hwint.c: New.
[gcc.git] / gcc / tree-vect-loop-manip.c
1 /* Vectorizer Specific Loop Manipulations
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 and Ira Rosen <irar@il.ibm.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-pretty-print.h"
31 #include "gimple-pretty-print.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "cfgloop.h"
35 #include "cfglayout.h"
36 #include "diagnostic-core.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-vectorizer.h"
39 #include "langhooks.h"
40
41 /*************************************************************************
42 Simple Loop Peeling Utilities
43
44 Utilities to support loop peeling for vectorization purposes.
45 *************************************************************************/
46
47
48 /* Renames the use *OP_P. */
49
50 static void
51 rename_use_op (use_operand_p op_p)
52 {
53 tree new_name;
54
55 if (TREE_CODE (USE_FROM_PTR (op_p)) != SSA_NAME)
56 return;
57
58 new_name = get_current_def (USE_FROM_PTR (op_p));
59
60 /* Something defined outside of the loop. */
61 if (!new_name)
62 return;
63
64 /* An ordinary ssa name defined in the loop. */
65
66 SET_USE (op_p, new_name);
67 }
68
69
70 /* Renames the variables in basic block BB. */
71
72 void
73 rename_variables_in_bb (basic_block bb)
74 {
75 gimple_stmt_iterator gsi;
76 gimple stmt;
77 use_operand_p use_p;
78 ssa_op_iter iter;
79 edge e;
80 edge_iterator ei;
81 struct loop *loop = bb->loop_father;
82
83 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
84 {
85 stmt = gsi_stmt (gsi);
86 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
87 rename_use_op (use_p);
88 }
89
90 FOR_EACH_EDGE (e, ei, bb->succs)
91 {
92 if (!flow_bb_inside_loop_p (loop, e->dest))
93 continue;
94 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi); gsi_next (&gsi))
95 rename_use_op (PHI_ARG_DEF_PTR_FROM_EDGE (gsi_stmt (gsi), e));
96 }
97 }
98
99
100 /* Renames variables in new generated LOOP. */
101
102 void
103 rename_variables_in_loop (struct loop *loop)
104 {
105 unsigned i;
106 basic_block *bbs;
107
108 bbs = get_loop_body (loop);
109
110 for (i = 0; i < loop->num_nodes; i++)
111 rename_variables_in_bb (bbs[i]);
112
113 free (bbs);
114 }
115
116 typedef struct
117 {
118 tree from, to;
119 basic_block bb;
120 } adjust_info;
121
122 DEF_VEC_O(adjust_info);
123 DEF_VEC_ALLOC_O_STACK(adjust_info);
124 #define VEC_adjust_info_stack_alloc(alloc) VEC_stack_alloc (adjust_info, alloc)
125
126 /* A stack of values to be adjusted in debug stmts. We have to
127 process them LIFO, so that the closest substitution applies. If we
128 processed them FIFO, without the stack, we might substitute uses
129 with a PHI DEF that would soon become non-dominant, and when we got
130 to the suitable one, it wouldn't have anything to substitute any
131 more. */
132 static VEC(adjust_info, stack) *adjust_vec;
133
134 /* Adjust any debug stmts that referenced AI->from values to use the
135 loop-closed AI->to, if the references are dominated by AI->bb and
136 not by the definition of AI->from. */
137
138 static void
139 adjust_debug_stmts_now (adjust_info *ai)
140 {
141 basic_block bbphi = ai->bb;
142 tree orig_def = ai->from;
143 tree new_def = ai->to;
144 imm_use_iterator imm_iter;
145 gimple stmt;
146 basic_block bbdef = gimple_bb (SSA_NAME_DEF_STMT (orig_def));
147
148 gcc_assert (dom_info_available_p (CDI_DOMINATORS));
149
150 /* Adjust any debug stmts that held onto non-loop-closed
151 references. */
152 FOR_EACH_IMM_USE_STMT (stmt, imm_iter, orig_def)
153 {
154 use_operand_p use_p;
155 basic_block bbuse;
156
157 if (!is_gimple_debug (stmt))
158 continue;
159
160 gcc_assert (gimple_debug_bind_p (stmt));
161
162 bbuse = gimple_bb (stmt);
163
164 if ((bbuse == bbphi
165 || dominated_by_p (CDI_DOMINATORS, bbuse, bbphi))
166 && !(bbuse == bbdef
167 || dominated_by_p (CDI_DOMINATORS, bbuse, bbdef)))
168 {
169 if (new_def)
170 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
171 SET_USE (use_p, new_def);
172 else
173 {
174 gimple_debug_bind_reset_value (stmt);
175 update_stmt (stmt);
176 }
177 }
178 }
179 }
180
181 /* Adjust debug stmts as scheduled before. */
182
183 static void
184 adjust_vec_debug_stmts (void)
185 {
186 if (!MAY_HAVE_DEBUG_STMTS)
187 return;
188
189 gcc_assert (adjust_vec);
190
191 while (!VEC_empty (adjust_info, adjust_vec))
192 {
193 adjust_debug_stmts_now (VEC_last (adjust_info, adjust_vec));
194 VEC_pop (adjust_info, adjust_vec);
195 }
196
197 VEC_free (adjust_info, stack, adjust_vec);
198 }
199
200 /* Adjust any debug stmts that referenced FROM values to use the
201 loop-closed TO, if the references are dominated by BB and not by
202 the definition of FROM. If adjust_vec is non-NULL, adjustments
203 will be postponed until adjust_vec_debug_stmts is called. */
204
205 static void
206 adjust_debug_stmts (tree from, tree to, basic_block bb)
207 {
208 adjust_info ai;
209
210 if (MAY_HAVE_DEBUG_STMTS && TREE_CODE (from) == SSA_NAME
211 && SSA_NAME_VAR (from) != gimple_vop (cfun))
212 {
213 ai.from = from;
214 ai.to = to;
215 ai.bb = bb;
216
217 if (adjust_vec)
218 VEC_safe_push (adjust_info, stack, adjust_vec, &ai);
219 else
220 adjust_debug_stmts_now (&ai);
221 }
222 }
223
224 /* Change E's phi arg in UPDATE_PHI to NEW_DEF, and record information
225 to adjust any debug stmts that referenced the old phi arg,
226 presumably non-loop-closed references left over from other
227 transformations. */
228
229 static void
230 adjust_phi_and_debug_stmts (gimple update_phi, edge e, tree new_def)
231 {
232 tree orig_def = PHI_ARG_DEF_FROM_EDGE (update_phi, e);
233
234 SET_PHI_ARG_DEF (update_phi, e->dest_idx, new_def);
235
236 if (MAY_HAVE_DEBUG_STMTS)
237 adjust_debug_stmts (orig_def, PHI_RESULT (update_phi),
238 gimple_bb (update_phi));
239 }
240
241
242 /* Update the PHI nodes of NEW_LOOP.
243
244 NEW_LOOP is a duplicate of ORIG_LOOP.
245 AFTER indicates whether NEW_LOOP executes before or after ORIG_LOOP:
246 AFTER is true if NEW_LOOP executes after ORIG_LOOP, and false if it
247 executes before it. */
248
249 static void
250 slpeel_update_phis_for_duplicate_loop (struct loop *orig_loop,
251 struct loop *new_loop, bool after)
252 {
253 tree new_ssa_name;
254 gimple phi_new, phi_orig;
255 tree def;
256 edge orig_loop_latch = loop_latch_edge (orig_loop);
257 edge orig_entry_e = loop_preheader_edge (orig_loop);
258 edge new_loop_exit_e = single_exit (new_loop);
259 edge new_loop_entry_e = loop_preheader_edge (new_loop);
260 edge entry_arg_e = (after ? orig_loop_latch : orig_entry_e);
261 gimple_stmt_iterator gsi_new, gsi_orig;
262
263 /*
264 step 1. For each loop-header-phi:
265 Add the first phi argument for the phi in NEW_LOOP
266 (the one associated with the entry of NEW_LOOP)
267
268 step 2. For each loop-header-phi:
269 Add the second phi argument for the phi in NEW_LOOP
270 (the one associated with the latch of NEW_LOOP)
271
272 step 3. Update the phis in the successor block of NEW_LOOP.
273
274 case 1: NEW_LOOP was placed before ORIG_LOOP:
275 The successor block of NEW_LOOP is the header of ORIG_LOOP.
276 Updating the phis in the successor block can therefore be done
277 along with the scanning of the loop header phis, because the
278 header blocks of ORIG_LOOP and NEW_LOOP have exactly the same
279 phi nodes, organized in the same order.
280
281 case 2: NEW_LOOP was placed after ORIG_LOOP:
282 The successor block of NEW_LOOP is the original exit block of
283 ORIG_LOOP - the phis to be updated are the loop-closed-ssa phis.
284 We postpone updating these phis to a later stage (when
285 loop guards are added).
286 */
287
288
289 /* Scan the phis in the headers of the old and new loops
290 (they are organized in exactly the same order). */
291
292 for (gsi_new = gsi_start_phis (new_loop->header),
293 gsi_orig = gsi_start_phis (orig_loop->header);
294 !gsi_end_p (gsi_new) && !gsi_end_p (gsi_orig);
295 gsi_next (&gsi_new), gsi_next (&gsi_orig))
296 {
297 source_location locus;
298 phi_new = gsi_stmt (gsi_new);
299 phi_orig = gsi_stmt (gsi_orig);
300
301 /* step 1. */
302 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, entry_arg_e);
303 locus = gimple_phi_arg_location_from_edge (phi_orig, entry_arg_e);
304 add_phi_arg (phi_new, def, new_loop_entry_e, locus);
305
306 /* step 2. */
307 def = PHI_ARG_DEF_FROM_EDGE (phi_orig, orig_loop_latch);
308 locus = gimple_phi_arg_location_from_edge (phi_orig, orig_loop_latch);
309 if (TREE_CODE (def) != SSA_NAME)
310 continue;
311
312 new_ssa_name = get_current_def (def);
313 if (!new_ssa_name)
314 {
315 /* This only happens if there are no definitions
316 inside the loop. use the phi_result in this case. */
317 new_ssa_name = PHI_RESULT (phi_new);
318 }
319
320 /* An ordinary ssa name defined in the loop. */
321 add_phi_arg (phi_new, new_ssa_name, loop_latch_edge (new_loop), locus);
322
323 /* Drop any debug references outside the loop, if they would
324 become ill-formed SSA. */
325 adjust_debug_stmts (def, NULL, single_exit (orig_loop)->dest);
326
327 /* step 3 (case 1). */
328 if (!after)
329 {
330 gcc_assert (new_loop_exit_e == orig_entry_e);
331 adjust_phi_and_debug_stmts (phi_orig, new_loop_exit_e, new_ssa_name);
332 }
333 }
334 }
335
336
337 /* Update PHI nodes for a guard of the LOOP.
338
339 Input:
340 - LOOP, GUARD_EDGE: LOOP is a loop for which we added guard code that
341 controls whether LOOP is to be executed. GUARD_EDGE is the edge that
342 originates from the guard-bb, skips LOOP and reaches the (unique) exit
343 bb of LOOP. This loop-exit-bb is an empty bb with one successor.
344 We denote this bb NEW_MERGE_BB because before the guard code was added
345 it had a single predecessor (the LOOP header), and now it became a merge
346 point of two paths - the path that ends with the LOOP exit-edge, and
347 the path that ends with GUARD_EDGE.
348 - NEW_EXIT_BB: New basic block that is added by this function between LOOP
349 and NEW_MERGE_BB. It is used to place loop-closed-ssa-form exit-phis.
350
351 ===> The CFG before the guard-code was added:
352 LOOP_header_bb:
353 loop_body
354 if (exit_loop) goto update_bb
355 else goto LOOP_header_bb
356 update_bb:
357
358 ==> The CFG after the guard-code was added:
359 guard_bb:
360 if (LOOP_guard_condition) goto new_merge_bb
361 else goto LOOP_header_bb
362 LOOP_header_bb:
363 loop_body
364 if (exit_loop_condition) goto new_merge_bb
365 else goto LOOP_header_bb
366 new_merge_bb:
367 goto update_bb
368 update_bb:
369
370 ==> The CFG after this function:
371 guard_bb:
372 if (LOOP_guard_condition) goto new_merge_bb
373 else goto LOOP_header_bb
374 LOOP_header_bb:
375 loop_body
376 if (exit_loop_condition) goto new_exit_bb
377 else goto LOOP_header_bb
378 new_exit_bb:
379 new_merge_bb:
380 goto update_bb
381 update_bb:
382
383 This function:
384 1. creates and updates the relevant phi nodes to account for the new
385 incoming edge (GUARD_EDGE) into NEW_MERGE_BB. This involves:
386 1.1. Create phi nodes at NEW_MERGE_BB.
