common.opt: Introduced a new option -fsimd-cost-model.
[gcc.git] / gcc / tree-vect-loop.c
1 /* Loop Vectorization
2 Copyright (C) 2003-2013 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
4 Ira Rosen <irar@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "stor-layout.h"
29 #include "basic-block.h"
30 #include "gimple-pretty-print.h"
31 #include "tree-ssa-alias.h"
32 #include "internal-fn.h"
33 #include "gimple-expr.h"
34 #include "is-a.h"
35 #include "gimple.h"
36 #include "gimplify.h"
37 #include "gimple-iterator.h"
38 #include "gimplify-me.h"
39 #include "gimple-ssa.h"
40 #include "tree-phinodes.h"
41 #include "ssa-iterators.h"
42 #include "stringpool.h"
43 #include "tree-ssanames.h"
44 #include "tree-ssa-loop-ivopts.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "tree-pass.h"
48 #include "cfgloop.h"
49 #include "expr.h"
50 #include "recog.h"
51 #include "optabs.h"
52 #include "params.h"
53 #include "diagnostic-core.h"
54 #include "tree-chrec.h"
55 #include "tree-scalar-evolution.h"
56 #include "tree-vectorizer.h"
57 #include "target.h"
58
59 /* Loop Vectorization Pass.
60
61 This pass tries to vectorize loops.
62
63 For example, the vectorizer transforms the following simple loop:
64
65 short a[N]; short b[N]; short c[N]; int i;
66
67 for (i=0; i<N; i++){
68 a[i] = b[i] + c[i];
69 }
70
71 as if it was manually vectorized by rewriting the source code into:
72
73 typedef int __attribute__((mode(V8HI))) v8hi;
74 short a[N]; short b[N]; short c[N]; int i;
75 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
76 v8hi va, vb, vc;
77
78 for (i=0; i<N/8; i++){
79 vb = pb[i];
80 vc = pc[i];
81 va = vb + vc;
82 pa[i] = va;
83 }
84
85 The main entry to this pass is vectorize_loops(), in which
86 the vectorizer applies a set of analyses on a given set of loops,
87 followed by the actual vectorization transformation for the loops that
88 had successfully passed the analysis phase.
89 Throughout this pass we make a distinction between two types of
90 data: scalars (which are represented by SSA_NAMES), and memory references
91 ("data-refs"). These two types of data require different handling both
92 during analysis and transformation. The types of data-refs that the
93 vectorizer currently supports are ARRAY_REFS which base is an array DECL
94 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
95 accesses are required to have a simple (consecutive) access pattern.
96
97 Analysis phase:
98 ===============
99 The driver for the analysis phase is vect_analyze_loop().
100 It applies a set of analyses, some of which rely on the scalar evolution
101 analyzer (scev) developed by Sebastian Pop.
102
103 During the analysis phase the vectorizer records some information
104 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
105 loop, as well as general information about the loop as a whole, which is
106 recorded in a "loop_vec_info" struct attached to each loop.
107
108 Transformation phase:
109 =====================
110 The loop transformation phase scans all the stmts in the loop, and
111 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
112 the loop that needs to be vectorized. It inserts the vector code sequence
113 just before the scalar stmt S, and records a pointer to the vector code
114 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
115 attached to S). This pointer will be used for the vectorization of following
116 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
117 otherwise, we rely on dead code elimination for removing it.
118
119 For example, say stmt S1 was vectorized into stmt VS1:
120
121 VS1: vb = px[i];
122 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
123 S2: a = b;
124
125 To vectorize stmt S2, the vectorizer first finds the stmt that defines
126 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
127 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
128 resulting sequence would be:
129
130 VS1: vb = px[i];
131 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
132 VS2: va = vb;
133 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
134
135 Operands that are not SSA_NAMEs, are data-refs that appear in
136 load/store operations (like 'x[i]' in S1), and are handled differently.
137
138 Target modeling:
139 =================
140 Currently the only target specific information that is used is the
141 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
142 Targets that can support different sizes of vectors, for now will need
143 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
144 flexibility will be added in the future.
145
146 Since we only vectorize operations which vector form can be
147 expressed using existing tree codes, to verify that an operation is
148 supported, the vectorizer checks the relevant optab at the relevant
149 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
150 the value found is CODE_FOR_nothing, then there's no target support, and
151 we can't vectorize the stmt.
152
153 For additional information on this project see:
154 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
155 */
156
157 static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
158
159 /* Function vect_determine_vectorization_factor
160
161 Determine the vectorization factor (VF). VF is the number of data elements
162 that are operated upon in parallel in a single iteration of the vectorized
163 loop. For example, when vectorizing a loop that operates on 4byte elements,
164 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
165 elements can fit in a single vector register.
166
167 We currently support vectorization of loops in which all types operated upon
168 are of the same size. Therefore this function currently sets VF according to
169 the size of the types operated upon, and fails if there are multiple sizes
170 in the loop.
