lto-cgraph.c (output_profile_summary, [...]): Use gcov streaming; stream hot bb thres...
[gcc.git] / gcc / tree-vect-loop.c
1 /* Loop Vectorization
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
4 Ira Rosen <irar@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "gimple-pretty-print.h"
31 #include "tree-flow.h"
32 #include "tree-pass.h"
33 #include "cfgloop.h"
34 #include "expr.h"
35 #include "recog.h"
36 #include "optabs.h"
37 #include "params.h"
38 #include "diagnostic-core.h"
39 #include "tree-chrec.h"
40 #include "tree-scalar-evolution.h"
41 #include "tree-vectorizer.h"
42 #include "target.h"
43
44 /* Loop Vectorization Pass.
45
46 This pass tries to vectorize loops.
47
48 For example, the vectorizer transforms the following simple loop:
49
50 short a[N]; short b[N]; short c[N]; int i;
51
52 for (i=0; i<N; i++){
53 a[i] = b[i] + c[i];
54 }
55
56 as if it was manually vectorized by rewriting the source code into:
57
58 typedef int __attribute__((mode(V8HI))) v8hi;
59 short a[N]; short b[N]; short c[N]; int i;
60 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
61 v8hi va, vb, vc;
62
63 for (i=0; i<N/8; i++){
64 vb = pb[i];
65 vc = pc[i];
66 va = vb + vc;
67 pa[i] = va;
68 }
69
70 The main entry to this pass is vectorize_loops(), in which
71 the vectorizer applies a set of analyses on a given set of loops,
72 followed by the actual vectorization transformation for the loops that
73 had successfully passed the analysis phase.
74 Throughout this pass we make a distinction between two types of
75 data: scalars (which are represented by SSA_NAMES), and memory references
76 ("data-refs"). These two types of data require different handling both
77 during analysis and transformation. The types of data-refs that the
78 vectorizer currently supports are ARRAY_REFS which base is an array DECL
79 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
80 accesses are required to have a simple (consecutive) access pattern.
81
82 Analysis phase:
83 ===============
84 The driver for the analysis phase is vect_analyze_loop().
85 It applies a set of analyses, some of which rely on the scalar evolution
86 analyzer (scev) developed by Sebastian Pop.
87
88 During the analysis phase the vectorizer records some information
89 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
90 loop, as well as general information about the loop as a whole, which is
91 recorded in a "loop_vec_info" struct attached to each loop.
92
93 Transformation phase:
94 =====================
95 The loop transformation phase scans all the stmts in the loop, and
96 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
97 the loop that needs to be vectorized. It inserts the vector code sequence
98 just before the scalar stmt S, and records a pointer to the vector code
99 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
100 attached to S). This pointer will be used for the vectorization of following
101 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
102 otherwise, we rely on dead code elimination for removing it.
103
104 For example, say stmt S1 was vectorized into stmt VS1:
105
106 VS1: vb = px[i];
107 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
108 S2: a = b;
109
110 To vectorize stmt S2, the vectorizer first finds the stmt that defines
111 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
112 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
113 resulting sequence would be:
114
115 VS1: vb = px[i];
116 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
117 VS2: va = vb;
118 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
119
120 Operands that are not SSA_NAMEs, are data-refs that appear in
121 load/store operations (like 'x[i]' in S1), and are handled differently.
122
123 Target modeling:
124 =================
125 Currently the only target specific information that is used is the
126 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
127 Targets that can support different sizes of vectors, for now will need
128 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
129 flexibility will be added in the future.
130
131 Since we only vectorize operations which vector form can be
132 expressed using existing tree codes, to verify that an operation is
133 supported, the vectorizer checks the relevant optab at the relevant
134 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
135 the value found is CODE_FOR_nothing, then there's no target support, and
136 we can't vectorize the stmt.
137
138 For additional information on this project see:
139 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
140 */
141
142 static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
143
144 /* Function vect_determine_vectorization_factor
145
146 Determine the vectorization factor (VF). VF is the number of data elements
147 that are operated upon in parallel in a single iteration of the vectorized
148 loop. For example, when vectorizing a loop that operates on 4byte elements,
149 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
150 elements can fit in a single vector register.
151
152 We currently support vectorization of loops in which all types operated upon
153 are of the same size. Therefore this function currently sets VF according to
154 the size of the types operated upon, and fails if there are multiple sizes
155 in the loop.
156
157 VF is also the factor by which the loop iterations are strip-mined, e.g.:
158 original loop:
159 for (i=0; i<N; i++){
160 a[i] = b[i] + c[i];
161 }
162
163 vectorized loop:
164 for (i=0; i<N; i+=VF){
165 a[i:VF] = b[i:VF] + c[i:VF];
166 }
167 */
168
169 static bool
170 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
171 {
172 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
173 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
174 int nbbs = loop->num_nodes;
175 gimple_stmt_iterator si;
176 unsigned int vectorization_factor = 0;
177 tree scalar_type;
178 gimple phi;
179 tree vectype;
180 unsigned int nunits;
181 stmt_vec_info stmt_info;
182 int i;
183 HOST_WIDE_INT dummy;
184 gimple stmt, pattern_stmt = NULL;
185 gimple_seq pattern_def_seq = NULL;
186 gimple_stmt_iterator pattern_def_si = gsi_none ();
187 bool analyze_pattern_stmt = false;
188
189 if (dump_enabled_p ())
190 dump_printf_loc (MSG_NOTE, vect_location,
191 "=== vect_determine_vectorization_factor ===");
192
193 for (i = 0; i < nbbs; i++)
194 {
195 basic_block bb = bbs[i];
196
197 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
198 {
199 phi = gsi_stmt (si);
200 stmt_info = vinfo_for_stmt (phi);
201 if (dump_enabled_p ())
202 {
203 dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
204 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
205 }
206
207 gcc_assert (stmt_info);
208
209 if (STMT_VINFO_RELEVANT_P (stmt_info))
210 {
211 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
212 scalar_type = TREE_TYPE (PHI_RESULT (phi));
213
214 if (dump_enabled_p ())
215 {
216 dump_printf_loc (MSG_NOTE, vect_location,
217 "get vectype for scalar type: ");
218 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
219 }
220
221 vectype = get_vectype_for_scalar_type (scalar_type);
222 if (!vectype)
223 {
224 if (dump_enabled_p ())
225 {
226 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
227 "not vectorized: unsupported "
228 "data-type ");
229 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
230 scalar_type);
231 }
232 return false;
233 }
234 STMT_VINFO_VECTYPE (stmt_info) = vectype;
235
236 if (dump_enabled_p ())
237 {
238 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
239 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
240 }
241
242 nunits = TYPE_VECTOR_SUBPARTS (vectype);
243 if (dump_enabled_p ())
244 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d", nunits);
245
246 if (!vectorization_factor
247 || (nunits > vectorization_factor))
248 vectorization_factor = nunits;
249 }
250 }
251
252 for (si = gsi_start_bb (bb); !gsi_end_p (si) || analyze_pattern_stmt;)
253 {
254 tree vf_vectype;
255
256 if (analyze_pattern_stmt)
257 stmt = pattern_stmt;
258 else
259 stmt = gsi_stmt (si);
260
261 stmt_info = vinfo_for_stmt (stmt);
262
263 if (dump_enabled_p ())
264 {
265 dump_printf_loc (MSG_NOTE, vect_location,
266 "==> examining statement: ");
267 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
268 }
269
270 gcc_assert (stmt_info);
271
272 /* Skip stmts which do not need to be vectorized. */
273 if (!STMT_VINFO_RELEVANT_P (stmt_info)
274 && !STMT_VINFO_LIVE_P (stmt_info))
275 {
276 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
277 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
278 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
279 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
280 {
281 stmt = pattern_stmt;
282 stmt_info = vinfo_for_stmt (pattern_stmt);
283 if (dump_enabled_p ())
284 {
285 dump_printf_loc (MSG_NOTE, vect_location,
286 "==> examining pattern statement: ");
287 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
288 }
289 }
290 else
291 {
292 if (dump_enabled_p ())
293 dump_printf_loc (MSG_NOTE, vect_location, "skip.");
294 gsi_next (&si);
295 continue;
296 }
297 }
298 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
299 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
300 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
301 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
302 analyze_pattern_stmt = true;
303
304 /* If a pattern statement has def stmts, analyze them too. */
305 if (is_pattern_stmt_p (stmt_info))
306 {
307 if (pattern_def_seq == NULL)
308 {
309 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
310 pattern_def_si = gsi_start (pattern_def_seq);
311 }
312 else if (!gsi_end_p (pattern_def_si))
313 gsi_next (&pattern_def_si);
314 if (pattern_def_seq != NULL)
315 {
316 gimple pattern_def_stmt = NULL;
317 stmt_vec_info pattern_def_stmt_info = NULL;
318
319 while (!gsi_end_p (pattern_def_si))
320 {
321 pattern_def_stmt = gsi_stmt (pattern_def_si);
322 pattern_def_stmt_info
323 = vinfo_for_stmt (pattern_def_stmt);
324 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
325 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
326 break;
327 gsi_next (&pattern_def_si);
328 }
329
330 if (!gsi_end_p (pattern_def_si))
331 {
332 if (dump_enabled_p ())
333 {
334 dump_printf_loc (MSG_NOTE, vect_location,
335 "==> examining pattern def stmt: ");
336 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
337 pattern_def_stmt, 0);
338 }
339
340 stmt = pattern_def_stmt;
341 stmt_info = pattern_def_stmt_info;
342 }
343 else
344 {
345 pattern_def_si = gsi_none ();
346 analyze_pattern_stmt = false;
347 }
348 }
349 else
350 analyze_pattern_stmt = false;
351 }
352
353 if (gimple_get_lhs (stmt) == NULL_TREE)
354 {
355 if (dump_enabled_p ())
356 {
357 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
358 "not vectorized: irregular stmt.");
359 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
360 0);
361 }
362 return false;
363 }
364
365 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
366 {
367 if (dump_enabled_p ())
368 {
369 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
370 "not vectorized: vector stmt in loop:");
371 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
372 }
373 return false;
374 }
375
376 if (STMT_VINFO_VECTYPE (stmt_info))
377 {
378 /* The only case when a vectype had been already set is for stmts
379 that contain a dataref, or for "pattern-stmts" (stmts
380 generated by the vectorizer to represent/replace a certain
381 idiom). */
382 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
383 || is_pattern_stmt_p (stmt_info)
384 || !gsi_end_p (pattern_def_si));
385 vectype = STMT_VINFO_VECTYPE (stmt_info);
386 }
387 else
388 {
389 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
390 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
391 if (dump_enabled_p ())
392 {
393 dump_printf_loc (MSG_NOTE, vect_location,
394 "get vectype for scalar type: ");
395 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
396 }
397 vectype = get_vectype_for_scalar_type (scalar_type);
398 if (!vectype)
399 {
400 if (dump_enabled_p ())
401 {
402 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
403 "not vectorized: unsupported "
404 "data-type ");
405 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
406 scalar_type);
407 }
408 return false;
409 }
410
411 STMT_VINFO_VECTYPE (stmt_info) = vectype;
412 }
413
414 /* The vectorization factor is according to the smallest
415 scalar type (or the largest vector size, but we only
416 support one vector size per loop). */
417 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
418 &dummy);
419 if (dump_enabled_p ())
420 {
421 dump_printf_loc (MSG_NOTE, vect_location,
422 "get vectype for scalar type: ");
423 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
424 }
425 vf_vectype = get_vectype_for_scalar_type (scalar_type);
426 if (!vf_vectype)
427 {
428 if (dump_enabled_p ())
429 {
430 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
431 "not vectorized: unsupported data-type ");
432 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
433 scalar_type);
434 }
435 return false;
436 }
437
438 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
439 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
440 {
441 if (dump_enabled_p ())
442 {
443 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
444 "not vectorized: different sized vector "
445 "types in statement, ");
446 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
447 vectype);
448 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
449 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
450 vf_vectype);
451 }
452 return false;
453 }
454
455 if (dump_enabled_p ())
456 {
457 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
458 dump_generic_expr (MSG_NOTE, TDF_SLIM, vf_vectype);
459 }
460
461 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
462 if (dump_enabled_p ())
463 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d", nunits);
464 if (!vectorization_factor
465 || (nunits > vectorization_factor))
466 vectorization_factor = nunits;
467
468 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
469 {
470 pattern_def_seq = NULL;
471 gsi_next (&si);
472 }
473 }
474 }
475
476 /* TODO: Analyze cost. Decide if worth while to vectorize. */
477 if (dump_enabled_p ())
478 dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = %d",
479 vectorization_factor);
480 if (vectorization_factor <= 1)
481 {
482 if (dump_enabled_p ())
483 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
484 "not vectorized: unsupported data-type");
485 return false;
486 }
487 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
488
489 return true;
490 }
491
492
493 /* Function vect_is_simple_iv_evolution.
494
495 FORNOW: A simple evolution of an induction variables in the loop is
496 considered a polynomial evolution with constant step. */
497
498 static bool
499 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
500 tree * step)
501 {
502 tree init_expr;
503 tree step_expr;
504 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
505
506 /* When there is no evolution in this loop, the evolution function
507 is not "simple". */
508 if (evolution_part == NULL_TREE)
509 return false;
510
511 /* When the evolution is a polynomial of degree >= 2
512 the evolution function is not "simple". */
513 if (tree_is_chrec (evolution_part))
514 return false;
515
516 step_expr = evolution_part;
517 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
518
519 if (dump_enabled_p ())
520 {
521 dump_printf_loc (MSG_NOTE, vect_location, "step: ");
522 dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
523 dump_printf (MSG_NOTE, ", init: ");
524 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
525 }
526
527 *init = init_expr;
528 *step = step_expr;
529
530 if (TREE_CODE (step_expr) != INTEGER_CST)
531 {
532 if (dump_enabled_p ())
533 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
534 "step unknown.");
535 return false;
536 }
537
538 return true;
539 }
540
541 /* Function vect_analyze_scalar_cycles_1.
542
543 Examine the cross iteration def-use cycles of scalar variables
544 in LOOP. LOOP_VINFO represents the loop that is now being
545 considered for vectorization (can be LOOP, or an outer-loop
546 enclosing LOOP). */
547
548 static void
549 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
550 {
551 basic_block bb = loop->header;
552 tree dumy;
553 vec<gimple> worklist;
554 worklist.create (64);
555 gimple_stmt_iterator gsi;
556 bool double_reduc;
557
558 if (dump_enabled_p ())
559 dump_printf_loc (MSG_NOTE, vect_location,
560 "=== vect_analyze_scalar_cycles ===");
561
562 /* First - identify all inductions. Reduction detection assumes that all the
563 inductions have been identified, therefore, this order must not be
564 changed. */
565 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
566 {
567 gimple phi = gsi_stmt (gsi);
568 tree access_fn = NULL;
569 tree def = PHI_RESULT (phi);
570 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
571
572 if (dump_enabled_p ())
573 {
574 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
575 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
576 }
577
578 /* Skip virtual phi's. The data dependences that are associated with
579 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
580 if (virtual_operand_p (def))
581 continue;
582
583 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
584
585 /* Analyze the evolution function. */
586 access_fn = analyze_scalar_evolution (loop, def);
587 if (access_fn)
588 {
589 STRIP_NOPS (access_fn);
590 if (dump_enabled_p ())
591 {
592 dump_printf_loc (MSG_NOTE, vect_location,
593 "Access function of PHI: ");
594 dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
595 }
596 STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
597 = evolution_part_in_loop_num (access_fn, loop->num);
598 }
599
600 if (!access_fn
601 || !vect_is_simple_iv_evolution (loop->num, access_fn, &dumy, &dumy))
602 {
603 worklist.safe_push (phi);
604 continue;
605 }
606
607 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
608
609 if (dump_enabled_p ())
610 dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.");
611 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
612 }
613
614
615 /* Second - identify all reductions and nested cycles. */
616 while (worklist.length () > 0)
617 {
618 gimple phi = worklist.pop ();
619 tree def = PHI_RESULT (phi);
620 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
621 gimple reduc_stmt;
622 bool nested_cycle;
623
624 if (dump_enabled_p ())
625 {
626 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
627 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
628 }
629
630 gcc_assert (!virtual_operand_p (def)
631 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
632
633 nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
634 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi, !nested_cycle,
635 &double_reduc);
636 if (reduc_stmt)
637 {
638 if (double_reduc)
639 {
640 if (dump_enabled_p ())
641 dump_printf_loc (MSG_NOTE, vect_location,
642 "Detected double reduction.");
643
644 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
645 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
646 vect_double_reduction_def;
647 }
648 else
649 {
650 if (nested_cycle)
651 {
652 if (dump_enabled_p ())
653 dump_printf_loc (MSG_NOTE, vect_location,
654 "Detected vectorizable nested cycle.");
655
656 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
657 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
658 vect_nested_cycle;
659 }
660 else
661 {
662 if (dump_enabled_p ())
663 dump_printf_loc (MSG_NOTE, vect_location,
664 "Detected reduction.");
665
666 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
667 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
668 vect_reduction_def;
669 /* Store the reduction cycles for possible vectorization in
670 loop-aware SLP. */
671 LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
672 }
673 }
674 }
675 else
676 if (dump_enabled_p ())
677 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
678 "Unknown def-use cycle pattern.");
679 }
680
681 worklist.release ();
682 }
683
684
685 /* Function vect_analyze_scalar_cycles.
686
687 Examine the cross iteration def-use cycles of scalar variables, by
688 analyzing the loop-header PHIs of scalar variables. Classify each
689 cycle as one of the following: invariant, induction, reduction, unknown.
690 We do that for the loop represented by LOOP_VINFO, and also to its
691 inner-loop, if exists.
692 Examples for scalar cycles:
693
694 Example1: reduction:
695
696 loop1:
697 for (i=0; i<N; i++)
698 sum += a[i];
699
700 Example2: induction:
701
702 loop2:
703 for (i=0; i<N; i++)
704 a[i] = i; */
705
706 static void
707 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
708 {
709 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
710
711 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
712
713 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
714 Reductions in such inner-loop therefore have different properties than
715 the reductions in the nest that gets vectorized:
716 1. When vectorized, they are executed in the same order as in the original
717 scalar loop, so we can't change the order of computation when
718 vectorizing them.
719 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
720 current checks are too strict. */
721
722 if (loop->inner)
723 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
724 }
725
726 /* Function vect_get_loop_niters.
727
728 Determine how many iterations the loop is executed.
729 If an expression that represents the number of iterations
730 can be constructed, place it in NUMBER_OF_ITERATIONS.
731 Return the loop exit condition. */
732
733 static gimple
734 vect_get_loop_niters (struct loop *loop, tree *number_of_iterations)
735 {
736 tree niters;
737
738 if (dump_enabled_p ())
739 dump_printf_loc (MSG_NOTE, vect_location,
740 "=== get_loop_niters ===");
741 niters = number_of_exit_cond_executions (loop);
742
743 if (niters != NULL_TREE
744 && niters != chrec_dont_know)
745 {
746 *number_of_iterations = niters;
747
748 if (dump_enabled_p ())
749 {
750 dump_printf_loc (MSG_NOTE, vect_location, "==> get_loop_niters:");
751 dump_generic_expr (MSG_NOTE, TDF_SLIM, *number_of_iterations);
752 }
753 }
754
755 return get_loop_exit_condition (loop);
756 }
757
758
759 /* Function bb_in_loop_p
760
761 Used as predicate for dfs order traversal of the loop bbs. */
762
763 static bool
764 bb_in_loop_p (const_basic_block bb, const void *data)
765 {
766 const struct loop *const loop = (const struct loop *)data;
767 if (flow_bb_inside_loop_p (loop, bb))
768 return true;
769 return false;
770 }
771
772
773 /* Function new_loop_vec_info.
774
775 Create and initialize a new loop_vec_info struct for LOOP, as well as
776 stmt_vec_info structs for all the stmts in LOOP. */
777
778 static loop_vec_info
779 new_loop_vec_info (struct loop *loop)
780 {
781 loop_vec_info res;
782 basic_block *bbs;
783 gimple_stmt_iterator si;
784 unsigned int i, nbbs;
785
786 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
787 LOOP_VINFO_LOOP (res) = loop;
788
789 bbs = get_loop_body (loop);
790
791 /* Create/Update stmt_info for all stmts in the loop. */
792 for (i = 0; i < loop->num_nodes; i++)
793 {
794 basic_block bb = bbs[i];
795
796 /* BBs in a nested inner-loop will have been already processed (because
797 we will have called vect_analyze_loop_form for any nested inner-loop).
798 Therefore, for stmts in an inner-loop we just want to update the
799 STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
800 loop_info of the outer-loop we are currently considering to vectorize
801 (instead of the loop_info of the inner-loop).
802 For stmts in other BBs we need to create a stmt_info from scratch. */
803 if (bb->loop_father != loop)
804 {
805 /* Inner-loop bb. */
806 gcc_assert (loop->inner && bb->loop_father == loop->inner);
807 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
808 {
809 gimple phi = gsi_stmt (si);
810 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
811 loop_vec_info inner_loop_vinfo =
812 STMT_VINFO_LOOP_VINFO (stmt_info);
813 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
814 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
815 }
816 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
817 {
818 gimple stmt = gsi_stmt (si);
819 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
820 loop_vec_info inner_loop_vinfo =
821 STMT_VINFO_LOOP_VINFO (stmt_info);
822 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
823 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
824 }
825 }
826 else
827 {
828 /* bb in current nest. */
829 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
830 {
831 gimple phi = gsi_stmt (si);
832 gimple_set_uid (phi, 0);
833 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res, NULL));
834 }
835
836 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
837 {
838 gimple stmt = gsi_stmt (si);
839 gimple_set_uid (stmt, 0);
840 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res, NULL));
841 }
842 }
843 }
844
845 /* CHECKME: We want to visit all BBs before their successors (except for
846 latch blocks, for which this assertion wouldn't hold). In the simple
847 case of the loop forms we allow, a dfs order of the BBs would the same
848 as reversed postorder traversal, so we are safe. */
849
850 free (bbs);
851 bbs = XCNEWVEC (basic_block, loop->num_nodes);
852 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
853 bbs, loop->num_nodes, loop);
854 gcc_assert (nbbs == loop->num_nodes);
855
856 LOOP_VINFO_BBS (res) = bbs;
857 LOOP_VINFO_NITERS (res) = NULL;
858 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
859 LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
860 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
861 LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
862 LOOP_VINFO_VECT_FACTOR (res) = 0;
863 LOOP_VINFO_LOOP_NEST (res).create (3);
864 LOOP_VINFO_DATAREFS (res).create (10);
865 LOOP_VINFO_DDRS (res).create (10 * 10);
866 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
867 LOOP_VINFO_MAY_MISALIGN_STMTS (res).create (
868 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
869 LOOP_VINFO_MAY_ALIAS_DDRS (res).create (
870 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
871 LOOP_VINFO_GROUPED_STORES (res).create (10);
872 LOOP_VINFO_REDUCTIONS (res).create (10);
873 LOOP_VINFO_REDUCTION_CHAINS (res).create (10);
874 LOOP_VINFO_SLP_INSTANCES (res).create (10);
875 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
876 LOOP_VINFO_PEELING_HTAB (res) = NULL;
877 LOOP_VINFO_TARGET_COST_DATA (res) = init_cost (loop);
878 LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
879 LOOP_VINFO_OPERANDS_SWAPPED (res) = false;
880
881 return res;
882 }
883
884
885 /* Function destroy_loop_vec_info.