387 1.2. Update the phi nodes at the successor of NEW_MERGE_BB (denoted
388 UPDATE_BB). UPDATE_BB was the exit-bb of LOOP before NEW_MERGE_BB
389 2. preserves loop-closed-ssa-form by creating the required phi nodes
390 at the exit of LOOP (i.e, in NEW_EXIT_BB).
391
392 There are two flavors to this function:
393
394 slpeel_update_phi_nodes_for_guard1:
395 Here the guard controls whether we enter or skip LOOP, where LOOP is a
396 prolog_loop (loop1 below), and the new phis created in NEW_MERGE_BB are
397 for variables that have phis in the loop header.
398
399 slpeel_update_phi_nodes_for_guard2:
400 Here the guard controls whether we enter or skip LOOP, where LOOP is an
401 epilog_loop (loop2 below), and the new phis created in NEW_MERGE_BB are
402 for variables that have phis in the loop exit.
403
404 I.E., the overall structure is:
405
406 loop1_preheader_bb:
407 guard1 (goto loop1/merge1_bb)
408 loop1
409 loop1_exit_bb:
410 guard2 (goto merge1_bb/merge2_bb)
411 merge1_bb
412 loop2
413 loop2_exit_bb
414 merge2_bb
415 next_bb
416
417 slpeel_update_phi_nodes_for_guard1 takes care of creating phis in
418 loop1_exit_bb and merge1_bb. These are entry phis (phis for the vars
419 that have phis in loop1->header).
420
421 slpeel_update_phi_nodes_for_guard2 takes care of creating phis in
422 loop2_exit_bb and merge2_bb. These are exit phis (phis for the vars
423 that have phis in next_bb). It also adds some of these phis to
424 loop1_exit_bb.
425
426 slpeel_update_phi_nodes_for_guard1 is always called before
427 slpeel_update_phi_nodes_for_guard2. They are both needed in order
428 to create correct data-flow and loop-closed-ssa-form.
429
430 Generally slpeel_update_phi_nodes_for_guard1 creates phis for variables
431 that change between iterations of a loop (and therefore have a phi-node
432 at the loop entry), whereas slpeel_update_phi_nodes_for_guard2 creates
433 phis for variables that are used out of the loop (and therefore have
434 loop-closed exit phis). Some variables may be both updated between
435 iterations and used after the loop. This is why in loop1_exit_bb we
436 may need both entry_phis (created by slpeel_update_phi_nodes_for_guard1)
437 and exit phis (created by slpeel_update_phi_nodes_for_guard2).
438
439 - IS_NEW_LOOP: if IS_NEW_LOOP is true, then LOOP is a newly created copy of
440 an original loop. i.e., we have:
441
442 orig_loop
443 guard_bb (goto LOOP/new_merge)
444 new_loop <-- LOOP
445 new_exit
446 new_merge
447 next_bb
448
449 If IS_NEW_LOOP is false, then LOOP is an original loop, in which case we
450 have:
451
452 new_loop
453 guard_bb (goto LOOP/new_merge)
454 orig_loop <-- LOOP
455 new_exit
456 new_merge
457 next_bb
458
459 The SSA names defined in the original loop have a current
460 reaching definition that that records the corresponding new
461 ssa-name used in the new duplicated loop copy.
462 */
463
464 /* Function slpeel_update_phi_nodes_for_guard1
465
466 Input:
467 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
468 - DEFS - a bitmap of ssa names to mark new names for which we recorded
469 information.
470
471 In the context of the overall structure, we have:
472
473 loop1_preheader_bb:
474 guard1 (goto loop1/merge1_bb)
475 LOOP-> loop1
476 loop1_exit_bb:
477 guard2 (goto merge1_bb/merge2_bb)
478 merge1_bb
479 loop2
480 loop2_exit_bb
481 merge2_bb
482 next_bb
483
484 For each name updated between loop iterations (i.e - for each name that has
485 an entry (loop-header) phi in LOOP) we create a new phi in:
486 1. merge1_bb (to account for the edge from guard1)
487 2. loop1_exit_bb (an exit-phi to keep LOOP in loop-closed form)
488 */
489
490 static void
491 slpeel_update_phi_nodes_for_guard1 (edge guard_edge, struct loop *loop,
492 bool is_new_loop, basic_block *new_exit_bb,
493 bitmap *defs)
494 {
495 gimple orig_phi, new_phi;
496 gimple update_phi, update_phi2;
497 tree guard_arg, loop_arg;
498 basic_block new_merge_bb = guard_edge->dest;
499 edge e = EDGE_SUCC (new_merge_bb, 0);
500 basic_block update_bb = e->dest;
501 basic_block orig_bb = loop->header;
502 edge new_exit_e;
503 tree current_new_name;
504 gimple_stmt_iterator gsi_orig, gsi_update;
505
506 /* Create new bb between loop and new_merge_bb. */
507 *new_exit_bb = split_edge (single_exit (loop));
508
509 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
510
511 for (gsi_orig = gsi_start_phis (orig_bb),
512 gsi_update = gsi_start_phis (update_bb);
513 !gsi_end_p (gsi_orig) && !gsi_end_p (gsi_update);
514 gsi_next (&gsi_orig), gsi_next (&gsi_update))
515 {
516 source_location loop_locus, guard_locus;;
517 orig_phi = gsi_stmt (gsi_orig);
518 update_phi = gsi_stmt (gsi_update);
519
520 /** 1. Handle new-merge-point phis **/
521
522 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
523 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
524 new_merge_bb);
525
526 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
527 of LOOP. Set the two phi args in NEW_PHI for these edges: */
528 loop_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, EDGE_SUCC (loop->latch, 0));
529 loop_locus = gimple_phi_arg_location_from_edge (orig_phi,
530 EDGE_SUCC (loop->latch,
531 0));
532 guard_arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, loop_preheader_edge (loop));
533 guard_locus
534 = gimple_phi_arg_location_from_edge (orig_phi,
535 loop_preheader_edge (loop));
536
537 add_phi_arg (new_phi, loop_arg, new_exit_e, loop_locus);
538 add_phi_arg (new_phi, guard_arg, guard_edge, guard_locus);
539
540 /* 1.3. Update phi in successor block. */
541 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == loop_arg
542 || PHI_ARG_DEF_FROM_EDGE (update_phi, e) == guard_arg);
543 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
544 update_phi2 = new_phi;
545
546
547 /** 2. Handle loop-closed-ssa-form phis **/
548
549 if (!is_gimple_reg (PHI_RESULT (orig_phi)))
550 continue;
551
552 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
553 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
554 *new_exit_bb);
555
556 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
557 add_phi_arg (new_phi, loop_arg, single_exit (loop), loop_locus);
558
559 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
560 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
561 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
562 PHI_RESULT (new_phi));
563
564 /* 2.4. Record the newly created name with set_current_def.
565 We want to find a name such that
566 name = get_current_def (orig_loop_name)
567 and to set its current definition as follows:
568 set_current_def (name, new_phi_name)
569
570 If LOOP is a new loop then loop_arg is already the name we're
571 looking for. If LOOP is the original loop, then loop_arg is
572 the orig_loop_name and the relevant name is recorded in its
573 current reaching definition. */
574 if (is_new_loop)
575 current_new_name = loop_arg;
576 else
577 {
578 current_new_name = get_current_def (loop_arg);
579 /* current_def is not available only if the variable does not
580 change inside the loop, in which case we also don't care
581 about recording a current_def for it because we won't be
582 trying to create loop-exit-phis for it. */
583 if (!current_new_name)
584 continue;
585 }
586 gcc_assert (get_current_def (current_new_name) == NULL_TREE);
587
588 set_current_def (current_new_name, PHI_RESULT (new_phi));
589 bitmap_set_bit (*defs, SSA_NAME_VERSION (current_new_name));
590 }
591 }
592
593
594 /* Function slpeel_update_phi_nodes_for_guard2
595
596 Input:
597 - GUARD_EDGE, LOOP, IS_NEW_LOOP, NEW_EXIT_BB - as explained above.
598
599 In the context of the overall structure, we have:
600
601 loop1_preheader_bb:
602 guard1 (goto loop1/merge1_bb)
603 loop1
604 loop1_exit_bb:
605 guard2 (goto merge1_bb/merge2_bb)
606 merge1_bb
607 LOOP-> loop2
608 loop2_exit_bb
609 merge2_bb
610 next_bb
611
612 For each name used out side the loop (i.e - for each name that has an exit
613 phi in next_bb) we create a new phi in:
614 1. merge2_bb (to account for the edge from guard_bb)
615 2. loop2_exit_bb (an exit-phi to keep LOOP in loop-closed form)
616 3. guard2 bb (an exit phi to keep the preceding loop in loop-closed form),
617 if needed (if it wasn't handled by slpeel_update_phis_nodes_for_phi1).
618 */
619
620 static void
621 slpeel_update_phi_nodes_for_guard2 (edge guard_edge, struct loop *loop,
622 bool is_new_loop, basic_block *new_exit_bb)
623 {
624 gimple orig_phi, new_phi;
625 gimple update_phi, update_phi2;
626 tree guard_arg, loop_arg;
627 basic_block new_merge_bb = guard_edge->dest;
628 edge e = EDGE_SUCC (new_merge_bb, 0);
629 basic_block update_bb = e->dest;
630 edge new_exit_e;
631 tree orig_def, orig_def_new_name;
632 tree new_name, new_name2;
633 tree arg;
634 gimple_stmt_iterator gsi;
635
636 /* Create new bb between loop and new_merge_bb. */
637 *new_exit_bb = split_edge (single_exit (loop));
638
639 new_exit_e = EDGE_SUCC (*new_exit_bb, 0);
640
641 for (gsi = gsi_start_phis (update_bb); !gsi_end_p (gsi); gsi_next (&gsi))
642 {
643 update_phi = gsi_stmt (gsi);
644 orig_phi = update_phi;
645 orig_def = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
646 /* This loop-closed-phi actually doesn't represent a use
647 out of the loop - the phi arg is a constant. */
648 if (TREE_CODE (orig_def) != SSA_NAME)
649 continue;
650 orig_def_new_name = get_current_def (orig_def);
651 arg = NULL_TREE;
652
653 /** 1. Handle new-merge-point phis **/
654
655 /* 1.1. Generate new phi node in NEW_MERGE_BB: */
656 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
657 new_merge_bb);
658
659 /* 1.2. NEW_MERGE_BB has two incoming edges: GUARD_EDGE and the exit-edge
660 of LOOP. Set the two PHI args in NEW_PHI for these edges: */
661 new_name = orig_def;
662 new_name2 = NULL_TREE;
663 if (orig_def_new_name)
664 {
665 new_name = orig_def_new_name;
666 /* Some variables have both loop-entry-phis and loop-exit-phis.
667 Such variables were given yet newer names by phis placed in
668 guard_bb by slpeel_update_phi_nodes_for_guard1. I.e:
669 new_name2 = get_current_def (get_current_def (orig_name)). */
670 new_name2 = get_current_def (new_name);
671 }
672
673 if (is_new_loop)
674 {
675 guard_arg = orig_def;
676 loop_arg = new_name;
677 }
678 else
679 {
680 guard_arg = new_name;
681 loop_arg = orig_def;
682 }
683 if (new_name2)
684 guard_arg = new_name2;
685
686 add_phi_arg (new_phi, loop_arg, new_exit_e, UNKNOWN_LOCATION);
687 add_phi_arg (new_phi, guard_arg, guard_edge, UNKNOWN_LOCATION);
688
689 /* 1.3. Update phi in successor block. */
690 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi, e) == orig_def);
691 adjust_phi_and_debug_stmts (update_phi, e, PHI_RESULT (new_phi));
692 update_phi2 = new_phi;
693
694
695 /** 2. Handle loop-closed-ssa-form phis **/
696
697 /* 2.1. Generate new phi node in NEW_EXIT_BB: */
698 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
699 *new_exit_bb);
700
701 /* 2.2. NEW_EXIT_BB has one incoming edge: the exit-edge of the loop. */
702 add_phi_arg (new_phi, loop_arg, single_exit (loop), UNKNOWN_LOCATION);
703
704 /* 2.3. Update phi in successor of NEW_EXIT_BB: */
705 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, new_exit_e) == loop_arg);
706 adjust_phi_and_debug_stmts (update_phi2, new_exit_e,
707 PHI_RESULT (new_phi));
708
709
710 /** 3. Handle loop-closed-ssa-form phis for first loop **/
711
712 /* 3.1. Find the relevant names that need an exit-phi in
713 GUARD_BB, i.e. names for which
714 slpeel_update_phi_nodes_for_guard1 had not already created a
715 phi node. This is the case for names that are used outside
716 the loop (and therefore need an exit phi) but are not updated
717 across loop iterations (and therefore don't have a
718 loop-header-phi).
