tree-vectorizer.h (vectorizable_condition): Add parameters.
[gcc.git] / gcc / tree-vect-loop.c
1 /* Loop Vectorization
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software
3 Foundation, Inc.
4 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
5 Ira Rosen <irar@il.ibm.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "diagnostic.h"
31 #include "tree-flow.h"
32 #include "tree-dump.h"
33 #include "cfgloop.h"
34 #include "cfglayout.h"
35 #include "expr.h"
36 #include "recog.h"
37 #include "optabs.h"
38 #include "params.h"
39 #include "toplev.h"
40 #include "tree-chrec.h"
41 #include "tree-scalar-evolution.h"
42 #include "tree-vectorizer.h"
43
44 /* Loop Vectorization Pass.
45
46 This pass tries to vectorize loops.
47
48 For example, the vectorizer transforms the following simple loop:
49
50 short a[N]; short b[N]; short c[N]; int i;
51
52 for (i=0; i<N; i++){
53 a[i] = b[i] + c[i];
54 }
55
56 as if it was manually vectorized by rewriting the source code into:
57
58 typedef int __attribute__((mode(V8HI))) v8hi;
59 short a[N]; short b[N]; short c[N]; int i;
60 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
61 v8hi va, vb, vc;
62
63 for (i=0; i<N/8; i++){
64 vb = pb[i];
65 vc = pc[i];
66 va = vb + vc;
67 pa[i] = va;
68 }
69
70 The main entry to this pass is vectorize_loops(), in which
71 the vectorizer applies a set of analyses on a given set of loops,
72 followed by the actual vectorization transformation for the loops that
73 had successfully passed the analysis phase.
74 Throughout this pass we make a distinction between two types of
75 data: scalars (which are represented by SSA_NAMES), and memory references
76 ("data-refs"). These two types of data require different handling both
77 during analysis and transformation. The types of data-refs that the
78 vectorizer currently supports are ARRAY_REFS which base is an array DECL
79 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
80 accesses are required to have a simple (consecutive) access pattern.
81
82 Analysis phase:
83 ===============
84 The driver for the analysis phase is vect_analyze_loop().
85 It applies a set of analyses, some of which rely on the scalar evolution
86 analyzer (scev) developed by Sebastian Pop.
87
88 During the analysis phase the vectorizer records some information
89 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
90 loop, as well as general information about the loop as a whole, which is
91 recorded in a "loop_vec_info" struct attached to each loop.
92
93 Transformation phase:
94 =====================
95 The loop transformation phase scans all the stmts in the loop, and
96 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
97 the loop that needs to be vectorized. It inserts the vector code sequence
98 just before the scalar stmt S, and records a pointer to the vector code
99 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
100 attached to S). This pointer will be used for the vectorization of following
101 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
102 otherwise, we rely on dead code elimination for removing it.
103
104 For example, say stmt S1 was vectorized into stmt VS1:
105
106 VS1: vb = px[i];
107 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
108 S2: a = b;
109
110 To vectorize stmt S2, the vectorizer first finds the stmt that defines
111 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
112 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
113 resulting sequence would be:
114
115 VS1: vb = px[i];
116 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
117 VS2: va = vb;
118 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
119
120 Operands that are not SSA_NAMEs, are data-refs that appear in
121 load/store operations (like 'x[i]' in S1), and are handled differently.
122
123 Target modeling:
124 =================
125 Currently the only target specific information that is used is the
126 size of the vector (in bytes) - "UNITS_PER_SIMD_WORD". Targets that can
127 support different sizes of vectors, for now will need to specify one value
128 for "UNITS_PER_SIMD_WORD". More flexibility will be added in the future.
129
130 Since we only vectorize operations which vector form can be
131 expressed using existing tree codes, to verify that an operation is
132 supported, the vectorizer checks the relevant optab at the relevant
133 machine_mode (e.g, optab_handler (add_optab, V8HImode)->insn_code). If
134 the value found is CODE_FOR_nothing, then there's no target support, and
135 we can't vectorize the stmt.
136
137 For additional information on this project see:
138 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
139 */
140
141 /* Function vect_determine_vectorization_factor
142
143 Determine the vectorization factor (VF). VF is the number of data elements
144 that are operated upon in parallel in a single iteration of the vectorized
145 loop. For example, when vectorizing a loop that operates on 4byte elements,
146 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
147 elements can fit in a single vector register.
148
149 We currently support vectorization of loops in which all types operated upon
150 are of the same size. Therefore this function currently sets VF according to
151 the size of the types operated upon, and fails if there are multiple sizes
152 in the loop.
153
154 VF is also the factor by which the loop iterations are strip-mined, e.g.:
155 original loop:
156 for (i=0; i<N; i++){
157 a[i] = b[i] + c[i];
158 }
159
160 vectorized loop:
161 for (i=0; i<N; i+=VF){
162 a[i:VF] = b[i:VF] + c[i:VF];
163 }
164 */
165
166 static bool
167 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
168 {
169 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
170 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
171 int nbbs = loop->num_nodes;
172 gimple_stmt_iterator si;
173 unsigned int vectorization_factor = 0;
174 tree scalar_type;
175 gimple phi;
176 tree vectype;
177 unsigned int nunits;
178 stmt_vec_info stmt_info;
179 int i;
180 HOST_WIDE_INT dummy;
181
182 if (vect_print_dump_info (REPORT_DETAILS))
183 fprintf (vect_dump, "=== vect_determine_vectorization_factor ===");
184
185 for (i = 0; i < nbbs; i++)
186 {
187 basic_block bb = bbs[i];
188
189 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
190 {
191 phi = gsi_stmt (si);
192 stmt_info = vinfo_for_stmt (phi);
193 if (vect_print_dump_info (REPORT_DETAILS))
194 {
195 fprintf (vect_dump, "==> examining phi: ");
196 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
197 }
198
199 gcc_assert (stmt_info);
200
201 if (STMT_VINFO_RELEVANT_P (stmt_info))
202 {
203 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
204 scalar_type = TREE_TYPE (PHI_RESULT (phi));
205
206 if (vect_print_dump_info (REPORT_DETAILS))
207 {
208 fprintf (vect_dump, "get vectype for scalar type: ");
209 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
210 }
211
212 vectype = get_vectype_for_scalar_type (scalar_type);
213 if (!vectype)
214 {
215 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
216 {
217 fprintf (vect_dump,
218 "not vectorized: unsupported data-type ");
219 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
220 }
221 return false;
222 }
223 STMT_VINFO_VECTYPE (stmt_info) = vectype;
224
225 if (vect_print_dump_info (REPORT_DETAILS))
226 {
227 fprintf (vect_dump, "vectype: ");
228 print_generic_expr (vect_dump, vectype, TDF_SLIM);
229 }
230
231 nunits = TYPE_VECTOR_SUBPARTS (vectype);
232 if (vect_print_dump_info (REPORT_DETAILS))
233 fprintf (vect_dump, "nunits = %d", nunits);
234
235 if (!vectorization_factor
236 || (nunits > vectorization_factor))
237 vectorization_factor = nunits;
238 }
239 }
240
241 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
242 {
243 gimple stmt = gsi_stmt (si);
244 stmt_info = vinfo_for_stmt (stmt);
245
246 if (vect_print_dump_info (REPORT_DETAILS))
247 {
248 fprintf (vect_dump, "==> examining statement: ");
249 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
250 }
251
252 gcc_assert (stmt_info);
253
254 /* skip stmts which do not need to be vectorized. */
255 if (!STMT_VINFO_RELEVANT_P (stmt_info)
256 && !STMT_VINFO_LIVE_P (stmt_info))
257 {
258 if (vect_print_dump_info (REPORT_DETAILS))
259 fprintf (vect_dump, "skip.");
260 continue;
261 }
262
263 if (gimple_get_lhs (stmt) == NULL_TREE)
264 {
265 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
266 {
267 fprintf (vect_dump, "not vectorized: irregular stmt.");
268 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
269 }
270 return false;
271 }
272
273 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
274 {
275 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
276 {
277 fprintf (vect_dump, "not vectorized: vector stmt in loop:");
278 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
279 }
280 return false;
281 }
282
283 if (STMT_VINFO_VECTYPE (stmt_info))
284 {
285 /* The only case when a vectype had been already set is for stmts
286 that contain a dataref, or for "pattern-stmts" (stmts generated
287 by the vectorizer to represent/replace a certain idiom). */
288 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
289 || is_pattern_stmt_p (stmt_info));
290 vectype = STMT_VINFO_VECTYPE (stmt_info);
291 }
292 else
293 {
294 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info)
295 && !is_pattern_stmt_p (stmt_info));
296
297 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
298 &dummy);
299 if (vect_print_dump_info (REPORT_DETAILS))
300 {
301 fprintf (vect_dump, "get vectype for scalar type: ");
302 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
303 }
304
305 vectype = get_vectype_for_scalar_type (scalar_type);
306 if (!vectype)
307 {
308 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
309 {
310 fprintf (vect_dump,
311 "not vectorized: unsupported data-type ");
312 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
313 }
314 return false;
315 }
316 STMT_VINFO_VECTYPE (stmt_info) = vectype;
317 }
318
319 if (vect_print_dump_info (REPORT_DETAILS))
320 {
321 fprintf (vect_dump, "vectype: ");
322 print_generic_expr (vect_dump, vectype, TDF_SLIM);
323 }
324
325 nunits = TYPE_VECTOR_SUBPARTS (vectype);
326 if (vect_print_dump_info (REPORT_DETAILS))
327 fprintf (vect_dump, "nunits = %d", nunits);
328
329 if (!vectorization_factor
330 || (nunits > vectorization_factor))
331 vectorization_factor = nunits;
332
333 }
334 }
335
336 /* TODO: Analyze cost. Decide if worth while to vectorize. */
337 if (vect_print_dump_info (REPORT_DETAILS))
338 fprintf (vect_dump, "vectorization factor = %d", vectorization_factor);
339 if (vectorization_factor <= 1)
340 {
341 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
342 fprintf (vect_dump, "not vectorized: unsupported data-type");
343 return false;
344 }
345 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
346
347 return true;
348 }
349
350
351 /* Function vect_is_simple_iv_evolution.
352
353 FORNOW: A simple evolution of an induction variables in the loop is
354 considered a polynomial evolution with constant step. */
355
356 static bool
357 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
358 tree * step)
359 {
360 tree init_expr;
361 tree step_expr;
362 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
363
364 /* When there is no evolution in this loop, the evolution function
365 is not "simple". */
366 if (evolution_part == NULL_TREE)
367 return false;
368
369 /* When the evolution is a polynomial of degree >= 2
370 the evolution function is not "simple". */
371 if (tree_is_chrec (evolution_part))
372 return false;
373
374 step_expr = evolution_part;
375 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
376
377 if (vect_print_dump_info (REPORT_DETAILS))
378 {
379 fprintf (vect_dump, "step: ");
380 print_generic_expr (vect_dump, step_expr, TDF_SLIM);
381 fprintf (vect_dump, ", init: ");
382 print_generic_expr (vect_dump, init_expr, TDF_SLIM);
383 }
384
385 *init = init_expr;
386 *step = step_expr;
387
388 if (TREE_CODE (step_expr) != INTEGER_CST)
389 {
390 if (vect_print_dump_info (REPORT_DETAILS))
391 fprintf (vect_dump, "step unknown.");
392 return false;
393 }
394
395 return true;
396 }
397
398 /* Function vect_analyze_scalar_cycles_1.
399
400 Examine the cross iteration def-use cycles of scalar variables
401 in LOOP. LOOP_VINFO represents the loop that is now being
402 considered for vectorization (can be LOOP, or an outer-loop
403 enclosing LOOP). */
404
405 static void
406 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
407 {
408 basic_block bb = loop->header;
409 tree dumy;
410 VEC(gimple,heap) *worklist = VEC_alloc (gimple, heap, 64);
411 gimple_stmt_iterator gsi;
412 bool double_reduc;
413
414 if (vect_print_dump_info (REPORT_DETAILS))
415 fprintf (vect_dump, "=== vect_analyze_scalar_cycles ===");
416
417 /* First - identify all inductions. Reduction detection assumes that all the
418 inductions have been identified, therefore, this order must not be
419 changed. */
420 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
421 {
422 gimple phi = gsi_stmt (gsi);
423 tree access_fn = NULL;
424 tree def = PHI_RESULT (phi);
425 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
426
427 if (vect_print_dump_info (REPORT_DETAILS))
428 {
429 fprintf (vect_dump, "Analyze phi: ");
430 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
431 }
432
433 /* Skip virtual phi's. The data dependences that are associated with
434 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
435 if (!is_gimple_reg (SSA_NAME_VAR (def)))
436 continue;
437
438 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
439
440 /* Analyze the evolution function. */
441 access_fn = analyze_scalar_evolution (loop, def);
442 if (access_fn && vect_print_dump_info (REPORT_DETAILS))
443 {
444 fprintf (vect_dump, "Access function of PHI: ");
445 print_generic_expr (vect_dump, access_fn, TDF_SLIM);
446 }
447
448 if (!access_fn
449 || !vect_is_simple_iv_evolution (loop->num, access_fn, &dumy, &dumy))
450 {
451 VEC_safe_push (gimple, heap, worklist, phi);
452 continue;
453 }
454
455 if (vect_print_dump_info (REPORT_DETAILS))
456 fprintf (vect_dump, "Detected induction.");
457 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
458 }
459
460
461 /* Second - identify all reductions and nested cycles. */
462 while (VEC_length (gimple, worklist) > 0)
463 {
464 gimple phi = VEC_pop (gimple, worklist);
465 tree def = PHI_RESULT (phi);
466 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
467 gimple reduc_stmt;
468 bool nested_cycle;
469
470 if (vect_print_dump_info (REPORT_DETAILS))
471 {
472 fprintf (vect_dump, "Analyze phi: ");
473 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
474 }
475
476 gcc_assert (is_gimple_reg (SSA_NAME_VAR (def)));
477 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
478
479 nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
480 reduc_stmt = vect_is_simple_reduction (loop_vinfo, phi, !nested_cycle,
481 &double_reduc);
482 if (reduc_stmt)
483 {
484 if (double_reduc)
485 {
486 if (vect_print_dump_info (REPORT_DETAILS))
487 fprintf (vect_dump, "Detected double reduction.");
488
489 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
490 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
491 vect_double_reduction_def;
492 }
493 else
494 {
495 if (nested_cycle)
496 {
497 if (vect_print_dump_info (REPORT_DETAILS))
498 fprintf (vect_dump, "Detected vectorizable nested cycle.");
499
500 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
501 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
502 vect_nested_cycle;
503 }
504 else
505 {
506 if (vect_print_dump_info (REPORT_DETAILS))
507 fprintf (vect_dump, "Detected reduction.");
508
509 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
510 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
511 vect_reduction_def;
512 }
513 }
514 }
515 else
516 if (vect_print_dump_info (REPORT_DETAILS))
517 fprintf (vect_dump, "Unknown def-use cycle pattern.");
518 }
519
520 VEC_free (gimple, heap, worklist);
521 }
522
523
524 /* Function vect_analyze_scalar_cycles.
525
526 Examine the cross iteration def-use cycles of scalar variables, by
527 analyzing the loop-header PHIs of scalar variables; Classify each
528 cycle as one of the following: invariant, induction, reduction, unknown.
529 We do that for the loop represented by LOOP_VINFO, and also to its
530 inner-loop, if exists.
531 Examples for scalar cycles:
532
533 Example1: reduction:
534
535 loop1:
536 for (i=0; i<N; i++)
537 sum += a[i];
538
539 Example2: induction:
540
541 loop2:
542 for (i=0; i<N; i++)
543 a[i] = i; */
544
545 static void
546 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
547 {
548 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
549
550 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
551
552 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
553 Reductions in such inner-loop therefore have different properties than
554 the reductions in the nest that gets vectorized:
555 1. When vectorized, they are executed in the same order as in the original
556 scalar loop, so we can't change the order of computation when
557 vectorizing them.
558 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
559 current checks are too strict. */
560
561 if (loop->inner)
562 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
563 }
564
565 /* Function vect_get_loop_niters.
566
567 Determine how many iterations the loop is executed.
568 If an expression that represents the number of iterations
569 can be constructed, place it in NUMBER_OF_ITERATIONS.
570 Return the loop exit condition. */
571
572 static gimple
573 vect_get_loop_niters (struct loop *loop, tree *number_of_iterations)
574 {
575 tree niters;
576
577 if (vect_print_dump_info (REPORT_DETAILS))
578 fprintf (vect_dump, "=== get_loop_niters ===");
579
580 niters = number_of_exit_cond_executions (loop);
581
582 if (niters != NULL_TREE
583 && niters != chrec_dont_know)
584 {
585 *number_of_iterations = niters;
586
587 if (vect_print_dump_info (REPORT_DETAILS))
588 {
589 fprintf (vect_dump, "==> get_loop_niters:" );
590 print_generic_expr (vect_dump, *number_of_iterations, TDF_SLIM);
591 }
592 }
593
594 return get_loop_exit_condition (loop);
595 }
596
597
598 /* Function bb_in_loop_p
599
600 Used as predicate for dfs order traversal of the loop bbs. */
601
602 static bool
603 bb_in_loop_p (const_basic_block bb, const void *data)
604 {
605 const struct loop *const loop = (const struct loop *)data;
606 if (flow_bb_inside_loop_p (loop, bb))
607 return true;
608 return false;
609 }
610
611
612 /* Function new_loop_vec_info.
613
614 Create and initialize a new loop_vec_info struct for LOOP, as well as
615 stmt_vec_info structs for all the stmts in LOOP. */
616
617 static loop_vec_info
618 new_loop_vec_info (struct loop *loop)
619 {
620 loop_vec_info res;
621 basic_block *bbs;
622 gimple_stmt_iterator si;
623 unsigned int i, nbbs;
624
625 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
626 LOOP_VINFO_LOOP (res) = loop;
627
628 bbs = get_loop_body (loop);
629
630 /* Create/Update stmt_info for all stmts in the loop. */
631 for (i = 0; i < loop->num_nodes; i++)
632 {
633 basic_block bb = bbs[i];
634
635 /* BBs in a nested inner-loop will have been already processed (because
636 we will have called vect_analyze_loop_form for any nested inner-loop).