886
887 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
888 stmts in the loop. */
889
890 void
891 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
892 {
893 struct loop *loop;
894 basic_block *bbs;
895 int nbbs;
896 gimple_stmt_iterator si;
897 int j;
898 vec<slp_instance> slp_instances;
899 slp_instance instance;
900 bool swapped;
901
902 if (!loop_vinfo)
903 return;
904
905 loop = LOOP_VINFO_LOOP (loop_vinfo);
906
907 bbs = LOOP_VINFO_BBS (loop_vinfo);
908 nbbs = clean_stmts ? loop->num_nodes : 0;
909 swapped = LOOP_VINFO_OPERANDS_SWAPPED (loop_vinfo);
910
911 for (j = 0; j < nbbs; j++)
912 {
913 basic_block bb = bbs[j];
914 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
915 free_stmt_vec_info (gsi_stmt (si));
916
917 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
918 {
919 gimple stmt = gsi_stmt (si);
920
921 /* We may have broken canonical form by moving a constant
922 into RHS1 of a commutative op. Fix such occurrences. */
923 if (swapped && is_gimple_assign (stmt))
924 {
925 enum tree_code code = gimple_assign_rhs_code (stmt);
926
927 if ((code == PLUS_EXPR
928 || code == POINTER_PLUS_EXPR
929 || code == MULT_EXPR)
930 && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
931 swap_tree_operands (stmt,
932 gimple_assign_rhs1_ptr (stmt),
933 gimple_assign_rhs2_ptr (stmt));
934 }
935
936 /* Free stmt_vec_info. */
937 free_stmt_vec_info (stmt);
938 gsi_next (&si);
939 }
940 }
941
942 free (LOOP_VINFO_BBS (loop_vinfo));
943 free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
944 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
945 LOOP_VINFO_LOOP_NEST (loop_vinfo).release ();
946 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).release ();
947 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).release ();
948 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
949 FOR_EACH_VEC_ELT (slp_instances, j, instance)
950 vect_free_slp_instance (instance);
951
952 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
953 LOOP_VINFO_GROUPED_STORES (loop_vinfo).release ();
954 LOOP_VINFO_REDUCTIONS (loop_vinfo).release ();
955 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).release ();
956
957 if (LOOP_VINFO_PEELING_HTAB (loop_vinfo))
958 htab_delete (LOOP_VINFO_PEELING_HTAB (loop_vinfo));
959
960 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
961
962 free (loop_vinfo);
963 loop->aux = NULL;
964 }
965
966
967 /* Function vect_analyze_loop_1.
968
969 Apply a set of analyses on LOOP, and create a loop_vec_info struct
970 for it. The different analyses will record information in the
971 loop_vec_info struct. This is a subset of the analyses applied in
972 vect_analyze_loop, to be applied on an inner-loop nested in the loop
973 that is now considered for (outer-loop) vectorization. */
974
975 static loop_vec_info
976 vect_analyze_loop_1 (struct loop *loop)
977 {
978 loop_vec_info loop_vinfo;
979
980 if (dump_enabled_p ())
981 dump_printf_loc (MSG_NOTE, vect_location,
982 "===== analyze_loop_nest_1 =====");
983
984 /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
985
986 loop_vinfo = vect_analyze_loop_form (loop);
987 if (!loop_vinfo)
988 {
989 if (dump_enabled_p ())
990 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
991 "bad inner-loop form.");
992 return NULL;
993 }
994
995 return loop_vinfo;
996 }
997
998
999 /* Function vect_analyze_loop_form.
1000
1001 Verify that certain CFG restrictions hold, including:
1002 - the loop has a pre-header
1003 - the loop has a single entry and exit
1004 - the loop exit condition is simple enough, and the number of iterations
1005 can be analyzed (a countable loop). */
1006
1007 loop_vec_info
1008 vect_analyze_loop_form (struct loop *loop)
1009 {
1010 loop_vec_info loop_vinfo;
1011 gimple loop_cond;
1012 tree number_of_iterations = NULL;
1013 loop_vec_info inner_loop_vinfo = NULL;
1014
1015 if (dump_enabled_p ())
1016 dump_printf_loc (MSG_NOTE, vect_location,
1017 "=== vect_analyze_loop_form ===");
1018
1019 /* Different restrictions apply when we are considering an inner-most loop,
1020 vs. an outer (nested) loop.
1021 (FORNOW. May want to relax some of these restrictions in the future). */
1022
1023 if (!loop->inner)
1024 {
1025 /* Inner-most loop. We currently require that the number of BBs is
1026 exactly 2 (the header and latch). Vectorizable inner-most loops
1027 look like this:
1028
1029 (pre-header)
1030 |
1031 header <--------+
1032 | | |
1033 | +--> latch --+
1034 |
1035 (exit-bb) */
1036
1037 if (loop->num_nodes != 2)
1038 {
1039 if (dump_enabled_p ())
1040 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1041 "not vectorized: control flow in loop.");
1042 return NULL;
1043 }
1044
1045 if (empty_block_p (loop->header))
1046 {
1047 if (dump_enabled_p ())
1048 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1049 "not vectorized: empty loop.");
1050 return NULL;
1051 }
1052 }
1053 else
1054 {
1055 struct loop *innerloop = loop->inner;
1056 edge entryedge;
1057
1058 /* Nested loop. We currently require that the loop is doubly-nested,
1059 contains a single inner loop, and the number of BBs is exactly 5.
1060 Vectorizable outer-loops look like this:
1061
1062 (pre-header)
1063 |
1064 header <---+
1065 | |
1066 inner-loop |
1067 | |
1068 tail ------+
1069 |
1070 (exit-bb)
1071
1072 The inner-loop has the properties expected of inner-most loops
1073 as described above. */
1074
1075 if ((loop->inner)->inner || (loop->inner)->next)
1076 {
1077 if (dump_enabled_p ())
1078 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1079 "not vectorized: multiple nested loops.");
1080 return NULL;
1081 }
1082
1083 /* Analyze the inner-loop. */
1084 inner_loop_vinfo = vect_analyze_loop_1 (loop->inner);
1085 if (!inner_loop_vinfo)
1086 {
1087 if (dump_enabled_p ())
1088 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1089 "not vectorized: Bad inner loop.");
1090 return NULL;
1091 }
1092
1093 if (!expr_invariant_in_loop_p (loop,
1094 LOOP_VINFO_NITERS (inner_loop_vinfo)))
1095 {
1096 if (dump_enabled_p ())
1097 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1098 "not vectorized: inner-loop count not invariant.");
1099 destroy_loop_vec_info (inner_loop_vinfo, true);
1100 return NULL;
1101 }
1102
1103 if (loop->num_nodes != 5)
1104 {
1105 if (dump_enabled_p ())
1106 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1107 "not vectorized: control flow in loop.");
1108 destroy_loop_vec_info (inner_loop_vinfo, true);
1109 return NULL;
1110 }
1111
1112 gcc_assert (EDGE_COUNT (innerloop->header->preds) == 2);
1113 entryedge = EDGE_PRED (innerloop->header, 0);
1114 if (EDGE_PRED (innerloop->header, 0)->src == innerloop->latch)
1115 entryedge = EDGE_PRED (innerloop->header, 1);
1116
1117 if (entryedge->src != loop->header
1118 || !single_exit (innerloop)
1119 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1120 {
1121 if (dump_enabled_p ())
1122 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1123 "not vectorized: unsupported outerloop form.");
1124 destroy_loop_vec_info (inner_loop_vinfo, true);
1125 return NULL;
1126 }
1127
1128 if (dump_enabled_p ())
1129 dump_printf_loc (MSG_NOTE, vect_location,
1130 "Considering outer-loop vectorization.");
1131 }
1132
1133 if (!single_exit (loop)
1134 || EDGE_COUNT (loop->header->preds) != 2)
1135 {
1136 if (dump_enabled_p ())
1137 {
1138 if (!single_exit (loop))
1139 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1140 "not vectorized: multiple exits.");
1141 else if (EDGE_COUNT (loop->header->preds) != 2)
1142 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1143 "not vectorized: too many incoming edges.");
1144 }
1145 if (inner_loop_vinfo)
1146 destroy_loop_vec_info (inner_loop_vinfo, true);
1147 return NULL;
1148 }
1149
1150 /* We assume that the loop exit condition is at the end of the loop. i.e,
1151 that the loop is represented as a do-while (with a proper if-guard
1152 before the loop if needed), where the loop header contains all the
1153 executable statements, and the latch is empty. */
1154 if (!empty_block_p (loop->latch)
1155 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1156 {
1157 if (dump_enabled_p ())
1158 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1159 "not vectorized: latch block not empty.");
1160 if (inner_loop_vinfo)
1161 destroy_loop_vec_info (inner_loop_vinfo, true);
1162 return NULL;
1163 }
1164
1165 /* Make sure there exists a single-predecessor exit bb: */
1166 if (!single_pred_p (single_exit (loop)->dest))
1167 {
1168 edge e = single_exit (loop);
1169 if (!(e->flags & EDGE_ABNORMAL))
1170 {
1171 split_loop_exit_edge (e);
1172 if (dump_enabled_p ())
1173 dump_printf (MSG_NOTE, "split exit edge.");
1174 }
1175 else
1176 {
1177 if (dump_enabled_p ())
1178 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1179 "not vectorized: abnormal loop exit edge.");
1180 if (inner_loop_vinfo)
1181 destroy_loop_vec_info (inner_loop_vinfo, true);
1182 return NULL;
1183 }
1184 }
1185
1186 loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
1187 if (!loop_cond)
1188 {
1189 if (dump_enabled_p ())
1190 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1191 "not vectorized: complicated exit condition.");
1192 if (inner_loop_vinfo)
1193 destroy_loop_vec_info (inner_loop_vinfo, true);
1194 return NULL;
1195 }
1196
1197 if (!number_of_iterations)
1198 {
1199 if (dump_enabled_p ())
1200 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1201 "not vectorized: number of iterations cannot be "
1202 "computed.");
1203 if (inner_loop_vinfo)
1204 destroy_loop_vec_info (inner_loop_vinfo, true);
1205 return NULL;
1206 }
1207
1208 if (chrec_contains_undetermined (number_of_iterations))
1209 {
1210 if (dump_enabled_p ())
1211 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1212 "Infinite number of iterations.");
1213 if (inner_loop_vinfo)
1214 destroy_loop_vec_info (inner_loop_vinfo, true);
1215 return NULL;
1216 }
1217
1218 if (!NITERS_KNOWN_P (number_of_iterations))
1219 {
1220 if (dump_enabled_p ())
1221 {
1222 dump_printf_loc (MSG_NOTE, vect_location,
1223 "Symbolic number of iterations is ");
1224 dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
1225 }
1226 }
1227 else if (TREE_INT_CST_LOW (number_of_iterations) == 0)
1228 {
1229 if (dump_enabled_p ())
1230 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1231 "not vectorized: number of iterations = 0.");
1232 if (inner_loop_vinfo)
1233 destroy_loop_vec_info (inner_loop_vinfo, true);
1234 return NULL;
1235 }
1236
1237 loop_vinfo = new_loop_vec_info (loop);
1238 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1239 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1240
1241 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1242
1243 /* CHECKME: May want to keep it around it in the future. */
1244 if (inner_loop_vinfo)
1245 destroy_loop_vec_info (inner_loop_vinfo, false);
1246
1247 gcc_assert (!loop->aux);
1248 loop->aux = loop_vinfo;
1249 return loop_vinfo;
1250 }
1251
1252
1253 /* Function vect_analyze_loop_operations.
1254
1255 Scan the loop stmts and make sure they are all vectorizable. */
1256
1257 static bool
1258 vect_analyze_loop_operations (loop_vec_info loop_vinfo, bool slp)
1259 {
1260 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1261 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1262 int nbbs = loop->num_nodes;
1263 gimple_stmt_iterator si;
1264 unsigned int vectorization_factor = 0;
1265 int i;
1266 gimple phi;
1267 stmt_vec_info stmt_info;
1268 bool need_to_vectorize = false;
1269 int min_profitable_iters;
1270 int min_scalar_loop_bound;
1271 unsigned int th;
1272 bool only_slp_in_loop = true, ok;
1273 HOST_WIDE_INT max_niter;
1274 HOST_WIDE_INT estimated_niter;
1275 int min_profitable_estimate;
1276
1277 if (dump_enabled_p ())
1278 dump_printf_loc (MSG_NOTE, vect_location,
1279 "=== vect_analyze_loop_operations ===");
1280
1281 gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1282 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1283 if (slp)
1284 {
1285 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1286 vectorization factor of the loop is the unrolling factor required by
1287 the SLP instances. If that unrolling factor is 1, we say, that we
1288 perform pure SLP on loop - cross iteration parallelism is not
1289 exploited. */
1290 for (i = 0; i < nbbs; i++)
1291 {
1292 basic_block bb = bbs[i];
1293 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1294 {
1295 gimple stmt = gsi_stmt (si);
1296 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1297 gcc_assert (stmt_info);
1298 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1299 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1300 && !PURE_SLP_STMT (stmt_info))
1301 /* STMT needs both SLP and loop-based vectorization. */
1302 only_slp_in_loop = false;
1303 }
1304 }
1305
1306 if (only_slp_in_loop)
1307 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1308 else
1309 vectorization_factor = least_common_multiple (vectorization_factor,
1310 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1311
1312 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1313 if (dump_enabled_p ())
1314 dump_printf_loc (MSG_NOTE, vect_location,
1315 "Updating vectorization factor to %d ",
1316 vectorization_factor);
1317 }
1318
1319 for (i = 0; i < nbbs; i++)
1320 {
1321 basic_block bb = bbs[i];
1322
1323 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1324 {
1325 phi = gsi_stmt (si);
1326 ok = true;
1327
1328 stmt_info = vinfo_for_stmt (phi);
1329 if (dump_enabled_p ())
1330 {
1331 dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
1332 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1333 }
1334
1335 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1336 (i.e., a phi in the tail of the outer-loop). */
1337 if (! is_loop_header_bb_p (bb))
1338 {
1339 /* FORNOW: we currently don't support the case that these phis
1340 are not used in the outerloop (unless it is double reduction,
1341 i.e., this phi is vect_reduction_def), cause this case
1342 requires to actually do something here. */
1343 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
1344 || STMT_VINFO_LIVE_P (stmt_info))
1345 && STMT_VINFO_DEF_TYPE (stmt_info)
1346 != vect_double_reduction_def)
1347 {
1348 if (dump_enabled_p ())
1349 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1350 "Unsupported loop-closed phi in "
1351 "outer-loop.");
1352 return false;
1353 }
1354
1355 /* If PHI is used in the outer loop, we check that its operand
1356 is defined in the inner loop. */
1357 if (STMT_VINFO_RELEVANT_P (stmt_info))
1358 {
1359 tree phi_op;
1360 gimple op_def_stmt;
1361
1362 if (gimple_phi_num_args (phi) != 1)
1363 return false;
1364
1365 phi_op = PHI_ARG_DEF (phi, 0);
1366 if (TREE_CODE (phi_op) != SSA_NAME)
1367 return false;
1368
1369 op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
1370 if (!op_def_stmt
1371 || !flow_bb_inside_loop_p (loop, gimple_bb (op_def_stmt))
1372 || !vinfo_for_stmt (op_def_stmt))
1373 return false;
1374
1375 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1376 != vect_used_in_outer
1377 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1378 != vect_used_in_outer_by_reduction)
1379 return false;
1380 }
1381
1382 continue;
1383 }
1384
1385 gcc_assert (stmt_info);
1386
1387 if (STMT_VINFO_LIVE_P (stmt_info))
1388 {
1389 /* FORNOW: not yet supported. */
1390 if (dump_enabled_p ())
1391 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1392 "not vectorized: value used after loop.");
1393 return false;
1394 }
1395
1396 if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1397 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1398 {
1399 /* A scalar-dependence cycle that we don't support. */
1400 if (dump_enabled_p ())
1401 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1402 "not vectorized: scalar dependence cycle.");
1403 return false;
1404 }
1405
1406 if (STMT_VINFO_RELEVANT_P (stmt_info))
1407 {
1408 need_to_vectorize = true;
1409 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
1410 ok = vectorizable_induction (phi, NULL, NULL);
1411 }
1412
1413 if (!ok)
1414 {
1415 if (dump_enabled_p ())
1416 {
1417 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1418 "not vectorized: relevant phi not "
1419 "supported: ");
1420 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
1421 }
1422 return false;
1423 }
1424 }
1425
1426 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1427 {
1428 gimple stmt = gsi_stmt (si);
1429 if (!vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
1430 return false;
1431 }
1432 } /* bbs */
1433
1434 /* All operations in the loop are either irrelevant (deal with loop
1435 control, or dead), or only used outside the loop and can be moved
1436 out of the loop (e.g. invariants, inductions). The loop can be
1437 optimized away by scalar optimizations. We're better off not
1438 touching this loop. */
1439 if (!need_to_vectorize)
1440 {
1441 if (dump_enabled_p ())
1442 dump_printf_loc (MSG_NOTE, vect_location,
1443 "All the computation can be taken out of the loop.");
1444 if (dump_enabled_p ())
1445 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1446 "not vectorized: redundant loop. no profit to "
1447 "vectorize.");
1448 return false;
1449 }
1450
1451 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
1452 dump_printf_loc (MSG_NOTE, vect_location,
1453 "vectorization_factor = %d, niters = "
1454 HOST_WIDE_INT_PRINT_DEC, vectorization_factor,
1455 LOOP_VINFO_INT_NITERS (loop_vinfo));
1456
1457 if ((LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1458 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
1459 || ((max_niter = max_stmt_executions_int (loop)) != -1
1460 && (unsigned HOST_WIDE_INT) max_niter < vectorization_factor))
1461 {
1462 if (dump_enabled_p ())
1463 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1464 "not vectorized: iteration count too small.");
1465 if (dump_enabled_p ())
1466 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1467 "not vectorized: iteration count smaller than "
1468 "vectorization factor.");
1469 return false;
1470 }
1471
1472 /* Analyze cost. Decide if worth while to vectorize. */
1473
1474 /* Once VF is set, SLP costs should be updated since the number of created
1475 vector stmts depends on VF. */
1476 vect_update_slp_costs_according_to_vf (loop_vinfo);
1477
1478 vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
1479 &min_profitable_estimate);
1480 LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo) = min_profitable_iters;
1481
1482 if (min_profitable_iters < 0)
1483 {
1484 if (dump_enabled_p ())
1485 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1486 "not vectorized: vectorization not profitable.");
1487 if (dump_enabled_p ())
1488 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1489 "not vectorized: vector version will never be "
1490 "profitable.");
1491 return false;
1492 }
1493
1494 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1495 * vectorization_factor) - 1);
1496
1497
1498 /* Use the cost model only if it is more conservative than user specified
1499 threshold. */
1500
1501 th = (unsigned) min_scalar_loop_bound;
1502 if (min_profitable_iters
1503 && (!min_scalar_loop_bound
1504 || min_profitable_iters > min_scalar_loop_bound))
1505 th = (unsigned) min_profitable_iters;
1506
1507 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1508 && LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
1509 {
1510 if (dump_enabled_p ())
1511 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1512 "not vectorized: vectorization not profitable.");
1513 if (dump_enabled_p ())
1514 dump_printf_loc (MSG_NOTE, vect_location,
1515 "not vectorized: iteration count smaller than user "
1516 "specified loop bound parameter or minimum profitable "
1517 "iterations (whichever is more conservative).");
1518 return false;
1519 }
1520
1521 if ((estimated_niter = estimated_stmt_executions_int (loop)) != -1
1522 && ((unsigned HOST_WIDE_INT) estimated_niter
1523 <= MAX (th, (unsigned)min_profitable_estimate)))
1524 {
1525 if (dump_enabled_p ())
1526 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1527 "not vectorized: estimated iteration count too "
1528 "small.");
1529 if (dump_enabled_p ())
1530 dump_printf_loc (MSG_NOTE, vect_location,
1531 "not vectorized: estimated iteration count smaller "
1532 "than specified loop bound parameter or minimum "
1533 "profitable iterations (whichever is more "
1534 "conservative).");
1535 return false;
1536 }
1537
1538 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1539 || LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0
1540 || LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
1541 {
1542 if (dump_enabled_p ())
1543 dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required.");
1544 if (!vect_can_advance_ivs_p (loop_vinfo))
1545 {
1546 if (dump_enabled_p ())
1547 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1548 "not vectorized: can't create epilog loop 1.");
1549 return false;
1550 }
1551 if (!slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
1552 {
1553 if (dump_enabled_p ())
1554 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1555 "not vectorized: can't create epilog loop 2.");
1556 return false;
1557 }
1558 }
1559
1560 return true;
1561 }
1562
1563
1564 /* Function vect_analyze_loop_2.
1565
1566 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1567 for it. The different analyses will record information in the
1568 loop_vec_info struct. */
1569 static bool
1570 vect_analyze_loop_2 (loop_vec_info loop_vinfo)
1571 {
1572 bool ok, slp = false;
1573 int max_vf = MAX_VECTORIZATION_FACTOR;
1574 int min_vf = 2;
1575
1576 /* Find all data references in the loop (which correspond to vdefs/vuses)
1577 and analyze their evolution in the loop. Also adjust the minimal
1578 vectorization factor according to the loads and stores.