719
720 slpeel_update_phi_nodes_for_guard1 is responsible for
721 creating loop-exit phis in GUARD_BB for names that have a
722 loop-header-phi. When such a phi is created we also record
723 the new name in its current definition. If this new name
724 exists, then guard_arg was set to this new name (see 1.2
725 above). Therefore, if guard_arg is not this new name, this
726 is an indication that an exit-phi in GUARD_BB was not yet
727 created, so we take care of it here. */
728 if (guard_arg == new_name2)
729 continue;
730 arg = guard_arg;
731
732 /* 3.2. Generate new phi node in GUARD_BB: */
733 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
734 guard_edge->src);
735
736 /* 3.3. GUARD_BB has one incoming edge: */
737 gcc_assert (EDGE_COUNT (guard_edge->src->preds) == 1);
738 add_phi_arg (new_phi, arg, EDGE_PRED (guard_edge->src, 0),
739 UNKNOWN_LOCATION);
740
741 /* 3.4. Update phi in successor of GUARD_BB: */
742 gcc_assert (PHI_ARG_DEF_FROM_EDGE (update_phi2, guard_edge)
743 == guard_arg);
744 adjust_phi_and_debug_stmts (update_phi2, guard_edge,
745 PHI_RESULT (new_phi));
746 }
747 }
748
749
750 /* Make the LOOP iterate NITERS times. This is done by adding a new IV
751 that starts at zero, increases by one and its limit is NITERS.
752
753 Assumption: the exit-condition of LOOP is the last stmt in the loop. */
754
755 void
756 slpeel_make_loop_iterate_ntimes (struct loop *loop, tree niters)
757 {
758 tree indx_before_incr, indx_after_incr;
759 gimple cond_stmt;
760 gimple orig_cond;
761 edge exit_edge = single_exit (loop);
762 gimple_stmt_iterator loop_cond_gsi;
763 gimple_stmt_iterator incr_gsi;
764 bool insert_after;
765 tree init = build_int_cst (TREE_TYPE (niters), 0);
766 tree step = build_int_cst (TREE_TYPE (niters), 1);
767 LOC loop_loc;
768 enum tree_code code;
769
770 orig_cond = get_loop_exit_condition (loop);
771 gcc_assert (orig_cond);
772 loop_cond_gsi = gsi_for_stmt (orig_cond);
773
774 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
775 create_iv (init, step, NULL_TREE, loop,
776 &incr_gsi, insert_after, &indx_before_incr, &indx_after_incr);
777
778 indx_after_incr = force_gimple_operand_gsi (&loop_cond_gsi, indx_after_incr,
779 true, NULL_TREE, true,
780 GSI_SAME_STMT);
781 niters = force_gimple_operand_gsi (&loop_cond_gsi, niters, true, NULL_TREE,
782 true, GSI_SAME_STMT);
783
784 code = (exit_edge->flags & EDGE_TRUE_VALUE) ? GE_EXPR : LT_EXPR;
785 cond_stmt = gimple_build_cond (code, indx_after_incr, niters, NULL_TREE,
786 NULL_TREE);
787
788 gsi_insert_before (&loop_cond_gsi, cond_stmt, GSI_SAME_STMT);
789
790 /* Remove old loop exit test: */
791 gsi_remove (&loop_cond_gsi, true);
792
793 loop_loc = find_loop_location (loop);
794 if (dump_file && (dump_flags & TDF_DETAILS))
795 {
796 if (loop_loc != UNKNOWN_LOC)
797 fprintf (dump_file, "\nloop at %s:%d: ",
798 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
799 print_gimple_stmt (dump_file, cond_stmt, 0, TDF_SLIM);
800 }
801
802 loop->nb_iterations = niters;
803 }
804
805
806 /* Given LOOP this function generates a new copy of it and puts it
807 on E which is either the entry or exit of LOOP. */
808
809 struct loop *
810 slpeel_tree_duplicate_loop_to_edge_cfg (struct loop *loop, edge e)
811 {
812 struct loop *new_loop;
813 basic_block *new_bbs, *bbs;
814 bool at_exit;
815 bool was_imm_dom;
816 basic_block exit_dest;
817 gimple phi;
818 tree phi_arg;
819 edge exit, new_exit;
820 gimple_stmt_iterator gsi;
821
822 at_exit = (e == single_exit (loop));
823 if (!at_exit && e != loop_preheader_edge (loop))
824 return NULL;
825
826 bbs = get_loop_body (loop);
827
828 /* Check whether duplication is possible. */
829 if (!can_copy_bbs_p (bbs, loop->num_nodes))
830 {
831 free (bbs);
832 return NULL;
833 }
834
835 /* Generate new loop structure. */
836 new_loop = duplicate_loop (loop, loop_outer (loop));
837 if (!new_loop)
838 {
839 free (bbs);
840 return NULL;
841 }
842
843 exit_dest = single_exit (loop)->dest;
844 was_imm_dom = (get_immediate_dominator (CDI_DOMINATORS,
845 exit_dest) == loop->header ?
846 true : false);
847
848 new_bbs = XNEWVEC (basic_block, loop->num_nodes);
849
850 exit = single_exit (loop);
851 copy_bbs (bbs, loop->num_nodes, new_bbs,
852 &exit, 1, &new_exit, NULL,
853 e->src);
854
855 /* Duplicating phi args at exit bbs as coming
856 also from exit of duplicated loop. */
857 for (gsi = gsi_start_phis (exit_dest); !gsi_end_p (gsi); gsi_next (&gsi))
858 {
859 phi = gsi_stmt (gsi);
860 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, single_exit (loop));
861 if (phi_arg)
862 {
863 edge new_loop_exit_edge;
864 source_location locus;
865
866 locus = gimple_phi_arg_location_from_edge (phi, single_exit (loop));
867 if (EDGE_SUCC (new_loop->header, 0)->dest == new_loop->latch)
868 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 1);
869 else
870 new_loop_exit_edge = EDGE_SUCC (new_loop->header, 0);
871
872 add_phi_arg (phi, phi_arg, new_loop_exit_edge, locus);
873 }
874 }
875
876 if (at_exit) /* Add the loop copy at exit. */
877 {
878 redirect_edge_and_branch_force (e, new_loop->header);
879 PENDING_STMT (e) = NULL;
880 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, e->src);
881 if (was_imm_dom)
882 set_immediate_dominator (CDI_DOMINATORS, exit_dest, new_loop->header);
883 }
884 else /* Add the copy at entry. */
885 {
886 edge new_exit_e;
887 edge entry_e = loop_preheader_edge (loop);
888 basic_block preheader = entry_e->src;
889
890 if (!flow_bb_inside_loop_p (new_loop,
891 EDGE_SUCC (new_loop->header, 0)->dest))
892 new_exit_e = EDGE_SUCC (new_loop->header, 0);
893 else
894 new_exit_e = EDGE_SUCC (new_loop->header, 1);
895
896 redirect_edge_and_branch_force (new_exit_e, loop->header);
897 PENDING_STMT (new_exit_e) = NULL;
898 set_immediate_dominator (CDI_DOMINATORS, loop->header,
899 new_exit_e->src);
900
901 /* We have to add phi args to the loop->header here as coming
902 from new_exit_e edge. */
903 for (gsi = gsi_start_phis (loop->header);
904 !gsi_end_p (gsi);
905 gsi_next (&gsi))
906 {
907 phi = gsi_stmt (gsi);
908 phi_arg = PHI_ARG_DEF_FROM_EDGE (phi, entry_e);
909 if (phi_arg)
910 add_phi_arg (phi, phi_arg, new_exit_e,
911 gimple_phi_arg_location_from_edge (phi, entry_e));
912 }
913
914 redirect_edge_and_branch_force (entry_e, new_loop->header);
915 PENDING_STMT (entry_e) = NULL;
916 set_immediate_dominator (CDI_DOMINATORS, new_loop->header, preheader);
917 }
918
919 free (new_bbs);
920 free (bbs);
921
922 return new_loop;
923 }
924
925
926 /* Given the condition statement COND, put it as the last statement
927 of GUARD_BB; EXIT_BB is the basic block to skip the loop;
928 Assumes that this is the single exit of the guarded loop.
929 Returns the skip edge, inserts new stmts on the COND_EXPR_STMT_LIST. */
930
931 static edge
932 slpeel_add_loop_guard (basic_block guard_bb, tree cond,
933 gimple_seq cond_expr_stmt_list,
934 basic_block exit_bb, basic_block dom_bb)
935 {
936 gimple_stmt_iterator gsi;
937 edge new_e, enter_e;
938 gimple cond_stmt;
939 gimple_seq gimplify_stmt_list = NULL;
940
941 enter_e = EDGE_SUCC (guard_bb, 0);
942 enter_e->flags &= ~EDGE_FALLTHRU;
943 enter_e->flags |= EDGE_FALSE_VALUE;
944 gsi = gsi_last_bb (guard_bb);
945
946 cond = force_gimple_operand (cond, &gimplify_stmt_list, true, NULL_TREE);
947 if (gimplify_stmt_list)
948 gimple_seq_add_seq (&cond_expr_stmt_list, gimplify_stmt_list);
949 cond_stmt = gimple_build_cond (NE_EXPR,
950 cond, build_int_cst (TREE_TYPE (cond), 0),
951 NULL_TREE, NULL_TREE);
952 if (cond_expr_stmt_list)
953 gsi_insert_seq_after (&gsi, cond_expr_stmt_list, GSI_NEW_STMT);
954
955 gsi = gsi_last_bb (guard_bb);
956 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
957
958 /* Add new edge to connect guard block to the merge/loop-exit block. */
959 new_e = make_edge (guard_bb, exit_bb, EDGE_TRUE_VALUE);
960 set_immediate_dominator (CDI_DOMINATORS, exit_bb, dom_bb);
961 return new_e;
962 }
963
964
965 /* This function verifies that the following restrictions apply to LOOP:
966 (1) it is innermost
967 (2) it consists of exactly 2 basic blocks - header, and an empty latch.
968 (3) it is single entry, single exit
969 (4) its exit condition is the last stmt in the header
970 (5) E is the entry/exit edge of LOOP.
971 */
972
973 bool
974 slpeel_can_duplicate_loop_p (const struct loop *loop, const_edge e)
975 {
976 edge exit_e = single_exit (loop);
977 edge entry_e = loop_preheader_edge (loop);
978 gimple orig_cond = get_loop_exit_condition (loop);
979 gimple_stmt_iterator loop_exit_gsi = gsi_last_bb (exit_e->src);
980
981 if (need_ssa_update_p (cfun))
982 return false;
983
984 if (loop->inner
985 /* All loops have an outer scope; the only case loop->outer is NULL is for
986 the function itself. */
987 || !loop_outer (loop)
988 || loop->num_nodes != 2
989 || !empty_block_p (loop->latch)
990 || !single_exit (loop)
991 /* Verify that new loop exit condition can be trivially modified. */
992 || (!orig_cond || orig_cond != gsi_stmt (loop_exit_gsi))
993 || (e != exit_e && e != entry_e))
994 return false;
995
996 return true;
997 }
998
999 #ifdef ENABLE_CHECKING
1000 static void
1001 slpeel_verify_cfg_after_peeling (struct loop *first_loop,
1002 struct loop *second_loop)
1003 {
1004 basic_block loop1_exit_bb = single_exit (first_loop)->dest;
1005 basic_block loop2_entry_bb = loop_preheader_edge (second_loop)->src;
1006 basic_block loop1_entry_bb = loop_preheader_edge (first_loop)->src;
1007
1008 /* A guard that controls whether the second_loop is to be executed or skipped
1009 is placed in first_loop->exit. first_loop->exit therefore has two
1010 successors - one is the preheader of second_loop, and the other is a bb
1011 after second_loop.