637 Therefore, for stmts in an inner-loop we just want to update the
638 STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
639 loop_info of the outer-loop we are currently considering to vectorize
640 (instead of the loop_info of the inner-loop).
641 For stmts in other BBs we need to create a stmt_info from scratch. */
642 if (bb->loop_father != loop)
643 {
644 /* Inner-loop bb. */
645 gcc_assert (loop->inner && bb->loop_father == loop->inner);
646 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
647 {
648 gimple phi = gsi_stmt (si);
649 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
650 loop_vec_info inner_loop_vinfo =
651 STMT_VINFO_LOOP_VINFO (stmt_info);
652 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
653 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
654 }
655 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
656 {
657 gimple stmt = gsi_stmt (si);
658 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
659 loop_vec_info inner_loop_vinfo =
660 STMT_VINFO_LOOP_VINFO (stmt_info);
661 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
662 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
663 }
664 }
665 else
666 {
667 /* bb in current nest. */
668 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
669 {
670 gimple phi = gsi_stmt (si);
671 gimple_set_uid (phi, 0);
672 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res, NULL));
673 }
674
675 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
676 {
677 gimple stmt = gsi_stmt (si);
678 gimple_set_uid (stmt, 0);
679 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res, NULL));
680 }
681 }
682 }
683
684 /* CHECKME: We want to visit all BBs before their successors (except for
685 latch blocks, for which this assertion wouldn't hold). In the simple
686 case of the loop forms we allow, a dfs order of the BBs would the same
687 as reversed postorder traversal, so we are safe. */
688
689 free (bbs);
690 bbs = XCNEWVEC (basic_block, loop->num_nodes);
691 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
692 bbs, loop->num_nodes, loop);
693 gcc_assert (nbbs == loop->num_nodes);
694
695 LOOP_VINFO_BBS (res) = bbs;
696 LOOP_VINFO_NITERS (res) = NULL;
697 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
698 LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
699 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
700 LOOP_PEELING_FOR_ALIGNMENT (res) = 0;
701 LOOP_VINFO_VECT_FACTOR (res) = 0;
702 LOOP_VINFO_DATAREFS (res) = VEC_alloc (data_reference_p, heap, 10);
703 LOOP_VINFO_DDRS (res) = VEC_alloc (ddr_p, heap, 10 * 10);
704 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
705 LOOP_VINFO_MAY_MISALIGN_STMTS (res) =
706 VEC_alloc (gimple, heap,
707 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
708 LOOP_VINFO_MAY_ALIAS_DDRS (res) =
709 VEC_alloc (ddr_p, heap,
710 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
711 LOOP_VINFO_STRIDED_STORES (res) = VEC_alloc (gimple, heap, 10);
712 LOOP_VINFO_SLP_INSTANCES (res) = VEC_alloc (slp_instance, heap, 10);
713 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
714
715 return res;
716 }
717
718
719 /* Function destroy_loop_vec_info.
720
721 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
722 stmts in the loop. */
723
724 void
725 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
726 {
727 struct loop *loop;
728 basic_block *bbs;
729 int nbbs;
730 gimple_stmt_iterator si;
731 int j;
732 VEC (slp_instance, heap) *slp_instances;
733 slp_instance instance;
734
735 if (!loop_vinfo)
736 return;
737
738 loop = LOOP_VINFO_LOOP (loop_vinfo);
739
740 bbs = LOOP_VINFO_BBS (loop_vinfo);
741 nbbs = loop->num_nodes;
742
743 if (!clean_stmts)
744 {
745 free (LOOP_VINFO_BBS (loop_vinfo));
746 free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
747 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
748 VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
749
750 free (loop_vinfo);
751 loop->aux = NULL;
752 return;
753 }
754
755 for (j = 0; j < nbbs; j++)
756 {
757 basic_block bb = bbs[j];
758 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
759 free_stmt_vec_info (gsi_stmt (si));
760
761 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
762 {
763 gimple stmt = gsi_stmt (si);
764 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
765
766 if (stmt_info)
767 {
768 /* Check if this is a "pattern stmt" (introduced by the
769 vectorizer during the pattern recognition pass). */
770 bool remove_stmt_p = false;
771 gimple orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
772 if (orig_stmt)
773 {
774 stmt_vec_info orig_stmt_info = vinfo_for_stmt (orig_stmt);
775 if (orig_stmt_info
776 && STMT_VINFO_IN_PATTERN_P (orig_stmt_info))
777 remove_stmt_p = true;
778 }
779
780 /* Free stmt_vec_info. */
781 free_stmt_vec_info (stmt);
782
783 /* Remove dead "pattern stmts". */
784 if (remove_stmt_p)
785 gsi_remove (&si, true);
786 }
787 gsi_next (&si);
788 }
789 }
790
791 free (LOOP_VINFO_BBS (loop_vinfo));
792 free_data_refs (LOOP_VINFO_DATAREFS (loop_vinfo));
793 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
794 VEC_free (gimple, heap, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
795 VEC_free (ddr_p, heap, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
796 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
797 for (j = 0; VEC_iterate (slp_instance, slp_instances, j, instance); j++)
798 vect_free_slp_instance (instance);
799
800 VEC_free (slp_instance, heap, LOOP_VINFO_SLP_INSTANCES (loop_vinfo));
801 VEC_free (gimple, heap, LOOP_VINFO_STRIDED_STORES (loop_vinfo));
802
803 free (loop_vinfo);
804 loop->aux = NULL;
805 }
806
807
808 /* Function vect_analyze_loop_1.
809
810 Apply a set of analyses on LOOP, and create a loop_vec_info struct
811 for it. The different analyses will record information in the
812 loop_vec_info struct. This is a subset of the analyses applied in
813 vect_analyze_loop, to be applied on an inner-loop nested in the loop
814 that is now considered for (outer-loop) vectorization. */
815
816 static loop_vec_info
817 vect_analyze_loop_1 (struct loop *loop)
818 {
819 loop_vec_info loop_vinfo;
820
821 if (vect_print_dump_info (REPORT_DETAILS))
822 fprintf (vect_dump, "===== analyze_loop_nest_1 =====");
823
824 /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
825
826 loop_vinfo = vect_analyze_loop_form (loop);
827 if (!loop_vinfo)
828 {
829 if (vect_print_dump_info (REPORT_DETAILS))
830 fprintf (vect_dump, "bad inner-loop form.");
831 return NULL;
832 }
833
834 return loop_vinfo;
835 }
836
837
838 /* Function vect_analyze_loop_form.
839
840 Verify that certain CFG restrictions hold, including:
841 - the loop has a pre-header
842 - the loop has a single entry and exit
843 - the loop exit condition is simple enough, and the number of iterations
844 can be analyzed (a countable loop). */
845
846 loop_vec_info
847 vect_analyze_loop_form (struct loop *loop)
848 {
849 loop_vec_info loop_vinfo;
850 gimple loop_cond;
851 tree number_of_iterations = NULL;
852 loop_vec_info inner_loop_vinfo = NULL;
853
854 if (vect_print_dump_info (REPORT_DETAILS))
855 fprintf (vect_dump, "=== vect_analyze_loop_form ===");
856
857 /* Different restrictions apply when we are considering an inner-most loop,
858 vs. an outer (nested) loop.
859 (FORNOW. May want to relax some of these restrictions in the future). */
860
861 if (!loop->inner)
862 {
863 /* Inner-most loop. We currently require that the number of BBs is
864 exactly 2 (the header and latch). Vectorizable inner-most loops
865 look like this:
866
867 (pre-header)
868 |
869 header <--------+
870 | | |
871 | +--> latch --+
872 |
873 (exit-bb) */
874
875 if (loop->num_nodes != 2)
876 {
877 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
878 fprintf (vect_dump, "not vectorized: control flow in loop.");
879 return NULL;
880 }
881
882 if (empty_block_p (loop->header))
883 {
884 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
885 fprintf (vect_dump, "not vectorized: empty loop.");
886 return NULL;
887 }
888 }
889 else
890 {
891 struct loop *innerloop = loop->inner;
892 edge backedge, entryedge;
893
894 /* Nested loop. We currently require that the loop is doubly-nested,
895 contains a single inner loop, and the number of BBs is exactly 5.
896 Vectorizable outer-loops look like this:
897
898 (pre-header)
899 |
900 header <---+
901 | |
902 inner-loop |
903 | |
904 tail ------+
905 |
906 (exit-bb)
907
908 The inner-loop has the properties expected of inner-most loops
909 as described above. */
910
911 if ((loop->inner)->inner || (loop->inner)->next)
912 {
913 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
914 fprintf (vect_dump, "not vectorized: multiple nested loops.");
915 return NULL;
916 }
917
918 /* Analyze the inner-loop. */
919 inner_loop_vinfo = vect_analyze_loop_1 (loop->inner);
920 if (!inner_loop_vinfo)
921 {
922 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
923 fprintf (vect_dump, "not vectorized: Bad inner loop.");
924 return NULL;
925 }
926
927 if (!expr_invariant_in_loop_p (loop,
928 LOOP_VINFO_NITERS (inner_loop_vinfo)))
929 {
930 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
931 fprintf (vect_dump,
932 "not vectorized: inner-loop count not invariant.");
933 destroy_loop_vec_info (inner_loop_vinfo, true);
934 return NULL;
935 }
936
937 if (loop->num_nodes != 5)
938 {
939 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
940 fprintf (vect_dump, "not vectorized: control flow in loop.");
941 destroy_loop_vec_info (inner_loop_vinfo, true);
942 return NULL;
943 }
944
945 gcc_assert (EDGE_COUNT (innerloop->header->preds) == 2);
946 backedge = EDGE_PRED (innerloop->header, 1);
947 entryedge = EDGE_PRED (innerloop->header, 0);
948 if (EDGE_PRED (innerloop->header, 0)->src == innerloop->latch)
949 {
950 backedge = EDGE_PRED (innerloop->header, 0);
951 entryedge = EDGE_PRED (innerloop->header, 1);
952 }
953
954 if (entryedge->src != loop->header
955 || !single_exit (innerloop)
956 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
957 {
958 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
959 fprintf (vect_dump, "not vectorized: unsupported outerloop form.");
960 destroy_loop_vec_info (inner_loop_vinfo, true);
961 return NULL;
962 }
963
964 if (vect_print_dump_info (REPORT_DETAILS))
965 fprintf (vect_dump, "Considering outer-loop vectorization.");
966 }
967
968 if (!single_exit (loop)
969 || EDGE_COUNT (loop->header->preds) != 2)
970 {
971 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
972 {
973 if (!single_exit (loop))
974 fprintf (vect_dump, "not vectorized: multiple exits.");
975 else if (EDGE_COUNT (loop->header->preds) != 2)
976 fprintf (vect_dump, "not vectorized: too many incoming edges.");
977 }
978 if (inner_loop_vinfo)
979 destroy_loop_vec_info (inner_loop_vinfo, true);
980 return NULL;
981 }
982
983 /* We assume that the loop exit condition is at the end of the loop. i.e,
984 that the loop is represented as a do-while (with a proper if-guard
985 before the loop if needed), where the loop header contains all the
986 executable statements, and the latch is empty. */
987 if (!empty_block_p (loop->latch)
988 || phi_nodes (loop->latch))
989 {
990 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
991 fprintf (vect_dump, "not vectorized: unexpected loop form.");
992 if (inner_loop_vinfo)
993 destroy_loop_vec_info (inner_loop_vinfo, true);
994 return NULL;
995 }
996
997 /* Make sure there exists a single-predecessor exit bb: */
998 if (!single_pred_p (single_exit (loop)->dest))
999 {
1000 edge e = single_exit (loop);
1001 if (!(e->flags & EDGE_ABNORMAL))
1002 {
1003 split_loop_exit_edge (e);
1004 if (vect_print_dump_info (REPORT_DETAILS))
1005 fprintf (vect_dump, "split exit edge.");
1006 }
1007 else
1008 {
1009 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1010 fprintf (vect_dump, "not vectorized: abnormal loop exit edge.");
1011 if (inner_loop_vinfo)
1012 destroy_loop_vec_info (inner_loop_vinfo, true);
1013 return NULL;
1014 }
1015 }
1016
1017 loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
1018 if (!loop_cond)
1019 {
1020 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1021 fprintf (vect_dump, "not vectorized: complicated exit condition.");
1022 if (inner_loop_vinfo)
1023 destroy_loop_vec_info (inner_loop_vinfo, true);
1024 return NULL;
1025 }
1026
1027 if (!number_of_iterations)
1028 {
1029 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1030 fprintf (vect_dump,
1031 "not vectorized: number of iterations cannot be computed.");
1032 if (inner_loop_vinfo)
1033 destroy_loop_vec_info (inner_loop_vinfo, true);
1034 return NULL;
1035 }
1036
1037 if (chrec_contains_undetermined (number_of_iterations))
1038 {
1039 if (vect_print_dump_info (REPORT_BAD_FORM_LOOPS))
1040 fprintf (vect_dump, "Infinite number of iterations.");
1041 if (inner_loop_vinfo)
1042 destroy_loop_vec_info (inner_loop_vinfo, true);
1043 return NULL;
1044 }
1045
1046 if (!NITERS_KNOWN_P (number_of_iterations))
1047 {
1048 if (vect_print_dump_info (REPORT_DETAILS))
1049 {
1050 fprintf (vect_dump, "Symbolic number of iterations is ");
1051 print_generic_expr (vect_dump, number_of_iterations, TDF_DETAILS);
1052 }
1053 }
1054 else if (TREE_INT_CST_LOW (number_of_iterations) == 0)
1055 {
1056 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1057 fprintf (vect_dump, "not vectorized: number of iterations = 0.");
1058 if (inner_loop_vinfo)
1059 destroy_loop_vec_info (inner_loop_vinfo, false);
1060 return NULL;
1061 }
1062
1063 loop_vinfo = new_loop_vec_info (loop);
1064 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1065 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1066
1067 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1068
1069 /* CHECKME: May want to keep it around it in the future. */
1070 if (inner_loop_vinfo)
1071 destroy_loop_vec_info (inner_loop_vinfo, false);
1072
1073 gcc_assert (!loop->aux);
1074 loop->aux = loop_vinfo;
1075 return loop_vinfo;
1076 }
1077
1078
1079 /* Function vect_analyze_loop_operations.
1080
1081 Scan the loop stmts and make sure they are all vectorizable. */
1082
1083 static bool
1084 vect_analyze_loop_operations (loop_vec_info loop_vinfo)
1085 {
1086 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1087 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1088 int nbbs = loop->num_nodes;
1089 gimple_stmt_iterator si;
1090 unsigned int vectorization_factor = 0;
1091 int i;
1092 gimple phi;
1093 stmt_vec_info stmt_info;
1094 bool need_to_vectorize = false;
1095 int min_profitable_iters;
1096 int min_scalar_loop_bound;
1097 unsigned int th;
1098 bool only_slp_in_loop = true, ok;
1099
1100 if (vect_print_dump_info (REPORT_DETAILS))
1101 fprintf (vect_dump, "=== vect_analyze_loop_operations ===");
1102
1103 gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1104 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1105
1106 for (i = 0; i < nbbs; i++)
1107 {
1108 basic_block bb = bbs[i];
1109
1110 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1111 {
1112 phi = gsi_stmt (si);
1113 ok = true;
1114
1115 stmt_info = vinfo_for_stmt (phi);
1116 if (vect_print_dump_info (REPORT_DETAILS))
1117 {
1118 fprintf (vect_dump, "examining phi: ");
1119 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1120 }
1121
1122 if (! is_loop_header_bb_p (bb))
1123 {
1124 /* inner-loop loop-closed exit phi in outer-loop vectorization
1125 (i.e. a phi in the tail of the outer-loop).