171
172 VF is also the factor by which the loop iterations are strip-mined, e.g.:
173 original loop:
174 for (i=0; i<N; i++){
175 a[i] = b[i] + c[i];
176 }
177
178 vectorized loop:
179 for (i=0; i<N; i+=VF){
180 a[i:VF] = b[i:VF] + c[i:VF];
181 }
182 */
183
184 static bool
185 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
186 {
187 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
188 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
189 int nbbs = loop->num_nodes;
190 gimple_stmt_iterator si;
191 unsigned int vectorization_factor = 0;
192 tree scalar_type;
193 gimple phi;
194 tree vectype;
195 unsigned int nunits;
196 stmt_vec_info stmt_info;
197 int i;
198 HOST_WIDE_INT dummy;
199 gimple stmt, pattern_stmt = NULL;
200 gimple_seq pattern_def_seq = NULL;
201 gimple_stmt_iterator pattern_def_si = gsi_none ();
202 bool analyze_pattern_stmt = false;
203
204 if (dump_enabled_p ())
205 dump_printf_loc (MSG_NOTE, vect_location,
206 "=== vect_determine_vectorization_factor ===\n");
207
208 for (i = 0; i < nbbs; i++)
209 {
210 basic_block bb = bbs[i];
211
212 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
213 {
214 phi = gsi_stmt (si);
215 stmt_info = vinfo_for_stmt (phi);
216 if (dump_enabled_p ())
217 {
218 dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
219 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
220 dump_printf (MSG_NOTE, "\n");
221 }
222
223 gcc_assert (stmt_info);
224
225 if (STMT_VINFO_RELEVANT_P (stmt_info))
226 {
227 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
228 scalar_type = TREE_TYPE (PHI_RESULT (phi));
229
230 if (dump_enabled_p ())
231 {
232 dump_printf_loc (MSG_NOTE, vect_location,
233 "get vectype for scalar type: ");
234 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
235 dump_printf (MSG_NOTE, "\n");
236 }
237
238 vectype = get_vectype_for_scalar_type (scalar_type);
239 if (!vectype)
240 {
241 if (dump_enabled_p ())
242 {
243 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
244 "not vectorized: unsupported "
245 "data-type ");
246 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
247 scalar_type);
248 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
249 }
250 return false;
251 }
252 STMT_VINFO_VECTYPE (stmt_info) = vectype;
253
254 if (dump_enabled_p ())
255 {
256 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
257 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
258 dump_printf (MSG_NOTE, "\n");
259 }
260
261 nunits = TYPE_VECTOR_SUBPARTS (vectype);
262 if (dump_enabled_p ())
263 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n",
264 nunits);
265
266 if (!vectorization_factor
267 || (nunits > vectorization_factor))
268 vectorization_factor = nunits;
269 }
270 }
271
272 for (si = gsi_start_bb (bb); !gsi_end_p (si) || analyze_pattern_stmt;)
273 {
274 tree vf_vectype;
275
276 if (analyze_pattern_stmt)
277 stmt = pattern_stmt;
278 else
279 stmt = gsi_stmt (si);
280
281 stmt_info = vinfo_for_stmt (stmt);
282
283 if (dump_enabled_p ())
284 {
285 dump_printf_loc (MSG_NOTE, vect_location,
286 "==> examining statement: ");
287 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
288 dump_printf (MSG_NOTE, "\n");
289 }
290
291 gcc_assert (stmt_info);
292
293 /* Skip stmts which do not need to be vectorized. */
294 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
295 && !STMT_VINFO_LIVE_P (stmt_info))
296 || gimple_clobber_p (stmt))
297 {
298 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
299 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
300 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
301 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
302 {
303 stmt = pattern_stmt;
304 stmt_info = vinfo_for_stmt (pattern_stmt);
305 if (dump_enabled_p ())
306 {
307 dump_printf_loc (MSG_NOTE, vect_location,
308 "==> examining pattern statement: ");
309 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
310 dump_printf (MSG_NOTE, "\n");
311 }
312 }
313 else
314 {
315 if (dump_enabled_p ())
316 dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
317 gsi_next (&si);
318 continue;
319 }
320 }
321 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
322 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
323 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
324 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
325 analyze_pattern_stmt = true;
326
327 /* If a pattern statement has def stmts, analyze them too. */
328 if (is_pattern_stmt_p (stmt_info))
329 {
330 if (pattern_def_seq == NULL)
331 {
332 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
333 pattern_def_si = gsi_start (pattern_def_seq);
334 }
335 else if (!gsi_end_p (pattern_def_si))
336 gsi_next (&pattern_def_si);
337 if (pattern_def_seq != NULL)
338 {
339 gimple pattern_def_stmt = NULL;
340 stmt_vec_info pattern_def_stmt_info = NULL;
341
342 while (!gsi_end_p (pattern_def_si))
343 {
344 pattern_def_stmt = gsi_stmt (pattern_def_si);
345 pattern_def_stmt_info
346 = vinfo_for_stmt (pattern_def_stmt);
347 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
348 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
349 break;
350 gsi_next (&pattern_def_si);
351 }
352
353 if (!gsi_end_p (pattern_def_si))
354 {
355 if (dump_enabled_p ())
356 {
357 dump_printf_loc (MSG_NOTE, vect_location,
358 "==> examining pattern def stmt: ");
359 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