1012 */
1013 gcc_assert (EDGE_COUNT (loop1_exit_bb->succs) == 2);
1014
1015 /* 1. Verify that one of the successors of first_loop->exit is the preheader
1016 of second_loop. */
1017
1018 /* The preheader of new_loop is expected to have two predecessors:
1019 first_loop->exit and the block that precedes first_loop. */
1020
1021 gcc_assert (EDGE_COUNT (loop2_entry_bb->preds) == 2
1022 && ((EDGE_PRED (loop2_entry_bb, 0)->src == loop1_exit_bb
1023 && EDGE_PRED (loop2_entry_bb, 1)->src == loop1_entry_bb)
1024 || (EDGE_PRED (loop2_entry_bb, 1)->src == loop1_exit_bb
1025 && EDGE_PRED (loop2_entry_bb, 0)->src == loop1_entry_bb)));
1026
1027 /* Verify that the other successor of first_loop->exit is after the
1028 second_loop. */
1029 /* TODO */
1030 }
1031 #endif
1032
1033 /* If the run time cost model check determines that vectorization is
1034 not profitable and hence scalar loop should be generated then set
1035 FIRST_NITERS to prologue peeled iterations. This will allow all the
1036 iterations to be executed in the prologue peeled scalar loop. */
1037
1038 static void
1039 set_prologue_iterations (basic_block bb_before_first_loop,
1040 tree first_niters,
1041 struct loop *loop,
1042 unsigned int th)
1043 {
1044 edge e;
1045 basic_block cond_bb, then_bb;
1046 tree var, prologue_after_cost_adjust_name;
1047 gimple_stmt_iterator gsi;
1048 gimple newphi;
1049 edge e_true, e_false, e_fallthru;
1050 gimple cond_stmt;
1051 gimple_seq gimplify_stmt_list = NULL, stmts = NULL;
1052 tree cost_pre_condition = NULL_TREE;
1053 tree scalar_loop_iters =
1054 unshare_expr (LOOP_VINFO_NITERS_UNCHANGED (loop_vec_info_for_loop (loop)));
1055
1056 e = single_pred_edge (bb_before_first_loop);
1057 cond_bb = split_edge(e);
1058
1059 e = single_pred_edge (bb_before_first_loop);
1060 then_bb = split_edge(e);
1061 set_immediate_dominator (CDI_DOMINATORS, then_bb, cond_bb);
1062
1063 e_false = make_single_succ_edge (cond_bb, bb_before_first_loop,
1064 EDGE_FALSE_VALUE);
1065 set_immediate_dominator (CDI_DOMINATORS, bb_before_first_loop, cond_bb);
1066
1067 e_true = EDGE_PRED (then_bb, 0);
1068 e_true->flags &= ~EDGE_FALLTHRU;
1069 e_true->flags |= EDGE_TRUE_VALUE;
1070
1071 e_fallthru = EDGE_SUCC (then_bb, 0);
1072
1073 cost_pre_condition =
1074 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1075 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1076 cost_pre_condition =
1077 force_gimple_operand (cost_pre_condition, &gimplify_stmt_list,
1078 true, NULL_TREE);
1079 cond_stmt = gimple_build_cond (NE_EXPR, cost_pre_condition,
1080 build_int_cst (TREE_TYPE (cost_pre_condition),
1081 0), NULL_TREE, NULL_TREE);
1082
1083 gsi = gsi_last_bb (cond_bb);
1084 if (gimplify_stmt_list)
1085 gsi_insert_seq_after (&gsi, gimplify_stmt_list, GSI_NEW_STMT);
1086
1087 gsi = gsi_last_bb (cond_bb);
1088 gsi_insert_after (&gsi, cond_stmt, GSI_NEW_STMT);
1089
1090 var = create_tmp_var (TREE_TYPE (scalar_loop_iters),
1091 "prologue_after_cost_adjust");
1092 add_referenced_var (var);
1093 prologue_after_cost_adjust_name =
1094 force_gimple_operand (scalar_loop_iters, &stmts, false, var);
1095
1096 gsi = gsi_last_bb (then_bb);
1097 if (stmts)
1098 gsi_insert_seq_after (&gsi, stmts, GSI_NEW_STMT);
1099
1100 newphi = create_phi_node (var, bb_before_first_loop);
1101 add_phi_arg (newphi, prologue_after_cost_adjust_name, e_fallthru,
1102 UNKNOWN_LOCATION);
1103 add_phi_arg (newphi, first_niters, e_false, UNKNOWN_LOCATION);
1104
1105 first_niters = PHI_RESULT (newphi);
1106 }
1107
1108
1109 /* Remove dead assignments from loop NEW_LOOP. */
1110
1111 static void
1112 remove_dead_stmts_from_loop (struct loop *new_loop)
1113 {
1114 basic_block *bbs = get_loop_body (new_loop);
1115 unsigned i;
1116 for (i = 0; i < new_loop->num_nodes; ++i)
1117 {
1118 gimple_stmt_iterator gsi;
1119 for (gsi = gsi_start_bb (bbs[i]); !gsi_end_p (gsi);)
1120 {
1121 gimple stmt = gsi_stmt (gsi);
1122 if (is_gimple_assign (stmt)
1123 && TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME
1124 && has_zero_uses (gimple_assign_lhs (stmt)))
1125 {
1126 gsi_remove (&gsi, true);
1127 release_defs (stmt);
1128 }
1129 else
1130 gsi_next (&gsi);
1131 }
1132 }
1133 free (bbs);
1134 }
1135
1136
1137 /* Function slpeel_tree_peel_loop_to_edge.
1138
1139 Peel the first (last) iterations of LOOP into a new prolog (epilog) loop
1140 that is placed on the entry (exit) edge E of LOOP. After this transformation
1141 we have two loops one after the other - first-loop iterates FIRST_NITERS
1142 times, and second-loop iterates the remainder NITERS - FIRST_NITERS times.
1143 If the cost model indicates that it is profitable to emit a scalar
1144 loop instead of the vector one, then the prolog (epilog) loop will iterate
1145 for the entire unchanged scalar iterations of the loop.
1146
1147 Input:
1148 - LOOP: the loop to be peeled.
1149 - E: the exit or entry edge of LOOP.
1150 If it is the entry edge, we peel the first iterations of LOOP. In this
1151 case first-loop is LOOP, and second-loop is the newly created loop.
1152 If it is the exit edge, we peel the last iterations of LOOP. In this
1153 case, first-loop is the newly created loop, and second-loop is LOOP.
1154 - NITERS: the number of iterations that LOOP iterates.
1155 - FIRST_NITERS: the number of iterations that the first-loop should iterate.
1156 - UPDATE_FIRST_LOOP_COUNT: specified whether this function is responsible
1157 for updating the loop bound of the first-loop to FIRST_NITERS. If it
1158 is false, the caller of this function may want to take care of this
1159 (this can be useful if we don't want new stmts added to first-loop).
1160 - TH: cost model profitability threshold of iterations for vectorization.
1161 - CHECK_PROFITABILITY: specify whether cost model check has not occurred
1162 during versioning and hence needs to occur during
1163 prologue generation or whether cost model check
1164 has not occurred during prologue generation and hence
1165 needs to occur during epilogue generation.
1166
1167
1168 Output:
1169 The function returns a pointer to the new loop-copy, or NULL if it failed
1170 to perform the transformation.
1171
1172 The function generates two if-then-else guards: one before the first loop,
1173 and the other before the second loop:
1174 The first guard is:
1175 if (FIRST_NITERS == 0) then skip the first loop,
1176 and go directly to the second loop.
1177 The second guard is:
1178 if (FIRST_NITERS == NITERS) then skip the second loop.
1179
1180 If the optional COND_EXPR and COND_EXPR_STMT_LIST arguments are given
1181 then the generated condition is combined with COND_EXPR and the
1182 statements in COND_EXPR_STMT_LIST are emitted together with it.
1183
1184 FORNOW only simple loops are supported (see slpeel_can_duplicate_loop_p).
1185 FORNOW the resulting code will not be in loop-closed-ssa form.
1186 */
1187
1188 static struct loop*
1189 slpeel_tree_peel_loop_to_edge (struct loop *loop,
1190 edge e, tree first_niters,
1191 tree niters, bool update_first_loop_count,
1192 unsigned int th, bool check_profitability,
1193 tree cond_expr, gimple_seq cond_expr_stmt_list)
1194 {
1195 struct loop *new_loop = NULL, *first_loop, *second_loop;
1196 edge skip_e;
1197 tree pre_condition = NULL_TREE;
1198 bitmap definitions;
1199 basic_block bb_before_second_loop, bb_after_second_loop;
1200 basic_block bb_before_first_loop;
1201 basic_block bb_between_loops;
1202 basic_block new_exit_bb;
1203 edge exit_e = single_exit (loop);
1204 LOC loop_loc;
1205 tree cost_pre_condition = NULL_TREE;
1206
1207 if (!slpeel_can_duplicate_loop_p (loop, e))
1208 return NULL;
1209
1210 /* We have to initialize cfg_hooks. Then, when calling
1211 cfg_hooks->split_edge, the function tree_split_edge
1212 is actually called and, when calling cfg_hooks->duplicate_block,
1213 the function tree_duplicate_bb is called. */
1214 gimple_register_cfg_hooks ();
1215
1216
1217 /* 1. Generate a copy of LOOP and put it on E (E is the entry/exit of LOOP).
1218 Resulting CFG would be:
1219
1220 first_loop:
1221 do {
1222 } while ...
1223
1224 second_loop:
1225 do {
1226 } while ...
1227
1228 orig_exit_bb:
1229 */
1230
1231 if (!(new_loop = slpeel_tree_duplicate_loop_to_edge_cfg (loop, e)))
1232 {
1233 loop_loc = find_loop_location (loop);
1234 if (dump_file && (dump_flags & TDF_DETAILS))
1235 {
1236 if (loop_loc != UNKNOWN_LOC)
1237 fprintf (dump_file, "\n%s:%d: note: ",
1238 LOC_FILE (loop_loc), LOC_LINE (loop_loc));
1239 fprintf (dump_file, "tree_duplicate_loop_to_edge_cfg failed.\n");
1240 }
1241 return NULL;
1242 }
1243
1244 if (MAY_HAVE_DEBUG_STMTS)
1245 {
1246 gcc_assert (!adjust_vec);
1247 adjust_vec = VEC_alloc (adjust_info, stack, 32);
1248 }
1249
1250 if (e == exit_e)
1251 {
1252 /* NEW_LOOP was placed after LOOP. */
1253 first_loop = loop;
1254 second_loop = new_loop;
1255 }
1256 else
1257 {
1258 /* NEW_LOOP was placed before LOOP. */
1259 first_loop = new_loop;
1260 second_loop = loop;
1261 }
1262
1263 definitions = ssa_names_to_replace ();
1264 slpeel_update_phis_for_duplicate_loop (loop, new_loop, e == exit_e);
1265 rename_variables_in_loop (new_loop);
1266
1267
1268 /* 2. Add the guard code in one of the following ways:
1269
1270 2.a Add the guard that controls whether the first loop is executed.
1271 This occurs when this function is invoked for prologue or epilogue
1272 generation and when the cost model check can be done at compile time.
1273
1274 Resulting CFG would be:
1275
1276 bb_before_first_loop:
1277 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1278 GOTO first-loop
1279
1280 first_loop:
1281 do {
1282 } while ...
1283
1284 bb_before_second_loop:
1285
1286 second_loop:
1287 do {
1288 } while ...
1289
1290 orig_exit_bb:
1291
1292 2.b Add the cost model check that allows the prologue
1293 to iterate for the entire unchanged scalar
1294 iterations of the loop in the event that the cost
1295 model indicates that the scalar loop is more
1296 profitable than the vector one. This occurs when
1297 this function is invoked for prologue generation
1298 and the cost model check needs to be done at run
1299 time.
1300
1301 Resulting CFG after prologue peeling would be:
1302
1303 if (scalar_loop_iterations <= th)
1304 FIRST_NITERS = scalar_loop_iterations
1305
1306 bb_before_first_loop:
1307 if (FIRST_NITERS == 0) GOTO bb_before_second_loop
1308 GOTO first-loop
1309
1310 first_loop:
1311 do {
1312 } while ...
1313
1314 bb_before_second_loop:
1315
1316 second_loop:
1317 do {
1318 } while ...
1319
1320 orig_exit_bb:
1321
1322 2.c Add the cost model check that allows the epilogue
1323 to iterate for the entire unchanged scalar
1324 iterations of the loop in the event that the cost
1325 model indicates that the scalar loop is more
1326 profitable than the vector one. This occurs when
1327 this function is invoked for epilogue generation
1328 and the cost model check needs to be done at run
1329 time. This check is combined with any pre-existing
1330 check in COND_EXPR to avoid versioning.
1331
1332 Resulting CFG after prologue peeling would be:
1333
1334 bb_before_first_loop:
1335 if ((scalar_loop_iterations <= th)
1336 ||
1337 FIRST_NITERS == 0) GOTO bb_before_second_loop
1338 GOTO first-loop
1339
1340 first_loop:
1341 do {
1342 } while ...