1126 FORNOW: we currently don't support the case that these phis
1127 are not used in the outerloop (unless it is double reduction,
1128 i.e., this phi is vect_reduction_def), cause this case
1129 requires to actually do something here. */
1130 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
1131 || STMT_VINFO_LIVE_P (stmt_info))
1132 && STMT_VINFO_DEF_TYPE (stmt_info)
1133 != vect_double_reduction_def)
1134 {
1135 if (vect_print_dump_info (REPORT_DETAILS))
1136 fprintf (vect_dump,
1137 "Unsupported loop-closed phi in outer-loop.");
1138 return false;
1139 }
1140 continue;
1141 }
1142
1143 gcc_assert (stmt_info);
1144
1145 if (STMT_VINFO_LIVE_P (stmt_info))
1146 {
1147 /* FORNOW: not yet supported. */
1148 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1149 fprintf (vect_dump, "not vectorized: value used after loop.");
1150 return false;
1151 }
1152
1153 if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1154 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1155 {
1156 /* A scalar-dependence cycle that we don't support. */
1157 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1158 fprintf (vect_dump, "not vectorized: scalar dependence cycle.");
1159 return false;
1160 }
1161
1162 if (STMT_VINFO_RELEVANT_P (stmt_info))
1163 {
1164 need_to_vectorize = true;
1165 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
1166 ok = vectorizable_induction (phi, NULL, NULL);
1167 }
1168
1169 if (!ok)
1170 {
1171 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1172 {
1173 fprintf (vect_dump,
1174 "not vectorized: relevant phi not supported: ");
1175 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
1176 }
1177 return false;
1178 }
1179 }
1180
1181 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1182 {
1183 gimple stmt = gsi_stmt (si);
1184 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1185
1186 gcc_assert (stmt_info);
1187
1188 if (!vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
1189 return false;
1190
1191 if (STMT_VINFO_RELEVANT_P (stmt_info) && !PURE_SLP_STMT (stmt_info))
1192 /* STMT needs both SLP and loop-based vectorization. */
1193 only_slp_in_loop = false;
1194 }
1195 } /* bbs */
1196
1197 /* All operations in the loop are either irrelevant (deal with loop
1198 control, or dead), or only used outside the loop and can be moved
1199 out of the loop (e.g. invariants, inductions). The loop can be
1200 optimized away by scalar optimizations. We're better off not
1201 touching this loop. */
1202 if (!need_to_vectorize)
1203 {
1204 if (vect_print_dump_info (REPORT_DETAILS))
1205 fprintf (vect_dump,
1206 "All the computation can be taken out of the loop.");
1207 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1208 fprintf (vect_dump,
1209 "not vectorized: redundant loop. no profit to vectorize.");
1210 return false;
1211 }
1212
1213 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1214 vectorization factor of the loop is the unrolling factor required by the
1215 SLP instances. If that unrolling factor is 1, we say, that we perform
1216 pure SLP on loop - cross iteration parallelism is not exploited. */
1217 if (only_slp_in_loop)
1218 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1219 else
1220 vectorization_factor = least_common_multiple (vectorization_factor,
1221 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1222
1223 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1224
1225 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1226 && vect_print_dump_info (REPORT_DETAILS))
1227 fprintf (vect_dump,
1228 "vectorization_factor = %d, niters = " HOST_WIDE_INT_PRINT_DEC,
1229 vectorization_factor, LOOP_VINFO_INT_NITERS (loop_vinfo));
1230
1231 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1232 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
1233 {
1234 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1235 fprintf (vect_dump, "not vectorized: iteration count too small.");
1236 if (vect_print_dump_info (REPORT_DETAILS))
1237 fprintf (vect_dump,"not vectorized: iteration count smaller than "
1238 "vectorization factor.");
1239 return false;
1240 }
1241
1242 /* Analyze cost. Decide if worth while to vectorize. */
1243
1244 /* Once VF is set, SLP costs should be updated since the number of created
1245 vector stmts depends on VF. */
1246 vect_update_slp_costs_according_to_vf (loop_vinfo);
1247
1248 min_profitable_iters = vect_estimate_min_profitable_iters (loop_vinfo);
1249 LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo) = min_profitable_iters;
1250
1251 if (min_profitable_iters < 0)
1252 {
1253 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1254 fprintf (vect_dump, "not vectorized: vectorization not profitable.");
1255 if (vect_print_dump_info (REPORT_DETAILS))
1256 fprintf (vect_dump, "not vectorized: vector version will never be "
1257 "profitable.");
1258 return false;
1259 }
1260
1261 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1262 * vectorization_factor) - 1);
1263
1264 /* Use the cost model only if it is more conservative than user specified
1265 threshold. */
1266
1267 th = (unsigned) min_scalar_loop_bound;
1268 if (min_profitable_iters
1269 && (!min_scalar_loop_bound
1270 || min_profitable_iters > min_scalar_loop_bound))
1271 th = (unsigned) min_profitable_iters;
1272
1273 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1274 && LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
1275 {
1276 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1277 fprintf (vect_dump, "not vectorized: vectorization not "
1278 "profitable.");
1279 if (vect_print_dump_info (REPORT_DETAILS))
1280 fprintf (vect_dump, "not vectorized: iteration count smaller than "
1281 "user specified loop bound parameter or minimum "
1282 "profitable iterations (whichever is more conservative).");
1283 return false;
1284 }
1285
1286 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1287 || LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0
1288 || LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
1289 {
1290 if (vect_print_dump_info (REPORT_DETAILS))
1291 fprintf (vect_dump, "epilog loop required.");
1292 if (!vect_can_advance_ivs_p (loop_vinfo))
1293 {
1294 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1295 fprintf (vect_dump,
1296 "not vectorized: can't create epilog loop 1.");
1297 return false;
1298 }
1299 if (!slpeel_can_duplicate_loop_p (loop, single_exit (loop)))
1300 {
1301 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
1302 fprintf (vect_dump,
1303 "not vectorized: can't create epilog loop 2.");
1304 return false;
1305 }
1306 }
1307
1308 return true;
1309 }
1310
1311
1312 /* Function vect_analyze_loop.
1313
1314 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1315 for it. The different analyses will record information in the
1316 loop_vec_info struct. */
1317 loop_vec_info
1318 vect_analyze_loop (struct loop *loop)
1319 {
1320 bool ok;
1321 loop_vec_info loop_vinfo;
1322
1323 if (vect_print_dump_info (REPORT_DETAILS))
1324 fprintf (vect_dump, "===== analyze_loop_nest =====");
1325
1326 if (loop_outer (loop)
1327 && loop_vec_info_for_loop (loop_outer (loop))
1328 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
1329 {
1330 if (vect_print_dump_info (REPORT_DETAILS))
1331 fprintf (vect_dump, "outer-loop already vectorized.");
1332 return NULL;
1333 }
1334
1335 /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
1336
1337 loop_vinfo = vect_analyze_loop_form (loop);
1338 if (!loop_vinfo)
1339 {
1340 if (vect_print_dump_info (REPORT_DETAILS))
1341 fprintf (vect_dump, "bad loop form.");
1342 return NULL;
1343 }
1344
1345 /* Find all data references in the loop (which correspond to vdefs/vuses)
1346 and analyze their evolution in the loop.
1347
1348 FORNOW: Handle only simple, array references, which
1349 alignment can be forced, and aligned pointer-references. */
1350
1351 ok = vect_analyze_data_refs (loop_vinfo, NULL);
1352 if (!ok)
1353 {
1354 if (vect_print_dump_info (REPORT_DETAILS))
1355 fprintf (vect_dump, "bad data references.");
1356 destroy_loop_vec_info (loop_vinfo, true);
1357 return NULL;
1358 }
1359
1360 /* Classify all cross-iteration scalar data-flow cycles.
1361 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1362
1363 vect_analyze_scalar_cycles (loop_vinfo);
1364
1365 vect_pattern_recog (loop_vinfo);
1366
1367 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1368
1369 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1370 if (!ok)
1371 {
1372 if (vect_print_dump_info (REPORT_DETAILS))
1373 fprintf (vect_dump, "unexpected pattern.");
1374 destroy_loop_vec_info (loop_vinfo, true);
1375 return NULL;
1376 }
1377
1378 /* Analyze the alignment of the data-refs in the loop.
1379 Fail if a data reference is found that cannot be vectorized. */
1380
1381 ok = vect_analyze_data_refs_alignment (loop_vinfo, NULL);
1382 if (!ok)
1383 {
1384 if (vect_print_dump_info (REPORT_DETAILS))
1385 fprintf (vect_dump, "bad data alignment.");
1386 destroy_loop_vec_info (loop_vinfo, true);
1387 return NULL;
1388 }
1389
1390 ok = vect_determine_vectorization_factor (loop_vinfo);
1391 if (!ok)
1392 {
1393 if (vect_print_dump_info (REPORT_DETAILS))
1394 fprintf (vect_dump, "can't determine vectorization factor.");
1395 destroy_loop_vec_info (loop_vinfo, true);
1396 return NULL;
1397 }
1398
1399 /* Analyze data dependences between the data-refs in the loop.
1400 FORNOW: fail at the first data dependence that we encounter. */
1401
1402 ok = vect_analyze_data_ref_dependences (loop_vinfo, NULL);
1403 if (!ok)
1404 {
1405 if (vect_print_dump_info (REPORT_DETAILS))
1406 fprintf (vect_dump, "bad data dependence.");
1407 destroy_loop_vec_info (loop_vinfo, true);
1408 return NULL;
1409 }
1410
1411 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1412 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1413
1414 ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
1415 if (!ok)
1416 {
1417 if (vect_print_dump_info (REPORT_DETAILS))
1418 fprintf (vect_dump, "bad data access.");
1419 destroy_loop_vec_info (loop_vinfo, true);
1420 return NULL;
1421 }
1422
1423 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
1424 It is important to call pruning after vect_analyze_data_ref_accesses,
1425 since we use grouping information gathered by interleaving analysis. */
1426 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
1427 if (!ok)
1428 {
1429 if (vect_print_dump_info (REPORT_DETAILS))
1430 fprintf (vect_dump, "too long list of versioning for alias "
1431 "run-time tests.");
1432 destroy_loop_vec_info (loop_vinfo, true);
1433 return NULL;
1434 }
1435
1436 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1437 ok = vect_analyze_slp (loop_vinfo, NULL);
1438 if (ok)
1439 {
1440 /* Decide which possible SLP instances to SLP. */
1441 vect_make_slp_decision (loop_vinfo);
1442
1443 /* Find stmts that need to be both vectorized and SLPed. */
1444 vect_detect_hybrid_slp (loop_vinfo);
1445 }
1446
1447 /* This pass will decide on using loop versioning and/or loop peeling in
1448 order to enhance the alignment of data references in the loop. */
1449
1450 ok = vect_enhance_data_refs_alignment (loop_vinfo);
1451 if (!ok)
1452 {
1453 if (vect_print_dump_info (REPORT_DETAILS))
1454 fprintf (vect_dump, "bad data alignment.");
1455 destroy_loop_vec_info (loop_vinfo, true);
1456 return NULL;
1457 }
1458
1459 /* Scan all the operations in the loop and make sure they are
1460 vectorizable. */
1461
1462 ok = vect_analyze_loop_operations (loop_vinfo);
1463 if (!ok)
1464 {
1465 if (vect_print_dump_info (REPORT_DETAILS))
1466 fprintf (vect_dump, "bad operation or unsupported loop bound.");
1467 destroy_loop_vec_info (loop_vinfo, true);
1468 return NULL;
1469 }
1470
1471 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
1472
1473 return loop_vinfo;
1474 }
1475
1476
1477 /* Function reduction_code_for_scalar_code
1478
1479 Input:
1480 CODE - tree_code of a reduction operations.
1481
1482 Output:
1483 REDUC_CODE - the corresponding tree-code to be used to reduce the
1484 vector of partial results into a single scalar result (which
1485 will also reside in a vector) or ERROR_MARK if the operation is
1486 a supported reduction operation, but does not have such tree-code.
1487
1488 Return FALSE if CODE currently cannot be vectorized as reduction. */
1489
1490 static bool
1491 reduction_code_for_scalar_code (enum tree_code code,
1492 enum tree_code *reduc_code)
1493 {
1494 switch (code)
1495 {
1496 case MAX_EXPR:
1497 *reduc_code = REDUC_MAX_EXPR;
1498 return true;
1499
1500 case MIN_EXPR:
1501 *reduc_code = REDUC_MIN_EXPR;
1502 return true;
1503
1504 case PLUS_EXPR:
1505 *reduc_code = REDUC_PLUS_EXPR;
1506 return true;
1507
1508 case MULT_EXPR:
1509 case MINUS_EXPR:
1510 case BIT_IOR_EXPR:
1511 case BIT_XOR_EXPR:
1512 case BIT_AND_EXPR:
1513 *reduc_code = ERROR_MARK;
1514 return true;
1515
1516 default:
1517 return false;
1518 }
1519 }
1520
1521
1522 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
1523 STMT is printed with a message MSG. */
1524
1525 static void
1526 report_vect_op (gimple stmt, const char *msg)
1527 {
1528 fprintf (vect_dump, "%s", msg);
1529 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
1530 }
1531
1532
1533 /* Function vect_is_simple_reduction
1534
1535 (1) Detect a cross-iteration def-use cycle that represents a simple
1536 reduction computation. We look for the following pattern:
1537
1538 loop_header:
1539 a1 = phi < a0, a2 >
1540 a3 = ...
1541 a2 = operation (a3, a1)
1542
1543 such that:
1544 1. operation is commutative and associative and it is safe to
1545 change the order of the computation (if CHECK_REDUCTION is true)
1546 2. no uses for a2 in the loop (a2 is used out of the loop)
1547 3. no uses of a1 in the loop besides the reduction operation.
1548
1549 Condition 1 is tested here.
1550 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
1551
1552 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
1553 nested cycles, if CHECK_REDUCTION is false.
1554
1555 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
1556 reductions:
1557
1558 a1 = phi < a0, a2 >
1559 inner loop (def of a3)
1560 a2 = phi < a3 >
1561 */
1562
1563 gimple
1564 vect_is_simple_reduction (loop_vec_info loop_info, gimple phi,
1565 bool check_reduction, bool *double_reduc)
1566 {
1567 struct loop *loop = (gimple_bb (phi))->loop_father;
1568 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
1569 edge latch_e = loop_latch_edge (loop);
1570 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
1571 gimple def_stmt, def1 = NULL, def2 = NULL;
1572 enum tree_code code;
1573 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
1574 tree type;
1575 int nloop_uses;
1576 tree name;
1577 imm_use_iterator imm_iter;
1578 use_operand_p use_p;
1579 bool phi_def;
1580
1581 *double_reduc = false;
1582
1583 /* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
1584 otherwise, we assume outer loop vectorization. */
1585 gcc_assert ((check_reduction && loop == vect_loop)
1586 || (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
1587
1588 name = PHI_RESULT (phi);
1589 nloop_uses = 0;
1590 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
1591 {
1592 gimple use_stmt = USE_STMT (use_p);
1593 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
1594 && vinfo_for_stmt (use_stmt)
1595 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
1596 nloop_uses++;
1597 if (nloop_uses > 1)
1598 {
1599 if (vect_print_dump_info (REPORT_DETAILS))
1600 fprintf (vect_dump, "reduction used in loop.");
1601 return NULL;
1602 }
1603 }
1604
1605 if (TREE_CODE (loop_arg) != SSA_NAME)
1606 {
1607 if (vect_print_dump_info (REPORT_DETAILS))
1608 {
1609 fprintf (vect_dump, "reduction: not ssa_name: ");
1610 print_generic_expr (vect_dump, loop_arg, TDF_SLIM);
1611 }
1612 return NULL;
1613 }
1614
1615 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
1616 if (!def_stmt)
1617 {
1618 if (vect_print_dump_info (REPORT_DETAILS))
1619 fprintf (vect_dump, "reduction: no def_stmt.");
1620 return NULL;
1621 }
1622
1623 if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
1624 {
1625 if (vect_print_dump_info (REPORT_DETAILS))
1626 print_gimple_stmt (vect_dump, def_stmt, 0, TDF_SLIM);
1627 return NULL;
1628 }
1629
1630 if (is_gimple_assign (def_stmt))
1631 {
1632 name = gimple_assign_lhs (def_stmt);
1633 phi_def = false;
1634 }
1635 else
1636 {
1637 name = PHI_RESULT (def_stmt);
1638 phi_def = true;
1639 }
1640
1641 nloop_uses = 0;
1642 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
1643 {
1644 gimple use_stmt = USE_STMT (use_p);
1645 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
1646 && vinfo_for_stmt (use_stmt)
1647 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
1648 nloop_uses++;
1649 if (nloop_uses > 1)
1650 {
1651 if (vect_print_dump_info (REPORT_DETAILS))
1652 fprintf (vect_dump, "reduction used in loop.");
1653 return NULL;
1654 }
1655 }
1656
1657 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
1658 defined in the inner loop. */
1659 if (phi_def)
1660 {
1661 op1 = PHI_ARG_DEF (def_stmt, 0);
1662
1663 if (gimple_phi_num_args (def_stmt) != 1
1664 || TREE_CODE (op1) != SSA_NAME)
1665 {
1666 if (vect_print_dump_info (REPORT_DETAILS))
1667 fprintf (vect_dump, "unsupported phi node definition.");
1668
1669 return NULL;
1670 }
1671
1672 def1 = SSA_NAME_DEF_STMT (op1);
1673 if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
1674 && loop->inner
1675 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
1676 && is_gimple_assign (def1))
1677 {
1678 if (vect_print_dump_info (REPORT_DETAILS))
1679 report_vect_op (def_stmt, "detected double reduction: ");
1680
1681 *double_reduc = true;
1682 return def_stmt;
1683 }
1684
1685 return NULL;
1686 }
1687
1688 code = gimple_assign_rhs_code (def_stmt);
1689
1690 if (check_reduction
1691 && (!commutative_tree_code (code) || !associative_tree_code (code)))
1692 {
1693 if (vect_print_dump_info (REPORT_DETAILS))
1694 report_vect_op (def_stmt, "reduction: not commutative/associative: ");
1695 return NULL;
1696 }
1697
1698 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
1699 {
1700 if (code != COND_EXPR)
1701 {
1702 if (vect_print_dump_info (REPORT_DETAILS))
1703 report_vect_op (def_stmt, "reduction: not binary operation: ");
1704
1705 return NULL;
1706 }
1707
1708 op3 = TREE_OPERAND (TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0), 0);
1709 op4 = TREE_OPERAND (TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 0), 1);
1710 op1 = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 1);
1711 op2 = TREE_OPERAND (gimple_assign_rhs1 (def_stmt), 2);
1712
1713 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
1714 {
1715 if (vect_print_dump_info (REPORT_DETAILS))
1716 report_vect_op (def_stmt, "reduction: uses not ssa_names: ");
1717
1718 return NULL;
1719 }
1720 }
1721 else
1722 {
1723 op1 = gimple_assign_rhs1 (def_stmt);
1724 op2 = gimple_assign_rhs2 (def_stmt);
1725
1726 if (TREE_CODE (op1) != SSA_NAME || TREE_CODE (op2) != SSA_NAME)
1727 {
1728 if (vect_print_dump_info (REPORT_DETAILS))
1729 report_vect_op (def_stmt, "reduction: uses not ssa_names: ");
1730
1731 return NULL;
1732 }
1733 }
1734
1735 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
1736 if ((TREE_CODE (op1) == SSA_NAME
1737 && TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op1)))
1738 || (TREE_CODE (op2) == SSA_NAME
1739 && TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op2)))
1740 || (op3 && TREE_CODE (op3) == SSA_NAME
1741 && TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op3)))
1742 || (op4 && TREE_CODE (op4) == SSA_NAME
1743 && TYPE_MAIN_VARIANT (type) != TYPE_MAIN_VARIANT (TREE_TYPE (op4))))
1744 {
1745 if (vect_print_dump_info (REPORT_DETAILS))
1746 {
1747 fprintf (vect_dump, "reduction: multiple types: operation type: ");
1748 print_generic_expr (vect_dump, type, TDF_SLIM);
1749 fprintf (vect_dump, ", operands types: ");
1750 print_generic_expr (vect_dump, TREE_TYPE (op1), TDF_SLIM);
1751 fprintf (vect_dump, ",");
1752 print_generic_expr (vect_dump, TREE_TYPE (op2), TDF_SLIM);
1753 if (op3 && op4)
1754 {
1755 fprintf (vect_dump, ",");
1756 print_generic_expr (vect_dump, TREE_TYPE (op3), TDF_SLIM);
1757 fprintf (vect_dump, ",");
1758 print_generic_expr (vect_dump, TREE_TYPE (op4), TDF_SLIM);
1759 }
1760 }
1761
1762 return NULL;
1763 }
1764
1765 /* Check that it's ok to change the order of the computation.