360 pattern_def_stmt, 0);
361 dump_printf (MSG_NOTE, "\n");
362 }
363
364 stmt = pattern_def_stmt;
365 stmt_info = pattern_def_stmt_info;
366 }
367 else
368 {
369 pattern_def_si = gsi_none ();
370 analyze_pattern_stmt = false;
371 }
372 }
373 else
374 analyze_pattern_stmt = false;
375 }
376
377 if (gimple_get_lhs (stmt) == NULL_TREE)
378 {
379 if (is_gimple_call (stmt))
380 {
381 /* Ignore calls with no lhs. These must be calls to
382 #pragma omp simd functions, and what vectorization factor
383 it really needs can't be determined until
384 vectorizable_simd_clone_call. */
385 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
386 {
387 pattern_def_seq = NULL;
388 gsi_next (&si);
389 }
390 continue;
391 }
392 if (dump_enabled_p ())
393 {
394 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
395 "not vectorized: irregular stmt.");
396 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
397 0);
398 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
399 }
400 return false;
401 }
402
403 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
404 {
405 if (dump_enabled_p ())
406 {
407 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
408 "not vectorized: vector stmt in loop:");
409 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
410 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
411 }
412 return false;
413 }
414
415 if (STMT_VINFO_VECTYPE (stmt_info))
416 {
417 /* The only case when a vectype had been already set is for stmts
418 that contain a dataref, or for "pattern-stmts" (stmts
419 generated by the vectorizer to represent/replace a certain
420 idiom). */
421 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
422 || is_pattern_stmt_p (stmt_info)
423 || !gsi_end_p (pattern_def_si));
424 vectype = STMT_VINFO_VECTYPE (stmt_info);
425 }
426 else
427 {
428 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
429 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
430 if (dump_enabled_p ())
431 {
432 dump_printf_loc (MSG_NOTE, vect_location,
433 "get vectype for scalar type: ");
434 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
435 dump_printf (MSG_NOTE, "\n");
436 }
437 vectype = get_vectype_for_scalar_type (scalar_type);
438 if (!vectype)
439 {
440 if (dump_enabled_p ())
441 {
442 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
443 "not vectorized: unsupported "
444 "data-type ");
445 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
446 scalar_type);
447 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
448 }
449 return false;
450 }
451
452 STMT_VINFO_VECTYPE (stmt_info) = vectype;
453
454 if (dump_enabled_p ())
455 {
456 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
457 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
458 dump_printf (MSG_NOTE, "\n");
459 }
460 }
461
462 /* The vectorization factor is according to the smallest
463 scalar type (or the largest vector size, but we only
464 support one vector size per loop). */
465 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
466 &dummy);
467 if (dump_enabled_p ())
468 {
469 dump_printf_loc (MSG_NOTE, vect_location,
470 "get vectype for scalar type: ");
471 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
472 dump_printf (MSG_NOTE, "\n");
473 }
474 vf_vectype = get_vectype_for_scalar_type (scalar_type);
475 if (!vf_vectype)
476 {
477 if (dump_enabled_p ())
478 {
479 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
480 "not vectorized: unsupported data-type ");
481 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
482 scalar_type);
483 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
484 }
485 return false;
486 }
487
488 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
489 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
490 {
491 if (dump_enabled_p ())
492 {
493 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
494 "not vectorized: different sized vector "
495 "types in statement, ");
496 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
497 vectype);
498 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
499 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
500 vf_vectype);
501 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
502 }
503 return false;
504 }
505
506 if (dump_enabled_p ())
507 {
508 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
509 dump_generic_expr (MSG_NOTE, TDF_SLIM, vf_vectype);
510 dump_printf (MSG_NOTE, "\n");
511 }
512
513 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
514 if (dump_enabled_p ())
515 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n", nunits);
516 if (!vectorization_factor
517 || (nunits > vectorization_factor))
518 vectorization_factor = nunits;
519
520 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
521 {
522 pattern_def_seq = NULL;
523 gsi_next (&si);
524 }
525 }
526 }
527
528 /* TODO: Analyze cost. Decide if worth while to vectorize. */
529 if (dump_enabled_p ())
530 dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = %d\n",
531 vectorization_factor);
532 if (vectorization_factor <= 1)
533 {
534 if (dump_enabled_p ())
535 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
536 "not vectorized: unsupported data-type\n");
537 return false;
538 }
539 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
540
541 return true;
542 }
543
544
545 /* Function vect_is_simple_iv_evolution.