1579
1580 FORNOW: Handle only simple, array references, which
1581 alignment can be forced, and aligned pointer-references. */
1582
1583 ok = vect_analyze_data_refs (loop_vinfo, NULL, &min_vf);
1584 if (!ok)
1585 {
1586 if (dump_enabled_p ())
1587 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1588 "bad data references.");
1589 return false;
1590 }
1591
1592 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1593 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1594
1595 ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
1596 if (!ok)
1597 {
1598 if (dump_enabled_p ())
1599 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1600 "bad data access.");
1601 return false;
1602 }
1603
1604 /* Classify all cross-iteration scalar data-flow cycles.
1605 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1606
1607 vect_analyze_scalar_cycles (loop_vinfo);
1608
1609 vect_pattern_recog (loop_vinfo, NULL);
1610
1611 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1612
1613 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1614 if (!ok)
1615 {
1616 if (dump_enabled_p ())
1617 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1618 "unexpected pattern.");
1619 return false;
1620 }
1621
1622 /* Analyze data dependences between the data-refs in the loop
1623 and adjust the maximum vectorization factor according to
1624 the dependences.
1625 FORNOW: fail at the first data dependence that we encounter. */
1626
1627 ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
1628 if (!ok
1629 || max_vf < min_vf)
1630 {
1631 if (dump_enabled_p ())
1632 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1633 "bad data dependence.");
1634 return false;
1635 }
1636
1637 ok = vect_determine_vectorization_factor (loop_vinfo);
1638 if (!ok)
1639 {
1640 if (dump_enabled_p ())
1641 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1642 "can't determine vectorization factor.");
1643 return false;
1644 }
1645 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1646 {
1647 if (dump_enabled_p ())
1648 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1649 "bad data dependence.");
1650 return false;
1651 }
1652
1653 /* Analyze the alignment of the data-refs in the loop.
1654 Fail if a data reference is found that cannot be vectorized. */
1655
1656 ok = vect_analyze_data_refs_alignment (loop_vinfo, NULL);
1657 if (!ok)
1658 {
1659 if (dump_enabled_p ())
1660 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1661 "bad data alignment.");
1662 return false;
1663 }
1664
1665 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
1666 It is important to call pruning after vect_analyze_data_ref_accesses,
1667 since we use grouping information gathered by interleaving analysis. */
1668 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
1669 if (!ok)
1670 {
1671 if (dump_enabled_p ())
1672 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1673 "too long list of versioning for alias "
1674 "run-time tests.");
1675 return false;
1676 }
1677
1678 /* This pass will decide on using loop versioning and/or loop peeling in
1679 order to enhance the alignment of data references in the loop. */
1680
1681 ok = vect_enhance_data_refs_alignment (loop_vinfo);
1682 if (!ok)
1683 {
1684 if (dump_enabled_p ())
1685 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1686 "bad data alignment.");
1687 return false;
1688 }
1689
1690 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1691 ok = vect_analyze_slp (loop_vinfo, NULL);
1692 if (ok)
1693 {
1694 /* Decide which possible SLP instances to SLP. */
1695 slp = vect_make_slp_decision (loop_vinfo);
1696
1697 /* Find stmts that need to be both vectorized and SLPed. */
1698 vect_detect_hybrid_slp (loop_vinfo);
1699 }
1700 else
1701 return false;
1702
1703 /* Scan all the operations in the loop and make sure they are
1704 vectorizable. */
1705
1706 ok = vect_analyze_loop_operations (loop_vinfo, slp);
1707 if (!ok)
1708 {
1709 if (dump_enabled_p ())
1710 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1711 "bad operation or unsupported loop bound.");
1712 return false;
1713 }
1714
1715 return true;
1716 }
1717
1718 /* Function vect_analyze_loop.
1719
1720 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1721 for it. The different analyses will record information in the
1722 loop_vec_info struct. */
1723 loop_vec_info
1724 vect_analyze_loop (struct loop *loop)
1725 {
1726 loop_vec_info loop_vinfo;
1727 unsigned int vector_sizes;
1728
1729 /* Autodetect first vector size we try. */
1730 current_vector_size = 0;
1731 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
1732
1733 if (dump_enabled_p ())
1734 dump_printf_loc (MSG_NOTE, vect_location,
1735 "===== analyze_loop_nest =====");
1736
1737 if (loop_outer (loop)
1738 && loop_vec_info_for_loop (loop_outer (loop))
1739 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
1740 {
1741 if (dump_enabled_p ())
1742 dump_printf_loc (MSG_NOTE, vect_location,
1743 "outer-loop already vectorized.");
1744 return NULL;
1745 }
1746
1747 while (1)
1748 {
1749 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
1750 loop_vinfo = vect_analyze_loop_form (loop);
1751 if (!loop_vinfo)
1752 {
1753 if (dump_enabled_p ())
1754 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1755 "bad loop form.");
1756 return NULL;
1757 }
1758
1759 if (vect_analyze_loop_2 (loop_vinfo))
1760 {
1761 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
1762
1763 return loop_vinfo;
1764 }
1765
1766 destroy_loop_vec_info (loop_vinfo, true);
1767
1768 vector_sizes &= ~current_vector_size;
1769 if (vector_sizes == 0
1770 || current_vector_size == 0)
1771 return NULL;
1772
1773 /* Try the next biggest vector size. */
1774 current_vector_size = 1 << floor_log2 (vector_sizes);
1775 if (dump_enabled_p ())
1776 dump_printf_loc (MSG_NOTE, vect_location,
1777 "***** Re-trying analysis with "
1778 "vector size %d\n", current_vector_size);
1779 }
1780 }
1781
1782
1783 /* Function reduction_code_for_scalar_code
1784
1785 Input:
1786 CODE - tree_code of a reduction operations.
1787
1788 Output:
1789 REDUC_CODE - the corresponding tree-code to be used to reduce the
1790 vector of partial results into a single scalar result (which
1791 will also reside in a vector) or ERROR_MARK if the operation is
1792 a supported reduction operation, but does not have such tree-code.
1793
1794 Return FALSE if CODE currently cannot be vectorized as reduction. */
1795
1796 static bool
1797 reduction_code_for_scalar_code (enum tree_code code,
1798 enum tree_code *reduc_code)
1799 {
1800 switch (code)
1801 {
1802 case MAX_EXPR:
1803 *reduc_code = REDUC_MAX_EXPR;
1804 return true;
1805
1806 case MIN_EXPR:
1807 *reduc_code = REDUC_MIN_EXPR;
1808 return true;
1809
1810 case PLUS_EXPR:
1811 *reduc_code = REDUC_PLUS_EXPR;
1812 return true;
1813
1814 case MULT_EXPR:
1815 case MINUS_EXPR:
1816 case BIT_IOR_EXPR:
1817 case BIT_XOR_EXPR:
1818 case BIT_AND_EXPR:
1819 *reduc_code = ERROR_MARK;
1820 return true;
1821
1822 default:
1823 return false;
1824 }
1825 }
1826
1827
1828 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
1829 STMT is printed with a message MSG. */
1830
1831 static void
1832 report_vect_op (int msg_type, gimple stmt, const char *msg)
1833 {
1834 dump_printf_loc (msg_type, vect_location, "%s", msg);
1835 dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
1836 }
1837
1838
1839 /* Detect SLP reduction of the form:
1840
1841 #a1 = phi <a5, a0>
1842 a2 = operation (a1)
1843 a3 = operation (a2)
1844 a4 = operation (a3)
1845 a5 = operation (a4)
1846
1847 #a = phi <a5>
1848
1849 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
1850 FIRST_STMT is the first reduction stmt in the chain
1851 (a2 = operation (a1)).
1852
1853 Return TRUE if a reduction chain was detected. */
1854
1855 static bool
1856 vect_is_slp_reduction (loop_vec_info loop_info, gimple phi, gimple first_stmt)
1857 {
1858 struct loop *loop = (gimple_bb (phi))->loop_father;
1859 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
1860 enum tree_code code;
1861 gimple current_stmt = NULL, loop_use_stmt = NULL, first, next_stmt;
1862 stmt_vec_info use_stmt_info, current_stmt_info;
1863 tree lhs;
1864 imm_use_iterator imm_iter;
1865 use_operand_p use_p;
1866 int nloop_uses, size = 0, n_out_of_loop_uses;
1867 bool found = false;
1868
1869 if (loop != vect_loop)
1870 return false;
1871
1872 lhs = PHI_RESULT (phi);
1873 code = gimple_assign_rhs_code (first_stmt);
1874 while (1)
1875 {
1876 nloop_uses = 0;
1877 n_out_of_loop_uses = 0;
1878 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
1879 {
1880 gimple use_stmt = USE_STMT (use_p);
1881 if (is_gimple_debug (use_stmt))
1882 continue;
1883
1884 use_stmt = USE_STMT (use_p);
1885
1886 /* Check if we got back to the reduction phi. */
1887 if (use_stmt == phi)
1888 {
1889 loop_use_stmt = use_stmt;
1890 found = true;
1891 break;
1892 }
1893
1894 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
1895 {
1896 if (vinfo_for_stmt (use_stmt)
1897 && !STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
1898 {
1899 loop_use_stmt = use_stmt;
1900 nloop_uses++;
1901 }
1902 }
1903 else
1904 n_out_of_loop_uses++;
1905
1906 /* There are can be either a single use in the loop or two uses in
1907 phi nodes. */
1908 if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
1909 return false;
1910 }
1911
1912 if (found)
1913 break;
1914
1915 /* We reached a statement with no loop uses. */
1916 if (nloop_uses == 0)
1917 return false;
1918
1919 /* This is a loop exit phi, and we haven't reached the reduction phi. */
1920 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
1921 return false;
1922
1923 if (!is_gimple_assign (loop_use_stmt)
1924 || code != gimple_assign_rhs_code (loop_use_stmt)
1925 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
1926 return false;
1927
1928 /* Insert USE_STMT into reduction chain. */
1929 use_stmt_info = vinfo_for_stmt (loop_use_stmt);
1930 if (current_stmt)
1931 {
1932 current_stmt_info = vinfo_for_stmt (current_stmt);
1933 GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
1934 GROUP_FIRST_ELEMENT (use_stmt_info)
1935 = GROUP_FIRST_ELEMENT (current_stmt_info);
1936 }
1937 else
1938 GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
1939
1940 lhs = gimple_assign_lhs (loop_use_stmt);
1941 current_stmt = loop_use_stmt;
1942 size++;
1943 }
1944
1945 if (!found || loop_use_stmt != phi || size < 2)
1946 return false;
1947
1948 /* Swap the operands, if needed, to make the reduction operand be the second
1949 operand. */
1950 lhs = PHI_RESULT (phi);
1951 next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
1952 while (next_stmt)
1953 {
1954 if (gimple_assign_rhs2 (next_stmt) == lhs)
1955 {
1956 tree op = gimple_assign_rhs1 (next_stmt);
1957 gimple def_stmt = NULL;
1958
1959 if (TREE_CODE (op) == SSA_NAME)
1960 def_stmt = SSA_NAME_DEF_STMT (op);
1961
1962 /* Check that the other def is either defined in the loop
1963 ("vect_internal_def"), or it's an induction (defined by a
1964 loop-header phi-node). */
1965 if (def_stmt
1966 && gimple_bb (def_stmt)
1967 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
1968 && (is_gimple_assign (def_stmt)
1969 || is_gimple_call (def_stmt)
1970 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
1971 == vect_induction_def
1972 || (gimple_code (def_stmt) == GIMPLE_PHI
1973 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
1974 == vect_internal_def
1975 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
1976 {
1977 lhs = gimple_assign_lhs (next_stmt);
1978 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
1979 continue;
1980 }
1981
1982 return false;
1983 }
1984 else
1985 {
1986 tree op = gimple_assign_rhs2 (next_stmt);
1987 gimple def_stmt = NULL;
1988
1989 if (TREE_CODE (op) == SSA_NAME)
1990 def_stmt = SSA_NAME_DEF_STMT (op);
1991
1992 /* Check that the other def is either defined in the loop
1993 ("vect_internal_def"), or it's an induction (defined by a
1994 loop-header phi-node). */
1995 if (def_stmt
1996 && gimple_bb (def_stmt)
1997 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
1998 && (is_gimple_assign (def_stmt)
1999 || is_gimple_call (def_stmt)
2000 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2001 == vect_induction_def
2002 || (gimple_code (def_stmt) == GIMPLE_PHI
2003 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2004 == vect_internal_def
2005 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2006 {
2007 if (dump_enabled_p ())
2008 {
2009 dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
2010 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
2011 }
2012
2013 swap_tree_operands (next_stmt,
2014 gimple_assign_rhs1_ptr (next_stmt),
2015 gimple_assign_rhs2_ptr (next_stmt));
2016 update_stmt (next_stmt);
2017
2018 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
2019 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2020 }
2021 else
2022 return false;
2023 }
2024
2025 lhs = gimple_assign_lhs (next_stmt);
2026 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2027 }
2028
2029 /* Save the chain for further analysis in SLP detection. */
2030 first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2031 LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
2032 GROUP_SIZE (vinfo_for_stmt (first)) = size;
2033
2034 return true;
2035 }
2036
2037
2038 /* Function vect_is_simple_reduction_1
2039
2040 (1) Detect a cross-iteration def-use cycle that represents a simple
2041 reduction computation. We look for the following pattern:
2042
2043 loop_header:
2044 a1 = phi < a0, a2 >
2045 a3 = ...
2046 a2 = operation (a3, a1)
2047
2048 such that:
2049 1. operation is commutative and associative and it is safe to
2050 change the order of the computation (if CHECK_REDUCTION is true)
2051 2. no uses for a2 in the loop (a2 is used out of the loop)
2052 3. no uses of a1 in the loop besides the reduction operation
2053 4. no uses of a1 outside the loop.
2054
2055 Conditions 1,4 are tested here.
2056 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
2057
2058 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
2059 nested cycles, if CHECK_REDUCTION is false.
2060
2061 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
2062 reductions:
2063
2064 a1 = phi < a0, a2 >
2065 inner loop (def of a3)
2066 a2 = phi < a3 >
2067
2068 If MODIFY is true it tries also to rework the code in-place to enable
2069 detection of more reduction patterns. For the time being we rewrite
2070 "res -= RHS" into "rhs += -RHS" when it seems worthwhile.
2071 */
2072
2073 static gimple
2074 vect_is_simple_reduction_1 (loop_vec_info loop_info, gimple phi,
2075 bool check_reduction, bool *double_reduc,
2076 bool modify)
2077 {
2078 struct loop *loop = (gimple_bb (phi))->loop_father;
2079 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2080 edge latch_e = loop_latch_edge (loop);
2081 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
2082 gimple def_stmt, def1 = NULL, def2 = NULL;
2083 enum tree_code orig_code, code;
2084 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
2085 tree type;
2086 int nloop_uses;
2087 tree name;
2088 imm_use_iterator imm_iter;
2089 use_operand_p use_p;
2090 bool phi_def;
2091
2092 *double_reduc = false;
2093
2094 /* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
2095 otherwise, we assume outer loop vectorization. */
2096 gcc_assert ((check_reduction && loop == vect_loop)
2097 || (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
2098
2099 name = PHI_RESULT (phi);
2100 nloop_uses = 0;
2101 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2102 {
2103 gimple use_stmt = USE_STMT (use_p);
2104 if (is_gimple_debug (use_stmt))
2105 continue;
2106
2107 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2108 {
2109 if (dump_enabled_p ())
2110 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2111 "intermediate value used outside loop.");
2112
2113 return NULL;
2114 }
2115
2116 if (vinfo_for_stmt (use_stmt)
2117 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2118 nloop_uses++;
2119 if (nloop_uses > 1)
2120 {
2121 if (dump_enabled_p ())
2122 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2123 "reduction used in loop.");
2124 return NULL;
2125 }
2126 }
2127
2128 if (TREE_CODE (loop_arg) != SSA_NAME)
2129 {
2130 if (dump_enabled_p ())
2131 {
2132 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2133 "reduction: not ssa_name: ");
2134 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
2135 }
2136 return NULL;
2137 }
2138
2139 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2140 if (!def_stmt)
2141 {
2142 if (dump_enabled_p ())
2143 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2144 "reduction: no def_stmt.");
2145 return NULL;
2146 }
2147
2148 if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
2149 {
2150 if (dump_enabled_p ())
2151 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
2152 return NULL;
2153 }
2154
2155 if (is_gimple_assign (def_stmt))
2156 {
2157 name = gimple_assign_lhs (def_stmt);
2158 phi_def = false;
2159 }
2160 else
2161 {
2162 name = PHI_RESULT (def_stmt);
2163 phi_def = true;
2164 }
2165
2166 nloop_uses = 0;
2167 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2168 {
2169 gimple use_stmt = USE_STMT (use_p);
2170 if (is_gimple_debug (use_stmt))
2171 continue;
2172 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
2173 && vinfo_for_stmt (use_stmt)
2174 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2175 nloop_uses++;
2176 if (nloop_uses > 1)
2177 {
2178 if (dump_enabled_p ())
2179 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2180 "reduction used in loop.");
2181 return NULL;
2182 }
2183 }
2184
2185 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2186 defined in the inner loop. */
2187 if (phi_def)
2188 {
2189 op1 = PHI_ARG_DEF (def_stmt, 0);
2190
2191 if (gimple_phi_num_args (def_stmt) != 1
2192 || TREE_CODE (op1) != SSA_NAME)
2193 {
2194 if (dump_enabled_p ())
2195 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2196 "unsupported phi node definition.");
2197
2198 return NULL;
2199 }
2200
2201 def1 = SSA_NAME_DEF_STMT (op1);
2202 if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2203 && loop->inner
2204 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
2205 && is_gimple_assign (def1))
2206 {
2207 if (dump_enabled_p ())
2208 report_vect_op (MSG_NOTE, def_stmt,
2209 "detected double reduction: ");
2210
2211 *double_reduc = true;
2212 return def_stmt;
2213 }
2214
2215 return NULL;
2216 }
2217
2218 code = orig_code = gimple_assign_rhs_code (def_stmt);
2219
2220 /* We can handle "res -= x[i]", which is non-associative by
2221 simply rewriting this into "res += -x[i]". Avoid changing
2222 gimple instruction for the first simple tests and only do this
2223 if we're allowed to change code at all. */
2224 if (code == MINUS_EXPR
2225 && modify
2226 && (op1 = gimple_assign_rhs1 (def_stmt))
2227 && TREE_CODE (op1) == SSA_NAME
2228 && SSA_NAME_DEF_STMT (op1) == phi)
2229 code = PLUS_EXPR;
2230
2231 if (check_reduction
2232 && (!commutative_tree_code (code) || !associative_tree_code (code)))
2233 {
2234 if (dump_enabled_p ())
2235 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2236 "reduction: not commutative/associative: ");
2237 return NULL;
2238 }
2239
2240 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
2241 {
2242 if (code != COND_EXPR)
2243 {
2244 if (dump_enabled_p ())
2245 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2246 "reduction: not binary operation: ");
2247
2248 return NULL;
2249 }
2250
2251 op3 = gimple_assign_rhs1 (def_stmt);
2252 if (COMPARISON_CLASS_P (op3))
2253 {
2254 op4 = TREE_OPERAND (op3, 1);
2255 op3 = TREE_OPERAND (op3, 0);
2256 }
2257
2258 op1 = gimple_assign_rhs2 (def_stmt);
2259 op2 = gimple_assign_rhs3 (def_stmt);
2260
2261 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2262 {
2263 if (dump_enabled_p ())
2264 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2265 "reduction: uses not ssa_names: ");
2266
2267 return NULL;
2268 }
2269 }
2270 else
2271 {
2272 op1 = gimple_assign_rhs1 (def_stmt);
2273 op2 = gimple_assign_rhs2 (def_stmt);
2274
2275 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2276 {
2277 if (dump_enabled_p ())
2278 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2279 "reduction: uses not ssa_names: ");
2280
2281 return NULL;
2282 }
2283 }
2284
2285 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
2286 if ((TREE_CODE (op1) == SSA_NAME
2287 && !types_compatible_p (type,TREE_TYPE (op1)))
2288 || (TREE_CODE (op2) == SSA_NAME
2289 && !types_compatible_p (type, TREE_TYPE (op2)))
2290 || (op3 && TREE_CODE (op3) == SSA_NAME
2291 && !types_compatible_p (type, TREE_TYPE (op3)))
2292 || (op4 && TREE_CODE (op4) == SSA_NAME
2293 && !types_compatible_p (type, TREE_TYPE (op4))))
2294 {
2295 if (dump_enabled_p ())
2296 {
2297 dump_printf_loc (MSG_NOTE, vect_location,
2298 "reduction: multiple types: operation type: ");
2299 dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
2300 dump_printf (MSG_NOTE, ", operands types: ");
2301 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2302 TREE_TYPE (op1));
2303 dump_printf (MSG_NOTE, ",");
2304 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2305 TREE_TYPE (op2));
2306 if (op3)
2307 {
2308 dump_printf (MSG_NOTE, ",");
2309 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2310 TREE_TYPE (op3));
2311 }
2312
2313 if (op4)
2314 {
2315 dump_printf (MSG_NOTE, ",");
2316 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2317 TREE_TYPE (op4));
2318 }
2319 }
2320
2321 return NULL;
2322 }
2323
2324 /* Check that it's ok to change the order of the computation.
