[09/46] Add vec_info::lookup_single_use
[gcc.git] / gcc / tree-vect-loop.c
1 /* Loop Vectorization
2 Copyright (C) 2003-2018 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
4 Ira Rosen <irar@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "cfghooks.h"
31 #include "tree-pass.h"
32 #include "ssa.h"
33 #include "optabs-tree.h"
34 #include "diagnostic-core.h"
35 #include "fold-const.h"
36 #include "stor-layout.h"
37 #include "cfganal.h"
38 #include "gimplify.h"
39 #include "gimple-iterator.h"
40 #include "gimplify-me.h"
41 #include "tree-ssa-loop-ivopts.h"
42 #include "tree-ssa-loop-manip.h"
43 #include "tree-ssa-loop-niter.h"
44 #include "tree-ssa-loop.h"
45 #include "cfgloop.h"
46 #include "params.h"
47 #include "tree-scalar-evolution.h"
48 #include "tree-vectorizer.h"
49 #include "gimple-fold.h"
50 #include "cgraph.h"
51 #include "tree-cfg.h"
52 #include "tree-if-conv.h"
53 #include "internal-fn.h"
54 #include "tree-vector-builder.h"
55 #include "vec-perm-indices.h"
56 #include "tree-eh.h"
57
58 /* Loop Vectorization Pass.
59
60 This pass tries to vectorize loops.
61
62 For example, the vectorizer transforms the following simple loop:
63
64 short a[N]; short b[N]; short c[N]; int i;
65
66 for (i=0; i<N; i++){
67 a[i] = b[i] + c[i];
68 }
69
70 as if it was manually vectorized by rewriting the source code into:
71
72 typedef int __attribute__((mode(V8HI))) v8hi;
73 short a[N]; short b[N]; short c[N]; int i;
74 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
75 v8hi va, vb, vc;
76
77 for (i=0; i<N/8; i++){
78 vb = pb[i];
79 vc = pc[i];
80 va = vb + vc;
81 pa[i] = va;
82 }
83
84 The main entry to this pass is vectorize_loops(), in which
85 the vectorizer applies a set of analyses on a given set of loops,
86 followed by the actual vectorization transformation for the loops that
87 had successfully passed the analysis phase.
88 Throughout this pass we make a distinction between two types of
89 data: scalars (which are represented by SSA_NAMES), and memory references
90 ("data-refs"). These two types of data require different handling both
91 during analysis and transformation. The types of data-refs that the
92 vectorizer currently supports are ARRAY_REFS which base is an array DECL
93 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
94 accesses are required to have a simple (consecutive) access pattern.
95
96 Analysis phase:
97 ===============
98 The driver for the analysis phase is vect_analyze_loop().
99 It applies a set of analyses, some of which rely on the scalar evolution
100 analyzer (scev) developed by Sebastian Pop.
101
102 During the analysis phase the vectorizer records some information
103 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
104 loop, as well as general information about the loop as a whole, which is
105 recorded in a "loop_vec_info" struct attached to each loop.
106
107 Transformation phase:
108 =====================
109 The loop transformation phase scans all the stmts in the loop, and
110 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
111 the loop that needs to be vectorized. It inserts the vector code sequence
112 just before the scalar stmt S, and records a pointer to the vector code
113 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
114 attached to S). This pointer will be used for the vectorization of following
115 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
116 otherwise, we rely on dead code elimination for removing it.
117
118 For example, say stmt S1 was vectorized into stmt VS1:
119
120 VS1: vb = px[i];
121 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
122 S2: a = b;
123
124 To vectorize stmt S2, the vectorizer first finds the stmt that defines
125 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
126 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
127 resulting sequence would be:
128
129 VS1: vb = px[i];
130 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
131 VS2: va = vb;
132 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
133
134 Operands that are not SSA_NAMEs, are data-refs that appear in
135 load/store operations (like 'x[i]' in S1), and are handled differently.
136
137 Target modeling:
138 =================
139 Currently the only target specific information that is used is the
140 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
141 Targets that can support different sizes of vectors, for now will need
142 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
143 flexibility will be added in the future.
144
145 Since we only vectorize operations which vector form can be
146 expressed using existing tree codes, to verify that an operation is
147 supported, the vectorizer checks the relevant optab at the relevant
148 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
149 the value found is CODE_FOR_nothing, then there's no target support, and
150 we can't vectorize the stmt.
151
152 For additional information on this project see:
153 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
154 */
155
156 static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
157
158 /* Subroutine of vect_determine_vf_for_stmt that handles only one
159 statement. VECTYPE_MAYBE_SET_P is true if STMT_VINFO_VECTYPE
160 may already be set for general statements (not just data refs). */
161
162 static bool
163 vect_determine_vf_for_stmt_1 (stmt_vec_info stmt_info,
164 bool vectype_maybe_set_p,
165 poly_uint64 *vf,
166 vec<stmt_vec_info > *mask_producers)
167 {
168 gimple *stmt = stmt_info->stmt;
169
170 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
171 && !STMT_VINFO_LIVE_P (stmt_info))
172 || gimple_clobber_p (stmt))
173 {
174 if (dump_enabled_p ())
175 dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
176 return true;
177 }
178
179 tree stmt_vectype, nunits_vectype;
180 if (!vect_get_vector_types_for_stmt (stmt_info, &stmt_vectype,
181 &nunits_vectype))
182 return false;
183
184 if (stmt_vectype)
185 {
186 if (STMT_VINFO_VECTYPE (stmt_info))
187 /* The only case when a vectype had been already set is for stmts
188 that contain a data ref, or for "pattern-stmts" (stmts generated
189 by the vectorizer to represent/replace a certain idiom). */
190 gcc_assert ((STMT_VINFO_DATA_REF (stmt_info)
191 || vectype_maybe_set_p)
192 && STMT_VINFO_VECTYPE (stmt_info) == stmt_vectype);
193 else if (stmt_vectype == boolean_type_node)
194 mask_producers->safe_push (stmt_info);
195 else
196 STMT_VINFO_VECTYPE (stmt_info) = stmt_vectype;
197 }
198
199 if (nunits_vectype)
200 vect_update_max_nunits (vf, nunits_vectype);
201
202 return true;
203 }
204
205 /* Subroutine of vect_determine_vectorization_factor. Set the vector
206 types of STMT_INFO and all attached pattern statements and update
207 the vectorization factor VF accordingly. If some of the statements
208 produce a mask result whose vector type can only be calculated later,
209 add them to MASK_PRODUCERS. Return true on success or false if
210 something prevented vectorization. */
211
212 static bool
213 vect_determine_vf_for_stmt (stmt_vec_info stmt_info, poly_uint64 *vf,
214 vec<stmt_vec_info > *mask_producers)
215 {
216 vec_info *vinfo = stmt_info->vinfo;
217 if (dump_enabled_p ())
218 {
219 dump_printf_loc (MSG_NOTE, vect_location, "==> examining statement: ");
220 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt_info->stmt, 0);
221 }
222 if (!vect_determine_vf_for_stmt_1 (stmt_info, false, vf, mask_producers))
223 return false;
224
225 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
226 && STMT_VINFO_RELATED_STMT (stmt_info))
227 {
228 gimple *pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
229 stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
230
231 /* If a pattern statement has def stmts, analyze them too. */
232 for (gimple_stmt_iterator si = gsi_start (pattern_def_seq);
233 !gsi_end_p (si); gsi_next (&si))
234 {
235 stmt_vec_info def_stmt_info = vinfo->lookup_stmt (gsi_stmt (si));
236 if (dump_enabled_p ())
237 {
238 dump_printf_loc (MSG_NOTE, vect_location,
239 "==> examining pattern def stmt: ");
240 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
241 def_stmt_info->stmt, 0);
242 }
243 if (!vect_determine_vf_for_stmt_1 (def_stmt_info, true,
244 vf, mask_producers))
245 return false;
246 }
247
248 if (dump_enabled_p ())
249 {
250 dump_printf_loc (MSG_NOTE, vect_location,
251 "==> examining pattern statement: ");
252 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt_info->stmt, 0);
253 }
254 if (!vect_determine_vf_for_stmt_1 (stmt_info, true, vf, mask_producers))
255 return false;
256 }
257
258 return true;
259 }
260
261 /* Function vect_determine_vectorization_factor
262
263 Determine the vectorization factor (VF). VF is the number of data elements
264 that are operated upon in parallel in a single iteration of the vectorized
265 loop. For example, when vectorizing a loop that operates on 4byte elements,
266 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
267 elements can fit in a single vector register.
268
269 We currently support vectorization of loops in which all types operated upon
270 are of the same size. Therefore this function currently sets VF according to
271 the size of the types operated upon, and fails if there are multiple sizes
272 in the loop.
273
274 VF is also the factor by which the loop iterations are strip-mined, e.g.:
275 original loop:
276 for (i=0; i<N; i++){
277 a[i] = b[i] + c[i];
278 }
279
280 vectorized loop:
281 for (i=0; i<N; i+=VF){
282 a[i:VF] = b[i:VF] + c[i:VF];
283 }
284 */
285
286 static bool
287 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
288 {
289 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
290 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
291 unsigned nbbs = loop->num_nodes;
292 poly_uint64 vectorization_factor = 1;
293 tree scalar_type = NULL_TREE;
294 gphi *phi;
295 tree vectype;
296 stmt_vec_info stmt_info;
297 unsigned i;
298 auto_vec<stmt_vec_info> mask_producers;
299
300 DUMP_VECT_SCOPE ("vect_determine_vectorization_factor");
301
302 for (i = 0; i < nbbs; i++)
303 {
304 basic_block bb = bbs[i];
305
306 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
307 gsi_next (&si))
308 {
309 phi = si.phi ();
310 stmt_info = loop_vinfo->lookup_stmt (phi);
311 if (dump_enabled_p ())
312 {
313 dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
314 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
315 }
316
317 gcc_assert (stmt_info);
318
319 if (STMT_VINFO_RELEVANT_P (stmt_info)
320 || STMT_VINFO_LIVE_P (stmt_info))
321 {
322 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
323 scalar_type = TREE_TYPE (PHI_RESULT (phi));
324
325 if (dump_enabled_p ())
326 {
327 dump_printf_loc (MSG_NOTE, vect_location,
328 "get vectype for scalar type: ");
329 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
330 dump_printf (MSG_NOTE, "\n");
331 }
332
333 vectype = get_vectype_for_scalar_type (scalar_type);
334 if (!vectype)
335 {
336 if (dump_enabled_p ())
337 {
338 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
339 "not vectorized: unsupported "
340 "data-type ");
341 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
342 scalar_type);
343 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
344 }
345 return false;
346 }
347 STMT_VINFO_VECTYPE (stmt_info) = vectype;
348
349 if (dump_enabled_p ())
350 {
351 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
352 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
353 dump_printf (MSG_NOTE, "\n");
354 }
355
356 if (dump_enabled_p ())
357 {
358 dump_printf_loc (MSG_NOTE, vect_location, "nunits = ");
359 dump_dec (MSG_NOTE, TYPE_VECTOR_SUBPARTS (vectype));
360 dump_printf (MSG_NOTE, "\n");
361 }
362
363 vect_update_max_nunits (&vectorization_factor, vectype);
364 }
365 }
366
367 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
368 gsi_next (&si))
369 {
370 stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si));
371 if (!vect_determine_vf_for_stmt (stmt_info, &vectorization_factor,
372 &mask_producers))
373 return false;
374 }
375 }
376
377 /* TODO: Analyze cost. Decide if worth while to vectorize. */
378 if (dump_enabled_p ())
379 {
380 dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = ");
381 dump_dec (MSG_NOTE, vectorization_factor);
382 dump_printf (MSG_NOTE, "\n");
383 }
384
385 if (known_le (vectorization_factor, 1U))
386 {
387 if (dump_enabled_p ())
388 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
389 "not vectorized: unsupported data-type\n");
390 return false;
391 }
392 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
393
394 for (i = 0; i < mask_producers.length (); i++)
395 {
396 stmt_info = mask_producers[i];
397 tree mask_type = vect_get_mask_type_for_stmt (stmt_info);
398 if (!mask_type)
399 return false;
400 STMT_VINFO_VECTYPE (stmt_info) = mask_type;
401 }
402
403 return true;
404 }
405
406
407 /* Function vect_is_simple_iv_evolution.
408
409 FORNOW: A simple evolution of an induction variables in the loop is
410 considered a polynomial evolution. */
411
412 static bool
413 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
414 tree * step)
415 {
416 tree init_expr;
417 tree step_expr;
418 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
419 basic_block bb;
420
421 /* When there is no evolution in this loop, the evolution function
422 is not "simple". */
423 if (evolution_part == NULL_TREE)
424 return false;
425
426 /* When the evolution is a polynomial of degree >= 2
427 the evolution function is not "simple". */
428 if (tree_is_chrec (evolution_part))
429 return false;
430
431 step_expr = evolution_part;
432 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
433
434 if (dump_enabled_p ())
435 {
436 dump_printf_loc (MSG_NOTE, vect_location, "step: ");
437 dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
438 dump_printf (MSG_NOTE, ", init: ");
439 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
440 dump_printf (MSG_NOTE, "\n");
441 }
442
443 *init = init_expr;
444 *step = step_expr;
445
446 if (TREE_CODE (step_expr) != INTEGER_CST
447 && (TREE_CODE (step_expr) != SSA_NAME
448 || ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
449 && flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
450 || (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
451 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
452 || !flag_associative_math)))
453 && (TREE_CODE (step_expr) != REAL_CST
454 || !flag_associative_math))
455 {
456 if (dump_enabled_p ())
457 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
458 "step unknown.\n");
459 return false;
460 }
461
462 return true;
463 }
464
465 /* Function vect_analyze_scalar_cycles_1.
466
467 Examine the cross iteration def-use cycles of scalar variables
468 in LOOP. LOOP_VINFO represents the loop that is now being
469 considered for vectorization (can be LOOP, or an outer-loop
470 enclosing LOOP). */
471
472 static void
473 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
474 {
475 basic_block bb = loop->header;
476 tree init, step;
477 auto_vec<gimple *, 64> worklist;
478 gphi_iterator gsi;
479 bool double_reduc;
480
481 DUMP_VECT_SCOPE ("vect_analyze_scalar_cycles");
482
483 /* First - identify all inductions. Reduction detection assumes that all the
484 inductions have been identified, therefore, this order must not be
485 changed. */
486 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
487 {
488 gphi *phi = gsi.phi ();
489 tree access_fn = NULL;
490 tree def = PHI_RESULT (phi);
491 stmt_vec_info stmt_vinfo = loop_vinfo->lookup_stmt (phi);
492
493 if (dump_enabled_p ())
494 {
495 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
496 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
497 }
498
499 /* Skip virtual phi's. The data dependences that are associated with
500 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
501 if (virtual_operand_p (def))
502 continue;
503
504 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
505
506 /* Analyze the evolution function. */
507 access_fn = analyze_scalar_evolution (loop, def);
508 if (access_fn)
509 {
510 STRIP_NOPS (access_fn);
511 if (dump_enabled_p ())
512 {
513 dump_printf_loc (MSG_NOTE, vect_location,
514 "Access function of PHI: ");
515 dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
516 dump_printf (MSG_NOTE, "\n");
517 }
518 STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
519 = initial_condition_in_loop_num (access_fn, loop->num);
520 STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
521 = evolution_part_in_loop_num (access_fn, loop->num);
522 }
523
524 if (!access_fn
525 || !vect_is_simple_iv_evolution (loop->num, access_fn, &init, &step)
526 || (LOOP_VINFO_LOOP (loop_vinfo) != loop
527 && TREE_CODE (step) != INTEGER_CST))
528 {
529 worklist.safe_push (phi);
530 continue;
531 }
532
533 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo)
534 != NULL_TREE);
535 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
536
537 if (dump_enabled_p ())
538 dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
539 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
540 }
541
542
543 /* Second - identify all reductions and nested cycles. */
544 while (worklist.length () > 0)
545 {
546 gimple *phi = worklist.pop ();
547 tree def = PHI_RESULT (phi);
548 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
549 gimple *reduc_stmt;
550
551 if (dump_enabled_p ())
552 {
553 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
554 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
555 }
556
557 gcc_assert (!virtual_operand_p (def)
558 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
559
560 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi,
561 &double_reduc, false);
562 if (reduc_stmt)
563 {
564 if (double_reduc)
565 {
566 if (dump_enabled_p ())
567 dump_printf_loc (MSG_NOTE, vect_location,
568 "Detected double reduction.\n");
569
570 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
571 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
572 vect_double_reduction_def;
573 }
574 else
575 {
576 if (loop != LOOP_VINFO_LOOP (loop_vinfo))
577 {
578 if (dump_enabled_p ())
579 dump_printf_loc (MSG_NOTE, vect_location,
580 "Detected vectorizable nested cycle.\n");
581
582 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
583 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
584 vect_nested_cycle;
585 }
586 else
587 {
588 if (dump_enabled_p ())
589 dump_printf_loc (MSG_NOTE, vect_location,
590 "Detected reduction.\n");
591
592 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
593 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
594 vect_reduction_def;
595 /* Store the reduction cycles for possible vectorization in
596 loop-aware SLP if it was not detected as reduction
597 chain. */
598 if (! REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (reduc_stmt)))
599 LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
600 }
601 }
602 }
603 else
604 if (dump_enabled_p ())
605 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
606 "Unknown def-use cycle pattern.\n");
607 }
608 }
609
610
611 /* Function vect_analyze_scalar_cycles.
612
613 Examine the cross iteration def-use cycles of scalar variables, by
614 analyzing the loop-header PHIs of scalar variables. Classify each
615 cycle as one of the following: invariant, induction, reduction, unknown.
616 We do that for the loop represented by LOOP_VINFO, and also to its
617 inner-loop, if exists.
618 Examples for scalar cycles:
619
620 Example1: reduction:
621
622 loop1:
623 for (i=0; i<N; i++)
624 sum += a[i];
625
626 Example2: induction:
627
628 loop2:
629 for (i=0; i<N; i++)
630 a[i] = i; */
631
632 static void
633 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
634 {
635 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
636
637 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
638
639 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
640 Reductions in such inner-loop therefore have different properties than
641 the reductions in the nest that gets vectorized:
642 1. When vectorized, they are executed in the same order as in the original
643 scalar loop, so we can't change the order of computation when
644 vectorizing them.
645 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
646 current checks are too strict. */
647
648 if (loop->inner)
649 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
650 }
651
652 /* Transfer group and reduction information from STMT to its pattern stmt. */
653
654 static void
655 vect_fixup_reduc_chain (gimple *stmt)
656 {
657 gimple *firstp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
658 gimple *stmtp;
659 gcc_assert (!REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (firstp))
660 && REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
661 REDUC_GROUP_SIZE (vinfo_for_stmt (firstp))
662 = REDUC_GROUP_SIZE (vinfo_for_stmt (stmt));
663 do
664 {
665 stmtp = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
666 REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmtp)) = firstp;
667 stmt = REDUC_GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmt));
668 if (stmt)
669 REDUC_GROUP_NEXT_ELEMENT (vinfo_for_stmt (stmtp))
670 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
671 }
672 while (stmt);
673 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmtp)) = vect_reduction_def;
674 }
675
676 /* Fixup scalar cycles that now have their stmts detected as patterns. */
677
678 static void
679 vect_fixup_scalar_cycles_with_patterns (loop_vec_info loop_vinfo)
680 {
681 gimple *first;
682 unsigned i;
683
684 FOR_EACH_VEC_ELT (LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo), i, first)
685 if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (first)))
686 {
687 gimple *next = REDUC_GROUP_NEXT_ELEMENT (vinfo_for_stmt (first));
688 while (next)
689 {
690 if (! STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (next)))
691 break;
692 next = REDUC_GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
693 }
694 /* If not all stmt in the chain are patterns try to handle
695 the chain without patterns. */
696 if (! next)
697 {
698 vect_fixup_reduc_chain (first);
699 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo)[i]
700 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (first));
701 }
702 }
703 }
704
705 /* Function vect_get_loop_niters.
706
707 Determine how many iterations the loop is executed and place it
708 in NUMBER_OF_ITERATIONS. Place the number of latch iterations
709 in NUMBER_OF_ITERATIONSM1. Place the condition under which the
710 niter information holds in ASSUMPTIONS.
711
712 Return the loop exit condition. */
713
714
715 static gcond *
716 vect_get_loop_niters (struct loop *loop, tree *assumptions,
717 tree *number_of_iterations, tree *number_of_iterationsm1)
718 {
719 edge exit = single_exit (loop);
720 struct tree_niter_desc niter_desc;
721 tree niter_assumptions, niter, may_be_zero;
722 gcond *cond = get_loop_exit_condition (loop);
723
724 *assumptions = boolean_true_node;
725 *number_of_iterationsm1 = chrec_dont_know;
726 *number_of_iterations = chrec_dont_know;
727 DUMP_VECT_SCOPE ("get_loop_niters");
728
729 if (!exit)
730 return cond;
731
732 niter = chrec_dont_know;
733 may_be_zero = NULL_TREE;
734 niter_assumptions = boolean_true_node;
735 if (!number_of_iterations_exit_assumptions (loop, exit, &niter_desc, NULL)
736 || chrec_contains_undetermined (niter_desc.niter))
737 return cond;
738
739 niter_assumptions = niter_desc.assumptions;
740 may_be_zero = niter_desc.may_be_zero;
741 niter = niter_desc.niter;
742
743 if (may_be_zero && integer_zerop (may_be_zero))
744 may_be_zero = NULL_TREE;
745
746 if (may_be_zero)
747 {
748 if (COMPARISON_CLASS_P (may_be_zero))
749 {
750 /* Try to combine may_be_zero with assumptions, this can simplify
751 computation of niter expression. */
752 if (niter_assumptions && !integer_nonzerop (niter_assumptions))
753 niter_assumptions = fold_build2 (TRUTH_AND_EXPR, boolean_type_node,
754 niter_assumptions,
755 fold_build1 (TRUTH_NOT_EXPR,
756 boolean_type_node,
757 may_be_zero));
758 else
759 niter = fold_build3 (COND_EXPR, TREE_TYPE (niter), may_be_zero,
760 build_int_cst (TREE_TYPE (niter), 0),
761 rewrite_to_non_trapping_overflow (niter));
762
763 may_be_zero = NULL_TREE;
764 }
765 else if (integer_nonzerop (may_be_zero))
766 {
767 *number_of_iterationsm1 = build_int_cst (TREE_TYPE (niter), 0);
768 *number_of_iterations = build_int_cst (TREE_TYPE (niter), 1);
769 return cond;
770 }
771 else
772 return cond;
773 }
774
775 *assumptions = niter_assumptions;
776 *number_of_iterationsm1 = niter;
777
778 /* We want the number of loop header executions which is the number
779 of latch executions plus one.
780 ??? For UINT_MAX latch executions this number overflows to zero
781 for loops like do { n++; } while (n != 0); */
782 if (niter && !chrec_contains_undetermined (niter))
783 niter = fold_build2 (PLUS_EXPR, TREE_TYPE (niter), unshare_expr (niter),
784 build_int_cst (TREE_TYPE (niter), 1));
785 *number_of_iterations = niter;
786
787 return cond;
788 }
789
790 /* Function bb_in_loop_p
791
792 Used as predicate for dfs order traversal of the loop bbs. */
793
794 static bool
795 bb_in_loop_p (const_basic_block bb, const void *data)
796 {
797 const struct loop *const loop = (const struct loop *)data;
798 if (flow_bb_inside_loop_p (loop, bb))
799 return true;
800 return false;
801 }
802
803
804 /* Create and initialize a new loop_vec_info struct for LOOP_IN, as well as
805 stmt_vec_info structs for all the stmts in LOOP_IN. */
806
807 _loop_vec_info::_loop_vec_info (struct loop *loop_in, vec_info_shared *shared)
808 : vec_info (vec_info::loop, init_cost (loop_in), shared),
809 loop (loop_in),
810 bbs (XCNEWVEC (basic_block, loop->num_nodes)),
811 num_itersm1 (NULL_TREE),
812 num_iters (NULL_TREE),
813 num_iters_unchanged (NULL_TREE),
814 num_iters_assumptions (NULL_TREE),
815 th (0),
816 versioning_threshold (0),
817 vectorization_factor (0),
818 max_vectorization_factor (0),
819 mask_skip_niters (NULL_TREE),
820 mask_compare_type (NULL_TREE),
821 unaligned_dr (NULL),
822 peeling_for_alignment (0),
823 ptr_mask (0),
824 ivexpr_map (NULL),
825 slp_unrolling_factor (1),
826 single_scalar_iteration_cost (0),
827 vectorizable (false),
828 can_fully_mask_p (true),
829 fully_masked_p (false),
830 peeling_for_gaps (false),
831 peeling_for_niter (false),
832 operands_swapped (false),
833 no_data_dependencies (false),
834 has_mask_store (false),
835 scalar_loop (NULL),
836 orig_loop_info (NULL)
837 {
838 /* Create/Update stmt_info for all stmts in the loop. */
839 basic_block *body = get_loop_body (loop);
840 for (unsigned int i = 0; i < loop->num_nodes; i++)
841 {
842 basic_block bb = body[i];
843 gimple_stmt_iterator si;
844
845 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
846 {
847 gimple *phi = gsi_stmt (si);
848 gimple_set_uid (phi, 0);
849 add_stmt (phi);
850 }
851
852 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
853 {
854 gimple *stmt = gsi_stmt (si);
855 gimple_set_uid (stmt, 0);
856 add_stmt (stmt);
857 }
858 }
859 free (body);
860
861 /* CHECKME: We want to visit all BBs before their successors (except for
862 latch blocks, for which this assertion wouldn't hold). In the simple
863 case of the loop forms we allow, a dfs order of the BBs would the same
864 as reversed postorder traversal, so we are safe. */
865
866 unsigned int nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
867 bbs, loop->num_nodes, loop);
868 gcc_assert (nbbs == loop->num_nodes);
869 }
870
871 /* Free all levels of MASKS. */
872
873 void
874 release_vec_loop_masks (vec_loop_masks *masks)
875 {
876 rgroup_masks *rgm;
877 unsigned int i;
878 FOR_EACH_VEC_ELT (*masks, i, rgm)
879 rgm->masks.release ();
880 masks->release ();
881 }
882
883 /* Free all memory used by the _loop_vec_info, as well as all the
884 stmt_vec_info structs of all the stmts in the loop. */
885
886 _loop_vec_info::~_loop_vec_info ()
887 {
888 int nbbs;
889 gimple_stmt_iterator si;
890 int j;
891
892 /* ??? We're releasing loop_vinfos en-block. */
893 set_stmt_vec_info_vec (&stmt_vec_infos);
894 nbbs = loop->num_nodes;
895 for (j = 0; j < nbbs; j++)
896 {
897 basic_block bb = bbs[j];
898 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
899 free_stmt_vec_info (gsi_stmt (si));
900
901 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
902 {
903 gimple *stmt = gsi_stmt (si);
904
905 /* We may have broken canonical form by moving a constant
906 into RHS1 of a commutative op. Fix such occurrences. */
907 if (operands_swapped && is_gimple_assign (stmt))
908 {
909 enum tree_code code = gimple_assign_rhs_code (stmt);
910
911 if ((code == PLUS_EXPR
912 || code == POINTER_PLUS_EXPR
913 || code == MULT_EXPR)
914 && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
915 swap_ssa_operands (stmt,
916 gimple_assign_rhs1_ptr (stmt),
917 gimple_assign_rhs2_ptr (stmt));
918 else if (code == COND_EXPR
919 && CONSTANT_CLASS_P (gimple_assign_rhs2 (stmt)))
920 {
921 tree cond_expr = gimple_assign_rhs1 (stmt);
922 enum tree_code cond_code = TREE_CODE (cond_expr);
923
924 if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
925 {
926 bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr,
927 0));
928 cond_code = invert_tree_comparison (cond_code,
929 honor_nans);
930 if (cond_code != ERROR_MARK)
931 {
932 TREE_SET_CODE (cond_expr, cond_code);
933 swap_ssa_operands (stmt,
934 gimple_assign_rhs2_ptr (stmt),
935 gimple_assign_rhs3_ptr (stmt));
936 }
937 }
938 }
939 }
940
941 /* Free stmt_vec_info. */
942 free_stmt_vec_info (stmt);
943 gsi_next (&si);
944 }
945 }
946
947 free (bbs);
948
949 release_vec_loop_masks (&masks);
950 delete ivexpr_map;
951
952 loop->aux = NULL;
953 }
954
955 /* Return an invariant or register for EXPR and emit necessary
956 computations in the LOOP_VINFO loop preheader. */
957
958 tree
959 cse_and_gimplify_to_preheader (loop_vec_info loop_vinfo, tree expr)
960 {
961 if (is_gimple_reg (expr)
962 || is_gimple_min_invariant (expr))
963 return expr;
964
965 if (! loop_vinfo->ivexpr_map)
966 loop_vinfo->ivexpr_map = new hash_map<tree_operand_hash, tree>;
967 tree &cached = loop_vinfo->ivexpr_map->get_or_insert (expr);
968 if (! cached)
969 {
970 gimple_seq stmts = NULL;
971 cached = force_gimple_operand (unshare_expr (expr),
972 &stmts, true, NULL_TREE);
973 if (stmts)
974 {
975 edge e = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
976 gsi_insert_seq_on_edge_immediate (e, stmts);
977 }
978 }
979 return cached;
980 }
981
982 /* Return true if we can use CMP_TYPE as the comparison type to produce
983 all masks required to mask LOOP_VINFO. */
984
985 static bool
986 can_produce_all_loop_masks_p (loop_vec_info loop_vinfo, tree cmp_type)
987 {
988 rgroup_masks *rgm;
989 unsigned int i;
990 FOR_EACH_VEC_ELT (LOOP_VINFO_MASKS (loop_vinfo), i, rgm)
991 if (rgm->mask_type != NULL_TREE
992 && !direct_internal_fn_supported_p (IFN_WHILE_ULT,
993 cmp_type, rgm->mask_type,
994 OPTIMIZE_FOR_SPEED))
995 return false;
996 return true;
997 }
998
999 /* Calculate the maximum number of scalars per iteration for every
1000 rgroup in LOOP_VINFO. */
1001
1002 static unsigned int
1003 vect_get_max_nscalars_per_iter (loop_vec_info loop_vinfo)
1004 {
1005 unsigned int res = 1;
1006 unsigned int i;
1007 rgroup_masks *rgm;
1008 FOR_EACH_VEC_ELT (LOOP_VINFO_MASKS (loop_vinfo), i, rgm)
1009 res = MAX (res, rgm->max_nscalars_per_iter);
1010 return res;
1011 }
1012
1013 /* Each statement in LOOP_VINFO can be masked where necessary. Check
1014 whether we can actually generate the masks required. Return true if so,
1015 storing the type of the scalar IV in LOOP_VINFO_MASK_COMPARE_TYPE. */
1016
1017 static bool
1018 vect_verify_full_masking (loop_vec_info loop_vinfo)
1019 {
1020 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1021 unsigned int min_ni_width;
1022
1023 /* Use a normal loop if there are no statements that need masking.
1024 This only happens in rare degenerate cases: it means that the loop
1025 has no loads, no stores, and no live-out values. */
1026 if (LOOP_VINFO_MASKS (loop_vinfo).is_empty ())
1027 return false;
1028
1029 /* Get the maximum number of iterations that is representable
1030 in the counter type. */
1031 tree ni_type = TREE_TYPE (LOOP_VINFO_NITERSM1 (loop_vinfo));
1032 widest_int max_ni = wi::to_widest (TYPE_MAX_VALUE (ni_type)) + 1;
1033
1034 /* Get a more refined estimate for the number of iterations. */
1035 widest_int max_back_edges;
1036 if (max_loop_iterations (loop, &max_back_edges))
1037 max_ni = wi::smin (max_ni, max_back_edges + 1);
1038
1039 /* Account for rgroup masks, in which each bit is replicated N times. */
1040 max_ni *= vect_get_max_nscalars_per_iter (loop_vinfo);
1041
1042 /* Work out how many bits we need to represent the limit. */
1043 min_ni_width = wi::min_precision (max_ni, UNSIGNED);
1044
1045 /* Find a scalar mode for which WHILE_ULT is supported. */
1046 opt_scalar_int_mode cmp_mode_iter;
1047 tree cmp_type = NULL_TREE;
1048 FOR_EACH_MODE_IN_CLASS (cmp_mode_iter, MODE_INT)
1049 {
1050 unsigned int cmp_bits = GET_MODE_BITSIZE (cmp_mode_iter.require ());
1051 if (cmp_bits >= min_ni_width
1052 && targetm.scalar_mode_supported_p (cmp_mode_iter.require ()))
1053 {
1054 tree this_type = build_nonstandard_integer_type (cmp_bits, true);
1055 if (this_type
1056 && can_produce_all_loop_masks_p (loop_vinfo, this_type))
1057 {
1058 /* Although we could stop as soon as we find a valid mode,
1059 it's often better to continue until we hit Pmode, since the
1060 operands to the WHILE are more likely to be reusable in
1061 address calculations. */
1062 cmp_type = this_type;
1063 if (cmp_bits >= GET_MODE_BITSIZE (Pmode))
1064 break;
1065 }
1066 }
1067 }
1068
1069 if (!cmp_type)
1070 return false;
1071
1072 LOOP_VINFO_MASK_COMPARE_TYPE (loop_vinfo) = cmp_type;
1073 return true;
1074 }
1075
1076 /* Calculate the cost of one scalar iteration of the loop. */
1077 static void
1078 vect_compute_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
1079 {
1080 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1081 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1082 int nbbs = loop->num_nodes, factor;
1083 int innerloop_iters, i;
1084
1085 /* Gather costs for statements in the scalar loop. */
1086
1087 /* FORNOW. */
1088 innerloop_iters = 1;
1089 if (loop->inner)
1090 innerloop_iters = 50; /* FIXME */
1091
1092 for (i = 0; i < nbbs; i++)
1093 {
1094 gimple_stmt_iterator si;
1095 basic_block bb = bbs[i];
1096
1097 if (bb->loop_father == loop->inner)
1098 factor = innerloop_iters;
1099 else
1100 factor = 1;
1101
1102 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1103 {
1104 gimple *stmt = gsi_stmt (si);
1105 stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (stmt);
1106
1107 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
1108 continue;
1109
1110 /* Skip stmts that are not vectorized inside the loop. */
1111 if (stmt_info
1112 && !STMT_VINFO_RELEVANT_P (stmt_info)
1113 && (!STMT_VINFO_LIVE_P (stmt_info)
1114 || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1115 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
1116 continue;
1117
1118 vect_cost_for_stmt kind;
1119 if (STMT_VINFO_DATA_REF (stmt_info))
1120 {
1121 if (DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info)))
1122 kind = scalar_load;
1123 else
1124 kind = scalar_store;
1125 }
1126 else
1127 kind = scalar_stmt;
1128
1129 record_stmt_cost (&LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
1130 factor, kind, stmt_info, 0, vect_prologue);
1131 }
1132 }
1133
1134 /* Now accumulate cost. */
1135 void *target_cost_data = init_cost (loop);
1136 stmt_info_for_cost *si;
1137 int j;
1138 FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
1139 j, si)
1140 {
1141 struct _stmt_vec_info *stmt_info
1142 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
1143 (void) add_stmt_cost (target_cost_data, si->count,
1144 si->kind, stmt_info, si->misalign,
1145 vect_body);
1146 }
1147 unsigned dummy, body_cost = 0;
1148 finish_cost (target_cost_data, &dummy, &body_cost, &dummy);
1149 destroy_cost_data (target_cost_data);
1150 LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo) = body_cost;
1151 }
1152
1153
1154 /* Function vect_analyze_loop_form_1.
1155
1156 Verify that certain CFG restrictions hold, including:
1157 - the loop has a pre-header
1158 - the loop has a single entry and exit
1159 - the loop exit condition is simple enough
1160 - the number of iterations can be analyzed, i.e, a countable loop. The
1161 niter could be analyzed under some assumptions. */
1162
1163 bool
1164 vect_analyze_loop_form_1 (struct loop *loop, gcond **loop_cond,
1165 tree *assumptions, tree *number_of_iterationsm1,
1166 tree *number_of_iterations, gcond **inner_loop_cond)
1167 {
1168 DUMP_VECT_SCOPE ("vect_analyze_loop_form");
1169
1170 /* Different restrictions apply when we are considering an inner-most loop,
1171 vs. an outer (nested) loop.
1172 (FORNOW. May want to relax some of these restrictions in the future). */
1173
1174 if (!loop->inner)
1175 {
1176 /* Inner-most loop. We currently require that the number of BBs is
1177 exactly 2 (the header and latch). Vectorizable inner-most loops
1178 look like this:
1179
1180 (pre-header)
1181 |
1182 header <--------+
1183 | | |
1184 | +--> latch --+
1185 |
1186 (exit-bb) */
1187
1188 if (loop->num_nodes != 2)
1189 {
1190 if (dump_enabled_p ())
1191 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1192 "not vectorized: control flow in loop.\n");
1193 return false;
1194 }
1195
1196 if (empty_block_p (loop->header))
1197 {
1198 if (dump_enabled_p ())
1199 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1200 "not vectorized: empty loop.\n");
1201 return false;
1202 }
1203 }
1204 else
1205 {
1206 struct loop *innerloop = loop->inner;
1207 edge entryedge;
1208
1209 /* Nested loop. We currently require that the loop is doubly-nested,
1210 contains a single inner loop, and the number of BBs is exactly 5.