1343
1344 bb_before_second_loop:
1345
1346 second_loop:
1347 do {
1348 } while ...
1349
1350 orig_exit_bb:
1351 */
1352
1353 bb_before_first_loop = split_edge (loop_preheader_edge (first_loop));
1354 bb_before_second_loop = split_edge (single_exit (first_loop));
1355
1356 /* Epilogue peeling. */
1357 if (!update_first_loop_count)
1358 {
1359 pre_condition =
1360 fold_build2 (LE_EXPR, boolean_type_node, first_niters,
1361 build_int_cst (TREE_TYPE (first_niters), 0));
1362 if (check_profitability)
1363 {
1364 tree scalar_loop_iters
1365 = unshare_expr (LOOP_VINFO_NITERS_UNCHANGED
1366 (loop_vec_info_for_loop (loop)));
1367 cost_pre_condition =
1368 fold_build2 (LE_EXPR, boolean_type_node, scalar_loop_iters,
1369 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
1370
1371 pre_condition = fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1372 cost_pre_condition, pre_condition);
1373 }
1374 if (cond_expr)
1375 {
1376 pre_condition =
1377 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
1378 pre_condition,
1379 fold_build1 (TRUTH_NOT_EXPR, boolean_type_node,
1380 cond_expr));
1381 }
1382 }
1383
1384 /* Prologue peeling. */
1385 else
1386 {
1387 if (check_profitability)
1388 set_prologue_iterations (bb_before_first_loop, first_niters,
1389 loop, th);
1390
1391 pre_condition =
1392 fold_build2 (LE_EXPR, boolean_type_node, first_niters,
1393 build_int_cst (TREE_TYPE (first_niters), 0));
1394 }
1395
1396 skip_e = slpeel_add_loop_guard (bb_before_first_loop, pre_condition,
1397 cond_expr_stmt_list,
1398 bb_before_second_loop, bb_before_first_loop);
1399 slpeel_update_phi_nodes_for_guard1 (skip_e, first_loop,
1400 first_loop == new_loop,
1401 &new_exit_bb, &definitions);
1402
1403
1404 /* 3. Add the guard that controls whether the second loop is executed.
1405 Resulting CFG would be:
1406
1407 bb_before_first_loop:
1408 if (FIRST_NITERS == 0) GOTO bb_before_second_loop (skip first loop)
1409 GOTO first-loop
1410
1411 first_loop:
1412 do {
1413 } while ...
1414
1415 bb_between_loops:
1416 if (FIRST_NITERS == NITERS) GOTO bb_after_second_loop (skip second loop)
1417 GOTO bb_before_second_loop
1418
1419 bb_before_second_loop:
1420
1421 second_loop:
1422 do {
1423 } while ...
1424
1425 bb_after_second_loop:
1426
1427 orig_exit_bb:
1428 */
1429
1430 bb_between_loops = new_exit_bb;
1431 bb_after_second_loop = split_edge (single_exit (second_loop));
1432
1433 pre_condition =
1434 fold_build2 (EQ_EXPR, boolean_type_node, first_niters, niters);
1435 skip_e = slpeel_add_loop_guard (bb_between_loops, pre_condition, NULL,
1436 bb_after_second_loop, bb_before_first_loop);
1437 slpeel_update_phi_nodes_for_guard2 (skip_e, second_loop,
1438 second_loop == new_loop, &new_exit_bb);
1439
1440 /* 4. Make first-loop iterate FIRST_NITERS times, if requested.
1441 */
1442 if (update_first_loop_count)
1443 slpeel_make_loop_iterate_ntimes (first_loop, first_niters);
1444
1445 /* Remove all pattern statements from the loop copy. They will confuse
1446 the expander if DCE is disabled.
1447 ??? The pattern recognizer should be split into an analysis and
1448 a transformation phase that is then run only on the loop that is
1449 going to be transformed. */
1450 remove_dead_stmts_from_loop (new_loop);
1451
1452 adjust_vec_debug_stmts ();
1453
1454 BITMAP_FREE (definitions);
1455 delete_update_ssa ();
1456
1457 return new_loop;
1458 }
1459
1460 /* Function vect_get_loop_location.
1461
1462 Extract the location of the loop in the source code.
1463 If the loop is not well formed for vectorization, an estimated
1464 location is calculated.
1465 Return the loop location if succeed and NULL if not. */
1466
1467 LOC
1468 find_loop_location (struct loop *loop)
1469 {
1470 gimple stmt = NULL;
1471 basic_block bb;
1472 gimple_stmt_iterator si;
1473
1474 if (!loop)
1475 return UNKNOWN_LOC;
1476
1477 stmt = get_loop_exit_condition (loop);
1478
1479 if (stmt && gimple_location (stmt) != UNKNOWN_LOC)
1480 return gimple_location (stmt);
1481
1482 /* If we got here the loop is probably not "well formed",
1483 try to estimate the loop location */
1484
1485 if (!loop->header)
1486 return UNKNOWN_LOC;
1487
1488 bb = loop->header;
1489
1490 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1491 {
1492 stmt = gsi_stmt (si);
1493 if (gimple_location (stmt) != UNKNOWN_LOC)
1494 return gimple_location (stmt);
1495 }
1496
1497 return UNKNOWN_LOC;
1498 }
1499
1500
1501 /* This function builds ni_name = number of iterations loop executes
1502 on the loop preheader. If SEQ is given the stmt is instead emitted
1503 there. */
1504
1505 static tree
1506 vect_build_loop_niters (loop_vec_info loop_vinfo, gimple_seq seq)
1507 {
1508 tree ni_name, var;
1509 gimple_seq stmts = NULL;
1510 edge pe;
1511 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1512 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
1513
1514 var = create_tmp_var (TREE_TYPE (ni), "niters");
1515 add_referenced_var (var);
1516 ni_name = force_gimple_operand (ni, &stmts, false, var);
1517
1518 pe = loop_preheader_edge (loop);
1519 if (stmts)
1520 {
1521 if (seq)
1522 gimple_seq_add_seq (&seq, stmts);
1523 else
1524 {
1525 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1526 gcc_assert (!new_bb);
1527 }
1528 }
1529
1530 return ni_name;
1531 }
1532
1533
1534 /* This function generates the following statements:
1535
1536 ni_name = number of iterations loop executes
1537 ratio = ni_name / vf
1538 ratio_mult_vf_name = ratio * vf
1539
1540 and places them at the loop preheader edge or in COND_EXPR_STMT_LIST
1541 if that is non-NULL. */
1542
1543 static void
1544 vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
1545 tree *ni_name_ptr,
1546 tree *ratio_mult_vf_name_ptr,
1547 tree *ratio_name_ptr,
1548 gimple_seq cond_expr_stmt_list)
1549 {
1550
1551 edge pe;
1552 basic_block new_bb;
1553 gimple_seq stmts;
1554 tree ni_name;
1555 tree var;
1556 tree ratio_name;
1557 tree ratio_mult_vf_name;
1558 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1559 tree ni = LOOP_VINFO_NITERS (loop_vinfo);
1560 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1561 tree log_vf;
1562
1563 pe = loop_preheader_edge (loop);
1564
1565 /* Generate temporary variable that contains
1566 number of iterations loop executes. */
1567
1568 ni_name = vect_build_loop_niters (loop_vinfo, cond_expr_stmt_list);
1569 log_vf = build_int_cst (TREE_TYPE (ni), exact_log2 (vf));
1570
1571 /* Create: ratio = ni >> log2(vf) */
1572
1573 ratio_name = fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_name), ni_name, log_vf);
1574 if (!is_gimple_val (ratio_name))
1575 {
1576 var = create_tmp_var (TREE_TYPE (ni), "bnd");
1577 add_referenced_var (var);
1578
1579 stmts = NULL;
1580 ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
1581 if (cond_expr_stmt_list)
1582 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1583 else
1584 {
1585 pe = loop_preheader_edge (loop);
1586 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1587 gcc_assert (!new_bb);
1588 }
1589 }
1590
1591 /* Create: ratio_mult_vf = ratio << log2 (vf). */
1592
1593 ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
1594 ratio_name, log_vf);
1595 if (!is_gimple_val (ratio_mult_vf_name))
1596 {
1597 var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
1598 add_referenced_var (var);
1599
1600 stmts = NULL;
1601 ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
1602 true, var);
1603 if (cond_expr_stmt_list)
1604 gimple_seq_add_seq (&cond_expr_stmt_list, stmts);
1605 else
1606 {
1607 pe = loop_preheader_edge (loop);
1608 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
1609 gcc_assert (!new_bb);
1610 }
1611 }
1612
1613 *ni_name_ptr = ni_name;
1614 *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
1615 *ratio_name_ptr = ratio_name;
1616
1617 return;
1618 }
1619
1620 /* Function vect_can_advance_ivs_p
1621
1622 In case the number of iterations that LOOP iterates is unknown at compile
1623 time, an epilog loop will be generated, and the loop induction variables
1624 (IVs) will be "advanced" to the value they are supposed to take just before
1625 the epilog loop. Here we check that the access function of the loop IVs
1626 and the expression that represents the loop bound are simple enough.
1627 These restrictions will be relaxed in the future. */
1628
1629 bool
1630 vect_can_advance_ivs_p (loop_vec_info loop_vinfo)
1631 {
1632 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1633 basic_block bb = loop->header;
1634 gimple phi;
1635 gimple_stmt_iterator gsi;
1636
1637 /* Analyze phi functions of the loop header. */
1638
1639 if (vect_print_dump_info (REPORT_DETAILS))
1640 fprintf (vect_dump, "vect_can_advance_ivs_p:");
1641
1642 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1643 {
1644 tree access_fn = NULL;
1645 tree evolution_part;
1646
1647 phi = gsi_stmt (gsi);
1648 if (vect_print_dump_info (REPORT_DETAILS))
1649 {
1650 fprintf (vect_dump, "Analyze phi: ");
1651 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1652 }
1653
1654 /* Skip virtual phi's. The data dependences that are associated with
1655 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
1656
1657 if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
1658 {
1659 if (vect_print_dump_info (REPORT_DETAILS))
1660 fprintf (vect_dump, "virtual phi. skip.");
1661 continue;
1662 }
1663
1664 /* Skip reduction phis. */
1665
1666 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1667 {
1668 if (vect_print_dump_info (REPORT_DETAILS))
1669 fprintf (vect_dump, "reduc phi. skip.");
1670 continue;
1671 }
1672
1673 /* Analyze the evolution function. */
1674
1675 access_fn = instantiate_parameters
1676 (loop, analyze_scalar_evolution (loop, PHI_RESULT (phi)));
1677
1678 if (!access_fn)
1679 {
1680 if (vect_print_dump_info (REPORT_DETAILS))
1681 fprintf (vect_dump, "No Access function.");
1682 return false;
1683 }
1684
1685 if (vect_print_dump_info (REPORT_DETAILS))
1686 {
1687 fprintf (vect_dump, "Access function of PHI: ");
1688 print_generic_expr (vect_dump, access_fn, TDF_SLIM);
1689 }
1690
1691 evolution_part = evolution_part_in_loop_num (access_fn, loop->num);
1692
1693 if (evolution_part == NULL_TREE)
1694 {
1695 if (vect_print_dump_info (REPORT_DETAILS))
1696 fprintf (vect_dump, "No evolution.");
1697 return false;
1698 }
1699
1700 /* FORNOW: We do not transform initial conditions of IVs
1701 which evolution functions are a polynomial of degree >= 2. */
1702
1703 if (tree_is_chrec (evolution_part))
1704 return false;
1705 }
1706
1707 return true;
1708 }
1709
1710
1711 /* Function vect_update_ivs_after_vectorizer.
1712
1713 "Advance" the induction variables of LOOP to the value they should take
1714 after the execution of LOOP. This is currently necessary because the
1715 vectorizer does not handle induction variables that are used after the
1716 loop. Such a situation occurs when the last iterations of LOOP are
1717 peeled, because:
1718 1. We introduced new uses after LOOP for IVs that were not originally used
1719 after LOOP: the IVs of LOOP are now used by an epilog loop.
1720 2. LOOP is going to be vectorized; this means that it will iterate N/VF
1721 times, whereas the loop IVs should be bumped N times.
1722
1723 Input:
1724 - LOOP - a loop that is going to be vectorized. The last few iterations
1725 of LOOP were peeled.
1726 - NITERS - the number of iterations that LOOP executes (before it is
1727 vectorized). i.e, the number of times the ivs should be bumped.