2325 Generally, when vectorizing a reduction we change the order of the
2326 computation. This may change the behavior of the program in some
2327 cases, so we need to check that this is ok. One exception is when
2328 vectorizing an outer-loop: the inner-loop is executed sequentially,
2329 and therefore vectorizing reductions in the inner-loop during
2330 outer-loop vectorization is safe. */
2331
2332 /* CHECKME: check for !flag_finite_math_only too? */
2333 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
2334 && check_reduction)
2335 {
2336 /* Changing the order of operations changes the semantics. */
2337 if (dump_enabled_p ())
2338 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2339 "reduction: unsafe fp math optimization: ");
2340 return NULL;
2341 }
2342 else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
2343 && check_reduction)
2344 {
2345 /* Changing the order of operations changes the semantics. */
2346 if (dump_enabled_p ())
2347 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2348 "reduction: unsafe int math optimization: ");
2349 return NULL;
2350 }
2351 else if (SAT_FIXED_POINT_TYPE_P (type) && check_reduction)
2352 {
2353 /* Changing the order of operations changes the semantics. */
2354 if (dump_enabled_p ())
2355 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2356 "reduction: unsafe fixed-point math optimization: ");
2357 return NULL;
2358 }
2359
2360 /* If we detected "res -= x[i]" earlier, rewrite it into
2361 "res += -x[i]" now. If this turns out to be useless reassoc
2362 will clean it up again. */
2363 if (orig_code == MINUS_EXPR)
2364 {
2365 tree rhs = gimple_assign_rhs2 (def_stmt);
2366 tree negrhs = make_ssa_name (TREE_TYPE (rhs), NULL);
2367 gimple negate_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, negrhs,
2368 rhs, NULL);
2369 gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
2370 set_vinfo_for_stmt (negate_stmt, new_stmt_vec_info (negate_stmt,
2371 loop_info, NULL));
2372 gsi_insert_before (&gsi, negate_stmt, GSI_NEW_STMT);
2373 gimple_assign_set_rhs2 (def_stmt, negrhs);
2374 gimple_assign_set_rhs_code (def_stmt, PLUS_EXPR);
2375 update_stmt (def_stmt);
2376 }
2377
2378 /* Reduction is safe. We're dealing with one of the following:
2379 1) integer arithmetic and no trapv
2380 2) floating point arithmetic, and special flags permit this optimization
2381 3) nested cycle (i.e., outer loop vectorization). */
2382 if (TREE_CODE (op1) == SSA_NAME)
2383 def1 = SSA_NAME_DEF_STMT (op1);
2384
2385 if (TREE_CODE (op2) == SSA_NAME)
2386 def2 = SSA_NAME_DEF_STMT (op2);
2387
2388 if (code != COND_EXPR
2389 && ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
2390 {
2391 if (dump_enabled_p ())
2392 report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
2393 return NULL;
2394 }
2395
2396 /* Check that one def is the reduction def, defined by PHI,
2397 the other def is either defined in the loop ("vect_internal_def"),
2398 or it's an induction (defined by a loop-header phi-node). */
2399
2400 if (def2 && def2 == phi
2401 && (code == COND_EXPR
2402 || !def1 || gimple_nop_p (def1)
2403 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
2404 && (is_gimple_assign (def1)
2405 || is_gimple_call (def1)
2406 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2407 == vect_induction_def
2408 || (gimple_code (def1) == GIMPLE_PHI
2409 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2410 == vect_internal_def
2411 && !is_loop_header_bb_p (gimple_bb (def1)))))))
2412 {
2413 if (dump_enabled_p ())
2414 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2415 return def_stmt;
2416 }
2417
2418 if (def1 && def1 == phi
2419 && (code == COND_EXPR
2420 || !def2 || gimple_nop_p (def2)
2421 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
2422 && (is_gimple_assign (def2)
2423 || is_gimple_call (def2)
2424 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2425 == vect_induction_def
2426 || (gimple_code (def2) == GIMPLE_PHI
2427 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2428 == vect_internal_def
2429 && !is_loop_header_bb_p (gimple_bb (def2)))))))
2430 {
2431 if (check_reduction)
2432 {
2433 /* Swap operands (just for simplicity - so that the rest of the code
2434 can assume that the reduction variable is always the last (second)
2435 argument). */
2436 if (dump_enabled_p ())
2437 report_vect_op (MSG_NOTE, def_stmt,
2438 "detected reduction: need to swap operands: ");
2439
2440 swap_tree_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
2441 gimple_assign_rhs2_ptr (def_stmt));
2442
2443 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
2444 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2445 }
2446 else
2447 {
2448 if (dump_enabled_p ())
2449 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2450 }
2451
2452 return def_stmt;
2453 }
2454
2455 /* Try to find SLP reduction chain. */
2456 if (check_reduction && vect_is_slp_reduction (loop_info, phi, def_stmt))
2457 {
2458 if (dump_enabled_p ())
2459 report_vect_op (MSG_NOTE, def_stmt,
2460 "reduction: detected reduction chain: ");
2461
2462 return def_stmt;
2463 }
2464
2465 if (dump_enabled_p ())
2466 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2467 "reduction: unknown pattern: ");
2468
2469 return NULL;
2470 }
2471
2472 /* Wrapper around vect_is_simple_reduction_1, that won't modify code
2473 in-place. Arguments as there. */
2474
2475 static gimple
2476 vect_is_simple_reduction (loop_vec_info loop_info, gimple phi,
2477 bool check_reduction, bool *double_reduc)
2478 {
2479 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2480 double_reduc, false);
2481 }
2482
2483 /* Wrapper around vect_is_simple_reduction_1, which will modify code
2484 in-place if it enables detection of more reductions. Arguments
2485 as there. */
2486
2487 gimple
2488 vect_force_simple_reduction (loop_vec_info loop_info, gimple phi,
2489 bool check_reduction, bool *double_reduc)
2490 {
2491 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2492 double_reduc, true);
2493 }
2494
2495 /* Calculate the cost of one scalar iteration of the loop. */
2496 int
2497 vect_get_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
2498 {
2499 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2500 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
2501 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
2502 int innerloop_iters, i, stmt_cost;
2503
2504 /* Count statements in scalar loop. Using this as scalar cost for a single
2505 iteration for now.
2506
2507 TODO: Add outer loop support.
2508
2509 TODO: Consider assigning different costs to different scalar
2510 statements. */
2511
2512 /* FORNOW. */
2513 innerloop_iters = 1;
2514 if (loop->inner)
2515 innerloop_iters = 50; /* FIXME */
2516
2517 for (i = 0; i < nbbs; i++)
2518 {
2519 gimple_stmt_iterator si;
2520 basic_block bb = bbs[i];
2521
2522 if (bb->loop_father == loop->inner)
2523 factor = innerloop_iters;
2524 else
2525 factor = 1;
2526
2527 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2528 {
2529 gimple stmt = gsi_stmt (si);
2530 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2531
2532 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
2533 continue;
2534
2535 /* Skip stmts that are not vectorized inside the loop. */
2536 if (stmt_info
2537 && !STMT_VINFO_RELEVANT_P (stmt_info)
2538 && (!STMT_VINFO_LIVE_P (stmt_info)
2539 || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
2540 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
2541 continue;
2542
2543 if (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt)))
2544 {
2545 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
2546 stmt_cost = vect_get_stmt_cost (scalar_load);
2547 else
2548 stmt_cost = vect_get_stmt_cost (scalar_store);
2549 }
2550 else
2551 stmt_cost = vect_get_stmt_cost (scalar_stmt);
2552
2553 scalar_single_iter_cost += stmt_cost * factor;
2554 }
2555 }
2556 return scalar_single_iter_cost;
2557 }
2558
2559 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
2560 int
2561 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
2562 int *peel_iters_epilogue,
2563 int scalar_single_iter_cost,
2564 stmt_vector_for_cost *prologue_cost_vec,
2565 stmt_vector_for_cost *epilogue_cost_vec)
2566 {
2567 int retval = 0;
2568 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2569
2570 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2571 {
2572 *peel_iters_epilogue = vf/2;
2573 if (dump_enabled_p ())
2574 dump_printf_loc (MSG_NOTE, vect_location,
2575 "cost model: epilogue peel iters set to vf/2 "
2576 "because loop iterations are unknown .");
2577
2578 /* If peeled iterations are known but number of scalar loop
2579 iterations are unknown, count a taken branch per peeled loop. */
2580 retval = record_stmt_cost (prologue_cost_vec, 2, cond_branch_taken,
2581 NULL, 0, vect_prologue);
2582 }
2583 else
2584 {
2585 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
2586 peel_iters_prologue = niters < peel_iters_prologue ?
2587 niters : peel_iters_prologue;
2588 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
2589 /* If we need to peel for gaps, but no peeling is required, we have to
2590 peel VF iterations. */
2591 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
2592 *peel_iters_epilogue = vf;
2593 }
2594
2595 if (peel_iters_prologue)
2596 retval += record_stmt_cost (prologue_cost_vec,
2597 peel_iters_prologue * scalar_single_iter_cost,
2598 scalar_stmt, NULL, 0, vect_prologue);
2599 if (*peel_iters_epilogue)
2600 retval += record_stmt_cost (epilogue_cost_vec,
2601 *peel_iters_epilogue * scalar_single_iter_cost,
2602 scalar_stmt, NULL, 0, vect_epilogue);
2603 return retval;
2604 }
2605
2606 /* Function vect_estimate_min_profitable_iters
2607
2608 Return the number of iterations required for the vector version of the
2609 loop to be profitable relative to the cost of the scalar version of the
2610 loop. */
2611
2612 static void
2613 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
2614 int *ret_min_profitable_niters,
2615 int *ret_min_profitable_estimate)
2616 {
2617 int min_profitable_iters;
2618 int min_profitable_estimate;
2619 int peel_iters_prologue;
2620 int peel_iters_epilogue;
2621 unsigned vec_inside_cost = 0;
2622 int vec_outside_cost = 0;
2623 unsigned vec_prologue_cost = 0;
2624 unsigned vec_epilogue_cost = 0;
2625 int scalar_single_iter_cost = 0;
2626 int scalar_outside_cost = 0;
2627 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2628 int npeel = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
2629 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2630
2631 /* Cost model disabled. */
2632 if (!flag_vect_cost_model)
2633 {
2634 dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.");
2635 *ret_min_profitable_niters = 0;
2636 *ret_min_profitable_estimate = 0;
2637 return;
2638 }
2639
2640 /* Requires loop versioning tests to handle misalignment. */
2641 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2642 {
2643 /* FIXME: Make cost depend on complexity of individual check. */
2644 unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
2645 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
2646 vect_prologue);
2647 dump_printf (MSG_NOTE,
2648 "cost model: Adding cost of checks for loop "
2649 "versioning to treat misalignment.\n");
2650 }
2651
2652 /* Requires loop versioning with alias checks. */
2653 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2654 {
2655 /* FIXME: Make cost depend on complexity of individual check. */
2656 unsigned len = LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).length ();
2657 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
2658 vect_prologue);
2659 dump_printf (MSG_NOTE,
2660 "cost model: Adding cost of checks for loop "
2661 "versioning aliasing.\n");
2662 }
2663
2664 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2665 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2666 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
2667 vect_prologue);
2668
2669 /* Count statements in scalar loop. Using this as scalar cost for a single
2670 iteration for now.
2671
2672 TODO: Add outer loop support.
2673
2674 TODO: Consider assigning different costs to different scalar
2675 statements. */
2676
2677 scalar_single_iter_cost = vect_get_single_scalar_iteration_cost (loop_vinfo);
2678
2679 /* Add additional cost for the peeled instructions in prologue and epilogue
2680 loop.
2681
2682 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
2683 at compile-time - we assume it's vf/2 (the worst would be vf-1).
2684
2685 TODO: Build an expression that represents peel_iters for prologue and
2686 epilogue to be used in a run-time test. */
2687
2688 if (npeel < 0)
2689 {
2690 peel_iters_prologue = vf/2;
2691 dump_printf (MSG_NOTE, "cost model: "
2692 "prologue peel iters set to vf/2.");
2693
2694 /* If peeling for alignment is unknown, loop bound of main loop becomes
2695 unknown. */
2696 peel_iters_epilogue = vf/2;
2697 dump_printf (MSG_NOTE, "cost model: "
2698 "epilogue peel iters set to vf/2 because "
2699 "peeling for alignment is unknown.");
2700
2701 /* If peeled iterations are unknown, count a taken branch and a not taken
2702 branch per peeled loop. Even if scalar loop iterations are known,
2703 vector iterations are not known since peeled prologue iterations are
2704 not known. Hence guards remain the same. */
2705 (void) add_stmt_cost (target_cost_data, 2, cond_branch_taken,
2706 NULL, 0, vect_prologue);
2707 (void) add_stmt_cost (target_cost_data, 2, cond_branch_not_taken,
2708 NULL, 0, vect_prologue);
2709 /* FORNOW: Don't attempt to pass individual scalar instructions to
2710 the model; just assume linear cost for scalar iterations. */
2711 (void) add_stmt_cost (target_cost_data,
2712 peel_iters_prologue * scalar_single_iter_cost,
2713 scalar_stmt, NULL, 0, vect_prologue);
2714 (void) add_stmt_cost (target_cost_data,
2715 peel_iters_epilogue * scalar_single_iter_cost,
2716 scalar_stmt, NULL, 0, vect_epilogue);
2717 }
2718 else
2719 {
2720 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
2721 stmt_info_for_cost *si;
2722 int j;
2723 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2724
2725 prologue_cost_vec.create (2);
2726 epilogue_cost_vec.create (2);
2727 peel_iters_prologue = npeel;
2728
2729 (void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
2730 &peel_iters_epilogue,
2731 scalar_single_iter_cost,
2732 &prologue_cost_vec,
2733 &epilogue_cost_vec);
2734
2735 FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
2736 {
2737 struct _stmt_vec_info *stmt_info
2738 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
2739 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
2740 si->misalign, vect_prologue);
2741 }
2742
2743 FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
2744 {
2745 struct _stmt_vec_info *stmt_info
2746 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
2747 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
2748 si->misalign, vect_epilogue);
2749 }
2750
2751 prologue_cost_vec.release ();
2752 epilogue_cost_vec.release ();
2753 }
2754
2755 /* FORNOW: The scalar outside cost is incremented in one of the
2756 following ways:
2757
2758 1. The vectorizer checks for alignment and aliasing and generates
2759 a condition that allows dynamic vectorization. A cost model
2760 check is ANDED with the versioning condition. Hence scalar code
2761 path now has the added cost of the versioning check.
2762
2763 if (cost > th & versioning_check)
2764 jmp to vector code
2765
2766 Hence run-time scalar is incremented by not-taken branch cost.
2767
2768 2. The vectorizer then checks if a prologue is required. If the
2769 cost model check was not done before during versioning, it has to
2770 be done before the prologue check.
2771
2772 if (cost <= th)
2773 prologue = scalar_iters
2774 if (prologue == 0)
2775 jmp to vector code
2776 else
2777 execute prologue
2778 if (prologue == num_iters)
2779 go to exit
2780
2781 Hence the run-time scalar cost is incremented by a taken branch,
2782 plus a not-taken branch, plus a taken branch cost.
2783
2784 3. The vectorizer then checks if an epilogue is required. If the
2785 cost model check was not done before during prologue check, it
2786 has to be done with the epilogue check.
2787
2788 if (prologue == 0)
2789 jmp to vector code
2790 else
2791 execute prologue
2792 if (prologue == num_iters)
2793 go to exit
2794 vector code:
2795 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
2796 jmp to epilogue
2797
2798 Hence the run-time scalar cost should be incremented by 2 taken
2799 branches.
2800
2801 TODO: The back end may reorder the BBS's differently and reverse
2802 conditions/branch directions. Change the estimates below to
2803 something more reasonable. */
2804
2805 /* If the number of iterations is known and we do not do versioning, we can
2806 decide whether to vectorize at compile time. Hence the scalar version
2807 do not carry cost model guard costs. */
2808 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2809 || LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2810 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2811 {
2812 /* Cost model check occurs at versioning. */
2813 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2814 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2815 scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
2816 else
2817 {
2818 /* Cost model check occurs at prologue generation. */
2819 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2820 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
2821 + vect_get_stmt_cost (cond_branch_not_taken);
2822 /* Cost model check occurs at epilogue generation. */
2823 else
2824 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
2825 }
2826 }
2827
2828 /* Complete the target-specific cost calculations. */
2829 finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
2830 &vec_inside_cost, &vec_epilogue_cost);
2831
2832 vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
2833
2834 /* Calculate number of iterations required to make the vector version
2835 profitable, relative to the loop bodies only. The following condition
2836 must hold true:
2837 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
2838 where
2839 SIC = scalar iteration cost, VIC = vector iteration cost,
2840 VOC = vector outside cost, VF = vectorization factor,
2841 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
2842 SOC = scalar outside cost for run time cost model check. */
2843
2844 if ((scalar_single_iter_cost * vf) > (int) vec_inside_cost)
2845 {
2846 if (vec_outside_cost <= 0)
2847 min_profitable_iters = 1;
2848 else
2849 {
2850 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
2851 - vec_inside_cost * peel_iters_prologue
2852 - vec_inside_cost * peel_iters_epilogue)
2853 / ((scalar_single_iter_cost * vf)
2854 - vec_inside_cost);
2855
2856 if ((scalar_single_iter_cost * vf * min_profitable_iters)
2857 <= (((int) vec_inside_cost * min_profitable_iters)
2858 + (((int) vec_outside_cost - scalar_outside_cost) * vf)))
2859 min_profitable_iters++;
2860 }
2861 }
2862 /* vector version will never be profitable. */
2863 else
2864 {
2865 if (dump_enabled_p ())
2866 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2867 "cost model: the vector iteration cost = %d "
2868 "divided by the scalar iteration cost = %d "
2869 "is greater or equal to the vectorization factor = %d.",
2870 vec_inside_cost, scalar_single_iter_cost, vf);
2871 *ret_min_profitable_niters = -1;
2872 *ret_min_profitable_estimate = -1;
2873 return;
2874 }
2875
2876 if (dump_enabled_p ())
2877 {
2878 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
2879 dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
2880 vec_inside_cost);
2881 dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
2882 vec_prologue_cost);
2883 dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
2884 vec_epilogue_cost);
2885 dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
2886 scalar_single_iter_cost);
2887 dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
2888 scalar_outside_cost);
2889 dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
2890 vec_outside_cost);
2891 dump_printf (MSG_NOTE, " prologue iterations: %d\n",
2892 peel_iters_prologue);
2893 dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
2894 peel_iters_epilogue);
2895 dump_printf (MSG_NOTE,
2896 " Calculated minimum iters for profitability: %d\n",
2897 min_profitable_iters);
2898 }
2899
2900 min_profitable_iters =
2901 min_profitable_iters < vf ? vf : min_profitable_iters;
2902
2903 /* Because the condition we create is:
2904 if (niters <= min_profitable_iters)
2905 then skip the vectorized loop. */
2906 min_profitable_iters--;
2907
2908 if (dump_enabled_p ())
2909 dump_printf_loc (MSG_NOTE, vect_location,
2910 " Runtime profitability threshold = %d\n", min_profitable_iters);
2911
2912 *ret_min_profitable_niters = min_profitable_iters;
2913
2914 /* Calculate number of iterations required to make the vector version
2915 profitable, relative to the loop bodies only.
2916
2917 Non-vectorized variant is SIC * niters and it must win over vector
2918 variant on the expected loop trip count. The following condition must hold true:
2919 SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
2920
2921 if (vec_outside_cost <= 0)
2922 min_profitable_estimate = 1;
2923 else
2924 {
2925 min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost) * vf
2926 - vec_inside_cost * peel_iters_prologue
2927 - vec_inside_cost * peel_iters_epilogue)
2928 / ((scalar_single_iter_cost * vf)
2929 - vec_inside_cost);
2930 }
2931 min_profitable_estimate --;
2932 min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
2933 if (dump_enabled_p ())
2934 dump_printf_loc (MSG_NOTE, vect_location,
2935 " Static estimate profitability threshold = %d\n",
2936 min_profitable_iters);
2937
2938 *ret_min_profitable_estimate = min_profitable_estimate;
2939 }
2940
2941
2942 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
2943 functions. Design better to avoid maintenance issues. */
2944
2945 /* Function vect_model_reduction_cost.
2946
2947 Models cost for a reduction operation, including the vector ops
2948 generated within the strip-mine loop, the initial definition before
2949 the loop, and the epilogue code that must be generated. */
2950
2951 static bool
2952 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
2953 int ncopies)
2954 {
2955 int prologue_cost = 0, epilogue_cost = 0;
2956 enum tree_code code;
2957 optab optab;
2958 tree vectype;
2959 gimple stmt, orig_stmt;
2960 tree reduction_op;
2961 enum machine_mode mode;
2962 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2963 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2964 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2965
2966 /* Cost of reduction op inside loop. */
2967 unsigned inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
2968 stmt_info, 0, vect_body);
2969 stmt = STMT_VINFO_STMT (stmt_info);
2970
2971 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
2972 {
2973 case GIMPLE_SINGLE_RHS:
2974 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt)) == ternary_op);
2975 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
2976 break;
2977 case GIMPLE_UNARY_RHS:
2978 reduction_op = gimple_assign_rhs1 (stmt);
2979 break;
2980 case GIMPLE_BINARY_RHS:
2981 reduction_op = gimple_assign_rhs2 (stmt);
2982 break;
2983 case GIMPLE_TERNARY_RHS:
2984 reduction_op = gimple_assign_rhs3 (stmt);
2985 break;
2986 default:
2987 gcc_unreachable ();
2988 }
2989
2990 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
2991 if (!vectype)
2992 {
2993 if (dump_enabled_p ())
2994 {
2995 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2996 "unsupported data-type ");
2997 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
2998 TREE_TYPE (reduction_op));
2999 }
3000 return false;
3001 }
3002
3003 mode = TYPE_MODE (vectype);
3004 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3005
3006 if (!orig_stmt)
3007 orig_stmt = STMT_VINFO_STMT (stmt_info);
3008
3009 code = gimple_assign_rhs_code (orig_stmt);
3010
3011 /* Add in cost for initial definition. */
3012 prologue_cost += add_stmt_cost (target_cost_data, 1, scalar_to_vec,
3013 stmt_info, 0, vect_prologue);
3014
3015 /* Determine cost of epilogue code.
3016
3017 We have a reduction operator that will reduce the vector in one statement.
3018 Also requires scalar extract. */
3019
3020 if (!nested_in_vect_loop_p (loop, orig_stmt))
3021 {
3022 if (reduc_code != ERROR_MARK)
3023 {
3024 epilogue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
3025 stmt_info, 0, vect_epilogue);
3026 epilogue_cost += add_stmt_cost (target_cost_data, 1, vec_to_scalar,
3027 stmt_info, 0, vect_epilogue);
3028 }
3029 else
3030 {
3031 int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
3032 tree bitsize =
3033 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
3034 int element_bitsize = tree_low_cst (bitsize, 1);
3035 int nelements = vec_size_in_bits / element_bitsize;
3036
3037 optab = optab_for_tree_code (code, vectype, optab_default);
3038
3039 /* We have a whole vector shift available. */
3040 if (VECTOR_MODE_P (mode)
3041 && optab_handler (optab, mode) != CODE_FOR_nothing
3042 && optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3043 {
3044 /* Final reduction via vector shifts and the reduction operator.