546
547 FORNOW: A simple evolution of an induction variables in the loop is
548 considered a polynomial evolution. */
549
550 static bool
551 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
552 tree * step)
553 {
554 tree init_expr;
555 tree step_expr;
556 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
557 basic_block bb;
558
559 /* When there is no evolution in this loop, the evolution function
560 is not "simple". */
561 if (evolution_part == NULL_TREE)
562 return false;
563
564 /* When the evolution is a polynomial of degree >= 2
565 the evolution function is not "simple". */
566 if (tree_is_chrec (evolution_part))
567 return false;
568
569 step_expr = evolution_part;
570 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
571
572 if (dump_enabled_p ())
573 {
574 dump_printf_loc (MSG_NOTE, vect_location, "step: ");
575 dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
576 dump_printf (MSG_NOTE, ", init: ");
577 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
578 dump_printf (MSG_NOTE, "\n");
579 }
580
581 *init = init_expr;
582 *step = step_expr;
583
584 if (TREE_CODE (step_expr) != INTEGER_CST
585 && (TREE_CODE (step_expr) != SSA_NAME
586 || ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
587 && flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
588 || (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
589 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
590 || !flag_associative_math)))
591 && (TREE_CODE (step_expr) != REAL_CST
592 || !flag_associative_math))
593 {
594 if (dump_enabled_p ())
595 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
596 "step unknown.\n");
597 return false;
598 }
599
600 return true;
601 }
602
603 /* Function vect_analyze_scalar_cycles_1.
604
605 Examine the cross iteration def-use cycles of scalar variables
606 in LOOP. LOOP_VINFO represents the loop that is now being
607 considered for vectorization (can be LOOP, or an outer-loop
608 enclosing LOOP). */
609
610 static void
611 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
612 {
613 basic_block bb = loop->header;
614 tree init, step;
615 stack_vec<gimple, 64> worklist;
616 gimple_stmt_iterator gsi;
617 bool double_reduc;
618
619 if (dump_enabled_p ())
620 dump_printf_loc (MSG_NOTE, vect_location,
621 "=== vect_analyze_scalar_cycles ===\n");
622
623 /* First - identify all inductions. Reduction detection assumes that all the
624 inductions have been identified, therefore, this order must not be
625 changed. */
626 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
627 {
628 gimple phi = gsi_stmt (gsi);
629 tree access_fn = NULL;
630 tree def = PHI_RESULT (phi);
631 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
632
633 if (dump_enabled_p ())
634 {
635 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
636 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
637 dump_printf (MSG_NOTE, "\n");
638 }
639
640 /* Skip virtual phi's. The data dependences that are associated with
641 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
642 if (virtual_operand_p (def))
643 continue;
644
645 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
646
647 /* Analyze the evolution function. */
648 access_fn = analyze_scalar_evolution (loop, def);
649 if (access_fn)
650 {
651 STRIP_NOPS (access_fn);
652 if (dump_enabled_p ())
653 {
654 dump_printf_loc (MSG_NOTE, vect_location,
655 "Access function of PHI: ");
656 dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
657 dump_printf (MSG_NOTE, "\n");
658 }
659 STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
660 = evolution_part_in_loop_num (access_fn, loop->num);
661 }
662
663 if (!access_fn
664 || !vect_is_simple_iv_evolution (loop->num, access_fn, &init, &step)
665 || (LOOP_VINFO_LOOP (loop_vinfo) != loop
666 && TREE_CODE (step) != INTEGER_CST))
667 {
668 worklist.safe_push (phi);
669 continue;
670 }
671
672 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
673
674 if (dump_enabled_p ())
675 dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
676 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
677 }
678
679
680 /* Second - identify all reductions and nested cycles. */
681 while (worklist.length () > 0)
682 {
683 gimple phi = worklist.pop ();
684 tree def = PHI_RESULT (phi);
685 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
686 gimple reduc_stmt;
687 bool nested_cycle;
688
689 if (dump_enabled_p ())
690 {
691 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
692 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
693 dump_printf (MSG_NOTE, "\n");
694 }
695
696 gcc_assert (!virtual_operand_p (def)
697 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
698
699 nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
700 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi, !nested_cycle,
701 &double_reduc);
702 if (reduc_stmt)
703 {
704 if (double_reduc)
705 {
706 if (dump_enabled_p ())
707 dump_printf_loc (MSG_NOTE, vect_location,
708 "Detected double reduction.\n");
709
710 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
711 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
712 vect_double_reduction_def;
713 }
714 else
715 {
716 if (nested_cycle)
717 {
718 if (dump_enabled_p ())
719 dump_printf_loc (MSG_NOTE, vect_location,
720 "Detected vectorizable nested cycle.\n");
721
722 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
723 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
724 vect_nested_cycle;
725 }
726 else
727 {
728 if (dump_enabled_p ())
729 dump_printf_loc (MSG_NOTE, vect_location,
730 "Detected reduction.\n");
731
732 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
733 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
734 vect_reduction_def;
735 /* Store the reduction cycles for possible vectorization in
736 loop-aware SLP. */
737 LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
738 }
739 }
740 }
741 else
742 if (dump_enabled_p ())
743 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
744 "Unknown def-use cycle pattern.\n");
745 }
746 }
747
748
749 /* Function vect_analyze_scalar_cycles.
750
751 Examine the cross iteration def-use cycles of scalar variables, by
752 analyzing the loop-header PHIs of scalar variables. Classify each
753 cycle as one of the following: invariant, induction, reduction, unknown.
754 We do that for the loop represented by LOOP_VINFO, and also to its
755 inner-loop, if exists.