1211 Vectorizable outer-loops look like this:
1212
1213 (pre-header)
1214 |
1215 header <---+
1216 | |
1217 inner-loop |
1218 | |
1219 tail ------+
1220 |
1221 (exit-bb)
1222
1223 The inner-loop has the properties expected of inner-most loops
1224 as described above. */
1225
1226 if ((loop->inner)->inner || (loop->inner)->next)
1227 {
1228 if (dump_enabled_p ())
1229 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1230 "not vectorized: multiple nested loops.\n");
1231 return false;
1232 }
1233
1234 if (loop->num_nodes != 5)
1235 {
1236 if (dump_enabled_p ())
1237 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1238 "not vectorized: control flow in loop.\n");
1239 return false;
1240 }
1241
1242 entryedge = loop_preheader_edge (innerloop);
1243 if (entryedge->src != loop->header
1244 || !single_exit (innerloop)
1245 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1246 {
1247 if (dump_enabled_p ())
1248 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1249 "not vectorized: unsupported outerloop form.\n");
1250 return false;
1251 }
1252
1253 /* Analyze the inner-loop. */
1254 tree inner_niterm1, inner_niter, inner_assumptions;
1255 if (! vect_analyze_loop_form_1 (loop->inner, inner_loop_cond,
1256 &inner_assumptions, &inner_niterm1,
1257 &inner_niter, NULL)
1258 /* Don't support analyzing niter under assumptions for inner
1259 loop. */
1260 || !integer_onep (inner_assumptions))
1261 {
1262 if (dump_enabled_p ())
1263 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1264 "not vectorized: Bad inner loop.\n");
1265 return false;
1266 }
1267
1268 if (!expr_invariant_in_loop_p (loop, inner_niter))
1269 {
1270 if (dump_enabled_p ())
1271 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1272 "not vectorized: inner-loop count not"
1273 " invariant.\n");
1274 return false;
1275 }
1276
1277 if (dump_enabled_p ())
1278 dump_printf_loc (MSG_NOTE, vect_location,
1279 "Considering outer-loop vectorization.\n");
1280 }
1281
1282 if (!single_exit (loop)
1283 || EDGE_COUNT (loop->header->preds) != 2)
1284 {
1285 if (dump_enabled_p ())
1286 {
1287 if (!single_exit (loop))
1288 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1289 "not vectorized: multiple exits.\n");
1290 else if (EDGE_COUNT (loop->header->preds) != 2)
1291 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1292 "not vectorized: too many incoming edges.\n");
1293 }
1294 return false;
1295 }
1296
1297 /* We assume that the loop exit condition is at the end of the loop. i.e,
1298 that the loop is represented as a do-while (with a proper if-guard
1299 before the loop if needed), where the loop header contains all the
1300 executable statements, and the latch is empty. */
1301 if (!empty_block_p (loop->latch)
1302 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1303 {
1304 if (dump_enabled_p ())
1305 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1306 "not vectorized: latch block not empty.\n");
1307 return false;
1308 }
1309
1310 /* Make sure the exit is not abnormal. */
1311 edge e = single_exit (loop);
1312 if (e->flags & EDGE_ABNORMAL)
1313 {
1314 if (dump_enabled_p ())
1315 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1316 "not vectorized: abnormal loop exit edge.\n");
1317 return false;
1318 }
1319
1320 *loop_cond = vect_get_loop_niters (loop, assumptions, number_of_iterations,
1321 number_of_iterationsm1);
1322 if (!*loop_cond)
1323 {
1324 if (dump_enabled_p ())
1325 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1326 "not vectorized: complicated exit condition.\n");
1327 return false;
1328 }
1329
1330 if (integer_zerop (*assumptions)
1331 || !*number_of_iterations
1332 || chrec_contains_undetermined (*number_of_iterations))
1333 {
1334 if (dump_enabled_p ())
1335 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1336 "not vectorized: number of iterations cannot be "
1337 "computed.\n");
1338 return false;
1339 }
1340
1341 if (integer_zerop (*number_of_iterations))
1342 {
1343 if (dump_enabled_p ())
1344 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1345 "not vectorized: number of iterations = 0.\n");
1346 return false;
1347 }
1348
1349 return true;
1350 }
1351
1352 /* Analyze LOOP form and return a loop_vec_info if it is of suitable form. */
1353
1354 loop_vec_info
1355 vect_analyze_loop_form (struct loop *loop, vec_info_shared *shared)
1356 {
1357 tree assumptions, number_of_iterations, number_of_iterationsm1;
1358 gcond *loop_cond, *inner_loop_cond = NULL;
1359
1360 if (! vect_analyze_loop_form_1 (loop, &loop_cond,
1361 &assumptions, &number_of_iterationsm1,
1362 &number_of_iterations, &inner_loop_cond))
1363 return NULL;
1364
1365 loop_vec_info loop_vinfo = new _loop_vec_info (loop, shared);
1366 LOOP_VINFO_NITERSM1 (loop_vinfo) = number_of_iterationsm1;
1367 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1368 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1369 if (!integer_onep (assumptions))
1370 {
1371 /* We consider to vectorize this loop by versioning it under
1372 some assumptions. In order to do this, we need to clear
1373 existing information computed by scev and niter analyzer. */
1374 scev_reset_htab ();
1375 free_numbers_of_iterations_estimates (loop);
1376 /* Also set flag for this loop so that following scev and niter
1377 analysis are done under the assumptions. */
1378 loop_constraint_set (loop, LOOP_C_FINITE);
1379 /* Also record the assumptions for versioning. */
1380 LOOP_VINFO_NITERS_ASSUMPTIONS (loop_vinfo) = assumptions;
1381 }
1382
1383 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
1384 {
1385 if (dump_enabled_p ())
1386 {
1387 dump_printf_loc (MSG_NOTE, vect_location,
1388 "Symbolic number of iterations is ");
1389 dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
1390 dump_printf (MSG_NOTE, "\n");
1391 }
1392 }
1393
1394 stmt_vec_info loop_cond_info = loop_vinfo->lookup_stmt (loop_cond);
1395 STMT_VINFO_TYPE (loop_cond_info) = loop_exit_ctrl_vec_info_type;
1396 if (inner_loop_cond)
1397 {
1398 stmt_vec_info inner_loop_cond_info
1399 = loop_vinfo->lookup_stmt (inner_loop_cond);
1400 STMT_VINFO_TYPE (inner_loop_cond_info) = loop_exit_ctrl_vec_info_type;
1401 }
1402
1403 gcc_assert (!loop->aux);
1404 loop->aux = loop_vinfo;
1405 return loop_vinfo;
1406 }
1407
1408
1409
1410 /* Scan the loop stmts and dependent on whether there are any (non-)SLP
1411 statements update the vectorization factor. */
1412
1413 static void
1414 vect_update_vf_for_slp (loop_vec_info loop_vinfo)
1415 {
1416 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1417 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1418 int nbbs = loop->num_nodes;
1419 poly_uint64 vectorization_factor;
1420 int i;
1421
1422 DUMP_VECT_SCOPE ("vect_update_vf_for_slp");
1423
1424 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1425 gcc_assert (known_ne (vectorization_factor, 0U));
1426
1427 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1428 vectorization factor of the loop is the unrolling factor required by
1429 the SLP instances. If that unrolling factor is 1, we say, that we
1430 perform pure SLP on loop - cross iteration parallelism is not
1431 exploited. */
1432 bool only_slp_in_loop = true;
1433 for (i = 0; i < nbbs; i++)
1434 {
1435 basic_block bb = bbs[i];
1436 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
1437 gsi_next (&si))
1438 {
1439 gimple *stmt = gsi_stmt (si);
1440 stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si));
1441 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
1442 && STMT_VINFO_RELATED_STMT (stmt_info))
1443 {
1444 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
1445 stmt_info = vinfo_for_stmt (stmt);
1446 }
1447 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1448 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1449 && !PURE_SLP_STMT (stmt_info))
1450 /* STMT needs both SLP and loop-based vectorization. */
1451 only_slp_in_loop = false;
1452 }
1453 }
1454
1455 if (only_slp_in_loop)
1456 {
1457 dump_printf_loc (MSG_NOTE, vect_location,
1458 "Loop contains only SLP stmts\n");
1459 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1460 }
1461 else
1462 {
1463 dump_printf_loc (MSG_NOTE, vect_location,
1464 "Loop contains SLP and non-SLP stmts\n");
1465 /* Both the vectorization factor and unroll factor have the form
1466 current_vector_size * X for some rational X, so they must have
1467 a common multiple. */
1468 vectorization_factor
1469 = force_common_multiple (vectorization_factor,
1470 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1471 }
1472
1473 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1474 if (dump_enabled_p ())
1475 {
1476 dump_printf_loc (MSG_NOTE, vect_location,
1477 "Updating vectorization factor to ");
1478 dump_dec (MSG_NOTE, vectorization_factor);
1479 dump_printf (MSG_NOTE, ".\n");
1480 }
1481 }
1482
1483 /* Return true if STMT_INFO describes a double reduction phi and if
1484 the other phi in the reduction is also relevant for vectorization.
1485 This rejects cases such as:
1486
1487 outer1:
1488 x_1 = PHI <x_3(outer2), ...>;
1489 ...
1490
1491 inner:
1492 x_2 = ...;
1493 ...
1494
1495 outer2:
1496 x_3 = PHI <x_2(inner)>;
1497
1498 if nothing in x_2 or elsewhere makes x_1 relevant. */
1499
1500 static bool
1501 vect_active_double_reduction_p (stmt_vec_info stmt_info)
1502 {
1503 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_double_reduction_def)
1504 return false;
1505
1506 gimple *other_phi = STMT_VINFO_REDUC_DEF (stmt_info);
1507 return STMT_VINFO_RELEVANT_P (vinfo_for_stmt (other_phi));
1508 }
1509
1510 /* Function vect_analyze_loop_operations.
1511
1512 Scan the loop stmts and make sure they are all vectorizable. */
1513
1514 static bool
1515 vect_analyze_loop_operations (loop_vec_info loop_vinfo)
1516 {
1517 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1518 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1519 int nbbs = loop->num_nodes;
1520 int i;
1521 stmt_vec_info stmt_info;
1522 bool need_to_vectorize = false;
1523 bool ok;
1524
1525 DUMP_VECT_SCOPE ("vect_analyze_loop_operations");
1526
1527 stmt_vector_for_cost cost_vec;
1528 cost_vec.create (2);
1529
1530 for (i = 0; i < nbbs; i++)
1531 {
1532 basic_block bb = bbs[i];
1533
1534 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
1535 gsi_next (&si))
1536 {
1537 gphi *phi = si.phi ();
1538 ok = true;
1539
1540 stmt_info = loop_vinfo->lookup_stmt (phi);
1541 if (dump_enabled_p ())
1542 {
1543 dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
1544 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1545 }
1546 if (virtual_operand_p (gimple_phi_result (phi)))
1547 continue;
1548
1549 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1550 (i.e., a phi in the tail of the outer-loop). */
1551 if (! is_loop_header_bb_p (bb))
1552 {
1553 /* FORNOW: we currently don't support the case that these phis
1554 are not used in the outerloop (unless it is double reduction,
1555 i.e., this phi is vect_reduction_def), cause this case
1556 requires to actually do something here. */
1557 if (STMT_VINFO_LIVE_P (stmt_info)
1558 && !vect_active_double_reduction_p (stmt_info))
1559 {
1560 if (dump_enabled_p ())
1561 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1562 "Unsupported loop-closed phi in "
1563 "outer-loop.\n");
1564 return false;
1565 }
1566
1567 /* If PHI is used in the outer loop, we check that its operand
1568 is defined in the inner loop. */
1569 if (STMT_VINFO_RELEVANT_P (stmt_info))
1570 {
1571 tree phi_op;
1572
1573 if (gimple_phi_num_args (phi) != 1)
1574 return false;
1575
1576 phi_op = PHI_ARG_DEF (phi, 0);
1577 stmt_vec_info op_def_info = loop_vinfo->lookup_def (phi_op);
1578 if (!op_def_info)
1579 return false;
1580
1581 if (STMT_VINFO_RELEVANT (op_def_info) != vect_used_in_outer
1582 && (STMT_VINFO_RELEVANT (op_def_info)
1583 != vect_used_in_outer_by_reduction))
1584 return false;
1585 }
1586
1587 continue;
1588 }
1589
1590 gcc_assert (stmt_info);
1591
1592 if ((STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1593 || STMT_VINFO_LIVE_P (stmt_info))
1594 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1595 {
1596 /* A scalar-dependence cycle that we don't support. */
1597 if (dump_enabled_p ())
1598 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1599 "not vectorized: scalar dependence cycle.\n");
1600 return false;
1601 }
1602
1603 if (STMT_VINFO_RELEVANT_P (stmt_info))
1604 {
1605 need_to_vectorize = true;
1606 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
1607 && ! PURE_SLP_STMT (stmt_info))
1608 ok = vectorizable_induction (phi, NULL, NULL, NULL, &cost_vec);
1609 else if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
1610 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
1611 && ! PURE_SLP_STMT (stmt_info))
1612 ok = vectorizable_reduction (phi, NULL, NULL, NULL, NULL,
1613 &cost_vec);
1614 }
1615
1616 /* SLP PHIs are tested by vect_slp_analyze_node_operations. */
1617 if (ok
1618 && STMT_VINFO_LIVE_P (stmt_info)
1619 && !PURE_SLP_STMT (stmt_info))
1620 ok = vectorizable_live_operation (phi, NULL, NULL, -1, NULL,
1621 &cost_vec);
1622
1623 if (!ok)
1624 {
1625 if (dump_enabled_p ())
1626 {
1627 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1628 "not vectorized: relevant phi not "
1629 "supported: ");
1630 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
1631 }
1632 return false;
1633 }
1634 }
1635
1636 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
1637 gsi_next (&si))
1638 {
1639 gimple *stmt = gsi_stmt (si);
1640 if (!gimple_clobber_p (stmt)
1641 && !vect_analyze_stmt (stmt, &need_to_vectorize, NULL, NULL,
1642 &cost_vec))
1643 return false;
1644 }
1645 } /* bbs */
1646
1647 add_stmt_costs (loop_vinfo->target_cost_data, &cost_vec);
1648 cost_vec.release ();
1649
1650 /* All operations in the loop are either irrelevant (deal with loop
1651 control, or dead), or only used outside the loop and can be moved
1652 out of the loop (e.g. invariants, inductions). The loop can be
1653 optimized away by scalar optimizations. We're better off not
1654 touching this loop. */
1655 if (!need_to_vectorize)
1656 {
1657 if (dump_enabled_p ())
1658 dump_printf_loc (MSG_NOTE, vect_location,
1659 "All the computation can be taken out of the loop.\n");
1660 if (dump_enabled_p ())
1661 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1662 "not vectorized: redundant loop. no profit to "
1663 "vectorize.\n");
1664 return false;
1665 }
1666
1667 return true;
1668 }
1669
1670 /* Analyze the cost of the loop described by LOOP_VINFO. Decide if it
1671 is worthwhile to vectorize. Return 1 if definitely yes, 0 if
1672 definitely no, or -1 if it's worth retrying. */
1673
1674 static int
1675 vect_analyze_loop_costing (loop_vec_info loop_vinfo)
1676 {
1677 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1678 unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo);
1679
1680 /* Only fully-masked loops can have iteration counts less than the
1681 vectorization factor. */
1682 if (!LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
1683 {
1684 HOST_WIDE_INT max_niter;
1685
1686 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
1687 max_niter = LOOP_VINFO_INT_NITERS (loop_vinfo);
1688 else
1689 max_niter = max_stmt_executions_int (loop);
1690
1691 if (max_niter != -1
1692 && (unsigned HOST_WIDE_INT) max_niter < assumed_vf)
1693 {
1694 if (dump_enabled_p ())
1695 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1696 "not vectorized: iteration count smaller than "
1697 "vectorization factor.\n");
1698 return 0;
1699 }
1700 }
1701
1702 int min_profitable_iters, min_profitable_estimate;
1703 vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
1704 &min_profitable_estimate);
1705
1706 if (min_profitable_iters < 0)
1707 {
1708 if (dump_enabled_p ())
1709 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1710 "not vectorized: vectorization not profitable.\n");
1711 if (dump_enabled_p ())
1712 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1713 "not vectorized: vector version will never be "
1714 "profitable.\n");
1715 return -1;
1716 }
1717
1718 int min_scalar_loop_bound = (PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1719 * assumed_vf);
1720
1721 /* Use the cost model only if it is more conservative than user specified
1722 threshold. */
1723 unsigned int th = (unsigned) MAX (min_scalar_loop_bound,
1724 min_profitable_iters);
1725
1726 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = th;
1727
1728 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1729 && LOOP_VINFO_INT_NITERS (loop_vinfo) < th)
1730 {
1731 if (dump_enabled_p ())
1732 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1733 "not vectorized: vectorization not profitable.\n");
1734 if (dump_enabled_p ())
1735 dump_printf_loc (MSG_NOTE, vect_location,
1736 "not vectorized: iteration count smaller than user "
1737 "specified loop bound parameter or minimum profitable "
1738 "iterations (whichever is more conservative).\n");
1739 return 0;
1740 }
1741
1742 HOST_WIDE_INT estimated_niter = estimated_stmt_executions_int (loop);
1743 if (estimated_niter == -1)
1744 estimated_niter = likely_max_stmt_executions_int (loop);
1745 if (estimated_niter != -1
1746 && ((unsigned HOST_WIDE_INT) estimated_niter
1747 < MAX (th, (unsigned) min_profitable_estimate)))
1748 {
1749 if (dump_enabled_p ())
1750 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1751 "not vectorized: estimated iteration count too "
1752 "small.\n");
1753 if (dump_enabled_p ())
1754 dump_printf_loc (MSG_NOTE, vect_location,
1755 "not vectorized: estimated iteration count smaller "
1756 "than specified loop bound parameter or minimum "
1757 "profitable iterations (whichever is more "
1758 "conservative).\n");
1759 return -1;
1760 }
1761
1762 return 1;
1763 }
1764
1765 static bool
1766 vect_get_datarefs_in_loop (loop_p loop, basic_block *bbs,
1767 vec<data_reference_p> *datarefs,
1768 unsigned int *n_stmts)
1769 {
1770 *n_stmts = 0;
1771 for (unsigned i = 0; i < loop->num_nodes; i++)
1772 for (gimple_stmt_iterator gsi = gsi_start_bb (bbs[i]);
1773 !gsi_end_p (gsi); gsi_next (&gsi))
1774 {
1775 gimple *stmt = gsi_stmt (gsi);
1776 if (is_gimple_debug (stmt))
1777 continue;
1778 ++(*n_stmts);
1779 if (!vect_find_stmt_data_reference (loop, stmt, datarefs))
1780 {
1781 if (is_gimple_call (stmt) && loop->safelen)
1782 {
1783 tree fndecl = gimple_call_fndecl (stmt), op;
1784 if (fndecl != NULL_TREE)
1785 {
1786 cgraph_node *node = cgraph_node::get (fndecl);
1787 if (node != NULL && node->simd_clones != NULL)
1788 {
1789 unsigned int j, n = gimple_call_num_args (stmt);
1790 for (j = 0; j < n; j++)
1791 {
1792 op = gimple_call_arg (stmt, j);
1793 if (DECL_P (op)
1794 || (REFERENCE_CLASS_P (op)
1795 && get_base_address (op)))
1796 break;
1797 }
1798 op = gimple_call_lhs (stmt);
1799 /* Ignore #pragma omp declare simd functions
1800 if they don't have data references in the
1801 call stmt itself. */
1802 if (j == n
1803 && !(op
1804 && (DECL_P (op)
1805 || (REFERENCE_CLASS_P (op)
1806 && get_base_address (op)))))
1807 continue;
1808 }
1809 }
1810 }
1811 return false;
1812 }
1813 /* If dependence analysis will give up due to the limit on the
1814 number of datarefs stop here and fail fatally. */
1815 if (datarefs->length ()
1816 > (unsigned)PARAM_VALUE (PARAM_LOOP_MAX_DATAREFS_FOR_DATADEPS))
1817 return false;
1818 }
1819 return true;
1820 }
1821
1822 /* Function vect_analyze_loop_2.
1823
1824 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1825 for it. The different analyses will record information in the
1826 loop_vec_info struct. */
1827 static bool
1828 vect_analyze_loop_2 (loop_vec_info loop_vinfo, bool &fatal, unsigned *n_stmts)
1829 {
1830 bool ok;
1831 int res;
1832 unsigned int max_vf = MAX_VECTORIZATION_FACTOR;
1833 poly_uint64 min_vf = 2;
1834
1835 /* The first group of checks is independent of the vector size. */
1836 fatal = true;
1837
1838 /* Find all data references in the loop (which correspond to vdefs/vuses)
1839 and analyze their evolution in the loop. */
1840
1841 loop_p loop = LOOP_VINFO_LOOP (loop_vinfo);
1842
1843 /* Gather the data references and count stmts in the loop. */
1844 if (!LOOP_VINFO_DATAREFS (loop_vinfo).exists ())
1845 {
1846 if (!vect_get_datarefs_in_loop (loop, LOOP_VINFO_BBS (loop_vinfo),
1847 &LOOP_VINFO_DATAREFS (loop_vinfo),
1848 n_stmts))
1849 {
1850 if (dump_enabled_p ())
1851 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1852 "not vectorized: loop contains function "
1853 "calls or data references that cannot "
1854 "be analyzed\n");
1855 return false;
1856 }
1857 loop_vinfo->shared->save_datarefs ();
1858 }
1859 else
1860 loop_vinfo->shared->check_datarefs ();
1861
1862 /* Analyze the data references and also adjust the minimal
1863 vectorization factor according to the loads and stores. */
1864
1865 ok = vect_analyze_data_refs (loop_vinfo, &min_vf);
1866 if (!ok)
1867 {
1868 if (dump_enabled_p ())
1869 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1870 "bad data references.\n");
1871 return false;
1872 }
1873
1874 /* Classify all cross-iteration scalar data-flow cycles.
1875 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1876 vect_analyze_scalar_cycles (loop_vinfo);
1877
1878 vect_pattern_recog (loop_vinfo);
1879
1880 vect_fixup_scalar_cycles_with_patterns (loop_vinfo);
1881
1882 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1883 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1884
1885 ok = vect_analyze_data_ref_accesses (loop_vinfo);
1886 if (!ok)
1887 {
1888 if (dump_enabled_p ())
1889 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1890 "bad data access.\n");
1891 return false;
1892 }
1893
1894 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1895
1896 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1897 if (!ok)
1898 {
1899 if (dump_enabled_p ())
1900 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1901 "unexpected pattern.\n");
1902 return false;
1903 }
1904
1905 /* While the rest of the analysis below depends on it in some way. */
1906 fatal = false;
1907
1908 /* Analyze data dependences between the data-refs in the loop
1909 and adjust the maximum vectorization factor according to
1910 the dependences.
1911 FORNOW: fail at the first data dependence that we encounter. */
1912
1913 ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
1914 if (!ok
1915 || (max_vf != MAX_VECTORIZATION_FACTOR
1916 && maybe_lt (max_vf, min_vf)))
1917 {
1918 if (dump_enabled_p ())
1919 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1920 "bad data dependence.\n");
1921 return false;
1922 }
1923 LOOP_VINFO_MAX_VECT_FACTOR (loop_vinfo) = max_vf;
1924
1925 ok = vect_determine_vectorization_factor (loop_vinfo);
1926 if (!ok)
1927 {
1928 if (dump_enabled_p ())
1929 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1930 "can't determine vectorization factor.\n");
1931 return false;
1932 }
1933 if (max_vf != MAX_VECTORIZATION_FACTOR
1934 && maybe_lt (max_vf, LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
1935 {
1936 if (dump_enabled_p ())
1937 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1938 "bad data dependence.\n");
1939 return false;
1940 }
1941
1942 /* Compute the scalar iteration cost. */
1943 vect_compute_single_scalar_iteration_cost (loop_vinfo);
1944
1945 poly_uint64 saved_vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1946 unsigned th;
1947
1948 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1949 ok = vect_analyze_slp (loop_vinfo, *n_stmts);
1950 if (!ok)
1951 return false;
1952
1953 /* If there are any SLP instances mark them as pure_slp. */
1954 bool slp = vect_make_slp_decision (loop_vinfo);
1955 if (slp)
1956 {
1957 /* Find stmts that need to be both vectorized and SLPed. */
1958 vect_detect_hybrid_slp (loop_vinfo);
1959
1960 /* Update the vectorization factor based on the SLP decision. */
1961 vect_update_vf_for_slp (loop_vinfo);
1962 }
1963
1964 bool saved_can_fully_mask_p = LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo);
1965
1966 /* We don't expect to have to roll back to anything other than an empty
1967 set of rgroups. */
1968 gcc_assert (LOOP_VINFO_MASKS (loop_vinfo).is_empty ());
1969
1970 /* This is the point where we can re-start analysis with SLP forced off. */
1971 start_over:
1972
1973 /* Now the vectorization factor is final. */
1974 poly_uint64 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1975 gcc_assert (known_ne (vectorization_factor, 0U));
1976
1977 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
1978 {
1979 dump_printf_loc (MSG_NOTE, vect_location,
1980 "vectorization_factor = ");
1981 dump_dec (MSG_NOTE, vectorization_factor);
1982 dump_printf (MSG_NOTE, ", niters = " HOST_WIDE_INT_PRINT_DEC "\n",
1983 LOOP_VINFO_INT_NITERS (loop_vinfo));
1984 }
1985
1986 HOST_WIDE_INT max_niter
1987 = likely_max_stmt_executions_int (LOOP_VINFO_LOOP (loop_vinfo));
1988
1989 /* Analyze the alignment of the data-refs in the loop.
1990 Fail if a data reference is found that cannot be vectorized. */
1991
1992 ok = vect_analyze_data_refs_alignment (loop_vinfo);
1993 if (!ok)
1994 {
1995 if (dump_enabled_p ())
1996 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1997 "bad data alignment.\n");
1998 return false;
1999 }
2000
2001 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
2002 It is important to call pruning after vect_analyze_data_ref_accesses,
2003 since we use grouping information gathered by interleaving analysis. */
2004 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
2005 if (!ok)
2006 return false;
2007
2008 /* Do not invoke vect_enhance_data_refs_alignment for eplilogue
2009 vectorization. */
2010 if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
2011 {
2012 /* This pass will decide on using loop versioning and/or loop peeling in
2013 order to enhance the alignment of data references in the loop. */
2014 ok = vect_enhance_data_refs_alignment (loop_vinfo);
2015 if (!ok)
2016 {
2017 if (dump_enabled_p ())
2018 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2019 "bad data alignment.\n");
2020 return false;
2021 }
2022 }
2023
2024 if (slp)
2025 {
2026 /* Analyze operations in the SLP instances. Note this may
2027 remove unsupported SLP instances which makes the above
2028 SLP kind detection invalid. */
2029 unsigned old_size = LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length ();
2030 vect_slp_analyze_operations (loop_vinfo);
2031 if (LOOP_VINFO_SLP_INSTANCES (loop_vinfo).length () != old_size)
2032 goto again;
2033 }
2034
2035 /* Scan all the remaining operations in the loop that are not subject
2036 to SLP and make sure they are vectorizable. */
2037 ok = vect_analyze_loop_operations (loop_vinfo);
2038 if (!ok)
2039 {
2040 if (dump_enabled_p ())
2041 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2042 "bad operation or unsupported loop bound.\n");
2043 return false;
2044 }
2045
2046 /* Decide whether to use a fully-masked loop for this vectorization
2047 factor. */
2048 LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
2049 = (LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo)
2050 && vect_verify_full_masking (loop_vinfo));
2051 if (dump_enabled_p ())
2052 {
2053 if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
2054 dump_printf_loc (MSG_NOTE, vect_location,
2055 "using a fully-masked loop.\n");
2056 else
2057 dump_printf_loc (MSG_NOTE, vect_location,
2058 "not using a fully-masked loop.\n");
2059 }
2060
2061 /* If epilog loop is required because of data accesses with gaps,
2062 one additional iteration needs to be peeled. Check if there is
2063 enough iterations for vectorization. */
2064 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2065 && LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2066 && !LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
2067 {
2068 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2069 tree scalar_niters = LOOP_VINFO_NITERSM1 (loop_vinfo);
2070
2071 if (known_lt (wi::to_widest (scalar_niters), vf))
2072 {
2073 if (dump_enabled_p ())
2074 dump_printf_loc (MSG_NOTE, vect_location,
2075 "loop has no enough iterations to support"
2076 " peeling for gaps.\n");
2077 return false;
2078 }
2079 }
2080
2081 /* Check the costings of the loop make vectorizing worthwhile. */
2082 res = vect_analyze_loop_costing (loop_vinfo);
2083 if (res < 0)
2084 goto again;
2085 if (!res)
2086 {
2087 if (dump_enabled_p ())
2088 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2089 "Loop costings not worthwhile.\n");
2090 return false;
2091 }
2092
2093 /* Decide whether we need to create an epilogue loop to handle
2094 remaining scalar iterations. */
2095 th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
2096
2097 unsigned HOST_WIDE_INT const_vf;
2098 if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
2099 /* The main loop handles all iterations. */
2100 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = false;
2101 else if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2102 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
2103 {
2104 if (!multiple_p (LOOP_VINFO_INT_NITERS (loop_vinfo)
2105 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo),
2106 LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
2107 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
2108 }
2109 else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
2110 || !LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&const_vf)
2111 || ((tree_ctz (LOOP_VINFO_NITERS (loop_vinfo))
2112 < (unsigned) exact_log2 (const_vf))
2113 /* In case of versioning, check if the maximum number of
2114 iterations is greater than th. If they are identical,
2115 the epilogue is unnecessary. */
2116 && (!LOOP_REQUIRES_VERSIONING (loop_vinfo)
2117 || ((unsigned HOST_WIDE_INT) max_niter
2118 > (th / const_vf) * const_vf))))
2119 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
2120
2121 /* If an epilogue loop is required make sure we can create one. */
2122 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
2123 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
2124 {
2125 if (dump_enabled_p ())
2126 dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required\n");
2127 if (!vect_can_advance_ivs_p (loop_vinfo)
2128 || !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo),
2129 single_exit (LOOP_VINFO_LOOP
2130 (loop_vinfo))))
2131 {
2132 if (dump_enabled_p ())
2133 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2134 "not vectorized: can't create required "
2135 "epilog loop\n");
2136 goto again;
2137 }
2138 }
2139
2140 /* During peeling, we need to check if number of loop iterations is
2141 enough for both peeled prolog loop and vector loop. This check
2142 can be merged along with threshold check of loop versioning, so
2143 increase threshold for this case if necessary. */
2144 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
2145 {
2146 poly_uint64 niters_th = 0;
2147
2148 if (!vect_use_loop_mask_for_alignment_p (loop_vinfo))
2149 {
2150 /* Niters for peeled prolog loop. */
2151 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2152 {
2153 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2154 tree vectype
2155 = STMT_VINFO_VECTYPE (vinfo_for_stmt (vect_dr_stmt (dr)));
2156 niters_th += TYPE_VECTOR_SUBPARTS (vectype) - 1;
2157 }
2158 else
2159 niters_th += LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2160 }
2161
2162 /* Niters for at least one iteration of vectorized loop. */
2163 if (!LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
2164 niters_th += LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2165 /* One additional iteration because of peeling for gap. */
2166 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
2167 niters_th += 1;
2168 LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo) = niters_th;
2169 }
2170
2171 gcc_assert (known_eq (vectorization_factor,
2172 LOOP_VINFO_VECT_FACTOR (loop_vinfo)));
2173
2174 /* Ok to vectorize! */
2175 return true;
2176
2177 again:
2178 /* Try again with SLP forced off but if we didn't do any SLP there is
2179 no point in re-trying. */
2180 if (!slp)
2181 return false;
2182
2183 /* If there are reduction chains re-trying will fail anyway. */
2184 if (! LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).is_empty ())
2185 return false;
2186
2187 /* Likewise if the grouped loads or stores in the SLP cannot be handled
2188 via interleaving or lane instructions. */
2189 slp_instance instance;
2190 slp_tree node;
2191 unsigned i, j;
2192 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
2193 {
2194 stmt_vec_info vinfo;
2195 vinfo = vinfo_for_stmt
2196 (SLP_TREE_SCALAR_STMTS (SLP_INSTANCE_TREE (instance))[0]);
2197 if (! STMT_VINFO_GROUPED_ACCESS (vinfo))
2198 continue;
2199 vinfo = vinfo_for_stmt (DR_GROUP_FIRST_ELEMENT (vinfo));
2200 unsigned int size = DR_GROUP_SIZE (vinfo);
2201 tree vectype = STMT_VINFO_VECTYPE (vinfo);
2202 if (! vect_store_lanes_supported (vectype, size, false)
2203 && ! known_eq (TYPE_VECTOR_SUBPARTS (vectype), 1U)
2204 && ! vect_grouped_store_supported (vectype, size))
2205 return false;
2206 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), j, node)
2207 {
2208 vinfo = vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (node)[0]);
2209 vinfo = vinfo_for_stmt (DR_GROUP_FIRST_ELEMENT (vinfo));
2210 bool single_element_p = !DR_GROUP_NEXT_ELEMENT (vinfo);
2211 size = DR_GROUP_SIZE (vinfo);
2212 vectype = STMT_VINFO_VECTYPE (vinfo);
2213 if (! vect_load_lanes_supported (vectype, size, false)
2214 && ! vect_grouped_load_supported (vectype, single_element_p,
2215 size))
2216 return false;
2217 }
2218 }
2219
2220 if (dump_enabled_p ())
2221 dump_printf_loc (MSG_NOTE, vect_location,
2222 "re-trying with SLP disabled\n");
2223
2224 /* Roll back state appropriately. No SLP this time. */
2225 slp = false;
2226 /* Restore vectorization factor as it were without SLP. */
2227 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = saved_vectorization_factor;
2228 /* Free the SLP instances. */
2229 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), j, instance)
2230 vect_free_slp_instance (instance, false);
2231 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
2232 /* Reset SLP type to loop_vect on all stmts. */
2233 for (i = 0; i < LOOP_VINFO_LOOP (loop_vinfo)->num_nodes; ++i)
2234 {
2235 basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
2236 for (gimple_stmt_iterator si = gsi_start_phis (bb);
2237 !gsi_end_p (si); gsi_next (&si))
2238 {
2239 stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si));
2240 STMT_SLP_TYPE (stmt_info) = loop_vect;
2241 }
2242 for (gimple_stmt_iterator si = gsi_start_bb (bb);
2243 !gsi_end_p (si); gsi_next (&si))
2244 {
2245 stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (gsi_stmt (si));
2246 STMT_SLP_TYPE (stmt_info) = loop_vect;
2247 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
2248 {
2249 gimple *pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
2250 stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
2251 STMT_SLP_TYPE (stmt_info) = loop_vect;
2252 for (gimple_stmt_iterator pi = gsi_start (pattern_def_seq);
2253 !gsi_end_p (pi); gsi_next (&pi))
2254 STMT_SLP_TYPE (loop_vinfo->lookup_stmt (gsi_stmt (pi)))
2255 = loop_vect;
2256 }
2257 }
2258 }
2259 /* Free optimized alias test DDRS. */
2260 LOOP_VINFO_LOWER_BOUNDS (loop_vinfo).truncate (0);
2261 LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).release ();
2262 LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).release ();
2263 /* Reset target cost data. */
2264 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
2265 LOOP_VINFO_TARGET_COST_DATA (loop_vinfo)
2266 = init_cost (LOOP_VINFO_LOOP (loop_vinfo));
2267 /* Reset accumulated rgroup information. */
2268 release_vec_loop_masks (&LOOP_VINFO_MASKS (loop_vinfo));
2269 /* Reset assorted flags. */
2270 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = false;
2271 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = false;
2272 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = 0;
2273 LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo) = 0;
2274 LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo) = saved_can_fully_mask_p;
2275
2276 goto start_over;
2277 }
2278
2279 /* Function vect_analyze_loop.
2280
2281 Apply a set of analyses on LOOP, and create a loop_vec_info struct
2282 for it. The different analyses will record information in the
2283 loop_vec_info struct. If ORIG_LOOP_VINFO is not NULL epilogue must
2284 be vectorized. */
2285 loop_vec_info
2286 vect_analyze_loop (struct loop *loop, loop_vec_info orig_loop_vinfo,
2287 vec_info_shared *shared)
2288 {
2289 loop_vec_info loop_vinfo;
2290 auto_vector_sizes vector_sizes;
2291
2292 /* Autodetect first vector size we try. */
2293 current_vector_size = 0;
2294 targetm.vectorize.autovectorize_vector_sizes (&vector_sizes);
2295 unsigned int next_size = 0;
2296
2297 DUMP_VECT_SCOPE ("analyze_loop_nest");
2298
2299 if (loop_outer (loop)
2300 && loop_vec_info_for_loop (loop_outer (loop))
2301 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
2302 {
2303 if (dump_enabled_p ())
2304 dump_printf_loc (MSG_NOTE, vect_location,
2305 "outer-loop already vectorized.\n");
2306 return NULL;
2307 }
2308
2309 if (!find_loop_nest (loop, &shared->loop_nest))
2310 {
2311 if (dump_enabled_p ())
2312 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2313 "not vectorized: loop nest containing two "
2314 "or more consecutive inner loops cannot be "
2315 "vectorized\n");
2316 return NULL;
2317 }
2318
2319 unsigned n_stmts = 0;
2320 poly_uint64 autodetected_vector_size = 0;
2321 while (1)
2322 {
2323 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
2324 loop_vinfo = vect_analyze_loop_form (loop, shared);
2325 if (!loop_vinfo)
2326 {
2327 if (dump_enabled_p ())
2328 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2329 "bad loop form.\n");
2330 return NULL;
2331 }
2332
2333 bool fatal = false;
2334
2335 if (orig_loop_vinfo)
2336 LOOP_VINFO_ORIG_LOOP_INFO (loop_vinfo) = orig_loop_vinfo;
2337
2338 if (vect_analyze_loop_2 (loop_vinfo, fatal, &n_stmts))
2339 {
2340 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
2341
2342 return loop_vinfo;
2343 }
2344
2345 delete loop_vinfo;
2346
2347 if (next_size == 0)
2348 autodetected_vector_size = current_vector_size;
2349
2350 if (next_size < vector_sizes.length ()
2351 && known_eq (vector_sizes[next_size], autodetected_vector_size))
2352 next_size += 1;
2353
2354 if (fatal
2355 || next_size == vector_sizes.length ()
2356 || known_eq (current_vector_size, 0U))
2357 return NULL;
2358
2359 /* Try the next biggest vector size. */
2360 current_vector_size = vector_sizes[next_size++];
2361 if (dump_enabled_p ())
2362 {
2363 dump_printf_loc (MSG_NOTE, vect_location,
2364 "***** Re-trying analysis with "
2365 "vector size ");
2366 dump_dec (MSG_NOTE, current_vector_size);
2367 dump_printf (MSG_NOTE, "\n");
2368 }
2369 }
2370 }
2371
2372 /* Return true if there is an in-order reduction function for CODE, storing
2373 it in *REDUC_FN if so. */
2374
2375 static bool
2376 fold_left_reduction_fn (tree_code code, internal_fn *reduc_fn)
2377 {
2378 switch (code)
2379 {
2380 case PLUS_EXPR:
2381 *reduc_fn = IFN_FOLD_LEFT_PLUS;
2382 return true;
2383
2384 default:
2385 return false;
2386 }
2387 }
2388
2389 /* Function reduction_fn_for_scalar_code
2390
2391 Input:
2392 CODE - tree_code of a reduction operations.
2393
2394 Output:
2395 REDUC_FN - the corresponding internal function to be used to reduce the
2396 vector of partial results into a single scalar result, or IFN_LAST
2397 if the operation is a supported reduction operation, but does not have
2398 such an internal function.
2399
2400 Return FALSE if CODE currently cannot be vectorized as reduction. */
2401
2402 static bool
2403 reduction_fn_for_scalar_code (enum tree_code code, internal_fn *reduc_fn)
2404 {
2405 switch (code)
2406 {
2407 case MAX_EXPR:
2408 *reduc_fn = IFN_REDUC_MAX;
2409 return true;
2410
2411 case MIN_EXPR:
2412 *reduc_fn = IFN_REDUC_MIN;
2413 return true;
2414
2415 case PLUS_EXPR:
2416 *reduc_fn = IFN_REDUC_PLUS;
2417 return true;
2418
2419 case BIT_AND_EXPR:
2420 *reduc_fn = IFN_REDUC_AND;
2421 return true;
2422
2423 case BIT_IOR_EXPR:
2424 *reduc_fn = IFN_REDUC_IOR;
2425 return true;
2426
2427 case BIT_XOR_EXPR:
2428 *reduc_fn = IFN_REDUC_XOR;
2429 return true;
2430
2431 case MULT_EXPR:
2432 case MINUS_EXPR:
2433 *reduc_fn = IFN_LAST;
2434 return true;
2435
2436 default:
2437 return false;
2438 }
2439 }
2440
2441 /* If there is a neutral value X such that SLP reduction NODE would not
2442 be affected by the introduction of additional X elements, return that X,
2443 otherwise return null. CODE is the code of the reduction. REDUC_CHAIN
2444 is true if the SLP statements perform a single reduction, false if each
2445 statement performs an independent reduction. */
2446
2447 static tree
2448 neutral_op_for_slp_reduction (slp_tree slp_node, tree_code code,
2449 bool reduc_chain)
2450 {
2451 vec<gimple *> stmts = SLP_TREE_SCALAR_STMTS (slp_node);
2452 gimple *stmt = stmts[0];
2453 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
2454 tree vector_type = STMT_VINFO_VECTYPE (stmt_vinfo);
2455 tree scalar_type = TREE_TYPE (vector_type);
2456 struct loop *loop = gimple_bb (stmt)->loop_father;
2457 gcc_assert (loop);
2458
2459 switch (code)
2460 {
2461 case WIDEN_SUM_EXPR:
2462 case DOT_PROD_EXPR:
2463 case SAD_EXPR:
2464 case PLUS_EXPR:
2465 case MINUS_EXPR:
2466 case BIT_IOR_EXPR:
2467 case BIT_XOR_EXPR:
2468 return build_zero_cst (scalar_type);
2469
2470 case MULT_EXPR:
2471 return build_one_cst (scalar_type);
2472
2473 case BIT_AND_EXPR:
2474 return build_all_ones_cst (scalar_type);
2475
2476 case MAX_EXPR:
2477 case MIN_EXPR:
2478 /* For MIN/MAX the initial values are neutral. A reduction chain
2479 has only a single initial value, so that value is neutral for
2480 all statements. */
2481 if (reduc_chain)
2482 return PHI_ARG_DEF_FROM_EDGE (stmt, loop_preheader_edge (loop));
2483 return NULL_TREE;
2484
2485 default:
2486 return NULL_TREE;
2487 }
2488 }
2489
2490 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
2491 STMT is printed with a message MSG. */
2492
2493 static void
2494 report_vect_op (dump_flags_t msg_type, gimple *stmt, const char *msg)
2495 {
2496 dump_printf_loc (msg_type, vect_location, "%s", msg);
2497 dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
2498 }
2499
2500 /* DEF_STMT_INFO occurs in a loop that contains a potential reduction
2501 operation. Return true if the results of DEF_STMT_INFO are something
2502 that can be accumulated by such a reduction. */
2503
2504 static bool
2505 vect_valid_reduction_input_p (stmt_vec_info def_stmt_info)
2506 {
2507 return (is_gimple_assign (def_stmt_info->stmt)
2508 || is_gimple_call (def_stmt_info->stmt)
2509 || STMT_VINFO_DEF_TYPE (def_stmt_info) == vect_induction_def
2510 || (gimple_code (def_stmt_info->stmt) == GIMPLE_PHI
2511 && STMT_VINFO_DEF_TYPE (def_stmt_info) == vect_internal_def
2512 && !is_loop_header_bb_p (gimple_bb (def_stmt_info->stmt))));
2513 }
2514
2515 /* Detect SLP reduction of the form:
2516
2517 #a1 = phi <a5, a0>
2518 a2 = operation (a1)
2519 a3 = operation (a2)
2520 a4 = operation (a3)
2521 a5 = operation (a4)
2522
2523 #a = phi <a5>
2524
2525 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
2526 FIRST_STMT is the first reduction stmt in the chain
2527 (a2 = operation (a1)).