1766 Generally, when vectorizing a reduction we change the order of the
1767 computation. This may change the behavior of the program in some
1768 cases, so we need to check that this is ok. One exception is when
1769 vectorizing an outer-loop: the inner-loop is executed sequentially,
1770 and therefore vectorizing reductions in the inner-loop during
1771 outer-loop vectorization is safe. */
1772
1773 /* CHECKME: check for !flag_finite_math_only too? */
1774 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
1775 && check_reduction)
1776 {
1777 /* Changing the order of operations changes the semantics. */
1778 if (vect_print_dump_info (REPORT_DETAILS))
1779 report_vect_op (def_stmt, "reduction: unsafe fp math optimization: ");
1780 return NULL;
1781 }
1782 else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
1783 && check_reduction)
1784 {
1785 /* Changing the order of operations changes the semantics. */
1786 if (vect_print_dump_info (REPORT_DETAILS))
1787 report_vect_op (def_stmt, "reduction: unsafe int math optimization: ");
1788 return NULL;
1789 }
1790 else if (SAT_FIXED_POINT_TYPE_P (type) && check_reduction)
1791 {
1792 /* Changing the order of operations changes the semantics. */
1793 if (vect_print_dump_info (REPORT_DETAILS))
1794 report_vect_op (def_stmt,
1795 "reduction: unsafe fixed-point math optimization: ");
1796 return NULL;
1797 }
1798
1799 /* Reduction is safe. We're dealing with one of the following:
1800 1) integer arithmetic and no trapv
1801 2) floating point arithmetic, and special flags permit this optimization
1802 3) nested cycle (i.e., outer loop vectorization). */
1803 if (TREE_CODE (op1) == SSA_NAME)
1804 def1 = SSA_NAME_DEF_STMT (op1);
1805
1806 if (TREE_CODE (op2) == SSA_NAME)
1807 def2 = SSA_NAME_DEF_STMT (op2);
1808
1809 if (code != COND_EXPR
1810 && (!def1 || !def2 || gimple_nop_p (def1) || gimple_nop_p (def2)))
1811 {
1812 if (vect_print_dump_info (REPORT_DETAILS))
1813 report_vect_op (def_stmt, "reduction: no defs for operands: ");
1814 return NULL;
1815 }
1816
1817 /* Check that one def is the reduction def, defined by PHI,
1818 the other def is either defined in the loop ("vect_internal_def"),
1819 or it's an induction (defined by a loop-header phi-node). */
1820
1821 if (def2 && def2 == phi
1822 && (code == COND_EXPR
1823 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
1824 && (is_gimple_assign (def1)
1825 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
1826 == vect_induction_def
1827 || (gimple_code (def1) == GIMPLE_PHI
1828 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
1829 == vect_internal_def
1830 && !is_loop_header_bb_p (gimple_bb (def1)))))))
1831 {
1832 if (vect_print_dump_info (REPORT_DETAILS))
1833 report_vect_op (def_stmt, "detected reduction: ");
1834 return def_stmt;
1835 }
1836 else if (def1 && def1 == phi
1837 && (code == COND_EXPR
1838 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
1839 && (is_gimple_assign (def2)
1840 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
1841 == vect_induction_def
1842 || (gimple_code (def2) == GIMPLE_PHI
1843 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
1844 == vect_internal_def
1845 && !is_loop_header_bb_p (gimple_bb (def2)))))))
1846 {
1847 if (check_reduction)
1848 {
1849 /* Swap operands (just for simplicity - so that the rest of the code
1850 can assume that the reduction variable is always the last (second)
1851 argument). */
1852 if (vect_print_dump_info (REPORT_DETAILS))
1853 report_vect_op (def_stmt,
1854 "detected reduction: need to swap operands: ");
1855
1856 swap_tree_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
1857 gimple_assign_rhs2_ptr (def_stmt));
1858 }
1859 else
1860 {
1861 if (vect_print_dump_info (REPORT_DETAILS))
1862 report_vect_op (def_stmt, "detected reduction: ");
1863 }
1864
1865 return def_stmt;
1866 }
1867 else
1868 {
1869 if (vect_print_dump_info (REPORT_DETAILS))
1870 report_vect_op (def_stmt, "reduction: unknown pattern: ");
1871
1872 return NULL;
1873 }
1874 }
1875
1876
1877 /* Function vect_estimate_min_profitable_iters
1878
1879 Return the number of iterations required for the vector version of the
1880 loop to be profitable relative to the cost of the scalar version of the
1881 loop.
1882
1883 TODO: Take profile info into account before making vectorization
1884 decisions, if available. */
1885
1886 int
1887 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo)
1888 {
1889 int i;
1890 int min_profitable_iters;
1891 int peel_iters_prologue;
1892 int peel_iters_epilogue;
1893 int vec_inside_cost = 0;
1894 int vec_outside_cost = 0;
1895 int scalar_single_iter_cost = 0;
1896 int scalar_outside_cost = 0;
1897 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1898 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1899 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1900 int nbbs = loop->num_nodes;
1901 int byte_misalign = LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo);
1902 int peel_guard_costs = 0;
1903 int innerloop_iters = 0, factor;
1904 VEC (slp_instance, heap) *slp_instances;
1905 slp_instance instance;
1906
1907 /* Cost model disabled. */
1908 if (!flag_vect_cost_model)
1909 {
1910 if (vect_print_dump_info (REPORT_COST))
1911 fprintf (vect_dump, "cost model disabled.");
1912 return 0;
1913 }
1914
1915 /* Requires loop versioning tests to handle misalignment. */
1916 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
1917 {
1918 /* FIXME: Make cost depend on complexity of individual check. */
1919 vec_outside_cost +=
1920 VEC_length (gimple, LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo));
1921 if (vect_print_dump_info (REPORT_COST))
1922 fprintf (vect_dump, "cost model: Adding cost of checks for loop "
1923 "versioning to treat misalignment.\n");
1924 }
1925
1926 /* Requires loop versioning with alias checks. */
1927 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
1928 {
1929 /* FIXME: Make cost depend on complexity of individual check. */
1930 vec_outside_cost +=
1931 VEC_length (ddr_p, LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo));
1932 if (vect_print_dump_info (REPORT_COST))
1933 fprintf (vect_dump, "cost model: Adding cost of checks for loop "
1934 "versioning aliasing.\n");
1935 }
1936
1937 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
1938 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
1939 vec_outside_cost += TARG_COND_TAKEN_BRANCH_COST;
1940
1941 /* Count statements in scalar loop. Using this as scalar cost for a single
1942 iteration for now.
1943
1944 TODO: Add outer loop support.
1945
1946 TODO: Consider assigning different costs to different scalar
1947 statements. */
1948
1949 /* FORNOW. */
1950 if (loop->inner)
1951 innerloop_iters = 50; /* FIXME */
1952
1953 for (i = 0; i < nbbs; i++)
1954 {
1955 gimple_stmt_iterator si;
1956 basic_block bb = bbs[i];
1957
1958 if (bb->loop_father == loop->inner)
1959 factor = innerloop_iters;
1960 else
1961 factor = 1;
1962
1963 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1964 {
1965 gimple stmt = gsi_stmt (si);
1966 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1967 /* Skip stmts that are not vectorized inside the loop. */
1968 if (!STMT_VINFO_RELEVANT_P (stmt_info)
1969 && (!STMT_VINFO_LIVE_P (stmt_info)
1970 || STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def))
1971 continue;
1972 scalar_single_iter_cost += cost_for_stmt (stmt) * factor;
1973 vec_inside_cost += STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info) * factor;
1974 /* FIXME: for stmts in the inner-loop in outer-loop vectorization,
1975 some of the "outside" costs are generated inside the outer-loop. */
1976 vec_outside_cost += STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info);
1977 }
1978 }
1979
1980 /* Add additional cost for the peeled instructions in prologue and epilogue
1981 loop.
1982
1983 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
1984 at compile-time - we assume it's vf/2 (the worst would be vf-1).
1985
1986 TODO: Build an expression that represents peel_iters for prologue and
1987 epilogue to be used in a run-time test. */
1988
1989 if (byte_misalign < 0)
1990 {
1991 peel_iters_prologue = vf/2;
1992 if (vect_print_dump_info (REPORT_COST))
1993 fprintf (vect_dump, "cost model: "
1994 "prologue peel iters set to vf/2.");
1995
1996 /* If peeling for alignment is unknown, loop bound of main loop becomes
1997 unknown. */
1998 peel_iters_epilogue = vf/2;
1999 if (vect_print_dump_info (REPORT_COST))
2000 fprintf (vect_dump, "cost model: "
2001 "epilogue peel iters set to vf/2 because "
2002 "peeling for alignment is unknown .");
2003
2004 /* If peeled iterations are unknown, count a taken branch and a not taken
2005 branch per peeled loop. Even if scalar loop iterations are known,
2006 vector iterations are not known since peeled prologue iterations are
2007 not known. Hence guards remain the same. */
2008 peel_guard_costs += 2 * (TARG_COND_TAKEN_BRANCH_COST
2009 + TARG_COND_NOT_TAKEN_BRANCH_COST);
2010 }
2011 else
2012 {
2013 if (byte_misalign)
2014 {
2015 struct data_reference *dr = LOOP_VINFO_UNALIGNED_DR (loop_vinfo);
2016 int element_size = GET_MODE_SIZE (TYPE_MODE (TREE_TYPE (DR_REF (dr))));
2017 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (DR_STMT (dr)));
2018 int nelements = TYPE_VECTOR_SUBPARTS (vectype);
2019
2020 peel_iters_prologue = nelements - (byte_misalign / element_size);
2021 }
2022 else
2023 peel_iters_prologue = 0;
2024
2025 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2026 {
2027 peel_iters_epilogue = vf/2;
2028 if (vect_print_dump_info (REPORT_COST))
2029 fprintf (vect_dump, "cost model: "
2030 "epilogue peel iters set to vf/2 because "
2031 "loop iterations are unknown .");
2032
2033 /* If peeled iterations are known but number of scalar loop
2034 iterations are unknown, count a taken branch per peeled loop. */
2035 peel_guard_costs += 2 * TARG_COND_TAKEN_BRANCH_COST;
2036
2037 }
2038 else
2039 {
2040 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
2041 peel_iters_prologue = niters < peel_iters_prologue ?
2042 niters : peel_iters_prologue;
2043 peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
2044 }
2045 }
2046
2047 vec_outside_cost += (peel_iters_prologue * scalar_single_iter_cost)
2048 + (peel_iters_epilogue * scalar_single_iter_cost)
2049 + peel_guard_costs;
2050
2051 /* FORNOW: The scalar outside cost is incremented in one of the
2052 following ways:
2053
2054 1. The vectorizer checks for alignment and aliasing and generates
2055 a condition that allows dynamic vectorization. A cost model
2056 check is ANDED with the versioning condition. Hence scalar code
2057 path now has the added cost of the versioning check.
2058
2059 if (cost > th & versioning_check)
2060 jmp to vector code
2061
2062 Hence run-time scalar is incremented by not-taken branch cost.
2063
2064 2. The vectorizer then checks if a prologue is required. If the
2065 cost model check was not done before during versioning, it has to
2066 be done before the prologue check.
2067
2068 if (cost <= th)
2069 prologue = scalar_iters
2070 if (prologue == 0)
2071 jmp to vector code
2072 else
2073 execute prologue
2074 if (prologue == num_iters)
2075 go to exit
2076
2077 Hence the run-time scalar cost is incremented by a taken branch,
2078 plus a not-taken branch, plus a taken branch cost.
2079
2080 3. The vectorizer then checks if an epilogue is required. If the
2081 cost model check was not done before during prologue check, it
2082 has to be done with the epilogue check.
2083
2084 if (prologue == 0)
2085 jmp to vector code
2086 else
2087 execute prologue
2088 if (prologue == num_iters)
2089 go to exit
2090 vector code:
2091 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
2092 jmp to epilogue
2093
2094 Hence the run-time scalar cost should be incremented by 2 taken
2095 branches.
2096
2097 TODO: The back end may reorder the BBS's differently and reverse
2098 conditions/branch directions. Change the estimates below to
2099 something more reasonable. */
2100
2101 /* If the number of iterations is known and we do not do versioning, we can
2102 decide whether to vectorize at compile time. Hence the scalar version
2103 do not carry cost model guard costs. */
2104 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2105 || LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2106 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2107 {
2108 /* Cost model check occurs at versioning. */
2109 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2110 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2111 scalar_outside_cost += TARG_COND_NOT_TAKEN_BRANCH_COST;
2112 else
2113 {
2114 /* Cost model check occurs at prologue generation. */
2115 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2116 scalar_outside_cost += 2 * TARG_COND_TAKEN_BRANCH_COST
2117 + TARG_COND_NOT_TAKEN_BRANCH_COST;
2118 /* Cost model check occurs at epilogue generation. */
2119 else
2120 scalar_outside_cost += 2 * TARG_COND_TAKEN_BRANCH_COST;
2121 }
2122 }
2123
2124 /* Add SLP costs. */
2125 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
2126 for (i = 0; VEC_iterate (slp_instance, slp_instances, i, instance); i++)
2127 {
2128 vec_outside_cost += SLP_INSTANCE_OUTSIDE_OF_LOOP_COST (instance);
2129 vec_inside_cost += SLP_INSTANCE_INSIDE_OF_LOOP_COST (instance);
2130 }
2131
2132 /* Calculate number of iterations required to make the vector version
2133 profitable, relative to the loop bodies only. The following condition
2134 must hold true:
2135 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
2136 where
2137 SIC = scalar iteration cost, VIC = vector iteration cost,
2138 VOC = vector outside cost, VF = vectorization factor,
2139 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
2140 SOC = scalar outside cost for run time cost model check. */
2141
2142 if ((scalar_single_iter_cost * vf) > vec_inside_cost)
2143 {
2144 if (vec_outside_cost <= 0)
2145 min_profitable_iters = 1;
2146 else
2147 {
2148 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
2149 - vec_inside_cost * peel_iters_prologue
2150 - vec_inside_cost * peel_iters_epilogue)
2151 / ((scalar_single_iter_cost * vf)
2152 - vec_inside_cost);
2153
2154 if ((scalar_single_iter_cost * vf * min_profitable_iters)
2155 <= ((vec_inside_cost * min_profitable_iters)
2156 + ((vec_outside_cost - scalar_outside_cost) * vf)))
2157 min_profitable_iters++;
2158 }
2159 }
2160 /* vector version will never be profitable. */
2161 else
2162 {
2163 if (vect_print_dump_info (REPORT_COST))
2164 fprintf (vect_dump, "cost model: vector iteration cost = %d "
2165 "is divisible by scalar iteration cost = %d by a factor "
2166 "greater than or equal to the vectorization factor = %d .",
2167 vec_inside_cost, scalar_single_iter_cost, vf);
2168 return -1;
2169 }
2170
2171 if (vect_print_dump_info (REPORT_COST))
2172 {
2173 fprintf (vect_dump, "Cost model analysis: \n");
2174 fprintf (vect_dump, " Vector inside of loop cost: %d\n",
2175 vec_inside_cost);
2176 fprintf (vect_dump, " Vector outside of loop cost: %d\n",
2177 vec_outside_cost);
2178 fprintf (vect_dump, " Scalar iteration cost: %d\n",
2179 scalar_single_iter_cost);
2180 fprintf (vect_dump, " Scalar outside cost: %d\n", scalar_outside_cost);
2181 fprintf (vect_dump, " prologue iterations: %d\n",
2182 peel_iters_prologue);
2183 fprintf (vect_dump, " epilogue iterations: %d\n",
2184 peel_iters_epilogue);
2185 fprintf (vect_dump, " Calculated minimum iters for profitability: %d\n",
2186 min_profitable_iters);
2187 }
2188
2189 min_profitable_iters =
2190 min_profitable_iters < vf ? vf : min_profitable_iters;
2191
2192 /* Because the condition we create is:
2193 if (niters <= min_profitable_iters)
2194 then skip the vectorized loop. */
2195 min_profitable_iters--;
2196
2197 if (vect_print_dump_info (REPORT_COST))
2198 fprintf (vect_dump, " Profitability threshold = %d\n",
2199 min_profitable_iters);
2200
2201 return min_profitable_iters;
2202 }
2203
2204
2205 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
2206 functions. Design better to avoid maintenance issues. */
2207
2208 /* Function vect_model_reduction_cost.
2209
2210 Models cost for a reduction operation, including the vector ops
2211 generated within the strip-mine loop, the initial definition before
2212 the loop, and the epilogue code that must be generated. */
2213
2214 static bool
2215 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
2216 int ncopies)
2217 {
2218 int outer_cost = 0;
2219 enum tree_code code;
2220 optab optab;
2221 tree vectype;
2222 gimple stmt, orig_stmt;
2223 tree reduction_op;
2224 enum machine_mode mode;
2225 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2226 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2227
2228
2229 /* Cost of reduction op inside loop. */
2230 STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info) += ncopies * TARG_VEC_STMT_COST;
2231
2232 stmt = STMT_VINFO_STMT (stmt_info);
2233
2234 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
2235 {
2236 case GIMPLE_SINGLE_RHS:
2237 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt)) == ternary_op);
2238 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
2239 break;
2240 case GIMPLE_UNARY_RHS:
2241 reduction_op = gimple_assign_rhs1 (stmt);
2242 break;
2243 case GIMPLE_BINARY_RHS:
2244 reduction_op = gimple_assign_rhs2 (stmt);
2245 break;
2246 default:
2247 gcc_unreachable ();
2248 }
2249
2250 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
2251 if (!vectype)
2252 {
2253 if (vect_print_dump_info (REPORT_COST))
2254 {
2255 fprintf (vect_dump, "unsupported data-type ");
2256 print_generic_expr (vect_dump, TREE_TYPE (reduction_op), TDF_SLIM);
2257 }
2258 return false;
2259 }
2260
2261 mode = TYPE_MODE (vectype);
2262 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
2263
2264 if (!orig_stmt)
2265 orig_stmt = STMT_VINFO_STMT (stmt_info);
2266
2267 code = gimple_assign_rhs_code (orig_stmt);
2268
2269 /* Add in cost for initial definition. */
2270 outer_cost += TARG_SCALAR_TO_VEC_COST;
2271
2272 /* Determine cost of epilogue code.