1728 - UPDATE_E - a successor edge of LOOP->exit that is on the (only) path
1729 coming out from LOOP on which there are uses of the LOOP ivs
1730 (this is the path from LOOP->exit to epilog_loop->preheader).
1731
1732 The new definitions of the ivs are placed in LOOP->exit.
1733 The phi args associated with the edge UPDATE_E in the bb
1734 UPDATE_E->dest are updated accordingly.
1735
1736 Assumption 1: Like the rest of the vectorizer, this function assumes
1737 a single loop exit that has a single predecessor.
1738
1739 Assumption 2: The phi nodes in the LOOP header and in update_bb are
1740 organized in the same order.
1741
1742 Assumption 3: The access function of the ivs is simple enough (see
1743 vect_can_advance_ivs_p). This assumption will be relaxed in the future.
1744
1745 Assumption 4: Exactly one of the successors of LOOP exit-bb is on a path
1746 coming out of LOOP on which the ivs of LOOP are used (this is the path
1747 that leads to the epilog loop; other paths skip the epilog loop). This
1748 path starts with the edge UPDATE_E, and its destination (denoted update_bb)
1749 needs to have its phis updated.
1750 */
1751
1752 static void
1753 vect_update_ivs_after_vectorizer (loop_vec_info loop_vinfo, tree niters,
1754 edge update_e)
1755 {
1756 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1757 basic_block exit_bb = single_exit (loop)->dest;
1758 gimple phi, phi1;
1759 gimple_stmt_iterator gsi, gsi1;
1760 basic_block update_bb = update_e->dest;
1761
1762 /* gcc_assert (vect_can_advance_ivs_p (loop_vinfo)); */
1763
1764 /* Make sure there exists a single-predecessor exit bb: */
1765 gcc_assert (single_pred_p (exit_bb));
1766
1767 for (gsi = gsi_start_phis (loop->header), gsi1 = gsi_start_phis (update_bb);
1768 !gsi_end_p (gsi) && !gsi_end_p (gsi1);
1769 gsi_next (&gsi), gsi_next (&gsi1))
1770 {
1771 tree access_fn = NULL;
1772 tree evolution_part;
1773 tree init_expr;
1774 tree step_expr, off;
1775 tree type;
1776 tree var, ni, ni_name;
1777 gimple_stmt_iterator last_gsi;
1778
1779 phi = gsi_stmt (gsi);
1780 phi1 = gsi_stmt (gsi1);
1781 if (vect_print_dump_info (REPORT_DETAILS))
1782 {
1783 fprintf (vect_dump, "vect_update_ivs_after_vectorizer: phi: ");
1784 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1785 }
1786
1787 /* Skip virtual phi's. */
1788 if (!is_gimple_reg (SSA_NAME_VAR (PHI_RESULT (phi))))
1789 {
1790 if (vect_print_dump_info (REPORT_DETAILS))
1791 fprintf (vect_dump, "virtual phi. skip.");
1792 continue;
1793 }
1794
1795 /* Skip reduction phis. */
1796 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (phi)) == vect_reduction_def)
1797 {
1798 if (vect_print_dump_info (REPORT_DETAILS))
1799 fprintf (vect_dump, "reduc phi. skip.");
1800 continue;
1801 }
1802
1803 access_fn = analyze_scalar_evolution (loop, PHI_RESULT (phi));
1804 gcc_assert (access_fn);
1805 /* We can end up with an access_fn like
1806 (short int) {(short unsigned int) i_49, +, 1}_1
1807 for further analysis we need to strip the outer cast but we
1808 need to preserve the original type. */
1809 type = TREE_TYPE (access_fn);
1810 STRIP_NOPS (access_fn);
1811 evolution_part =
1812 unshare_expr (evolution_part_in_loop_num (access_fn, loop->num));
1813 gcc_assert (evolution_part != NULL_TREE);
1814
1815 /* FORNOW: We do not support IVs whose evolution function is a polynomial
1816 of degree >= 2 or exponential. */
1817 gcc_assert (!tree_is_chrec (evolution_part));
1818
1819 step_expr = evolution_part;
1820 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn,
1821 loop->num));
1822 init_expr = fold_convert (type, init_expr);
1823
1824 off = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
1825 fold_convert (TREE_TYPE (step_expr), niters),
1826 step_expr);
1827 if (POINTER_TYPE_P (TREE_TYPE (init_expr)))
1828 ni = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (init_expr),
1829 init_expr,
1830 fold_convert (sizetype, off));
1831 else
1832 ni = fold_build2 (PLUS_EXPR, TREE_TYPE (init_expr),
1833 init_expr,
1834 fold_convert (TREE_TYPE (init_expr), off));
1835
1836 var = create_tmp_var (TREE_TYPE (init_expr), "tmp");
1837 add_referenced_var (var);
1838
1839 last_gsi = gsi_last_bb (exit_bb);
1840 ni_name = force_gimple_operand_gsi (&last_gsi, ni, false, var,
1841 true, GSI_SAME_STMT);
1842
1843 /* Fix phi expressions in the successor bb. */
1844 adjust_phi_and_debug_stmts (phi1, update_e, ni_name);
1845 }
1846 }
1847
1848 /* Return the more conservative threshold between the
1849 min_profitable_iters returned by the cost model and the user
1850 specified threshold, if provided. */
1851
1852 static unsigned int
1853 conservative_cost_threshold (loop_vec_info loop_vinfo,
1854 int min_profitable_iters)
1855 {
1856 unsigned int th;
1857 int min_scalar_loop_bound;
1858
1859 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1860 * LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 1);
1861
1862 /* Use the cost model only if it is more conservative than user specified
1863 threshold. */
1864 th = (unsigned) min_scalar_loop_bound;
1865 if (min_profitable_iters
1866 && (!min_scalar_loop_bound
1867 || min_profitable_iters > min_scalar_loop_bound))
1868 th = (unsigned) min_profitable_iters;
1869
1870 if (th && vect_print_dump_info (REPORT_COST))
1871 fprintf (vect_dump, "Profitability threshold is %u loop iterations.", th);
1872
1873 return th;
1874 }
1875
1876 /* Function vect_do_peeling_for_loop_bound
1877
1878 Peel the last iterations of the loop represented by LOOP_VINFO.
1879 The peeled iterations form a new epilog loop. Given that the loop now
1880 iterates NITERS times, the new epilog loop iterates
1881 NITERS % VECTORIZATION_FACTOR times.
1882
1883 The original loop will later be made to iterate
1884 NITERS / VECTORIZATION_FACTOR times (this value is placed into RATIO).
1885
1886 COND_EXPR and COND_EXPR_STMT_LIST are combined with a new generated
1887 test. */
1888
1889 void
1890 vect_do_peeling_for_loop_bound (loop_vec_info loop_vinfo, tree *ratio,
1891 tree cond_expr, gimple_seq cond_expr_stmt_list)
1892 {
1893 tree ni_name, ratio_mult_vf_name;
1894 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1895 struct loop *new_loop;
1896 edge update_e;
1897 basic_block preheader;
1898 int loop_num;
1899 bool check_profitability = false;
1900 unsigned int th = 0;
1901 int min_profitable_iters;
1902
1903 if (vect_print_dump_info (REPORT_DETAILS))
1904 fprintf (vect_dump, "=== vect_do_peeling_for_loop_bound ===");
1905
1906 initialize_original_copy_tables ();
1907
1908 /* Generate the following variables on the preheader of original loop:
1909
1910 ni_name = number of iteration the original loop executes
1911 ratio = ni_name / vf
1912 ratio_mult_vf_name = ratio * vf */
1913 vect_generate_tmps_on_preheader (loop_vinfo, &ni_name,
1914 &ratio_mult_vf_name, ratio,
1915 cond_expr_stmt_list);
1916
1917 loop_num = loop->num;
1918
1919 /* If cost model check not done during versioning and
1920 peeling for alignment. */
1921 if (!LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
1922 && !LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo)
1923 && !LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo)
1924 && !cond_expr)
1925 {
1926 check_profitability = true;
1927
1928 /* Get profitability threshold for vectorized loop. */
1929 min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
1930
1931 th = conservative_cost_threshold (loop_vinfo,
1932 min_profitable_iters);
1933 }
1934
1935 new_loop = slpeel_tree_peel_loop_to_edge (loop, single_exit (loop),
1936 ratio_mult_vf_name, ni_name, false,
1937 th, check_profitability,
1938 cond_expr, cond_expr_stmt_list);
1939 gcc_assert (new_loop);
1940 gcc_assert (loop_num == loop->num);
1941 #ifdef ENABLE_CHECKING
1942 slpeel_verify_cfg_after_peeling (loop, new_loop);
1943 #endif
1944
1945 /* A guard that controls whether the new_loop is to be executed or skipped
1946 is placed in LOOP->exit. LOOP->exit therefore has two successors - one
1947 is the preheader of NEW_LOOP, where the IVs from LOOP are used. The other
1948 is a bb after NEW_LOOP, where these IVs are not used. Find the edge that
1949 is on the path where the LOOP IVs are used and need to be updated. */
1950
1951 preheader = loop_preheader_edge (new_loop)->src;
1952 if (EDGE_PRED (preheader, 0)->src == single_exit (loop)->dest)
1953 update_e = EDGE_PRED (preheader, 0);
1954 else
1955 update_e = EDGE_PRED (preheader, 1);
1956
1957 /* Update IVs of original loop as if they were advanced
1958 by ratio_mult_vf_name steps. */
1959 vect_update_ivs_after_vectorizer (loop_vinfo, ratio_mult_vf_name, update_e);
1960
1961 /* After peeling we have to reset scalar evolution analyzer. */
1962 scev_reset ();
1963
1964 free_original_copy_tables ();
1965 }
1966
1967
1968 /* Function vect_gen_niters_for_prolog_loop
1969
1970 Set the number of iterations for the loop represented by LOOP_VINFO
1971 to the minimum between LOOP_NITERS (the original iteration count of the loop)
1972 and the misalignment of DR - the data reference recorded in
1973 LOOP_VINFO_UNALIGNED_DR (LOOP_VINFO). As a result, after the execution of
1974 this loop, the data reference DR will refer to an aligned location.
1975
1976 The following computation is generated:
1977
1978 If the misalignment of DR is known at compile time:
1979 addr_mis = int mis = DR_MISALIGNMENT (dr);
1980 Else, compute address misalignment in bytes:
1981 addr_mis = addr & (vectype_size - 1)
1982
1983 prolog_niters = min (LOOP_NITERS, ((VF - addr_mis/elem_size)&(VF-1))/step)
1984
1985 (elem_size = element type size; an element is the scalar element whose type
1986 is the inner type of the vectype)
1987
1988 When the step of the data-ref in the loop is not 1 (as in interleaved data
1989 and SLP), the number of iterations of the prolog must be divided by the step
1990 (which is equal to the size of interleaved group).
1991
1992 The above formulas assume that VF == number of elements in the vector. This
1993 may not hold when there are multiple-types in the loop.