2528
2529 Return TRUE if a reduction chain was detected. */
2530
2531 static bool
2532 vect_is_slp_reduction (loop_vec_info loop_info, gimple *phi,
2533 gimple *first_stmt)
2534 {
2535 struct loop *loop = (gimple_bb (phi))->loop_father;
2536 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2537 enum tree_code code;
2538 gimple *current_stmt = NULL, *loop_use_stmt = NULL, *first, *next_stmt;
2539 stmt_vec_info use_stmt_info, current_stmt_info;
2540 tree lhs;
2541 imm_use_iterator imm_iter;
2542 use_operand_p use_p;
2543 int nloop_uses, size = 0, n_out_of_loop_uses;
2544 bool found = false;
2545
2546 if (loop != vect_loop)
2547 return false;
2548
2549 lhs = PHI_RESULT (phi);
2550 code = gimple_assign_rhs_code (first_stmt);
2551 while (1)
2552 {
2553 nloop_uses = 0;
2554 n_out_of_loop_uses = 0;
2555 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
2556 {
2557 gimple *use_stmt = USE_STMT (use_p);
2558 if (is_gimple_debug (use_stmt))
2559 continue;
2560
2561 /* Check if we got back to the reduction phi. */
2562 if (use_stmt == phi)
2563 {
2564 loop_use_stmt = use_stmt;
2565 found = true;
2566 break;
2567 }
2568
2569 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2570 {
2571 loop_use_stmt = use_stmt;
2572 nloop_uses++;
2573 }
2574 else
2575 n_out_of_loop_uses++;
2576
2577 /* There are can be either a single use in the loop or two uses in
2578 phi nodes. */
2579 if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
2580 return false;
2581 }
2582
2583 if (found)
2584 break;
2585
2586 /* We reached a statement with no loop uses. */
2587 if (nloop_uses == 0)
2588 return false;
2589
2590 /* This is a loop exit phi, and we haven't reached the reduction phi. */
2591 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
2592 return false;
2593
2594 if (!is_gimple_assign (loop_use_stmt)
2595 || code != gimple_assign_rhs_code (loop_use_stmt)
2596 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
2597 return false;
2598
2599 /* Insert USE_STMT into reduction chain. */
2600 use_stmt_info = loop_info->lookup_stmt (loop_use_stmt);
2601 if (current_stmt)
2602 {
2603 current_stmt_info = vinfo_for_stmt (current_stmt);
2604 REDUC_GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
2605 REDUC_GROUP_FIRST_ELEMENT (use_stmt_info)
2606 = REDUC_GROUP_FIRST_ELEMENT (current_stmt_info);
2607 }
2608 else
2609 REDUC_GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
2610
2611 lhs = gimple_assign_lhs (loop_use_stmt);
2612 current_stmt = loop_use_stmt;
2613 size++;
2614 }
2615
2616 if (!found || loop_use_stmt != phi || size < 2)
2617 return false;
2618
2619 /* Swap the operands, if needed, to make the reduction operand be the second
2620 operand. */
2621 lhs = PHI_RESULT (phi);
2622 next_stmt = REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2623 while (next_stmt)
2624 {
2625 if (gimple_assign_rhs2 (next_stmt) == lhs)
2626 {
2627 tree op = gimple_assign_rhs1 (next_stmt);
2628 stmt_vec_info def_stmt_info = loop_info->lookup_def (op);
2629
2630 /* Check that the other def is either defined in the loop
2631 ("vect_internal_def"), or it's an induction (defined by a
2632 loop-header phi-node). */
2633 if (def_stmt_info
2634 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt_info->stmt))
2635 && vect_valid_reduction_input_p (def_stmt_info))
2636 {
2637 lhs = gimple_assign_lhs (next_stmt);
2638 next_stmt = REDUC_GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2639 continue;
2640 }
2641
2642 return false;
2643 }
2644 else
2645 {
2646 tree op = gimple_assign_rhs2 (next_stmt);
2647 stmt_vec_info def_stmt_info = loop_info->lookup_def (op);
2648
2649 /* Check that the other def is either defined in the loop
2650 ("vect_internal_def"), or it's an induction (defined by a
2651 loop-header phi-node). */
2652 if (def_stmt_info
2653 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt_info->stmt))
2654 && vect_valid_reduction_input_p (def_stmt_info))
2655 {
2656 if (dump_enabled_p ())
2657 {
2658 dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
2659 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
2660 }
2661
2662 swap_ssa_operands (next_stmt,
2663 gimple_assign_rhs1_ptr (next_stmt),
2664 gimple_assign_rhs2_ptr (next_stmt));
2665 update_stmt (next_stmt);
2666
2667 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
2668 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2669 }
2670 else
2671 return false;
2672 }
2673
2674 lhs = gimple_assign_lhs (next_stmt);
2675 next_stmt = REDUC_GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2676 }
2677
2678 /* Save the chain for further analysis in SLP detection. */
2679 first = REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2680 LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
2681 REDUC_GROUP_SIZE (vinfo_for_stmt (first)) = size;
2682
2683 return true;
2684 }
2685
2686 /* Return true if we need an in-order reduction for operation CODE
2687 on type TYPE. NEED_WRAPPING_INTEGRAL_OVERFLOW is true if integer
2688 overflow must wrap. */
2689
2690 static bool
2691 needs_fold_left_reduction_p (tree type, tree_code code,
2692 bool need_wrapping_integral_overflow)
2693 {
2694 /* CHECKME: check for !flag_finite_math_only too? */
2695 if (SCALAR_FLOAT_TYPE_P (type))
2696 switch (code)
2697 {
2698 case MIN_EXPR:
2699 case MAX_EXPR:
2700 return false;
2701
2702 default:
2703 return !flag_associative_math;
2704 }
2705
2706 if (INTEGRAL_TYPE_P (type))
2707 {
2708 if (!operation_no_trapping_overflow (type, code))
2709 return true;
2710 if (need_wrapping_integral_overflow
2711 && !TYPE_OVERFLOW_WRAPS (type)
2712 && operation_can_overflow (code))
2713 return true;
2714 return false;
2715 }
2716
2717 if (SAT_FIXED_POINT_TYPE_P (type))
2718 return true;
2719
2720 return false;
2721 }
2722
2723 /* Return true if the reduction PHI in LOOP with latch arg LOOP_ARG and
2724 reduction operation CODE has a handled computation expression. */
2725
2726 bool
2727 check_reduction_path (dump_user_location_t loc, loop_p loop, gphi *phi,
2728 tree loop_arg, enum tree_code code)
2729 {
2730 auto_vec<std::pair<ssa_op_iter, use_operand_p> > path;
2731 auto_bitmap visited;
2732 tree lookfor = PHI_RESULT (phi);
2733 ssa_op_iter curri;
2734 use_operand_p curr = op_iter_init_phiuse (&curri, phi, SSA_OP_USE);
2735 while (USE_FROM_PTR (curr) != loop_arg)
2736 curr = op_iter_next_use (&curri);
2737 curri.i = curri.numops;
2738 do
2739 {
2740 path.safe_push (std::make_pair (curri, curr));
2741 tree use = USE_FROM_PTR (curr);
2742 if (use == lookfor)
2743 break;
2744 gimple *def = SSA_NAME_DEF_STMT (use);
2745 if (gimple_nop_p (def)
2746 || ! flow_bb_inside_loop_p (loop, gimple_bb (def)))
2747 {
2748 pop:
2749 do
2750 {
2751 std::pair<ssa_op_iter, use_operand_p> x = path.pop ();
2752 curri = x.first;
2753 curr = x.second;
2754 do
2755 curr = op_iter_next_use (&curri);
2756 /* Skip already visited or non-SSA operands (from iterating
2757 over PHI args). */
2758 while (curr != NULL_USE_OPERAND_P
2759 && (TREE_CODE (USE_FROM_PTR (curr)) != SSA_NAME
2760 || ! bitmap_set_bit (visited,
2761 SSA_NAME_VERSION
2762 (USE_FROM_PTR (curr)))));
2763 }
2764 while (curr == NULL_USE_OPERAND_P && ! path.is_empty ());
2765 if (curr == NULL_USE_OPERAND_P)
2766 break;
2767 }
2768 else
2769 {
2770 if (gimple_code (def) == GIMPLE_PHI)
2771 curr = op_iter_init_phiuse (&curri, as_a <gphi *>(def), SSA_OP_USE);
2772 else
2773 curr = op_iter_init_use (&curri, def, SSA_OP_USE);
2774 while (curr != NULL_USE_OPERAND_P
2775 && (TREE_CODE (USE_FROM_PTR (curr)) != SSA_NAME
2776 || ! bitmap_set_bit (visited,
2777 SSA_NAME_VERSION
2778 (USE_FROM_PTR (curr)))))
2779 curr = op_iter_next_use (&curri);
2780 if (curr == NULL_USE_OPERAND_P)
2781 goto pop;
2782 }
2783 }
2784 while (1);
2785 if (dump_file && (dump_flags & TDF_DETAILS))
2786 {
2787 dump_printf_loc (MSG_NOTE, loc, "reduction path: ");
2788 unsigned i;
2789 std::pair<ssa_op_iter, use_operand_p> *x;
2790 FOR_EACH_VEC_ELT (path, i, x)
2791 {
2792 dump_generic_expr (MSG_NOTE, TDF_SLIM, USE_FROM_PTR (x->second));
2793 dump_printf (MSG_NOTE, " ");
2794 }
2795 dump_printf (MSG_NOTE, "\n");
2796 }
2797
2798 /* Check whether the reduction path detected is valid. */
2799 bool fail = path.length () == 0;
2800 bool neg = false;
2801 for (unsigned i = 1; i < path.length (); ++i)
2802 {
2803 gimple *use_stmt = USE_STMT (path[i].second);
2804 tree op = USE_FROM_PTR (path[i].second);
2805 if (! has_single_use (op)
2806 || ! is_gimple_assign (use_stmt))
2807 {
2808 fail = true;
2809 break;
2810 }
2811 if (gimple_assign_rhs_code (use_stmt) != code)
2812 {
2813 if (code == PLUS_EXPR
2814 && gimple_assign_rhs_code (use_stmt) == MINUS_EXPR)
2815 {
2816 /* Track whether we negate the reduction value each iteration. */
2817 if (gimple_assign_rhs2 (use_stmt) == op)
2818 neg = ! neg;
2819 }
2820 else
2821 {
2822 fail = true;
2823 break;
2824 }
2825 }
2826 }
2827 return ! fail && ! neg;
2828 }
2829
2830
2831 /* Function vect_is_simple_reduction
2832
2833 (1) Detect a cross-iteration def-use cycle that represents a simple
2834 reduction computation. We look for the following pattern:
2835
2836 loop_header:
2837 a1 = phi < a0, a2 >
2838 a3 = ...
2839 a2 = operation (a3, a1)
2840
2841 or
2842
2843 a3 = ...
2844 loop_header:
2845 a1 = phi < a0, a2 >
2846 a2 = operation (a3, a1)
2847
2848 such that:
2849 1. operation is commutative and associative and it is safe to
2850 change the order of the computation
2851 2. no uses for a2 in the loop (a2 is used out of the loop)
2852 3. no uses of a1 in the loop besides the reduction operation
2853 4. no uses of a1 outside the loop.
2854
2855 Conditions 1,4 are tested here.
2856 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
2857
2858 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
2859 nested cycles.
2860
2861 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
2862 reductions:
2863
2864 a1 = phi < a0, a2 >
2865 inner loop (def of a3)
2866 a2 = phi < a3 >
2867
2868 (4) Detect condition expressions, ie:
2869 for (int i = 0; i < N; i++)
2870 if (a[i] < val)
2871 ret_val = a[i];
2872
2873 */
2874
2875 static gimple *
2876 vect_is_simple_reduction (loop_vec_info loop_info, gimple *phi,
2877 bool *double_reduc,
2878 bool need_wrapping_integral_overflow,
2879 enum vect_reduction_type *v_reduc_type)
2880 {
2881 struct loop *loop = (gimple_bb (phi))->loop_father;
2882 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2883 gimple *def_stmt, *phi_use_stmt = NULL;
2884 enum tree_code orig_code, code;
2885 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
2886 tree type;
2887 int nloop_uses;
2888 tree name;
2889 imm_use_iterator imm_iter;
2890 use_operand_p use_p;
2891 bool phi_def;
2892
2893 *double_reduc = false;
2894 *v_reduc_type = TREE_CODE_REDUCTION;
2895
2896 tree phi_name = PHI_RESULT (phi);
2897 /* ??? If there are no uses of the PHI result the inner loop reduction
2898 won't be detected as possibly double-reduction by vectorizable_reduction
2899 because that tries to walk the PHI arg from the preheader edge which
2900 can be constant. See PR60382. */
2901 if (has_zero_uses (phi_name))
2902 return NULL;
2903 nloop_uses = 0;
2904 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, phi_name)
2905 {
2906 gimple *use_stmt = USE_STMT (use_p);
2907 if (is_gimple_debug (use_stmt))
2908 continue;
2909
2910 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2911 {
2912 if (dump_enabled_p ())
2913 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2914 "intermediate value used outside loop.\n");
2915
2916 return NULL;
2917 }
2918
2919 nloop_uses++;
2920 if (nloop_uses > 1)
2921 {
2922 if (dump_enabled_p ())
2923 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2924 "reduction value used in loop.\n");
2925 return NULL;
2926 }
2927
2928 phi_use_stmt = use_stmt;
2929 }
2930
2931 edge latch_e = loop_latch_edge (loop);
2932 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
2933 if (TREE_CODE (loop_arg) != SSA_NAME)
2934 {
2935 if (dump_enabled_p ())
2936 {
2937 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2938 "reduction: not ssa_name: ");
2939 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
2940 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2941 }
2942 return NULL;
2943 }
2944
2945 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2946 if (is_gimple_assign (def_stmt))
2947 {
2948 name = gimple_assign_lhs (def_stmt);
2949 phi_def = false;
2950 }
2951 else if (gimple_code (def_stmt) == GIMPLE_PHI)
2952 {
2953 name = PHI_RESULT (def_stmt);
2954 phi_def = true;
2955 }
2956 else
2957 {
2958 if (dump_enabled_p ())
2959 {
2960 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2961 "reduction: unhandled reduction operation: ");
2962 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, def_stmt, 0);
2963 }
2964 return NULL;
2965 }
2966
2967 if (! flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)))
2968 return NULL;
2969
2970 nloop_uses = 0;
2971 auto_vec<gphi *, 3> lcphis;
2972 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2973 {
2974 gimple *use_stmt = USE_STMT (use_p);
2975 if (is_gimple_debug (use_stmt))
2976 continue;
2977 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2978 nloop_uses++;
2979 else
2980 /* We can have more than one loop-closed PHI. */
2981 lcphis.safe_push (as_a <gphi *> (use_stmt));
2982 if (nloop_uses > 1)
2983 {
2984 if (dump_enabled_p ())
2985 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2986 "reduction used in loop.\n");
2987 return NULL;
2988 }
2989 }
2990
2991 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2992 defined in the inner loop. */
2993 if (phi_def)
2994 {
2995 op1 = PHI_ARG_DEF (def_stmt, 0);
2996
2997 if (gimple_phi_num_args (def_stmt) != 1
2998 || TREE_CODE (op1) != SSA_NAME)
2999 {
3000 if (dump_enabled_p ())
3001 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3002 "unsupported phi node definition.\n");
3003
3004 return NULL;
3005 }
3006
3007 gimple *def1 = SSA_NAME_DEF_STMT (op1);
3008 if (gimple_bb (def1)
3009 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
3010 && loop->inner
3011 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
3012 && is_gimple_assign (def1)
3013 && flow_bb_inside_loop_p (loop->inner, gimple_bb (phi_use_stmt)))
3014 {
3015 if (dump_enabled_p ())
3016 report_vect_op (MSG_NOTE, def_stmt,
3017 "detected double reduction: ");
3018
3019 *double_reduc = true;
3020 return def_stmt;
3021 }
3022
3023 return NULL;
3024 }
3025
3026 /* If we are vectorizing an inner reduction we are executing that
3027 in the original order only in case we are not dealing with a
3028 double reduction. */
3029 bool check_reduction = true;
3030 if (flow_loop_nested_p (vect_loop, loop))
3031 {
3032 gphi *lcphi;
3033 unsigned i;
3034 check_reduction = false;
3035 FOR_EACH_VEC_ELT (lcphis, i, lcphi)
3036 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, gimple_phi_result (lcphi))
3037 {
3038 gimple *use_stmt = USE_STMT (use_p);
3039 if (is_gimple_debug (use_stmt))
3040 continue;
3041 if (! flow_bb_inside_loop_p (vect_loop, gimple_bb (use_stmt)))
3042 check_reduction = true;
3043 }
3044 }
3045
3046 bool nested_in_vect_loop = flow_loop_nested_p (vect_loop, loop);
3047 code = orig_code = gimple_assign_rhs_code (def_stmt);
3048
3049 /* We can handle "res -= x[i]", which is non-associative by
3050 simply rewriting this into "res += -x[i]". Avoid changing
3051 gimple instruction for the first simple tests and only do this
3052 if we're allowed to change code at all. */
3053 if (code == MINUS_EXPR && gimple_assign_rhs2 (def_stmt) != phi_name)
3054 code = PLUS_EXPR;
3055
3056 if (code == COND_EXPR)
3057 {
3058 if (! nested_in_vect_loop)
3059 *v_reduc_type = COND_REDUCTION;
3060
3061 op3 = gimple_assign_rhs1 (def_stmt);
3062 if (COMPARISON_CLASS_P (op3))
3063 {
3064 op4 = TREE_OPERAND (op3, 1);
3065 op3 = TREE_OPERAND (op3, 0);
3066 }
3067 if (op3 == phi_name || op4 == phi_name)
3068 {
3069 if (dump_enabled_p ())
3070 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3071 "reduction: condition depends on previous"
3072 " iteration: ");
3073 return NULL;
3074 }
3075
3076 op1 = gimple_assign_rhs2 (def_stmt);
3077 op2 = gimple_assign_rhs3 (def_stmt);
3078 }
3079 else if (!commutative_tree_code (code) || !associative_tree_code (code))
3080 {
3081 if (dump_enabled_p ())
3082 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3083 "reduction: not commutative/associative: ");
3084 return NULL;
3085 }
3086 else if (get_gimple_rhs_class (code) == GIMPLE_BINARY_RHS)
3087 {
3088 op1 = gimple_assign_rhs1 (def_stmt);
3089 op2 = gimple_assign_rhs2 (def_stmt);
3090 }
3091 else
3092 {
3093 if (dump_enabled_p ())
3094 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3095 "reduction: not handled operation: ");
3096 return NULL;
3097 }
3098
3099 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
3100 {
3101 if (dump_enabled_p ())
3102 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3103 "reduction: both uses not ssa_names: ");
3104
3105 return NULL;
3106 }
3107
3108 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
3109 if ((TREE_CODE (op1) == SSA_NAME
3110 && !types_compatible_p (type,TREE_TYPE (op1)))
3111 || (TREE_CODE (op2) == SSA_NAME
3112 && !types_compatible_p (type, TREE_TYPE (op2)))
3113 || (op3 && TREE_CODE (op3) == SSA_NAME
3114 && !types_compatible_p (type, TREE_TYPE (op3)))
3115 || (op4 && TREE_CODE (op4) == SSA_NAME
3116 && !types_compatible_p (type, TREE_TYPE (op4))))
3117 {
3118 if (dump_enabled_p ())
3119 {
3120 dump_printf_loc (MSG_NOTE, vect_location,
3121 "reduction: multiple types: operation type: ");
3122 dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
3123 dump_printf (MSG_NOTE, ", operands types: ");
3124 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3125 TREE_TYPE (op1));
3126 dump_printf (MSG_NOTE, ",");
3127 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3128 TREE_TYPE (op2));
3129 if (op3)
3130 {
3131 dump_printf (MSG_NOTE, ",");
3132 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3133 TREE_TYPE (op3));
3134 }
3135
3136 if (op4)
3137 {
3138 dump_printf (MSG_NOTE, ",");
3139 dump_generic_expr (MSG_NOTE, TDF_SLIM,
3140 TREE_TYPE (op4));
3141 }
3142 dump_printf (MSG_NOTE, "\n");
3143 }
3144
3145 return NULL;
3146 }
3147
3148 /* Check whether it's ok to change the order of the computation.
3149 Generally, when vectorizing a reduction we change the order of the
3150 computation. This may change the behavior of the program in some
3151 cases, so we need to check that this is ok. One exception is when
3152 vectorizing an outer-loop: the inner-loop is executed sequentially,
3153 and therefore vectorizing reductions in the inner-loop during
3154 outer-loop vectorization is safe. */
3155 if (check_reduction
3156 && *v_reduc_type == TREE_CODE_REDUCTION
3157 && needs_fold_left_reduction_p (type, code,
3158 need_wrapping_integral_overflow))
3159 *v_reduc_type = FOLD_LEFT_REDUCTION;
3160
3161 /* Reduction is safe. We're dealing with one of the following:
3162 1) integer arithmetic and no trapv
3163 2) floating point arithmetic, and special flags permit this optimization
3164 3) nested cycle (i.e., outer loop vectorization). */
3165 stmt_vec_info def1_info = loop_info->lookup_def (op1);
3166 stmt_vec_info def2_info = loop_info->lookup_def (op2);
3167 if (code != COND_EXPR && !def1_info && !def2_info)
3168 {
3169 if (dump_enabled_p ())
3170 report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
3171 return NULL;
3172 }
3173
3174 /* Check that one def is the reduction def, defined by PHI,
3175 the other def is either defined in the loop ("vect_internal_def"),
3176 or it's an induction (defined by a loop-header phi-node). */
3177
3178 if (def2_info
3179 && def2_info->stmt == phi
3180 && (code == COND_EXPR
3181 || !def1_info
3182 || vect_valid_reduction_input_p (def1_info)))
3183 {
3184 if (dump_enabled_p ())
3185 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
3186 return def_stmt;
3187 }
3188
3189 if (def1_info
3190 && def1_info->stmt == phi
3191 && (code == COND_EXPR
3192 || !def2_info
3193 || vect_valid_reduction_input_p (def2_info)))
3194 {
3195 if (! nested_in_vect_loop && orig_code != MINUS_EXPR)
3196 {
3197 /* Check if we can swap operands (just for simplicity - so that
3198 the rest of the code can assume that the reduction variable
3199 is always the last (second) argument). */
3200 if (code == COND_EXPR)
3201 {
3202 /* Swap cond_expr by inverting the condition. */
3203 tree cond_expr = gimple_assign_rhs1 (def_stmt);
3204 enum tree_code invert_code = ERROR_MARK;
3205 enum tree_code cond_code = TREE_CODE (cond_expr);
3206
3207 if (TREE_CODE_CLASS (cond_code) == tcc_comparison)
3208 {
3209 bool honor_nans = HONOR_NANS (TREE_OPERAND (cond_expr, 0));
3210 invert_code = invert_tree_comparison (cond_code, honor_nans);
3211 }
3212 if (invert_code != ERROR_MARK)
3213 {
3214 TREE_SET_CODE (cond_expr, invert_code);
3215 swap_ssa_operands (def_stmt,
3216 gimple_assign_rhs2_ptr (def_stmt),
3217 gimple_assign_rhs3_ptr (def_stmt));
3218 }
3219 else
3220 {
3221 if (dump_enabled_p ())
3222 report_vect_op (MSG_NOTE, def_stmt,
3223 "detected reduction: cannot swap operands "
3224 "for cond_expr");
3225 return NULL;
3226 }
3227 }
3228 else
3229 swap_ssa_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
3230 gimple_assign_rhs2_ptr (def_stmt));
3231
3232 if (dump_enabled_p ())
3233 report_vect_op (MSG_NOTE, def_stmt,
3234 "detected reduction: need to swap operands: ");
3235
3236 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
3237 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
3238 }
3239 else
3240 {
3241 if (dump_enabled_p ())
3242 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
3243 }
3244
3245 return def_stmt;
3246 }
3247
3248 /* Try to find SLP reduction chain. */
3249 if (! nested_in_vect_loop
3250 && code != COND_EXPR
3251 && orig_code != MINUS_EXPR
3252 && vect_is_slp_reduction (loop_info, phi, def_stmt))
3253 {
3254 if (dump_enabled_p ())
3255 report_vect_op (MSG_NOTE, def_stmt,
3256 "reduction: detected reduction chain: ");
3257
3258 return def_stmt;
3259 }
3260
3261 /* Dissolve group eventually half-built by vect_is_slp_reduction. */
3262 gimple *first = REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (def_stmt));
3263 while (first)
3264 {
3265 gimple *next = REDUC_GROUP_NEXT_ELEMENT (vinfo_for_stmt (first));
3266 REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (first)) = NULL;
3267 REDUC_GROUP_NEXT_ELEMENT (vinfo_for_stmt (first)) = NULL;
3268 first = next;
3269 }
3270
3271 /* Look for the expression computing loop_arg from loop PHI result. */
3272 if (check_reduction_path (vect_location, loop, as_a <gphi *> (phi), loop_arg,
3273 code))
3274 return def_stmt;
3275
3276 if (dump_enabled_p ())
3277 {
3278 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
3279 "reduction: unknown pattern: ");
3280 }
3281
3282 return NULL;
3283 }
3284
3285 /* Wrapper around vect_is_simple_reduction, which will modify code
3286 in-place if it enables detection of more reductions. Arguments
3287 as there. */
3288
3289 gimple *
3290 vect_force_simple_reduction (loop_vec_info loop_info, gimple *phi,
3291 bool *double_reduc,
3292 bool need_wrapping_integral_overflow)
3293 {
3294 enum vect_reduction_type v_reduc_type;
3295 gimple *def = vect_is_simple_reduction (loop_info, phi, double_reduc,
3296 need_wrapping_integral_overflow,
3297 &v_reduc_type);
3298 if (def)
3299 {
3300 stmt_vec_info reduc_def_info = vinfo_for_stmt (phi);
3301 STMT_VINFO_REDUC_TYPE (reduc_def_info) = v_reduc_type;
3302 STMT_VINFO_REDUC_DEF (reduc_def_info) = def;
3303 reduc_def_info = vinfo_for_stmt (def);
3304 STMT_VINFO_REDUC_TYPE (reduc_def_info) = v_reduc_type;
3305 STMT_VINFO_REDUC_DEF (reduc_def_info) = phi;
3306 }
3307 return def;
3308 }
3309
3310 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
3311 int
3312 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
3313 int *peel_iters_epilogue,
3314 stmt_vector_for_cost *scalar_cost_vec,
3315 stmt_vector_for_cost *prologue_cost_vec,
3316 stmt_vector_for_cost *epilogue_cost_vec)
3317 {
3318 int retval = 0;
3319 int assumed_vf = vect_vf_for_cost (loop_vinfo);
3320
3321 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
3322 {
3323 *peel_iters_epilogue = assumed_vf / 2;
3324 if (dump_enabled_p ())
3325 dump_printf_loc (MSG_NOTE, vect_location,
3326 "cost model: epilogue peel iters set to vf/2 "
3327 "because loop iterations are unknown .\n");
3328
3329 /* If peeled iterations are known but number of scalar loop
3330 iterations are unknown, count a taken branch per peeled loop. */
3331 retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
3332 NULL, 0, vect_prologue);
3333 retval = record_stmt_cost (prologue_cost_vec, 1, cond_branch_taken,
3334 NULL, 0, vect_epilogue);
3335 }
3336 else
3337 {
3338 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
3339 peel_iters_prologue = niters < peel_iters_prologue ?
3340 niters : peel_iters_prologue;
3341 *peel_iters_epilogue = (niters - peel_iters_prologue) % assumed_vf;
3342 /* If we need to peel for gaps, but no peeling is required, we have to
3343 peel VF iterations. */
3344 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
3345 *peel_iters_epilogue = assumed_vf;
3346 }
3347
3348 stmt_info_for_cost *si;
3349 int j;
3350 if (peel_iters_prologue)
3351 FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
3352 {
3353 stmt_vec_info stmt_info
3354 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3355 retval += record_stmt_cost (prologue_cost_vec,
3356 si->count * peel_iters_prologue,
3357 si->kind, stmt_info, si->misalign,
3358 vect_prologue);
3359 }
3360 if (*peel_iters_epilogue)
3361 FOR_EACH_VEC_ELT (*scalar_cost_vec, j, si)
3362 {
3363 stmt_vec_info stmt_info
3364 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3365 retval += record_stmt_cost (epilogue_cost_vec,
3366 si->count * *peel_iters_epilogue,
3367 si->kind, stmt_info, si->misalign,
3368 vect_epilogue);
3369 }
3370
3371 return retval;
3372 }
3373
3374 /* Function vect_estimate_min_profitable_iters
3375
3376 Return the number of iterations required for the vector version of the
3377 loop to be profitable relative to the cost of the scalar version of the
3378 loop.
3379
3380 *RET_MIN_PROFITABLE_NITERS is a cost model profitability threshold
3381 of iterations for vectorization. -1 value means loop vectorization
3382 is not profitable. This returned value may be used for dynamic
3383 profitability check.
3384
3385 *RET_MIN_PROFITABLE_ESTIMATE is a profitability threshold to be used
3386 for static check against estimated number of iterations. */
3387
3388 static void
3389 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
3390 int *ret_min_profitable_niters,
3391 int *ret_min_profitable_estimate)
3392 {
3393 int min_profitable_iters;
3394 int min_profitable_estimate;
3395 int peel_iters_prologue;
3396 int peel_iters_epilogue;
3397 unsigned vec_inside_cost = 0;
3398 int vec_outside_cost = 0;
3399 unsigned vec_prologue_cost = 0;
3400 unsigned vec_epilogue_cost = 0;
3401 int scalar_single_iter_cost = 0;
3402 int scalar_outside_cost = 0;
3403 int assumed_vf = vect_vf_for_cost (loop_vinfo);
3404 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
3405 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3406
3407 /* Cost model disabled. */
3408 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
3409 {
3410 dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
3411 *ret_min_profitable_niters = 0;
3412 *ret_min_profitable_estimate = 0;
3413 return;
3414 }
3415
3416 /* Requires loop versioning tests to handle misalignment. */
3417 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
3418 {
3419 /* FIXME: Make cost depend on complexity of individual check. */
3420 unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
3421 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
3422 vect_prologue);
3423 dump_printf (MSG_NOTE,
3424 "cost model: Adding cost of checks for loop "
3425 "versioning to treat misalignment.\n");
3426 }
3427
3428 /* Requires loop versioning with alias checks. */
3429 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
3430 {
3431 /* FIXME: Make cost depend on complexity of individual check. */
3432 unsigned len = LOOP_VINFO_COMP_ALIAS_DDRS (loop_vinfo).length ();
3433 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
3434 vect_prologue);
3435 len = LOOP_VINFO_CHECK_UNEQUAL_ADDRS (loop_vinfo).length ();
3436 if (len)
3437 /* Count LEN - 1 ANDs and LEN comparisons. */
3438 (void) add_stmt_cost (target_cost_data, len * 2 - 1, scalar_stmt,
3439 NULL, 0, vect_prologue);
3440 len = LOOP_VINFO_LOWER_BOUNDS (loop_vinfo).length ();
3441 if (len)
3442 {
3443 /* Count LEN - 1 ANDs and LEN comparisons. */
3444 unsigned int nstmts = len * 2 - 1;
3445 /* +1 for each bias that needs adding. */
3446 for (unsigned int i = 0; i < len; ++i)
3447 if (!LOOP_VINFO_LOWER_BOUNDS (loop_vinfo)[i].unsigned_p)
3448 nstmts += 1;
3449 (void) add_stmt_cost (target_cost_data, nstmts, scalar_stmt,
3450 NULL, 0, vect_prologue);
3451 }
3452 dump_printf (MSG_NOTE,
3453 "cost model: Adding cost of checks for loop "
3454 "versioning aliasing.\n");
3455 }
3456
3457 /* Requires loop versioning with niter checks. */
3458 if (LOOP_REQUIRES_VERSIONING_FOR_NITERS (loop_vinfo))
3459 {
3460 /* FIXME: Make cost depend on complexity of individual check. */
3461 (void) add_stmt_cost (target_cost_data, 1, vector_stmt, NULL, 0,
3462 vect_prologue);
3463 dump_printf (MSG_NOTE,
3464 "cost model: Adding cost of checks for loop "
3465 "versioning niters.\n");
3466 }
3467
3468 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
3469 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
3470 vect_prologue);
3471
3472 /* Count statements in scalar loop. Using this as scalar cost for a single
3473 iteration for now.
3474
3475 TODO: Add outer loop support.
3476
3477 TODO: Consider assigning different costs to different scalar
3478 statements. */
3479
3480 scalar_single_iter_cost
3481 = LOOP_VINFO_SINGLE_SCALAR_ITERATION_COST (loop_vinfo);
3482
3483 /* Add additional cost for the peeled instructions in prologue and epilogue
3484 loop. (For fully-masked loops there will be no peeling.)
3485
3486 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
3487 at compile-time - we assume it's vf/2 (the worst would be vf-1).
3488
3489 TODO: Build an expression that represents peel_iters for prologue and
3490 epilogue to be used in a run-time test. */
3491
3492 if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
3493 {
3494 peel_iters_prologue = 0;
3495 peel_iters_epilogue = 0;
3496
3497 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
3498 {
3499 /* We need to peel exactly one iteration. */
3500 peel_iters_epilogue += 1;
3501 stmt_info_for_cost *si;
3502 int j;
3503 FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo),
3504 j, si)
3505 {
3506 struct _stmt_vec_info *stmt_info
3507 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3508 (void) add_stmt_cost (target_cost_data, si->count,
3509 si->kind, stmt_info, si->misalign,
3510 vect_epilogue);
3511 }
3512 }
3513 }
3514 else if (npeel < 0)
3515 {
3516 peel_iters_prologue = assumed_vf / 2;
3517 dump_printf (MSG_NOTE, "cost model: "
3518 "prologue peel iters set to vf/2.\n");
3519
3520 /* If peeling for alignment is unknown, loop bound of main loop becomes
3521 unknown. */
3522 peel_iters_epilogue = assumed_vf / 2;
3523 dump_printf (MSG_NOTE, "cost model: "
3524 "epilogue peel iters set to vf/2 because "
3525 "peeling for alignment is unknown.\n");
3526
3527 /* If peeled iterations are unknown, count a taken branch and a not taken
3528 branch per peeled loop. Even if scalar loop iterations are known,
3529 vector iterations are not known since peeled prologue iterations are
3530 not known. Hence guards remain the same. */
3531 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
3532 NULL, 0, vect_prologue);
3533 (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
3534 NULL, 0, vect_prologue);
3535 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken,
3536 NULL, 0, vect_epilogue);
3537 (void) add_stmt_cost (target_cost_data, 1, cond_branch_not_taken,
3538 NULL, 0, vect_epilogue);
3539 stmt_info_for_cost *si;
3540 int j;
3541 FOR_EACH_VEC_ELT (LOOP_VINFO_SCALAR_ITERATION_COST (loop_vinfo), j, si)
3542 {
3543 struct _stmt_vec_info *stmt_info
3544 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3545 (void) add_stmt_cost (target_cost_data,
3546 si->count * peel_iters_prologue,
3547 si->kind, stmt_info, si->misalign,
3548 vect_prologue);
3549 (void) add_stmt_cost (target_cost_data,
3550 si->count * peel_iters_epilogue,
3551 si->kind, stmt_info, si->misalign,
3552 vect_epilogue);
3553 }
3554 }
3555 else
3556 {
3557 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
3558 stmt_info_for_cost *si;
3559 int j;
3560 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3561
3562 prologue_cost_vec.create (2);
3563 epilogue_cost_vec.create (2);
3564 peel_iters_prologue = npeel;
3565
3566 (void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
3567 &peel_iters_epilogue,
3568 &LOOP_VINFO_SCALAR_ITERATION_COST
3569 (loop_vinfo),
3570 &prologue_cost_vec,
3571 &epilogue_cost_vec);
3572
3573 FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
3574 {
3575 struct _stmt_vec_info *stmt_info
3576 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3577 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
3578 si->misalign, vect_prologue);
3579 }
3580
3581 FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
3582 {
3583 struct _stmt_vec_info *stmt_info
3584 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
3585 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
3586 si->misalign, vect_epilogue);
3587 }
3588
3589 prologue_cost_vec.release ();
3590 epilogue_cost_vec.release ();
3591 }
3592
3593 /* FORNOW: The scalar outside cost is incremented in one of the
3594 following ways:
3595
3596 1. The vectorizer checks for alignment and aliasing and generates
3597 a condition that allows dynamic vectorization. A cost model
3598 check is ANDED with the versioning condition. Hence scalar code
3599 path now has the added cost of the versioning check.
3600
3601 if (cost > th & versioning_check)
3602 jmp to vector code
3603
3604 Hence run-time scalar is incremented by not-taken branch cost.
3605
3606 2. The vectorizer then checks if a prologue is required. If the
3607 cost model check was not done before during versioning, it has to
3608 be done before the prologue check.
3609
3610 if (cost <= th)
3611 prologue = scalar_iters
3612 if (prologue == 0)
3613 jmp to vector code
3614 else
3615 execute prologue
3616 if (prologue == num_iters)
3617 go to exit
3618
3619 Hence the run-time scalar cost is incremented by a taken branch,
3620 plus a not-taken branch, plus a taken branch cost.
3621
3622 3. The vectorizer then checks if an epilogue is required. If the
3623 cost model check was not done before during prologue check, it
3624 has to be done with the epilogue check.
3625
3626 if (prologue == 0)
3627 jmp to vector code
3628 else
3629 execute prologue
3630 if (prologue == num_iters)
3631 go to exit
3632 vector code:
3633 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
3634 jmp to epilogue
3635
3636 Hence the run-time scalar cost should be incremented by 2 taken
3637 branches.