2273
2274 We have a reduction operator that will reduce the vector in one statement.
2275 Also requires scalar extract. */
2276
2277 if (!nested_in_vect_loop_p (loop, orig_stmt))
2278 {
2279 if (reduc_code != ERROR_MARK)
2280 outer_cost += TARG_VEC_STMT_COST + TARG_VEC_TO_SCALAR_COST;
2281 else
2282 {
2283 int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
2284 tree bitsize =
2285 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
2286 int element_bitsize = tree_low_cst (bitsize, 1);
2287 int nelements = vec_size_in_bits / element_bitsize;
2288
2289 optab = optab_for_tree_code (code, vectype, optab_default);
2290
2291 /* We have a whole vector shift available. */
2292 if (VECTOR_MODE_P (mode)
2293 && optab_handler (optab, mode)->insn_code != CODE_FOR_nothing
2294 && optab_handler (vec_shr_optab, mode)->insn_code != CODE_FOR_nothing)
2295 /* Final reduction via vector shifts and the reduction operator. Also
2296 requires scalar extract. */
2297 outer_cost += ((exact_log2(nelements) * 2) * TARG_VEC_STMT_COST
2298 + TARG_VEC_TO_SCALAR_COST);
2299 else
2300 /* Use extracts and reduction op for final reduction. For N elements,
2301 we have N extracts and N-1 reduction ops. */
2302 outer_cost += ((nelements + nelements - 1) * TARG_VEC_STMT_COST);
2303 }
2304 }
2305
2306 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info) = outer_cost;
2307
2308 if (vect_print_dump_info (REPORT_COST))
2309 fprintf (vect_dump, "vect_model_reduction_cost: inside_cost = %d, "
2310 "outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
2311 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
2312
2313 return true;
2314 }
2315
2316
2317 /* Function vect_model_induction_cost.
2318
2319 Models cost for induction operations. */
2320
2321 static void
2322 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
2323 {
2324 /* loop cost for vec_loop. */
2325 STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info) = ncopies * TARG_VEC_STMT_COST;
2326 /* prologue cost for vec_init and vec_step. */
2327 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info) = 2 * TARG_SCALAR_TO_VEC_COST;
2328
2329 if (vect_print_dump_info (REPORT_COST))
2330 fprintf (vect_dump, "vect_model_induction_cost: inside_cost = %d, "
2331 "outside_cost = %d .", STMT_VINFO_INSIDE_OF_LOOP_COST (stmt_info),
2332 STMT_VINFO_OUTSIDE_OF_LOOP_COST (stmt_info));
2333 }
2334
2335
2336 /* Function get_initial_def_for_induction
2337
2338 Input:
2339 STMT - a stmt that performs an induction operation in the loop.
2340 IV_PHI - the initial value of the induction variable
2341
2342 Output:
2343 Return a vector variable, initialized with the first VF values of
2344 the induction variable. E.g., for an iv with IV_PHI='X' and
2345 evolution S, for a vector of 4 units, we want to return:
2346 [X, X + S, X + 2*S, X + 3*S]. */
2347
2348 static tree
2349 get_initial_def_for_induction (gimple iv_phi)
2350 {
2351 stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
2352 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
2353 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2354 tree scalar_type = TREE_TYPE (gimple_phi_result (iv_phi));
2355 tree vectype;
2356 int nunits;
2357 edge pe = loop_preheader_edge (loop);
2358 struct loop *iv_loop;
2359 basic_block new_bb;
2360 tree vec, vec_init, vec_step, t;
2361 tree access_fn;
2362 tree new_var;
2363 tree new_name;
2364 gimple init_stmt, induction_phi, new_stmt;
2365 tree induc_def, vec_def, vec_dest;
2366 tree init_expr, step_expr;
2367 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2368 int i;
2369 bool ok;
2370 int ncopies;
2371 tree expr;
2372 stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
2373 bool nested_in_vect_loop = false;
2374 gimple_seq stmts = NULL;
2375 imm_use_iterator imm_iter;
2376 use_operand_p use_p;
2377 gimple exit_phi;
2378 edge latch_e;
2379 tree loop_arg;
2380 gimple_stmt_iterator si;
2381 basic_block bb = gimple_bb (iv_phi);
2382 tree stepvectype;
2383
2384 vectype = get_vectype_for_scalar_type (scalar_type);
2385 gcc_assert (vectype);
2386 nunits = TYPE_VECTOR_SUBPARTS (vectype);
2387 ncopies = vf / nunits;
2388
2389 gcc_assert (phi_info);
2390 gcc_assert (ncopies >= 1);
2391
2392 /* Find the first insertion point in the BB. */
2393 si = gsi_after_labels (bb);
2394
2395 if (INTEGRAL_TYPE_P (scalar_type))
2396 step_expr = build_int_cst (scalar_type, 0);
2397 else if (POINTER_TYPE_P (scalar_type))
2398 step_expr = build_int_cst (sizetype, 0);
2399 else
2400 step_expr = build_real (scalar_type, dconst0);
2401
2402 /* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
2403 if (nested_in_vect_loop_p (loop, iv_phi))
2404 {
2405 nested_in_vect_loop = true;
2406 iv_loop = loop->inner;
2407 }
2408 else
2409 iv_loop = loop;
2410 gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
2411
2412 latch_e = loop_latch_edge (iv_loop);
2413 loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
2414
2415 access_fn = analyze_scalar_evolution (iv_loop, PHI_RESULT (iv_phi));
2416 gcc_assert (access_fn);
2417 ok = vect_is_simple_iv_evolution (iv_loop->num, access_fn,
2418 &init_expr, &step_expr);
2419 gcc_assert (ok);
2420 pe = loop_preheader_edge (iv_loop);
2421
2422 /* Create the vector that holds the initial_value of the induction. */
2423 if (nested_in_vect_loop)
2424 {
2425 /* iv_loop is nested in the loop to be vectorized. init_expr had already
2426 been created during vectorization of previous stmts; We obtain it from
2427 the STMT_VINFO_VEC_STMT of the defining stmt. */
2428 tree iv_def = PHI_ARG_DEF_FROM_EDGE (iv_phi,
2429 loop_preheader_edge (iv_loop));
2430 vec_init = vect_get_vec_def_for_operand (iv_def, iv_phi, NULL);
2431 }
2432 else
2433 {
2434 /* iv_loop is the loop to be vectorized. Create:
2435 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
2436 new_var = vect_get_new_vect_var (scalar_type, vect_scalar_var, "var_");
2437 add_referenced_var (new_var);
2438
2439 new_name = force_gimple_operand (init_expr, &stmts, false, new_var);
2440 if (stmts)
2441 {
2442 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
2443 gcc_assert (!new_bb);
2444 }
2445
2446 t = NULL_TREE;
2447 t = tree_cons (NULL_TREE, init_expr, t);
2448 for (i = 1; i < nunits; i++)
2449 {
2450 /* Create: new_name_i = new_name + step_expr */
2451 enum tree_code code = POINTER_TYPE_P (scalar_type)
2452 ? POINTER_PLUS_EXPR : PLUS_EXPR;
2453 init_stmt = gimple_build_assign_with_ops (code, new_var,
2454 new_name, step_expr);
2455 new_name = make_ssa_name (new_var, init_stmt);
2456 gimple_assign_set_lhs (init_stmt, new_name);
2457
2458 new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
2459 gcc_assert (!new_bb);
2460
2461 if (vect_print_dump_info (REPORT_DETAILS))
2462 {
2463 fprintf (vect_dump, "created new init_stmt: ");
2464 print_gimple_stmt (vect_dump, init_stmt, 0, TDF_SLIM);
2465 }
2466 t = tree_cons (NULL_TREE, new_name, t);
2467 }
2468 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
2469 vec = build_constructor_from_list (vectype, nreverse (t));
2470 vec_init = vect_init_vector (iv_phi, vec, vectype, NULL);
2471 }
2472
2473
2474 /* Create the vector that holds the step of the induction. */
2475 if (nested_in_vect_loop)
2476 /* iv_loop is nested in the loop to be vectorized. Generate:
2477 vec_step = [S, S, S, S] */
2478 new_name = step_expr;
2479 else
2480 {
2481 /* iv_loop is the loop to be vectorized. Generate:
2482 vec_step = [VF*S, VF*S, VF*S, VF*S] */
2483 expr = build_int_cst (TREE_TYPE (step_expr), vf);
2484 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
2485 expr, step_expr);
2486 }
2487
2488 t = NULL_TREE;
2489 for (i = 0; i < nunits; i++)
2490 t = tree_cons (NULL_TREE, unshare_expr (new_name), t);
2491 gcc_assert (CONSTANT_CLASS_P (new_name));
2492 stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
2493 gcc_assert (stepvectype);
2494 vec = build_vector (stepvectype, t);
2495 vec_step = vect_init_vector (iv_phi, vec, stepvectype, NULL);
2496
2497
2498 /* Create the following def-use cycle:
2499 loop prolog:
2500 vec_init = ...
2501 vec_step = ...
2502 loop:
2503 vec_iv = PHI <vec_init, vec_loop>
2504 ...
2505 STMT
2506 ...
2507 vec_loop = vec_iv + vec_step; */
2508
2509 /* Create the induction-phi that defines the induction-operand. */
2510 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
2511 add_referenced_var (vec_dest);
2512 induction_phi = create_phi_node (vec_dest, iv_loop->header);
2513 set_vinfo_for_stmt (induction_phi,
2514 new_stmt_vec_info (induction_phi, loop_vinfo, NULL));
2515 induc_def = PHI_RESULT (induction_phi);
2516
2517 /* Create the iv update inside the loop */
2518 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
2519 induc_def, vec_step);
2520 vec_def = make_ssa_name (vec_dest, new_stmt);
2521 gimple_assign_set_lhs (new_stmt, vec_def);
2522 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
2523 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo,
2524 NULL));
2525
2526 /* Set the arguments of the phi node: */
2527 add_phi_arg (induction_phi, vec_init, pe);
2528 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop));
2529
2530
2531 /* In case that vectorization factor (VF) is bigger than the number
2532 of elements that we can fit in a vectype (nunits), we have to generate
2533 more than one vector stmt - i.e - we need to "unroll" the
2534 vector stmt by a factor VF/nunits. For more details see documentation
2535 in vectorizable_operation. */
2536
2537 if (ncopies > 1)
2538 {
2539 stmt_vec_info prev_stmt_vinfo;
2540 /* FORNOW. This restriction should be relaxed. */
2541 gcc_assert (!nested_in_vect_loop);
2542
2543 /* Create the vector that holds the step of the induction. */
2544 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
2545 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
2546 expr, step_expr);
2547 t = NULL_TREE;
2548 for (i = 0; i < nunits; i++)
2549 t = tree_cons (NULL_TREE, unshare_expr (new_name), t);
2550 gcc_assert (CONSTANT_CLASS_P (new_name));
2551 vec = build_vector (stepvectype, t);
2552 vec_step = vect_init_vector (iv_phi, vec, stepvectype, NULL);
2553
2554 vec_def = induc_def;
2555 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
2556 for (i = 1; i < ncopies; i++)
2557 {
2558 /* vec_i = vec_prev + vec_step */
2559 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
2560 vec_def, vec_step);
2561 vec_def = make_ssa_name (vec_dest, new_stmt);
2562 gimple_assign_set_lhs (new_stmt, vec_def);
2563
2564 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
2565 set_vinfo_for_stmt (new_stmt,
2566 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
2567 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
2568 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
2569 }
2570 }
2571
2572 if (nested_in_vect_loop)
2573 {
2574 /* Find the loop-closed exit-phi of the induction, and record
2575 the final vector of induction results: */
2576 exit_phi = NULL;
2577 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
2578 {
2579 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (USE_STMT (use_p))))
2580 {
2581 exit_phi = USE_STMT (use_p);
2582 break;
2583 }
2584 }
2585 if (exit_phi)
2586 {
2587 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
2588 /* FORNOW. Currently not supporting the case that an inner-loop induction
2589 is not used in the outer-loop (i.e. only outside the outer-loop). */
2590 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
2591 && !STMT_VINFO_LIVE_P (stmt_vinfo));
2592
2593 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
2594 if (vect_print_dump_info (REPORT_DETAILS))
2595 {
2596 fprintf (vect_dump, "vector of inductions after inner-loop:");
2597 print_gimple_stmt (vect_dump, new_stmt, 0, TDF_SLIM);
2598 }
2599 }
2600 }
2601
2602
2603 if (vect_print_dump_info (REPORT_DETAILS))
2604 {
2605 fprintf (vect_dump, "transform induction: created def-use cycle: ");
2606 print_gimple_stmt (vect_dump, induction_phi, 0, TDF_SLIM);
2607 fprintf (vect_dump, "\n");
2608 print_gimple_stmt (vect_dump, SSA_NAME_DEF_STMT (vec_def), 0, TDF_SLIM);
2609 }
2610
2611 STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
2612 return induc_def;
2613 }
2614
2615
2616 /* Function get_initial_def_for_reduction
2617
2618 Input:
2619 STMT - a stmt that performs a reduction operation in the loop.
2620 INIT_VAL - the initial value of the reduction variable
2621
2622 Output:
2623 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
2624 of the reduction (used for adjusting the epilog - see below).
2625 Return a vector variable, initialized according to the operation that STMT
2626 performs. This vector will be used as the initial value of the
2627 vector of partial results.
2628
2629 Option1 (adjust in epilog): Initialize the vector as follows:
2630 add/bit or/xor: [0,0,...,0,0]
2631 mult/bit and: [1,1,...,1,1]
2632 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
2633 and when necessary (e.g. add/mult case) let the caller know
2634 that it needs to adjust the result by init_val.
2635
2636 Option2: Initialize the vector as follows:
2637 add/bit or/xor: [init_val,0,0,...,0]
2638 mult/bit and: [init_val,1,1,...,1]
2639 min/max/cond_expr: [init_val,init_val,...,init_val]
2640 and no adjustments are needed.
2641
2642 For example, for the following code:
2643
2644 s = init_val;
2645 for (i=0;i<n;i++)
2646 s = s + a[i];
2647
2648 STMT is 's = s + a[i]', and the reduction variable is 's'.
2649 For a vector of 4 units, we want to return either [0,0,0,init_val],
2650 or [0,0,0,0] and let the caller know that it needs to adjust
2651 the result at the end by 'init_val'.
2652
2653 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
2654 initialization vector is simpler (same element in all entries), if
2655 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
2656
2657 A cost model should help decide between these two schemes. */
2658
2659 tree
2660 get_initial_def_for_reduction (gimple stmt, tree init_val,
2661 tree *adjustment_def)
2662 {
2663 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
2664 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
2665 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2666 tree scalar_type = TREE_TYPE (init_val);
2667 tree vectype = get_vectype_for_scalar_type (scalar_type);
2668 int nunits;
2669 enum tree_code code = gimple_assign_rhs_code (stmt);
2670 tree def_for_init;
2671 tree init_def;
2672 tree t = NULL_TREE;
2673 int i;
2674 bool nested_in_vect_loop = false;
2675 tree init_value;
2676 REAL_VALUE_TYPE real_init_val = dconst0;
2677 int int_init_val = 0;
2678 gimple def_stmt = NULL;
2679
2680 gcc_assert (vectype);
2681 nunits = TYPE_VECTOR_SUBPARTS (vectype);
2682
2683 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
2684 || SCALAR_FLOAT_TYPE_P (scalar_type));
2685
2686 if (nested_in_vect_loop_p (loop, stmt))
2687 nested_in_vect_loop = true;
2688 else
2689 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
2690
2691 /* In case of double reduction we only create a vector variable to be put
2692 in the reduction phi node. The actual statement creation is done in
2693 vect_create_epilog_for_reduction. */
2694 if (adjustment_def && nested_in_vect_loop
2695 && TREE_CODE (init_val) == SSA_NAME
2696 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
2697 && gimple_code (def_stmt) == GIMPLE_PHI
2698 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2699 && vinfo_for_stmt (def_stmt)
2700 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2701 == vect_double_reduction_def)
2702 {
2703 *adjustment_def = NULL;
2704 return vect_create_destination_var (init_val, vectype);
2705 }
2706
2707 if (TREE_CONSTANT (init_val))
2708 {
2709 if (SCALAR_FLOAT_TYPE_P (scalar_type))
2710 init_value = build_real (scalar_type, TREE_REAL_CST (init_val));
2711 else
2712 init_value = build_int_cst (scalar_type, TREE_INT_CST_LOW (init_val));
2713 }
2714 else
2715 init_value = init_val;
2716
2717 switch (code)
2718 {
2719 case WIDEN_SUM_EXPR:
2720 case DOT_PROD_EXPR:
2721 case PLUS_EXPR:
2722 case MINUS_EXPR:
2723 case BIT_IOR_EXPR:
2724 case BIT_XOR_EXPR:
2725 case MULT_EXPR:
2726 case BIT_AND_EXPR:
2727 /* ADJUSMENT_DEF is NULL when called from
2728 vect_create_epilog_for_reduction to vectorize double reduction. */
2729 if (adjustment_def)
2730 {
2731 if (nested_in_vect_loop)
2732 *adjustment_def = vect_get_vec_def_for_operand (init_val, stmt,
2733 NULL);
2734 else
2735 *adjustment_def = init_val;
2736 }
2737
2738 if (code == MULT_EXPR || code == BIT_AND_EXPR)
2739 {
2740 real_init_val = dconst1;
2741 int_init_val = 1;
2742 }
2743
2744 if (SCALAR_FLOAT_TYPE_P (scalar_type))
2745 def_for_init = build_real (scalar_type, real_init_val);
2746 else
2747 def_for_init = build_int_cst (scalar_type, int_init_val);
2748
2749 /* Create a vector of '0' or '1' except the first element. */
2750 for (i = nunits - 2; i >= 0; --i)
2751 t = tree_cons (NULL_TREE, def_for_init, t);
2752
2753 /* Option1: the first element is '0' or '1' as well. */
2754 if (adjustment_def)
2755 {
2756 t = tree_cons (NULL_TREE, def_for_init, t);
2757 init_def = build_vector (vectype, t);
2758 break;
2759 }
2760
2761 /* Option2: the first element is INIT_VAL. */
2762 t = tree_cons (NULL_TREE, init_value, t);
2763 if (TREE_CONSTANT (init_val))
2764 init_def = build_vector (vectype, t);
2765 else
2766 init_def = build_constructor_from_list (vectype, t);
2767
2768 break;
2769
2770 case MIN_EXPR:
2771 case MAX_EXPR:
2772 case COND_EXPR:
2773 if (adjustment_def)
2774 {
2775 *adjustment_def = NULL_TREE;
2776 init_def = vect_get_vec_def_for_operand (init_val, stmt, NULL);
2777 break;
2778 }
2779
2780 for (i = nunits - 1; i >= 0; --i)
2781 t = tree_cons (NULL_TREE, init_value, t);
2782
2783 if (TREE_CONSTANT (init_val))
2784 init_def = build_vector (vectype, t);
2785 else
2786 init_def = build_constructor_from_list (vectype, t);
2787
2788 break;
2789
2790 default:
2791 gcc_unreachable ();
2792 }
2793
2794 return init_def;
2795 }
2796
2797
2798 /* Function vect_create_epilog_for_reduction
2799
2800 Create code at the loop-epilog to finalize the result of a reduction
2801 computation.
