolog_loop, ni_name;
2177 tree n_iters;
2178 tree wide_prolog_niters;
2179 struct loop *new_loop;
2180 unsigned int th = 0;
2181 int min_profitable_iters;
2182
2183 if (vect_print_dump_info (REPORT_DETAILS))
2184 fprintf (vect_dump, "=== vect_do_peeling_for_alignment ===");
2185
2186 initialize_original_copy_tables ();
2187
2188 ni_name = vect_build_loop_niters (loop_vinfo, NULL);
2189 niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo,
2190 ni_name);
2191
2192 /* Get profitability threshold for vectorized loop. */
2193 min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
2194 th = conservative_cost_threshold (loop_vinfo,
2195 min_profitable_iters);
2196
2197 /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
2198 new_loop =
2199 slpeel_tree_peel_loop_to_edge (loop, loop_preheader_edge (loop),
2200 &niters_of_prolog_loop, ni_name, true,
2201 th, true, NULL_TREE, NULL);
2202
2203 gcc_assert (new_loop);
2204 #ifdef ENABLE_CHECKING
2205 slpeel_verify_cfg_after_peeling (new_loop, loop);
2206 #endif
2207
2208 /* Update number of times loop executes. */
2209 n_iters = LOOP_VINFO_NITERS (loop_vinfo);
2210 LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
2211 TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);
2212
2213 if (types_compatible_p (sizetype, TREE_TYPE (niters_of_prolog_loop)))
2214 wide_prolog_niters = niters_of_prolog_loop;
2215 else
2216 {
2217 gimple_seq seq = NULL;
2218 edge pe = loop_preheader_edge (loop);
2219 tree wide_iters = fold_convert (sizetype, niters_of_prolog_loop);
2220 tree var = create_tmp_var (sizetype, "prolog_loop_adjusted_niters");
2221 add_referenced_var (var);
2222 wide_prolog_niters = force_gimple_operand (wide_iters, &seq, false,
2223 var);
2224 if (seq)
2225 {
2226 /* Insert stmt on loop preheader edge. */
2227 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
2228 gcc_assert (!new_bb);
2229 }
2230 }
2231
2232 /* Update the init conditions of the access functions of all data refs. */
2233 vect_update_inits_of_drs (loop_vinfo, wide_prolog_niters);
2234
2235 /* After peeling we have to reset scalar evolution analyzer. */
2236 scev_reset ();
2237
2238 free_original_copy_tables ();
2239 }
2240
2241
2242 /* Function vect_create_cond_for_align_checks.
2243
2244 Create a conditional expression that represents the alignment checks for
2245 all of data references (array element references) whose alignment must be
2246 checked at runtime.
2247
2248 Input:
2249 COND_EXPR - input conditional expression. New conditions will be chained
2250 with logical AND operation.
2251 LOOP_VINFO - two fields of the loop information are used.
2252 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2253 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2254
2255 Output:
2256 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2257 expression.
2258 The returned value is the conditional expression to be used in the if
2259 statement that controls which version of the loop gets executed at runtime.
2260
2261 The algorithm makes two assumptions:
2262 1) The number of bytes "n" in a vector is a power of 2.
2263 2) An address "a" is aligned if a%n is zero and that this
2264 test can be done as a&(n-1) == 0. For example, for 16
2265 byte vectors the test is a&0xf == 0. */
2266
2267 static void
2268 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2269 tree *cond_expr,
2270 gimple_seq *cond_expr_stmt_list)
2271 {
2272 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2273 VEC(gimple,heap) *may_misalign_stmts
2274 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2275 gimple ref_stmt;
2276 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2277 tree mask_cst;
2278 unsigned int i;
2279 tree int_ptrsize_type;
2280 char tmp_name[20];
2281 tree or_tmp_name = NULL_TREE;
2282 tree and_tmp, and_tmp_name;
2283 gimple and_stmt;
2284 tree ptrsize_zero;
2285 tree part_cond_expr;
2286
2287 /* Check that mask is one less than a power of 2, i.e., mask is
2288 all zeros followed by all ones. */
2289 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2290
2291 int_ptrsize_type = signed_type_for (ptr_type_node);
2292
2293 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2294 of the first vector of the i'th data reference. */
2295
2296 FOR_EACH_VEC_ELT (gimple, may_misalign_stmts, i, ref_stmt)
2297 {
2298 gimple_seq new_stmt_list = NULL;
2299 tree addr_base;
2300 tree addr_tmp, addr_tmp_name;
2301 tree or_tmp, new_or_tmp_name;
2302 gimple addr_stmt, or_stmt;