3638
3639 TODO: The back end may reorder the BBS's differently and reverse
3640 conditions/branch directions. Change the estimates below to
3641 something more reasonable. */
3642
3643 /* If the number of iterations is known and we do not do versioning, we can
3644 decide whether to vectorize at compile time. Hence the scalar version
3645 do not carry cost model guard costs. */
3646 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
3647 || LOOP_REQUIRES_VERSIONING (loop_vinfo))
3648 {
3649 /* Cost model check occurs at versioning. */
3650 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
3651 scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
3652 else
3653 {
3654 /* Cost model check occurs at prologue generation. */
3655 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
3656 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
3657 + vect_get_stmt_cost (cond_branch_not_taken);
3658 /* Cost model check occurs at epilogue generation. */
3659 else
3660 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
3661 }
3662 }
3663
3664 /* Complete the target-specific cost calculations. */
3665 finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
3666 &vec_inside_cost, &vec_epilogue_cost);
3667
3668 vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
3669
3670 if (dump_enabled_p ())
3671 {
3672 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
3673 dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
3674 vec_inside_cost);
3675 dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
3676 vec_prologue_cost);
3677 dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
3678 vec_epilogue_cost);
3679 dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
3680 scalar_single_iter_cost);
3681 dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
3682 scalar_outside_cost);
3683 dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
3684 vec_outside_cost);
3685 dump_printf (MSG_NOTE, " prologue iterations: %d\n",
3686 peel_iters_prologue);
3687 dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
3688 peel_iters_epilogue);
3689 }
3690
3691 /* Calculate number of iterations required to make the vector version
3692 profitable, relative to the loop bodies only. The following condition
3693 must hold true:
3694 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
3695 where
3696 SIC = scalar iteration cost, VIC = vector iteration cost,
3697 VOC = vector outside cost, VF = vectorization factor,
3698 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
3699 SOC = scalar outside cost for run time cost model check. */
3700
3701 if ((scalar_single_iter_cost * assumed_vf) > (int) vec_inside_cost)
3702 {
3703 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost)
3704 * assumed_vf
3705 - vec_inside_cost * peel_iters_prologue
3706 - vec_inside_cost * peel_iters_epilogue);
3707 if (min_profitable_iters <= 0)
3708 min_profitable_iters = 0;
3709 else
3710 {
3711 min_profitable_iters /= ((scalar_single_iter_cost * assumed_vf)
3712 - vec_inside_cost);
3713
3714 if ((scalar_single_iter_cost * assumed_vf * min_profitable_iters)
3715 <= (((int) vec_inside_cost * min_profitable_iters)
3716 + (((int) vec_outside_cost - scalar_outside_cost)
3717 * assumed_vf)))
3718 min_profitable_iters++;
3719 }
3720 }
3721 /* vector version will never be profitable. */
3722 else
3723 {
3724 if (LOOP_VINFO_LOOP (loop_vinfo)->force_vectorize)
3725 warning_at (vect_location.get_location_t (), OPT_Wopenmp_simd,
3726 "vectorization did not happen for a simd loop");
3727
3728 if (dump_enabled_p ())
3729 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3730 "cost model: the vector iteration cost = %d "
3731 "divided by the scalar iteration cost = %d "
3732 "is greater or equal to the vectorization factor = %d"
3733 ".\n",
3734 vec_inside_cost, scalar_single_iter_cost, assumed_vf);
3735 *ret_min_profitable_niters = -1;
3736 *ret_min_profitable_estimate = -1;
3737 return;
3738 }
3739
3740 dump_printf (MSG_NOTE,
3741 " Calculated minimum iters for profitability: %d\n",
3742 min_profitable_iters);
3743
3744 if (!LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
3745 && min_profitable_iters < (assumed_vf + peel_iters_prologue))
3746 /* We want the vectorized loop to execute at least once. */
3747 min_profitable_iters = assumed_vf + peel_iters_prologue;
3748
3749 if (dump_enabled_p ())
3750 dump_printf_loc (MSG_NOTE, vect_location,
3751 " Runtime profitability threshold = %d\n",
3752 min_profitable_iters);
3753
3754 *ret_min_profitable_niters = min_profitable_iters;
3755
3756 /* Calculate number of iterations required to make the vector version
3757 profitable, relative to the loop bodies only.
3758
3759 Non-vectorized variant is SIC * niters and it must win over vector
3760 variant on the expected loop trip count. The following condition must hold true:
3761 SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
3762
3763 if (vec_outside_cost <= 0)
3764 min_profitable_estimate = 0;
3765 else
3766 {
3767 min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost)
3768 * assumed_vf
3769 - vec_inside_cost * peel_iters_prologue
3770 - vec_inside_cost * peel_iters_epilogue)
3771 / ((scalar_single_iter_cost * assumed_vf)
3772 - vec_inside_cost);
3773 }
3774 min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
3775 if (dump_enabled_p ())
3776 dump_printf_loc (MSG_NOTE, vect_location,
3777 " Static estimate profitability threshold = %d\n",
3778 min_profitable_estimate);
3779
3780 *ret_min_profitable_estimate = min_profitable_estimate;
3781 }
3782
3783 /* Writes into SEL a mask for a vec_perm, equivalent to a vec_shr by OFFSET
3784 vector elements (not bits) for a vector with NELT elements. */
3785 static void
3786 calc_vec_perm_mask_for_shift (unsigned int offset, unsigned int nelt,
3787 vec_perm_builder *sel)
3788 {
3789 /* The encoding is a single stepped pattern. Any wrap-around is handled
3790 by vec_perm_indices. */
3791 sel->new_vector (nelt, 1, 3);
3792 for (unsigned int i = 0; i < 3; i++)
3793 sel->quick_push (i + offset);
3794 }
3795
3796 /* Checks whether the target supports whole-vector shifts for vectors of mode
3797 MODE. This is the case if _either_ the platform handles vec_shr_optab, _or_
3798 it supports vec_perm_const with masks for all necessary shift amounts. */
3799 static bool
3800 have_whole_vector_shift (machine_mode mode)
3801 {
3802 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3803 return true;
3804
3805 /* Variable-length vectors should be handled via the optab. */
3806 unsigned int nelt;
3807 if (!GET_MODE_NUNITS (mode).is_constant (&nelt))
3808 return false;
3809
3810 vec_perm_builder sel;
3811 vec_perm_indices indices;
3812 for (unsigned int i = nelt / 2; i >= 1; i /= 2)
3813 {
3814 calc_vec_perm_mask_for_shift (i, nelt, &sel);
3815 indices.new_vector (sel, 2, nelt);
3816 if (!can_vec_perm_const_p (mode, indices, false))
3817 return false;
3818 }
3819 return true;
3820 }
3821
3822 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
3823 functions. Design better to avoid maintenance issues. */
3824
3825 /* Function vect_model_reduction_cost.
3826
3827 Models cost for a reduction operation, including the vector ops
3828 generated within the strip-mine loop, the initial definition before
3829 the loop, and the epilogue code that must be generated. */
3830
3831 static void
3832 vect_model_reduction_cost (stmt_vec_info stmt_info, internal_fn reduc_fn,
3833 int ncopies, stmt_vector_for_cost *cost_vec)
3834 {
3835 int prologue_cost = 0, epilogue_cost = 0, inside_cost;
3836 enum tree_code code;
3837 optab optab;
3838 tree vectype;
3839 gimple *orig_stmt;
3840 machine_mode mode;
3841 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3842 struct loop *loop = NULL;
3843
3844 if (loop_vinfo)
3845 loop = LOOP_VINFO_LOOP (loop_vinfo);
3846
3847 /* Condition reductions generate two reductions in the loop. */
3848 vect_reduction_type reduction_type
3849 = STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info);
3850 if (reduction_type == COND_REDUCTION)
3851 ncopies *= 2;
3852
3853 vectype = STMT_VINFO_VECTYPE (stmt_info);
3854 mode = TYPE_MODE (vectype);
3855 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3856
3857 if (!orig_stmt)
3858 orig_stmt = STMT_VINFO_STMT (stmt_info);
3859
3860 code = gimple_assign_rhs_code (orig_stmt);
3861
3862 if (reduction_type == EXTRACT_LAST_REDUCTION
3863 || reduction_type == FOLD_LEFT_REDUCTION)
3864 {
3865 /* No extra instructions needed in the prologue. */
3866 prologue_cost = 0;
3867
3868 if (reduction_type == EXTRACT_LAST_REDUCTION || reduc_fn != IFN_LAST)
3869 /* Count one reduction-like operation per vector. */
3870 inside_cost = record_stmt_cost (cost_vec, ncopies, vec_to_scalar,
3871 stmt_info, 0, vect_body);
3872 else
3873 {
3874 /* Use NELEMENTS extracts and NELEMENTS scalar ops. */
3875 unsigned int nelements = ncopies * vect_nunits_for_cost (vectype);
3876 inside_cost = record_stmt_cost (cost_vec, nelements,
3877 vec_to_scalar, stmt_info, 0,
3878 vect_body);
3879 inside_cost += record_stmt_cost (cost_vec, nelements,
3880 scalar_stmt, stmt_info, 0,
3881 vect_body);
3882 }
3883 }
3884 else
3885 {
3886 /* Add in cost for initial definition.
3887 For cond reduction we have four vectors: initial index, step,
3888 initial result of the data reduction, initial value of the index
3889 reduction. */
3890 int prologue_stmts = reduction_type == COND_REDUCTION ? 4 : 1;
3891 prologue_cost += record_stmt_cost (cost_vec, prologue_stmts,
3892 scalar_to_vec, stmt_info, 0,
3893 vect_prologue);
3894
3895 /* Cost of reduction op inside loop. */
3896 inside_cost = record_stmt_cost (cost_vec, ncopies, vector_stmt,
3897 stmt_info, 0, vect_body);
3898 }
3899
3900 /* Determine cost of epilogue code.
3901
3902 We have a reduction operator that will reduce the vector in one statement.
3903 Also requires scalar extract. */
3904
3905 if (!loop || !nested_in_vect_loop_p (loop, orig_stmt))
3906 {
3907 if (reduc_fn != IFN_LAST)
3908 {
3909 if (reduction_type == COND_REDUCTION)
3910 {
3911 /* An EQ stmt and an COND_EXPR stmt. */
3912 epilogue_cost += record_stmt_cost (cost_vec, 2,
3913 vector_stmt, stmt_info, 0,
3914 vect_epilogue);
3915 /* Reduction of the max index and a reduction of the found
3916 values. */
3917 epilogue_cost += record_stmt_cost (cost_vec, 2,
3918 vec_to_scalar, stmt_info, 0,
3919 vect_epilogue);
3920 /* A broadcast of the max value. */
3921 epilogue_cost += record_stmt_cost (cost_vec, 1,
3922 scalar_to_vec, stmt_info, 0,
3923 vect_epilogue);
3924 }
3925 else
3926 {
3927 epilogue_cost += record_stmt_cost (cost_vec, 1, vector_stmt,
3928 stmt_info, 0, vect_epilogue);
3929 epilogue_cost += record_stmt_cost (cost_vec, 1,
3930 vec_to_scalar, stmt_info, 0,
3931 vect_epilogue);
3932 }
3933 }
3934 else if (reduction_type == COND_REDUCTION)
3935 {
3936 unsigned estimated_nunits = vect_nunits_for_cost (vectype);
3937 /* Extraction of scalar elements. */
3938 epilogue_cost += record_stmt_cost (cost_vec,
3939 2 * estimated_nunits,
3940 vec_to_scalar, stmt_info, 0,
3941 vect_epilogue);
3942 /* Scalar max reductions via COND_EXPR / MAX_EXPR. */
3943 epilogue_cost += record_stmt_cost (cost_vec,
3944 2 * estimated_nunits - 3,
3945 scalar_stmt, stmt_info, 0,
3946 vect_epilogue);
3947 }
3948 else if (reduction_type == EXTRACT_LAST_REDUCTION
3949 || reduction_type == FOLD_LEFT_REDUCTION)
3950 /* No extra instructions need in the epilogue. */
3951 ;
3952 else
3953 {
3954 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
3955 tree bitsize =
3956 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
3957 int element_bitsize = tree_to_uhwi (bitsize);
3958 int nelements = vec_size_in_bits / element_bitsize;
3959
3960 if (code == COND_EXPR)
3961 code = MAX_EXPR;
3962
3963 optab = optab_for_tree_code (code, vectype, optab_default);
3964
3965 /* We have a whole vector shift available. */
3966 if (optab != unknown_optab
3967 && VECTOR_MODE_P (mode)
3968 && optab_handler (optab, mode) != CODE_FOR_nothing
3969 && have_whole_vector_shift (mode))
3970 {
3971 /* Final reduction via vector shifts and the reduction operator.
3972 Also requires scalar extract. */
3973 epilogue_cost += record_stmt_cost (cost_vec,
3974 exact_log2 (nelements) * 2,
3975 vector_stmt, stmt_info, 0,
3976 vect_epilogue);
3977 epilogue_cost += record_stmt_cost (cost_vec, 1,
3978 vec_to_scalar, stmt_info, 0,
3979 vect_epilogue);
3980 }
3981 else
3982 /* Use extracts and reduction op for final reduction. For N
3983 elements, we have N extracts and N-1 reduction ops. */
3984 epilogue_cost += record_stmt_cost (cost_vec,
3985 nelements + nelements - 1,
3986 vector_stmt, stmt_info, 0,
3987 vect_epilogue);
3988 }
3989 }
3990
3991 if (dump_enabled_p ())
3992 dump_printf (MSG_NOTE,
3993 "vect_model_reduction_cost: inside_cost = %d, "
3994 "prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
3995 prologue_cost, epilogue_cost);
3996 }
3997
3998
3999 /* Function vect_model_induction_cost.
4000
4001 Models cost for induction operations. */
4002
4003 static void
4004 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies,
4005 stmt_vector_for_cost *cost_vec)
4006 {
4007 unsigned inside_cost, prologue_cost;
4008
4009 if (PURE_SLP_STMT (stmt_info))
4010 return;
4011
4012 /* loop cost for vec_loop. */
4013 inside_cost = record_stmt_cost (cost_vec, ncopies, vector_stmt,
4014 stmt_info, 0, vect_body);
4015
4016 /* prologue cost for vec_init and vec_step. */
4017 prologue_cost = record_stmt_cost (cost_vec, 2, scalar_to_vec,
4018 stmt_info, 0, vect_prologue);
4019
4020 if (dump_enabled_p ())
4021 dump_printf_loc (MSG_NOTE, vect_location,
4022 "vect_model_induction_cost: inside_cost = %d, "
4023 "prologue_cost = %d .\n", inside_cost, prologue_cost);
4024 }
4025
4026
4027
4028 /* Function get_initial_def_for_reduction
4029
4030 Input:
4031 STMT - a stmt that performs a reduction operation in the loop.
4032 INIT_VAL - the initial value of the reduction variable
4033
4034 Output:
4035 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
4036 of the reduction (used for adjusting the epilog - see below).
4037 Return a vector variable, initialized according to the operation that STMT
4038 performs. This vector will be used as the initial value of the
4039 vector of partial results.
4040
4041 Option1 (adjust in epilog): Initialize the vector as follows:
4042 add/bit or/xor: [0,0,...,0,0]
4043 mult/bit and: [1,1,...,1,1]
4044 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
4045 and when necessary (e.g. add/mult case) let the caller know
4046 that it needs to adjust the result by init_val.
4047
4048 Option2: Initialize the vector as follows:
4049 add/bit or/xor: [init_val,0,0,...,0]
4050 mult/bit and: [init_val,1,1,...,1]
4051 min/max/cond_expr: [init_val,init_val,...,init_val]
4052 and no adjustments are needed.
4053
4054 For example, for the following code:
4055
4056 s = init_val;
4057 for (i=0;i<n;i++)
4058 s = s + a[i];
4059
4060 STMT is 's = s + a[i]', and the reduction variable is 's'.
4061 For a vector of 4 units, we want to return either [0,0,0,init_val],
4062 or [0,0,0,0] and let the caller know that it needs to adjust
4063 the result at the end by 'init_val'.
4064
4065 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
4066 initialization vector is simpler (same element in all entries), if
4067 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
4068
4069 A cost model should help decide between these two schemes. */
4070
4071 tree
4072 get_initial_def_for_reduction (gimple *stmt, tree init_val,
4073 tree *adjustment_def)
4074 {
4075 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
4076 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
4077 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4078 tree scalar_type = TREE_TYPE (init_val);
4079 tree vectype = get_vectype_for_scalar_type (scalar_type);
4080 enum tree_code code = gimple_assign_rhs_code (stmt);
4081 tree def_for_init;
4082 tree init_def;
4083 REAL_VALUE_TYPE real_init_val = dconst0;
4084 int int_init_val = 0;
4085 gimple_seq stmts = NULL;
4086
4087 gcc_assert (vectype);
4088
4089 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
4090 || SCALAR_FLOAT_TYPE_P (scalar_type));
4091
4092 gcc_assert (nested_in_vect_loop_p (loop, stmt)
4093 || loop == (gimple_bb (stmt))->loop_father);
4094
4095 vect_reduction_type reduction_type
4096 = STMT_VINFO_VEC_REDUCTION_TYPE (stmt_vinfo);
4097
4098 switch (code)
4099 {
4100 case WIDEN_SUM_EXPR:
4101 case DOT_PROD_EXPR:
4102 case SAD_EXPR:
4103 case PLUS_EXPR:
4104 case MINUS_EXPR:
4105 case BIT_IOR_EXPR:
4106 case BIT_XOR_EXPR:
4107 case MULT_EXPR:
4108 case BIT_AND_EXPR:
4109 {
4110 /* ADJUSTMENT_DEF is NULL when called from
4111 vect_create_epilog_for_reduction to vectorize double reduction. */
4112 if (adjustment_def)
4113 *adjustment_def = init_val;
4114
4115 if (code == MULT_EXPR)
4116 {
4117 real_init_val = dconst1;
4118 int_init_val = 1;
4119 }
4120
4121 if (code == BIT_AND_EXPR)
4122 int_init_val = -1;
4123
4124 if (SCALAR_FLOAT_TYPE_P (scalar_type))
4125 def_for_init = build_real (scalar_type, real_init_val);
4126 else
4127 def_for_init = build_int_cst (scalar_type, int_init_val);
4128
4129 if (adjustment_def)
4130 /* Option1: the first element is '0' or '1' as well. */
4131 init_def = gimple_build_vector_from_val (&stmts, vectype,
4132 def_for_init);
4133 else if (!TYPE_VECTOR_SUBPARTS (vectype).is_constant ())
4134 {
4135 /* Option2 (variable length): the first element is INIT_VAL. */
4136 init_def = gimple_build_vector_from_val (&stmts, vectype,
4137 def_for_init);
4138 init_def = gimple_build (&stmts, CFN_VEC_SHL_INSERT,
4139 vectype, init_def, init_val);
4140 }
4141 else
4142 {
4143 /* Option2: the first element is INIT_VAL. */
4144 tree_vector_builder elts (vectype, 1, 2);
4145 elts.quick_push (init_val);
4146 elts.quick_push (def_for_init);
4147 init_def = gimple_build_vector (&stmts, &elts);
4148 }
4149 }
4150 break;
4151
4152 case MIN_EXPR:
4153 case MAX_EXPR:
4154 case COND_EXPR:
4155 {
4156 if (adjustment_def)
4157 {
4158 *adjustment_def = NULL_TREE;
4159 if (reduction_type != COND_REDUCTION
4160 && reduction_type != EXTRACT_LAST_REDUCTION)
4161 {
4162 init_def = vect_get_vec_def_for_operand (init_val, stmt);
4163 break;
4164 }
4165 }
4166 init_val = gimple_convert (&stmts, TREE_TYPE (vectype), init_val);
4167 init_def = gimple_build_vector_from_val (&stmts, vectype, init_val);
4168 }
4169 break;
4170
4171 default:
4172 gcc_unreachable ();
4173 }
4174
4175 if (stmts)
4176 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
4177 return init_def;
4178 }
4179
4180 /* Get at the initial defs for the reduction PHIs in SLP_NODE.
4181 NUMBER_OF_VECTORS is the number of vector defs to create.
4182 If NEUTRAL_OP is nonnull, introducing extra elements of that
4183 value will not change the result. */
4184
4185 static void
4186 get_initial_defs_for_reduction (slp_tree slp_node,
4187 vec<tree> *vec_oprnds,
4188 unsigned int number_of_vectors,
4189 bool reduc_chain, tree neutral_op)
4190 {
4191 vec<gimple *> stmts = SLP_TREE_SCALAR_STMTS (slp_node);
4192 gimple *stmt = stmts[0];
4193 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
4194 unsigned HOST_WIDE_INT nunits;
4195 unsigned j, number_of_places_left_in_vector;
4196 tree vector_type;
4197 tree vop;
4198 int group_size = stmts.length ();
4199 unsigned int vec_num, i;
4200 unsigned number_of_copies = 1;
4201 vec<tree> voprnds;
4202 voprnds.create (number_of_vectors);
4203 struct loop *loop;
4204 auto_vec<tree, 16> permute_results;
4205
4206 vector_type = STMT_VINFO_VECTYPE (stmt_vinfo);
4207
4208 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def);
4209
4210 loop = (gimple_bb (stmt))->loop_father;
4211 gcc_assert (loop);
4212 edge pe = loop_preheader_edge (loop);
4213
4214 gcc_assert (!reduc_chain || neutral_op);
4215
4216 /* NUMBER_OF_COPIES is the number of times we need to use the same values in
4217 created vectors. It is greater than 1 if unrolling is performed.
4218
4219 For example, we have two scalar operands, s1 and s2 (e.g., group of
4220 strided accesses of size two), while NUNITS is four (i.e., four scalars
4221 of this type can be packed in a vector). The output vector will contain
4222 two copies of each scalar operand: {s1, s2, s1, s2}. (NUMBER_OF_COPIES
4223 will be 2).
4224
4225 If REDUC_GROUP_SIZE > NUNITS, the scalars will be split into several
4226 vectors containing the operands.
4227
4228 For example, NUNITS is four as before, and the group size is 8
4229 (s1, s2, ..., s8). We will create two vectors {s1, s2, s3, s4} and
4230 {s5, s6, s7, s8}. */
4231
4232 if (!TYPE_VECTOR_SUBPARTS (vector_type).is_constant (&nunits))
4233 nunits = group_size;
4234
4235 number_of_copies = nunits * number_of_vectors / group_size;
4236
4237 number_of_places_left_in_vector = nunits;
4238 bool constant_p = true;
4239 tree_vector_builder elts (vector_type, nunits, 1);
4240 elts.quick_grow (nunits);
4241 for (j = 0; j < number_of_copies; j++)
4242 {
4243 for (i = group_size - 1; stmts.iterate (i, &stmt); i--)
4244 {
4245 tree op;
4246 /* Get the def before the loop. In reduction chain we have only
4247 one initial value. */
4248 if ((j != (number_of_copies - 1)
4249 || (reduc_chain && i != 0))
4250 && neutral_op)
4251 op = neutral_op;
4252 else
4253 op = PHI_ARG_DEF_FROM_EDGE (stmt, pe);
4254
4255 /* Create 'vect_ = {op0,op1,...,opn}'. */
4256 number_of_places_left_in_vector--;
4257 elts[number_of_places_left_in_vector] = op;
4258 if (!CONSTANT_CLASS_P (op))
4259 constant_p = false;
4260
4261 if (number_of_places_left_in_vector == 0)
4262 {
4263 gimple_seq ctor_seq = NULL;
4264 tree init;
4265 if (constant_p && !neutral_op
4266 ? multiple_p (TYPE_VECTOR_SUBPARTS (vector_type), nunits)
4267 : known_eq (TYPE_VECTOR_SUBPARTS (vector_type), nunits))
4268 /* Build the vector directly from ELTS. */
4269 init = gimple_build_vector (&ctor_seq, &elts);
4270 else if (neutral_op)
4271 {
4272 /* Build a vector of the neutral value and shift the
4273 other elements into place. */
4274 init = gimple_build_vector_from_val (&ctor_seq, vector_type,
4275 neutral_op);
4276 int k = nunits;
4277 while (k > 0 && elts[k - 1] == neutral_op)
4278 k -= 1;
4279 while (k > 0)
4280 {
4281 k -= 1;
4282 init = gimple_build (&ctor_seq, CFN_VEC_SHL_INSERT,
4283 vector_type, init, elts[k]);
4284 }
4285 }
4286 else
4287 {
4288 /* First time round, duplicate ELTS to fill the
4289 required number of vectors, then cherry pick the
4290 appropriate result for each iteration. */
4291 if (vec_oprnds->is_empty ())
4292 duplicate_and_interleave (&ctor_seq, vector_type, elts,
4293 number_of_vectors,
4294 permute_results);
4295 init = permute_results[number_of_vectors - j - 1];
4296 }
4297 if (ctor_seq != NULL)
4298 gsi_insert_seq_on_edge_immediate (pe, ctor_seq);
4299 voprnds.quick_push (init);
4300
4301 number_of_places_left_in_vector = nunits;
4302 elts.new_vector (vector_type, nunits, 1);
4303 elts.quick_grow (nunits);
4304 constant_p = true;
4305 }
4306 }
4307 }
4308
4309 /* Since the vectors are created in the reverse order, we should invert
4310 them. */
4311 vec_num = voprnds.length ();
4312 for (j = vec_num; j != 0; j--)
4313 {
4314 vop = voprnds[j - 1];
4315 vec_oprnds->quick_push (vop);
4316 }
4317
4318 voprnds.release ();
4319
4320 /* In case that VF is greater than the unrolling factor needed for the SLP
4321 group of stmts, NUMBER_OF_VECTORS to be created is greater than
4322 NUMBER_OF_SCALARS/NUNITS or NUNITS/NUMBER_OF_SCALARS, and hence we have
4323 to replicate the vectors. */
4324 tree neutral_vec = NULL;
4325 while (number_of_vectors > vec_oprnds->length ())
4326 {
4327 if (neutral_op)
4328 {
4329 if (!neutral_vec)
4330 {
4331 gimple_seq ctor_seq = NULL;
4332 neutral_vec = gimple_build_vector_from_val
4333 (&ctor_seq, vector_type, neutral_op);
4334 if (ctor_seq != NULL)
4335 gsi_insert_seq_on_edge_immediate (pe, ctor_seq);
4336 }
4337 vec_oprnds->quick_push (neutral_vec);
4338 }
4339 else
4340 {
4341 for (i = 0; vec_oprnds->iterate (i, &vop) && i < vec_num; i++)
4342 vec_oprnds->quick_push (vop);
4343 }
4344 }
4345 }
4346
4347
4348 /* Function vect_create_epilog_for_reduction
4349
4350 Create code at the loop-epilog to finalize the result of a reduction
4351 computation.
4352
4353 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
4354 reduction statements.
4355 STMT is the scalar reduction stmt that is being vectorized.
4356 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
4357 number of elements that we can fit in a vectype (nunits). In this case
4358 we have to generate more than one vector stmt - i.e - we need to "unroll"
4359 the vector stmt by a factor VF/nunits. For more details see documentation
4360 in vectorizable_operation.
4361 REDUC_FN is the internal function for the epilog reduction.
4362 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
4363 computation.
4364 REDUC_INDEX is the index of the operand in the right hand side of the
4365 statement that is defined by REDUCTION_PHI.
4366 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
4367 SLP_NODE is an SLP node containing a group of reduction statements. The
4368 first one in this group is STMT.
4369 INDUC_VAL is for INTEGER_INDUC_COND_REDUCTION the value to use for the case
4370 when the COND_EXPR is never true in the loop. For MAX_EXPR, it needs to
4371 be smaller than any value of the IV in the loop, for MIN_EXPR larger than
4372 any value of the IV in the loop.
4373 INDUC_CODE is the code for epilog reduction if INTEGER_INDUC_COND_REDUCTION.
4374 NEUTRAL_OP is the value given by neutral_op_for_slp_reduction; it is
4375 null if this is not an SLP reduction
4376
4377 This function:
4378 1. Creates the reduction def-use cycles: sets the arguments for
4379 REDUCTION_PHIS:
4380 The loop-entry argument is the vectorized initial-value of the reduction.
4381 The loop-latch argument is taken from VECT_DEFS - the vector of partial
4382 sums.
4383 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
4384 by calling the function specified by REDUC_FN if available, or by
4385 other means (whole-vector shifts or a scalar loop).
4386 The function also creates a new phi node at the loop exit to preserve
4387 loop-closed form, as illustrated below.
4388
4389 The flow at the entry to this function:
4390
4391 loop:
4392 vec_def = phi <null, null> # REDUCTION_PHI
4393 VECT_DEF = vector_stmt # vectorized form of STMT
4394 s_loop = scalar_stmt # (scalar) STMT
4395 loop_exit:
4396 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4397 use <s_out0>
4398 use <s_out0>
4399
4400 The above is transformed by this function into:
4401
4402 loop:
4403 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4404 VECT_DEF = vector_stmt # vectorized form of STMT
4405 s_loop = scalar_stmt # (scalar) STMT
4406 loop_exit:
4407 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4408 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4409 v_out2 = reduce <v_out1>
4410 s_out3 = extract_field <v_out2, 0>
4411 s_out4 = adjust_result <s_out3>
4412 use <s_out4>
4413 use <s_out4>
4414 */
4415
4416 static void
4417 vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple *stmt,
4418 gimple *reduc_def_stmt,
4419 int ncopies, internal_fn reduc_fn,
4420 vec<gimple *> reduction_phis,
4421 bool double_reduc,
4422 slp_tree slp_node,
4423 slp_instance slp_node_instance,
4424 tree induc_val, enum tree_code induc_code,
4425 tree neutral_op)
4426 {
4427 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4428 stmt_vec_info prev_phi_info;
4429 tree vectype;
4430 machine_mode mode;
4431 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4432 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
4433 basic_block exit_bb;
4434 tree scalar_dest;
4435 tree scalar_type;
4436 gimple *new_phi = NULL, *phi;
4437 gimple_stmt_iterator exit_gsi;
4438 tree vec_dest;
4439 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
4440 gimple *epilog_stmt = NULL;
4441 enum tree_code code = gimple_assign_rhs_code (stmt);
4442 gimple *exit_phi;
4443 tree bitsize;
4444 tree adjustment_def = NULL;
4445 tree vec_initial_def = NULL;
4446 tree expr, def, initial_def = NULL;
4447 tree orig_name, scalar_result;
4448 imm_use_iterator imm_iter, phi_imm_iter;
4449 use_operand_p use_p, phi_use_p;
4450 gimple *use_stmt, *orig_stmt, *reduction_phi = NULL;
4451 bool nested_in_vect_loop = false;
4452 auto_vec<gimple *> new_phis;
4453 auto_vec<gimple *> inner_phis;
4454 enum vect_def_type dt = vect_unknown_def_type;
4455 int j, i;
4456 auto_vec<tree> scalar_results;
4457 unsigned int group_size = 1, k, ratio;
4458 auto_vec<tree> vec_initial_defs;
4459 auto_vec<gimple *> phis;
4460 bool slp_reduc = false;
4461 bool direct_slp_reduc;
4462 tree new_phi_result;
4463 gimple *inner_phi = NULL;
4464 tree induction_index = NULL_TREE;
4465
4466 if (slp_node)
4467 group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
4468
4469 if (nested_in_vect_loop_p (loop, stmt))
4470 {
4471 outer_loop = loop;
4472 loop = loop->inner;
4473 nested_in_vect_loop = true;
4474 gcc_assert (!slp_node);
4475 }
4476
4477 vectype = STMT_VINFO_VECTYPE (stmt_info);
4478 gcc_assert (vectype);
4479 mode = TYPE_MODE (vectype);
4480
4481 /* 1. Create the reduction def-use cycle:
4482 Set the arguments of REDUCTION_PHIS, i.e., transform
4483
4484 loop:
4485 vec_def = phi <null, null> # REDUCTION_PHI
4486 VECT_DEF = vector_stmt # vectorized form of STMT
4487 ...
4488
4489 into:
4490
4491 loop:
4492 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
4493 VECT_DEF = vector_stmt # vectorized form of STMT
4494 ...
4495
4496 (in case of SLP, do it for all the phis). */
4497
4498 /* Get the loop-entry arguments. */
4499 enum vect_def_type initial_def_dt = vect_unknown_def_type;
4500 if (slp_node)
4501 {
4502 unsigned vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
4503 vec_initial_defs.reserve (vec_num);
4504 get_initial_defs_for_reduction (slp_node_instance->reduc_phis,
4505 &vec_initial_defs, vec_num,
4506 REDUC_GROUP_FIRST_ELEMENT (stmt_info),
4507 neutral_op);
4508 }
4509 else
4510 {
4511 /* Get at the scalar def before the loop, that defines the initial value
4512 of the reduction variable. */
4513 initial_def = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
4514 loop_preheader_edge (loop));
4515 /* Optimize: if initial_def is for REDUC_MAX smaller than the base
4516 and we can't use zero for induc_val, use initial_def. Similarly
4517 for REDUC_MIN and initial_def larger than the base. */
4518 if (TREE_CODE (initial_def) == INTEGER_CST
4519 && (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
4520 == INTEGER_INDUC_COND_REDUCTION)
4521 && !integer_zerop (induc_val)
4522 && ((induc_code == MAX_EXPR
4523 && tree_int_cst_lt (initial_def, induc_val))
4524 || (induc_code == MIN_EXPR
4525 && tree_int_cst_lt (induc_val, initial_def))))
4526 induc_val = initial_def;
4527
4528 if (double_reduc)
4529 /* In case of double reduction we only create a vector variable
4530 to be put in the reduction phi node. The actual statement
4531 creation is done later in this function. */
4532 vec_initial_def = vect_create_destination_var (initial_def, vectype);
4533 else if (nested_in_vect_loop)
4534 {
4535 /* Do not use an adjustment def as that case is not supported
4536 correctly if ncopies is not one. */
4537 vect_is_simple_use (initial_def, loop_vinfo, &initial_def_dt);
4538 vec_initial_def = vect_get_vec_def_for_operand (initial_def, stmt);
4539 }
4540 else
4541 vec_initial_def = get_initial_def_for_reduction (stmt, initial_def,
4542 &adjustment_def);
4543 vec_initial_defs.create (1);
4544 vec_initial_defs.quick_push (vec_initial_def);
4545 }
4546
4547 /* Set phi nodes arguments. */
4548 FOR_EACH_VEC_ELT (reduction_phis, i, phi)
4549 {
4550 tree vec_init_def = vec_initial_defs[i];
4551 tree def = vect_defs[i];
4552 for (j = 0; j < ncopies; j++)
4553 {
4554 if (j != 0)
4555 {
4556 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4557 if (nested_in_vect_loop)
4558 vec_init_def
4559 = vect_get_vec_def_for_stmt_copy (initial_def_dt,
4560 vec_init_def);
4561 }
4562
4563 /* Set the loop-entry arg of the reduction-phi. */
4564
4565 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
4566 == INTEGER_INDUC_COND_REDUCTION)
4567 {
4568 /* Initialise the reduction phi to zero. This prevents initial
4569 values of non-zero interferring with the reduction op. */
4570 gcc_assert (ncopies == 1);
4571 gcc_assert (i == 0);
4572
4573 tree vec_init_def_type = TREE_TYPE (vec_init_def);
4574 tree induc_val_vec
4575 = build_vector_from_val (vec_init_def_type, induc_val);
4576
4577 add_phi_arg (as_a <gphi *> (phi), induc_val_vec,
4578 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4579 }
4580 else
4581 add_phi_arg (as_a <gphi *> (phi), vec_init_def,
4582 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4583
4584 /* Set the loop-latch arg for the reduction-phi. */
4585 if (j > 0)
4586 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
4587
4588 add_phi_arg (as_a <gphi *> (phi), def, loop_latch_edge (loop),
4589 UNKNOWN_LOCATION);
4590
4591 if (dump_enabled_p ())
4592 {
4593 dump_printf_loc (MSG_NOTE, vect_location,
4594 "transform reduction: created def-use cycle: ");
4595 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
4596 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
4597 }
4598 }
4599 }
4600
4601 /* For cond reductions we want to create a new vector (INDEX_COND_EXPR)
4602 which is updated with the current index of the loop for every match of
4603 the original loop's cond_expr (VEC_STMT). This results in a vector
4604 containing the last time the condition passed for that vector lane.
4605 The first match will be a 1 to allow 0 to be used for non-matching
4606 indexes. If there are no matches at all then the vector will be all
4607 zeroes. */
4608 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION)
4609 {
4610 tree indx_before_incr, indx_after_incr;
4611 poly_uint64 nunits_out = TYPE_VECTOR_SUBPARTS (vectype);
4612
4613 gimple *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
4614 gcc_assert (gimple_assign_rhs_code (vec_stmt) == VEC_COND_EXPR);
4615
4616 int scalar_precision
4617 = GET_MODE_PRECISION (SCALAR_TYPE_MODE (TREE_TYPE (vectype)));
4618 tree cr_index_scalar_type = make_unsigned_type (scalar_precision);
4619 tree cr_index_vector_type = build_vector_type
4620 (cr_index_scalar_type, TYPE_VECTOR_SUBPARTS (vectype));
4621
4622 /* First we create a simple vector induction variable which starts
4623 with the values {1,2,3,...} (SERIES_VECT) and increments by the
4624 vector size (STEP). */
4625
4626 /* Create a {1,2,3,...} vector. */
4627 tree series_vect = build_index_vector (cr_index_vector_type, 1, 1);
4628
4629 /* Create a vector of the step value. */
4630 tree step = build_int_cst (cr_index_scalar_type, nunits_out);
4631 tree vec_step = build_vector_from_val (cr_index_vector_type, step);
4632
4633 /* Create an induction variable. */
4634 gimple_stmt_iterator incr_gsi;
4635 bool insert_after;
4636 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
4637 create_iv (series_vect, vec_step, NULL_TREE, loop, &incr_gsi,
4638 insert_after, &indx_before_incr, &indx_after_incr);
4639
4640 /* Next create a new phi node vector (NEW_PHI_TREE) which starts
4641 filled with zeros (VEC_ZERO). */
4642
4643 /* Create a vector of 0s. */
4644 tree zero = build_zero_cst (cr_index_scalar_type);
4645 tree vec_zero = build_vector_from_val (cr_index_vector_type, zero);
4646
4647 /* Create a vector phi node. */
4648 tree new_phi_tree = make_ssa_name (cr_index_vector_type);
4649 new_phi = create_phi_node (new_phi_tree, loop->header);
4650 loop_vinfo->add_stmt (new_phi);
4651 add_phi_arg (as_a <gphi *> (new_phi), vec_zero,
4652 loop_preheader_edge (loop), UNKNOWN_LOCATION);
4653
4654 /* Now take the condition from the loops original cond_expr
4655 (VEC_STMT) and produce a new cond_expr (INDEX_COND_EXPR) which for
4656 every match uses values from the induction variable
4657 (INDEX_BEFORE_INCR) otherwise uses values from the phi node
4658 (NEW_PHI_TREE).
4659 Finally, we update the phi (NEW_PHI_TREE) to take the value of
4660 the new cond_expr (INDEX_COND_EXPR). */
4661
4662 /* Duplicate the condition from vec_stmt. */
4663 tree ccompare = unshare_expr (gimple_assign_rhs1 (vec_stmt));
4664
4665 /* Create a conditional, where the condition is taken from vec_stmt
4666 (CCOMPARE), then is the induction index (INDEX_BEFORE_INCR) and
4667 else is the phi (NEW_PHI_TREE). */
4668 tree index_cond_expr = build3 (VEC_COND_EXPR, cr_index_vector_type,
4669 ccompare, indx_before_incr,
4670 new_phi_tree);
4671 induction_index = make_ssa_name (cr_index_vector_type);
4672 gimple *index_condition = gimple_build_assign (induction_index,
4673 index_cond_expr);
4674 gsi_insert_before (&incr_gsi, index_condition, GSI_SAME_STMT);
4675 stmt_vec_info index_vec_info = loop_vinfo->add_stmt (index_condition);
4676 STMT_VINFO_VECTYPE (index_vec_info) = cr_index_vector_type;
4677
4678 /* Update the phi with the vec cond. */
4679 add_phi_arg (as_a <gphi *> (new_phi), induction_index,
4680 loop_latch_edge (loop), UNKNOWN_LOCATION);
4681 }
4682
4683 /* 2. Create epilog code.
4684 The reduction epilog code operates across the elements of the vector
4685 of partial results computed by the vectorized loop.
4686 The reduction epilog code consists of:
4687
4688 step 1: compute the scalar result in a vector (v_out2)
4689 step 2: extract the scalar result (s_out3) from the vector (v_out2)
4690 step 3: adjust the scalar result (s_out3) if needed.
4691
4692 Step 1 can be accomplished using one the following three schemes:
4693 (scheme 1) using reduc_fn, if available.
4694 (scheme 2) using whole-vector shifts, if available.
4695 (scheme 3) using a scalar loop. In this case steps 1+2 above are
4696 combined.