2802
2803 VECT_DEF is a vector of partial results.
2804 REDUC_CODE is the tree-code for the epilog reduction.
2805 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
2806 number of elements that we can fit in a vectype (nunits). In this case
2807 we have to generate more than one vector stmt - i.e - we need to "unroll"
2808 the vector stmt by a factor VF/nunits. For more details see documentation
2809 in vectorizable_operation.
2810 STMT is the scalar reduction stmt that is being vectorized.
2811 REDUCTION_PHI is the phi-node that carries the reduction computation.
2812 REDUC_INDEX is the index of the operand in the right hand side of the
2813 statement that is defined by REDUCTION_PHI.
2814 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
2815
2816 This function:
2817 1. Creates the reduction def-use cycle: sets the arguments for
2818 REDUCTION_PHI:
2819 The loop-entry argument is the vectorized initial-value of the reduction.
2820 The loop-latch argument is VECT_DEF - the vector of partial sums.
2821 2. "Reduces" the vector of partial results VECT_DEF into a single result,
2822 by applying the operation specified by REDUC_CODE if available, or by
2823 other means (whole-vector shifts or a scalar loop).
2824 The function also creates a new phi node at the loop exit to preserve
2825 loop-closed form, as illustrated below.
2826
2827 The flow at the entry to this function:
2828
2829 loop:
2830 vec_def = phi <null, null> # REDUCTION_PHI
2831 VECT_DEF = vector_stmt # vectorized form of STMT
2832 s_loop = scalar_stmt # (scalar) STMT
2833 loop_exit:
2834 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
2835 use <s_out0>
2836 use <s_out0>
2837
2838 The above is transformed by this function into:
2839
2840 loop:
2841 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
2842 VECT_DEF = vector_stmt # vectorized form of STMT
2843 s_loop = scalar_stmt # (scalar) STMT
2844 loop_exit:
2845 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
2846 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
2847 v_out2 = reduce <v_out1>
2848 s_out3 = extract_field <v_out2, 0>
2849 s_out4 = adjust_result <s_out3>
2850 use <s_out4>
2851 use <s_out4>
2852 */
2853
2854 static void
2855 vect_create_epilog_for_reduction (tree vect_def, gimple stmt,
2856 int ncopies,
2857 enum tree_code reduc_code,
2858 gimple reduction_phi,
2859 int reduc_index,
2860 bool double_reduc)
2861 {
2862 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2863 stmt_vec_info prev_phi_info;
2864 tree vectype;
2865 enum machine_mode mode;
2866 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2867 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
2868 basic_block exit_bb;
2869 tree scalar_dest;
2870 tree scalar_type;
2871 gimple new_phi = NULL, phi;
2872 gimple_stmt_iterator exit_gsi;
2873 tree vec_dest;
2874 tree new_temp = NULL_TREE;
2875 tree new_name;
2876 gimple epilog_stmt = NULL;
2877 tree new_scalar_dest, new_dest;
2878 gimple exit_phi;
2879 tree bitsize, bitpos, bytesize;
2880 enum tree_code code = gimple_assign_rhs_code (stmt);
2881 tree adjustment_def;
2882 tree vec_initial_def, def;
2883 tree orig_name;
2884 imm_use_iterator imm_iter;
2885 use_operand_p use_p;
2886 bool extract_scalar_result = false;
2887 tree reduction_op, expr;
2888 gimple orig_stmt;
2889 gimple use_stmt;
2890 bool nested_in_vect_loop = false;
2891 VEC(gimple,heap) *phis = NULL;
2892 enum vect_def_type dt = vect_unknown_def_type;
2893 int j, i;
2894
2895 if (nested_in_vect_loop_p (loop, stmt))
2896 {
2897 outer_loop = loop;
2898 loop = loop->inner;
2899 nested_in_vect_loop = true;
2900 }
2901
2902 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
2903 {
2904 case GIMPLE_SINGLE_RHS:
2905 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
2906 == ternary_op);
2907 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
2908 break;
2909 case GIMPLE_UNARY_RHS:
2910 reduction_op = gimple_assign_rhs1 (stmt);
2911 break;
2912 case GIMPLE_BINARY_RHS:
2913 reduction_op = reduc_index ?
2914 gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt);
2915 break;
2916 default:
2917 gcc_unreachable ();
2918 }
2919
2920 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
2921 gcc_assert (vectype);
2922 mode = TYPE_MODE (vectype);
2923
2924 /*** 1. Create the reduction def-use cycle ***/
2925
2926 /* For the case of reduction, vect_get_vec_def_for_operand returns
2927 the scalar def before the loop, that defines the initial value
2928 of the reduction variable. */
2929 vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
2930 &adjustment_def);
2931
2932 phi = reduction_phi;
2933 def = vect_def;
2934 for (j = 0; j < ncopies; j++)
2935 {
2936 /* 1.1 set the loop-entry arg of the reduction-phi: */
2937 add_phi_arg (phi, vec_initial_def, loop_preheader_edge (loop));
2938
2939 /* 1.2 set the loop-latch arg for the reduction-phi: */
2940 if (j > 0)
2941 def = vect_get_vec_def_for_stmt_copy (dt, def);
2942 add_phi_arg (phi, def, loop_latch_edge (loop));
2943
2944 if (vect_print_dump_info (REPORT_DETAILS))
2945 {
2946 fprintf (vect_dump, "transform reduction: created def-use cycle: ");
2947 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
2948 fprintf (vect_dump, "\n");
2949 print_gimple_stmt (vect_dump, SSA_NAME_DEF_STMT (def), 0, TDF_SLIM);
2950 }
2951
2952 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
2953 }
2954
2955 /*** 2. Create epilog code
2956 The reduction epilog code operates across the elements of the vector
2957 of partial results computed by the vectorized loop.
2958 The reduction epilog code consists of:
2959 step 1: compute the scalar result in a vector (v_out2)
2960 step 2: extract the scalar result (s_out3) from the vector (v_out2)
2961 step 3: adjust the scalar result (s_out3) if needed.
2962
2963 Step 1 can be accomplished using one the following three schemes:
2964 (scheme 1) using reduc_code, if available.
2965 (scheme 2) using whole-vector shifts, if available.
2966 (scheme 3) using a scalar loop. In this case steps 1+2 above are
2967 combined.
2968
2969 The overall epilog code looks like this:
2970
2971 s_out0 = phi <s_loop> # original EXIT_PHI
2972 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
2973 v_out2 = reduce <v_out1> # step 1
2974 s_out3 = extract_field <v_out2, 0> # step 2
2975 s_out4 = adjust_result <s_out3> # step 3
2976
2977 (step 3 is optional, and steps 1 and 2 may be combined).
2978 Lastly, the uses of s_out0 are replaced by s_out4.
2979
2980 ***/
2981
2982 /* 2.1 Create new loop-exit-phi to preserve loop-closed form:
2983 v_out1 = phi <v_loop> */
2984
2985 exit_bb = single_exit (loop)->dest;
2986 def = vect_def;
2987 prev_phi_info = NULL;
2988 for (j = 0; j < ncopies; j++)
2989 {
2990 phi = create_phi_node (SSA_NAME_VAR (vect_def), exit_bb);
2991 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo, NULL));
2992 if (j == 0)
2993 new_phi = phi;
2994 else
2995 {
2996 def = vect_get_vec_def_for_stmt_copy (dt, def);
2997 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
2998 }
2999 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
3000 prev_phi_info = vinfo_for_stmt (phi);
3001 }
3002
3003 exit_gsi = gsi_after_labels (exit_bb);
3004
3005 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
3006 (i.e. when reduc_code is not available) and in the final adjustment
3007 code (if needed). Also get the original scalar reduction variable as
3008 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
3009 represents a reduction pattern), the tree-code and scalar-def are
3010 taken from the original stmt that the pattern-stmt (STMT) replaces.
3011 Otherwise (it is a regular reduction) - the tree-code and scalar-def
3012 are taken from STMT. */
3013
3014 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3015 if (!orig_stmt)
3016 {
3017 /* Regular reduction */
3018 orig_stmt = stmt;
3019 }
3020 else
3021 {
3022 /* Reduction pattern */
3023 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
3024 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
3025 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
3026 }
3027
3028 code = gimple_assign_rhs_code (orig_stmt);
3029 scalar_dest = gimple_assign_lhs (orig_stmt);
3030 scalar_type = TREE_TYPE (scalar_dest);
3031 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
3032 bitsize = TYPE_SIZE (scalar_type);
3033 bytesize = TYPE_SIZE_UNIT (scalar_type);
3034
3035 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
3036 partial results are added and not subtracted. */
3037 if (code == MINUS_EXPR)
3038 code = PLUS_EXPR;
3039
3040 /* In case this is a reduction in an inner-loop while vectorizing an outer
3041 loop - we don't need to extract a single scalar result at the end of the
3042 inner-loop (unless it is double reduction, i.e., the use of reduction is
3043 outside the outer-loop). The final vector of partial results will be used
3044 in the vectorized outer-loop, or reduced to a scalar result at the end of
3045 the outer-loop. */
3046 if (nested_in_vect_loop && !double_reduc)
3047 goto vect_finalize_reduction;
3048
3049 /* The epilogue is created for the outer-loop, i.e., for the loop being
3050 vectorized. */
3051 if (double_reduc)
3052 loop = outer_loop;
3053
3054 /* FORNOW */
3055 gcc_assert (ncopies == 1);
3056
3057 /* 2.3 Create the reduction code, using one of the three schemes described
3058 above. */
3059
3060 if (reduc_code != ERROR_MARK)
3061 {
3062 tree tmp;
3063
3064 /*** Case 1: Create:
3065 v_out2 = reduc_expr <v_out1> */
3066
3067 if (vect_print_dump_info (REPORT_DETAILS))
3068 fprintf (vect_dump, "Reduce using direct vector reduction.");
3069
3070 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3071 tmp = build1 (reduc_code, vectype, PHI_RESULT (new_phi));
3072 epilog_stmt = gimple_build_assign (vec_dest, tmp);
3073 new_temp = make_ssa_name (vec_dest, epilog_stmt);
3074 gimple_assign_set_lhs (epilog_stmt, new_temp);
3075 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3076
3077 extract_scalar_result = true;
3078 }
3079 else
3080 {
3081 enum tree_code shift_code = ERROR_MARK;
3082 bool have_whole_vector_shift = true;
3083 int bit_offset;
3084 int element_bitsize = tree_low_cst (bitsize, 1);
3085 int vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
3086 tree vec_temp;
3087
3088 if (optab_handler (vec_shr_optab, mode)->insn_code != CODE_FOR_nothing)
3089 shift_code = VEC_RSHIFT_EXPR;
3090 else
3091 have_whole_vector_shift = false;
3092
3093 /* Regardless of whether we have a whole vector shift, if we're
3094 emulating the operation via tree-vect-generic, we don't want
3095 to use it. Only the first round of the reduction is likely
3096 to still be profitable via emulation. */
3097 /* ??? It might be better to emit a reduction tree code here, so that
3098 tree-vect-generic can expand the first round via bit tricks. */
3099 if (!VECTOR_MODE_P (mode))
3100 have_whole_vector_shift = false;
3101 else
3102 {
3103 optab optab = optab_for_tree_code (code, vectype, optab_default);
3104 if (optab_handler (optab, mode)->insn_code == CODE_FOR_nothing)
3105 have_whole_vector_shift = false;
3106 }
3107
3108 if (have_whole_vector_shift)
3109 {
3110 /*** Case 2: Create:
3111 for (offset = VS/2; offset >= element_size; offset/=2)
3112 {
3113 Create: va' = vec_shift <va, offset>
3114 Create: va = vop <va, va'>
3115 } */
3116
3117 if (vect_print_dump_info (REPORT_DETAILS))
3118 fprintf (vect_dump, "Reduce using vector shifts");
3119
3120 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3121 new_temp = PHI_RESULT (new_phi);
3122
3123 for (bit_offset = vec_size_in_bits/2;
3124 bit_offset >= element_bitsize;
3125 bit_offset /= 2)
3126 {
3127 tree bitpos = size_int (bit_offset);
3128
3129 epilog_stmt = gimple_build_assign_with_ops (shift_code, vec_dest,
3130 new_temp, bitpos);
3131 new_name = make_ssa_name (vec_dest, epilog_stmt);
3132 gimple_assign_set_lhs (epilog_stmt, new_name);
3133 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3134
3135 epilog_stmt = gimple_build_assign_with_ops (code, vec_dest,
3136 new_name, new_temp);
3137 new_temp = make_ssa_name (vec_dest, epilog_stmt);
3138 gimple_assign_set_lhs (epilog_stmt, new_temp);
3139 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3140 }
3141
3142 extract_scalar_result = true;
3143 }
3144 else
3145 {
3146 tree rhs;
3147
3148 /*** Case 3: Create:
3149 s = extract_field <v_out2, 0>
3150 for (offset = element_size;
3151 offset < vector_size;
3152 offset += element_size;)
3153 {
3154 Create: s' = extract_field <v_out2, offset>
3155 Create: s = op <s, s'>
3156 } */
3157
3158 if (vect_print_dump_info (REPORT_DETAILS))
3159 fprintf (vect_dump, "Reduce using scalar code. ");
3160
3161 vec_temp = PHI_RESULT (new_phi);
3162 vec_size_in_bits = tree_low_cst (TYPE_SIZE (vectype), 1);
3163 rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
3164 bitsize_zero_node);
3165 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
3166 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
3167 gimple_assign_set_lhs (epilog_stmt, new_temp);
3168 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3169
3170 for (bit_offset = element_bitsize;
3171 bit_offset < vec_size_in_bits;
3172 bit_offset += element_bitsize)
3173 {
3174 tree bitpos = bitsize_int (bit_offset);
3175 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
3176 bitpos);
3177
3178 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
3179 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
3180 gimple_assign_set_lhs (epilog_stmt, new_name);
3181 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3182
3183 epilog_stmt = gimple_build_assign_with_ops (code,
3184 new_scalar_dest,
3185 new_name, new_temp);
3186 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
3187 gimple_assign_set_lhs (epilog_stmt, new_temp);
3188 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3189 }
3190
3191 extract_scalar_result = false;
3192 }
3193 }
3194
3195 /* 2.4 Extract the final scalar result. Create:
3196 s_out3 = extract_field <v_out2, bitpos> */
3197
3198 if (extract_scalar_result)
3199 {
3200 tree rhs;
3201
3202 gcc_assert (!nested_in_vect_loop || double_reduc);
3203 if (vect_print_dump_info (REPORT_DETAILS))
3204 fprintf (vect_dump, "extract scalar result");
3205
3206 if (BYTES_BIG_ENDIAN)
3207 bitpos = size_binop (MULT_EXPR,
3208 bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
3209 TYPE_SIZE (scalar_type));
3210 else
3211 bitpos = bitsize_zero_node;
3212
3213 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
3214 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
3215 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
3216 gimple_assign_set_lhs (epilog_stmt, new_temp);
3217 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3218 }
3219
3220 vect_finalize_reduction:
3221
3222 if (double_reduc)
3223 loop = loop->inner;
3224
3225 /* 2.5 Adjust the final result by the initial value of the reduction
3226 variable. (When such adjustment is not needed, then
3227 'adjustment_def' is zero). For example, if code is PLUS we create:
3228 new_temp = loop_exit_def + adjustment_def */
3229
3230 if (adjustment_def)
3231 {
3232 if (nested_in_vect_loop)
3233 {
3234 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
3235 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
3236 new_dest = vect_create_destination_var (scalar_dest, vectype);
3237 }
3238 else
3239 {
3240 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
3241 expr = build2 (code, scalar_type, new_temp, adjustment_def);
3242 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
3243 }
3244
3245 epilog_stmt = gimple_build_assign (new_dest, expr);
3246 new_temp = make_ssa_name (new_dest, epilog_stmt);
3247 gimple_assign_set_lhs (epilog_stmt, new_temp);
3248 SSA_NAME_DEF_STMT (new_temp) = epilog_stmt;
3249 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
3250 }
3251
3252
3253 /* 2.6 Handle the loop-exit phi */
3254
3255 /* Replace uses of s_out0 with uses of s_out3:
3256 Find the loop-closed-use at the loop exit of the original scalar result.
3257 (The reduction result is expected to have two immediate uses - one at the
3258 latch block, and one at the loop exit). */
3259 phis = VEC_alloc (gimple, heap, 10);
3260 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
3261 {
3262 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
3263 {
3264 exit_phi = USE_STMT (use_p);
3265 VEC_quick_push (gimple, phis, exit_phi);
3266 }
3267 }
3268
3269 /* We expect to have found an exit_phi because of loop-closed-ssa form. */
3270 gcc_assert (!VEC_empty (gimple, phis));
3271
3272 for (i = 0; VEC_iterate (gimple, phis, i, exit_phi); i++)
3273 {
3274 if (nested_in_vect_loop)
3275 {
3276 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
3277 gimple vect_phi;
3278
3279 /* FORNOW. Currently not supporting the case that an inner-loop
3280 reduction is not used in the outer-loop (but only outside the
3281 outer-loop), unless it is double reduction. */
3282 gcc_assert ((STMT_VINFO_RELEVANT_P (stmt_vinfo)
3283 && !STMT_VINFO_LIVE_P (stmt_vinfo)) || double_reduc);
3284
3285 epilog_stmt = adjustment_def ? epilog_stmt : new_phi;
3286 STMT_VINFO_VEC_STMT (stmt_vinfo) = epilog_stmt;
3287 set_vinfo_for_stmt (epilog_stmt,
3288 new_stmt_vec_info (epilog_stmt, loop_vinfo,
3289 NULL));
3290 if (adjustment_def)
3291 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
3292 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
3293
3294 if (!double_reduc
3295 || STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_double_reduction_def)
3296 continue;
3297
3298 /* Handle double reduction:
3299
3300 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
3301 stmt2: s3 = phi <s1, s4> - (regular) reduction phi (inner loop)
3302 stmt3: s4 = use (s3) - (regular) reduction stmt (inner loop)
3303 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
3304
3305 At that point the regular reduction (stmt2 and stmt3) is already
3306 vectorized, as well as the exit phi node, stmt4.