2303 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2304 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2305 bool negative = tree_int_cst_compare
2306 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2307 tree offset = negative
2308 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
2309
2310 /* create: addr_tmp = (int)(address_of_first_vector) */
2311 addr_base =
2312 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2313 offset, loop);
2314 if (new_stmt_list != NULL)
2315 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2316
2317 sprintf (tmp_name, "%s%d", "addr2int", i);
2318 addr_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
2319 add_referenced_var (addr_tmp);
2320 addr_tmp_name = make_ssa_name (addr_tmp, NULL);
2321 addr_stmt = gimple_build_assign_with_ops (NOP_EXPR, addr_tmp_name,
2322 addr_base, NULL_TREE);
2323 SSA_NAME_DEF_STMT (addr_tmp_name) = addr_stmt;
2324 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2325
2326 /* The addresses are OR together. */
2327
2328 if (or_tmp_name != NULL_TREE)
2329 {
2330 /* create: or_tmp = or_tmp | addr_tmp */
2331 sprintf (tmp_name, "%s%d", "orptrs", i);
2332 or_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
2333 add_referenced_var (or_tmp);
2334 new_or_tmp_name = make_ssa_name (or_tmp, NULL);
2335 or_stmt = gimple_build_assign_with_ops (BIT_IOR_EXPR,
2336 new_or_tmp_name,
2337 or_tmp_name, addr_tmp_name);
2338 SSA_NAME_DEF_STMT (new_or_tmp_name) = or_stmt;
2339 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2340 or_tmp_name = new_or_tmp_name;
2341 }
2342 else
2343 or_tmp_name = addr_tmp_name;
2344
2345 } /* end for i */
2346
2347 mask_cst = build_int_cst (int_ptrsize_type, mask);
2348
2349 /* create: and_tmp = or_tmp & mask */
2350 and_tmp = create_tmp_var (int_ptrsize_type, "andmask" );
2351 add_referenced_var (and_tmp);
2352 and_tmp_name = make_ssa_name (and_tmp, NULL);
2353
2354 and_stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, and_tmp_name,
2355 or_tmp_name, mask_cst);
2356 SSA_NAME_DEF_STMT (and_tmp_name) = and_stmt;
2357 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2358
2359 /* Make and_tmp the left operand of the conditional test against zero.
2360 if and_tmp has a nonzero bit then some address is unaligned. */
2361 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2362 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2363 and_tmp_name, ptrsize_zero);
2364 if (*cond_expr)
2365 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2366 *cond_expr, part_cond_expr);
2367 else
2368 *cond_expr = part_cond_expr;
2369 }
2370
2371
2372 /* Function vect_vfa_segment_size.
2373
2374 Create an expression that computes the size of segment
2375 that will be accessed for a data reference. The functions takes into
2376 account that realignment loads may access one more vector.
2377
2378 Input:
2379 DR: The data reference.
2380 LENGTH_FACTOR: segment length to consider.
2381
2382 Return an expression whose value is the size of segment which will be
2383 accessed by DR. */
2384
2385 static tree
2386 vect_vfa_segment_size (struct data_reference *dr, tree length_factor)
2387 {
2388 tree segment_length;
2389
2390 if (!compare_tree_int (DR_STEP (dr), 0))
2391 segment_length = TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr)));
2392 else
2393 segment_length = size_binop (MULT_EXPR,
2394 fold_convert (sizetype, DR_STEP (dr)),
2395 fold_convert (sizetype, length_factor));
2396
2397 if (vect_supportable_dr_alignment (dr, false)
2398 == dr_explicit_realign_optimized)
2399 {
2400 tree vector_size = TYPE_SIZE_UNIT
2401 (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
2402
2403 segment_length = size_binop (PLUS_EXPR, segment_length, vector_size);
2404 }
2405 return segment_length;
2406 }
2407
2408
2409 /* Function vect_create_cond_for_alias_checks.
2410
2411 Create a conditional expression that represents the run-time checks for
2412 overlapping of address ranges represented by a list of data references
2413 relations passed as input.
2414
2415 Input:
2416 COND_EXPR - input conditional expression. New conditions will be chained
2417 with logical AND operation.
2418 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2419 to be checked.
2420
2421 Output:
2422 COND_EXPR - conditional expression.
2423 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2424 expression.
2425
2426
2427 The returned value is the conditional expression to be used in the if
2428 statement that controls which version of the loop gets executed at runtime.