4697
4698 The overall epilog code looks like this:
4699
4700 s_out0 = phi <s_loop> # original EXIT_PHI
4701 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4702 v_out2 = reduce <v_out1> # step 1
4703 s_out3 = extract_field <v_out2, 0> # step 2
4704 s_out4 = adjust_result <s_out3> # step 3
4705
4706 (step 3 is optional, and steps 1 and 2 may be combined).
4707 Lastly, the uses of s_out0 are replaced by s_out4. */
4708
4709
4710 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
4711 v_out1 = phi <VECT_DEF>
4712 Store them in NEW_PHIS. */
4713
4714 exit_bb = single_exit (loop)->dest;
4715 prev_phi_info = NULL;
4716 new_phis.create (vect_defs.length ());
4717 FOR_EACH_VEC_ELT (vect_defs, i, def)
4718 {
4719 for (j = 0; j < ncopies; j++)
4720 {
4721 tree new_def = copy_ssa_name (def);
4722 phi = create_phi_node (new_def, exit_bb);
4723 stmt_vec_info phi_info = loop_vinfo->add_stmt (phi);
4724 if (j == 0)
4725 new_phis.quick_push (phi);
4726 else
4727 {
4728 def = vect_get_vec_def_for_stmt_copy (dt, def);
4729 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
4730 }
4731
4732 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
4733 prev_phi_info = phi_info;
4734 }
4735 }
4736
4737 /* The epilogue is created for the outer-loop, i.e., for the loop being
4738 vectorized. Create exit phis for the outer loop. */
4739 if (double_reduc)
4740 {
4741 loop = outer_loop;
4742 exit_bb = single_exit (loop)->dest;
4743 inner_phis.create (vect_defs.length ());
4744 FOR_EACH_VEC_ELT (new_phis, i, phi)
4745 {
4746 tree new_result = copy_ssa_name (PHI_RESULT (phi));
4747 gphi *outer_phi = create_phi_node (new_result, exit_bb);
4748 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4749 PHI_RESULT (phi));
4750 prev_phi_info = loop_vinfo->add_stmt (outer_phi);
4751 inner_phis.quick_push (phi);
4752 new_phis[i] = outer_phi;
4753 while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
4754 {
4755 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4756 new_result = copy_ssa_name (PHI_RESULT (phi));
4757 outer_phi = create_phi_node (new_result, exit_bb);
4758 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4759 PHI_RESULT (phi));
4760 stmt_vec_info outer_phi_info = loop_vinfo->add_stmt (outer_phi);
4761 STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
4762 prev_phi_info = outer_phi_info;
4763 }
4764 }
4765 }
4766
4767 exit_gsi = gsi_after_labels (exit_bb);
4768
4769 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
4770 (i.e. when reduc_fn is not available) and in the final adjustment
4771 code (if needed). Also get the original scalar reduction variable as
4772 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
4773 represents a reduction pattern), the tree-code and scalar-def are
4774 taken from the original stmt that the pattern-stmt (STMT) replaces.
4775 Otherwise (it is a regular reduction) - the tree-code and scalar-def
4776 are taken from STMT. */
4777
4778 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4779 if (!orig_stmt)
4780 {
4781 /* Regular reduction */
4782 orig_stmt = stmt;
4783 }
4784 else
4785 {
4786 /* Reduction pattern */
4787 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
4788 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
4789 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
4790 }
4791
4792 code = gimple_assign_rhs_code (orig_stmt);
4793 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
4794 partial results are added and not subtracted. */
4795 if (code == MINUS_EXPR)
4796 code = PLUS_EXPR;
4797
4798 scalar_dest = gimple_assign_lhs (orig_stmt);
4799 scalar_type = TREE_TYPE (scalar_dest);
4800 scalar_results.create (group_size);
4801 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
4802 bitsize = TYPE_SIZE (scalar_type);
4803
4804 /* In case this is a reduction in an inner-loop while vectorizing an outer
4805 loop - we don't need to extract a single scalar result at the end of the
4806 inner-loop (unless it is double reduction, i.e., the use of reduction is
4807 outside the outer-loop). The final vector of partial results will be used
4808 in the vectorized outer-loop, or reduced to a scalar result at the end of
4809 the outer-loop. */
4810 if (nested_in_vect_loop && !double_reduc)
4811 goto vect_finalize_reduction;
4812
4813 /* SLP reduction without reduction chain, e.g.,
4814 # a1 = phi <a2, a0>
4815 # b1 = phi <b2, b0>
4816 a2 = operation (a1)
4817 b2 = operation (b1) */
4818 slp_reduc = (slp_node && !REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
4819
4820 /* True if we should implement SLP_REDUC using native reduction operations
4821 instead of scalar operations. */
4822 direct_slp_reduc = (reduc_fn != IFN_LAST
4823 && slp_reduc
4824 && !TYPE_VECTOR_SUBPARTS (vectype).is_constant ());
4825
4826 /* In case of reduction chain, e.g.,
4827 # a1 = phi <a3, a0>
4828 a2 = operation (a1)
4829 a3 = operation (a2),
4830
4831 we may end up with more than one vector result. Here we reduce them to
4832 one vector. */
4833 if (REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) || direct_slp_reduc)
4834 {
4835 tree first_vect = PHI_RESULT (new_phis[0]);
4836 gassign *new_vec_stmt = NULL;
4837 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4838 for (k = 1; k < new_phis.length (); k++)
4839 {
4840 gimple *next_phi = new_phis[k];
4841 tree second_vect = PHI_RESULT (next_phi);
4842 tree tem = make_ssa_name (vec_dest, new_vec_stmt);
4843 new_vec_stmt = gimple_build_assign (tem, code,
4844 first_vect, second_vect);
4845 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
4846 first_vect = tem;
4847 }
4848
4849 new_phi_result = first_vect;
4850 if (new_vec_stmt)
4851 {
4852 new_phis.truncate (0);
4853 new_phis.safe_push (new_vec_stmt);
4854 }
4855 }
4856 /* Likewise if we couldn't use a single defuse cycle. */
4857 else if (ncopies > 1)
4858 {
4859 gcc_assert (new_phis.length () == 1);
4860 tree first_vect = PHI_RESULT (new_phis[0]);
4861 gassign *new_vec_stmt = NULL;
4862 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4863 gimple *next_phi = new_phis[0];
4864 for (int k = 1; k < ncopies; ++k)
4865 {
4866 next_phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (next_phi));
4867 tree second_vect = PHI_RESULT (next_phi);
4868 tree tem = make_ssa_name (vec_dest, new_vec_stmt);
4869 new_vec_stmt = gimple_build_assign (tem, code,
4870 first_vect, second_vect);
4871 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
4872 first_vect = tem;
4873 }
4874 new_phi_result = first_vect;
4875 new_phis.truncate (0);
4876 new_phis.safe_push (new_vec_stmt);
4877 }
4878 else
4879 new_phi_result = PHI_RESULT (new_phis[0]);
4880
4881 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION
4882 && reduc_fn != IFN_LAST)
4883 {
4884 /* For condition reductions, we have a vector (NEW_PHI_RESULT) containing
4885 various data values where the condition matched and another vector
4886 (INDUCTION_INDEX) containing all the indexes of those matches. We
4887 need to extract the last matching index (which will be the index with
4888 highest value) and use this to index into the data vector.
4889 For the case where there were no matches, the data vector will contain
4890 all default values and the index vector will be all zeros. */
4891
4892 /* Get various versions of the type of the vector of indexes. */
4893 tree index_vec_type = TREE_TYPE (induction_index);
4894 gcc_checking_assert (TYPE_UNSIGNED (index_vec_type));
4895 tree index_scalar_type = TREE_TYPE (index_vec_type);
4896 tree index_vec_cmp_type = build_same_sized_truth_vector_type
4897 (index_vec_type);
4898
4899 /* Get an unsigned integer version of the type of the data vector. */
4900 int scalar_precision
4901 = GET_MODE_PRECISION (SCALAR_TYPE_MODE (scalar_type));
4902 tree scalar_type_unsigned = make_unsigned_type (scalar_precision);
4903 tree vectype_unsigned = build_vector_type
4904 (scalar_type_unsigned, TYPE_VECTOR_SUBPARTS (vectype));
4905
4906 /* First we need to create a vector (ZERO_VEC) of zeros and another
4907 vector (MAX_INDEX_VEC) filled with the last matching index, which we
4908 can create using a MAX reduction and then expanding.
4909 In the case where the loop never made any matches, the max index will
4910 be zero. */
4911
4912 /* Vector of {0, 0, 0,...}. */
4913 tree zero_vec = make_ssa_name (vectype);
4914 tree zero_vec_rhs = build_zero_cst (vectype);
4915 gimple *zero_vec_stmt = gimple_build_assign (zero_vec, zero_vec_rhs);
4916 gsi_insert_before (&exit_gsi, zero_vec_stmt, GSI_SAME_STMT);
4917
4918 /* Find maximum value from the vector of found indexes. */
4919 tree max_index = make_ssa_name (index_scalar_type);
4920 gcall *max_index_stmt = gimple_build_call_internal (IFN_REDUC_MAX,
4921 1, induction_index);
4922 gimple_call_set_lhs (max_index_stmt, max_index);
4923 gsi_insert_before (&exit_gsi, max_index_stmt, GSI_SAME_STMT);
4924
4925 /* Vector of {max_index, max_index, max_index,...}. */
4926 tree max_index_vec = make_ssa_name (index_vec_type);
4927 tree max_index_vec_rhs = build_vector_from_val (index_vec_type,
4928 max_index);
4929 gimple *max_index_vec_stmt = gimple_build_assign (max_index_vec,
4930 max_index_vec_rhs);
4931 gsi_insert_before (&exit_gsi, max_index_vec_stmt, GSI_SAME_STMT);
4932
4933 /* Next we compare the new vector (MAX_INDEX_VEC) full of max indexes
4934 with the vector (INDUCTION_INDEX) of found indexes, choosing values
4935 from the data vector (NEW_PHI_RESULT) for matches, 0 (ZERO_VEC)
4936 otherwise. Only one value should match, resulting in a vector
4937 (VEC_COND) with one data value and the rest zeros.
4938 In the case where the loop never made any matches, every index will
4939 match, resulting in a vector with all data values (which will all be
4940 the default value). */
4941
4942 /* Compare the max index vector to the vector of found indexes to find
4943 the position of the max value. */
4944 tree vec_compare = make_ssa_name (index_vec_cmp_type);
4945 gimple *vec_compare_stmt = gimple_build_assign (vec_compare, EQ_EXPR,
4946 induction_index,
4947 max_index_vec);
4948 gsi_insert_before (&exit_gsi, vec_compare_stmt, GSI_SAME_STMT);
4949
4950 /* Use the compare to choose either values from the data vector or
4951 zero. */
4952 tree vec_cond = make_ssa_name (vectype);
4953 gimple *vec_cond_stmt = gimple_build_assign (vec_cond, VEC_COND_EXPR,
4954 vec_compare, new_phi_result,
4955 zero_vec);
4956 gsi_insert_before (&exit_gsi, vec_cond_stmt, GSI_SAME_STMT);
4957
4958 /* Finally we need to extract the data value from the vector (VEC_COND)
4959 into a scalar (MATCHED_DATA_REDUC). Logically we want to do a OR
4960 reduction, but because this doesn't exist, we can use a MAX reduction
4961 instead. The data value might be signed or a float so we need to cast
4962 it first.
4963 In the case where the loop never made any matches, the data values are
4964 all identical, and so will reduce down correctly. */
4965
4966 /* Make the matched data values unsigned. */
4967 tree vec_cond_cast = make_ssa_name (vectype_unsigned);
4968 tree vec_cond_cast_rhs = build1 (VIEW_CONVERT_EXPR, vectype_unsigned,
4969 vec_cond);
4970 gimple *vec_cond_cast_stmt = gimple_build_assign (vec_cond_cast,
4971 VIEW_CONVERT_EXPR,
4972 vec_cond_cast_rhs);
4973 gsi_insert_before (&exit_gsi, vec_cond_cast_stmt, GSI_SAME_STMT);
4974
4975 /* Reduce down to a scalar value. */
4976 tree data_reduc = make_ssa_name (scalar_type_unsigned);
4977 gcall *data_reduc_stmt = gimple_build_call_internal (IFN_REDUC_MAX,
4978 1, vec_cond_cast);
4979 gimple_call_set_lhs (data_reduc_stmt, data_reduc);
4980 gsi_insert_before (&exit_gsi, data_reduc_stmt, GSI_SAME_STMT);
4981
4982 /* Convert the reduced value back to the result type and set as the
4983 result. */
4984 gimple_seq stmts = NULL;
4985 new_temp = gimple_build (&stmts, VIEW_CONVERT_EXPR, scalar_type,
4986 data_reduc);
4987 gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
4988 scalar_results.safe_push (new_temp);
4989 }
4990 else if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == COND_REDUCTION
4991 && reduc_fn == IFN_LAST)
4992 {
4993 /* Condition reduction without supported IFN_REDUC_MAX. Generate
4994 idx = 0;
4995 idx_val = induction_index[0];
4996 val = data_reduc[0];
4997 for (idx = 0, val = init, i = 0; i < nelts; ++i)
4998 if (induction_index[i] > idx_val)
4999 val = data_reduc[i], idx_val = induction_index[i];
5000 return val; */
5001
5002 tree data_eltype = TREE_TYPE (TREE_TYPE (new_phi_result));
5003 tree idx_eltype = TREE_TYPE (TREE_TYPE (induction_index));
5004 unsigned HOST_WIDE_INT el_size = tree_to_uhwi (TYPE_SIZE (idx_eltype));
5005 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (TREE_TYPE (induction_index));
5006 /* Enforced by vectorizable_reduction, which ensures we have target
5007 support before allowing a conditional reduction on variable-length
5008 vectors. */
5009 unsigned HOST_WIDE_INT v_size = el_size * nunits.to_constant ();
5010 tree idx_val = NULL_TREE, val = NULL_TREE;
5011 for (unsigned HOST_WIDE_INT off = 0; off < v_size; off += el_size)
5012 {
5013 tree old_idx_val = idx_val;
5014 tree old_val = val;
5015 idx_val = make_ssa_name (idx_eltype);
5016 epilog_stmt = gimple_build_assign (idx_val, BIT_FIELD_REF,
5017 build3 (BIT_FIELD_REF, idx_eltype,
5018 induction_index,
5019 bitsize_int (el_size),
5020 bitsize_int (off)));
5021 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5022 val = make_ssa_name (data_eltype);
5023 epilog_stmt = gimple_build_assign (val, BIT_FIELD_REF,
5024 build3 (BIT_FIELD_REF,
5025 data_eltype,
5026 new_phi_result,
5027 bitsize_int (el_size),
5028 bitsize_int (off)));
5029 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5030 if (off != 0)
5031 {
5032 tree new_idx_val = idx_val;
5033 tree new_val = val;
5034 if (off != v_size - el_size)
5035 {
5036 new_idx_val = make_ssa_name (idx_eltype);
5037 epilog_stmt = gimple_build_assign (new_idx_val,
5038 MAX_EXPR, idx_val,
5039 old_idx_val);
5040 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5041 }
5042 new_val = make_ssa_name (data_eltype);
5043 epilog_stmt = gimple_build_assign (new_val,
5044 COND_EXPR,
5045 build2 (GT_EXPR,
5046 boolean_type_node,
5047 idx_val,
5048 old_idx_val),
5049 val, old_val);
5050 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5051 idx_val = new_idx_val;
5052 val = new_val;
5053 }
5054 }
5055 /* Convert the reduced value back to the result type and set as the
5056 result. */
5057 gimple_seq stmts = NULL;
5058 val = gimple_convert (&stmts, scalar_type, val);
5059 gsi_insert_seq_before (&exit_gsi, stmts, GSI_SAME_STMT);
5060 scalar_results.safe_push (val);
5061 }
5062
5063 /* 2.3 Create the reduction code, using one of the three schemes described
5064 above. In SLP we simply need to extract all the elements from the
5065 vector (without reducing them), so we use scalar shifts. */
5066 else if (reduc_fn != IFN_LAST && !slp_reduc)
5067 {
5068 tree tmp;
5069 tree vec_elem_type;
5070
5071 /* Case 1: Create:
5072 v_out2 = reduc_expr <v_out1> */
5073
5074 if (dump_enabled_p ())
5075 dump_printf_loc (MSG_NOTE, vect_location,
5076 "Reduce using direct vector reduction.\n");
5077
5078 vec_elem_type = TREE_TYPE (TREE_TYPE (new_phi_result));
5079 if (!useless_type_conversion_p (scalar_type, vec_elem_type))
5080 {
5081 tree tmp_dest
5082 = vect_create_destination_var (scalar_dest, vec_elem_type);
5083 epilog_stmt = gimple_build_call_internal (reduc_fn, 1,
5084 new_phi_result);
5085 gimple_set_lhs (epilog_stmt, tmp_dest);
5086 new_temp = make_ssa_name (tmp_dest, epilog_stmt);
5087 gimple_set_lhs (epilog_stmt, new_temp);
5088 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5089
5090 epilog_stmt = gimple_build_assign (new_scalar_dest, NOP_EXPR,
5091 new_temp);
5092 }
5093 else
5094 {
5095 epilog_stmt = gimple_build_call_internal (reduc_fn, 1,
5096 new_phi_result);
5097 gimple_set_lhs (epilog_stmt, new_scalar_dest);
5098 }
5099
5100 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5101 gimple_set_lhs (epilog_stmt, new_temp);
5102 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5103
5104 if ((STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5105 == INTEGER_INDUC_COND_REDUCTION)
5106 && !operand_equal_p (initial_def, induc_val, 0))
5107 {
5108 /* Earlier we set the initial value to be a vector if induc_val
5109 values. Check the result and if it is induc_val then replace
5110 with the original initial value, unless induc_val is
5111 the same as initial_def already. */
5112 tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp,
5113 induc_val);
5114
5115 tmp = make_ssa_name (new_scalar_dest);
5116 epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
5117 initial_def, new_temp);
5118 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5119 new_temp = tmp;
5120 }
5121
5122 scalar_results.safe_push (new_temp);
5123 }
5124 else if (direct_slp_reduc)
5125 {
5126 /* Here we create one vector for each of the REDUC_GROUP_SIZE results,
5127 with the elements for other SLP statements replaced with the
5128 neutral value. We can then do a normal reduction on each vector. */
5129
5130 /* Enforced by vectorizable_reduction. */
5131 gcc_assert (new_phis.length () == 1);
5132 gcc_assert (pow2p_hwi (group_size));
5133
5134 slp_tree orig_phis_slp_node = slp_node_instance->reduc_phis;
5135 vec<gimple *> orig_phis = SLP_TREE_SCALAR_STMTS (orig_phis_slp_node);
5136 gimple_seq seq = NULL;
5137
5138 /* Build a vector {0, 1, 2, ...}, with the same number of elements
5139 and the same element size as VECTYPE. */
5140 tree index = build_index_vector (vectype, 0, 1);
5141 tree index_type = TREE_TYPE (index);
5142 tree index_elt_type = TREE_TYPE (index_type);
5143 tree mask_type = build_same_sized_truth_vector_type (index_type);
5144
5145 /* Create a vector that, for each element, identifies which of
5146 the REDUC_GROUP_SIZE results should use it. */
5147 tree index_mask = build_int_cst (index_elt_type, group_size - 1);
5148 index = gimple_build (&seq, BIT_AND_EXPR, index_type, index,
5149 build_vector_from_val (index_type, index_mask));
5150
5151 /* Get a neutral vector value. This is simply a splat of the neutral
5152 scalar value if we have one, otherwise the initial scalar value
5153 is itself a neutral value. */
5154 tree vector_identity = NULL_TREE;
5155 if (neutral_op)
5156 vector_identity = gimple_build_vector_from_val (&seq, vectype,
5157 neutral_op);
5158 for (unsigned int i = 0; i < group_size; ++i)
5159 {
5160 /* If there's no univeral neutral value, we can use the
5161 initial scalar value from the original PHI. This is used
5162 for MIN and MAX reduction, for example. */
5163 if (!neutral_op)
5164 {
5165 tree scalar_value
5166 = PHI_ARG_DEF_FROM_EDGE (orig_phis[i],
5167 loop_preheader_edge (loop));
5168 vector_identity = gimple_build_vector_from_val (&seq, vectype,
5169 scalar_value);
5170 }
5171
5172 /* Calculate the equivalent of:
5173
5174 sel[j] = (index[j] == i);
5175
5176 which selects the elements of NEW_PHI_RESULT that should
5177 be included in the result. */
5178 tree compare_val = build_int_cst (index_elt_type, i);
5179 compare_val = build_vector_from_val (index_type, compare_val);
5180 tree sel = gimple_build (&seq, EQ_EXPR, mask_type,
5181 index, compare_val);
5182
5183 /* Calculate the equivalent of:
5184
5185 vec = seq ? new_phi_result : vector_identity;
5186
5187 VEC is now suitable for a full vector reduction. */
5188 tree vec = gimple_build (&seq, VEC_COND_EXPR, vectype,
5189 sel, new_phi_result, vector_identity);
5190
5191 /* Do the reduction and convert it to the appropriate type. */
5192 tree scalar = gimple_build (&seq, as_combined_fn (reduc_fn),
5193 TREE_TYPE (vectype), vec);
5194 scalar = gimple_convert (&seq, scalar_type, scalar);
5195 scalar_results.safe_push (scalar);
5196 }
5197 gsi_insert_seq_before (&exit_gsi, seq, GSI_SAME_STMT);
5198 }
5199 else
5200 {
5201 bool reduce_with_shift;
5202 tree vec_temp;
5203
5204 /* COND reductions all do the final reduction with MAX_EXPR
5205 or MIN_EXPR. */
5206 if (code == COND_EXPR)
5207 {
5208 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5209 == INTEGER_INDUC_COND_REDUCTION)
5210 code = induc_code;
5211 else
5212 code = MAX_EXPR;
5213 }
5214
5215 /* See if the target wants to do the final (shift) reduction
5216 in a vector mode of smaller size and first reduce upper/lower
5217 halves against each other. */
5218 enum machine_mode mode1 = mode;
5219 tree vectype1 = vectype;
5220 unsigned sz = tree_to_uhwi (TYPE_SIZE_UNIT (vectype));
5221 unsigned sz1 = sz;
5222 if (!slp_reduc
5223 && (mode1 = targetm.vectorize.split_reduction (mode)) != mode)
5224 sz1 = GET_MODE_SIZE (mode1).to_constant ();
5225
5226 vectype1 = get_vectype_for_scalar_type_and_size (scalar_type, sz1);
5227 reduce_with_shift = have_whole_vector_shift (mode1);
5228 if (!VECTOR_MODE_P (mode1))
5229 reduce_with_shift = false;
5230 else
5231 {
5232 optab optab = optab_for_tree_code (code, vectype1, optab_default);
5233 if (optab_handler (optab, mode1) == CODE_FOR_nothing)
5234 reduce_with_shift = false;
5235 }
5236
5237 /* First reduce the vector to the desired vector size we should
5238 do shift reduction on by combining upper and lower halves. */
5239 new_temp = new_phi_result;
5240 while (sz > sz1)
5241 {
5242 gcc_assert (!slp_reduc);
5243 sz /= 2;
5244 vectype1 = get_vectype_for_scalar_type_and_size (scalar_type, sz);
5245
5246 /* The target has to make sure we support lowpart/highpart
5247 extraction, either via direct vector extract or through
5248 an integer mode punning. */
5249 tree dst1, dst2;
5250 if (convert_optab_handler (vec_extract_optab,
5251 TYPE_MODE (TREE_TYPE (new_temp)),
5252 TYPE_MODE (vectype1))
5253 != CODE_FOR_nothing)
5254 {
5255 /* Extract sub-vectors directly once vec_extract becomes
5256 a conversion optab. */
5257 dst1 = make_ssa_name (vectype1);
5258 epilog_stmt
5259 = gimple_build_assign (dst1, BIT_FIELD_REF,
5260 build3 (BIT_FIELD_REF, vectype1,
5261 new_temp, TYPE_SIZE (vectype1),
5262 bitsize_int (0)));
5263 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5264 dst2 = make_ssa_name (vectype1);
5265 epilog_stmt
5266 = gimple_build_assign (dst2, BIT_FIELD_REF,
5267 build3 (BIT_FIELD_REF, vectype1,
5268 new_temp, TYPE_SIZE (vectype1),
5269 bitsize_int (sz * BITS_PER_UNIT)));
5270 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5271 }
5272 else
5273 {
5274 /* Extract via punning to appropriately sized integer mode
5275 vector. */
5276 tree eltype = build_nonstandard_integer_type (sz * BITS_PER_UNIT,
5277 1);
5278 tree etype = build_vector_type (eltype, 2);
5279 gcc_assert (convert_optab_handler (vec_extract_optab,
5280 TYPE_MODE (etype),
5281 TYPE_MODE (eltype))
5282 != CODE_FOR_nothing);
5283 tree tem = make_ssa_name (etype);
5284 epilog_stmt = gimple_build_assign (tem, VIEW_CONVERT_EXPR,
5285 build1 (VIEW_CONVERT_EXPR,
5286 etype, new_temp));
5287 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5288 new_temp = tem;
5289 tem = make_ssa_name (eltype);
5290 epilog_stmt
5291 = gimple_build_assign (tem, BIT_FIELD_REF,
5292 build3 (BIT_FIELD_REF, eltype,
5293 new_temp, TYPE_SIZE (eltype),
5294 bitsize_int (0)));
5295 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5296 dst1 = make_ssa_name (vectype1);
5297 epilog_stmt = gimple_build_assign (dst1, VIEW_CONVERT_EXPR,
5298 build1 (VIEW_CONVERT_EXPR,
5299 vectype1, tem));
5300 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5301 tem = make_ssa_name (eltype);
5302 epilog_stmt
5303 = gimple_build_assign (tem, BIT_FIELD_REF,
5304 build3 (BIT_FIELD_REF, eltype,
5305 new_temp, TYPE_SIZE (eltype),
5306 bitsize_int (sz * BITS_PER_UNIT)));
5307 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5308 dst2 = make_ssa_name (vectype1);
5309 epilog_stmt = gimple_build_assign (dst2, VIEW_CONVERT_EXPR,
5310 build1 (VIEW_CONVERT_EXPR,
5311 vectype1, tem));
5312 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5313 }
5314
5315 new_temp = make_ssa_name (vectype1);
5316 epilog_stmt = gimple_build_assign (new_temp, code, dst1, dst2);
5317 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5318 }
5319
5320 if (reduce_with_shift && !slp_reduc)
5321 {
5322 int element_bitsize = tree_to_uhwi (bitsize);
5323 /* Enforced by vectorizable_reduction, which disallows SLP reductions
5324 for variable-length vectors and also requires direct target support
5325 for loop reductions. */
5326 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype1));
5327 int nelements = vec_size_in_bits / element_bitsize;
5328 vec_perm_builder sel;
5329 vec_perm_indices indices;
5330
5331 int elt_offset;
5332
5333 tree zero_vec = build_zero_cst (vectype1);
5334 /* Case 2: Create:
5335 for (offset = nelements/2; offset >= 1; offset/=2)
5336 {
5337 Create: va' = vec_shift <va, offset>
5338 Create: va = vop <va, va'>
5339 } */
5340
5341 tree rhs;
5342
5343 if (dump_enabled_p ())
5344 dump_printf_loc (MSG_NOTE, vect_location,
5345 "Reduce using vector shifts\n");
5346
5347 mode1 = TYPE_MODE (vectype1);
5348 vec_dest = vect_create_destination_var (scalar_dest, vectype1);
5349 for (elt_offset = nelements / 2;
5350 elt_offset >= 1;
5351 elt_offset /= 2)
5352 {
5353 calc_vec_perm_mask_for_shift (elt_offset, nelements, &sel);
5354 indices.new_vector (sel, 2, nelements);
5355 tree mask = vect_gen_perm_mask_any (vectype1, indices);
5356 epilog_stmt = gimple_build_assign (vec_dest, VEC_PERM_EXPR,
5357 new_temp, zero_vec, mask);
5358 new_name = make_ssa_name (vec_dest, epilog_stmt);
5359 gimple_assign_set_lhs (epilog_stmt, new_name);
5360 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5361
5362 epilog_stmt = gimple_build_assign (vec_dest, code, new_name,
5363 new_temp);
5364 new_temp = make_ssa_name (vec_dest, epilog_stmt);
5365 gimple_assign_set_lhs (epilog_stmt, new_temp);
5366 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5367 }
5368
5369 /* 2.4 Extract the final scalar result. Create:
5370 s_out3 = extract_field <v_out2, bitpos> */
5371
5372 if (dump_enabled_p ())
5373 dump_printf_loc (MSG_NOTE, vect_location,
5374 "extract scalar result\n");
5375
5376 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp,
5377 bitsize, bitsize_zero_node);
5378 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
5379 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5380 gimple_assign_set_lhs (epilog_stmt, new_temp);
5381 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5382 scalar_results.safe_push (new_temp);
5383 }
5384 else
5385 {
5386 /* Case 3: Create:
5387 s = extract_field <v_out2, 0>
5388 for (offset = element_size;
5389 offset < vector_size;
5390 offset += element_size;)
5391 {
5392 Create: s' = extract_field <v_out2, offset>
5393 Create: s = op <s, s'> // For non SLP cases
5394 } */
5395
5396 if (dump_enabled_p ())
5397 dump_printf_loc (MSG_NOTE, vect_location,
5398 "Reduce using scalar code.\n");
5399
5400 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype1));
5401 int element_bitsize = tree_to_uhwi (bitsize);
5402 FOR_EACH_VEC_ELT (new_phis, i, new_phi)
5403 {
5404 int bit_offset;
5405 if (gimple_code (new_phi) == GIMPLE_PHI)
5406 vec_temp = PHI_RESULT (new_phi);
5407 else
5408 vec_temp = gimple_assign_lhs (new_phi);
5409 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
5410 bitsize_zero_node);
5411 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
5412 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5413 gimple_assign_set_lhs (epilog_stmt, new_temp);
5414 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5415
5416 /* In SLP we don't need to apply reduction operation, so we just
5417 collect s' values in SCALAR_RESULTS. */
5418 if (slp_reduc)
5419 scalar_results.safe_push (new_temp);
5420
5421 for (bit_offset = element_bitsize;
5422 bit_offset < vec_size_in_bits;
5423 bit_offset += element_bitsize)
5424 {
5425 tree bitpos = bitsize_int (bit_offset);
5426 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
5427 bitsize, bitpos);
5428
5429 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
5430 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
5431 gimple_assign_set_lhs (epilog_stmt, new_name);
5432 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5433
5434 if (slp_reduc)
5435 {
5436 /* In SLP we don't need to apply reduction operation, so
5437 we just collect s' values in SCALAR_RESULTS. */
5438 new_temp = new_name;
5439 scalar_results.safe_push (new_name);
5440 }
5441 else
5442 {
5443 epilog_stmt = gimple_build_assign (new_scalar_dest, code,
5444 new_name, new_temp);
5445 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
5446 gimple_assign_set_lhs (epilog_stmt, new_temp);
5447 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5448 }
5449 }
5450 }
5451
5452 /* The only case where we need to reduce scalar results in SLP, is
5453 unrolling. If the size of SCALAR_RESULTS is greater than
5454 REDUC_GROUP_SIZE, we reduce them combining elements modulo
5455 REDUC_GROUP_SIZE. */
5456 if (slp_reduc)
5457 {
5458 tree res, first_res, new_res;
5459 gimple *new_stmt;
5460
5461 /* Reduce multiple scalar results in case of SLP unrolling. */
5462 for (j = group_size; scalar_results.iterate (j, &res);
5463 j++)
5464 {
5465 first_res = scalar_results[j % group_size];
5466 new_stmt = gimple_build_assign (new_scalar_dest, code,
5467 first_res, res);
5468 new_res = make_ssa_name (new_scalar_dest, new_stmt);
5469 gimple_assign_set_lhs (new_stmt, new_res);
5470 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
5471 scalar_results[j % group_size] = new_res;
5472 }
5473 }
5474 else
5475 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
5476 scalar_results.safe_push (new_temp);
5477 }
5478
5479 if ((STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5480 == INTEGER_INDUC_COND_REDUCTION)
5481 && !operand_equal_p (initial_def, induc_val, 0))
5482 {
5483 /* Earlier we set the initial value to be a vector if induc_val
5484 values. Check the result and if it is induc_val then replace
5485 with the original initial value, unless induc_val is
5486 the same as initial_def already. */
5487 tree zcompare = build2 (EQ_EXPR, boolean_type_node, new_temp,
5488 induc_val);
5489
5490 tree tmp = make_ssa_name (new_scalar_dest);
5491 epilog_stmt = gimple_build_assign (tmp, COND_EXPR, zcompare,
5492 initial_def, new_temp);
5493 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5494 scalar_results[0] = tmp;
5495 }
5496 }
5497
5498 vect_finalize_reduction:
5499
5500 if (double_reduc)
5501 loop = loop->inner;
5502
5503 /* 2.5 Adjust the final result by the initial value of the reduction
5504 variable. (When such adjustment is not needed, then
5505 'adjustment_def' is zero). For example, if code is PLUS we create:
5506 new_temp = loop_exit_def + adjustment_def */
5507
5508 if (adjustment_def)
5509 {
5510 gcc_assert (!slp_reduc);
5511 if (nested_in_vect_loop)
5512 {
5513 new_phi = new_phis[0];
5514 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
5515 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
5516 new_dest = vect_create_destination_var (scalar_dest, vectype);
5517 }
5518 else
5519 {
5520 new_temp = scalar_results[0];
5521 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
5522 expr = build2 (code, scalar_type, new_temp, adjustment_def);
5523 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
5524 }
5525
5526 epilog_stmt = gimple_build_assign (new_dest, expr);
5527 new_temp = make_ssa_name (new_dest, epilog_stmt);
5528 gimple_assign_set_lhs (epilog_stmt, new_temp);
5529 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
5530 if (nested_in_vect_loop)
5531 {
5532 stmt_vec_info epilog_stmt_info = loop_vinfo->add_stmt (epilog_stmt);
5533 STMT_VINFO_RELATED_STMT (epilog_stmt_info)
5534 = STMT_VINFO_RELATED_STMT (loop_vinfo->lookup_stmt (new_phi));
5535
5536 if (!double_reduc)
5537 scalar_results.quick_push (new_temp);
5538 else
5539 scalar_results[0] = new_temp;
5540 }
5541 else
5542 scalar_results[0] = new_temp;
5543
5544 new_phis[0] = epilog_stmt;
5545 }
5546
5547 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
5548 phis with new adjusted scalar results, i.e., replace use <s_out0>
5549 with use <s_out4>.
5550
5551 Transform:
5552 loop_exit:
5553 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
5554 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
5555 v_out2 = reduce <v_out1>
5556 s_out3 = extract_field <v_out2, 0>
5557 s_out4 = adjust_result <s_out3>
5558 use <s_out0>
5559 use <s_out0>
5560
5561 into:
5562
5563 loop_exit:
5564 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
5565 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
5566 v_out2 = reduce <v_out1>
5567 s_out3 = extract_field <v_out2, 0>
5568 s_out4 = adjust_result <s_out3>
5569 use <s_out4>
5570 use <s_out4> */
5571
5572
5573 /* In SLP reduction chain we reduce vector results into one vector if
5574 necessary, hence we set here REDUC_GROUP_SIZE to 1. SCALAR_DEST is the
5575 LHS of the last stmt in the reduction chain, since we are looking for
5576 the loop exit phi node. */
5577 if (REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
5578 {
5579 gimple *dest_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1];
5580 /* Handle reduction patterns. */
5581 if (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt)))
5582 dest_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (dest_stmt));
5583
5584 scalar_dest = gimple_assign_lhs (dest_stmt);
5585 group_size = 1;
5586 }
5587
5588 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
5589 case that REDUC_GROUP_SIZE is greater than vectorization factor).
5590 Therefore, we need to match SCALAR_RESULTS with corresponding statements.
5591 The first (REDUC_GROUP_SIZE / number of new vector stmts) scalar results
5592 correspond to the first vector stmt, etc.
5593 (RATIO is equal to (REDUC_GROUP_SIZE / number of new vector stmts)). */
5594 if (group_size > new_phis.length ())
5595 {
5596 ratio = group_size / new_phis.length ();
5597 gcc_assert (!(group_size % new_phis.length ()));
5598 }
5599 else
5600 ratio = 1;
5601
5602 for (k = 0; k < group_size; k++)
5603 {
5604 if (k % ratio == 0)
5605 {
5606 epilog_stmt = new_phis[k / ratio];
5607 reduction_phi = reduction_phis[k / ratio];
5608 if (double_reduc)
5609 inner_phi = inner_phis[k / ratio];
5610 }
5611
5612 if (slp_reduc)
5613 {
5614 gimple *current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
5615
5616 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
5617 /* SLP statements can't participate in patterns. */
5618 gcc_assert (!orig_stmt);
5619 scalar_dest = gimple_assign_lhs (current_stmt);
5620 }
5621
5622 phis.create (3);
5623 /* Find the loop-closed-use at the loop exit of the original scalar
5624 result. (The reduction result is expected to have two immediate uses -
5625 one at the latch block, and one at the loop exit). */
5626 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
5627 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))
5628 && !is_gimple_debug (USE_STMT (use_p)))
5629 phis.safe_push (USE_STMT (use_p));
5630
5631 /* While we expect to have found an exit_phi because of loop-closed-ssa
5632 form we can end up without one if the scalar cycle is dead. */
5633
5634 FOR_EACH_VEC_ELT (phis, i, exit_phi)
5635 {
5636 if (outer_loop)
5637 {
5638 stmt_vec_info exit_phi_vinfo
5639 = loop_vinfo->lookup_stmt (exit_phi);
5640 gphi *vect_phi;
5641
5642 /* FORNOW. Currently not supporting the case that an inner-loop
5643 reduction is not used in the outer-loop (but only outside the
5644 outer-loop), unless it is double reduction. */
5645 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
5646 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
5647 || double_reduc);
5648
5649 if (double_reduc)
5650 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = inner_phi;
5651 else
5652 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
5653 if (!double_reduc
5654 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
5655 != vect_double_reduction_def)
5656 continue;
5657
5658 /* Handle double reduction:
5659
5660 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
5661 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
5662 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
5663 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
5664
5665 At that point the regular reduction (stmt2 and stmt3) is
5666 already vectorized, as well as the exit phi node, stmt4.