756 Examples for scalar cycles:
757
758 Example1: reduction:
759
760 loop1:
761 for (i=0; i<N; i++)
762 sum += a[i];
763
764 Example2: induction:
765
766 loop2:
767 for (i=0; i<N; i++)
768 a[i] = i; */
769
770 static void
771 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
772 {
773 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
774
775 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
776
777 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
778 Reductions in such inner-loop therefore have different properties than
779 the reductions in the nest that gets vectorized:
780 1. When vectorized, they are executed in the same order as in the original
781 scalar loop, so we can't change the order of computation when
782 vectorizing them.
783 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
784 current checks are too strict. */
785
786 if (loop->inner)
787 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
788 }
789
790
791 /* Function vect_get_loop_niters.
792
793 Determine how many iterations the loop is executed and place it
794 in NUMBER_OF_ITERATIONS.
795
796 Return the loop exit condition. */
797
798 static gimple
799 vect_get_loop_niters (struct loop *loop, tree *number_of_iterations)
800 {
801 tree niters;
802
803 if (dump_enabled_p ())
804 dump_printf_loc (MSG_NOTE, vect_location,
805 "=== get_loop_niters ===\n");
806
807 niters = number_of_latch_executions (loop);
808 /* We want the number of loop header executions which is the number
809 of latch executions plus one.
810 ??? For UINT_MAX latch executions this number overflows to zero
811 for loops like do { n++; } while (n != 0); */
812 if (niters && !chrec_contains_undetermined (niters))
813 niters = fold_build2 (PLUS_EXPR, TREE_TYPE (niters), niters,
814 build_int_cst (TREE_TYPE (niters), 1));
815 *number_of_iterations = niters;
816
817 return get_loop_exit_condition (loop);
818 }
819
820
821 /* Function bb_in_loop_p
822
823 Used as predicate for dfs order traversal of the loop bbs. */
824
825 static bool
826 bb_in_loop_p (const_basic_block bb, const void *data)
827 {
828 const struct loop *const loop = (const struct loop *)data;
829 if (flow_bb_inside_loop_p (loop, bb))
830 return true;
831 return false;
832 }
833
834
835 /* Function new_loop_vec_info.
836
837 Create and initialize a new loop_vec_info struct for LOOP, as well as
838 stmt_vec_info structs for all the stmts in LOOP. */
839
840 static loop_vec_info
841 new_loop_vec_info (struct loop *loop)
842 {
843 loop_vec_info res;
844 basic_block *bbs;
845 gimple_stmt_iterator si;
846 unsigned int i, nbbs;
847
848 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
849 LOOP_VINFO_LOOP (res) = loop;
850
851 bbs = get_loop_body (loop);
852
853 /* Create/Update stmt_info for all stmts in the loop. */
854 for (i = 0; i < loop->num_nodes; i++)
855 {
856 basic_block bb = bbs[i];
857
858 /* BBs in a nested inner-loop will have been already processed (because
859 we will have called vect_analyze_loop_form for any nested inner-loop).
860 Therefore, for stmts in an inner-loop we just want to update the
861 STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
862 loop_info of the outer-loop we are currently considering to vectorize
863 (instead of the loop_info of the inner-loop).
864 For stmts in other BBs we need to create a stmt_info from scratch. */
865 if (bb->loop_father != loop)
866 {
867 /* Inner-loop bb. */
868 gcc_assert (loop->inner && bb->loop_father == loop->inner);
869 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
870 {
871 gimple phi = gsi_stmt (si);
872 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
873 loop_vec_info inner_loop_vinfo =
874 STMT_VINFO_LOOP_VINFO (stmt_info);
875 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
876 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
877 }
878 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
879 {
880 gimple stmt = gsi_stmt (si);
881 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
882 loop_vec_info inner_loop_vinfo =
883 STMT_VINFO_LOOP_VINFO (stmt_info);
884 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
885 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
886 }
887 }
888 else
889 {
890 /* bb in current nest. */
891 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
892 {
893 gimple phi = gsi_stmt (si);
894 gimple_set_uid (phi, 0);
895 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res, NULL));
896 }
897
898 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
899 {
900 gimple stmt = gsi_stmt (si);
901 gimple_set_uid (stmt, 0);
902 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res, NULL));
903 }
904 }
905 }
906
907 /* CHECKME: We want to visit all BBs before their successors (except for
908 latch blocks, for which this assertion wouldn't hold). In the simple
909 case of the loop forms we allow, a dfs order of the BBs would the same
910 as reversed postorder traversal, so we are safe. */
911
912 free (bbs);
913 bbs = XCNEWVEC (basic_block, loop->num_nodes);
914 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
915 bbs, loop->num_nodes, loop);
916 gcc_assert (nbbs == loop->num_nodes);
917
918 LOOP_VINFO_BBS (res) = bbs;
919 LOOP_VINFO_NITERS (res) = NULL;
920 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
921 LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
922 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
923 LOOP_VINFO_PEELING_FOR_ALIGNMENT (res) = 0;
924 LOOP_VINFO_VECT_FACTOR (res) = 0;
925 LOOP_VINFO_LOOP_NEST (res).create (3);
926 LOOP_VINFO_DATAREFS (res).create (10);
927 LOOP_VINFO_DDRS (res).create (10 * 10);
928 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
929 LOOP_VINFO_MAY_MISALIGN_STMTS (res).create (
930 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
931 LOOP_VINFO_MAY_ALIAS_DDRS (res).create (
932 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
933 LOOP_VINFO_GROUPED_STORES (res).create (10);
934 LOOP_VINFO_REDUCTIONS (res).create (10);
935 LOOP_VINFO_REDUCTION_CHAINS (res).create (10);
936 LOOP_VINFO_SLP_INSTANCES (res).create (10);
937 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
938 LOOP_VINFO_TARGET_COST_DATA (res) = init_cost (loop);
939 LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
940 LOOP_VINFO_PEELING_FOR_NITER (res) = false;
941 LOOP_VINFO_OPERANDS_SWAPPED (res) = false;
942
943 return res;
944 }
945
946
947 /* Function destroy_loop_vec_info.