2429 */
2430
2431 static void
2432 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo,
2433 tree * cond_expr,
2434 gimple_seq * cond_expr_stmt_list)
2435 {
2436 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2437 VEC (ddr_p, heap) * may_alias_ddrs =
2438 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
2439 int vect_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2440 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2441
2442 ddr_p ddr;
2443 unsigned int i;
2444 tree part_cond_expr, length_factor;
2445
2446 /* Create expression
2447 ((store_ptr_0 + store_segment_length_0) <= load_ptr_0)
2448 || (load_ptr_0 + load_segment_length_0) <= store_ptr_0))
2449 &&
2450 ...
2451 &&
2452 ((store_ptr_n + store_segment_length_n) <= load_ptr_n)
2453 || (load_ptr_n + load_segment_length_n) <= store_ptr_n)) */
2454
2455 if (VEC_empty (ddr_p, may_alias_ddrs))
2456 return;
2457
2458 FOR_EACH_VEC_ELT (ddr_p, may_alias_ddrs, i, ddr)
2459 {
2460 struct data_reference *dr_a, *dr_b;
2461 gimple dr_group_first_a, dr_group_first_b;
2462 tree addr_base_a, addr_base_b;
2463 tree segment_length_a, segment_length_b;
2464 gimple stmt_a, stmt_b;
2465 tree seg_a_min, seg_a_max, seg_b_min, seg_b_max;
2466
2467 dr_a = DDR_A (ddr);
2468 stmt_a = DR_STMT (DDR_A (ddr));
2469 dr_group_first_a = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_a));
2470 if (dr_group_first_a)
2471 {
2472 stmt_a = dr_group_first_a;
2473 dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
2474 }
2475
2476 dr_b = DDR_B (ddr);
2477 stmt_b = DR_STMT (DDR_B (ddr));
2478 dr_group_first_b = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt_b));
2479 if (dr_group_first_b)
2480 {
2481 stmt_b = dr_group_first_b;
2482 dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
2483 }
2484
2485 addr_base_a =
2486 vect_create_addr_base_for_vector_ref (stmt_a, cond_expr_stmt_list,
2487 NULL_TREE, loop);
2488 addr_base_b =
2489 vect_create_addr_base_for_vector_ref (stmt_b, cond_expr_stmt_list,
2490 NULL_TREE, loop);
2491
2492 if (!operand_equal_p (DR_STEP (dr_a), DR_STEP (dr_b), 0))
2493 length_factor = scalar_loop_iters;
2494 else
2495 length_factor = size_int (vect_factor);
2496 segment_length_a = vect_vfa_segment_size (dr_a, length_factor);
2497 segment_length_b = vect_vfa_segment_size (dr_b, length_factor);
2498
2499 if (vect_print_dump_info (REPORT_DR_DETAILS))
2500 {
2501 fprintf (vect_dump,
2502 "create runtime check for data references ");
2503 print_generic_expr (vect_dump, DR_REF (dr_a), TDF_SLIM);
2504 fprintf (vect_dump, " and ");
2505 print_generic_expr (vect_dump, DR_REF (dr_b), TDF_SLIM);
2506 }
2507
2508 seg_a_min = addr_base_a;
2509 seg_a_max = fold_build_pointer_plus (addr_base_a, segment_length_a);
2510 if (tree_int_cst_compare (DR_STEP (dr_a), size_zero_node) < 0)
2511 seg_a_min = seg_a_max, seg_a_max = addr_base_a;
2512
2513 seg_b_min = addr_base_b;
2514 seg_b_max = fold_build_pointer_plus (addr_base_b, segment_length_b);
2515 if (tree_int_cst_compare (DR_STEP (dr_b), size_zero_node) < 0)
2516 seg_b_min = seg_b_max, seg_b_max = addr_base_b;
2517
2518 part_cond_expr =
2519 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
2520 fold_build2 (LE_EXPR, boolean_type_node, seg_a_max, seg_b_min),
2521 fold_build2 (LE_EXPR, boolean_type_node, seg_b_max, seg_a_min));
2522
2523 if (*cond_expr)
2524 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2525 *cond_expr, part_cond_expr);
2526 else
2527 *cond_expr = part_cond_expr;
2528 }
2529
2530 if (vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
2531 fprintf (vect_dump, "created %u versioning for alias checks.\n",
2532 VEC_length (ddr_p, may_alias_ddrs));
2533 }
2534
2535
2536 /* Function vect_loop_versioning.