5667 Here we vectorize the phi node of double reduction, stmt1, and
5668 update all relevant statements. */
5669
5670 /* Go through all the uses of s2 to find double reduction phi
5671 node, i.e., stmt1 above. */
5672 orig_name = PHI_RESULT (exit_phi);
5673 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
5674 {
5675 stmt_vec_info use_stmt_vinfo;
5676 tree vect_phi_init, preheader_arg, vect_phi_res;
5677 basic_block bb = gimple_bb (use_stmt);
5678 gimple *use;
5679
5680 /* Check that USE_STMT is really double reduction phi
5681 node. */
5682 if (gimple_code (use_stmt) != GIMPLE_PHI
5683 || gimple_phi_num_args (use_stmt) != 2
5684 || bb->loop_father != outer_loop)
5685 continue;
5686 use_stmt_vinfo = loop_vinfo->lookup_stmt (use_stmt);
5687 if (!use_stmt_vinfo
5688 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
5689 != vect_double_reduction_def)
5690 continue;
5691
5692 /* Create vector phi node for double reduction:
5693 vs1 = phi <vs0, vs2>
5694 vs1 was created previously in this function by a call to
5695 vect_get_vec_def_for_operand and is stored in
5696 vec_initial_def;
5697 vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
5698 vs0 is created here. */
5699
5700 /* Create vector phi node. */
5701 vect_phi = create_phi_node (vec_initial_def, bb);
5702 loop_vec_info_for_loop (outer_loop)->add_stmt (vect_phi);
5703
5704 /* Create vs0 - initial def of the double reduction phi. */
5705 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
5706 loop_preheader_edge (outer_loop));
5707 vect_phi_init = get_initial_def_for_reduction
5708 (stmt, preheader_arg, NULL);
5709
5710 /* Update phi node arguments with vs0 and vs2. */
5711 add_phi_arg (vect_phi, vect_phi_init,
5712 loop_preheader_edge (outer_loop),
5713 UNKNOWN_LOCATION);
5714 add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
5715 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
5716 if (dump_enabled_p ())
5717 {
5718 dump_printf_loc (MSG_NOTE, vect_location,
5719 "created double reduction phi node: ");
5720 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
5721 }
5722
5723 vect_phi_res = PHI_RESULT (vect_phi);
5724
5725 /* Replace the use, i.e., set the correct vs1 in the regular
5726 reduction phi node. FORNOW, NCOPIES is always 1, so the
5727 loop is redundant. */
5728 use = reduction_phi;
5729 for (j = 0; j < ncopies; j++)
5730 {
5731 edge pr_edge = loop_preheader_edge (loop);
5732 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
5733 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
5734 }
5735 }
5736 }
5737 }
5738
5739 phis.release ();
5740 if (nested_in_vect_loop)
5741 {
5742 if (double_reduc)
5743 loop = outer_loop;
5744 else
5745 continue;
5746 }
5747
5748 phis.create (3);
5749 /* Find the loop-closed-use at the loop exit of the original scalar
5750 result. (The reduction result is expected to have two immediate uses,
5751 one at the latch block, and one at the loop exit). For double
5752 reductions we are looking for exit phis of the outer loop. */
5753 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
5754 {
5755 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
5756 {
5757 if (!is_gimple_debug (USE_STMT (use_p)))
5758 phis.safe_push (USE_STMT (use_p));
5759 }
5760 else
5761 {
5762 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
5763 {
5764 tree phi_res = PHI_RESULT (USE_STMT (use_p));
5765
5766 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
5767 {
5768 if (!flow_bb_inside_loop_p (loop,
5769 gimple_bb (USE_STMT (phi_use_p)))
5770 && !is_gimple_debug (USE_STMT (phi_use_p)))
5771 phis.safe_push (USE_STMT (phi_use_p));
5772 }
5773 }
5774 }
5775 }
5776
5777 FOR_EACH_VEC_ELT (phis, i, exit_phi)
5778 {
5779 /* Replace the uses: */
5780 orig_name = PHI_RESULT (exit_phi);
5781 scalar_result = scalar_results[k];
5782 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
5783 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
5784 SET_USE (use_p, scalar_result);
5785 }
5786
5787 phis.release ();
5788 }
5789 }
5790
5791 /* Return a vector of type VECTYPE that is equal to the vector select
5792 operation "MASK ? VEC : IDENTITY". Insert the select statements
5793 before GSI. */
5794
5795 static tree
5796 merge_with_identity (gimple_stmt_iterator *gsi, tree mask, tree vectype,
5797 tree vec, tree identity)
5798 {
5799 tree cond = make_temp_ssa_name (vectype, NULL, "cond");
5800 gimple *new_stmt = gimple_build_assign (cond, VEC_COND_EXPR,
5801 mask, vec, identity);
5802 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
5803 return cond;
5804 }
5805
5806 /* Successively apply CODE to each element of VECTOR_RHS, in left-to-right
5807 order, starting with LHS. Insert the extraction statements before GSI and
5808 associate the new scalar SSA names with variable SCALAR_DEST.
5809 Return the SSA name for the result. */
5810
5811 static tree
5812 vect_expand_fold_left (gimple_stmt_iterator *gsi, tree scalar_dest,
5813 tree_code code, tree lhs, tree vector_rhs)
5814 {
5815 tree vectype = TREE_TYPE (vector_rhs);
5816 tree scalar_type = TREE_TYPE (vectype);
5817 tree bitsize = TYPE_SIZE (scalar_type);
5818 unsigned HOST_WIDE_INT vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
5819 unsigned HOST_WIDE_INT element_bitsize = tree_to_uhwi (bitsize);
5820
5821 for (unsigned HOST_WIDE_INT bit_offset = 0;
5822 bit_offset < vec_size_in_bits;
5823 bit_offset += element_bitsize)
5824 {
5825 tree bitpos = bitsize_int (bit_offset);
5826 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vector_rhs,
5827 bitsize, bitpos);
5828
5829 gassign *stmt = gimple_build_assign (scalar_dest, rhs);
5830 rhs = make_ssa_name (scalar_dest, stmt);
5831 gimple_assign_set_lhs (stmt, rhs);
5832 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
5833
5834 stmt = gimple_build_assign (scalar_dest, code, lhs, rhs);
5835 tree new_name = make_ssa_name (scalar_dest, stmt);
5836 gimple_assign_set_lhs (stmt, new_name);
5837 gsi_insert_before (gsi, stmt, GSI_SAME_STMT);
5838 lhs = new_name;
5839 }
5840 return lhs;
5841 }
5842
5843 /* Perform an in-order reduction (FOLD_LEFT_REDUCTION). STMT is the
5844 statement that sets the live-out value. REDUC_DEF_STMT is the phi
5845 statement. CODE is the operation performed by STMT and OPS are
5846 its scalar operands. REDUC_INDEX is the index of the operand in
5847 OPS that is set by REDUC_DEF_STMT. REDUC_FN is the function that
5848 implements in-order reduction, or IFN_LAST if we should open-code it.
5849 VECTYPE_IN is the type of the vector input. MASKS specifies the masks
5850 that should be used to control the operation in a fully-masked loop. */
5851
5852 static bool
5853 vectorize_fold_left_reduction (gimple *stmt, gimple_stmt_iterator *gsi,
5854 gimple **vec_stmt, slp_tree slp_node,
5855 gimple *reduc_def_stmt,
5856 tree_code code, internal_fn reduc_fn,
5857 tree ops[3], tree vectype_in,
5858 int reduc_index, vec_loop_masks *masks)
5859 {
5860 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5861 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5862 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5863 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
5864 gimple *new_stmt = NULL;
5865
5866 int ncopies;
5867 if (slp_node)
5868 ncopies = 1;
5869 else
5870 ncopies = vect_get_num_copies (loop_vinfo, vectype_in);
5871
5872 gcc_assert (!nested_in_vect_loop_p (loop, stmt));
5873 gcc_assert (ncopies == 1);
5874 gcc_assert (TREE_CODE_LENGTH (code) == binary_op);
5875 gcc_assert (reduc_index == (code == MINUS_EXPR ? 0 : 1));
5876 gcc_assert (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
5877 == FOLD_LEFT_REDUCTION);
5878
5879 if (slp_node)
5880 gcc_assert (known_eq (TYPE_VECTOR_SUBPARTS (vectype_out),
5881 TYPE_VECTOR_SUBPARTS (vectype_in)));
5882
5883 tree op0 = ops[1 - reduc_index];
5884
5885 int group_size = 1;
5886 gimple *scalar_dest_def;
5887 auto_vec<tree> vec_oprnds0;
5888 if (slp_node)
5889 {
5890 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL, slp_node);
5891 group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
5892 scalar_dest_def = SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1];
5893 }
5894 else
5895 {
5896 tree loop_vec_def0 = vect_get_vec_def_for_operand (op0, stmt);
5897 vec_oprnds0.create (1);
5898 vec_oprnds0.quick_push (loop_vec_def0);
5899 scalar_dest_def = stmt;
5900 }
5901
5902 tree scalar_dest = gimple_assign_lhs (scalar_dest_def);
5903 tree scalar_type = TREE_TYPE (scalar_dest);
5904 tree reduc_var = gimple_phi_result (reduc_def_stmt);
5905
5906 int vec_num = vec_oprnds0.length ();
5907 gcc_assert (vec_num == 1 || slp_node);
5908 tree vec_elem_type = TREE_TYPE (vectype_out);
5909 gcc_checking_assert (useless_type_conversion_p (scalar_type, vec_elem_type));
5910
5911 tree vector_identity = NULL_TREE;
5912 if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
5913 vector_identity = build_zero_cst (vectype_out);
5914
5915 tree scalar_dest_var = vect_create_destination_var (scalar_dest, NULL);
5916 int i;
5917 tree def0;
5918 FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
5919 {
5920 tree mask = NULL_TREE;
5921 if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
5922 mask = vect_get_loop_mask (gsi, masks, vec_num, vectype_in, i);
5923
5924 /* Handle MINUS by adding the negative. */
5925 if (reduc_fn != IFN_LAST && code == MINUS_EXPR)
5926 {
5927 tree negated = make_ssa_name (vectype_out);
5928 new_stmt = gimple_build_assign (negated, NEGATE_EXPR, def0);
5929 gsi_insert_before (gsi, new_stmt, GSI_SAME_STMT);
5930 def0 = negated;
5931 }
5932
5933 if (mask)
5934 def0 = merge_with_identity (gsi, mask, vectype_out, def0,
5935 vector_identity);
5936
5937 /* On the first iteration the input is simply the scalar phi
5938 result, and for subsequent iterations it is the output of
5939 the preceding operation. */
5940 if (reduc_fn != IFN_LAST)
5941 {
5942 new_stmt = gimple_build_call_internal (reduc_fn, 2, reduc_var, def0);
5943 /* For chained SLP reductions the output of the previous reduction
5944 operation serves as the input of the next. For the final statement
5945 the output cannot be a temporary - we reuse the original
5946 scalar destination of the last statement. */
5947 if (i != vec_num - 1)
5948 {
5949 gimple_set_lhs (new_stmt, scalar_dest_var);
5950 reduc_var = make_ssa_name (scalar_dest_var, new_stmt);
5951 gimple_set_lhs (new_stmt, reduc_var);
5952 }
5953 }
5954 else
5955 {
5956 reduc_var = vect_expand_fold_left (gsi, scalar_dest_var, code,
5957 reduc_var, def0);
5958 new_stmt = SSA_NAME_DEF_STMT (reduc_var);
5959 /* Remove the statement, so that we can use the same code paths
5960 as for statements that we've just created. */
5961 gimple_stmt_iterator tmp_gsi = gsi_for_stmt (new_stmt);
5962 gsi_remove (&tmp_gsi, false);
5963 }
5964
5965 if (i == vec_num - 1)
5966 {
5967 gimple_set_lhs (new_stmt, scalar_dest);
5968 vect_finish_replace_stmt (scalar_dest_def, new_stmt);
5969 }
5970 else
5971 vect_finish_stmt_generation (scalar_dest_def, new_stmt, gsi);
5972
5973 if (slp_node)
5974 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
5975 }
5976
5977 if (!slp_node)
5978 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5979
5980 return true;
5981 }
5982
5983 /* Function is_nonwrapping_integer_induction.
5984
5985 Check if STMT (which is part of loop LOOP) both increments and
5986 does not cause overflow. */
5987
5988 static bool
5989 is_nonwrapping_integer_induction (gimple *stmt, struct loop *loop)
5990 {
5991 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
5992 tree base = STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (stmt_vinfo);
5993 tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo);
5994 tree lhs_type = TREE_TYPE (gimple_phi_result (stmt));
5995 widest_int ni, max_loop_value, lhs_max;
5996 wi::overflow_type overflow = wi::OVF_NONE;
5997
5998 /* Make sure the loop is integer based. */
5999 if (TREE_CODE (base) != INTEGER_CST
6000 || TREE_CODE (step) != INTEGER_CST)
6001 return false;
6002
6003 /* Check that the max size of the loop will not wrap. */
6004
6005 if (TYPE_OVERFLOW_UNDEFINED (lhs_type))
6006 return true;
6007
6008 if (! max_stmt_executions (loop, &ni))
6009 return false;
6010
6011 max_loop_value = wi::mul (wi::to_widest (step), ni, TYPE_SIGN (lhs_type),
6012 &overflow);
6013 if (overflow)
6014 return false;
6015
6016 max_loop_value = wi::add (wi::to_widest (base), max_loop_value,
6017 TYPE_SIGN (lhs_type), &overflow);
6018 if (overflow)
6019 return false;
6020
6021 return (wi::min_precision (max_loop_value, TYPE_SIGN (lhs_type))
6022 <= TYPE_PRECISION (lhs_type));
6023 }
6024
6025 /* Function vectorizable_reduction.
6026
6027 Check if STMT performs a reduction operation that can be vectorized.
6028 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
6029 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
6030 Return FALSE if not a vectorizable STMT, TRUE otherwise.
6031
6032 This function also handles reduction idioms (patterns) that have been
6033 recognized in advance during vect_pattern_recog. In this case, STMT may be
6034 of this form:
6035 X = pattern_expr (arg0, arg1, ..., X)
6036 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
6037 sequence that had been detected and replaced by the pattern-stmt (STMT).
6038
6039 This function also handles reduction of condition expressions, for example:
6040 for (int i = 0; i < N; i++)
6041 if (a[i] < value)
6042 last = a[i];
6043 This is handled by vectorising the loop and creating an additional vector
6044 containing the loop indexes for which "a[i] < value" was true. In the
6045 function epilogue this is reduced to a single max value and then used to
6046 index into the vector of results.
6047
6048 In some cases of reduction patterns, the type of the reduction variable X is
6049 different than the type of the other arguments of STMT.
6050 In such cases, the vectype that is used when transforming STMT into a vector
6051 stmt is different than the vectype that is used to determine the
6052 vectorization factor, because it consists of a different number of elements
6053 than the actual number of elements that are being operated upon in parallel.
6054
6055 For example, consider an accumulation of shorts into an int accumulator.
6056 On some targets it's possible to vectorize this pattern operating on 8
6057 shorts at a time (hence, the vectype for purposes of determining the
6058 vectorization factor should be V8HI); on the other hand, the vectype that
6059 is used to create the vector form is actually V4SI (the type of the result).
6060
6061 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
6062 indicates what is the actual level of parallelism (V8HI in the example), so
6063 that the right vectorization factor would be derived. This vectype
6064 corresponds to the type of arguments to the reduction stmt, and should *NOT*
6065 be used to create the vectorized stmt. The right vectype for the vectorized
6066 stmt is obtained from the type of the result X:
6067 get_vectype_for_scalar_type (TREE_TYPE (X))
6068
6069 This means that, contrary to "regular" reductions (or "regular" stmts in
6070 general), the following equation:
6071 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
6072 does *NOT* necessarily hold for reduction patterns. */
6073
6074 bool
6075 vectorizable_reduction (gimple *stmt, gimple_stmt_iterator *gsi,
6076 gimple **vec_stmt, slp_tree slp_node,
6077 slp_instance slp_node_instance,
6078 stmt_vector_for_cost *cost_vec)
6079 {
6080 tree vec_dest;
6081 tree scalar_dest;
6082 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
6083 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
6084 tree vectype_in = NULL_TREE;
6085 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6086 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
6087 enum tree_code code, orig_code;
6088 internal_fn reduc_fn;
6089 machine_mode vec_mode;
6090 int op_type;
6091 optab optab;
6092 tree new_temp = NULL_TREE;
6093 gimple *def_stmt;
6094 enum vect_def_type dt, cond_reduc_dt = vect_unknown_def_type;
6095 gimple *cond_reduc_def_stmt = NULL;
6096 enum tree_code cond_reduc_op_code = ERROR_MARK;
6097 tree scalar_type;
6098 bool is_simple_use;
6099 gimple *orig_stmt;
6100 stmt_vec_info orig_stmt_info = NULL;
6101 int i;
6102 int ncopies;
6103 int epilog_copies;
6104 stmt_vec_info prev_stmt_info, prev_phi_info;
6105 bool single_defuse_cycle = false;
6106 gimple *new_stmt = NULL;
6107 int j;
6108 tree ops[3];
6109 enum vect_def_type dts[3];
6110 bool nested_cycle = false, found_nested_cycle_def = false;
6111 bool double_reduc = false;
6112 basic_block def_bb;
6113 struct loop * def_stmt_loop;
6114 tree def_arg;
6115 auto_vec<tree> vec_oprnds0;
6116 auto_vec<tree> vec_oprnds1;
6117 auto_vec<tree> vec_oprnds2;
6118 auto_vec<tree> vect_defs;
6119 auto_vec<gimple *> phis;
6120 int vec_num;
6121 tree def0, tem;
6122 tree cr_index_scalar_type = NULL_TREE, cr_index_vector_type = NULL_TREE;
6123 tree cond_reduc_val = NULL_TREE;
6124
6125 /* Make sure it was already recognized as a reduction computation. */
6126 if (STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_reduction_def
6127 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (stmt)) != vect_nested_cycle)
6128 return false;
6129
6130 if (nested_in_vect_loop_p (loop, stmt))
6131 {
6132 loop = loop->inner;
6133 nested_cycle = true;
6134 }
6135
6136 if (REDUC_GROUP_FIRST_ELEMENT (stmt_info))
6137 gcc_assert (slp_node && REDUC_GROUP_FIRST_ELEMENT (stmt_info) == stmt);
6138
6139 if (gimple_code (stmt) == GIMPLE_PHI)
6140 {
6141 tree phi_result = gimple_phi_result (stmt);
6142 /* Analysis is fully done on the reduction stmt invocation. */
6143 if (! vec_stmt)
6144 {
6145 if (slp_node)
6146 slp_node_instance->reduc_phis = slp_node;
6147
6148 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
6149 return true;
6150 }
6151
6152 if (STMT_VINFO_REDUC_TYPE (stmt_info) == FOLD_LEFT_REDUCTION)
6153 /* Leave the scalar phi in place. Note that checking
6154 STMT_VINFO_VEC_REDUCTION_TYPE (as below) only works
6155 for reductions involving a single statement. */
6156 return true;
6157
6158 gimple *reduc_stmt = STMT_VINFO_REDUC_DEF (stmt_info);
6159 if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (reduc_stmt)))
6160 reduc_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (reduc_stmt));
6161
6162 stmt_vec_info reduc_stmt_info = vinfo_for_stmt (reduc_stmt);
6163 if (STMT_VINFO_VEC_REDUCTION_TYPE (reduc_stmt_info)
6164 == EXTRACT_LAST_REDUCTION)
6165 /* Leave the scalar phi in place. */
6166 return true;
6167
6168 gcc_assert (is_gimple_assign (reduc_stmt));
6169 for (unsigned k = 1; k < gimple_num_ops (reduc_stmt); ++k)
6170 {
6171 tree op = gimple_op (reduc_stmt, k);
6172 if (op == gimple_phi_result (stmt))
6173 continue;
6174 if (k == 1
6175 && gimple_assign_rhs_code (reduc_stmt) == COND_EXPR)
6176 continue;
6177 if (!vectype_in
6178 || (GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (vectype_in)))
6179 < GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (op)))))
6180 vectype_in = get_vectype_for_scalar_type (TREE_TYPE (op));
6181 break;
6182 }
6183 gcc_assert (vectype_in);
6184
6185 if (slp_node)
6186 ncopies = 1;
6187 else
6188 ncopies = vect_get_num_copies (loop_vinfo, vectype_in);
6189
6190 stmt_vec_info use_stmt_info;
6191 if (ncopies > 1
6192 && STMT_VINFO_RELEVANT (reduc_stmt_info) <= vect_used_only_live
6193 && (use_stmt_info = loop_vinfo->lookup_single_use (phi_result))
6194 && (use_stmt_info == reduc_stmt_info
6195 || STMT_VINFO_RELATED_STMT (use_stmt_info) == reduc_stmt))
6196 single_defuse_cycle = true;
6197
6198 /* Create the destination vector */
6199 scalar_dest = gimple_assign_lhs (reduc_stmt);
6200 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
6201
6202 if (slp_node)
6203 /* The size vect_schedule_slp_instance computes is off for us. */
6204 vec_num = vect_get_num_vectors
6205 (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
6206 * SLP_TREE_SCALAR_STMTS (slp_node).length (),
6207 vectype_in);
6208 else
6209 vec_num = 1;
6210
6211 /* Generate the reduction PHIs upfront. */
6212 prev_phi_info = NULL;
6213 for (j = 0; j < ncopies; j++)
6214 {
6215 if (j == 0 || !single_defuse_cycle)
6216 {
6217 for (i = 0; i < vec_num; i++)
6218 {
6219 /* Create the reduction-phi that defines the reduction
6220 operand. */
6221 gimple *new_phi = create_phi_node (vec_dest, loop->header);
6222 stmt_vec_info new_phi_info = loop_vinfo->add_stmt (new_phi);
6223
6224 if (slp_node)
6225 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_phi);
6226 else
6227 {
6228 if (j == 0)
6229 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_phi;
6230 else
6231 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
6232 prev_phi_info = new_phi_info;
6233 }
6234 }
6235 }
6236 }
6237
6238 return true;
6239 }
6240
6241 /* 1. Is vectorizable reduction? */
6242 /* Not supportable if the reduction variable is used in the loop, unless
6243 it's a reduction chain. */
6244 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
6245 && !REDUC_GROUP_FIRST_ELEMENT (stmt_info))
6246 return false;
6247
6248 /* Reductions that are not used even in an enclosing outer-loop,
6249 are expected to be "live" (used out of the loop). */
6250 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
6251 && !STMT_VINFO_LIVE_P (stmt_info))
6252 return false;
6253
6254 /* 2. Has this been recognized as a reduction pattern?
6255
6256 Check if STMT represents a pattern that has been recognized
6257 in earlier analysis stages. For stmts that represent a pattern,
6258 the STMT_VINFO_RELATED_STMT field records the last stmt in
6259 the original sequence that constitutes the pattern. */
6260
6261 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (stmt));
6262 if (orig_stmt)
6263 {
6264 orig_stmt_info = vinfo_for_stmt (orig_stmt);
6265 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
6266 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
6267 }
6268
6269 /* 3. Check the operands of the operation. The first operands are defined
6270 inside the loop body. The last operand is the reduction variable,
6271 which is defined by the loop-header-phi. */
6272
6273 gcc_assert (is_gimple_assign (stmt));
6274
6275 /* Flatten RHS. */
6276 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
6277 {
6278 case GIMPLE_BINARY_RHS:
6279 code = gimple_assign_rhs_code (stmt);
6280 op_type = TREE_CODE_LENGTH (code);
6281 gcc_assert (op_type == binary_op);
6282 ops[0] = gimple_assign_rhs1 (stmt);
6283 ops[1] = gimple_assign_rhs2 (stmt);
6284 break;
6285
6286 case GIMPLE_TERNARY_RHS:
6287 code = gimple_assign_rhs_code (stmt);
6288 op_type = TREE_CODE_LENGTH (code);
6289 gcc_assert (op_type == ternary_op);
6290 ops[0] = gimple_assign_rhs1 (stmt);
6291 ops[1] = gimple_assign_rhs2 (stmt);
6292 ops[2] = gimple_assign_rhs3 (stmt);
6293 break;
6294
6295 case GIMPLE_UNARY_RHS:
6296 return false;
6297
6298 default:
6299 gcc_unreachable ();
6300 }
6301
6302 if (code == COND_EXPR && slp_node)
6303 return false;
6304
6305 scalar_dest = gimple_assign_lhs (stmt);
6306 scalar_type = TREE_TYPE (scalar_dest);
6307 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
6308 && !SCALAR_FLOAT_TYPE_P (scalar_type))
6309 return false;
6310
6311 /* Do not try to vectorize bit-precision reductions. */
6312 if (!type_has_mode_precision_p (scalar_type))
6313 return false;
6314
6315 /* All uses but the last are expected to be defined in the loop.
6316 The last use is the reduction variable. In case of nested cycle this
6317 assumption is not true: we use reduc_index to record the index of the
6318 reduction variable. */
6319 gimple *reduc_def_stmt = NULL;
6320 int reduc_index = -1;
6321 for (i = 0; i < op_type; i++)
6322 {
6323 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
6324 if (i == 0 && code == COND_EXPR)
6325 continue;
6326
6327 is_simple_use = vect_is_simple_use (ops[i], loop_vinfo,
6328 &dts[i], &tem, &def_stmt);
6329 dt = dts[i];
6330 gcc_assert (is_simple_use);
6331 if (dt == vect_reduction_def)
6332 {
6333 reduc_def_stmt = def_stmt;
6334 reduc_index = i;
6335 continue;
6336 }
6337 else if (tem)
6338 {
6339 /* To properly compute ncopies we are interested in the widest
6340 input type in case we're looking at a widening accumulation. */
6341 if (!vectype_in
6342 || (GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (vectype_in)))
6343 < GET_MODE_SIZE (SCALAR_TYPE_MODE (TREE_TYPE (tem)))))
6344 vectype_in = tem;
6345 }
6346
6347 if (dt != vect_internal_def
6348 && dt != vect_external_def
6349 && dt != vect_constant_def
6350 && dt != vect_induction_def
6351 && !(dt == vect_nested_cycle && nested_cycle))
6352 return false;
6353
6354 if (dt == vect_nested_cycle)
6355 {
6356 found_nested_cycle_def = true;
6357 reduc_def_stmt = def_stmt;
6358 reduc_index = i;
6359 }
6360
6361 if (i == 1 && code == COND_EXPR)
6362 {
6363 /* Record how value of COND_EXPR is defined. */
6364 if (dt == vect_constant_def)
6365 {
6366 cond_reduc_dt = dt;
6367 cond_reduc_val = ops[i];
6368 }
6369 if (dt == vect_induction_def
6370 && def_stmt != NULL
6371 && is_nonwrapping_integer_induction (def_stmt, loop))
6372 {
6373 cond_reduc_dt = dt;
6374 cond_reduc_def_stmt = def_stmt;
6375 }
6376 }
6377 }
6378
6379 if (!vectype_in)
6380 vectype_in = vectype_out;
6381
6382 /* When vectorizing a reduction chain w/o SLP the reduction PHI is not
6383 directy used in stmt. */
6384 if (reduc_index == -1)
6385 {
6386 if (STMT_VINFO_REDUC_TYPE (stmt_info) == FOLD_LEFT_REDUCTION)
6387 {
6388 if (dump_enabled_p ())
6389 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6390 "in-order reduction chain without SLP.\n");
6391 return false;
6392 }
6393
6394 if (orig_stmt)
6395 reduc_def_stmt = STMT_VINFO_REDUC_DEF (orig_stmt_info);
6396 else
6397 reduc_def_stmt = STMT_VINFO_REDUC_DEF (stmt_info);
6398 }
6399
6400 if (! reduc_def_stmt || gimple_code (reduc_def_stmt) != GIMPLE_PHI)
6401 return false;
6402
6403 if (!(reduc_index == -1
6404 || dts[reduc_index] == vect_reduction_def
6405 || dts[reduc_index] == vect_nested_cycle
6406 || ((dts[reduc_index] == vect_internal_def
6407 || dts[reduc_index] == vect_external_def
6408 || dts[reduc_index] == vect_constant_def
6409 || dts[reduc_index] == vect_induction_def)
6410 && nested_cycle && found_nested_cycle_def)))
6411 {
6412 /* For pattern recognized stmts, orig_stmt might be a reduction,
6413 but some helper statements for the pattern might not, or
6414 might be COND_EXPRs with reduction uses in the condition. */
6415 gcc_assert (orig_stmt);
6416 return false;
6417 }
6418
6419 stmt_vec_info reduc_def_info = vinfo_for_stmt (reduc_def_stmt);
6420 /* PHIs should not participate in patterns. */
6421 gcc_assert (!STMT_VINFO_RELATED_STMT (reduc_def_info));
6422 enum vect_reduction_type v_reduc_type
6423 = STMT_VINFO_REDUC_TYPE (reduc_def_info);
6424 gimple *tmp = STMT_VINFO_REDUC_DEF (reduc_def_info);
6425
6426 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = v_reduc_type;
6427 /* If we have a condition reduction, see if we can simplify it further. */
6428 if (v_reduc_type == COND_REDUCTION)
6429 {
6430 /* TODO: We can't yet handle reduction chains, since we need to treat
6431 each COND_EXPR in the chain specially, not just the last one.
6432 E.g. for:
6433
6434 x_1 = PHI <x_3, ...>
6435 x_2 = a_2 ? ... : x_1;
6436 x_3 = a_3 ? ... : x_2;
6437
6438 we're interested in the last element in x_3 for which a_2 || a_3
6439 is true, whereas the current reduction chain handling would
6440 vectorize x_2 as a normal VEC_COND_EXPR and only treat x_3
6441 as a reduction operation. */
6442 if (reduc_index == -1)
6443 {
6444 if (dump_enabled_p ())
6445 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6446 "conditional reduction chains not supported\n");
6447 return false;
6448 }
6449
6450 /* vect_is_simple_reduction ensured that operand 2 is the
6451 loop-carried operand. */
6452 gcc_assert (reduc_index == 2);
6453
6454 /* Loop peeling modifies initial value of reduction PHI, which
6455 makes the reduction stmt to be transformed different to the
6456 original stmt analyzed. We need to record reduction code for
6457 CONST_COND_REDUCTION type reduction at analyzing stage, thus
6458 it can be used directly at transform stage. */
6459 if (STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info) == MAX_EXPR
6460 || STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info) == MIN_EXPR)
6461 {
6462 /* Also set the reduction type to CONST_COND_REDUCTION. */
6463 gcc_assert (cond_reduc_dt == vect_constant_def);
6464 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = CONST_COND_REDUCTION;
6465 }
6466 else if (direct_internal_fn_supported_p (IFN_FOLD_EXTRACT_LAST,
6467 vectype_in, OPTIMIZE_FOR_SPEED))
6468 {
6469 if (dump_enabled_p ())
6470 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6471 "optimizing condition reduction with"
6472 " FOLD_EXTRACT_LAST.\n");
6473 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) = EXTRACT_LAST_REDUCTION;
6474 }
6475 else if (cond_reduc_dt == vect_induction_def)
6476 {
6477 stmt_vec_info cond_stmt_vinfo = vinfo_for_stmt (cond_reduc_def_stmt);
6478 tree base
6479 = STMT_VINFO_LOOP_PHI_EVOLUTION_BASE_UNCHANGED (cond_stmt_vinfo);
6480 tree step = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (cond_stmt_vinfo);
6481
6482 gcc_assert (TREE_CODE (base) == INTEGER_CST
6483 && TREE_CODE (step) == INTEGER_CST);
6484 cond_reduc_val = NULL_TREE;
6485 /* Find a suitable value, for MAX_EXPR below base, for MIN_EXPR
6486 above base; punt if base is the minimum value of the type for
6487 MAX_EXPR or maximum value of the type for MIN_EXPR for now. */
6488 if (tree_int_cst_sgn (step) == -1)
6489 {
6490 cond_reduc_op_code = MIN_EXPR;
6491 if (tree_int_cst_sgn (base) == -1)
6492 cond_reduc_val = build_int_cst (TREE_TYPE (base), 0);
6493 else if (tree_int_cst_lt (base,
6494 TYPE_MAX_VALUE (TREE_TYPE (base))))
6495 cond_reduc_val
6496 = int_const_binop (PLUS_EXPR, base, integer_one_node);
6497 }
6498 else
6499 {
6500 cond_reduc_op_code = MAX_EXPR;
6501 if (tree_int_cst_sgn (base) == 1)
6502 cond_reduc_val = build_int_cst (TREE_TYPE (base), 0);
6503 else if (tree_int_cst_lt (TYPE_MIN_VALUE (TREE_TYPE (base)),
6504 base))
6505 cond_reduc_val
6506 = int_const_binop (MINUS_EXPR, base, integer_one_node);
6507 }
6508 if (cond_reduc_val)
6509 {
6510 if (dump_enabled_p ())
6511 dump_printf_loc (MSG_NOTE, vect_location,
6512 "condition expression based on "
6513 "integer induction.\n");
6514 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
6515 = INTEGER_INDUC_COND_REDUCTION;
6516 }
6517 }
6518 else if (cond_reduc_dt == vect_constant_def)
6519 {
6520 enum vect_def_type cond_initial_dt;
6521 gimple *def_stmt = SSA_NAME_DEF_STMT (ops[reduc_index]);
6522 tree cond_initial_val
6523 = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
6524
6525 gcc_assert (cond_reduc_val != NULL_TREE);
6526 vect_is_simple_use (cond_initial_val, loop_vinfo, &cond_initial_dt);
6527 if (cond_initial_dt == vect_constant_def
6528 && types_compatible_p (TREE_TYPE (cond_initial_val),
6529 TREE_TYPE (cond_reduc_val)))
6530 {
6531 tree e = fold_binary (LE_EXPR, boolean_type_node,
6532 cond_initial_val, cond_reduc_val);
6533 if (e && (integer_onep (e) || integer_zerop (e)))
6534 {
6535 if (dump_enabled_p ())
6536 dump_printf_loc (MSG_NOTE, vect_location,
6537 "condition expression based on "
6538 "compile time constant.\n");
6539 /* Record reduction code at analysis stage. */
6540 STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info)
6541 = integer_onep (e) ? MAX_EXPR : MIN_EXPR;
6542 STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info)
6543 = CONST_COND_REDUCTION;
6544 }
6545 }
6546 }
6547 }
6548
6549 if (orig_stmt)
6550 gcc_assert (tmp == orig_stmt
6551 || (REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp))
6552 == orig_stmt));
6553 else
6554 /* We changed STMT to be the first stmt in reduction chain, hence we
6555 check that in this case the first element in the chain is STMT. */
6556 gcc_assert (stmt == tmp
6557 || REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
6558
6559 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
6560 return false;
6561
6562 if (slp_node)
6563 ncopies = 1;
6564 else
6565 ncopies = vect_get_num_copies (loop_vinfo, vectype_in);
6566
6567 gcc_assert (ncopies >= 1);
6568
6569 vec_mode = TYPE_MODE (vectype_in);
6570 poly_uint64 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
6571
6572 if (code == COND_EXPR)
6573 {
6574 /* Only call during the analysis stage, otherwise we'll lose
6575 STMT_VINFO_TYPE. */
6576 if (!vec_stmt && !vectorizable_condition (stmt, gsi, NULL,
6577 ops[reduc_index], 0, NULL,
6578 cost_vec))
6579 {
6580 if (dump_enabled_p ())
6581 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6582 "unsupported condition in reduction\n");
6583 return false;
6584 }
6585 }
6586 else
6587 {
6588 /* 4. Supportable by target? */
6589
6590 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
6591 || code == LROTATE_EXPR || code == RROTATE_EXPR)
6592 {
6593 /* Shifts and rotates are only supported by vectorizable_shifts,
6594 not vectorizable_reduction. */
6595 if (dump_enabled_p ())
6596 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6597 "unsupported shift or rotation.\n");
6598 return false;
6599 }
6600
6601 /* 4.1. check support for the operation in the loop */
6602 optab = optab_for_tree_code (code, vectype_in, optab_default);
6603 if (!optab)
6604 {
6605 if (dump_enabled_p ())
6606 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6607 "no optab.\n");
6608
6609 return false;
6610 }
6611
6612 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
6613 {
6614 if (dump_enabled_p ())
6615 dump_printf (MSG_NOTE, "op not supported by target.\n");
6616
6617 if (maybe_ne (GET_MODE_SIZE (vec_mode), UNITS_PER_WORD)
6618 || !vect_worthwhile_without_simd_p (loop_vinfo, code))
6619 return false;
6620
6621 if (dump_enabled_p ())
6622 dump_printf (MSG_NOTE, "proceeding using word mode.\n");
6623 }
6624
6625 /* Worthwhile without SIMD support? */
6626 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
6627 && !vect_worthwhile_without_simd_p (loop_vinfo, code))
6628 {
6629 if (dump_enabled_p ())
6630 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6631 "not worthwhile without SIMD support.\n");
6632
6633 return false;
6634 }
6635 }
6636
6637 /* 4.2. Check support for the epilog operation.
6638
6639 If STMT represents a reduction pattern, then the type of the
6640 reduction variable may be different than the type of the rest
6641 of the arguments. For example, consider the case of accumulation
6642 of shorts into an int accumulator; The original code:
6643 S1: int_a = (int) short_a;
6644 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
6645
6646 was replaced with:
6647 STMT: int_acc = widen_sum <short_a, int_acc>
6648
6649 This means that:
6650 1. The tree-code that is used to create the vector operation in the
6651 epilog code (that reduces the partial results) is not the
6652 tree-code of STMT, but is rather the tree-code of the original
6653 stmt from the pattern that STMT is replacing. I.e, in the example
6654 above we want to use 'widen_sum' in the loop, but 'plus' in the
6655 epilog.
6656 2. The type (mode) we use to check available target support
6657 for the vector operation to be created in the *epilog*, is
6658 determined by the type of the reduction variable (in the example
6659 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
6660 However the type (mode) we use to check available target support
6661 for the vector operation to be created *inside the loop*, is
6662 determined by the type of the other arguments to STMT (in the
6663 example we'd check this: optab_handler (widen_sum_optab,
6664 vect_short_mode)).
6665
6666 This is contrary to "regular" reductions, in which the types of all
6667 the arguments are the same as the type of the reduction variable.