948
949 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
950 stmts in the loop. */
951
952 void
953 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
954 {
955 struct loop *loop;
956 basic_block *bbs;
957 int nbbs;
958 gimple_stmt_iterator si;
959 int j;
960 vec<slp_instance> slp_instances;
961 slp_instance instance;
962 bool swapped;
963
964 if (!loop_vinfo)
965 return;
966
967 loop = LOOP_VINFO_LOOP (loop_vinfo);
968
969 bbs = LOOP_VINFO_BBS (loop_vinfo);
970 nbbs = clean_stmts ? loop->num_nodes : 0;
971 swapped = LOOP_VINFO_OPERANDS_SWAPPED (loop_vinfo);
972
973 for (j = 0; j < nbbs; j++)
974 {
975 basic_block bb = bbs[j];
976 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
977 free_stmt_vec_info (gsi_stmt (si));
978
979 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
980 {
981 gimple stmt = gsi_stmt (si);
982
983 /* We may have broken canonical form by moving a constant
984 into RHS1 of a commutative op. Fix such occurrences. */
985 if (swapped && is_gimple_assign (stmt))
986 {
987 enum tree_code code = gimple_assign_rhs_code (stmt);
988
989 if ((code == PLUS_EXPR
990 || code == POINTER_PLUS_EXPR
991 || code == MULT_EXPR)
992 && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
993 swap_ssa_operands (stmt,
994 gimple_assign_rhs1_ptr (stmt),
995 gimple_assign_rhs2_ptr (stmt));
996 }
997
998 /* Free stmt_vec_info. */
999 free_stmt_vec_info (stmt);
1000 gsi_next (&si);
1001 }
1002 }
1003
1004 free (LOOP_VINFO_BBS (loop_vinfo));
1005 vect_destroy_datarefs (loop_vinfo, NULL);
1006 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
1007 LOOP_VINFO_LOOP_NEST (loop_vinfo).release ();
1008 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).release ();
1009 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).release ();
1010 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
1011 FOR_EACH_VEC_ELT (slp_instances, j, instance)
1012 vect_free_slp_instance (instance);
1013
1014 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
1015 LOOP_VINFO_GROUPED_STORES (loop_vinfo).release ();
1016 LOOP_VINFO_REDUCTIONS (loop_vinfo).release ();
1017 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).release ();
1018
1019 if (LOOP_VINFO_PEELING_HTAB (loop_vinfo).is_created ())
1020 LOOP_VINFO_PEELING_HTAB (loop_vinfo).dispose ();
1021
1022 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
1023
1024 free (loop_vinfo);
1025 loop->aux = NULL;
1026 }
1027
1028
1029 /* Function vect_analyze_loop_1.
1030
1031 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1032 for it. The different analyses will record information in the
1033 loop_vec_info struct. This is a subset of the analyses applied in
1034 vect_analyze_loop, to be applied on an inner-loop nested in the loop
1035 that is now considered for (outer-loop) vectorization. */
1036
1037 static loop_vec_info
1038 vect_analyze_loop_1 (struct loop *loop)
1039 {
1040 loop_vec_info loop_vinfo;
1041
1042 if (dump_enabled_p ())
1043 dump_printf_loc (MSG_NOTE, vect_location,
1044 "===== analyze_loop_nest_1 =====\n");
1045
1046 /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
1047
1048 loop_vinfo = vect_analyze_loop_form (loop);
1049 if (!loop_vinfo)
1050 {
1051 if (dump_enabled_p ())
1052 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1053 "bad inner-loop form.\n");
1054 return NULL;
1055 }
1056
1057 return loop_vinfo;
1058 }
1059
1060
1061 /* Function vect_analyze_loop_form.