2537
2538 If the loop has data references that may or may not be aligned or/and
2539 has data reference relations whose independence was not proven then
2540 two versions of the loop need to be generated, one which is vectorized
2541 and one which isn't. A test is then generated to control which of the
2542 loops is executed. The test checks for the alignment of all of the
2543 data references that may or may not be aligned. An additional
2544 sequence of runtime tests is generated for each pairs of DDRs whose
2545 independence was not proven. The vectorized version of loop is
2546 executed only if both alias and alignment tests are passed.
2547
2548 The test generated to check which version of loop is executed
2549 is modified to also check for profitability as indicated by the
2550 cost model initially.
2551
2552 The versioning precondition(s) are placed in *COND_EXPR and
2553 *COND_EXPR_STMT_LIST. If DO_VERSIONING is true versioning is
2554 also performed, otherwise only the conditions are generated. */
2555
2556 void
2557 vect_loop_versioning (loop_vec_info loop_vinfo, bool do_versioning,
2558 tree *cond_expr, gimple_seq *cond_expr_stmt_list)
2559 {
2560 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2561 basic_block condition_bb;
2562 gimple_stmt_iterator gsi, cond_exp_gsi;
2563 basic_block merge_bb;
2564 basic_block new_exit_bb;
2565 edge new_exit_e, e;
2566 gimple orig_phi, new_phi;
2567 tree arg;
2568 unsigned prob = 4 * REG_BR_PROB_BASE / 5;
2569 gimple_seq gimplify_stmt_list = NULL;
2570 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2571 int min_profitable_iters = 0;
2572 unsigned int th;
2573
2574 /* Get profitability threshold for vectorized loop. */
2575 min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
2576
2577 th = conservative_cost_threshold (loop_vinfo,
2578 min_profitable_iters);
2579
2580 *cond_expr =
2581 fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
2582 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
2583
2584 *cond_expr = force_gimple_operand (*cond_expr, cond_expr_stmt_list,
2585 false, NULL_TREE);
2586
2587 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2588 vect_create_cond_for_align_checks (loop_vinfo, cond_expr,
2589 cond_expr_stmt_list);
2590
2591 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2592 vect_create_cond_for_alias_checks (loop_vinfo, cond_expr,
2593 cond_expr_stmt_list);
2594
2595 *cond_expr =
2596 fold_build2 (NE_EXPR, boolean_type_node, *cond_expr, integer_zero_node);
2597 *cond_expr =
2598 force_gimple_operand (*cond_expr, &gimplify_stmt_list, true, NULL_TREE);
2599 gimple_seq_add_seq (cond_expr_stmt_list, gimplify_stmt_list);
2600
2601 /* If we only needed the extra conditions and a new loop copy
2602 bail out here. */
2603 if (!do_versioning)
2604 return;
2605
2606 initialize_original_copy_tables ();
2607 loop_version (loop, *cond_expr, &condition_bb,
2608 prob, prob, REG_BR_PROB_BASE - prob, true);
2609 free_original_copy_tables();
2610
2611 /* Loop versioning violates an assumption we try to maintain during
2612 vectorization - that the loop exit block has a single predecessor.
2613 After versioning, the exit block of both loop versions is the same
2614 basic block (i.e. it has two predecessors). Just in order to simplify
2615 following transformations in the vectorizer, we fix this situation
2616 here by adding a new (empty) block on the exit-edge of the loop,
2617 with the proper loop-exit phis to maintain loop-closed-form. */
2618
2619 merge_bb = single_exit (loop)->dest;
2620 gcc_assert (EDGE_COUNT (merge_bb->preds) == 2);
2621 new_exit_bb = split_edge (single_exit (loop));
2622 new_exit_e = single_exit (loop);
2623 e = EDGE_SUCC (new_exit_bb, 0);
2624
2625 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2626 {
2627 orig_phi = gsi_stmt (gsi);
2628 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
2629 new_exit_bb);
2630 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
2631 add_phi_arg (new_phi, arg, new_exit_e,
2632 gimple_phi_arg_location_from_edge (orig_phi, e));
2633 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
2634 }
2635
2636 /* End loop-exit-fixes after versioning. */
2637
2638 update_ssa (TODO_update_ssa);
2639 if (*cond_expr_stmt_list)
2640 {
2641 cond_exp_gsi = gsi_last_bb (condition_bb);
2642 gsi_insert_seq_before (&cond_exp_gsi, *cond_expr_stmt_list,
2643 GSI_SAME_STMT);
2644 *cond_expr_stmt_list = NULL;
2645 }
2646 *cond_expr = NULL_TREE;
2647 }
2648