6668 For "regular" reductions we can therefore use the same vector type
6669 (and also the same tree-code) when generating the epilog code and
6670 when generating the code inside the loop. */
6671
6672 vect_reduction_type reduction_type
6673 = STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info);
6674 if (orig_stmt
6675 && (reduction_type == TREE_CODE_REDUCTION
6676 || reduction_type == FOLD_LEFT_REDUCTION))
6677 {
6678 /* This is a reduction pattern: get the vectype from the type of the
6679 reduction variable, and get the tree-code from orig_stmt. */
6680 orig_code = gimple_assign_rhs_code (orig_stmt);
6681 gcc_assert (vectype_out);
6682 vec_mode = TYPE_MODE (vectype_out);
6683 }
6684 else
6685 {
6686 /* Regular reduction: use the same vectype and tree-code as used for
6687 the vector code inside the loop can be used for the epilog code. */
6688 orig_code = code;
6689
6690 if (code == MINUS_EXPR)
6691 orig_code = PLUS_EXPR;
6692
6693 /* For simple condition reductions, replace with the actual expression
6694 we want to base our reduction around. */
6695 if (reduction_type == CONST_COND_REDUCTION)
6696 {
6697 orig_code = STMT_VINFO_VEC_CONST_COND_REDUC_CODE (stmt_info);
6698 gcc_assert (orig_code == MAX_EXPR || orig_code == MIN_EXPR);
6699 }
6700 else if (reduction_type == INTEGER_INDUC_COND_REDUCTION)
6701 orig_code = cond_reduc_op_code;
6702 }
6703
6704 if (nested_cycle)
6705 {
6706 def_bb = gimple_bb (reduc_def_stmt);
6707 def_stmt_loop = def_bb->loop_father;
6708 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
6709 loop_preheader_edge (def_stmt_loop));
6710 stmt_vec_info def_arg_stmt_info = loop_vinfo->lookup_def (def_arg);
6711 if (def_arg_stmt_info
6712 && (STMT_VINFO_DEF_TYPE (def_arg_stmt_info)
6713 == vect_double_reduction_def))
6714 double_reduc = true;
6715 }
6716
6717 reduc_fn = IFN_LAST;
6718
6719 if (reduction_type == TREE_CODE_REDUCTION
6720 || reduction_type == FOLD_LEFT_REDUCTION
6721 || reduction_type == INTEGER_INDUC_COND_REDUCTION
6722 || reduction_type == CONST_COND_REDUCTION)
6723 {
6724 if (reduction_type == FOLD_LEFT_REDUCTION
6725 ? fold_left_reduction_fn (orig_code, &reduc_fn)
6726 : reduction_fn_for_scalar_code (orig_code, &reduc_fn))
6727 {
6728 if (reduc_fn != IFN_LAST
6729 && !direct_internal_fn_supported_p (reduc_fn, vectype_out,
6730 OPTIMIZE_FOR_SPEED))
6731 {
6732 if (dump_enabled_p ())
6733 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6734 "reduc op not supported by target.\n");
6735
6736 reduc_fn = IFN_LAST;
6737 }
6738 }
6739 else
6740 {
6741 if (!nested_cycle || double_reduc)
6742 {
6743 if (dump_enabled_p ())
6744 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6745 "no reduc code for scalar code.\n");
6746
6747 return false;
6748 }
6749 }
6750 }
6751 else if (reduction_type == COND_REDUCTION)
6752 {
6753 int scalar_precision
6754 = GET_MODE_PRECISION (SCALAR_TYPE_MODE (scalar_type));
6755 cr_index_scalar_type = make_unsigned_type (scalar_precision);
6756 cr_index_vector_type = build_vector_type (cr_index_scalar_type,
6757 nunits_out);
6758
6759 if (direct_internal_fn_supported_p (IFN_REDUC_MAX, cr_index_vector_type,
6760 OPTIMIZE_FOR_SPEED))
6761 reduc_fn = IFN_REDUC_MAX;
6762 }
6763
6764 if (reduction_type != EXTRACT_LAST_REDUCTION
6765 && reduc_fn == IFN_LAST
6766 && !nunits_out.is_constant ())
6767 {
6768 if (dump_enabled_p ())
6769 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6770 "missing target support for reduction on"
6771 " variable-length vectors.\n");
6772 return false;
6773 }
6774
6775 if ((double_reduc || reduction_type != TREE_CODE_REDUCTION)
6776 && ncopies > 1)
6777 {
6778 if (dump_enabled_p ())
6779 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6780 "multiple types in double reduction or condition "
6781 "reduction.\n");
6782 return false;
6783 }
6784
6785 /* For SLP reductions, see if there is a neutral value we can use. */
6786 tree neutral_op = NULL_TREE;
6787 if (slp_node)
6788 neutral_op = neutral_op_for_slp_reduction
6789 (slp_node_instance->reduc_phis, code,
6790 REDUC_GROUP_FIRST_ELEMENT (stmt_info) != NULL);
6791
6792 if (double_reduc && reduction_type == FOLD_LEFT_REDUCTION)
6793 {
6794 /* We can't support in-order reductions of code such as this:
6795
6796 for (int i = 0; i < n1; ++i)
6797 for (int j = 0; j < n2; ++j)
6798 l += a[j];
6799
6800 since GCC effectively transforms the loop when vectorizing:
6801
6802 for (int i = 0; i < n1 / VF; ++i)
6803 for (int j = 0; j < n2; ++j)
6804 for (int k = 0; k < VF; ++k)
6805 l += a[j];
6806
6807 which is a reassociation of the original operation. */
6808 if (dump_enabled_p ())
6809 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6810 "in-order double reduction not supported.\n");
6811
6812 return false;
6813 }
6814
6815 if (reduction_type == FOLD_LEFT_REDUCTION
6816 && slp_node
6817 && !REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
6818 {
6819 /* We cannot use in-order reductions in this case because there is
6820 an implicit reassociation of the operations involved. */
6821 if (dump_enabled_p ())
6822 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6823 "in-order unchained SLP reductions not supported.\n");
6824 return false;
6825 }
6826
6827 /* For double reductions, and for SLP reductions with a neutral value,
6828 we construct a variable-length initial vector by loading a vector
6829 full of the neutral value and then shift-and-inserting the start
6830 values into the low-numbered elements. */
6831 if ((double_reduc || neutral_op)
6832 && !nunits_out.is_constant ()
6833 && !direct_internal_fn_supported_p (IFN_VEC_SHL_INSERT,
6834 vectype_out, OPTIMIZE_FOR_SPEED))
6835 {
6836 if (dump_enabled_p ())
6837 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6838 "reduction on variable-length vectors requires"
6839 " target support for a vector-shift-and-insert"
6840 " operation.\n");
6841 return false;
6842 }
6843
6844 /* Check extra constraints for variable-length unchained SLP reductions. */
6845 if (STMT_SLP_TYPE (stmt_info)
6846 && !REDUC_GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt))
6847 && !nunits_out.is_constant ())
6848 {
6849 /* We checked above that we could build the initial vector when
6850 there's a neutral element value. Check here for the case in
6851 which each SLP statement has its own initial value and in which
6852 that value needs to be repeated for every instance of the
6853 statement within the initial vector. */
6854 unsigned int group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
6855 scalar_mode elt_mode = SCALAR_TYPE_MODE (TREE_TYPE (vectype_out));
6856 if (!neutral_op
6857 && !can_duplicate_and_interleave_p (group_size, elt_mode))
6858 {
6859 if (dump_enabled_p ())
6860 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6861 "unsupported form of SLP reduction for"
6862 " variable-length vectors: cannot build"
6863 " initial vector.\n");
6864 return false;
6865 }
6866 /* The epilogue code relies on the number of elements being a multiple
6867 of the group size. The duplicate-and-interleave approach to setting
6868 up the the initial vector does too. */
6869 if (!multiple_p (nunits_out, group_size))
6870 {
6871 if (dump_enabled_p ())
6872 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6873 "unsupported form of SLP reduction for"
6874 " variable-length vectors: the vector size"
6875 " is not a multiple of the number of results.\n");
6876 return false;
6877 }
6878 }
6879
6880 /* In case of widenning multiplication by a constant, we update the type
6881 of the constant to be the type of the other operand. We check that the
6882 constant fits the type in the pattern recognition pass. */
6883 if (code == DOT_PROD_EXPR
6884 && !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
6885 {
6886 if (TREE_CODE (ops[0]) == INTEGER_CST)
6887 ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
6888 else if (TREE_CODE (ops[1]) == INTEGER_CST)
6889 ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
6890 else
6891 {
6892 if (dump_enabled_p ())
6893 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6894 "invalid types in dot-prod\n");
6895
6896 return false;
6897 }
6898 }
6899
6900 if (reduction_type == COND_REDUCTION)
6901 {
6902 widest_int ni;
6903
6904 if (! max_loop_iterations (loop, &ni))
6905 {
6906 if (dump_enabled_p ())
6907 dump_printf_loc (MSG_NOTE, vect_location,
6908 "loop count not known, cannot create cond "
6909 "reduction.\n");
6910 return false;
6911 }
6912 /* Convert backedges to iterations. */
6913 ni += 1;
6914
6915 /* The additional index will be the same type as the condition. Check
6916 that the loop can fit into this less one (because we'll use up the
6917 zero slot for when there are no matches). */
6918 tree max_index = TYPE_MAX_VALUE (cr_index_scalar_type);
6919 if (wi::geu_p (ni, wi::to_widest (max_index)))
6920 {
6921 if (dump_enabled_p ())
6922 dump_printf_loc (MSG_NOTE, vect_location,
6923 "loop size is greater than data size.\n");
6924 return false;
6925 }
6926 }
6927
6928 /* In case the vectorization factor (VF) is bigger than the number
6929 of elements that we can fit in a vectype (nunits), we have to generate
6930 more than one vector stmt - i.e - we need to "unroll" the
6931 vector stmt by a factor VF/nunits. For more details see documentation
6932 in vectorizable_operation. */
6933
6934 /* If the reduction is used in an outer loop we need to generate
6935 VF intermediate results, like so (e.g. for ncopies=2):
6936 r0 = phi (init, r0)
6937 r1 = phi (init, r1)
6938 r0 = x0 + r0;
6939 r1 = x1 + r1;
6940 (i.e. we generate VF results in 2 registers).
6941 In this case we have a separate def-use cycle for each copy, and therefore
6942 for each copy we get the vector def for the reduction variable from the
6943 respective phi node created for this copy.
6944
6945 Otherwise (the reduction is unused in the loop nest), we can combine
6946 together intermediate results, like so (e.g. for ncopies=2):
6947 r = phi (init, r)
6948 r = x0 + r;
6949 r = x1 + r;
6950 (i.e. we generate VF/2 results in a single register).
6951 In this case for each copy we get the vector def for the reduction variable
6952 from the vectorized reduction operation generated in the previous iteration.
6953
6954 This only works when we see both the reduction PHI and its only consumer
6955 in vectorizable_reduction and there are no intermediate stmts
6956 participating. */
6957 stmt_vec_info use_stmt_info;
6958 tree reduc_phi_result = gimple_phi_result (reduc_def_stmt);
6959 if (ncopies > 1
6960 && (STMT_VINFO_RELEVANT (stmt_info) <= vect_used_only_live)
6961 && (use_stmt_info = loop_vinfo->lookup_single_use (reduc_phi_result))
6962 && (use_stmt_info == stmt_info
6963 || STMT_VINFO_RELATED_STMT (use_stmt_info) == stmt))
6964 {
6965 single_defuse_cycle = true;
6966 epilog_copies = 1;
6967 }
6968 else
6969 epilog_copies = ncopies;
6970
6971 /* If the reduction stmt is one of the patterns that have lane
6972 reduction embedded we cannot handle the case of ! single_defuse_cycle. */
6973 if ((ncopies > 1
6974 && ! single_defuse_cycle)
6975 && (code == DOT_PROD_EXPR
6976 || code == WIDEN_SUM_EXPR
6977 || code == SAD_EXPR))
6978 {
6979 if (dump_enabled_p ())
6980 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6981 "multi def-use cycle not possible for lane-reducing "
6982 "reduction operation\n");
6983 return false;
6984 }
6985
6986 if (slp_node)
6987 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
6988 else
6989 vec_num = 1;
6990
6991 internal_fn cond_fn = get_conditional_internal_fn (code);
6992 vec_loop_masks *masks = &LOOP_VINFO_MASKS (loop_vinfo);
6993
6994 if (!vec_stmt) /* transformation not required. */
6995 {
6996 vect_model_reduction_cost (stmt_info, reduc_fn, ncopies, cost_vec);
6997 if (loop_vinfo && LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo))
6998 {
6999 if (reduction_type != FOLD_LEFT_REDUCTION
7000 && (cond_fn == IFN_LAST
7001 || !direct_internal_fn_supported_p (cond_fn, vectype_in,
7002 OPTIMIZE_FOR_SPEED)))
7003 {
7004 if (dump_enabled_p ())
7005 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7006 "can't use a fully-masked loop because no"
7007 " conditional operation is available.\n");
7008 LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo) = false;
7009 }
7010 else if (reduc_index == -1)
7011 {
7012 if (dump_enabled_p ())
7013 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7014 "can't use a fully-masked loop for chained"
7015 " reductions.\n");
7016 LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo) = false;
7017 }
7018 else
7019 vect_record_loop_mask (loop_vinfo, masks, ncopies * vec_num,
7020 vectype_in);
7021 }
7022 if (dump_enabled_p ()
7023 && reduction_type == FOLD_LEFT_REDUCTION)
7024 dump_printf_loc (MSG_NOTE, vect_location,
7025 "using an in-order (fold-left) reduction.\n");
7026 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
7027 return true;
7028 }
7029
7030 /* Transform. */
7031
7032 if (dump_enabled_p ())
7033 dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");
7034
7035 /* FORNOW: Multiple types are not supported for condition. */
7036 if (code == COND_EXPR)
7037 gcc_assert (ncopies == 1);
7038
7039 bool masked_loop_p = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
7040
7041 if (reduction_type == FOLD_LEFT_REDUCTION)
7042 return vectorize_fold_left_reduction
7043 (stmt, gsi, vec_stmt, slp_node, reduc_def_stmt, code,
7044 reduc_fn, ops, vectype_in, reduc_index, masks);
7045
7046 if (reduction_type == EXTRACT_LAST_REDUCTION)
7047 {
7048 gcc_assert (!slp_node);
7049 return vectorizable_condition (stmt, gsi, vec_stmt,
7050 NULL, reduc_index, NULL, NULL);
7051 }
7052
7053 /* Create the destination vector */
7054 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
7055
7056 prev_stmt_info = NULL;
7057 prev_phi_info = NULL;
7058 if (!slp_node)
7059 {
7060 vec_oprnds0.create (1);
7061 vec_oprnds1.create (1);
7062 if (op_type == ternary_op)
7063 vec_oprnds2.create (1);
7064 }
7065
7066 phis.create (vec_num);
7067 vect_defs.create (vec_num);
7068 if (!slp_node)
7069 vect_defs.quick_push (NULL_TREE);
7070
7071 if (slp_node)
7072 phis.splice (SLP_TREE_VEC_STMTS (slp_node_instance->reduc_phis));
7073 else
7074 phis.quick_push (STMT_VINFO_VEC_STMT (vinfo_for_stmt (reduc_def_stmt)));
7075
7076 for (j = 0; j < ncopies; j++)
7077 {
7078 if (code == COND_EXPR)
7079 {
7080 gcc_assert (!slp_node);
7081 vectorizable_condition (stmt, gsi, vec_stmt,
7082 PHI_RESULT (phis[0]),
7083 reduc_index, NULL, NULL);
7084 /* Multiple types are not supported for condition. */
7085 break;
7086 }
7087
7088 /* Handle uses. */
7089 if (j == 0)
7090 {
7091 if (slp_node)
7092 {
7093 /* Get vec defs for all the operands except the reduction index,
7094 ensuring the ordering of the ops in the vector is kept. */
7095 auto_vec<tree, 3> slp_ops;
7096 auto_vec<vec<tree>, 3> vec_defs;
7097
7098 slp_ops.quick_push (ops[0]);
7099 slp_ops.quick_push (ops[1]);
7100 if (op_type == ternary_op)
7101 slp_ops.quick_push (ops[2]);
7102
7103 vect_get_slp_defs (slp_ops, slp_node, &vec_defs);
7104
7105 vec_oprnds0.safe_splice (vec_defs[0]);
7106 vec_defs[0].release ();
7107 vec_oprnds1.safe_splice (vec_defs[1]);
7108 vec_defs[1].release ();
7109 if (op_type == ternary_op)
7110 {
7111 vec_oprnds2.safe_splice (vec_defs[2]);
7112 vec_defs[2].release ();
7113 }
7114 }
7115 else
7116 {
7117 vec_oprnds0.quick_push
7118 (vect_get_vec_def_for_operand (ops[0], stmt));
7119 vec_oprnds1.quick_push
7120 (vect_get_vec_def_for_operand (ops[1], stmt));
7121 if (op_type == ternary_op)
7122 vec_oprnds2.quick_push
7123 (vect_get_vec_def_for_operand (ops[2], stmt));
7124 }
7125 }
7126 else
7127 {
7128 if (!slp_node)
7129 {
7130 gcc_assert (reduc_index != -1 || ! single_defuse_cycle);
7131
7132 if (single_defuse_cycle && reduc_index == 0)
7133 vec_oprnds0[0] = gimple_get_lhs (new_stmt);
7134 else
7135 vec_oprnds0[0]
7136 = vect_get_vec_def_for_stmt_copy (dts[0], vec_oprnds0[0]);
7137 if (single_defuse_cycle && reduc_index == 1)
7138 vec_oprnds1[0] = gimple_get_lhs (new_stmt);
7139 else
7140 vec_oprnds1[0]
7141 = vect_get_vec_def_for_stmt_copy (dts[1], vec_oprnds1[0]);
7142 if (op_type == ternary_op)
7143 {
7144 if (single_defuse_cycle && reduc_index == 2)
7145 vec_oprnds2[0] = gimple_get_lhs (new_stmt);
7146 else
7147 vec_oprnds2[0]
7148 = vect_get_vec_def_for_stmt_copy (dts[2], vec_oprnds2[0]);
7149 }
7150 }
7151 }
7152
7153 FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
7154 {
7155 tree vop[3] = { def0, vec_oprnds1[i], NULL_TREE };
7156 if (masked_loop_p)
7157 {
7158 /* Make sure that the reduction accumulator is vop[0]. */
7159 if (reduc_index == 1)
7160 {
7161 gcc_assert (commutative_tree_code (code));
7162 std::swap (vop[0], vop[1]);
7163 }
7164 tree mask = vect_get_loop_mask (gsi, masks, vec_num * ncopies,
7165 vectype_in, i * ncopies + j);
7166 gcall *call = gimple_build_call_internal (cond_fn, 4, mask,
7167 vop[0], vop[1],
7168 vop[0]);
7169 new_temp = make_ssa_name (vec_dest, call);
7170 gimple_call_set_lhs (call, new_temp);
7171 gimple_call_set_nothrow (call, true);
7172 new_stmt = call;
7173 }
7174 else
7175 {
7176 if (op_type == ternary_op)
7177 vop[2] = vec_oprnds2[i];
7178
7179 new_stmt = gimple_build_assign (vec_dest, code,
7180 vop[0], vop[1], vop[2]);
7181 new_temp = make_ssa_name (vec_dest, new_stmt);
7182 gimple_assign_set_lhs (new_stmt, new_temp);
7183 }
7184 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7185
7186 if (slp_node)
7187 {
7188 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
7189 vect_defs.quick_push (new_temp);
7190 }
7191 else
7192 vect_defs[0] = new_temp;
7193 }
7194
7195 if (slp_node)
7196 continue;
7197
7198 if (j == 0)
7199 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
7200 else
7201 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
7202
7203 prev_stmt_info = vinfo_for_stmt (new_stmt);
7204 }
7205
7206 /* Finalize the reduction-phi (set its arguments) and create the
7207 epilog reduction code. */
7208 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
7209 vect_defs[0] = gimple_get_lhs (*vec_stmt);
7210
7211 vect_create_epilog_for_reduction (vect_defs, stmt, reduc_def_stmt,
7212 epilog_copies, reduc_fn, phis,
7213 double_reduc, slp_node, slp_node_instance,
7214 cond_reduc_val, cond_reduc_op_code,
7215 neutral_op);
7216
7217 return true;
7218 }
7219
7220 /* Function vect_min_worthwhile_factor.
7221
7222 For a loop where we could vectorize the operation indicated by CODE,
7223 return the minimum vectorization factor that makes it worthwhile
7224 to use generic vectors. */
7225 static unsigned int
7226 vect_min_worthwhile_factor (enum tree_code code)
7227 {
7228 switch (code)
7229 {
7230 case PLUS_EXPR:
7231 case MINUS_EXPR:
7232 case NEGATE_EXPR:
7233 return 4;
7234
7235 case BIT_AND_EXPR:
7236 case BIT_IOR_EXPR:
7237 case BIT_XOR_EXPR:
7238 case BIT_NOT_EXPR:
7239 return 2;
7240
7241 default:
7242 return INT_MAX;
7243 }
7244 }
7245
7246 /* Return true if VINFO indicates we are doing loop vectorization and if
7247 it is worth decomposing CODE operations into scalar operations for
7248 that loop's vectorization factor. */
7249
7250 bool
7251 vect_worthwhile_without_simd_p (vec_info *vinfo, tree_code code)
7252 {
7253 loop_vec_info loop_vinfo = dyn_cast <loop_vec_info> (vinfo);
7254 unsigned HOST_WIDE_INT value;
7255 return (loop_vinfo
7256 && LOOP_VINFO_VECT_FACTOR (loop_vinfo).is_constant (&value)
7257 && value >= vect_min_worthwhile_factor (code));
7258 }
7259
7260 /* Function vectorizable_induction
7261
7262 Check if PHI performs an induction computation that can be vectorized.
7263 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
7264 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
7265 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
7266
7267 bool
7268 vectorizable_induction (gimple *phi,
7269 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
7270 gimple **vec_stmt, slp_tree slp_node,
7271 stmt_vector_for_cost *cost_vec)
7272 {
7273 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
7274 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
7275 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
7276 unsigned ncopies;
7277 bool nested_in_vect_loop = false;
7278 struct loop *iv_loop;
7279 tree vec_def;
7280 edge pe = loop_preheader_edge (loop);
7281 basic_block new_bb;
7282 tree new_vec, vec_init, vec_step, t;
7283 tree new_name;
7284 gimple *new_stmt;
7285 gphi *induction_phi;
7286 tree induc_def, vec_dest;
7287 tree init_expr, step_expr;
7288 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
7289 unsigned i;
7290 tree expr;
7291 gimple_seq stmts;
7292 imm_use_iterator imm_iter;
7293 use_operand_p use_p;
7294 gimple *exit_phi;
7295 edge latch_e;
7296 tree loop_arg;
7297 gimple_stmt_iterator si;
7298 basic_block bb = gimple_bb (phi);
7299
7300 if (gimple_code (phi) != GIMPLE_PHI)
7301 return false;
7302
7303 if (!STMT_VINFO_RELEVANT_P (stmt_info))
7304 return false;
7305
7306 /* Make sure it was recognized as induction computation. */
7307 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
7308 return false;
7309
7310 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
7311 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
7312
7313 if (slp_node)
7314 ncopies = 1;
7315 else
7316 ncopies = vect_get_num_copies (loop_vinfo, vectype);
7317 gcc_assert (ncopies >= 1);
7318
7319 /* FORNOW. These restrictions should be relaxed. */
7320 if (nested_in_vect_loop_p (loop, phi))
7321 {
7322 imm_use_iterator imm_iter;
7323 use_operand_p use_p;
7324 gimple *exit_phi;
7325 edge latch_e;
7326 tree loop_arg;
7327
7328 if (ncopies > 1)
7329 {
7330 if (dump_enabled_p ())
7331 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7332 "multiple types in nested loop.\n");
7333 return false;
7334 }
7335
7336 /* FORNOW: outer loop induction with SLP not supported. */
7337 if (STMT_SLP_TYPE (stmt_info))
7338 return false;
7339
7340 exit_phi = NULL;
7341 latch_e = loop_latch_edge (loop->inner);
7342 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
7343 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
7344 {
7345 gimple *use_stmt = USE_STMT (use_p);
7346 if (is_gimple_debug (use_stmt))
7347 continue;
7348
7349 if (!flow_bb_inside_loop_p (loop->inner, gimple_bb (use_stmt)))
7350 {
7351 exit_phi = use_stmt;
7352 break;
7353 }
7354 }
7355 if (exit_phi)
7356 {
7357 stmt_vec_info exit_phi_vinfo = loop_vinfo->lookup_stmt (exit_phi);
7358 if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
7359 && !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
7360 {
7361 if (dump_enabled_p ())
7362 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7363 "inner-loop induction only used outside "
7364 "of the outer vectorized loop.\n");
7365 return false;
7366 }
7367 }
7368
7369 nested_in_vect_loop = true;
7370 iv_loop = loop->inner;
7371 }
7372 else
7373 iv_loop = loop;
7374 gcc_assert (iv_loop == (gimple_bb (phi))->loop_father);
7375
7376 if (slp_node && !nunits.is_constant ())
7377 {
7378 /* The current SLP code creates the initial value element-by-element. */
7379 if (dump_enabled_p ())
7380 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7381 "SLP induction not supported for variable-length"
7382 " vectors.\n");
7383 return false;
7384 }
7385
7386 if (!vec_stmt) /* transformation not required. */
7387 {
7388 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
7389 DUMP_VECT_SCOPE ("vectorizable_induction");
7390 vect_model_induction_cost (stmt_info, ncopies, cost_vec);
7391 return true;
7392 }
7393
7394 /* Transform. */
7395
7396 /* Compute a vector variable, initialized with the first VF values of
7397 the induction variable. E.g., for an iv with IV_PHI='X' and
7398 evolution S, for a vector of 4 units, we want to compute:
7399 [X, X + S, X + 2*S, X + 3*S]. */
7400
7401 if (dump_enabled_p ())
7402 dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
7403
7404 latch_e = loop_latch_edge (iv_loop);
7405 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
7406
7407 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_info);
7408 gcc_assert (step_expr != NULL_TREE);
7409
7410 pe = loop_preheader_edge (iv_loop);
7411 init_expr = PHI_ARG_DEF_FROM_EDGE (phi,
7412 loop_preheader_edge (iv_loop));
7413
7414 stmts = NULL;
7415 if (!nested_in_vect_loop)
7416 {
7417 /* Convert the initial value to the desired type. */
7418 tree new_type = TREE_TYPE (vectype);
7419 init_expr = gimple_convert (&stmts, new_type, init_expr);
7420
7421 /* If we are using the loop mask to "peel" for alignment then we need
7422 to adjust the start value here. */
7423 tree skip_niters = LOOP_VINFO_MASK_SKIP_NITERS (loop_vinfo);
7424 if (skip_niters != NULL_TREE)
7425 {
7426 if (FLOAT_TYPE_P (vectype))
7427 skip_niters = gimple_build (&stmts, FLOAT_EXPR, new_type,
7428 skip_niters);
7429 else
7430 skip_niters = gimple_convert (&stmts, new_type, skip_niters);
7431 tree skip_step = gimple_build (&stmts, MULT_EXPR, new_type,
7432 skip_niters, step_expr);
7433 init_expr = gimple_build (&stmts, MINUS_EXPR, new_type,
7434 init_expr, skip_step);
7435 }
7436 }
7437
7438 /* Convert the step to the desired type. */
7439 step_expr = gimple_convert (&stmts, TREE_TYPE (vectype), step_expr);
7440
7441 if (stmts)
7442 {
7443 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
7444 gcc_assert (!new_bb);
7445 }
7446
7447 /* Find the first insertion point in the BB. */
7448 si = gsi_after_labels (bb);
7449
7450 /* For SLP induction we have to generate several IVs as for example
7451 with group size 3 we need [i, i, i, i + S] [i + S, i + S, i + 2*S, i + 2*S]
7452 [i + 2*S, i + 3*S, i + 3*S, i + 3*S]. The step is the same uniform
7453 [VF*S, VF*S, VF*S, VF*S] for all. */
7454 if (slp_node)
7455 {
7456 /* Enforced above. */
7457 unsigned int const_nunits = nunits.to_constant ();
7458
7459 /* Generate [VF*S, VF*S, ... ]. */
7460 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
7461 {
7462 expr = build_int_cst (integer_type_node, vf);
7463 expr = fold_convert (TREE_TYPE (step_expr), expr);
7464 }
7465 else
7466 expr = build_int_cst (TREE_TYPE (step_expr), vf);
7467 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
7468 expr, step_expr);
7469 if (! CONSTANT_CLASS_P (new_name))
7470 new_name = vect_init_vector (phi, new_name,
7471 TREE_TYPE (step_expr), NULL);
7472 new_vec = build_vector_from_val (vectype, new_name);
7473 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
7474
7475 /* Now generate the IVs. */
7476 unsigned group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
7477 unsigned nvects = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
7478 unsigned elts = const_nunits * nvects;
7479 unsigned nivs = least_common_multiple (group_size,
7480 const_nunits) / const_nunits;
7481 gcc_assert (elts % group_size == 0);
7482 tree elt = init_expr;
7483 unsigned ivn;
7484 for (ivn = 0; ivn < nivs; ++ivn)
7485 {
7486 tree_vector_builder elts (vectype, const_nunits, 1);
7487 stmts = NULL;
7488 for (unsigned eltn = 0; eltn < const_nunits; ++eltn)
7489 {
7490 if (ivn*const_nunits + eltn >= group_size
7491 && (ivn * const_nunits + eltn) % group_size == 0)
7492 elt = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (elt),
7493 elt, step_expr);
7494 elts.quick_push (elt);
7495 }
7496 vec_init = gimple_build_vector (&stmts, &elts);
7497 if (stmts)
7498 {
7499 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
7500 gcc_assert (!new_bb);
7501 }
7502
7503 /* Create the induction-phi that defines the induction-operand. */
7504 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
7505 induction_phi = create_phi_node (vec_dest, iv_loop->header);
7506 loop_vinfo->add_stmt (induction_phi);
7507 induc_def = PHI_RESULT (induction_phi);
7508
7509 /* Create the iv update inside the loop */
7510 vec_def = make_ssa_name (vec_dest);
7511 new_stmt = gimple_build_assign (vec_def, PLUS_EXPR, induc_def, vec_step);
7512 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
7513 loop_vinfo->add_stmt (new_stmt);
7514
7515 /* Set the arguments of the phi node: */
7516 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
7517 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
7518 UNKNOWN_LOCATION);
7519
7520 SLP_TREE_VEC_STMTS (slp_node).quick_push (induction_phi);
7521 }
7522
7523 /* Re-use IVs when we can. */
7524 if (ivn < nvects)
7525 {
7526 unsigned vfp
7527 = least_common_multiple (group_size, const_nunits) / group_size;
7528 /* Generate [VF'*S, VF'*S, ... ]. */
7529 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
7530 {
7531 expr = build_int_cst (integer_type_node, vfp);
7532 expr = fold_convert (TREE_TYPE (step_expr), expr);
7533 }
7534 else
7535 expr = build_int_cst (TREE_TYPE (step_expr), vfp);
7536 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
7537 expr, step_expr);
7538 if (! CONSTANT_CLASS_P (new_name))
7539 new_name = vect_init_vector (phi, new_name,
7540 TREE_TYPE (step_expr), NULL);
7541 new_vec = build_vector_from_val (vectype, new_name);
7542 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
7543 for (; ivn < nvects; ++ivn)
7544 {
7545 gimple *iv = SLP_TREE_VEC_STMTS (slp_node)[ivn - nivs];
7546 tree def;
7547 if (gimple_code (iv) == GIMPLE_PHI)
7548 def = gimple_phi_result (iv);
7549 else
7550 def = gimple_assign_lhs (iv);
7551 new_stmt = gimple_build_assign (make_ssa_name (vectype),
7552 PLUS_EXPR,
7553 def, vec_step);
7554 if (gimple_code (iv) == GIMPLE_PHI)
7555 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
7556 else
7557 {
7558 gimple_stmt_iterator tgsi = gsi_for_stmt (iv);
7559 gsi_insert_after (&tgsi, new_stmt, GSI_CONTINUE_LINKING);
7560 }
7561 loop_vinfo->add_stmt (new_stmt);
7562 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
7563 }
7564 }
7565
7566 return true;
7567 }
7568
7569 /* Create the vector that holds the initial_value of the induction. */
7570 if (nested_in_vect_loop)
7571 {
7572 /* iv_loop is nested in the loop to be vectorized. init_expr had already
7573 been created during vectorization of previous stmts. We obtain it
7574 from the STMT_VINFO_VEC_STMT of the defining stmt. */
7575 vec_init = vect_get_vec_def_for_operand (init_expr, phi);
7576 /* If the initial value is not of proper type, convert it. */
7577 if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
7578 {
7579 new_stmt
7580 = gimple_build_assign (vect_get_new_ssa_name (vectype,
7581 vect_simple_var,
7582 "vec_iv_"),
7583 VIEW_CONVERT_EXPR,
7584 build1 (VIEW_CONVERT_EXPR, vectype,
7585 vec_init));
7586 vec_init = gimple_assign_lhs (new_stmt);
7587 new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
7588 new_stmt);
7589 gcc_assert (!new_bb);
7590 loop_vinfo->add_stmt (new_stmt);
7591 }
7592 }
7593 else
7594 {
7595 /* iv_loop is the loop to be vectorized. Create:
7596 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
7597 stmts = NULL;
7598 new_name = gimple_convert (&stmts, TREE_TYPE (vectype), init_expr);
7599
7600 unsigned HOST_WIDE_INT const_nunits;
7601 if (nunits.is_constant (&const_nunits))
7602 {
7603 tree_vector_builder elts (vectype, const_nunits, 1);
7604 elts.quick_push (new_name);
7605 for (i = 1; i < const_nunits; i++)
7606 {
7607 /* Create: new_name_i = new_name + step_expr */
7608 new_name = gimple_build (&stmts, PLUS_EXPR, TREE_TYPE (new_name),
7609 new_name, step_expr);
7610 elts.quick_push (new_name);
7611 }
7612 /* Create a vector from [new_name_0, new_name_1, ...,
7613 new_name_nunits-1] */
7614 vec_init = gimple_build_vector (&stmts, &elts);
7615 }
7616 else if (INTEGRAL_TYPE_P (TREE_TYPE (step_expr)))
7617 /* Build the initial value directly from a VEC_SERIES_EXPR. */
7618 vec_init = gimple_build (&stmts, VEC_SERIES_EXPR, vectype,
7619 new_name, step_expr);
7620 else
7621 {
7622 /* Build:
7623 [base, base, base, ...]
7624 + (vectype) [0, 1, 2, ...] * [step, step, step, ...]. */
7625 gcc_assert (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)));
7626 gcc_assert (flag_associative_math);
7627 tree index = build_index_vector (vectype, 0, 1);
7628 tree base_vec = gimple_build_vector_from_val (&stmts, vectype,
7629 new_name);
7630 tree step_vec = gimple_build_vector_from_val (&stmts, vectype,
7631 step_expr);
7632 vec_init = gimple_build (&stmts, FLOAT_EXPR, vectype, index);
7633 vec_init = gimple_build (&stmts, MULT_EXPR, vectype,
7634 vec_init, step_vec);
7635 vec_init = gimple_build (&stmts, PLUS_EXPR, vectype,
7636 vec_init, base_vec);
7637 }
7638
7639 if (stmts)
7640 {
7641 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
7642 gcc_assert (!new_bb);
7643 }
7644 }
7645
7646
7647 /* Create the vector that holds the step of the induction. */
7648 if (nested_in_vect_loop)
7649 /* iv_loop is nested in the loop to be vectorized. Generate:
7650 vec_step = [S, S, S, S] */
7651 new_name = step_expr;
7652 else
7653 {
7654 /* iv_loop is the loop to be vectorized. Generate:
7655 vec_step = [VF*S, VF*S, VF*S, VF*S] */
7656 gimple_seq seq = NULL;
7657 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
7658 {
7659 expr = build_int_cst (integer_type_node, vf);
7660 expr = gimple_build (&seq, FLOAT_EXPR, TREE_TYPE (step_expr), expr);
7661 }
7662 else
7663 expr = build_int_cst (TREE_TYPE (step_expr), vf);
7664 new_name = gimple_build (&seq, MULT_EXPR, TREE_TYPE (step_expr),
7665 expr, step_expr);
7666 if (seq)
7667 {
7668 new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
7669 gcc_assert (!new_bb);
7670 }
7671 }
7672
7673 t = unshare_expr (new_name);
7674 gcc_assert (CONSTANT_CLASS_P (new_name)
7675 || TREE_CODE (new_name) == SSA_NAME);
7676 new_vec = build_vector_from_val (vectype, t);
7677 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
7678
7679
7680 /* Create the following def-use cycle:
7681 loop prolog:
7682 vec_init = ...
7683 vec_step = ...
7684 loop:
7685 vec_iv = PHI <vec_init, vec_loop>
7686 ...
7687 STMT
7688 ...
7689 vec_loop = vec_iv + vec_step; */
7690
7691 /* Create the induction-phi that defines the induction-operand. */
7692 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
7693 induction_phi = create_phi_node (vec_dest, iv_loop->header);
7694 stmt_vec_info induction_phi_info = loop_vinfo->add_stmt (induction_phi);
7695 induc_def = PHI_RESULT (induction_phi);
7696
7697 /* Create the iv update inside the loop */
7698 vec_def = make_ssa_name (vec_dest);
7699 new_stmt = gimple_build_assign (vec_def, PLUS_EXPR, induc_def, vec_step);
7700 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
7701 stmt_vec_info new_stmt_info = loop_vinfo->add_stmt (new_stmt);
7702
7703 /* Set the arguments of the phi node: */
7704 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
7705 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
7706 UNKNOWN_LOCATION);
7707
7708 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = induction_phi;
7709
7710 /* In case that vectorization factor (VF) is bigger than the number
7711 of elements that we can fit in a vectype (nunits), we have to generate
7712 more than one vector stmt - i.e - we need to "unroll" the
7713 vector stmt by a factor VF/nunits. For more details see documentation
7714 in vectorizable_operation. */
7715
7716 if (ncopies > 1)
7717 {
7718 gimple_seq seq = NULL;
7719 stmt_vec_info prev_stmt_vinfo;
7720 /* FORNOW. This restriction should be relaxed. */
7721 gcc_assert (!nested_in_vect_loop);
7722
7723 /* Create the vector that holds the step of the induction. */
7724 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
7725 {
7726 expr = build_int_cst (integer_type_node, nunits);
7727 expr = gimple_build (&seq, FLOAT_EXPR, TREE_TYPE (step_expr), expr);
7728 }
7729 else
7730 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
7731 new_name = gimple_build (&seq, MULT_EXPR, TREE_TYPE (step_expr),
7732 expr, step_expr);
7733 if (seq)
7734 {
7735 new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
7736 gcc_assert (!new_bb);
7737 }
7738
7739 t = unshare_expr (new_name);
7740 gcc_assert (CONSTANT_CLASS_P (new_name)
7741 || TREE_CODE (new_name) == SSA_NAME);
7742 new_vec = build_vector_from_val (vectype, t);
7743 vec_step = vect_init_vector (phi, new_vec, vectype, NULL);
7744
7745 vec_def = induc_def;
7746 prev_stmt_vinfo = induction_phi_info;
7747 for (i = 1; i < ncopies; i++)
7748 {
7749 /* vec_i = vec_prev + vec_step */
7750 new_stmt = gimple_build_assign (vec_dest, PLUS_EXPR,
7751 vec_def, vec_step);
7752 vec_def = make_ssa_name (vec_dest, new_stmt);
7753 gimple_assign_set_lhs (new_stmt, vec_def);
7754
7755 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
7756 new_stmt_info = loop_vinfo->add_stmt (new_stmt);
7757 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
7758 prev_stmt_vinfo = new_stmt_info;
7759 }
7760 }
7761
7762 if (nested_in_vect_loop)
7763 {
7764 /* Find the loop-closed exit-phi of the induction, and record
7765 the final vector of induction results: */
7766 exit_phi = NULL;
7767 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
7768 {
7769 gimple *use_stmt = USE_STMT (use_p);
7770 if (is_gimple_debug (use_stmt))
7771 continue;
7772
7773 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (use_stmt)))
7774 {
7775 exit_phi = use_stmt;
7776 break;
7777 }
7778 }
7779 if (exit_phi)
7780 {
7781 stmt_vec_info stmt_vinfo = loop_vinfo->lookup_stmt (exit_phi);
7782 /* FORNOW. Currently not supporting the case that an inner-loop induction
7783 is not used in the outer-loop (i.e. only outside the outer-loop). */
7784 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
7785 && !STMT_VINFO_LIVE_P (stmt_vinfo));
7786
7787 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
7788 if (dump_enabled_p ())
7789 {
7790 dump_printf_loc (MSG_NOTE, vect_location,
7791 "vector of inductions after inner-loop:");
7792 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
7793 }
7794 }
7795 }
7796
7797
7798 if (dump_enabled_p ())
7799 {
7800 dump_printf_loc (MSG_NOTE, vect_location,
7801 "transform induction: created def-use cycle: ");
7802 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
7803 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
7804 SSA_NAME_DEF_STMT (vec_def), 0);
7805 }
7806
7807 return true;
7808 }
7809
7810 /* Function vectorizable_live_operation.