1994 In this case, for some data-references in the loop the VF does not represent
1995 the number of elements that fit in the vector. Therefore, instead of VF we
1996 use TYPE_VECTOR_SUBPARTS. */
1997
1998 static tree
1999 vect_gen_niters_for_prolog_loop (loop_vec_info loop_vinfo, tree loop_niters,
2000 tree *wide_prolog_niters)
2001 {
2002 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2003 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2004 tree var;
2005 gimple_seq stmts;
2006 tree iters, iters_name;
2007 edge pe;
2008 basic_block new_bb;
2009 gimple dr_stmt = DR_STMT (dr);
2010 stmt_vec_info stmt_info = vinfo_for_stmt (dr_stmt);
2011 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2012 int vectype_align = TYPE_ALIGN (vectype) / BITS_PER_UNIT;
2013 tree niters_type = TREE_TYPE (loop_niters);
2014 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
2015
2016 pe = loop_preheader_edge (loop);
2017
2018 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2019 {
2020 int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
2021
2022 if (vect_print_dump_info (REPORT_DETAILS))
2023 fprintf (vect_dump, "known peeling = %d.", npeel);
2024
2025 iters = build_int_cst (niters_type, npeel);
2026 }
2027 else
2028 {
2029 gimple_seq new_stmts = NULL;
2030 bool negative = tree_int_cst_compare (DR_STEP (dr), size_zero_node) < 0;
2031 tree offset = negative
2032 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
2033 tree start_addr = vect_create_addr_base_for_vector_ref (dr_stmt,
2034 &new_stmts, offset, loop);
2035 tree ptr_type = TREE_TYPE (start_addr);
2036 tree size = TYPE_SIZE (ptr_type);
2037 tree type = lang_hooks.types.type_for_size (tree_low_cst (size, 1), 1);
2038 tree vectype_size_minus_1 = build_int_cst (type, vectype_align - 1);
2039 tree elem_size_log =
2040 build_int_cst (type, exact_log2 (vectype_align/nelements));
2041 tree nelements_minus_1 = build_int_cst (type, nelements - 1);
2042 tree nelements_tree = build_int_cst (type, nelements);
2043 tree byte_misalign;
2044 tree elem_misalign;
2045
2046 new_bb = gsi_insert_seq_on_edge_immediate (pe, new_stmts);
2047 gcc_assert (!new_bb);
2048
2049 /* Create: byte_misalign = addr & (vectype_size - 1) */
2050 byte_misalign =
2051 fold_build2 (BIT_AND_EXPR, type, fold_convert (type, start_addr),
2052 vectype_size_minus_1);
2053
2054 /* Create: elem_misalign = byte_misalign / element_size */
2055 elem_misalign =
2056 fold_build2 (RSHIFT_EXPR, type, byte_misalign, elem_size_log);
2057
2058 /* Create: (niters_type) (nelements - elem_misalign)&(nelements - 1) */
2059 if (negative)
2060 iters = fold_build2 (MINUS_EXPR, type, elem_misalign, nelements_tree);
2061 else
2062 iters = fold_build2 (MINUS_EXPR, type, nelements_tree, elem_misalign);
2063 iters = fold_build2 (BIT_AND_EXPR, type, iters, nelements_minus_1);
2064 iters = fold_convert (niters_type, iters);
2065 }
2066
2067 /* Create: prolog_loop_niters = min (iters, loop_niters) */
2068 /* If the loop bound is known at compile time we already verified that it is
2069 greater than vf; since the misalignment ('iters') is at most vf, there's
2070 no need to generate the MIN_EXPR in this case. */
2071 if (TREE_CODE (loop_niters) != INTEGER_CST)
2072 iters = fold_build2 (MIN_EXPR, niters_type, iters, loop_niters);
2073
2074 if (vect_print_dump_info (REPORT_DETAILS))
2075 {
2076 fprintf (vect_dump, "niters for prolog loop: ");
2077 print_generic_expr (vect_dump, iters, TDF_SLIM);
2078 }
2079
2080 var = create_tmp_var (niters_type, "prolog_loop_niters");
2081 add_referenced_var (var);
2082 stmts = NULL;
2083 iters_name = force_gimple_operand (iters, &stmts, false, var);
2084 if (types_compatible_p (sizetype, niters_type))
2085 *wide_prolog_niters = iters_name;
2086 else
2087 {
2088 gimple_seq seq = NULL;
2089 tree wide_iters = fold_convert (sizetype, iters);
2090 var = create_tmp_var (sizetype, "prolog_loop_niters");
2091 add_referenced_var (var);
2092 *wide_prolog_niters = force_gimple_operand (wide_iters, &seq, false,
2093 var);
2094 if (seq)
2095 gimple_seq_add_seq (&stmts, seq);
2096 }
2097
2098 /* Insert stmt on loop preheader edge. */
2099 if (stmts)
2100 {
2101 basic_block new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
2102 gcc_assert (!new_bb);
2103 }
2104
2105 return iters_name;
2106 }
2107
2108
2109 /* Function vect_update_init_of_dr
2110
2111 NITERS iterations were peeled from LOOP. DR represents a data reference
2112 in LOOP. This function updates the information recorded in DR to
2113 account for the fact that the first NITERS iterations had already been
2114 executed. Specifically, it updates the OFFSET field of DR. */
2115
2116 static void
2117 vect_update_init_of_dr (struct data_reference *dr, tree niters)
2118 {
2119 tree offset = DR_OFFSET (dr);
2120
2121 niters = fold_build2 (MULT_EXPR, sizetype,
2122 fold_convert (sizetype, niters),
2123 fold_convert (sizetype, DR_STEP (dr)));
2124 offset = fold_build2 (PLUS_EXPR, sizetype,
2125 fold_convert (sizetype, offset), niters);
2126 DR_OFFSET (dr) = offset;
2127 }
2128
2129
2130 /* Function vect_update_inits_of_drs
2131
2132 NITERS iterations were peeled from the loop represented by LOOP_VINFO.
2133 This function updates the information recorded for the data references in
2134 the loop to account for the fact that the first NITERS iterations had
2135 already been executed. Specifically, it updates the initial_condition of
2136 the access_function of all the data_references in the loop. */
2137
2138 static void
2139 vect_update_inits_of_drs (loop_vec_info loop_vinfo, tree niters)
2140 {
2141 unsigned int i;
2142 VEC (data_reference_p, heap) *datarefs = LOOP_VINFO_DATAREFS (loop_vinfo);
2143 struct data_reference *dr;
2144
2145 if (vect_print_dump_info (REPORT_DETAILS))
2146 fprintf (vect_dump, "=== vect_update_inits_of_dr ===");
2147
2148 FOR_EACH_VEC_ELT (data_reference_p, datarefs, i, dr)
2149 vect_update_init_of_dr (dr, niters);
2150 }
2151
2152
2153 /* Function vect_do_peeling_for_alignment
2154
2155 Peel the first 'niters' iterations of the loop represented by LOOP_VINFO.
2156 'niters' is set to the misalignment of one of the data references in the
2157 loop, thereby forcing it to refer to an aligned location at the beginning
2158 of the execution of this loop. The data reference for which we are
2159 peeling is recorded in LOOP_VINFO_UNALIGNED_DR. */
2160
2161 void
2162 vect_do_peeling_for_alignment (loop_vec_info loop_vinfo)
2163 {
2164 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2165 tree niters_of_prolog_loop, ni_name;
2166 tree n_iters;
2167 tree wide_prolog_niters;
2168 struct loop *new_loop;
2169 unsigned int th = 0;
2170 int min_profitable_iters;
2171
2172 if (vect_print_dump_info (REPORT_DETAILS))
2173 fprintf (vect_dump, "=== vect_do_peeling_for_alignment ===");
2174
2175 initialize_original_copy_tables ();
2176
2177 ni_name = vect_build_loop_niters (loop_vinfo, NULL);
2178 niters_of_prolog_loop = vect_gen_niters_for_prolog_loop (loop_vinfo, ni_name,
2179 &wide_prolog_niters);
2180
2181
2182 /* Get profitability threshold for vectorized loop. */
2183 min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
2184 th = conservative_cost_threshold (loop_vinfo,
2185 min_profitable_iters);
2186
2187 /* Peel the prolog loop and iterate it niters_of_prolog_loop. */
2188 new_loop =
2189 slpeel_tree_peel_loop_to_edge (loop, loop_preheader_edge (loop),
2190 niters_of_prolog_loop, ni_name, true,
2191 th, true, NULL_TREE, NULL);
2192
2193 gcc_assert (new_loop);
2194 #ifdef ENABLE_CHECKING
2195 slpeel_verify_cfg_after_peeling (new_loop, loop);
2196 #endif
2197
2198 /* Update number of times loop executes. */
2199 n_iters = LOOP_VINFO_NITERS (loop_vinfo);
2200 LOOP_VINFO_NITERS (loop_vinfo) = fold_build2 (MINUS_EXPR,
2201 TREE_TYPE (n_iters), n_iters, niters_of_prolog_loop);
2202
2203 /* Update the init conditions of the access functions of all data refs. */
2204 vect_update_inits_of_drs (loop_vinfo, wide_prolog_niters);
2205
2206 /* After peeling we have to reset scalar evolution analyzer. */
2207 scev_reset ();
2208
2209 free_original_copy_tables ();
2210 }
2211
2212
2213 /* Function vect_create_cond_for_align_checks.
2214
2215 Create a conditional expression that represents the alignment checks for
2216 all of data references (array element references) whose alignment must be
2217 checked at runtime.
2218
2219 Input:
2220 COND_EXPR - input conditional expression. New conditions will be chained
2221 with logical AND operation.
2222 LOOP_VINFO - two fields of the loop information are used.
2223 LOOP_VINFO_PTR_MASK is the mask used to check the alignment.
2224 LOOP_VINFO_MAY_MISALIGN_STMTS contains the refs to be checked.
2225
2226 Output:
2227 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2228 expression.
2229 The returned value is the conditional expression to be used in the if
2230 statement that controls which version of the loop gets executed at runtime.
2231
2232 The algorithm makes two assumptions:
2233 1) The number of bytes "n" in a vector is a power of 2.
2234 2) An address "a" is aligned if a%n is zero and that this
2235 test can be done as a&(n-1) == 0. For example, for 16
2236 byte vectors the test is a&0xf == 0. */
2237
2238 static void
2239 vect_create_cond_for_align_checks (loop_vec_info loop_vinfo,
2240 tree *cond_expr,
2241 gimple_seq *cond_expr_stmt_list)
2242 {
2243 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2244 VEC(gimple,heap) *may_misalign_stmts
2245 = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo);
2246 gimple ref_stmt;
2247 int mask = LOOP_VINFO_PTR_MASK (loop_vinfo);
2248 tree mask_cst;
2249 unsigned int i;
2250 tree psize;
2251 tree int_ptrsize_type;
2252 char tmp_name[20];
2253 tree or_tmp_name = NULL_TREE;
2254 tree and_tmp, and_tmp_name;
2255 gimple and_stmt;
2256 tree ptrsize_zero;
2257 tree part_cond_expr;
2258
2259 /* Check that mask is one less than a power of 2, i.e., mask is
2260 all zeros followed by all ones. */
2261 gcc_assert ((mask != 0) && ((mask & (mask+1)) == 0));
2262
2263 /* CHECKME: what is the best integer or unsigned type to use to hold a
2264 cast from a pointer value? */
2265 psize = TYPE_SIZE (ptr_type_node);
2266 int_ptrsize_type
2267 = lang_hooks.types.type_for_size (tree_low_cst (psize, 1), 0);
2268
2269 /* Create expression (mask & (dr_1 || ... || dr_n)) where dr_i is the address
2270 of the first vector of the i'th data reference. */
2271
2272 FOR_EACH_VEC_ELT (gimple, may_misalign_stmts, i, ref_stmt)
2273 {
2274 gimple_seq new_stmt_list = NULL;
2275 tree addr_base;
2276 tree addr_tmp, addr_tmp_name;
2277 tree or_tmp, new_or_tmp_name;
2278 gimple addr_stmt, or_stmt;
2279 stmt_vec_info stmt_vinfo = vinfo_for_stmt (ref_stmt);
2280 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
2281 bool negative = tree_int_cst_compare
2282 (DR_STEP (STMT_VINFO_DATA_REF (stmt_vinfo)), size_zero_node) < 0;
2283 tree offset = negative
2284 ? size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1) : NULL_TREE;
2285
2286 /* create: addr_tmp = (int)(address_of_first_vector) */
2287 addr_base =
2288 vect_create_addr_base_for_vector_ref (ref_stmt, &new_stmt_list,
2289 offset, loop);
2290 if (new_stmt_list != NULL)
2291 gimple_seq_add_seq (cond_expr_stmt_list, new_stmt_list);
2292
2293 sprintf (tmp_name, "%s%d", "addr2int", i);
2294 addr_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
2295 add_referenced_var (addr_tmp);
2296 addr_tmp_name = make_ssa_name (addr_tmp, NULL);
2297 addr_stmt = gimple_build_assign_with_ops (NOP_EXPR, addr_tmp_name,
2298 addr_base, NULL_TREE);
2299 SSA_NAME_DEF_STMT (addr_tmp_name) = addr_stmt;
2300 gimple_seq_add_stmt (cond_expr_stmt_list, addr_stmt);
2301
2302 /* The addresses are OR together. */
2303
2304 if (or_tmp_name != NULL_TREE)
2305 {
2306 /* create: or_tmp = or_tmp | addr_tmp */
2307 sprintf (tmp_name, "%s%d", "orptrs", i);
2308 or_tmp = create_tmp_var (int_ptrsize_type, tmp_name);
2309 add_referenced_var (or_tmp);
2310 new_or_tmp_name = make_ssa_name (or_tmp, NULL);
2311 or_stmt = gimple_build_assign_with_ops (BIT_IOR_EXPR,
2312 new_or_tmp_name,
2313 or_tmp_name, addr_tmp_name);
2314 SSA_NAME_DEF_STMT (new_or_tmp_name) = or_stmt;
2315 gimple_seq_add_stmt (cond_expr_stmt_list, or_stmt);
2316 or_tmp_name = new_or_tmp_name;
2317 }
2318 else
2319 or_tmp_name = addr_tmp_name;
2320
2321 } /* end for i */
2322
2323 mask_cst = build_int_cst (int_ptrsize_type, mask);
2324
2325 /* create: and_tmp = or_tmp & mask */
2326 and_tmp = create_tmp_var (int_ptrsize_type, "andmask" );
2327 add_referenced_var (and_tmp);
2328 and_tmp_name = make_ssa_name (and_tmp, NULL);
2329
2330 and_stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, and_tmp_name,
2331 or_tmp_name, mask_cst);
2332 SSA_NAME_DEF_STMT (and_tmp_name) = and_stmt;
2333 gimple_seq_add_stmt (cond_expr_stmt_list, and_stmt);
2334
2335 /* Make and_tmp the left operand of the conditional test against zero.