3307 Here we vectorize the phi node of double reduction, stmt1, and
3308 update all relevant statements. */
3309
3310 /* Go through all the uses of s2 to find double reduction phi node,
3311 i.e., stmt1 above. */
3312 orig_name = PHI_RESULT (exit_phi);
3313 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
3314 {
3315 stmt_vec_info use_stmt_vinfo = vinfo_for_stmt (use_stmt);
3316 stmt_vec_info new_phi_vinfo;
3317 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
3318 basic_block bb = gimple_bb (use_stmt);
3319 gimple use;
3320
3321 /* Check that USE_STMT is really double reduction phi node. */
3322 if (gimple_code (use_stmt) != GIMPLE_PHI
3323 || gimple_phi_num_args (use_stmt) != 2
3324 || !use_stmt_vinfo
3325 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
3326 != vect_double_reduction_def
3327 || bb->loop_father != outer_loop)
3328 continue;
3329
3330 /* Create vector phi node for double reduction:
3331 vs1 = phi <vs0, vs2>
3332 vs1 was created previously in this function by a call to
3333 vect_get_vec_def_for_operand and is stored in vec_initial_def;
3334 vs2 is defined by EPILOG_STMT, the vectorized EXIT_PHI;
3335 vs0 is created here. */
3336
3337 /* Create vector phi node. */
3338 vect_phi = create_phi_node (vec_initial_def, bb);
3339 new_phi_vinfo = new_stmt_vec_info (vect_phi,
3340 loop_vec_info_for_loop (outer_loop), NULL);
3341 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
3342
3343 /* Create vs0 - initial def of the double reduction phi. */
3344 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
3345 loop_preheader_edge (outer_loop));
3346 init_def = get_initial_def_for_reduction (stmt, preheader_arg,
3347 NULL);
3348 vect_phi_init = vect_init_vector (use_stmt, init_def, vectype,
3349 NULL);
3350
3351 /* Update phi node arguments with vs0 and vs2. */
3352 add_phi_arg (vect_phi, vect_phi_init,
3353 loop_preheader_edge (outer_loop));
3354 add_phi_arg (vect_phi, PHI_RESULT (epilog_stmt),
3355 loop_latch_edge (outer_loop));
3356 if (vect_print_dump_info (REPORT_DETAILS))
3357 {
3358 fprintf (vect_dump, "created double reduction phi node: ");
3359 print_gimple_stmt (vect_dump, vect_phi, 0, TDF_SLIM);
3360 }
3361
3362 vect_phi_res = PHI_RESULT (vect_phi);
3363
3364 /* Replace the use, i.e., set the correct vs1 in the regular
3365 reduction phi node. FORNOW, NCOPIES is always 1, so the loop
3366 is redundant. */
3367 use = reduction_phi;
3368 for (j = 0; j < ncopies; j++)
3369 {
3370 edge pr_edge = loop_preheader_edge (loop);
3371 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
3372 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
3373 }
3374 }
3375 }
3376
3377 /* Replace the uses: */
3378 orig_name = PHI_RESULT (exit_phi);
3379 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
3380 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
3381 SET_USE (use_p, new_temp);
3382 }
3383
3384 VEC_free (gimple, heap, phis);
3385 }
3386
3387
3388 /* Function vectorizable_reduction.
3389
3390 Check if STMT performs a reduction operation that can be vectorized.
3391 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
3392 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
3393 Return FALSE if not a vectorizable STMT, TRUE otherwise.
3394
3395 This function also handles reduction idioms (patterns) that have been
3396 recognized in advance during vect_pattern_recog. In this case, STMT may be
3397 of this form:
3398 X = pattern_expr (arg0, arg1, ..., X)
3399 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
3400 sequence that had been detected and replaced by the pattern-stmt (STMT).
3401
3402 In some cases of reduction patterns, the type of the reduction variable X is
3403 different than the type of the other arguments of STMT.
3404 In such cases, the vectype that is used when transforming STMT into a vector
3405 stmt is different than the vectype that is used to determine the
3406 vectorization factor, because it consists of a different number of elements
3407 than the actual number of elements that are being operated upon in parallel.
3408
3409 For example, consider an accumulation of shorts into an int accumulator.
3410 On some targets it's possible to vectorize this pattern operating on 8
3411 shorts at a time (hence, the vectype for purposes of determining the
3412 vectorization factor should be V8HI); on the other hand, the vectype that
3413 is used to create the vector form is actually V4SI (the type of the result).
3414
3415 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
3416 indicates what is the actual level of parallelism (V8HI in the example), so
3417 that the right vectorization factor would be derived. This vectype
3418 corresponds to the type of arguments to the reduction stmt, and should *NOT*
3419 be used to create the vectorized stmt. The right vectype for the vectorized
3420 stmt is obtained from the type of the result X:
3421 get_vectype_for_scalar_type (TREE_TYPE (X))
3422
3423 This means that, contrary to "regular" reductions (or "regular" stmts in
3424 general), the following equation:
3425 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
3426 does *NOT* necessarily hold for reduction patterns. */
3427
3428 bool
3429 vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
3430 gimple *vec_stmt)
3431 {
3432 tree vec_dest;
3433 tree scalar_dest;
3434 tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
3435 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3436 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3437 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3438 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3439 enum tree_code code, orig_code, epilog_reduc_code;
3440 enum machine_mode vec_mode;
3441 int op_type;
3442 optab optab, reduc_optab;
3443 tree new_temp = NULL_TREE;
3444 tree def;
3445 gimple def_stmt;
3446 enum vect_def_type dt;
3447 gimple new_phi = NULL;
3448 tree scalar_type;
3449 bool is_simple_use;
3450 gimple orig_stmt;
3451 stmt_vec_info orig_stmt_info;
3452 tree expr = NULL_TREE;
3453 int i;
3454 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
3455 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
3456 int epilog_copies;
3457 stmt_vec_info prev_stmt_info, prev_phi_info;
3458 gimple first_phi = NULL;
3459 bool single_defuse_cycle = false;
3460 tree reduc_def = NULL_TREE;
3461 gimple new_stmt = NULL;
3462 int j;
3463 tree ops[3];
3464 bool nested_cycle = false, found_nested_cycle_def = false;
3465 gimple reduc_def_stmt = NULL;
3466 /* The default is that the reduction variable is the last in statement. */
3467 int reduc_index = 2;
3468 bool double_reduc = false, dummy;
3469 basic_block def_bb;
3470 struct loop * def_stmt_loop, *outer_loop = NULL;
3471 tree def_arg;
3472 gimple def_arg_stmt;
3473
3474 if (nested_in_vect_loop_p (loop, stmt))
3475 {
3476 outer_loop = loop;
3477 loop = loop->inner;
3478 nested_cycle = true;
3479 }
3480
3481 gcc_assert (ncopies >= 1);
3482
3483 /* FORNOW: SLP not supported. */
3484 if (STMT_SLP_TYPE (stmt_info))
3485 return false;
3486
3487 /* 1. Is vectorizable reduction? */
3488 /* Not supportable if the reduction variable is used in the loop. */
3489 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer)
3490 return false;
3491
3492 /* Reductions that are not used even in an enclosing outer-loop,
3493 are expected to be "live" (used out of the loop). */
3494 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
3495 && !STMT_VINFO_LIVE_P (stmt_info))
3496 return false;
3497
3498 /* Make sure it was already recognized as a reduction computation. */
3499 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
3500 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
3501 return false;
3502
3503 /* 2. Has this been recognized as a reduction pattern?
3504
3505 Check if STMT represents a pattern that has been recognized
3506 in earlier analysis stages. For stmts that represent a pattern,
3507 the STMT_VINFO_RELATED_STMT field records the last stmt in
3508 the original sequence that constitutes the pattern. */
3509
3510 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3511 if (orig_stmt)
3512 {
3513 orig_stmt_info = vinfo_for_stmt (orig_stmt);
3514 gcc_assert (STMT_VINFO_RELATED_STMT (orig_stmt_info) == stmt);
3515 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
3516 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
3517 }
3518
3519 /* 3. Check the operands of the operation. The first operands are defined
3520 inside the loop body. The last operand is the reduction variable,
3521 which is defined by the loop-header-phi. */
3522
3523 gcc_assert (is_gimple_assign (stmt));
3524
3525 /* Flatten RHS */
3526 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3527 {
3528 case GIMPLE_SINGLE_RHS:
3529 op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
3530 if (op_type == ternary_op)
3531 {
3532 tree rhs = gimple_assign_rhs1 (stmt);
3533 ops[0] = TREE_OPERAND (rhs, 0);
3534 ops[1] = TREE_OPERAND (rhs, 1);
3535 ops[2] = TREE_OPERAND (rhs, 2);
3536 code = TREE_CODE (rhs);
3537 }
3538 else
3539 return false;
3540 break;
3541
3542 case GIMPLE_BINARY_RHS:
3543 code = gimple_assign_rhs_code (stmt);
3544 op_type = TREE_CODE_LENGTH (code);
3545 gcc_assert (op_type == binary_op);
3546 ops[0] = gimple_assign_rhs1 (stmt);
3547 ops[1] = gimple_assign_rhs2 (stmt);
3548 break;
3549
3550 case GIMPLE_UNARY_RHS:
3551 return false;
3552
3553 default:
3554 gcc_unreachable ();
3555 }
3556
3557 scalar_dest = gimple_assign_lhs (stmt);
3558 scalar_type = TREE_TYPE (scalar_dest);
3559 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
3560 && !SCALAR_FLOAT_TYPE_P (scalar_type))
3561 return false;
3562
3563 /* All uses but the last are expected to be defined in the loop.
3564 The last use is the reduction variable. In case of nested cycle this
3565 assumption is not true: we use reduc_index to record the index of the
3566 reduction variable. */
3567 for (i = 0; i < op_type-1; i++)
3568 {
3569 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
3570 if (i == 0 && code == COND_EXPR)
3571 continue;
3572
3573 is_simple_use = vect_is_simple_use (ops[i], loop_vinfo, NULL, &def_stmt,
3574 &def, &dt);
3575 gcc_assert (is_simple_use);
3576 if (dt != vect_internal_def
3577 && dt != vect_external_def
3578 && dt != vect_constant_def
3579 && dt != vect_induction_def
3580 && !(dt == vect_nested_cycle && nested_cycle))
3581 return false;
3582
3583 if (dt == vect_nested_cycle)
3584 {
3585 found_nested_cycle_def = true;
3586 reduc_def_stmt = def_stmt;
3587 reduc_index = i;
3588 }
3589 }
3590
3591 is_simple_use = vect_is_simple_use (ops[i], loop_vinfo, NULL, &def_stmt,
3592 &def, &dt);
3593 gcc_assert (is_simple_use);
3594 gcc_assert (dt == vect_reduction_def
3595 || dt == vect_nested_cycle
3596 || ((dt == vect_internal_def || dt == vect_external_def
3597 || dt == vect_constant_def || dt == vect_induction_def)
3598 && nested_cycle && found_nested_cycle_def));
3599 if (!found_nested_cycle_def)
3600 reduc_def_stmt = def_stmt;
3601
3602 gcc_assert (gimple_code (reduc_def_stmt) == GIMPLE_PHI);
3603 if (orig_stmt)
3604 gcc_assert (orig_stmt == vect_is_simple_reduction (loop_vinfo,
3605 reduc_def_stmt,
3606 !nested_cycle,
3607 &dummy));
3608 else
3609 gcc_assert (stmt == vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
3610 !nested_cycle, &dummy));
3611
3612 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
3613 return false;
3614
3615 vec_mode = TYPE_MODE (vectype);
3616
3617 if (code == COND_EXPR)
3618 {
3619 if (!vectorizable_condition (stmt, gsi, NULL, ops[reduc_index], 0))
3620 {
3621 if (vect_print_dump_info (REPORT_DETAILS))
3622 fprintf (vect_dump, "unsupported condition in reduction");
3623
3624 return false;
3625 }
3626 }
3627 else
3628 {
3629 /* 4. Supportable by target? */
3630
3631 /* 4.1. check support for the operation in the loop */
3632 optab = optab_for_tree_code (code, vectype, optab_default);
3633 if (!optab)
3634 {
3635 if (vect_print_dump_info (REPORT_DETAILS))
3636 fprintf (vect_dump, "no optab.");
3637
3638 return false;
3639 }
3640
3641 if (optab_handler (optab, vec_mode)->insn_code == CODE_FOR_nothing)
3642 {
3643 if (vect_print_dump_info (REPORT_DETAILS))
3644 fprintf (vect_dump, "op not supported by target.");
3645
3646 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
3647 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
3648 < vect_min_worthwhile_factor (code))
3649 return false;
3650
3651 if (vect_print_dump_info (REPORT_DETAILS))
3652 fprintf (vect_dump, "proceeding using word mode.");
3653 }
3654
3655 /* Worthwhile without SIMD support? */
3656 if (!VECTOR_MODE_P (TYPE_MODE (vectype))
3657 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
3658 < vect_min_worthwhile_factor (code))
3659 {
3660 if (vect_print_dump_info (REPORT_DETAILS))
3661 fprintf (vect_dump, "not worthwhile without SIMD support.");
3662
3663 return false;
3664 }
3665 }
3666
3667 /* 4.2. Check support for the epilog operation.
3668
3669 If STMT represents a reduction pattern, then the type of the
3670 reduction variable may be different than the type of the rest
3671 of the arguments. For example, consider the case of accumulation
3672 of shorts into an int accumulator; The original code:
3673 S1: int_a = (int) short_a;
3674 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
3675
3676 was replaced with:
3677 STMT: int_acc = widen_sum <short_a, int_acc>
3678
3679 This means that:
3680 1. The tree-code that is used to create the vector operation in the
3681 epilog code (that reduces the partial results) is not the
3682 tree-code of STMT, but is rather the tree-code of the original
3683 stmt from the pattern that STMT is replacing. I.e, in the example
3684 above we want to use 'widen_sum' in the loop, but 'plus' in the
3685 epilog.
3686 2. The type (mode) we use to check available target support
3687 for the vector operation to be created in the *epilog*, is
3688 determined by the type of the reduction variable (in the example
3689 above we'd check this: plus_optab[vect_int_mode]).
3690 However the type (mode) we use to check available target support
3691 for the vector operation to be created *inside the loop*, is
3692 determined by the type of the other arguments to STMT (in the
3693 example we'd check this: widen_sum_optab[vect_short_mode]).
3694
3695 This is contrary to "regular" reductions, in which the types of all
3696 the arguments are the same as the type of the reduction variable.
3697 For "regular" reductions we can therefore use the same vector type
3698 (and also the same tree-code) when generating the epilog code and
3699 when generating the code inside the loop. */
3700
3701 if (orig_stmt)
3702 {
3703 /* This is a reduction pattern: get the vectype from the type of the
3704 reduction variable, and get the tree-code from orig_stmt. */
3705 orig_code = gimple_assign_rhs_code (orig_stmt);
3706 vectype = get_vectype_for_scalar_type (TREE_TYPE (def));
3707 if (!vectype)
3708 {
3709 if (vect_print_dump_info (REPORT_DETAILS))
3710 {
3711 fprintf (vect_dump, "unsupported data-type ");
3712 print_generic_expr (vect_dump, TREE_TYPE (def), TDF_SLIM);
3713 }
3714 return false;
3715 }
3716
3717 vec_mode = TYPE_MODE (vectype);
3718 }
3719 else
3720 {
3721 /* Regular reduction: use the same vectype and tree-code as used for
3722 the vector code inside the loop can be used for the epilog code. */
3723 orig_code = code;
3724 }
3725
3726 if (nested_cycle)
3727 {
3728 def_bb = gimple_bb (reduc_def_stmt);
3729 def_stmt_loop = def_bb->loop_father;
3730 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
3731 loop_preheader_edge (def_stmt_loop));
3732 if (TREE_CODE (def_arg) == SSA_NAME
3733 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
3734 && gimple_code (def_arg_stmt) == GIMPLE_PHI
3735 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
3736 && vinfo_for_stmt (def_arg_stmt)
3737 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
3738 == vect_double_reduction_def)
3739 double_reduc = true;
3740 }
3741
3742 epilog_reduc_code = ERROR_MARK;
3743 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
3744 {
3745 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype,
3746 optab_default);
3747 if (!reduc_optab)
3748 {
3749 if (vect_print_dump_info (REPORT_DETAILS))
3750 fprintf (vect_dump, "no optab for reduction.");
3751
3752 epilog_reduc_code = ERROR_MARK;
3753 }
3754
3755 if (reduc_optab
3756 && optab_handler (reduc_optab, vec_mode)->insn_code
3757 == CODE_FOR_nothing)
3758 {
3759 if (vect_print_dump_info (REPORT_DETAILS))
3760 fprintf (vect_dump, "reduc op not supported by target.");
3761
3762 epilog_reduc_code = ERROR_MARK;
3763 }
3764 }
3765 else
3766 {
3767 if (!nested_cycle || double_reduc)
3768 {
3769 if (vect_print_dump_info (REPORT_DETAILS))
3770 fprintf (vect_dump, "no reduc code for scalar code.");
3771
3772 return false;
3773 }
3774 }
3775
3776 if (double_reduc && ncopies > 1)
3777 {
3778 if (vect_print_dump_info (REPORT_DETAILS))
3779 fprintf (vect_dump, "multiple types in double reduction");
3780
3781 return false;
3782 }
3783
3784 if (!vec_stmt) /* transformation not required. */
3785 {
3786 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
3787 if (!vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies))
3788 return false;
3789 return true;
3790 }
3791
3792 /** Transform. **/
3793
3794 if (vect_print_dump_info (REPORT_DETAILS))
3795 fprintf (vect_dump, "transform reduction.");
3796
3797 /* FORNOW: Multiple types are not supported for condition. */
3798 if (code == COND_EXPR)
3799 gcc_assert (ncopies == 1);
3800
3801 /* Create the destination vector */
3802 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3803
3804 /* In case the vectorization factor (VF) is bigger than the number
3805 of elements that we can fit in a vectype (nunits), we have to generate
3806 more than one vector stmt - i.e - we need to "unroll" the
3807 vector stmt by a factor VF/nunits. For more details see documentation
3808 in vectorizable_operation. */
3809
3810 /* If the reduction is used in an outer loop we need to generate
3811 VF intermediate results, like so (e.g. for ncopies=2):
3812 r0 = phi (init, r0)
3813 r1 = phi (init, r1)
3814 r0 = x0 + r0;
3815 r1 = x1 + r1;
3816 (i.e. we generate VF results in 2 registers).