7811
7812 STMT computes a value that is used outside the loop. Check if
7813 it can be supported. */
7814
7815 bool
7816 vectorizable_live_operation (gimple *stmt,
7817 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
7818 slp_tree slp_node, int slp_index,
7819 gimple **vec_stmt,
7820 stmt_vector_for_cost *)
7821 {
7822 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
7823 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
7824 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
7825 imm_use_iterator imm_iter;
7826 tree lhs, lhs_type, bitsize, vec_bitsize;
7827 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
7828 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (vectype);
7829 int ncopies;
7830 gimple *use_stmt;
7831 auto_vec<tree> vec_oprnds;
7832 int vec_entry = 0;
7833 poly_uint64 vec_index = 0;
7834
7835 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
7836
7837 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
7838 return false;
7839
7840 /* FORNOW. CHECKME. */
7841 if (nested_in_vect_loop_p (loop, stmt))
7842 return false;
7843
7844 /* If STMT is not relevant and it is a simple assignment and its inputs are
7845 invariant then it can remain in place, unvectorized. The original last
7846 scalar value that it computes will be used. */
7847 if (!STMT_VINFO_RELEVANT_P (stmt_info))
7848 {
7849 gcc_assert (is_simple_and_all_uses_invariant (stmt, loop_vinfo));
7850 if (dump_enabled_p ())
7851 dump_printf_loc (MSG_NOTE, vect_location,
7852 "statement is simple and uses invariant. Leaving in "
7853 "place.\n");
7854 return true;
7855 }
7856
7857 if (slp_node)
7858 ncopies = 1;
7859 else
7860 ncopies = vect_get_num_copies (loop_vinfo, vectype);
7861
7862 if (slp_node)
7863 {
7864 gcc_assert (slp_index >= 0);
7865
7866 int num_scalar = SLP_TREE_SCALAR_STMTS (slp_node).length ();
7867 int num_vec = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
7868
7869 /* Get the last occurrence of the scalar index from the concatenation of
7870 all the slp vectors. Calculate which slp vector it is and the index
7871 within. */
7872 poly_uint64 pos = (num_vec * nunits) - num_scalar + slp_index;
7873
7874 /* Calculate which vector contains the result, and which lane of
7875 that vector we need. */
7876 if (!can_div_trunc_p (pos, nunits, &vec_entry, &vec_index))
7877 {
7878 if (dump_enabled_p ())
7879 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7880 "Cannot determine which vector holds the"
7881 " final result.\n");
7882 return false;
7883 }
7884 }
7885
7886 if (!vec_stmt)
7887 {
7888 /* No transformation required. */
7889 if (LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo))
7890 {
7891 if (!direct_internal_fn_supported_p (IFN_EXTRACT_LAST, vectype,
7892 OPTIMIZE_FOR_SPEED))
7893 {
7894 if (dump_enabled_p ())
7895 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7896 "can't use a fully-masked loop because "
7897 "the target doesn't support extract last "
7898 "reduction.\n");
7899 LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo) = false;
7900 }
7901 else if (slp_node)
7902 {
7903 if (dump_enabled_p ())
7904 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7905 "can't use a fully-masked loop because an "
7906 "SLP statement is live after the loop.\n");
7907 LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo) = false;
7908 }
7909 else if (ncopies > 1)
7910 {
7911 if (dump_enabled_p ())
7912 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7913 "can't use a fully-masked loop because"
7914 " ncopies is greater than 1.\n");
7915 LOOP_VINFO_CAN_FULLY_MASK_P (loop_vinfo) = false;
7916 }
7917 else
7918 {
7919 gcc_assert (ncopies == 1 && !slp_node);
7920 vect_record_loop_mask (loop_vinfo,
7921 &LOOP_VINFO_MASKS (loop_vinfo),
7922 1, vectype);
7923 }
7924 }
7925 return true;
7926 }
7927
7928 /* If stmt has a related stmt, then use that for getting the lhs. */
7929 if (is_pattern_stmt_p (stmt_info))
7930 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
7931
7932 lhs = (is_a <gphi *> (stmt)) ? gimple_phi_result (stmt)
7933 : gimple_get_lhs (stmt);
7934 lhs_type = TREE_TYPE (lhs);
7935
7936 bitsize = (VECTOR_BOOLEAN_TYPE_P (vectype)
7937 ? bitsize_int (TYPE_PRECISION (TREE_TYPE (vectype)))
7938 : TYPE_SIZE (TREE_TYPE (vectype)));
7939 vec_bitsize = TYPE_SIZE (vectype);
7940
7941 /* Get the vectorized lhs of STMT and the lane to use (counted in bits). */
7942 tree vec_lhs, bitstart;
7943 if (slp_node)
7944 {
7945 gcc_assert (!LOOP_VINFO_FULLY_MASKED_P (loop_vinfo));
7946
7947 /* Get the correct slp vectorized stmt. */
7948 gimple *vec_stmt = SLP_TREE_VEC_STMTS (slp_node)[vec_entry];
7949 if (gphi *phi = dyn_cast <gphi *> (vec_stmt))
7950 vec_lhs = gimple_phi_result (phi);
7951 else
7952 vec_lhs = gimple_get_lhs (vec_stmt);
7953
7954 /* Get entry to use. */
7955 bitstart = bitsize_int (vec_index);
7956 bitstart = int_const_binop (MULT_EXPR, bitsize, bitstart);
7957 }
7958 else
7959 {
7960 enum vect_def_type dt = STMT_VINFO_DEF_TYPE (stmt_info);
7961 vec_lhs = vect_get_vec_def_for_operand_1 (stmt, dt);
7962 gcc_checking_assert (ncopies == 1
7963 || !LOOP_VINFO_FULLY_MASKED_P (loop_vinfo));
7964
7965 /* For multiple copies, get the last copy. */
7966 for (int i = 1; i < ncopies; ++i)
7967 vec_lhs = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type,
7968 vec_lhs);
7969
7970 /* Get the last lane in the vector. */
7971 bitstart = int_const_binop (MINUS_EXPR, vec_bitsize, bitsize);
7972 }
7973
7974 gimple_seq stmts = NULL;
7975 tree new_tree;
7976 if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
7977 {
7978 /* Emit:
7979
7980 SCALAR_RES = EXTRACT_LAST <VEC_LHS, MASK>
7981
7982 where VEC_LHS is the vectorized live-out result and MASK is
7983 the loop mask for the final iteration. */
7984 gcc_assert (ncopies == 1 && !slp_node);
7985 tree scalar_type = TREE_TYPE (STMT_VINFO_VECTYPE (stmt_info));
7986 tree mask = vect_get_loop_mask (gsi, &LOOP_VINFO_MASKS (loop_vinfo),
7987 1, vectype, 0);
7988 tree scalar_res = gimple_build (&stmts, CFN_EXTRACT_LAST,
7989 scalar_type, mask, vec_lhs);
7990
7991 /* Convert the extracted vector element to the required scalar type. */
7992 new_tree = gimple_convert (&stmts, lhs_type, scalar_res);
7993 }
7994 else
7995 {
7996 tree bftype = TREE_TYPE (vectype);
7997 if (VECTOR_BOOLEAN_TYPE_P (vectype))
7998 bftype = build_nonstandard_integer_type (tree_to_uhwi (bitsize), 1);
7999 new_tree = build3 (BIT_FIELD_REF, bftype, vec_lhs, bitsize, bitstart);
8000 new_tree = force_gimple_operand (fold_convert (lhs_type, new_tree),
8001 &stmts, true, NULL_TREE);
8002 }
8003
8004 if (stmts)
8005 gsi_insert_seq_on_edge_immediate (single_exit (loop), stmts);
8006
8007 /* Replace use of lhs with newly computed result. If the use stmt is a
8008 single arg PHI, just replace all uses of PHI result. It's necessary
8009 because lcssa PHI defining lhs may be before newly inserted stmt. */
8010 use_operand_p use_p;
8011 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, lhs)
8012 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
8013 && !is_gimple_debug (use_stmt))
8014 {
8015 if (gimple_code (use_stmt) == GIMPLE_PHI
8016 && gimple_phi_num_args (use_stmt) == 1)
8017 {
8018 replace_uses_by (gimple_phi_result (use_stmt), new_tree);
8019 }
8020 else
8021 {
8022 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
8023 SET_USE (use_p, new_tree);
8024 }
8025 update_stmt (use_stmt);
8026 }
8027
8028 return true;
8029 }
8030
8031 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
8032
8033 static void
8034 vect_loop_kill_debug_uses (struct loop *loop, gimple *stmt)
8035 {
8036 ssa_op_iter op_iter;
8037 imm_use_iterator imm_iter;
8038 def_operand_p def_p;
8039 gimple *ustmt;
8040
8041 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
8042 {
8043 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
8044 {
8045 basic_block bb;
8046
8047 if (!is_gimple_debug (ustmt))
8048 continue;
8049
8050 bb = gimple_bb (ustmt);
8051
8052 if (!flow_bb_inside_loop_p (loop, bb))
8053 {
8054 if (gimple_debug_bind_p (ustmt))
8055 {
8056 if (dump_enabled_p ())
8057 dump_printf_loc (MSG_NOTE, vect_location,
8058 "killing debug use\n");
8059
8060 gimple_debug_bind_reset_value (ustmt);
8061 update_stmt (ustmt);
8062 }
8063 else
8064 gcc_unreachable ();
8065 }
8066 }
8067 }
8068 }
8069
8070 /* Given loop represented by LOOP_VINFO, return true if computation of
8071 LOOP_VINFO_NITERS (= LOOP_VINFO_NITERSM1 + 1) doesn't overflow, false
8072 otherwise. */
8073
8074 static bool
8075 loop_niters_no_overflow (loop_vec_info loop_vinfo)
8076 {
8077 /* Constant case. */
8078 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
8079 {
8080 tree cst_niters = LOOP_VINFO_NITERS (loop_vinfo);
8081 tree cst_nitersm1 = LOOP_VINFO_NITERSM1 (loop_vinfo);
8082
8083 gcc_assert (TREE_CODE (cst_niters) == INTEGER_CST);
8084 gcc_assert (TREE_CODE (cst_nitersm1) == INTEGER_CST);
8085 if (wi::to_widest (cst_nitersm1) < wi::to_widest (cst_niters))
8086 return true;
8087 }
8088
8089 widest_int max;
8090 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
8091 /* Check the upper bound of loop niters. */
8092 if (get_max_loop_iterations (loop, &max))
8093 {
8094 tree type = TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo));
8095 signop sgn = TYPE_SIGN (type);
8096 widest_int type_max = widest_int::from (wi::max_value (type), sgn);
8097 if (max < type_max)
8098 return true;
8099 }
8100 return false;
8101 }
8102
8103 /* Return a mask type with half the number of elements as TYPE. */
8104
8105 tree
8106 vect_halve_mask_nunits (tree type)
8107 {
8108 poly_uint64 nunits = exact_div (TYPE_VECTOR_SUBPARTS (type), 2);
8109 return build_truth_vector_type (nunits, current_vector_size);
8110 }
8111
8112 /* Return a mask type with twice as many elements as TYPE. */
8113
8114 tree
8115 vect_double_mask_nunits (tree type)
8116 {
8117 poly_uint64 nunits = TYPE_VECTOR_SUBPARTS (type) * 2;
8118 return build_truth_vector_type (nunits, current_vector_size);
8119 }
8120
8121 /* Record that a fully-masked version of LOOP_VINFO would need MASKS to
8122 contain a sequence of NVECTORS masks that each control a vector of type
8123 VECTYPE. */
8124
8125 void
8126 vect_record_loop_mask (loop_vec_info loop_vinfo, vec_loop_masks *masks,
8127 unsigned int nvectors, tree vectype)
8128 {
8129 gcc_assert (nvectors != 0);
8130 if (masks->length () < nvectors)
8131 masks->safe_grow_cleared (nvectors);
8132 rgroup_masks *rgm = &(*masks)[nvectors - 1];
8133 /* The number of scalars per iteration and the number of vectors are
8134 both compile-time constants. */
8135 unsigned int nscalars_per_iter
8136 = exact_div (nvectors * TYPE_VECTOR_SUBPARTS (vectype),
8137 LOOP_VINFO_VECT_FACTOR (loop_vinfo)).to_constant ();
8138 if (rgm->max_nscalars_per_iter < nscalars_per_iter)
8139 {
8140 rgm->max_nscalars_per_iter = nscalars_per_iter;
8141 rgm->mask_type = build_same_sized_truth_vector_type (vectype);
8142 }
8143 }
8144
8145 /* Given a complete set of masks MASKS, extract mask number INDEX
8146 for an rgroup that operates on NVECTORS vectors of type VECTYPE,
8147 where 0 <= INDEX < NVECTORS. Insert any set-up statements before GSI.
8148
8149 See the comment above vec_loop_masks for more details about the mask
8150 arrangement. */
8151
8152 tree
8153 vect_get_loop_mask (gimple_stmt_iterator *gsi, vec_loop_masks *masks,
8154 unsigned int nvectors, tree vectype, unsigned int index)
8155 {
8156 rgroup_masks *rgm = &(*masks)[nvectors - 1];
8157 tree mask_type = rgm->mask_type;
8158
8159 /* Populate the rgroup's mask array, if this is the first time we've
8160 used it. */
8161 if (rgm->masks.is_empty ())
8162 {
8163 rgm->masks.safe_grow_cleared (nvectors);
8164 for (unsigned int i = 0; i < nvectors; ++i)
8165 {
8166 tree mask = make_temp_ssa_name (mask_type, NULL, "loop_mask");
8167 /* Provide a dummy definition until the real one is available. */
8168 SSA_NAME_DEF_STMT (mask) = gimple_build_nop ();
8169 rgm->masks[i] = mask;
8170 }
8171 }
8172
8173 tree mask = rgm->masks[index];
8174 if (maybe_ne (TYPE_VECTOR_SUBPARTS (mask_type),
8175 TYPE_VECTOR_SUBPARTS (vectype)))
8176 {
8177 /* A loop mask for data type X can be reused for data type Y
8178 if X has N times more elements than Y and if Y's elements
8179 are N times bigger than X's. In this case each sequence
8180 of N elements in the loop mask will be all-zero or all-one.
8181 We can then view-convert the mask so that each sequence of
8182 N elements is replaced by a single element. */
8183 gcc_assert (multiple_p (TYPE_VECTOR_SUBPARTS (mask_type),
8184 TYPE_VECTOR_SUBPARTS (vectype)));
8185 gimple_seq seq = NULL;
8186 mask_type = build_same_sized_truth_vector_type (vectype);
8187 mask = gimple_build (&seq, VIEW_CONVERT_EXPR, mask_type, mask);
8188 if (seq)
8189 gsi_insert_seq_before (gsi, seq, GSI_SAME_STMT);
8190 }
8191 return mask;
8192 }
8193
8194 /* Scale profiling counters by estimation for LOOP which is vectorized
8195 by factor VF. */
8196
8197 static void
8198 scale_profile_for_vect_loop (struct loop *loop, unsigned vf)
8199 {
8200 edge preheader = loop_preheader_edge (loop);
8201 /* Reduce loop iterations by the vectorization factor. */
8202 gcov_type new_est_niter = niter_for_unrolled_loop (loop, vf);
8203 profile_count freq_h = loop->header->count, freq_e = preheader->count ();
8204
8205 if (freq_h.nonzero_p ())
8206 {
8207 profile_probability p;
8208
8209 /* Avoid dropping loop body profile counter to 0 because of zero count
8210 in loop's preheader. */
8211 if (!(freq_e == profile_count::zero ()))
8212 freq_e = freq_e.force_nonzero ();
8213 p = freq_e.apply_scale (new_est_niter + 1, 1).probability_in (freq_h);
8214 scale_loop_frequencies (loop, p);
8215 }
8216
8217 edge exit_e = single_exit (loop);
8218 exit_e->probability = profile_probability::always ()
8219 .apply_scale (1, new_est_niter + 1);
8220
8221 edge exit_l = single_pred_edge (loop->latch);
8222 profile_probability prob = exit_l->probability;
8223 exit_l->probability = exit_e->probability.invert ();
8224 if (prob.initialized_p () && exit_l->probability.initialized_p ())
8225 scale_bbs_frequencies (&loop->latch, 1, exit_l->probability / prob);
8226 }
8227
8228 /* Vectorize STMT if relevant, inserting any new instructions before GSI.
8229 When vectorizing STMT as a store, set *SEEN_STORE to its stmt_vec_info.
8230 *SLP_SCHEDULE is a running record of whether we have called
8231 vect_schedule_slp. */
8232
8233 static void
8234 vect_transform_loop_stmt (loop_vec_info loop_vinfo, gimple *stmt,
8235 gimple_stmt_iterator *gsi,
8236 stmt_vec_info *seen_store, bool *slp_scheduled)
8237 {
8238 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
8239 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
8240 stmt_vec_info stmt_info = loop_vinfo->lookup_stmt (stmt);
8241 if (!stmt_info)
8242 return;
8243
8244 if (dump_enabled_p ())
8245 {
8246 dump_printf_loc (MSG_NOTE, vect_location,
8247 "------>vectorizing statement: ");
8248 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
8249 }
8250
8251 if (MAY_HAVE_DEBUG_BIND_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
8252 vect_loop_kill_debug_uses (loop, stmt);
8253
8254 if (!STMT_VINFO_RELEVANT_P (stmt_info)
8255 && !STMT_VINFO_LIVE_P (stmt_info))
8256 return;
8257
8258 if (STMT_VINFO_VECTYPE (stmt_info))
8259 {
8260 poly_uint64 nunits
8261 = TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
8262 if (!STMT_SLP_TYPE (stmt_info)
8263 && maybe_ne (nunits, vf)
8264 && dump_enabled_p ())
8265 /* For SLP VF is set according to unrolling factor, and not
8266 to vector size, hence for SLP this print is not valid. */
8267 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
8268 }
8269
8270 /* SLP. Schedule all the SLP instances when the first SLP stmt is
8271 reached. */
8272 if (slp_vect_type slptype = STMT_SLP_TYPE (stmt_info))
8273 {
8274
8275 if (!*slp_scheduled)
8276 {
8277 *slp_scheduled = true;
8278
8279 DUMP_VECT_SCOPE ("scheduling SLP instances");
8280
8281 vect_schedule_slp (loop_vinfo);
8282 }
8283
8284 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
8285 if (slptype == pure_slp)
8286 return;
8287 }
8288
8289 if (dump_enabled_p ())
8290 dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");
8291
8292 bool grouped_store = false;
8293 if (vect_transform_stmt (stmt, gsi, &grouped_store, NULL, NULL))
8294 *seen_store = stmt_info;
8295 }
8296
8297 /* Function vect_transform_loop.
8298
8299 The analysis phase has determined that the loop is vectorizable.
8300 Vectorize the loop - created vectorized stmts to replace the scalar
8301 stmts in the loop, and update the loop exit condition.
8302 Returns scalar epilogue loop if any. */
8303
8304 struct loop *
8305 vect_transform_loop (loop_vec_info loop_vinfo)
8306 {
8307 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
8308 struct loop *epilogue = NULL;
8309 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
8310 int nbbs = loop->num_nodes;
8311 int i;
8312 tree niters_vector = NULL_TREE;
8313 tree step_vector = NULL_TREE;
8314 tree niters_vector_mult_vf = NULL_TREE;
8315 poly_uint64 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
8316 unsigned int lowest_vf = constant_lower_bound (vf);
8317 bool slp_scheduled = false;
8318 gimple *stmt;
8319 bool check_profitability = false;
8320 unsigned int th;
8321
8322 DUMP_VECT_SCOPE ("vec_transform_loop");
8323
8324 loop_vinfo->shared->check_datarefs ();
8325
8326 /* Use the more conservative vectorization threshold. If the number
8327 of iterations is constant assume the cost check has been performed
8328 by our caller. If the threshold makes all loops profitable that
8329 run at least the (estimated) vectorization factor number of times
8330 checking is pointless, too. */
8331 th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
8332 if (th >= vect_vf_for_cost (loop_vinfo)
8333 && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
8334 {
8335 if (dump_enabled_p ())
8336 dump_printf_loc (MSG_NOTE, vect_location,
8337 "Profitability threshold is %d loop iterations.\n",
8338 th);
8339 check_profitability = true;
8340 }
8341
8342 /* Make sure there exists a single-predecessor exit bb. Do this before
8343 versioning. */
8344 edge e = single_exit (loop);
8345 if (! single_pred_p (e->dest))
8346 {
8347 split_loop_exit_edge (e);
8348 if (dump_enabled_p ())
8349 dump_printf (MSG_NOTE, "split exit edge\n");
8350 }
8351
8352 /* Version the loop first, if required, so the profitability check
8353 comes first. */
8354
8355 if (LOOP_REQUIRES_VERSIONING (loop_vinfo))
8356 {
8357 poly_uint64 versioning_threshold
8358 = LOOP_VINFO_VERSIONING_THRESHOLD (loop_vinfo);
8359 if (check_profitability
8360 && ordered_p (poly_uint64 (th), versioning_threshold))
8361 {
8362 versioning_threshold = ordered_max (poly_uint64 (th),
8363 versioning_threshold);
8364 check_profitability = false;
8365 }
8366 vect_loop_versioning (loop_vinfo, th, check_profitability,
8367 versioning_threshold);
8368 check_profitability = false;
8369 }
8370
8371 /* Make sure there exists a single-predecessor exit bb also on the
8372 scalar loop copy. Do this after versioning but before peeling
8373 so CFG structure is fine for both scalar and if-converted loop
8374 to make slpeel_duplicate_current_defs_from_edges face matched
8375 loop closed PHI nodes on the exit. */
8376 if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
8377 {
8378 e = single_exit (LOOP_VINFO_SCALAR_LOOP (loop_vinfo));
8379 if (! single_pred_p (e->dest))
8380 {
8381 split_loop_exit_edge (e);
8382 if (dump_enabled_p ())
8383 dump_printf (MSG_NOTE, "split exit edge of scalar loop\n");
8384 }
8385 }
8386
8387 tree niters = vect_build_loop_niters (loop_vinfo);
8388 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = niters;
8389 tree nitersm1 = unshare_expr (LOOP_VINFO_NITERSM1 (loop_vinfo));
8390 bool niters_no_overflow = loop_niters_no_overflow (loop_vinfo);
8391 epilogue = vect_do_peeling (loop_vinfo, niters, nitersm1, &niters_vector,
8392 &step_vector, &niters_vector_mult_vf, th,
8393 check_profitability, niters_no_overflow);
8394
8395 if (niters_vector == NULL_TREE)
8396 {
8397 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
8398 && !LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
8399 && known_eq (lowest_vf, vf))
8400 {
8401 niters_vector
8402 = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
8403 LOOP_VINFO_INT_NITERS (loop_vinfo) / lowest_vf);
8404 step_vector = build_one_cst (TREE_TYPE (niters));
8405 }
8406 else
8407 vect_gen_vector_loop_niters (loop_vinfo, niters, &niters_vector,
8408 &step_vector, niters_no_overflow);
8409 }
8410
8411 /* 1) Make sure the loop header has exactly two entries
8412 2) Make sure we have a preheader basic block. */
8413
8414 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
8415
8416 split_edge (loop_preheader_edge (loop));
8417
8418 if (LOOP_VINFO_FULLY_MASKED_P (loop_vinfo)
8419 && vect_use_loop_mask_for_alignment_p (loop_vinfo))
8420 /* This will deal with any possible peeling. */
8421 vect_prepare_for_masked_peels (loop_vinfo);
8422
8423 /* FORNOW: the vectorizer supports only loops which body consist
8424 of one basic block (header + empty latch). When the vectorizer will
8425 support more involved loop forms, the order by which the BBs are
8426 traversed need to be reconsidered. */
8427
8428 for (i = 0; i < nbbs; i++)
8429 {
8430 basic_block bb = bbs[i];
8431 stmt_vec_info stmt_info;
8432
8433 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
8434 gsi_next (&si))
8435 {
8436 gphi *phi = si.phi ();
8437 if (dump_enabled_p ())
8438 {
8439 dump_printf_loc (MSG_NOTE, vect_location,
8440 "------>vectorizing phi: ");
8441 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
8442 }
8443 stmt_info = loop_vinfo->lookup_stmt (phi);
8444 if (!stmt_info)
8445 continue;
8446
8447 if (MAY_HAVE_DEBUG_BIND_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
8448 vect_loop_kill_debug_uses (loop, phi);
8449
8450 if (!STMT_VINFO_RELEVANT_P (stmt_info)
8451 && !STMT_VINFO_LIVE_P (stmt_info))
8452 continue;
8453
8454 if (STMT_VINFO_VECTYPE (stmt_info)
8455 && (maybe_ne
8456 (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info)), vf))
8457 && dump_enabled_p ())
8458 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
8459
8460 if ((STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def
8461 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def
8462 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle)
8463 && ! PURE_SLP_STMT (stmt_info))
8464 {
8465 if (dump_enabled_p ())
8466 dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
8467 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
8468 }
8469 }
8470
8471 for (gimple_stmt_iterator si = gsi_start_bb (bb);
8472 !gsi_end_p (si);)
8473 {
8474 stmt = gsi_stmt (si);
8475 /* During vectorization remove existing clobber stmts. */
8476 if (gimple_clobber_p (stmt))
8477 {
8478 unlink_stmt_vdef (stmt);
8479 gsi_remove (&si, true);
8480 release_defs (stmt);
8481 }
8482 else
8483 {
8484 stmt_info = loop_vinfo->lookup_stmt (stmt);
8485
8486 /* vector stmts created in the outer-loop during vectorization of
8487 stmts in an inner-loop may not have a stmt_info, and do not
8488 need to be vectorized. */
8489 stmt_vec_info seen_store = NULL;
8490 if (stmt_info)
8491 {
8492 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
8493 {
8494 gimple *def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
8495 for (gimple_stmt_iterator subsi = gsi_start (def_seq);
8496 !gsi_end_p (subsi); gsi_next (&subsi))
8497 vect_transform_loop_stmt (loop_vinfo,
8498 gsi_stmt (subsi), &si,
8499 &seen_store,
8500 &slp_scheduled);
8501 gimple *pat_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
8502 vect_transform_loop_stmt (loop_vinfo, pat_stmt, &si,
8503 &seen_store, &slp_scheduled);
8504 }
8505 vect_transform_loop_stmt (loop_vinfo, stmt, &si,
8506 &seen_store, &slp_scheduled);
8507 }
8508 if (seen_store)
8509 {
8510 if (STMT_VINFO_GROUPED_ACCESS (seen_store))
8511 {
8512 /* Interleaving. If IS_STORE is TRUE, the
8513 vectorization of the interleaving chain was
8514 completed - free all the stores in the chain. */
8515 gsi_next (&si);
8516 vect_remove_stores (DR_GROUP_FIRST_ELEMENT (seen_store));
8517 }
8518 else
8519 {
8520 /* Free the attached stmt_vec_info and remove the
8521 stmt. */
8522 free_stmt_vec_info (stmt);
8523 unlink_stmt_vdef (stmt);
8524 gsi_remove (&si, true);
8525 release_defs (stmt);
8526 }
8527 }
8528 else
8529 gsi_next (&si);
8530 }
8531 }
8532
8533 /* Stub out scalar statements that must not survive vectorization.
8534 Doing this here helps with grouped statements, or statements that
8535 are involved in patterns. */
8536 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
8537 !gsi_end_p (gsi); gsi_next (&gsi))
8538 {
8539 gcall *call = dyn_cast <gcall *> (gsi_stmt (gsi));
8540 if (call && gimple_call_internal_p (call, IFN_MASK_LOAD))
8541 {
8542 tree lhs = gimple_get_lhs (call);
8543 if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
8544 {
8545 tree zero = build_zero_cst (TREE_TYPE (lhs));
8546 gimple *new_stmt = gimple_build_assign (lhs, zero);
8547 gsi_replace (&gsi, new_stmt, true);
8548 }
8549 }
8550 }
8551 } /* BBs in loop */
8552
8553 /* The vectorization factor is always > 1, so if we use an IV increment of 1.
8554 a zero NITERS becomes a nonzero NITERS_VECTOR. */
8555 if (integer_onep (step_vector))
8556 niters_no_overflow = true;
8557 vect_set_loop_condition (loop, loop_vinfo, niters_vector, step_vector,
8558 niters_vector_mult_vf, !niters_no_overflow);
8559
8560 unsigned int assumed_vf = vect_vf_for_cost (loop_vinfo);
8561 scale_profile_for_vect_loop (loop, assumed_vf);
8562
8563 /* True if the final iteration might not handle a full vector's
8564 worth of scalar iterations. */
8565 bool final_iter_may_be_partial = LOOP_VINFO_FULLY_MASKED_P (loop_vinfo);
8566 /* The minimum number of iterations performed by the epilogue. This
8567 is 1 when peeling for gaps because we always need a final scalar
8568 iteration. */
8569 int min_epilogue_iters = LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) ? 1 : 0;
8570 /* +1 to convert latch counts to loop iteration counts,
8571 -min_epilogue_iters to remove iterations that cannot be performed
8572 by the vector code. */
8573 int bias_for_lowest = 1 - min_epilogue_iters;
8574 int bias_for_assumed = bias_for_lowest;
8575 int alignment_npeels = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
8576 if (alignment_npeels && LOOP_VINFO_FULLY_MASKED_P (loop_vinfo))
8577 {
8578 /* When the amount of peeling is known at compile time, the first
8579 iteration will have exactly alignment_npeels active elements.
8580 In the worst case it will have at least one. */
8581 int min_first_active = (alignment_npeels > 0 ? alignment_npeels : 1);
8582 bias_for_lowest += lowest_vf - min_first_active;
8583 bias_for_assumed += assumed_vf - min_first_active;
8584 }
8585 /* In these calculations the "- 1" converts loop iteration counts
8586 back to latch counts. */
8587 if (loop->any_upper_bound)
8588 loop->nb_iterations_upper_bound
8589 = (final_iter_may_be_partial
8590 ? wi::udiv_ceil (loop->nb_iterations_upper_bound + bias_for_lowest,
8591 lowest_vf) - 1
8592 : wi::udiv_floor (loop->nb_iterations_upper_bound + bias_for_lowest,
8593 lowest_vf) - 1);
8594 if (loop->any_likely_upper_bound)
8595 loop->nb_iterations_likely_upper_bound
8596 = (final_iter_may_be_partial
8597 ? wi::udiv_ceil (loop->nb_iterations_likely_upper_bound
8598 + bias_for_lowest, lowest_vf) - 1
8599 : wi::udiv_floor (loop->nb_iterations_likely_upper_bound
8600 + bias_for_lowest, lowest_vf) - 1);
8601 if (loop->any_estimate)
8602 loop->nb_iterations_estimate
8603 = (final_iter_may_be_partial
8604 ? wi::udiv_ceil (loop->nb_iterations_estimate + bias_for_assumed,
8605 assumed_vf) - 1
8606 : wi::udiv_floor (loop->nb_iterations_estimate + bias_for_assumed,
8607 assumed_vf) - 1);
8608
8609 if (dump_enabled_p ())
8610 {
8611 if (!LOOP_VINFO_EPILOGUE_P (loop_vinfo))
8612 {
8613 dump_printf_loc (MSG_NOTE, vect_location,
8614 "LOOP VECTORIZED\n");
8615 if (loop->inner)
8616 dump_printf_loc (MSG_NOTE, vect_location,
8617 "OUTER LOOP VECTORIZED\n");
8618 dump_printf (MSG_NOTE, "\n");
8619 }
8620 else
8621 {
8622 dump_printf_loc (MSG_NOTE, vect_location,
8623 "LOOP EPILOGUE VECTORIZED (VS=");
8624 dump_dec (MSG_NOTE, current_vector_size);
8625 dump_printf (MSG_NOTE, ")\n");
8626 }
8627 }
8628
8629 /* Free SLP instances here because otherwise stmt reference counting
8630 won't work. */
8631 slp_instance instance;
8632 FOR_EACH_VEC_ELT (LOOP_VINFO_SLP_INSTANCES (loop_vinfo), i, instance)
8633 vect_free_slp_instance (instance, true);
8634 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
8635 /* Clear-up safelen field since its value is invalid after vectorization
8636 since vectorized loop can have loop-carried dependencies. */
8637 loop->safelen = 0;
8638
8639 /* Don't vectorize epilogue for epilogue. */
8640 if (LOOP_VINFO_EPILOGUE_P (loop_vinfo))
8641 epilogue = NULL;
8642
8643 if (!PARAM_VALUE (PARAM_VECT_EPILOGUES_NOMASK))
8644 epilogue = NULL;
8645
8646 if (epilogue)
8647 {
8648 auto_vector_sizes vector_sizes;
8649 targetm.vectorize.autovectorize_vector_sizes (&vector_sizes);
8650 unsigned int next_size = 0;
8651
8652 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
8653 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) >= 0
8654 && known_eq (vf, lowest_vf))
8655 {
8656 unsigned int eiters
8657 = (LOOP_VINFO_INT_NITERS (loop_vinfo)
8658 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo));
8659 eiters = eiters % lowest_vf;
8660 epilogue->nb_iterations_upper_bound = eiters - 1;
8661
8662 unsigned int ratio;
8663 while (next_size < vector_sizes.length ()
8664 && !(constant_multiple_p (current_vector_size,
8665 vector_sizes[next_size], &ratio)
8666 && eiters >= lowest_vf / ratio))
8667 next_size += 1;
8668 }
8669 else
8670 while (next_size < vector_sizes.length ()
8671 && maybe_lt (current_vector_size, vector_sizes[next_size]))
8672 next_size += 1;
8673
8674 if (next_size == vector_sizes.length ())
8675 epilogue = NULL;
8676 }
8677
8678 if (epilogue)
8679 {
8680 epilogue->force_vectorize = loop->force_vectorize;
8681 epilogue->safelen = loop->safelen;
8682 epilogue->dont_vectorize = false;
8683
8684 /* We may need to if-convert epilogue to vectorize it. */
8685 if (LOOP_VINFO_SCALAR_LOOP (loop_vinfo))
8686 tree_if_conversion (epilogue);
8687 }
8688
8689 return epilogue;
8690 }
8691
8692 /* The code below is trying to perform simple optimization - revert
8693 if-conversion for masked stores, i.e. if the mask of a store is zero
8694 do not perform it and all stored value producers also if possible.
8695 For example,
8696 for (i=0; i<n; i++)
8697 if (c[i])
8698 {
8699 p1[i] += 1;
8700 p2[i] = p3[i] +2;
8701 }
8702 this transformation will produce the following semi-hammock:
8703
8704 if (!mask__ifc__42.18_165 == { 0, 0, 0, 0, 0, 0, 0, 0 })
8705 {
8706 vect__11.19_170 = MASK_LOAD (vectp_p1.20_168, 0B, mask__ifc__42.18_165);
8707 vect__12.22_172 = vect__11.19_170 + vect_cst__171;
8708 MASK_STORE (vectp_p1.23_175, 0B, mask__ifc__42.18_165, vect__12.22_172);
8709 vect__18.25_182 = MASK_LOAD (vectp_p3.26_180, 0B, mask__ifc__42.18_165);
8710 vect__19.28_184 = vect__18.25_182 + vect_cst__183;
8711 MASK_STORE (vectp_p2.29_187, 0B, mask__ifc__42.18_165, vect__19.28_184);
8712 }
8713 */
8714
8715 void
8716 optimize_mask_stores (struct loop *loop)
8717 {
8718 basic_block *bbs = get_loop_body (loop);
8719 unsigned nbbs = loop->num_nodes;
8720 unsigned i;
8721 basic_block bb;
8722 struct loop *bb_loop;
8723 gimple_stmt_iterator gsi;
8724 gimple *stmt;
8725 auto_vec<gimple *> worklist;
8726
8727 vect_location = find_loop_location (loop);
8728 /* Pick up all masked stores in loop if any. */
8729 for (i = 0; i < nbbs; i++)
8730 {
8731 bb = bbs[i];
8732 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
8733 gsi_next (&gsi))
8734 {
8735 stmt = gsi_stmt (gsi);
8736 if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
8737 worklist.safe_push (stmt);
8738 }
8739 }
8740
8741 free (bbs);
8742 if (worklist.is_empty ())
8743 return;
8744
8745 /* Loop has masked stores. */
8746 while (!worklist.is_empty ())
8747 {
8748 gimple *last, *last_store;
8749 edge e, efalse;
8750 tree mask;
8751 basic_block store_bb, join_bb;
8752 gimple_stmt_iterator gsi_to;
8753 tree vdef, new_vdef;
8754 gphi *phi;
8755 tree vectype;
8756 tree zero;
8757
8758 last = worklist.pop ();
8759 mask = gimple_call_arg (last, 2);
8760 bb = gimple_bb (last);
8761 /* Create then_bb and if-then structure in CFG, then_bb belongs to
8762 the same loop as if_bb. It could be different to LOOP when two
8763 level loop-nest is vectorized and mask_store belongs to the inner
8764 one. */
8765 e = split_block (bb, last);
8766 bb_loop = bb->loop_father;
8767 gcc_assert (loop == bb_loop || flow_loop_nested_p (loop, bb_loop));
8768 join_bb = e->dest;
8769 store_bb = create_empty_bb (bb);
8770 add_bb_to_loop (store_bb, bb_loop);
8771 e->flags = EDGE_TRUE_VALUE;
8772 efalse = make_edge (bb, store_bb, EDGE_FALSE_VALUE);
8773 /* Put STORE_BB to likely part. */
8774 efalse->probability = profile_probability::unlikely ();
8775 store_bb->count = efalse->count ();
8776 make_single_succ_edge (store_bb, join_bb, EDGE_FALLTHRU);
8777 if (dom_info_available_p (CDI_DOMINATORS))
8778 set_immediate_dominator (CDI_DOMINATORS, store_bb, bb);
8779 if (dump_enabled_p ())
8780 dump_printf_loc (MSG_NOTE, vect_location,
8781 "Create new block %d to sink mask stores.",
8782 store_bb->index);
8783 /* Create vector comparison with boolean result. */
8784 vectype = TREE_TYPE (mask);
8785 zero = build_zero_cst (vectype);
8786 stmt = gimple_build_cond (EQ_EXPR, mask, zero, NULL_TREE, NULL_TREE);
8787 gsi = gsi_last_bb (bb);
8788 gsi_insert_after (&gsi, stmt, GSI_SAME_STMT);
8789 /* Create new PHI node for vdef of the last masked store:
8790 .MEM_2 = VDEF <.MEM_1>
8791 will be converted to
8792 .MEM.3 = VDEF <.MEM_1>
8793 and new PHI node will be created in join bb
8794 .MEM_2 = PHI <.MEM_1, .MEM_3>
8795 */
8796 vdef = gimple_vdef (last);
8797 new_vdef = make_ssa_name (gimple_vop (cfun), last);
8798 gimple_set_vdef (last, new_vdef);
8799 phi = create_phi_node (vdef, join_bb);
8800 add_phi_arg (phi, new_vdef, EDGE_SUCC (store_bb, 0), UNKNOWN_LOCATION);
8801
8802 /* Put all masked stores with the same mask to STORE_BB if possible. */
8803 while (true)
8804 {
8805 gimple_stmt_iterator gsi_from;
8806 gimple *stmt1 = NULL;
8807
8808 /* Move masked store to STORE_BB. */
8809 last_store = last;
8810 gsi = gsi_for_stmt (last);
8811 gsi_from = gsi;
8812 /* Shift GSI to the previous stmt for further traversal. */
8813 gsi_prev (&gsi);
8814 gsi_to = gsi_start_bb (store_bb);
8815 gsi_move_before (&gsi_from, &gsi_to);
8816 /* Setup GSI_TO to the non-empty block start. */
8817 gsi_to = gsi_start_bb (store_bb);
8818 if (dump_enabled_p ())
8819 {
8820 dump_printf_loc (MSG_NOTE, vect_location,
8821 "Move stmt to created bb\n");
8822 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, last, 0);
8823 }
8824 /* Move all stored value producers if possible. */
8825 while (!gsi_end_p (gsi))
8826 {
8827 tree lhs;
8828 imm_use_iterator imm_iter;
8829 use_operand_p use_p;
8830 bool res;
8831
8832 /* Skip debug statements. */
8833 if (is_gimple_debug (gsi_stmt (gsi)))
8834 {
8835 gsi_prev (&gsi);
8836 continue;
8837 }
8838 stmt1 = gsi_stmt (gsi);
8839 /* Do not consider statements writing to memory or having
8840 volatile operand. */
8841 if (gimple_vdef (stmt1)
8842 || gimple_has_volatile_ops (stmt1))
8843 break;
8844 gsi_from = gsi;
8845 gsi_prev (&gsi);
8846 lhs = gimple_get_lhs (stmt1);
8847 if (!lhs)
8848 break;
8849
8850 /* LHS of vectorized stmt must be SSA_NAME. */
8851 if (TREE_CODE (lhs) != SSA_NAME)
8852 break;
8853
8854 if (!VECTOR_TYPE_P (TREE_TYPE (lhs)))
8855 {
8856 /* Remove dead scalar statement. */
8857 if (has_zero_uses (lhs))
8858 {
8859 gsi_remove (&gsi_from, true);
8860 continue;
8861 }
8862 }
8863
8864 /* Check that LHS does not have uses outside of STORE_BB. */
8865 res = true;
8866 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
8867 {
8868 gimple *use_stmt;
8869 use_stmt = USE_STMT (use_p);
8870 if (is_gimple_debug (use_stmt))
8871 continue;
8872 if (gimple_bb (use_stmt) != store_bb)
8873 {
8874 res = false;
8875 break;
8876 }
8877 }
8878 if (!res)
8879 break;
8880
8881 if (gimple_vuse (stmt1)
8882 && gimple_vuse (stmt1) != gimple_vuse (last_store))
8883 break;
8884
8885 /* Can move STMT1 to STORE_BB. */
8886 if (dump_enabled_p ())
8887 {
8888 dump_printf_loc (MSG_NOTE, vect_location,
8889 "Move stmt to created bb\n");
8890 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt1, 0);
8891 }
8892 gsi_move_before (&gsi_from, &gsi_to);
8893 /* Shift GSI_TO for further insertion. */
8894 gsi_prev (&gsi_to);
8895 }
8896 /* Put other masked stores with the same mask to STORE_BB. */
8897 if (worklist.is_empty ()
8898 || gimple_call_arg (worklist.last (), 2) != mask
8899 || worklist.last () != stmt1)
8900 break;
8901 last = worklist.pop ();
8902 }
8903 add_phi_arg (phi, gimple_vuse (last_store), e, UNKNOWN_LOCATION);
8904 }
8905 }