3045 Also requires scalar extract. */
3046 epilogue_cost += add_stmt_cost (target_cost_data,
3047 exact_log2 (nelements) * 2,
3048 vector_stmt, stmt_info, 0,
3049 vect_epilogue);
3050 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3051 vec_to_scalar, stmt_info, 0,
3052 vect_epilogue);
3053 }
3054 else
3055 /* Use extracts and reduction op for final reduction. For N
3056 elements, we have N extracts and N-1 reduction ops. */
3057 epilogue_cost += add_stmt_cost (target_cost_data,
3058 nelements + nelements - 1,
3059 vector_stmt, stmt_info, 0,
3060 vect_epilogue);
3061 }
3062 }
3063
3064 if (dump_enabled_p ())
3065 dump_printf (MSG_NOTE,
3066 "vect_model_reduction_cost: inside_cost = %d, "
3067 "prologue_cost = %d, epilogue_cost = %d .", inside_cost,
3068 prologue_cost, epilogue_cost);
3069
3070 return true;
3071 }
3072
3073
3074 /* Function vect_model_induction_cost.
3075
3076 Models cost for induction operations. */
3077
3078 static void
3079 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
3080 {
3081 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3082 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3083 unsigned inside_cost, prologue_cost;
3084
3085 /* loop cost for vec_loop. */
3086 inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3087 stmt_info, 0, vect_body);
3088
3089 /* prologue cost for vec_init and vec_step. */
3090 prologue_cost = add_stmt_cost (target_cost_data, 2, scalar_to_vec,
3091 stmt_info, 0, vect_prologue);
3092
3093 if (dump_enabled_p ())
3094 dump_printf_loc (MSG_NOTE, vect_location,
3095 "vect_model_induction_cost: inside_cost = %d, "
3096 "prologue_cost = %d .", inside_cost, prologue_cost);
3097 }
3098
3099
3100 /* Function get_initial_def_for_induction
3101
3102 Input:
3103 STMT - a stmt that performs an induction operation in the loop.
3104 IV_PHI - the initial value of the induction variable
3105
3106 Output:
3107 Return a vector variable, initialized with the first VF values of
3108 the induction variable. E.g., for an iv with IV_PHI='X' and
3109 evolution S, for a vector of 4 units, we want to return:
3110 [X, X + S, X + 2*S, X + 3*S]. */
3111
3112 static tree
3113 get_initial_def_for_induction (gimple iv_phi)
3114 {
3115 stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
3116 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3117 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3118 tree scalar_type;
3119 tree vectype;
3120 int nunits;
3121 edge pe = loop_preheader_edge (loop);
3122 struct loop *iv_loop;
3123 basic_block new_bb;
3124 tree new_vec, vec_init, vec_step, t;
3125 tree access_fn;
3126 tree new_var;
3127 tree new_name;
3128 gimple init_stmt, induction_phi, new_stmt;
3129 tree induc_def, vec_def, vec_dest;
3130 tree init_expr, step_expr;
3131 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3132 int i;
3133 bool ok;
3134 int ncopies;
3135 tree expr;
3136 stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
3137 bool nested_in_vect_loop = false;
3138 gimple_seq stmts = NULL;
3139 imm_use_iterator imm_iter;
3140 use_operand_p use_p;
3141 gimple exit_phi;
3142 edge latch_e;
3143 tree loop_arg;
3144 gimple_stmt_iterator si;
3145 basic_block bb = gimple_bb (iv_phi);
3146 tree stepvectype;
3147 tree resvectype;
3148
3149 /* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
3150 if (nested_in_vect_loop_p (loop, iv_phi))
3151 {
3152 nested_in_vect_loop = true;
3153 iv_loop = loop->inner;
3154 }
3155 else
3156 iv_loop = loop;
3157 gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
3158
3159 latch_e = loop_latch_edge (iv_loop);
3160 loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
3161
3162 access_fn = analyze_scalar_evolution (iv_loop, PHI_RESULT (iv_phi));
3163 gcc_assert (access_fn);
3164 STRIP_NOPS (access_fn);
3165 ok = vect_is_simple_iv_evolution (iv_loop->num, access_fn,
3166 &init_expr, &step_expr);
3167 gcc_assert (ok);
3168 pe = loop_preheader_edge (iv_loop);
3169
3170 scalar_type = TREE_TYPE (init_expr);
3171 vectype = get_vectype_for_scalar_type (scalar_type);
3172 resvectype = get_vectype_for_scalar_type (TREE_TYPE (PHI_RESULT (iv_phi)));
3173 gcc_assert (vectype);
3174 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3175 ncopies = vf / nunits;
3176
3177 gcc_assert (phi_info);
3178 gcc_assert (ncopies >= 1);
3179
3180 /* Find the first insertion point in the BB. */
3181 si = gsi_after_labels (bb);
3182
3183 /* Create the vector that holds the initial_value of the induction. */
3184 if (nested_in_vect_loop)
3185 {
3186 /* iv_loop is nested in the loop to be vectorized. init_expr had already
3187 been created during vectorization of previous stmts. We obtain it
3188 from the STMT_VINFO_VEC_STMT of the defining stmt. */
3189 tree iv_def = PHI_ARG_DEF_FROM_EDGE (iv_phi,
3190 loop_preheader_edge (iv_loop));
3191 vec_init = vect_get_vec_def_for_operand (iv_def, iv_phi, NULL);
3192 /* If the initial value is not of proper type, convert it. */
3193 if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
3194 {
3195 new_stmt = gimple_build_assign_with_ops
3196 (VIEW_CONVERT_EXPR,
3197 vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_"),
3198 build1 (VIEW_CONVERT_EXPR, vectype, vec_init), NULL_TREE);
3199 vec_init = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
3200 gimple_assign_set_lhs (new_stmt, vec_init);
3201 new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
3202 new_stmt);
3203 gcc_assert (!new_bb);
3204 set_vinfo_for_stmt (new_stmt,
3205 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3206 }
3207 }
3208 else
3209 {
3210 vec<constructor_elt, va_gc> *v;
3211
3212 /* iv_loop is the loop to be vectorized. Create:
3213 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
3214 new_var = vect_get_new_vect_var (scalar_type, vect_scalar_var, "var_");
3215 new_name = force_gimple_operand (init_expr, &stmts, false, new_var);
3216 if (stmts)
3217 {
3218 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3219 gcc_assert (!new_bb);
3220 }
3221
3222 vec_alloc (v, nunits);
3223 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3224 for (i = 1; i < nunits; i++)
3225 {
3226 /* Create: new_name_i = new_name + step_expr */
3227 enum tree_code code = POINTER_TYPE_P (scalar_type)
3228 ? POINTER_PLUS_EXPR : PLUS_EXPR;
3229 init_stmt = gimple_build_assign_with_ops (code, new_var,
3230 new_name, step_expr);
3231 new_name = make_ssa_name (new_var, init_stmt);
3232 gimple_assign_set_lhs (init_stmt, new_name);
3233
3234 new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
3235 gcc_assert (!new_bb);
3236
3237 if (dump_enabled_p ())
3238 {
3239 dump_printf_loc (MSG_NOTE, vect_location,
3240 "created new init_stmt: ");
3241 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, init_stmt, 0);
3242 }
3243 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3244 }
3245 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
3246 new_vec = build_constructor (vectype, v);
3247 vec_init = vect_init_vector (iv_phi, new_vec, vectype, NULL);
3248 }
3249
3250
3251 /* Create the vector that holds the step of the induction. */
3252 if (nested_in_vect_loop)
3253 /* iv_loop is nested in the loop to be vectorized. Generate:
3254 vec_step = [S, S, S, S] */
3255 new_name = step_expr;
3256 else
3257 {
3258 /* iv_loop is the loop to be vectorized. Generate:
3259 vec_step = [VF*S, VF*S, VF*S, VF*S] */
3260 expr = build_int_cst (TREE_TYPE (step_expr), vf);
3261 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3262 expr, step_expr);
3263 }
3264
3265 t = unshare_expr (new_name);
3266 gcc_assert (CONSTANT_CLASS_P (new_name));
3267 stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
3268 gcc_assert (stepvectype);
3269 new_vec = build_vector_from_val (stepvectype, t);
3270 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3271
3272
3273 /* Create the following def-use cycle:
3274 loop prolog:
3275 vec_init = ...
3276 vec_step = ...
3277 loop:
3278 vec_iv = PHI <vec_init, vec_loop>
3279 ...
3280 STMT
3281 ...
3282 vec_loop = vec_iv + vec_step; */
3283
3284 /* Create the induction-phi that defines the induction-operand. */
3285 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
3286 induction_phi = create_phi_node (vec_dest, iv_loop->header);
3287 set_vinfo_for_stmt (induction_phi,
3288 new_stmt_vec_info (induction_phi, loop_vinfo, NULL));
3289 induc_def = PHI_RESULT (induction_phi);
3290
3291 /* Create the iv update inside the loop */
3292 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
3293 induc_def, vec_step);
3294 vec_def = make_ssa_name (vec_dest, new_stmt);
3295 gimple_assign_set_lhs (new_stmt, vec_def);
3296 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3297 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo,
3298 NULL));
3299
3300 /* Set the arguments of the phi node: */
3301 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
3302 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
3303 UNKNOWN_LOCATION);
3304
3305
3306 /* In case that vectorization factor (VF) is bigger than the number
3307 of elements that we can fit in a vectype (nunits), we have to generate
3308 more than one vector stmt - i.e - we need to "unroll" the
3309 vector stmt by a factor VF/nunits. For more details see documentation
3310 in vectorizable_operation. */
3311
3312 if (ncopies > 1)
3313 {
3314 stmt_vec_info prev_stmt_vinfo;
3315 /* FORNOW. This restriction should be relaxed. */
3316 gcc_assert (!nested_in_vect_loop);
3317
3318 /* Create the vector that holds the step of the induction. */
3319 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
3320 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3321 expr, step_expr);
3322 t = unshare_expr (new_name);
3323 gcc_assert (CONSTANT_CLASS_P (new_name));
3324 new_vec = build_vector_from_val (stepvectype, t);
3325 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3326
3327 vec_def = induc_def;
3328 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
3329 for (i = 1; i < ncopies; i++)
3330 {
3331 /* vec_i = vec_prev + vec_step */
3332 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
3333 vec_def, vec_step);
3334 vec_def = make_ssa_name (vec_dest, new_stmt);
3335 gimple_assign_set_lhs (new_stmt, vec_def);
3336
3337 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3338 if (!useless_type_conversion_p (resvectype, vectype))
3339 {
3340 new_stmt = gimple_build_assign_with_ops
3341 (VIEW_CONVERT_EXPR,
3342 vect_get_new_vect_var (resvectype, vect_simple_var,
3343 "vec_iv_"),
3344 build1 (VIEW_CONVERT_EXPR, resvectype,
3345 gimple_assign_lhs (new_stmt)), NULL_TREE);
3346 gimple_assign_set_lhs (new_stmt,
3347 make_ssa_name
3348 (gimple_assign_lhs (new_stmt), new_stmt));
3349 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3350 }
3351 set_vinfo_for_stmt (new_stmt,
3352 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3353 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
3354 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
3355 }
3356 }
3357
3358 if (nested_in_vect_loop)
3359 {
3360 /* Find the loop-closed exit-phi of the induction, and record
3361 the final vector of induction results: */
3362 exit_phi = NULL;
3363 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
3364 {
3365 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (USE_STMT (use_p))))
3366 {
3367 exit_phi = USE_STMT (use_p);
3368 break;
3369 }
3370 }
3371 if (exit_phi)
3372 {
3373 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
3374 /* FORNOW. Currently not supporting the case that an inner-loop induction
3375 is not used in the outer-loop (i.e. only outside the outer-loop). */
3376 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
3377 && !STMT_VINFO_LIVE_P (stmt_vinfo));
3378
3379 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
3380 if (dump_enabled_p ())
3381 {
3382 dump_printf_loc (MSG_NOTE, vect_location,
3383 "vector of inductions after inner-loop:");
3384 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
3385 }
3386 }
3387 }
3388
3389
3390 if (dump_enabled_p ())
3391 {
3392 dump_printf_loc (MSG_NOTE, vect_location,
3393 "transform induction: created def-use cycle: ");
3394 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
3395 dump_printf (MSG_NOTE, "\n");
3396 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
3397 SSA_NAME_DEF_STMT (vec_def), 0);
3398 }
3399
3400 STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
3401 if (!useless_type_conversion_p (resvectype, vectype))
3402 {
3403 new_stmt = gimple_build_assign_with_ops
3404 (VIEW_CONVERT_EXPR,
3405 vect_get_new_vect_var (resvectype, vect_simple_var, "vec_iv_"),
3406 build1 (VIEW_CONVERT_EXPR, resvectype, induc_def), NULL_TREE);
3407 induc_def = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
3408 gimple_assign_set_lhs (new_stmt, induc_def);
3409 si = gsi_after_labels (bb);
3410 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3411 set_vinfo_for_stmt (new_stmt,
3412 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3413 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_stmt))
3414 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (induction_phi));
3415 }
3416
3417 return induc_def;
3418 }
3419
3420
3421 /* Function get_initial_def_for_reduction
3422
3423 Input:
3424 STMT - a stmt that performs a reduction operation in the loop.
3425 INIT_VAL - the initial value of the reduction variable
3426
3427 Output:
3428 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
3429 of the reduction (used for adjusting the epilog - see below).
3430 Return a vector variable, initialized according to the operation that STMT
3431 performs. This vector will be used as the initial value of the
3432 vector of partial results.
3433
3434 Option1 (adjust in epilog): Initialize the vector as follows:
3435 add/bit or/xor: [0,0,...,0,0]
3436 mult/bit and: [1,1,...,1,1]
3437 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
3438 and when necessary (e.g. add/mult case) let the caller know
3439 that it needs to adjust the result by init_val.
3440
3441 Option2: Initialize the vector as follows:
3442 add/bit or/xor: [init_val,0,0,...,0]
3443 mult/bit and: [init_val,1,1,...,1]
3444 min/max/cond_expr: [init_val,init_val,...,init_val]
3445 and no adjustments are needed.
3446
3447 For example, for the following code:
3448
3449 s = init_val;
3450 for (i=0;i<n;i++)
3451 s = s + a[i];
3452
3453 STMT is 's = s + a[i]', and the reduction variable is 's'.
3454 For a vector of 4 units, we want to return either [0,0,0,init_val],
3455 or [0,0,0,0] and let the caller know that it needs to adjust
3456 the result at the end by 'init_val'.
3457
3458 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
3459 initialization vector is simpler (same element in all entries), if
3460 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
3461
3462 A cost model should help decide between these two schemes. */
3463
3464 tree
3465 get_initial_def_for_reduction (gimple stmt, tree init_val,
3466 tree *adjustment_def)
3467 {
3468 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
3469 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3470 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3471 tree scalar_type = TREE_TYPE (init_val);
3472 tree vectype = get_vectype_for_scalar_type (scalar_type);
3473 int nunits;
3474 enum tree_code code = gimple_assign_rhs_code (stmt);
3475 tree def_for_init;
3476 tree init_def;
3477 tree *elts;
3478 int i;
3479 bool nested_in_vect_loop = false;
3480 tree init_value;
3481 REAL_VALUE_TYPE real_init_val = dconst0;
3482 int int_init_val = 0;
3483 gimple def_stmt = NULL;
3484
3485 gcc_assert (vectype);
3486 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3487
3488 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
3489 || SCALAR_FLOAT_TYPE_P (scalar_type));
3490
3491 if (nested_in_vect_loop_p (loop, stmt))
3492 nested_in_vect_loop = true;
3493 else
3494 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
3495
3496 /* In case of double reduction we only create a vector variable to be put
3497 in the reduction phi node. The actual statement creation is done in
3498 vect_create_epilog_for_reduction. */
3499 if (adjustment_def && nested_in_vect_loop
3500 && TREE_CODE (init_val) == SSA_NAME
3501 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
3502 && gimple_code (def_stmt) == GIMPLE_PHI
3503 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
3504 && vinfo_for_stmt (def_stmt)
3505 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
3506 == vect_double_reduction_def)
3507 {
3508 *adjustment_def = NULL;
3509 return vect_create_destination_var (init_val, vectype);
3510 }
3511
3512 if (TREE_CONSTANT (init_val))
3513 {
3514 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3515 init_value = build_real (scalar_type, TREE_REAL_CST (init_val));
3516 else
3517 init_value = build_int_cst (scalar_type, TREE_INT_CST_LOW (init_val));
3518 }
3519 else
3520 init_value = init_val;
3521
3522 switch (code)
3523 {
3524 case WIDEN_SUM_EXPR:
3525 case DOT_PROD_EXPR:
3526 case PLUS_EXPR:
3527 case MINUS_EXPR:
3528 case BIT_IOR_EXPR:
3529 case BIT_XOR_EXPR:
3530 case MULT_EXPR:
3531 case BIT_AND_EXPR:
3532 /* ADJUSMENT_DEF is NULL when called from
3533 vect_create_epilog_for_reduction to vectorize double reduction. */
3534 if (adjustment_def)
3535 {
3536 if (nested_in_vect_loop)
3537 *adjustment_def = vect_get_vec_def_for_operand (init_val, stmt,
3538 NULL);
3539 else
3540 *adjustment_def = init_val;
3541 }
3542
3543 if (code == MULT_EXPR)
3544 {
3545 real_init_val = dconst1;
3546 int_init_val = 1;
3547 }
3548
3549 if (code == BIT_AND_EXPR)
3550 int_init_val = -1;
3551
3552 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3553 def_for_init = build_real (scalar_type, real_init_val);
3554 else
3555 def_for_init = build_int_cst (scalar_type, int_init_val);
3556
3557 /* Create a vector of '0' or '1' except the first element. */
3558 elts = XALLOCAVEC (tree, nunits);
3559 for (i = nunits - 2; i >= 0; --i)
3560 elts[i + 1] = def_for_init;
3561
3562 /* Option1: the first element is '0' or '1' as well. */
3563 if (adjustment_def)
3564 {
3565 elts[0] = def_for_init;
3566 init_def = build_vector (vectype, elts);
3567 break;
3568 }
3569
3570 /* Option2: the first element is INIT_VAL. */
3571 elts[0] = init_val;
3572 if (TREE_CONSTANT (init_val))
3573 init_def = build_vector (vectype, elts);
3574 else
3575 {
3576 vec<constructor_elt, va_gc> *v;
3577 vec_alloc (v, nunits);
3578 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init_val);
3579 for (i = 1; i < nunits; ++i)
3580 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
3581 init_def = build_constructor (vectype, v);
3582 }
3583
3584 break;
3585
3586 case MIN_EXPR:
3587 case MAX_EXPR:
3588 case COND_EXPR:
3589 if (adjustment_def)
3590 {
3591 *adjustment_def = NULL_TREE;
3592 init_def = vect_get_vec_def_for_operand (init_val, stmt, NULL);
3593 break;
3594 }
3595
3596 init_def = build_vector_from_val (vectype, init_value);
3597 break;
3598
3599 default:
3600 gcc_unreachable ();
3601 }
3602
3603 return init_def;
3604 }
3605
3606
3607 /* Function vect_create_epilog_for_reduction
3608
3609 Create code at the loop-epilog to finalize the result of a reduction
3610 computation.
3611
3612 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
3613 reduction statements.
3614 STMT is the scalar reduction stmt that is being vectorized.
3615 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
3616 number of elements that we can fit in a vectype (nunits). In this case
3617 we have to generate more than one vector stmt - i.e - we need to "unroll"
3618 the vector stmt by a factor VF/nunits. For more details see documentation
3619 in vectorizable_operation.
3620 REDUC_CODE is the tree-code for the epilog reduction.
3621 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
3622 computation.
3623 REDUC_INDEX is the index of the operand in the right hand side of the
3624 statement that is defined by REDUCTION_PHI.
3625 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
3626 SLP_NODE is an SLP node containing a group of reduction statements. The
3627 first one in this group is STMT.
3628
3629 This function:
3630 1. Creates the reduction def-use cycles: sets the arguments for
3631 REDUCTION_PHIS:
3632 The loop-entry argument is the vectorized initial-value of the reduction.
3633 The loop-latch argument is taken from VECT_DEFS - the vector of partial
3634 sums.
3635 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
3636 by applying the operation specified by REDUC_CODE if available, or by
3637 other means (whole-vector shifts or a scalar loop).
3638 The function also creates a new phi node at the loop exit to preserve
3639 loop-closed form, as illustrated below.
3640
3641 The flow at the entry to this function:
3642
3643 loop:
3644 vec_def = phi <null, null> # REDUCTION_PHI
3645 VECT_DEF = vector_stmt # vectorized form of STMT
3646 s_loop = scalar_stmt # (scalar) STMT
3647 loop_exit:
3648 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3649 use <s_out0>
3650 use <s_out0>
3651
3652 The above is transformed by this function into:
3653
3654 loop:
3655 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3656 VECT_DEF = vector_stmt # vectorized form of STMT
3657 s_loop = scalar_stmt # (scalar) STMT
3658 loop_exit:
3659 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3660 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3661 v_out2 = reduce <v_out1>
3662 s_out3 = extract_field <v_out2, 0>
3663 s_out4 = adjust_result <s_out3>
3664 use <s_out4>
3665 use <s_out4>
3666 */
3667
3668 static void
3669 vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple stmt,
3670 int ncopies, enum tree_code reduc_code,
3671 vec<gimple> reduction_phis,
3672 int reduc_index, bool double_reduc,
3673 slp_tree slp_node)
3674 {
3675 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3676 stmt_vec_info prev_phi_info;
3677 tree vectype;
3678 enum machine_mode mode;
3679 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3680 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
3681 basic_block exit_bb;
3682 tree scalar_dest;
3683 tree scalar_type;
3684 gimple new_phi = NULL, phi;
3685 gimple_stmt_iterator exit_gsi;
3686 tree vec_dest;
3687 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
3688 gimple epilog_stmt = NULL;
3689 enum tree_code code = gimple_assign_rhs_code (stmt);
3690 gimple exit_phi;
3691 tree bitsize, bitpos;
3692 tree adjustment_def = NULL;
3693 tree vec_initial_def = NULL;
3694 tree reduction_op, expr, def;
3695 tree orig_name, scalar_result;
3696 imm_use_iterator imm_iter, phi_imm_iter;
3697 use_operand_p use_p, phi_use_p;
3698 bool extract_scalar_result = false;
3699 gimple use_stmt, orig_stmt, reduction_phi = NULL;
3700 bool nested_in_vect_loop = false;
3701 vec<gimple> new_phis = vNULL;
3702 vec<gimple> inner_phis = vNULL;
3703 enum vect_def_type dt = vect_unknown_def_type;
3704 int j, i;
3705 vec<tree> scalar_results = vNULL;
3706 unsigned int group_size = 1, k, ratio;
3707 vec<tree> vec_initial_defs = vNULL;
3708 vec<gimple> phis;
3709 bool slp_reduc = false;
3710 tree new_phi_result;
3711 gimple inner_phi = NULL;
3712
3713 if (slp_node)
3714 group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
3715
3716 if (nested_in_vect_loop_p (loop, stmt))
3717 {
3718 outer_loop = loop;
3719 loop = loop->inner;
3720 nested_in_vect_loop = true;
3721 gcc_assert (!slp_node);
3722 }
3723
3724 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3725 {
3726 case GIMPLE_SINGLE_RHS:
3727 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
3728 == ternary_op);
3729 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
3730 break;
3731 case GIMPLE_UNARY_RHS:
3732 reduction_op = gimple_assign_rhs1 (stmt);
3733 break;
3734 case GIMPLE_BINARY_RHS:
3735 reduction_op = reduc_index ?