3817 In this case we have a separate def-use cycle for each copy, and therefore
3818 for each copy we get the vector def for the reduction variable from the
3819 respective phi node created for this copy.
3820
3821 Otherwise (the reduction is unused in the loop nest), we can combine
3822 together intermediate results, like so (e.g. for ncopies=2):
3823 r = phi (init, r)
3824 r = x0 + r;
3825 r = x1 + r;
3826 (i.e. we generate VF/2 results in a single register).
3827 In this case for each copy we get the vector def for the reduction variable
3828 from the vectorized reduction operation generated in the previous iteration.
3829 */
3830
3831 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
3832 {
3833 single_defuse_cycle = true;
3834 epilog_copies = 1;
3835 }
3836 else
3837 epilog_copies = ncopies;
3838
3839 prev_stmt_info = NULL;
3840 prev_phi_info = NULL;
3841 for (j = 0; j < ncopies; j++)
3842 {
3843 if (j == 0 || !single_defuse_cycle)
3844 {
3845 /* Create the reduction-phi that defines the reduction-operand. */
3846 new_phi = create_phi_node (vec_dest, loop->header);
3847 set_vinfo_for_stmt (new_phi, new_stmt_vec_info (new_phi, loop_vinfo,
3848 NULL));
3849 /* Get the vector def for the reduction variable from the phi
3850 node. */
3851 reduc_def = PHI_RESULT (new_phi);
3852 }
3853
3854 if (code == COND_EXPR)
3855 {
3856 first_phi = new_phi;
3857 vectorizable_condition (stmt, gsi, vec_stmt, reduc_def, reduc_index);
3858 /* Multiple types are not supported for condition. */
3859 break;
3860 }
3861
3862 /* Handle uses. */
3863 if (j == 0)
3864 {
3865 loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
3866 stmt, NULL);
3867 if (op_type == ternary_op)
3868 {
3869 if (reduc_index == 0)
3870 loop_vec_def1 = vect_get_vec_def_for_operand (ops[2], stmt,
3871 NULL);
3872 else
3873 loop_vec_def1 = vect_get_vec_def_for_operand (ops[1], stmt,
3874 NULL);
3875 }
3876
3877 /* Get the vector def for the reduction variable from the phi
3878 node. */
3879 first_phi = new_phi;
3880 }
3881 else
3882 {
3883 enum vect_def_type dt = vect_unknown_def_type; /* Dummy */
3884 loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt, loop_vec_def0);
3885 if (op_type == ternary_op)
3886 loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt, loop_vec_def1);
3887
3888 if (single_defuse_cycle)
3889 reduc_def = gimple_assign_lhs (new_stmt);
3890 else
3891 reduc_def = PHI_RESULT (new_phi);
3892
3893 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
3894 }
3895
3896 /* Arguments are ready. Create the new vector stmt. */
3897 if (op_type == binary_op)
3898 {
3899 if (reduc_index == 0)
3900 expr = build2 (code, vectype, reduc_def, loop_vec_def0);
3901 else
3902 expr = build2 (code, vectype, loop_vec_def0, reduc_def);
3903 }
3904 else
3905 {
3906 if (reduc_index == 0)
3907 expr = build3 (code, vectype, reduc_def, loop_vec_def0,
3908 loop_vec_def1);
3909 else
3910 {
3911 if (reduc_index == 1)
3912 expr = build3 (code, vectype, loop_vec_def0, reduc_def,
3913 loop_vec_def1);
3914 else
3915 expr = build3 (code, vectype, loop_vec_def0, loop_vec_def1,
3916 reduc_def);
3917 }
3918 }
3919
3920 new_stmt = gimple_build_assign (vec_dest, expr);
3921 new_temp = make_ssa_name (vec_dest, new_stmt);
3922 gimple_assign_set_lhs (new_stmt, new_temp);
3923 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3924
3925 if (j == 0)
3926 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
3927 else
3928 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3929
3930 prev_stmt_info = vinfo_for_stmt (new_stmt);
3931 prev_phi_info = vinfo_for_stmt (new_phi);
3932 }
3933
3934 /* Finalize the reduction-phi (set its arguments) and create the
3935 epilog reduction code. */
3936 if (!single_defuse_cycle || code == COND_EXPR)
3937 new_temp = gimple_assign_lhs (*vec_stmt);
3938
3939 vect_create_epilog_for_reduction (new_temp, stmt, epilog_copies,
3940 epilog_reduc_code, first_phi, reduc_index,
3941 double_reduc);
3942 return true;
3943 }
3944
3945 /* Function vect_min_worthwhile_factor.
3946
3947 For a loop where we could vectorize the operation indicated by CODE,
3948 return the minimum vectorization factor that makes it worthwhile
3949 to use generic vectors. */
3950 int
3951 vect_min_worthwhile_factor (enum tree_code code)
3952 {
3953 switch (code)
3954 {
3955 case PLUS_EXPR:
3956 case MINUS_EXPR:
3957 case NEGATE_EXPR:
3958 return 4;
3959
3960 case BIT_AND_EXPR:
3961 case BIT_IOR_EXPR:
3962 case BIT_XOR_EXPR:
3963 case BIT_NOT_EXPR:
3964 return 2;
3965
3966 default:
3967 return INT_MAX;
3968 }
3969 }
3970
3971
3972 /* Function vectorizable_induction
3973
3974 Check if PHI performs an induction computation that can be vectorized.
3975 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
3976 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
3977 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
3978
3979 bool
3980 vectorizable_induction (gimple phi, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
3981 gimple *vec_stmt)
3982 {
3983 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
3984 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3985 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3986 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3987 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
3988 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
3989 tree vec_def;
3990
3991 gcc_assert (ncopies >= 1);
3992 /* FORNOW. This restriction should be relaxed. */
3993 if (nested_in_vect_loop_p (loop, phi) && ncopies > 1)
3994 {
3995 if (vect_print_dump_info (REPORT_DETAILS))
3996 fprintf (vect_dump, "multiple types in nested loop.");
3997 return false;
3998 }
3999
4000 if (!STMT_VINFO_RELEVANT_P (stmt_info))
4001 return false;
4002
4003 /* FORNOW: SLP not supported. */
4004 if (STMT_SLP_TYPE (stmt_info))
4005 return false;
4006
4007 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
4008
4009 if (gimple_code (phi) != GIMPLE_PHI)
4010 return false;
4011
4012 if (!vec_stmt) /* transformation not required. */
4013 {
4014 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
4015 if (vect_print_dump_info (REPORT_DETAILS))
4016 fprintf (vect_dump, "=== vectorizable_induction ===");
4017 vect_model_induction_cost (stmt_info, ncopies);
4018 return true;
4019 }
4020
4021 /** Transform. **/
4022
4023 if (vect_print_dump_info (REPORT_DETAILS))
4024 fprintf (vect_dump, "transform induction phi.");
4025
4026 vec_def = get_initial_def_for_induction (phi);
4027 *vec_stmt = SSA_NAME_DEF_STMT (vec_def);
4028 return true;
4029 }
4030
4031 /* Function vectorizable_live_operation.
4032
4033 STMT computes a value that is used outside the loop. Check if
4034 it can be supported. */
4035
4036 bool
4037 vectorizable_live_operation (gimple stmt,
4038 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
4039 gimple *vec_stmt ATTRIBUTE_UNUSED)
4040 {
4041 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4042 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4043 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4044 int i;
4045 int op_type;
4046 tree op;
4047 tree def;
4048 gimple def_stmt;
4049 enum vect_def_type dt;
4050 enum tree_code code;
4051 enum gimple_rhs_class rhs_class;
4052
4053 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
4054
4055 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
4056 return false;
4057
4058 if (!is_gimple_assign (stmt))
4059 return false;
4060
4061 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
4062 return false;
4063
4064 /* FORNOW. CHECKME. */
4065 if (nested_in_vect_loop_p (loop, stmt))
4066 return false;
4067
4068 code = gimple_assign_rhs_code (stmt);
4069 op_type = TREE_CODE_LENGTH (code);
4070 rhs_class = get_gimple_rhs_class (code);
4071 gcc_assert (rhs_class != GIMPLE_UNARY_RHS || op_type == unary_op);
4072 gcc_assert (rhs_class != GIMPLE_BINARY_RHS || op_type == binary_op);
4073
4074 /* FORNOW: support only if all uses are invariant. This means
4075 that the scalar operations can remain in place, unvectorized.
4076 The original last scalar value that they compute will be used. */
4077
4078 for (i = 0; i < op_type; i++)
4079 {
4080 if (rhs_class == GIMPLE_SINGLE_RHS)
4081 op = TREE_OPERAND (gimple_op (stmt, 1), i);
4082 else
4083 op = gimple_op (stmt, i + 1);
4084 if (op
4085 && !vect_is_simple_use (op, loop_vinfo, NULL, &def_stmt, &def, &dt))
4086 {
4087 if (vect_print_dump_info (REPORT_DETAILS))
4088 fprintf (vect_dump, "use not simple.");
4089 return false;
4090 }
4091
4092 if (dt != vect_external_def && dt != vect_constant_def)
4093 return false;
4094 }
4095
4096 /* No transformation is required for the cases we currently support. */
4097 return true;
4098 }
4099
4100 /* Function vect_transform_loop.
4101
4102 The analysis phase has determined that the loop is vectorizable.
4103 Vectorize the loop - created vectorized stmts to replace the scalar
4104 stmts in the loop, and update the loop exit condition. */
4105
4106 void
4107 vect_transform_loop (loop_vec_info loop_vinfo)
4108 {
4109 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4110 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
4111 int nbbs = loop->num_nodes;
4112 gimple_stmt_iterator si;
4113 int i;
4114 tree ratio = NULL;
4115 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
4116 bool strided_store;
4117 bool slp_scheduled = false;
4118 unsigned int nunits;
4119 tree cond_expr = NULL_TREE;
4120 gimple_seq cond_expr_stmt_list = NULL;
4121 bool do_peeling_for_loop_bound;
4122
4123 if (vect_print_dump_info (REPORT_DETAILS))
4124 fprintf (vect_dump, "=== vec_transform_loop ===");
4125
4126 /* Peel the loop if there are data refs with unknown alignment.
4127 Only one data ref with unknown store is allowed. */
4128
4129 if (LOOP_PEELING_FOR_ALIGNMENT (loop_vinfo))
4130 vect_do_peeling_for_alignment (loop_vinfo);
4131
4132 do_peeling_for_loop_bound
4133 = (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
4134 || (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
4135 && LOOP_VINFO_INT_NITERS (loop_vinfo) % vectorization_factor != 0));
4136
4137 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
4138 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
4139 vect_loop_versioning (loop_vinfo,
4140 !do_peeling_for_loop_bound,
4141 &cond_expr, &cond_expr_stmt_list);
4142
4143 /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
4144 compile time constant), or it is a constant that doesn't divide by the
4145 vectorization factor, then an epilog loop needs to be created.
4146 We therefore duplicate the loop: the original loop will be vectorized,
4147 and will compute the first (n/VF) iterations. The second copy of the loop
4148 will remain scalar and will compute the remaining (n%VF) iterations.
4149 (VF is the vectorization factor). */
4150
4151 if (do_peeling_for_loop_bound)
4152 vect_do_peeling_for_loop_bound (loop_vinfo, &ratio,
4153 cond_expr, cond_expr_stmt_list);
4154 else
4155 ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
4156 LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
4157
4158 /* 1) Make sure the loop header has exactly two entries
4159 2) Make sure we have a preheader basic block. */
4160
4161 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
4162
4163 split_edge (loop_preheader_edge (loop));
4164
4165 /* FORNOW: the vectorizer supports only loops which body consist
4166 of one basic block (header + empty latch). When the vectorizer will
4167 support more involved loop forms, the order by which the BBs are
4168 traversed need to be reconsidered. */
4169
4170 for (i = 0; i < nbbs; i++)
4171 {
4172 basic_block bb = bbs[i];
4173 stmt_vec_info stmt_info;
4174 gimple phi;
4175
4176 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
4177 {
4178 phi = gsi_stmt (si);
4179 if (vect_print_dump_info (REPORT_DETAILS))
4180 {
4181 fprintf (vect_dump, "------>vectorizing phi: ");
4182 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
4183 }
4184 stmt_info = vinfo_for_stmt (phi);
4185 if (!stmt_info)
4186 continue;
4187
4188 if (!STMT_VINFO_RELEVANT_P (stmt_info)
4189 && !STMT_VINFO_LIVE_P (stmt_info))
4190 continue;
4191
4192 if ((TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
4193 != (unsigned HOST_WIDE_INT) vectorization_factor)
4194 && vect_print_dump_info (REPORT_DETAILS))
4195 fprintf (vect_dump, "multiple-types.");
4196
4197 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
4198 {
4199 if (vect_print_dump_info (REPORT_DETAILS))
4200 fprintf (vect_dump, "transform phi.");
4201 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
4202 }
4203 }
4204
4205 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
4206 {
4207 gimple stmt = gsi_stmt (si);
4208 bool is_store;
4209
4210 if (vect_print_dump_info (REPORT_DETAILS))
4211 {
4212 fprintf (vect_dump, "------>vectorizing statement: ");
4213 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
4214 }
4215
4216 stmt_info = vinfo_for_stmt (stmt);
4217
4218 /* vector stmts created in the outer-loop during vectorization of
4219 stmts in an inner-loop may not have a stmt_info, and do not
4220 need to be vectorized. */
4221 if (!stmt_info)
4222 {
4223 gsi_next (&si);
4224 continue;
4225 }
4226
4227 if (!STMT_VINFO_RELEVANT_P (stmt_info)
4228 && !STMT_VINFO_LIVE_P (stmt_info))
4229 {
4230 gsi_next (&si);
4231 continue;
4232 }
4233
4234 gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
4235 nunits =
4236 (unsigned int) TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
4237 if (!STMT_SLP_TYPE (stmt_info)
4238 && nunits != (unsigned int) vectorization_factor
4239 && vect_print_dump_info (REPORT_DETAILS))
4240 /* For SLP VF is set according to unrolling factor, and not to
4241 vector size, hence for SLP this print is not valid. */
4242 fprintf (vect_dump, "multiple-types.");
4243
4244 /* SLP. Schedule all the SLP instances when the first SLP stmt is
4245 reached. */
4246 if (STMT_SLP_TYPE (stmt_info))
4247 {
4248 if (!slp_scheduled)
4249 {
4250 slp_scheduled = true;
4251
4252 if (vect_print_dump_info (REPORT_DETAILS))
4253 fprintf (vect_dump, "=== scheduling SLP instances ===");
4254
4255 vect_schedule_slp (loop_vinfo, NULL);
4256 }
4257
4258 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
4259 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
4260 {
4261 gsi_next (&si);
4262 continue;
4263 }
4264 }
4265
4266 /* -------- vectorize statement ------------ */
4267 if (vect_print_dump_info (REPORT_DETAILS))
4268 fprintf (vect_dump, "transform statement.");
4269
4270 strided_store = false;
4271 is_store = vect_transform_stmt (stmt, &si, &strided_store, NULL, NULL);
4272 if (is_store)
4273 {
4274 if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
4275 {
4276 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
4277 interleaving chain was completed - free all the stores in
4278 the chain. */
4279 vect_remove_stores (DR_GROUP_FIRST_DR (stmt_info));
4280 gsi_remove (&si, true);
4281 continue;
4282 }
4283 else
4284 {
4285 /* Free the attached stmt_vec_info and remove the stmt. */
4286 free_stmt_vec_info (stmt);
4287 gsi_remove (&si, true);
4288 continue;
4289 }
4290 }
4291 gsi_next (&si);
4292 } /* stmts in BB */
4293 } /* BBs in loop */
4294
4295 slpeel_make_loop_iterate_ntimes (loop, ratio);
4296
4297 /* The memory tags and pointers in vectorized statements need to
4298 have their SSA forms updated. FIXME, why can't this be delayed
4299 until all the loops have been transformed? */
4300 update_ssa (TODO_update_ssa);
4301
4302 if (vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
4303 fprintf (vect_dump, "LOOP VECTORIZED.");
4304 if (loop->inner && vect_print_dump_info (REPORT_VECTORIZED_LOCATIONS))
4305 fprintf (vect_dump, "OUTER LOOP VECTORIZED.");
4306 }