2336 if and_tmp has a nonzero bit then some address is unaligned. */
2337 ptrsize_zero = build_int_cst (int_ptrsize_type, 0);
2338 part_cond_expr = fold_build2 (EQ_EXPR, boolean_type_node,
2339 and_tmp_name, ptrsize_zero);
2340 if (*cond_expr)
2341 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2342 *cond_expr, part_cond_expr);
2343 else
2344 *cond_expr = part_cond_expr;
2345 }
2346
2347
2348 /* Function vect_vfa_segment_size.
2349
2350 Create an expression that computes the size of segment
2351 that will be accessed for a data reference. The functions takes into
2352 account that realignment loads may access one more vector.
2353
2354 Input:
2355 DR: The data reference.
2356 VECT_FACTOR: vectorization factor.
2357
2358 Return an expression whose value is the size of segment which will be
2359 accessed by DR. */
2360
2361 static tree
2362 vect_vfa_segment_size (struct data_reference *dr, tree vect_factor)
2363 {
2364 tree segment_length = fold_build2 (MULT_EXPR, integer_type_node,
2365 DR_STEP (dr), vect_factor);
2366
2367 if (vect_supportable_dr_alignment (dr, false)
2368 == dr_explicit_realign_optimized)
2369 {
2370 tree vector_size = TYPE_SIZE_UNIT
2371 (STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr))));
2372
2373 segment_length = fold_build2 (PLUS_EXPR, integer_type_node,
2374 segment_length, vector_size);
2375 }
2376 return fold_convert (sizetype, segment_length);
2377 }
2378
2379
2380 /* Function vect_create_cond_for_alias_checks.
2381
2382 Create a conditional expression that represents the run-time checks for
2383 overlapping of address ranges represented by a list of data references
2384 relations passed as input.
2385
2386 Input:
2387 COND_EXPR - input conditional expression. New conditions will be chained
2388 with logical AND operation.
2389 LOOP_VINFO - field LOOP_VINFO_MAY_ALIAS_STMTS contains the list of ddrs
2390 to be checked.
2391
2392 Output:
2393 COND_EXPR - conditional expression.
2394 COND_EXPR_STMT_LIST - statements needed to construct the conditional
2395 expression.
2396
2397
2398 The returned value is the conditional expression to be used in the if
2399 statement that controls which version of the loop gets executed at runtime.
2400 */
2401
2402 static void
2403 vect_create_cond_for_alias_checks (loop_vec_info loop_vinfo,
2404 tree * cond_expr,
2405 gimple_seq * cond_expr_stmt_list)
2406 {
2407 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2408 VEC (ddr_p, heap) * may_alias_ddrs =
2409 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo);
2410 tree vect_factor =
2411 build_int_cst (integer_type_node, LOOP_VINFO_VECT_FACTOR (loop_vinfo));
2412
2413 ddr_p ddr;
2414 unsigned int i;
2415 tree part_cond_expr;
2416
2417 /* Create expression
2418 ((store_ptr_0 + store_segment_length_0) < load_ptr_0)
2419 || (load_ptr_0 + load_segment_length_0) < store_ptr_0))
2420 &&
2421 ...
2422 &&
2423 ((store_ptr_n + store_segment_length_n) < load_ptr_n)
2424 || (load_ptr_n + load_segment_length_n) < store_ptr_n)) */
2425
2426 if (VEC_empty (ddr_p, may_alias_ddrs))
2427 return;
2428
2429 FOR_EACH_VEC_ELT (ddr_p, may_alias_ddrs, i, ddr)
2430 {
2431 struct data_reference *dr_a, *dr_b;
2432 gimple dr_group_first_a, dr_group_first_b;
2433 tree addr_base_a, addr_base_b;
2434 tree segment_length_a, segment_length_b;
2435 gimple stmt_a, stmt_b;
2436 tree seg_a_min, seg_a_max, seg_b_min, seg_b_max;
2437
2438 dr_a = DDR_A (ddr);
2439 stmt_a = DR_STMT (DDR_A (ddr));
2440 dr_group_first_a = DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt_a));
2441 if (dr_group_first_a)
2442 {
2443 stmt_a = dr_group_first_a;
2444 dr_a = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_a));
2445 }
2446
2447 dr_b = DDR_B (ddr);
2448 stmt_b = DR_STMT (DDR_B (ddr));
2449 dr_group_first_b = DR_GROUP_FIRST_DR (vinfo_for_stmt (stmt_b));
2450 if (dr_group_first_b)
2451 {
2452 stmt_b = dr_group_first_b;
2453 dr_b = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt_b));
2454 }
2455
2456 addr_base_a =
2457 vect_create_addr_base_for_vector_ref (stmt_a, cond_expr_stmt_list,
2458 NULL_TREE, loop);
2459 addr_base_b =
2460 vect_create_addr_base_for_vector_ref (stmt_b, cond_expr_stmt_list,
2461 NULL_TREE, loop);
2462
2463 segment_length_a = vect_vfa_segment_size (dr_a, vect_factor);
2464 segment_length_b = vect_vfa_segment_size (dr_b, vect_factor);
2465
2466 if (vect_print_dump_info (REPORT_DR_DETAILS))
2467 {
2468 fprintf (vect_dump,
2469 "create runtime check for data references ");
2470 print_generic_expr (vect_dump, DR_REF (dr_a), TDF_SLIM);
2471 fprintf (vect_dump, " and ");
2472 print_generic_expr (vect_dump, DR_REF (dr_b), TDF_SLIM);
2473 }
2474
2475 seg_a_min = addr_base_a;
2476 seg_a_max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (addr_base_a),
2477 addr_base_a, segment_length_a);
2478 if (tree_int_cst_compare (DR_STEP (dr_a), size_zero_node) < 0)
2479 seg_a_min = seg_a_max, seg_a_max = addr_base_a;
2480
2481 seg_b_min = addr_base_b;
2482 seg_b_max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (addr_base_b),
2483 addr_base_b, segment_length_b);
2484 if (tree_int_cst_compare (DR_STEP (dr_b), size_zero_node) < 0)
2485 seg_b_min = seg_b_max, seg_b_max = addr_base_b;
2486
2487 part_cond_expr =
2488 fold_build2 (TRUTH_OR_EXPR, boolean_type_node,
2489 fold_build2 (LT_EXPR, boolean_type_node, seg_a_max, seg_b_min),
2490 fold_build2 (LT_EXPR, boolean_type_node, seg_b_max, seg_a_min));
2491
2492 if (*cond_expr)
2493 *cond_expr = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
2494 *cond_expr, part_cond_expr);
2495 else
2496 *cond_expr = part_cond_expr;
2497 }
2498
2499 if (vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
2500 fprintf (vect_dump, "created %u versioning for alias checks.\n",
2501 VEC_length (ddr_p, may_alias_ddrs));
2502 }
2503
2504
2505 /* Function vect_loop_versioning.
2506
2507 If the loop has data references that may or may not be aligned or/and
2508 has data reference relations whose independence was not proven then
2509 two versions of the loop need to be generated, one which is vectorized
2510 and one which isn't. A test is then generated to control which of the
2511 loops is executed. The test checks for the alignment of all of the
2512 data references that may or may not be aligned. An additional
2513 sequence of runtime tests is generated for each pairs of DDRs whose
2514 independence was not proven. The vectorized version of loop is
2515 executed only if both alias and alignment tests are passed.
2516
2517 The test generated to check which version of loop is executed
2518 is modified to also check for profitability as indicated by the
2519 cost model initially.
2520
2521 The versioning precondition(s) are placed in *COND_EXPR and
2522 *COND_EXPR_STMT_LIST. If DO_VERSIONING is true versioning is
2523 also performed, otherwise only the conditions are generated. */
2524
2525 void
2526 vect_loop_versioning (loop_vec_info loop_vinfo, bool do_versioning,
2527 tree *cond_expr, gimple_seq *cond_expr_stmt_list)
2528 {
2529 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2530 basic_block condition_bb;
2531 gimple_stmt_iterator gsi, cond_exp_gsi;
2532 basic_block merge_bb;
2533 basic_block new_exit_bb;
2534 edge new_exit_e, e;
2535 gimple orig_phi, new_phi;
2536 tree arg;
2537 unsigned prob = 4 * REG_BR_PROB_BASE / 5;
2538 gimple_seq gimplify_stmt_list = NULL;
2539 tree scalar_loop_iters = LOOP_VINFO_NITERS (loop_vinfo);
2540 int min_profitable_iters = 0;
2541 unsigned int th;
2542
2543 /* Get profitability threshold for vectorized loop. */
2544 min_profitable_iters = LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo);
2545
2546 th = conservative_cost_threshold (loop_vinfo,
2547 min_profitable_iters);
2548
2549 *cond_expr =
2550 fold_build2 (GT_EXPR, boolean_type_node, scalar_loop_iters,
2551 build_int_cst (TREE_TYPE (scalar_loop_iters), th));
2552
2553 *cond_expr = force_gimple_operand (*cond_expr, cond_expr_stmt_list,
2554 false, NULL_TREE);
2555
2556 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2557 vect_create_cond_for_align_checks (loop_vinfo, cond_expr,
2558 cond_expr_stmt_list);
2559
2560 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2561 vect_create_cond_for_alias_checks (loop_vinfo, cond_expr,
2562 cond_expr_stmt_list);
2563
2564 *cond_expr =
2565 fold_build2 (NE_EXPR, boolean_type_node, *cond_expr, integer_zero_node);
2566 *cond_expr =
2567 force_gimple_operand (*cond_expr, &gimplify_stmt_list, true, NULL_TREE);
2568 gimple_seq_add_seq (cond_expr_stmt_list, gimplify_stmt_list);
2569
2570 /* If we only needed the extra conditions and a new loop copy
2571 bail out here. */
2572 if (!do_versioning)
2573 return;
2574
2575 initialize_original_copy_tables ();
2576 loop_version (loop, *cond_expr, &condition_bb,
2577 prob, prob, REG_BR_PROB_BASE - prob, true);
2578 free_original_copy_tables();
2579
2580 /* Loop versioning violates an assumption we try to maintain during
2581 vectorization - that the loop exit block has a single predecessor.
2582 After versioning, the exit block of both loop versions is the same
2583 basic block (i.e. it has two predecessors). Just in order to simplify
2584 following transformations in the vectorizer, we fix this situation
2585 here by adding a new (empty) block on the exit-edge of the loop,
2586 with the proper loop-exit phis to maintain loop-closed-form. */
2587
2588 merge_bb = single_exit (loop)->dest;
2589 gcc_assert (EDGE_COUNT (merge_bb->preds) == 2);
2590 new_exit_bb = split_edge (single_exit (loop));
2591 new_exit_e = single_exit (loop);
2592 e = EDGE_SUCC (new_exit_bb, 0);
2593
2594 for (gsi = gsi_start_phis (merge_bb); !gsi_end_p (gsi); gsi_next (&gsi))
2595 {
2596 orig_phi = gsi_stmt (gsi);
2597 new_phi = create_phi_node (SSA_NAME_VAR (PHI_RESULT (orig_phi)),
2598 new_exit_bb);
2599 arg = PHI_ARG_DEF_FROM_EDGE (orig_phi, e);
2600 add_phi_arg (new_phi, arg, new_exit_e,
2601 gimple_phi_arg_location_from_edge (orig_phi, e));
2602 adjust_phi_and_debug_stmts (orig_phi, e, PHI_RESULT (new_phi));
2603 }
2604
2605 /* End loop-exit-fixes after versioning. */
2606
2607 update_ssa (TODO_update_ssa);
2608 if (*cond_expr_stmt_list)
2609 {
2610 cond_exp_gsi = gsi_last_bb (condition_bb);
2611 gsi_insert_seq_before (&cond_exp_gsi, *cond_expr_stmt_list,
2612 GSI_SAME_STMT);
2613 *cond_expr_stmt_list = NULL;
2614 }
2615 *cond_expr = NULL_TREE;
2616 }
2617