3736 gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt);
3737 break;
3738 case GIMPLE_TERNARY_RHS:
3739 reduction_op = gimple_op (stmt, reduc_index + 1);
3740 break;
3741 default:
3742 gcc_unreachable ();
3743 }
3744
3745 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3746 gcc_assert (vectype);
3747 mode = TYPE_MODE (vectype);
3748
3749 /* 1. Create the reduction def-use cycle:
3750 Set the arguments of REDUCTION_PHIS, i.e., transform
3751
3752 loop:
3753 vec_def = phi <null, null> # REDUCTION_PHI
3754 VECT_DEF = vector_stmt # vectorized form of STMT
3755 ...
3756
3757 into:
3758
3759 loop:
3760 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3761 VECT_DEF = vector_stmt # vectorized form of STMT
3762 ...
3763
3764 (in case of SLP, do it for all the phis). */
3765
3766 /* Get the loop-entry arguments. */
3767 if (slp_node)
3768 vect_get_vec_defs (reduction_op, NULL_TREE, stmt, &vec_initial_defs,
3769 NULL, slp_node, reduc_index);
3770 else
3771 {
3772 vec_initial_defs.create (1);
3773 /* For the case of reduction, vect_get_vec_def_for_operand returns
3774 the scalar def before the loop, that defines the initial value
3775 of the reduction variable. */
3776 vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
3777 &adjustment_def);
3778 vec_initial_defs.quick_push (vec_initial_def);
3779 }
3780
3781 /* Set phi nodes arguments. */
3782 FOR_EACH_VEC_ELT (reduction_phis, i, phi)
3783 {
3784 tree vec_init_def = vec_initial_defs[i];
3785 tree def = vect_defs[i];
3786 for (j = 0; j < ncopies; j++)
3787 {
3788 /* Set the loop-entry arg of the reduction-phi. */
3789 add_phi_arg (phi, vec_init_def, loop_preheader_edge (loop),
3790 UNKNOWN_LOCATION);
3791
3792 /* Set the loop-latch arg for the reduction-phi. */
3793 if (j > 0)
3794 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
3795
3796 add_phi_arg (phi, def, loop_latch_edge (loop), UNKNOWN_LOCATION);
3797
3798 if (dump_enabled_p ())
3799 {
3800 dump_printf_loc (MSG_NOTE, vect_location,
3801 "transform reduction: created def-use cycle: ");
3802 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
3803 dump_printf (MSG_NOTE, "\n");
3804 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
3805 }
3806
3807 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
3808 }
3809 }
3810
3811 vec_initial_defs.release ();
3812
3813 /* 2. Create epilog code.
3814 The reduction epilog code operates across the elements of the vector
3815 of partial results computed by the vectorized loop.
3816 The reduction epilog code consists of:
3817
3818 step 1: compute the scalar result in a vector (v_out2)
3819 step 2: extract the scalar result (s_out3) from the vector (v_out2)
3820 step 3: adjust the scalar result (s_out3) if needed.
3821
3822 Step 1 can be accomplished using one the following three schemes:
3823 (scheme 1) using reduc_code, if available.
3824 (scheme 2) using whole-vector shifts, if available.
3825 (scheme 3) using a scalar loop. In this case steps 1+2 above are
3826 combined.
3827
3828 The overall epilog code looks like this:
3829
3830 s_out0 = phi <s_loop> # original EXIT_PHI
3831 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3832 v_out2 = reduce <v_out1> # step 1
3833 s_out3 = extract_field <v_out2, 0> # step 2
3834 s_out4 = adjust_result <s_out3> # step 3
3835
3836 (step 3 is optional, and steps 1 and 2 may be combined).
3837 Lastly, the uses of s_out0 are replaced by s_out4. */
3838
3839
3840 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
3841 v_out1 = phi <VECT_DEF>
3842 Store them in NEW_PHIS. */
3843
3844 exit_bb = single_exit (loop)->dest;
3845 prev_phi_info = NULL;
3846 new_phis.create (vect_defs.length ());
3847 FOR_EACH_VEC_ELT (vect_defs, i, def)
3848 {
3849 for (j = 0; j < ncopies; j++)
3850 {
3851 tree new_def = copy_ssa_name (def, NULL);
3852 phi = create_phi_node (new_def, exit_bb);
3853 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo, NULL));
3854 if (j == 0)
3855 new_phis.quick_push (phi);
3856 else
3857 {
3858 def = vect_get_vec_def_for_stmt_copy (dt, def);
3859 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
3860 }
3861
3862 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
3863 prev_phi_info = vinfo_for_stmt (phi);
3864 }
3865 }
3866
3867 /* The epilogue is created for the outer-loop, i.e., for the loop being
3868 vectorized. Create exit phis for the outer loop. */
3869 if (double_reduc)
3870 {
3871 loop = outer_loop;
3872 exit_bb = single_exit (loop)->dest;
3873 inner_phis.create (vect_defs.length ());
3874 FOR_EACH_VEC_ELT (new_phis, i, phi)
3875 {
3876 tree new_result = copy_ssa_name (PHI_RESULT (phi), NULL);
3877 gimple outer_phi = create_phi_node (new_result, exit_bb);
3878 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
3879 PHI_RESULT (phi));
3880 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
3881 loop_vinfo, NULL));
3882 inner_phis.quick_push (phi);
3883 new_phis[i] = outer_phi;
3884 prev_phi_info = vinfo_for_stmt (outer_phi);
3885 while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
3886 {
3887 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
3888 new_result = copy_ssa_name (PHI_RESULT (phi), NULL);
3889 outer_phi = create_phi_node (new_result, exit_bb);
3890 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
3891 PHI_RESULT (phi));
3892 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
3893 loop_vinfo, NULL));
3894 STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
3895 prev_phi_info = vinfo_for_stmt (outer_phi);
3896 }
3897 }
3898 }
3899
3900 exit_gsi = gsi_after_labels (exit_bb);
3901
3902 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
3903 (i.e. when reduc_code is not available) and in the final adjustment
3904 code (if needed). Also get the original scalar reduction variable as
3905 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
3906 represents a reduction pattern), the tree-code and scalar-def are
3907 taken from the original stmt that the pattern-stmt (STMT) replaces.
3908 Otherwise (it is a regular reduction) - the tree-code and scalar-def
3909 are taken from STMT. */
3910
3911 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3912 if (!orig_stmt)
3913 {
3914 /* Regular reduction */
3915 orig_stmt = stmt;
3916 }
3917 else
3918 {
3919 /* Reduction pattern */
3920 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
3921 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
3922 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
3923 }
3924
3925 code = gimple_assign_rhs_code (orig_stmt);
3926 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
3927 partial results are added and not subtracted. */
3928 if (code == MINUS_EXPR)
3929 code = PLUS_EXPR;
3930
3931 scalar_dest = gimple_assign_lhs (orig_stmt);
3932 scalar_type = TREE_TYPE (scalar_dest);
3933 scalar_results.create (group_size);
3934 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
3935 bitsize = TYPE_SIZE (scalar_type);
3936
3937 /* In case this is a reduction in an inner-loop while vectorizing an outer
3938 loop - we don't need to extract a single scalar result at the end of the
3939 inner-loop (unless it is double reduction, i.e., the use of reduction is
3940 outside the outer-loop). The final vector of partial results will be used
3941 in the vectorized outer-loop, or reduced to a scalar result at the end of
3942 the outer-loop. */
3943 if (nested_in_vect_loop && !double_reduc)
3944 goto vect_finalize_reduction;
3945
3946 /* SLP reduction without reduction chain, e.g.,
3947 # a1 = phi <a2, a0>
3948 # b1 = phi <b2, b0>
3949 a2 = operation (a1)
3950 b2 = operation (b1) */
3951 slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
3952
3953 /* In case of reduction chain, e.g.,
3954 # a1 = phi <a3, a0>
3955 a2 = operation (a1)
3956 a3 = operation (a2),
3957
3958 we may end up with more than one vector result. Here we reduce them to
3959 one vector. */
3960 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
3961 {
3962 tree first_vect = PHI_RESULT (new_phis[0]);
3963 tree tmp;
3964 gimple new_vec_stmt = NULL;
3965
3966 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3967 for (k = 1; k < new_phis.length (); k++)
3968 {
3969 gimple next_phi = new_phis[k];
3970 tree second_vect = PHI_RESULT (next_phi);
3971
3972 tmp = build2 (code, vectype, first_vect, second_vect);
3973 new_vec_stmt = gimple_build_assign (vec_dest, tmp);
3974 first_vect = make_ssa_name (vec_dest, new_vec_stmt);
3975 gimple_assign_set_lhs (new_vec_stmt, first_vect);
3976 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
3977 }
3978
3979 new_phi_result = first_vect;
3980 if (new_vec_stmt)
3981 {
3982 new_phis.truncate (0);
3983 new_phis.safe_push (new_vec_stmt);
3984 }
3985 }
3986 else
3987 new_phi_result = PHI_RESULT (new_phis[0]);
3988
3989 /* 2.3 Create the reduction code, using one of the three schemes described
3990 above. In SLP we simply need to extract all the elements from the
3991 vector (without reducing them), so we use scalar shifts. */
3992 if (reduc_code != ERROR_MARK && !slp_reduc)
3993 {
3994 tree tmp;
3995
3996 /*** Case 1: Create:
3997 v_out2 = reduc_expr <v_out1> */
3998
3999 if (dump_enabled_p ())
4000 dump_printf_loc (MSG_NOTE, vect_location,
4001 "Reduce using direct vector reduction.");
4002
4003 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4004 tmp = build1 (reduc_code, vectype, new_phi_result);
4005 epilog_stmt = gimple_build_assign (vec_dest, tmp);
4006 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4007 gimple_assign_set_lhs (epilog_stmt, new_temp);
4008 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4009
4010 extract_scalar_result = true;
4011 }
4012 else
4013 {
4014 enum tree_code shift_code = ERROR_MARK;
4015 bool have_whole_vector_shift = true;
4016 int bit_offset;
4017 int element_bitsize = tree_low_cst (bitsize, 1);
4018 int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
4019 tree vec_temp;
4020
4021 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
4022 shift_code = VEC_RSHIFT_EXPR;
4023 else
4024 have_whole_vector_shift = false;
4025
4026 /* Regardless of whether we have a whole vector shift, if we're
4027 emulating the operation via tree-vect-generic, we don't want
4028 to use it. Only the first round of the reduction is likely
4029 to still be profitable via emulation. */
4030 /* ??? It might be better to emit a reduction tree code here, so that
4031 tree-vect-generic can expand the first round via bit tricks. */
4032 if (!VECTOR_MODE_P (mode))
4033 have_whole_vector_shift = false;
4034 else
4035 {
4036 optab optab = optab_for_tree_code (code, vectype, optab_default);
4037 if (optab_handler (optab, mode) == CODE_FOR_nothing)
4038 have_whole_vector_shift = false;
4039 }
4040
4041 if (have_whole_vector_shift && !slp_reduc)
4042 {
4043 /*** Case 2: Create:
4044 for (offset = VS/2; offset >= element_size; offset/=2)
4045 {
4046 Create: va' = vec_shift <va, offset>
4047 Create: va = vop <va, va'>
4048 } */
4049
4050 if (dump_enabled_p ())
4051 dump_printf_loc (MSG_NOTE, vect_location,
4052 "Reduce using vector shifts");
4053
4054 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4055 new_temp = new_phi_result;
4056 for (bit_offset = vec_size_in_bits/2;
4057 bit_offset >= element_bitsize;
4058 bit_offset /= 2)
4059 {
4060 tree bitpos = size_int (bit_offset);
4061
4062 epilog_stmt = gimple_build_assign_with_ops (shift_code,
4063 vec_dest, new_temp, bitpos);
4064 new_name = make_ssa_name (vec_dest, epilog_stmt);
4065 gimple_assign_set_lhs (epilog_stmt, new_name);
4066 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4067
4068 epilog_stmt = gimple_build_assign_with_ops (code, vec_dest,
4069 new_name, new_temp);
4070 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4071 gimple_assign_set_lhs (epilog_stmt, new_temp);
4072 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4073 }
4074
4075 extract_scalar_result = true;
4076 }
4077 else
4078 {
4079 tree rhs;
4080
4081 /*** Case 3: Create:
4082 s = extract_field <v_out2, 0>
4083 for (offset = element_size;
4084 offset < vector_size;
4085 offset += element_size;)
4086 {
4087 Create: s' = extract_field <v_out2, offset>
4088 Create: s = op <s, s'> // For non SLP cases
4089 } */
4090
4091 if (dump_enabled_p ())
4092 dump_printf_loc (MSG_NOTE, vect_location,
4093 "Reduce using scalar code. ");
4094
4095 vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
4096 FOR_EACH_VEC_ELT (new_phis, i, new_phi)
4097 {
4098 if (gimple_code (new_phi) == GIMPLE_PHI)
4099 vec_temp = PHI_RESULT (new_phi);
4100 else
4101 vec_temp = gimple_assign_lhs (new_phi);
4102 rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
4103 bitsize_zero_node);
4104 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4105 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4106 gimple_assign_set_lhs (epilog_stmt, new_temp);
4107 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4108
4109 /* In SLP we don't need to apply reduction operation, so we just
4110 collect s' values in SCALAR_RESULTS. */
4111 if (slp_reduc)
4112 scalar_results.safe_push (new_temp);
4113
4114 for (bit_offset = element_bitsize;
4115 bit_offset < vec_size_in_bits;
4116 bit_offset += element_bitsize)
4117 {
4118 tree bitpos = bitsize_int (bit_offset);
4119 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
4120 bitsize, bitpos);
4121
4122 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4123 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
4124 gimple_assign_set_lhs (epilog_stmt, new_name);
4125 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4126
4127 if (slp_reduc)
4128 {
4129 /* In SLP we don't need to apply reduction operation, so
4130 we just collect s' values in SCALAR_RESULTS. */
4131 new_temp = new_name;
4132 scalar_results.safe_push (new_name);
4133 }
4134 else
4135 {
4136 epilog_stmt = gimple_build_assign_with_ops (code,
4137 new_scalar_dest, new_name, new_temp);
4138 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4139 gimple_assign_set_lhs (epilog_stmt, new_temp);
4140 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4141 }
4142 }
4143 }
4144
4145 /* The only case where we need to reduce scalar results in SLP, is
4146 unrolling. If the size of SCALAR_RESULTS is greater than
4147 GROUP_SIZE, we reduce them combining elements modulo
4148 GROUP_SIZE. */
4149 if (slp_reduc)
4150 {
4151 tree res, first_res, new_res;
4152 gimple new_stmt;
4153
4154 /* Reduce multiple scalar results in case of SLP unrolling. */
4155 for (j = group_size; scalar_results.iterate (j, &res);
4156 j++)
4157 {
4158 first_res = scalar_results[j % group_size];
4159 new_stmt = gimple_build_assign_with_ops (code,
4160 new_scalar_dest, first_res, res);
4161 new_res = make_ssa_name (new_scalar_dest, new_stmt);
4162 gimple_assign_set_lhs (new_stmt, new_res);
4163 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
4164 scalar_results[j % group_size] = new_res;
4165 }
4166 }
4167 else
4168 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
4169 scalar_results.safe_push (new_temp);
4170
4171 extract_scalar_result = false;
4172 }
4173 }
4174
4175 /* 2.4 Extract the final scalar result. Create:
4176 s_out3 = extract_field <v_out2, bitpos> */
4177
4178 if (extract_scalar_result)
4179 {
4180 tree rhs;
4181
4182 if (dump_enabled_p ())
4183 dump_printf_loc (MSG_NOTE, vect_location,
4184 "extract scalar result");
4185
4186 if (BYTES_BIG_ENDIAN)
4187 bitpos = size_binop (MULT_EXPR,
4188 bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
4189 TYPE_SIZE (scalar_type));
4190 else
4191 bitpos = bitsize_zero_node;
4192
4193 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
4194 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4195 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4196 gimple_assign_set_lhs (epilog_stmt, new_temp);
4197 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4198 scalar_results.safe_push (new_temp);
4199 }
4200
4201 vect_finalize_reduction:
4202
4203 if (double_reduc)
4204 loop = loop->inner;
4205
4206 /* 2.5 Adjust the final result by the initial value of the reduction
4207 variable. (When such adjustment is not needed, then
4208 'adjustment_def' is zero). For example, if code is PLUS we create:
4209 new_temp = loop_exit_def + adjustment_def */
4210
4211 if (adjustment_def)
4212 {
4213 gcc_assert (!slp_reduc);
4214 if (nested_in_vect_loop)
4215 {
4216 new_phi = new_phis[0];
4217 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
4218 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
4219 new_dest = vect_create_destination_var (scalar_dest, vectype);
4220 }
4221 else
4222 {
4223 new_temp = scalar_results[0];
4224 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
4225 expr = build2 (code, scalar_type, new_temp, adjustment_def);
4226 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
4227 }
4228
4229 epilog_stmt = gimple_build_assign (new_dest, expr);
4230 new_temp = make_ssa_name (new_dest, epilog_stmt);
4231 gimple_assign_set_lhs (epilog_stmt, new_temp);
4232 SSA_NAME_DEF_STMT (new_temp) = epilog_stmt;
4233 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4234 if (nested_in_vect_loop)
4235 {
4236 set_vinfo_for_stmt (epilog_stmt,
4237 new_stmt_vec_info (epilog_stmt, loop_vinfo,
4238 NULL));
4239 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
4240 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
4241
4242 if (!double_reduc)
4243 scalar_results.quick_push (new_temp);
4244 else
4245 scalar_results[0] = new_temp;
4246 }
4247 else
4248 scalar_results[0] = new_temp;
4249
4250 new_phis[0] = epilog_stmt;
4251 }
4252
4253 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
4254 phis with new adjusted scalar results, i.e., replace use <s_out0>
4255 with use <s_out4>.
4256
4257 Transform:
4258 loop_exit:
4259 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4260 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4261 v_out2 = reduce <v_out1>
4262 s_out3 = extract_field <v_out2, 0>
4263 s_out4 = adjust_result <s_out3>
4264 use <s_out0>
4265 use <s_out0>
4266
4267 into:
4268
4269 loop_exit:
4270 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4271 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4272 v_out2 = reduce <v_out1>
4273 s_out3 = extract_field <v_out2, 0>
4274 s_out4 = adjust_result <s_out3>
4275 use <s_out4>
4276 use <s_out4> */
4277
4278
4279 /* In SLP reduction chain we reduce vector results into one vector if
4280 necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
4281 the last stmt in the reduction chain, since we are looking for the loop
4282 exit phi node. */
4283 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4284 {
4285 scalar_dest = gimple_assign_lhs (
4286 SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1]);
4287 group_size = 1;
4288 }
4289
4290 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
4291 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
4292 need to match SCALAR_RESULTS with corresponding statements. The first
4293 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
4294 the first vector stmt, etc.
4295 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
4296 if (group_size > new_phis.length ())
4297 {
4298 ratio = group_size / new_phis.length ();
4299 gcc_assert (!(group_size % new_phis.length ()));
4300 }
4301 else
4302 ratio = 1;
4303
4304 for (k = 0; k < group_size; k++)
4305 {
4306 if (k % ratio == 0)
4307 {
4308 epilog_stmt = new_phis[k / ratio];
4309 reduction_phi = reduction_phis[k / ratio];
4310 if (double_reduc)
4311 inner_phi = inner_phis[k / ratio];
4312 }
4313
4314 if (slp_reduc)
4315 {
4316 gimple current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
4317
4318 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
4319 /* SLP statements can't participate in patterns. */
4320 gcc_assert (!orig_stmt);
4321 scalar_dest = gimple_assign_lhs (current_stmt);
4322 }
4323
4324 phis.create (3);
4325 /* Find the loop-closed-use at the loop exit of the original scalar
4326 result. (The reduction result is expected to have two immediate uses -
4327 one at the latch block, and one at the loop exit). */
4328 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4329 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
4330 phis.safe_push (USE_STMT (use_p));
4331
4332 /* We expect to have found an exit_phi because of loop-closed-ssa
4333 form. */
4334 gcc_assert (!phis.is_empty ());
4335
4336 FOR_EACH_VEC_ELT (phis, i, exit_phi)
4337 {
4338 if (outer_loop)
4339 {
4340 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
4341 gimple vect_phi;
4342
4343 /* FORNOW. Currently not supporting the case that an inner-loop
4344 reduction is not used in the outer-loop (but only outside the
4345 outer-loop), unless it is double reduction. */
4346 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
4347 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
4348 || double_reduc);
4349
4350 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
4351 if (!double_reduc
4352 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
4353 != vect_double_reduction_def)
4354 continue;
4355
4356 /* Handle double reduction:
4357
4358 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
4359 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
4360 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
4361 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
4362
4363 At that point the regular reduction (stmt2 and stmt3) is
4364 already vectorized, as well as the exit phi node, stmt4.