1062
1063 Verify that certain CFG restrictions hold, including:
1064 - the loop has a pre-header
1065 - the loop has a single entry and exit
1066 - the loop exit condition is simple enough, and the number of iterations
1067 can be analyzed (a countable loop). */
1068
1069 loop_vec_info
1070 vect_analyze_loop_form (struct loop *loop)
1071 {
1072 loop_vec_info loop_vinfo;
1073 gimple loop_cond;
1074 tree number_of_iterations = NULL;
1075 loop_vec_info inner_loop_vinfo = NULL;
1076
1077 if (dump_enabled_p ())
1078 dump_printf_loc (MSG_NOTE, vect_location,
1079 "=== vect_analyze_loop_form ===\n");
1080
1081 /* Different restrictions apply when we are considering an inner-most loop,
1082 vs. an outer (nested) loop.
1083 (FORNOW. May want to relax some of these restrictions in the future). */
1084
1085 if (!loop->inner)
1086 {
1087 /* Inner-most loop. We currently require that the number of BBs is
1088 exactly 2 (the header and latch). Vectorizable inner-most loops
1089 look like this:
1090
1091 (pre-header)
1092 |
1093 header <--------+
1094 | | |
1095 | +--> latch --+
1096 |
1097 (exit-bb) */
1098
1099 if (loop->num_nodes != 2)
1100 {
1101 if (dump_enabled_p ())
1102 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1103 "not vectorized: control flow in loop.\n");
1104 return NULL;
1105 }
1106
1107 if (empty_block_p (loop->header))
1108 {
1109 if (dump_enabled_p ())
1110 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1111 "not vectorized: empty loop.\n");
1112 return NULL;
1113 }
1114 }
1115 else
1116 {
1117 struct loop *innerloop = loop->inner;
1118 edge entryedge;
1119
1120 /* Nested loop. We currently require that the loop is doubly-nested,
1121 contains a single inner loop, and the number of BBs is exactly 5.
1122 Vectorizable outer-loops look like this:
1123
1124 (pre-header)
1125 |
1126 header <---+
1127 | |
1128 inner-loop |
1129 | |
1130 tail ------+
1131 |
1132 (exit-bb)
1133
1134 The inner-loop has the properties expected of inner-most loops
1135 as described above. */
1136
1137 if ((loop->inner)->inner || (loop->inner)->next)
1138 {
1139 if (dump_enabled_p ())
1140 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1141 "not vectorized: multiple nested loops.\n");
1142 return NULL;
1143 }
1144
1145 /* Analyze the inner-loop. */
1146 inner_loop_vinfo = vect_analyze_loop_1 (loop->inner);
1147 if (!inner_loop_vinfo)
1148 {
1149 if (dump_enabled_p ())
1150 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1151 "not vectorized: Bad inner loop.\n");
1152 return NULL;
1153 }
1154
1155 if (!expr_invariant_in_loop_p (loop,
1156 LOOP_VINFO_NITERS (inner_loop_vinfo)))
1157 {
1158 if (dump_enabled_p ())
1159 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1160 "not vectorized: inner-loop count not"
1161 " invariant.\n");
1162 destroy_loop_vec_info (inner_loop_vinfo, true);
1163 return NULL;
1164 }
1165
1166 if (loop->num_nodes != 5)
1167 {
1168 if (dump_enabled_p ())
1169 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1170 "not vectorized: control flow in loop.\n");
1171 destroy_loop_vec_info (inner_loop_vinfo, true);
1172 return NULL;
1173 }
1174
1175 gcc_assert (EDGE_COUNT (innerloop->header->preds) == 2);
1176 entryedge = EDGE_PRED (innerloop->header, 0);
1177 if (EDGE_PRED (innerloop->header, 0)->src == innerloop->latch)
1178 entryedge = EDGE_PRED (innerloop->header, 1);
1179
1180 if (entryedge->src != loop->header
1181 || !single_exit (innerloop)
1182 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1183 {
1184 if (dump_enabled_p ())
1185 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1186 "not vectorized: unsupported outerloop form.\n");
1187 destroy_loop_vec_info (inner_loop_vinfo, true);
1188 return NULL;
1189 }
1190
1191 if (dump_enabled_p ())
1192 dump_printf_loc (MSG_NOTE, vect_location,
1193 "Considering outer-loop vectorization.\n");
1194 }
1195
1196 if (!single_exit (loop)
1197 || EDGE_COUNT (loop->header->preds) != 2)
1198 {
1199 if (dump_enabled_p ())
1200 {
1201 if (!single_exit (loop))
1202 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1203 "not vectorized: multiple exits.\n");
1204 else if (EDGE_COUNT (loop->header->preds) != 2)
1205 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1206 "not vectorized: too many incoming edges.\n");
1207 }
1208 if (inner_loop_vinfo)
1209 destroy_loop_vec_info (inner_loop_vinfo, true);
1210 return NULL;
1211 }
1212
1213 /* We assume that the loop exit condition is at the end of the loop. i.e,
1214 that the loop is represented as a do-while (with a proper if-guard
1215 before the loop if needed), where the loop header contains all the
1216 executable statements, and the latch is empty. */
1217 if (!empty_block_p (loop->latch)
1218 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1219 {
1220 if (dump_enabled_p ())
1221 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1222 "not vectorized: latch block not empty.\n");
1223 if (inner_loop_vinfo)
1224 destroy_loop_vec_info (inner_loop_vinfo, true);
1225 return NULL;
1226 }
1227