4365 Here we vectorize the phi node of double reduction, stmt1, and
4366 update all relevant statements. */
4367
4368 /* Go through all the uses of s2 to find double reduction phi
4369 node, i.e., stmt1 above. */
4370 orig_name = PHI_RESULT (exit_phi);
4371 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4372 {
4373 stmt_vec_info use_stmt_vinfo;
4374 stmt_vec_info new_phi_vinfo;
4375 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
4376 basic_block bb = gimple_bb (use_stmt);
4377 gimple use;
4378
4379 /* Check that USE_STMT is really double reduction phi
4380 node. */
4381 if (gimple_code (use_stmt) != GIMPLE_PHI
4382 || gimple_phi_num_args (use_stmt) != 2
4383 || bb->loop_father != outer_loop)
4384 continue;
4385 use_stmt_vinfo = vinfo_for_stmt (use_stmt);
4386 if (!use_stmt_vinfo
4387 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
4388 != vect_double_reduction_def)
4389 continue;
4390
4391 /* Create vector phi node for double reduction:
4392 vs1 = phi <vs0, vs2>
4393 vs1 was created previously in this function by a call to
4394 vect_get_vec_def_for_operand and is stored in
4395 vec_initial_def;
4396 vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
4397 vs0 is created here. */
4398
4399 /* Create vector phi node. */
4400 vect_phi = create_phi_node (vec_initial_def, bb);
4401 new_phi_vinfo = new_stmt_vec_info (vect_phi,
4402 loop_vec_info_for_loop (outer_loop), NULL);
4403 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
4404
4405 /* Create vs0 - initial def of the double reduction phi. */
4406 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
4407 loop_preheader_edge (outer_loop));
4408 init_def = get_initial_def_for_reduction (stmt,
4409 preheader_arg, NULL);
4410 vect_phi_init = vect_init_vector (use_stmt, init_def,
4411 vectype, NULL);
4412
4413 /* Update phi node arguments with vs0 and vs2. */
4414 add_phi_arg (vect_phi, vect_phi_init,
4415 loop_preheader_edge (outer_loop),
4416 UNKNOWN_LOCATION);
4417 add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
4418 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
4419 if (dump_enabled_p ())
4420 {
4421 dump_printf_loc (MSG_NOTE, vect_location,
4422 "created double reduction phi node: ");
4423 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
4424 }
4425
4426 vect_phi_res = PHI_RESULT (vect_phi);
4427
4428 /* Replace the use, i.e., set the correct vs1 in the regular
4429 reduction phi node. FORNOW, NCOPIES is always 1, so the
4430 loop is redundant. */
4431 use = reduction_phi;
4432 for (j = 0; j < ncopies; j++)
4433 {
4434 edge pr_edge = loop_preheader_edge (loop);
4435 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
4436 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
4437 }
4438 }
4439 }
4440 }
4441
4442 phis.release ();
4443 if (nested_in_vect_loop)
4444 {
4445 if (double_reduc)
4446 loop = outer_loop;
4447 else
4448 continue;
4449 }
4450
4451 phis.create (3);
4452 /* Find the loop-closed-use at the loop exit of the original scalar
4453 result. (The reduction result is expected to have two immediate uses,
4454 one at the latch block, and one at the loop exit). For double
4455 reductions we are looking for exit phis of the outer loop. */
4456 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4457 {
4458 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
4459 phis.safe_push (USE_STMT (use_p));
4460 else
4461 {
4462 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
4463 {
4464 tree phi_res = PHI_RESULT (USE_STMT (use_p));
4465
4466 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
4467 {
4468 if (!flow_bb_inside_loop_p (loop,
4469 gimple_bb (USE_STMT (phi_use_p))))
4470 phis.safe_push (USE_STMT (phi_use_p));
4471 }
4472 }
4473 }
4474 }
4475
4476 FOR_EACH_VEC_ELT (phis, i, exit_phi)
4477 {
4478 /* Replace the uses: */
4479 orig_name = PHI_RESULT (exit_phi);
4480 scalar_result = scalar_results[k];
4481 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4482 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
4483 SET_USE (use_p, scalar_result);
4484 }
4485
4486 phis.release ();
4487 }
4488
4489 scalar_results.release ();
4490 inner_phis.release ();
4491 new_phis.release ();
4492 }
4493
4494
4495 /* Function vectorizable_reduction.
4496
4497 Check if STMT performs a reduction operation that can be vectorized.
4498 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4499 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
4500 Return FALSE if not a vectorizable STMT, TRUE otherwise.
4501
4502 This function also handles reduction idioms (patterns) that have been
4503 recognized in advance during vect_pattern_recog. In this case, STMT may be
4504 of this form:
4505 X = pattern_expr (arg0, arg1, ..., X)
4506 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
4507 sequence that had been detected and replaced by the pattern-stmt (STMT).
4508
4509 In some cases of reduction patterns, the type of the reduction variable X is
4510 different than the type of the other arguments of STMT.
4511 In such cases, the vectype that is used when transforming STMT into a vector
4512 stmt is different than the vectype that is used to determine the
4513 vectorization factor, because it consists of a different number of elements
4514 than the actual number of elements that are being operated upon in parallel.
4515
4516 For example, consider an accumulation of shorts into an int accumulator.
4517 On some targets it's possible to vectorize this pattern operating on 8
4518 shorts at a time (hence, the vectype for purposes of determining the
4519 vectorization factor should be V8HI); on the other hand, the vectype that
4520 is used to create the vector form is actually V4SI (the type of the result).
4521
4522 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
4523 indicates what is the actual level of parallelism (V8HI in the example), so
4524 that the right vectorization factor would be derived. This vectype
4525 corresponds to the type of arguments to the reduction stmt, and should *NOT*
4526 be used to create the vectorized stmt. The right vectype for the vectorized
4527 stmt is obtained from the type of the result X:
4528 get_vectype_for_scalar_type (TREE_TYPE (X))
4529
4530 This means that, contrary to "regular" reductions (or "regular" stmts in
4531 general), the following equation:
4532 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
4533 does *NOT* necessarily hold for reduction patterns. */
4534
4535 bool
4536 vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
4537 gimple *vec_stmt, slp_tree slp_node)
4538 {
4539 tree vec_dest;
4540 tree scalar_dest;
4541 tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
4542 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4543 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
4544 tree vectype_in = NULL_TREE;
4545 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4546 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4547 enum tree_code code, orig_code, epilog_reduc_code;
4548 enum machine_mode vec_mode;
4549 int op_type;
4550 optab optab, reduc_optab;
4551 tree new_temp = NULL_TREE;
4552 tree def;
4553 gimple def_stmt;
4554 enum vect_def_type dt;
4555 gimple new_phi = NULL;
4556 tree scalar_type;
4557 bool is_simple_use;
4558 gimple orig_stmt;
4559 stmt_vec_info orig_stmt_info;
4560 tree expr = NULL_TREE;
4561 int i;
4562 int ncopies;
4563 int epilog_copies;
4564 stmt_vec_info prev_stmt_info, prev_phi_info;
4565 bool single_defuse_cycle = false;
4566 tree reduc_def = NULL_TREE;
4567 gimple new_stmt = NULL;
4568 int j;
4569 tree ops[3];
4570 bool nested_cycle = false, found_nested_cycle_def = false;
4571 gimple reduc_def_stmt = NULL;
4572 /* The default is that the reduction variable is the last in statement. */
4573 int reduc_index = 2;
4574 bool double_reduc = false, dummy;
4575 basic_block def_bb;
4576 struct loop * def_stmt_loop, *outer_loop = NULL;
4577 tree def_arg;
4578 gimple def_arg_stmt;
4579 vec<tree> vec_oprnds0 = vNULL;
4580 vec<tree> vec_oprnds1 = vNULL;
4581 vec<tree> vect_defs = vNULL;
4582 vec<gimple> phis = vNULL;
4583 int vec_num;
4584 tree def0, def1, tem, op0, op1 = NULL_TREE;
4585
4586 /* In case of reduction chain we switch to the first stmt in the chain, but
4587 we don't update STMT_INFO, since only the last stmt is marked as reduction
4588 and has reduction properties. */
4589 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4590 stmt = GROUP_FIRST_ELEMENT (stmt_info);
4591
4592 if (nested_in_vect_loop_p (loop, stmt))
4593 {
4594 outer_loop = loop;
4595 loop = loop->inner;
4596 nested_cycle = true;
4597 }
4598
4599 /* 1. Is vectorizable reduction? */
4600 /* Not supportable if the reduction variable is used in the loop, unless
4601 it's a reduction chain. */
4602 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
4603 && !GROUP_FIRST_ELEMENT (stmt_info))
4604 return false;
4605
4606 /* Reductions that are not used even in an enclosing outer-loop,
4607 are expected to be "live" (used out of the loop). */
4608 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
4609 && !STMT_VINFO_LIVE_P (stmt_info))
4610 return false;
4611
4612 /* Make sure it was already recognized as a reduction computation. */
4613 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
4614 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
4615 return false;
4616
4617 /* 2. Has this been recognized as a reduction pattern?
4618
4619 Check if STMT represents a pattern that has been recognized
4620 in earlier analysis stages. For stmts that represent a pattern,
4621 the STMT_VINFO_RELATED_STMT field records the last stmt in
4622 the original sequence that constitutes the pattern. */
4623
4624 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4625 if (orig_stmt)
4626 {
4627 orig_stmt_info = vinfo_for_stmt (orig_stmt);
4628 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
4629 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
4630 }
4631
4632 /* 3. Check the operands of the operation. The first operands are defined
4633 inside the loop body. The last operand is the reduction variable,
4634 which is defined by the loop-header-phi. */
4635
4636 gcc_assert (is_gimple_assign (stmt));
4637
4638 /* Flatten RHS. */
4639 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
4640 {
4641 case GIMPLE_SINGLE_RHS:
4642 op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
4643 if (op_type == ternary_op)
4644 {
4645 tree rhs = gimple_assign_rhs1 (stmt);
4646 ops[0] = TREE_OPERAND (rhs, 0);
4647 ops[1] = TREE_OPERAND (rhs, 1);
4648 ops[2] = TREE_OPERAND (rhs, 2);
4649 code = TREE_CODE (rhs);
4650 }
4651 else
4652 return false;
4653 break;
4654
4655 case GIMPLE_BINARY_RHS:
4656 code = gimple_assign_rhs_code (stmt);
4657 op_type = TREE_CODE_LENGTH (code);
4658 gcc_assert (op_type == binary_op);
4659 ops[0] = gimple_assign_rhs1 (stmt);
4660 ops[1] = gimple_assign_rhs2 (stmt);
4661 break;
4662
4663 case GIMPLE_TERNARY_RHS:
4664 code = gimple_assign_rhs_code (stmt);
4665 op_type = TREE_CODE_LENGTH (code);
4666 gcc_assert (op_type == ternary_op);
4667 ops[0] = gimple_assign_rhs1 (stmt);
4668 ops[1] = gimple_assign_rhs2 (stmt);
4669 ops[2] = gimple_assign_rhs3 (stmt);
4670 break;
4671
4672 case GIMPLE_UNARY_RHS:
4673 return false;
4674
4675 default:
4676 gcc_unreachable ();
4677 }
4678
4679 if (code == COND_EXPR && slp_node)
4680 return false;
4681
4682 scalar_dest = gimple_assign_lhs (stmt);
4683 scalar_type = TREE_TYPE (scalar_dest);
4684 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
4685 && !SCALAR_FLOAT_TYPE_P (scalar_type))
4686 return false;
4687
4688 /* Do not try to vectorize bit-precision reductions. */
4689 if ((TYPE_PRECISION (scalar_type)
4690 != GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
4691 return false;
4692
4693 /* All uses but the last are expected to be defined in the loop.
4694 The last use is the reduction variable. In case of nested cycle this
4695 assumption is not true: we use reduc_index to record the index of the
4696 reduction variable. */
4697 for (i = 0; i < op_type - 1; i++)
4698 {
4699 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
4700 if (i == 0 && code == COND_EXPR)
4701 continue;
4702
4703 is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
4704 &def_stmt, &def, &dt, &tem);
4705 if (!vectype_in)
4706 vectype_in = tem;
4707 gcc_assert (is_simple_use);
4708
4709 if (dt != vect_internal_def
4710 && dt != vect_external_def
4711 && dt != vect_constant_def
4712 && dt != vect_induction_def
4713 && !(dt == vect_nested_cycle && nested_cycle))
4714 return false;
4715
4716 if (dt == vect_nested_cycle)
4717 {
4718 found_nested_cycle_def = true;
4719 reduc_def_stmt = def_stmt;
4720 reduc_index = i;
4721 }
4722 }
4723
4724 is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
4725 &def_stmt, &def, &dt, &tem);
4726 if (!vectype_in)
4727 vectype_in = tem;
4728 gcc_assert (is_simple_use);
4729 if (!(dt == vect_reduction_def
4730 || dt == vect_nested_cycle
4731 || ((dt == vect_internal_def || dt == vect_external_def
4732 || dt == vect_constant_def || dt == vect_induction_def)
4733 && nested_cycle && found_nested_cycle_def)))
4734 {
4735 /* For pattern recognized stmts, orig_stmt might be a reduction,
4736 but some helper statements for the pattern might not, or
4737 might be COND_EXPRs with reduction uses in the condition. */
4738 gcc_assert (orig_stmt);
4739 return false;
4740 }
4741 if (!found_nested_cycle_def)
4742 reduc_def_stmt = def_stmt;
4743
4744 gcc_assert (gimple_code (reduc_def_stmt) == GIMPLE_PHI);
4745 if (orig_stmt)
4746 gcc_assert (orig_stmt == vect_is_simple_reduction (loop_vinfo,
4747 reduc_def_stmt,
4748 !nested_cycle,
4749 &dummy));
4750 else
4751 {
4752 gimple tmp = vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
4753 !nested_cycle, &dummy);
4754 /* We changed STMT to be the first stmt in reduction chain, hence we
4755 check that in this case the first element in the chain is STMT. */
4756 gcc_assert (stmt == tmp
4757 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
4758 }
4759
4760 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
4761 return false;
4762
4763 if (slp_node || PURE_SLP_STMT (stmt_info))
4764 ncopies = 1;
4765 else
4766 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4767 / TYPE_VECTOR_SUBPARTS (vectype_in));
4768
4769 gcc_assert (ncopies >= 1);
4770
4771 vec_mode = TYPE_MODE (vectype_in);
4772
4773 if (code == COND_EXPR)
4774 {
4775 if (!vectorizable_condition (stmt, gsi, NULL, ops[reduc_index], 0, NULL))
4776 {
4777 if (dump_enabled_p ())
4778 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4779 "unsupported condition in reduction");
4780
4781 return false;
4782 }
4783 }
4784 else
4785 {
4786 /* 4. Supportable by target? */
4787
4788 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
4789 || code == LROTATE_EXPR || code == RROTATE_EXPR)
4790 {
4791 /* Shifts and rotates are only supported by vectorizable_shifts,
4792 not vectorizable_reduction. */
4793 if (dump_enabled_p ())
4794 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4795 "unsupported shift or rotation.");
4796 return false;
4797 }
4798
4799 /* 4.1. check support for the operation in the loop */
4800 optab = optab_for_tree_code (code, vectype_in, optab_default);
4801 if (!optab)
4802 {
4803 if (dump_enabled_p ())
4804 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4805 "no optab.");
4806
4807 return false;
4808 }
4809
4810 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
4811 {
4812 if (dump_enabled_p ())
4813 dump_printf (MSG_NOTE, "op not supported by target.");
4814
4815 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
4816 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4817 < vect_min_worthwhile_factor (code))
4818 return false;
4819
4820 if (dump_enabled_p ())
4821 dump_printf (MSG_NOTE, "proceeding using word mode.");
4822 }
4823
4824 /* Worthwhile without SIMD support? */
4825 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
4826 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4827 < vect_min_worthwhile_factor (code))
4828 {
4829 if (dump_enabled_p ())
4830 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4831 "not worthwhile without SIMD support.");
4832
4833 return false;
4834 }
4835 }
4836
4837 /* 4.2. Check support for the epilog operation.
4838
4839 If STMT represents a reduction pattern, then the type of the
4840 reduction variable may be different than the type of the rest
4841 of the arguments. For example, consider the case of accumulation
4842 of shorts into an int accumulator; The original code:
4843 S1: int_a = (int) short_a;
4844 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
4845
4846 was replaced with:
4847 STMT: int_acc = widen_sum <short_a, int_acc>
4848
4849 This means that:
4850 1. The tree-code that is used to create the vector operation in the
4851 epilog code (that reduces the partial results) is not the
4852 tree-code of STMT, but is rather the tree-code of the original
4853 stmt from the pattern that STMT is replacing. I.e, in the example
4854 above we want to use 'widen_sum' in the loop, but 'plus' in the
4855 epilog.
4856 2. The type (mode) we use to check available target support
4857 for the vector operation to be created in the *epilog*, is
4858 determined by the type of the reduction variable (in the example
4859 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
4860 However the type (mode) we use to check available target support
4861 for the vector operation to be created *inside the loop*, is
4862 determined by the type of the other arguments to STMT (in the
4863 example we'd check this: optab_handler (widen_sum_optab,
4864 vect_short_mode)).
4865
4866 This is contrary to "regular" reductions, in which the types of all
4867 the arguments are the same as the type of the reduction variable.
4868 For "regular" reductions we can therefore use the same vector type
4869 (and also the same tree-code) when generating the epilog code and
4870 when generating the code inside the loop. */
4871
4872 if (orig_stmt)
4873 {
4874 /* This is a reduction pattern: get the vectype from the type of the
4875 reduction variable, and get the tree-code from orig_stmt. */
4876 orig_code = gimple_assign_rhs_code (orig_stmt);
4877 gcc_assert (vectype_out);
4878 vec_mode = TYPE_MODE (vectype_out);
4879 }
4880 else
4881 {
4882 /* Regular reduction: use the same vectype and tree-code as used for
4883 the vector code inside the loop can be used for the epilog code. */
4884 orig_code = code;
4885 }
4886
4887 if (nested_cycle)
4888 {
4889 def_bb = gimple_bb (reduc_def_stmt);
4890 def_stmt_loop = def_bb->loop_father;
4891 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
4892 loop_preheader_edge (def_stmt_loop));
4893 if (TREE_CODE (def_arg) == SSA_NAME
4894 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
4895 && gimple_code (def_arg_stmt) == GIMPLE_PHI
4896 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
4897 && vinfo_for_stmt (def_arg_stmt)
4898 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
4899 == vect_double_reduction_def)
4900 double_reduc = true;
4901 }
4902
4903 epilog_reduc_code = ERROR_MARK;
4904 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
4905 {
4906 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
4907 optab_default);
4908 if (!reduc_optab)
4909 {
4910 if (dump_enabled_p ())
4911 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4912 "no optab for reduction.");
4913
4914 epilog_reduc_code = ERROR_MARK;
4915 }
4916
4917 if (reduc_optab
4918 && optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
4919 {
4920 if (dump_enabled_p ())
4921 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4922 "reduc op not supported by target.");
4923
4924 epilog_reduc_code = ERROR_MARK;
4925 }
4926 }
4927 else
4928 {
4929 if (!nested_cycle || double_reduc)
4930 {
4931 if (dump_enabled_p ())
4932 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4933 "no reduc code for scalar code.");
4934
4935 return false;
4936 }
4937 }
4938
4939 if (double_reduc && ncopies > 1)
4940 {
4941 if (dump_enabled_p ())
4942 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4943 "multiple types in double reduction");
4944
4945 return false;
4946 }
4947
4948 /* In case of widenning multiplication by a constant, we update the type
4949 of the constant to be the type of the other operand. We check that the
4950 constant fits the type in the pattern recognition pass. */
4951 if (code == DOT_PROD_EXPR
4952 && !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
4953 {
4954 if (TREE_CODE (ops[0]) == INTEGER_CST)
4955 ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
4956 else if (TREE_CODE (ops[1]) == INTEGER_CST)
4957 ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
4958 else
4959 {
4960 if (dump_enabled_p ())
4961 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4962 "invalid types in dot-prod");
4963
4964 return false;
4965 }
4966 }
4967
4968 if (!vec_stmt) /* transformation not required. */
4969 {
4970 if (!vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies))
4971 return false;
4972 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
4973 return true;
4974 }
4975
4976 /** Transform. **/
4977
4978 if (dump_enabled_p ())
4979 dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.");
4980
4981 /* FORNOW: Multiple types are not supported for condition. */
4982 if (code == COND_EXPR)
4983 gcc_assert (ncopies == 1);
4984
4985 /* Create the destination vector */
4986 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
4987
4988 /* In case the vectorization factor (VF) is bigger than the number
4989 of elements that we can fit in a vectype (nunits), we have to generate
4990 more than one vector stmt - i.e - we need to "unroll" the
4991 vector stmt by a factor VF/nunits. For more details see documentation
4992 in vectorizable_operation. */
4993
4994 /* If the reduction is used in an outer loop we need to generate
4995 VF intermediate results, like so (e.g. for ncopies=2):
4996 r0 = phi (init, r0)
4997 r1 = phi (init, r1)
4998 r0 = x0 + r0;
4999 r1 = x1 + r1;
5000 (i.e. we generate VF results in 2 registers).
5001 In this case we have a separate def-use cycle for each copy, and therefore
5002 for each copy we get the vector def for the reduction variable from the
5003 respective phi node created for this copy.
5004
5005 Otherwise (the reduction is unused in the loop nest), we can combine
5006 together intermediate results, like so (e.g. for ncopies=2):
5007 r = phi (init, r)
5008 r = x0 + r;
5009 r = x1 + r;
5010 (i.e. we generate VF/2 results in a single register).
5011 In this case for each copy we get the vector def for the reduction variable
5012 from the vectorized reduction operation generated in the previous iteration.
5013 */
5014
5015 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
5016 {
5017 single_defuse_cycle = true;
5018 epilog_copies = 1;
5019 }
5020 else
5021 epilog_copies = ncopies;
5022
5023 prev_stmt_info = NULL;
5024 prev_phi_info = NULL;
5025 if (slp_node)
5026 {
5027 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
5028 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype_out)
5029 == TYPE_VECTOR_SUBPARTS (vectype_in));
5030 }
5031 else
5032 {
5033 vec_num = 1;
5034 vec_oprnds0.create (1);
5035 if (op_type == ternary_op)
5036 vec_oprnds1.create (1);
5037 }
5038
5039 phis.create (vec_num);
5040 vect_defs.create (vec_num);
5041 if (!slp_node)
5042 vect_defs.quick_push (NULL_TREE);
5043
5044 for (j = 0; j < ncopies; j++)
5045 {
5046 if (j == 0 || !single_defuse_cycle)
5047 {
5048 for (i = 0; i < vec_num; i++)
5049 {
5050 /* Create the reduction-phi that defines the reduction
5051 operand. */
5052 new_phi = create_phi_node (vec_dest, loop->header);
5053 set_vinfo_for_stmt (new_phi,
5054 new_stmt_vec_info (new_phi, loop_vinfo,
5055 NULL));
5056 if (j == 0 || slp_node)
5057 phis.quick_push (new_phi);
5058 }
5059 }
5060
5061 if (code == COND_EXPR)
5062 {
5063 gcc_assert (!slp_node);
5064 vectorizable_condition (stmt, gsi, vec_stmt,
5065 PHI_RESULT (phis[0]),
5066 reduc_index, NULL);
5067 /* Multiple types are not supported for condition. */
5068 break;
5069 }
5070
5071 /* Handle uses. */
5072 if (j == 0)
5073 {
5074 op0 = ops[!reduc_index];
5075 if (op_type == ternary_op)
5076 {
5077 if (reduc_index == 0)
5078 op1 = ops[2];
5079 else
5080 op1 = ops[1];
5081 }
5082
5083 if (slp_node)
5084 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
5085 slp_node, -1);
5086 else
5087 {
5088 loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
5089 stmt, NULL);
5090 vec_oprnds0.quick_push (loop_vec_def0);
5091 if (op_type == ternary_op)
5092 {
5093 loop_vec_def1 = vect_get_vec_def_for_operand (op1, stmt,
5094 NULL);
5095 vec_oprnds1.quick_push (loop_vec_def1);
5096 }
5097 }
5098 }
5099 else
5100 {
5101 if (!slp_node)
5102 {
5103 enum vect_def_type dt;
5104 gimple dummy_stmt;
5105 tree dummy;
5106
5107 vect_is_simple_use (ops[!reduc_index], stmt, loop_vinfo, NULL,
5108 &dummy_stmt, &dummy, &dt);
5109 loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt,
5110 loop_vec_def0);
5111 vec_oprnds0[0] = loop_vec_def0;
5112 if (op_type == ternary_op)
5113 {
5114 vect_is_simple_use (op1, stmt, loop_vinfo, NULL, &dummy_stmt,
5115 &dummy, &dt);
5116 loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
5117 loop_vec_def1);
5118 vec_oprnds1[0] = loop_vec_def1;
5119 }
5120 }
5121
5122 if (single_defuse_cycle)
5123 reduc_def = gimple_assign_lhs (new_stmt);
5124
5125 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
5126 }
5127
5128 FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
5129 {
5130 if (slp_node)
5131 reduc_def = PHI_RESULT (phis[i]);
5132 else
5133 {
5134 if (!single_defuse_cycle || j == 0)
5135 reduc_def = PHI_RESULT (new_phi);
5136 }
5137
5138 def1 = ((op_type == ternary_op)
5139 ? vec_oprnds1[i] : NULL);
5140 if (op_type == binary_op)
5141 {
5142 if (reduc_index == 0)
5143 expr = build2 (code, vectype_out, reduc_def, def0);
5144 else
5145 expr = build2 (code, vectype_out, def0, reduc_def);
5146 }
5147 else
5148 {
5149 if (reduc_index == 0)
5150 expr = build3 (code, vectype_out, reduc_def, def0, def1);
5151 else
5152 {
5153 if (reduc_index == 1)
5154 expr = build3 (code, vectype_out, def0, reduc_def, def1);
5155 else
5156 expr = build3 (code, vectype_out, def0, def1, reduc_def);
5157 }
5158 }
5159
5160 new_stmt = gimple_build_assign (vec_dest, expr);
5161 new_temp = make_ssa_name (vec_dest, new_stmt);
5162 gimple_assign_set_lhs (new_stmt, new_temp);
5163 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5164
5165 if (slp_node)
5166 {
5167 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
5168 vect_defs.quick_push (new_temp);
5169 }
5170 else
5171 vect_defs[0] = new_temp;
5172 }
5173
5174 if (slp_node)
5175 continue;
5176
5177 if (j == 0)
5178 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5179 else
5180 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5181
5182 prev_stmt_info = vinfo_for_stmt (new_stmt);
5183 prev_phi_info = vinfo_for_stmt (new_phi);
5184 }
5185
5186 /* Finalize the reduction-phi (set its arguments) and create the
5187 epilog reduction code. */
5188 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
5189 {
5190 new_temp = gimple_assign_lhs (*vec_stmt);
5191 vect_defs[0] = new_temp;
5192 }
5193
5194 vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
5195 epilog_reduc_code, phis, reduc_index,
5196 double_reduc, slp_node);
5197
5198 phis.release ();
5199 vect_defs.release ();
5200 vec_oprnds0.release ();
5201 vec_oprnds1.release ();
5202
5203 return true;
5204 }
5205
5206 /* Function vect_min_worthwhile_factor.
5207
5208 For a loop where we could vectorize the operation indicated by CODE,
5209 return the minimum vectorization factor that makes it worthwhile
5210 to use generic vectors. */
5211 int
5212 vect_min_worthwhile_factor (enum tree_code code)
5213 {
5214 switch (code)
5215 {
5216 case PLUS_EXPR:
5217 case MINUS_EXPR:
5218 case NEGATE_EXPR:
5219 return 4;
5220
5221 case BIT_AND_EXPR:
5222 case BIT_IOR_EXPR:
5223 case BIT_XOR_EXPR:
5224 case BIT_NOT_EXPR:
5225 return 2;
5226
5227 default:
5228 return INT_MAX;
5229 }
5230 }
5231
5232
5233 /* Function vectorizable_induction
5234
5235 Check if PHI performs an induction computation that can be vectorized.
5236 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
5237 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
5238 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
5239
5240 bool
5241 vectorizable_induction (gimple phi, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
5242 gimple *vec_stmt)
5243 {
5244 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
5245 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5246 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5247 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5248 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
5249 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
5250 tree vec_def;
5251
5252 gcc_assert (ncopies >= 1);
5253 /* FORNOW. These restrictions should be relaxed. */
5254 if (nested_in_vect_loop_p (loop, phi))
5255 {
5256 imm_use_iterator imm_iter;
5257 use_operand_p use_p;
5258 gimple exit_phi;
5259 edge latch_e;
5260 tree loop_arg;
5261
5262 if (ncopies > 1)
5263 {
5264 if (dump_enabled_p ())
5265 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5266 "multiple types in nested loop.");
5267 return false;
5268 }
5269
5270 exit_phi = NULL;
5271 latch_e = loop_latch_edge (loop->inner);
5272 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
5273 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
5274 {
5275 if (!flow_bb_inside_loop_p (loop->inner,
5276 gimple_bb (USE_STMT (use_p))))
5277 {
5278 exit_phi = USE_STMT (use_p);
5279 break;
5280 }
5281 }
5282 if (exit_phi)
5283 {
5284 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
5285 if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
5286 && !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
5287 {
5288 if (dump_enabled_p ())
5289 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5290 "inner-loop induction only used outside "
5291 "of the outer vectorized loop.");
5292 return false;
5293 }
5294 }
5295 }
5296
5297 if (!STMT_VINFO_RELEVANT_P (stmt_info))
5298 return false;
5299
5300 /* FORNOW: SLP not supported. */
5301 if (STMT_SLP_TYPE (stmt_info))
5302 return false;
5303
5304 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
5305
5306 if (gimple_code (phi) != GIMPLE_PHI)
5307 return false;
5308
5309 if (!vec_stmt) /* transformation not required. */
5310 {
5311 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
5312 if (dump_enabled_p ())
5313 dump_printf_loc (MSG_NOTE, vect_location,
5314 "=== vectorizable_induction ===");
5315 vect_model_induction_cost (stmt_info, ncopies);
5316 return true;
5317 }
5318
5319 /** Transform. **/
5320
5321 if (dump_enabled_p ())
5322 dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.");
5323
5324 vec_def = get_initial_def_for_induction (phi);
5325 *vec_stmt = SSA_NAME_DEF_STMT (vec_def);
5326 return true;
5327 }
5328
5329 /* Function vectorizable_live_operation.
5330
5331 STMT computes a value that is used outside the loop. Check if
5332 it can be supported. */
5333
5334 bool
5335 vectorizable_live_operation (gimple stmt,
5336 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
5337 gimple *vec_stmt ATTRIBUTE_UNUSED)
5338 {
5339 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5340 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5341 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5342 int i;
5343 int op_type;
5344 tree op;
5345 tree def;
5346 gimple def_stmt;
5347 enum vect_def_type dt;
5348 enum tree_code code;
5349 enum gimple_rhs_class rhs_class;
5350
5351 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
5352
5353 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
5354 return false;
5355
5356 if (!is_gimple_assign (stmt))
5357 return false;
5358
5359 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
5360 return false;
5361
5362 /* FORNOW. CHECKME. */
5363 if (nested_in_vect_loop_p (loop, stmt))
5364 return false;
5365
5366 code = gimple_assign_rhs_code (stmt);
5367 op_type = TREE_CODE_LENGTH (code);
5368 rhs_class = get_gimple_rhs_class (code);
5369 gcc_assert (rhs_class != GIMPLE_UNARY_RHS || op_type == unary_op);
5370 gcc_assert (rhs_class != GIMPLE_BINARY_RHS || op_type == binary_op);
5371
5372 /* FORNOW: support only if all uses are invariant. This means
5373 that the scalar operations can remain in place, unvectorized.
5374 The original last scalar value that they compute will be used. */
5375
5376 for (i = 0; i < op_type; i++)
5377 {
5378 if (rhs_class == GIMPLE_SINGLE_RHS)
5379 op = TREE_OPERAND (gimple_op (stmt, 1), i);
5380 else
5381 op = gimple_op (stmt, i + 1);
5382 if (op
5383 && !vect_is_simple_use (op, stmt, loop_vinfo, NULL, &def_stmt, &def,
5384 &dt))
5385 {
5386 if (dump_enabled_p ())
5387 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5388 "use not simple.");
5389 return false;
5390 }
5391
5392 if (dt != vect_external_def && dt != vect_constant_def)
5393 return false;
5394 }
5395
5396 /* No transformation is required for the cases we currently support. */
5397 return true;
5398 }
5399
5400 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
5401
5402 static void
5403 vect_loop_kill_debug_uses (struct loop *loop, gimple stmt)
5404 {
5405 ssa_op_iter op_iter;
5406 imm_use_iterator imm_iter;
5407 def_operand_p def_p;
5408 gimple ustmt;
5409
5410 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
5411 {
5412 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
5413 {
5414 basic_block bb;
5415
5416 if (!is_gimple_debug (ustmt))
5417 continue;
5418
5419 bb = gimple_bb (ustmt);
5420
5421 if (!flow_bb_inside_loop_p (loop, bb))
5422 {
5423 if (gimple_debug_bind_p (ustmt))
5424 {
5425 if (dump_enabled_p ())
5426 dump_printf_loc (MSG_NOTE, vect_location,
5427 "killing debug use");
5428
5429 gimple_debug_bind_reset_value (ustmt);
5430 update_stmt (ustmt);
5431 }
5432 else
5433 gcc_unreachable ();
5434 }
5435 }
5436 }
5437 }
5438
5439 /* Function vect_transform_loop.
5440
5441 The analysis phase has determined that the loop is vectorizable.
5442 Vectorize the loop - created vectorized stmts to replace the scalar
5443 stmts in the loop, and update the loop exit condition. */
5444
5445 void
5446 vect_transform_loop (loop_vec_info loop_vinfo)
5447 {
5448 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5449 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
5450 int nbbs = loop->num_nodes;
5451 gimple_stmt_iterator si;
5452 int i;
5453 tree ratio = NULL;
5454 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
5455 bool grouped_store;
5456 bool slp_scheduled = false;
5457 unsigned int nunits;
5458 gimple stmt, pattern_stmt;
5459 gimple_seq pattern_def_seq = NULL;
5460 gimple_stmt_iterator pattern_def_si = gsi_none ();
5461 bool transform_pattern_stmt = false;
5462 bool check_profitability = false;
5463 int th;
5464 /* Record number of iterations before we started tampering with the profile. */
5465 gcov_type expected_iterations = expected_loop_iterations_unbounded (loop);
5466
5467 if (dump_enabled_p ())
5468 dump_printf_loc (MSG_NOTE, vect_location, "=== vec_transform_loop ===");
5469
5470 /* If profile is inprecise, we have chance to fix it up. */
5471 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5472 expected_iterations = LOOP_VINFO_INT_NITERS (loop_vinfo);
5473
5474 /* Use the more conservative vectorization threshold. If the number
5475 of iterations is constant assume the cost check has been performed
5476 by our caller. If the threshold makes all loops profitable that
5477 run at least the vectorization factor number of times checking
5478 is pointless, too. */
5479 th = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
5480 * LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 1);
5481 th = MAX (th, LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo));
5482 if (th >= LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1
5483 && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5484 {
5485 if (dump_enabled_p ())
5486 dump_printf_loc (MSG_NOTE, vect_location,
5487 "Profitability threshold is %d loop iterations.", th);
5488 check_profitability = true;
5489 }
5490
5491 /* Peel the loop if there are data refs with unknown alignment.
5492 Only one data ref with unknown store is allowed. */
5493
5494 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
5495 {
5496 vect_do_peeling_for_alignment (loop_vinfo, th, check_profitability);
5497 check_profitability = false;
5498 }
5499
5500 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
5501 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
5502 {
5503 vect_loop_versioning (loop_vinfo, th, check_profitability);
5504 check_profitability = false;
5505 }
5506
5507 /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
5508 compile time constant), or it is a constant that doesn't divide by the
5509 vectorization factor, then an epilog loop needs to be created.
5510 We therefore duplicate the loop: the original loop will be vectorized,
5511 and will compute the first (n/VF) iterations. The second copy of the loop
5512 will remain scalar and will compute the remaining (n%VF) iterations.
5513 (VF is the vectorization factor). */
5514
5515 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
5516 || (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
5517 && LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0)
5518 || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
5519 vect_do_peeling_for_loop_bound (loop_vinfo, &ratio,
5520 th, check_profitability);
5521 else
5522 ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
5523 LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
5524
5525 /* 1) Make sure the loop header has exactly two entries
5526 2) Make sure we have a preheader basic block. */
5527
5528 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
5529
5530 split_edge (loop_preheader_edge (loop));
5531
5532 /* FORNOW: the vectorizer supports only loops which body consist
5533 of one basic block (header + empty latch). When the vectorizer will
5534 support more involved loop forms, the order by which the BBs are
5535 traversed need to be reconsidered. */
5536
5537 for (i = 0; i < nbbs; i++)
5538 {
5539 basic_block bb = bbs[i];
5540 stmt_vec_info stmt_info;
5541 gimple phi;
5542
5543 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5544 {
5545 phi = gsi_stmt (si);
5546 if (dump_enabled_p ())
5547 {
5548 dump_printf_loc (MSG_NOTE, vect_location,
5549 "------>vectorizing phi: ");
5550 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
5551 }
5552 stmt_info = vinfo_for_stmt (phi);
5553 if (!stmt_info)
5554 continue;
5555
5556 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
5557 vect_loop_kill_debug_uses (loop, phi);
5558
5559 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5560 && !STMT_VINFO_LIVE_P (stmt_info))
5561 continue;
5562
5563 if ((TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
5564 != (unsigned HOST_WIDE_INT) vectorization_factor)
5565 && dump_enabled_p ())
5566 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.");
5567
5568 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
5569 {
5570 if (dump_enabled_p ())
5571 dump_printf_loc (MSG_NOTE, vect_location, "transform phi.");
5572 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
5573 }
5574 }
5575
5576 pattern_stmt = NULL;
5577 for (si = gsi_start_bb (bb); !gsi_end_p (si) || transform_pattern_stmt;)
5578 {
5579 bool is_store;
5580
5581 if (transform_pattern_stmt)
5582 stmt = pattern_stmt;
5583 else
5584 stmt = gsi_stmt (si);
5585
5586 if (dump_enabled_p ())
5587 {
5588 dump_printf_loc (MSG_NOTE, vect_location,
5589 "------>vectorizing statement: ");
5590 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
5591 }
5592
5593 stmt_info = vinfo_for_stmt (stmt);
5594
5595 /* vector stmts created in the outer-loop during vectorization of
5596 stmts in an inner-loop may not have a stmt_info, and do not
5597 need to be vectorized. */
5598 if (!stmt_info)
5599 {
5600 gsi_next (&si);
5601 continue;
5602 }
5603
5604 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
5605 vect_loop_kill_debug_uses (loop, stmt);
5606
5607 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5608 && !STMT_VINFO_LIVE_P (stmt_info))
5609 {
5610 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5611 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
5612 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5613 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5614 {
5615 stmt = pattern_stmt;
5616 stmt_info = vinfo_for_stmt (stmt);
5617 }
5618 else
5619 {
5620 gsi_next (&si);
5621 continue;
5622 }
5623 }
5624 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5625 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
5626 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5627 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5628 transform_pattern_stmt = true;
5629
5630 /* If pattern statement has def stmts, vectorize them too. */
5631 if (is_pattern_stmt_p (stmt_info))
5632 {
5633 if (pattern_def_seq == NULL)
5634 {
5635 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
5636 pattern_def_si = gsi_start (pattern_def_seq);
5637 }
5638 else if (!gsi_end_p (pattern_def_si))
5639 gsi_next (&pattern_def_si);
5640 if (pattern_def_seq != NULL)
5641 {
5642 gimple pattern_def_stmt = NULL;
5643 stmt_vec_info pattern_def_stmt_info = NULL;
5644
5645 while (!gsi_end_p (pattern_def_si))
5646 {
5647 pattern_def_stmt = gsi_stmt (pattern_def_si);
5648 pattern_def_stmt_info
5649 = vinfo_for_stmt (pattern_def_stmt);
5650 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
5651 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
5652 break;
5653 gsi_next (&pattern_def_si);
5654 }
5655
5656 if (!gsi_end_p (pattern_def_si))
5657 {
5658 if (dump_enabled_p ())
5659 {
5660 dump_printf_loc (MSG_NOTE, vect_location,
5661 "==> vectorizing pattern def "
5662 "stmt: ");
5663 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
5664 pattern_def_stmt, 0);
5665 }
5666
5667 stmt = pattern_def_stmt;
5668 stmt_info = pattern_def_stmt_info;
5669 }
5670 else
5671 {
5672 pattern_def_si = gsi_none ();
5673 transform_pattern_stmt = false;
5674 }
5675 }
5676 else
5677 transform_pattern_stmt = false;
5678 }
5679
5680 gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
5681 nunits = (unsigned int) TYPE_VECTOR_SUBPARTS (
5682 STMT_VINFO_VECTYPE (stmt_info));
5683 if (!STMT_SLP_TYPE (stmt_info)
5684 && nunits != (unsigned int) vectorization_factor
5685 && dump_enabled_p ())
5686 /* For SLP VF is set according to unrolling factor, and not to
5687 vector size, hence for SLP this print is not valid. */
5688 dump_printf_loc (MSG_NOTE, vect_location,
5689 "multiple-types.");
5690
5691 /* SLP. Schedule all the SLP instances when the first SLP stmt is
5692 reached. */
5693 if (STMT_SLP_TYPE (stmt_info))
5694 {
5695 if (!slp_scheduled)
5696 {
5697 slp_scheduled = true;
5698
5699 if (dump_enabled_p ())
5700 dump_printf_loc (MSG_NOTE, vect_location,
5701 "=== scheduling SLP instances ===");
5702
5703 vect_schedule_slp (loop_vinfo, NULL);
5704 }
5705
5706 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
5707 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
5708 {
5709 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
5710 {
5711 pattern_def_seq = NULL;
5712 gsi_next (&si);
5713 }
5714 continue;
5715 }
5716 }
5717
5718 /* -------- vectorize statement ------------ */
5719 if (dump_enabled_p ())
5720 dump_printf_loc (MSG_NOTE, vect_location, "transform statement.");
5721
5722 grouped_store = false;
5723 is_store = vect_transform_stmt (stmt, &si, &grouped_store, NULL, NULL);
5724 if (is_store)
5725 {
5726 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
5727 {
5728 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
5729 interleaving chain was completed - free all the stores in
5730 the chain. */
5731 gsi_next (&si);
5732 vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
5733 continue;
5734 }
5735 else
5736 {
5737 /* Free the attached stmt_vec_info and remove the stmt. */
5738 gimple store = gsi_stmt (si);
5739 free_stmt_vec_info (store);
5740 unlink_stmt_vdef (store);
5741 gsi_remove (&si, true);
5742 release_defs (store);
5743 continue;
5744 }
5745 }
5746
5747 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
5748 {
5749 pattern_def_seq = NULL;
5750 gsi_next (&si);
5751 }
5752 } /* stmts in BB */
5753 } /* BBs in loop */
5754
5755 slpeel_make_loop_iterate_ntimes (loop, ratio);
5756
5757 /* Reduce loop iterations by the vectorization factor. */
5758 scale_loop_profile (loop, RDIV (REG_BR_PROB_BASE , vectorization_factor),
5759 expected_iterations / vectorization_factor);
5760 loop->nb_iterations_upper_bound
5761 = loop->nb_iterations_upper_bound.udiv (double_int::from_uhwi (vectorization_factor),
5762 FLOOR_DIV_EXPR);
5763 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
5764 && loop->nb_iterations_upper_bound != double_int_zero)
5765 loop->nb_iterations_upper_bound = loop->nb_iterations_upper_bound - double_int_one;
5766 if (loop->any_estimate)
5767 {
5768 loop->nb_iterations_estimate
5769 = loop->nb_iterations_estimate.udiv (double_int::from_uhwi (vectorization_factor),
5770 FLOOR_DIV_EXPR);
5771 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
5772 && loop->nb_iterations_estimate != double_int_zero)
5773 loop->nb_iterations_estimate = loop->nb_iterations_estimate - double_int_one;
5774 }
5775
5776 if (dump_enabled_p ())
5777 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location, "LOOP VECTORIZED.");
5778 if (loop->inner && dump_enabled_p ())
5779 dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, vect_location,
5780 "OUTER LOOP VECTORIZED.");
5781 }