1228 /* Make sure there exists a single-predecessor exit bb: */
1229 if (!single_pred_p (single_exit (loop)->dest))
1230 {
1231 edge e = single_exit (loop);
1232 if (!(e->flags & EDGE_ABNORMAL))
1233 {
1234 split_loop_exit_edge (e);
1235 if (dump_enabled_p ())
1236 dump_printf (MSG_NOTE, "split exit edge.\n");
1237 }
1238 else
1239 {
1240 if (dump_enabled_p ())
1241 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1242 "not vectorized: abnormal loop exit edge.\n");
1243 if (inner_loop_vinfo)
1244 destroy_loop_vec_info (inner_loop_vinfo, true);
1245 return NULL;
1246 }
1247 }
1248
1249 loop_cond = vect_get_loop_niters (loop, &number_of_iterations);
1250 if (!loop_cond)
1251 {
1252 if (dump_enabled_p ())
1253 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1254 "not vectorized: complicated exit condition.\n");
1255 if (inner_loop_vinfo)
1256 destroy_loop_vec_info (inner_loop_vinfo, true);
1257 return NULL;
1258 }
1259
1260 if (!number_of_iterations
1261 || chrec_contains_undetermined (number_of_iterations))
1262 {
1263 if (dump_enabled_p ())
1264 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1265 "not vectorized: number of iterations cannot be "
1266 "computed.\n");
1267 if (inner_loop_vinfo)
1268 destroy_loop_vec_info (inner_loop_vinfo, true);
1269 return NULL;
1270 }
1271
1272 if (integer_zerop (number_of_iterations))
1273 {
1274 if (dump_enabled_p ())
1275 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1276 "not vectorized: number of iterations = 0.\n");
1277 if (inner_loop_vinfo)
1278 destroy_loop_vec_info (inner_loop_vinfo, true);
1279 return NULL;
1280 }
1281
1282 loop_vinfo = new_loop_vec_info (loop);
1283 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1284 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1285
1286 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
1287 {
1288 if (dump_enabled_p ())
1289 {
1290 dump_printf_loc (MSG_NOTE, vect_location,
1291 "Symbolic number of iterations is ");
1292 dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
1293 dump_printf (MSG_NOTE, "\n");
1294 }
1295 }
1296
1297 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1298
1299 /* CHECKME: May want to keep it around it in the future. */
1300 if (inner_loop_vinfo)
1301 destroy_loop_vec_info (inner_loop_vinfo, false);
1302
1303 gcc_assert (!loop->aux);
1304 loop->aux = loop_vinfo;
1305 return loop_vinfo;
1306 }
1307
1308
1309 /* Function vect_analyze_loop_operations.
1310
1311 Scan the loop stmts and make sure they are all vectorizable. */
1312
1313 static bool
1314 vect_analyze_loop_operations (loop_vec_info loop_vinfo, bool slp)
1315 {
1316 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1317 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1318 int nbbs = loop->num_nodes;
1319 gimple_stmt_iterator si;
1320 unsigned int vectorization_factor = 0;
1321 int i;
1322 gimple phi;
1323 stmt_vec_info stmt_info;
1324 bool need_to_vectorize = false;
1325 int min_profitable_iters;
1326 int min_scalar_loop_bound;
1327 unsigned int th;
1328 bool only_slp_in_loop = true, ok;
1329 HOST_WIDE_INT max_niter;
1330 HOST_WIDE_INT estimated_niter;
1331 int min_profitable_estimate;
1332
1333 if (dump_enabled_p ())
1334 dump_printf_loc (MSG_NOTE, vect_location,
1335 "=== vect_analyze_loop_operations ===\n");
1336
1337 gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1338 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1339 if (slp)
1340 {
1341 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1342 vectorization factor of the loop is the unrolling factor required by
1343 the SLP instances. If that unrolling factor is 1, we say, that we
1344 perform pure SLP on loop - cross iteration parallelism is not
1345 exploited. */
1346 for (i = 0; i < nbbs; i++)
1347 {
1348 basic_block bb = bbs[i];
1349 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1350 {
1351 gimple stmt = gsi_stmt (si);
1352 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1353 gcc_assert (stmt_info);
1354 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1355 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1356 && !PURE_SLP_STMT (stmt_info))
1357 /* STMT needs both SLP and loop-based vectorization. */
1358 only_slp_in_loop = false;
1359 }
1360 }
1361
1362 if (only_slp_in_loop)
1363 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1364 else
1365 vectorization_factor = least_common_multiple (vectorization_factor,
1366 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1367
1368 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1369 if (dump_enabled_p ())
1370 dump_printf_loc (MSG_NOTE, vect_location,
1371 "Updating vectorization factor to %d\n",
1372 vectorization_factor);
1373 }
1374
1375 for (i = 0; i < nbbs; i++)
1376 {
1377 basic_block bb = bbs[i];
1378
1379 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1380 {
1381 phi = gsi_stmt (si);
1382 ok = true;
1383
1384 stmt_info = vinfo_for_stmt (phi);
1385 if (dump_enabled_p ())
1386 {
1387 dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
1388 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1389 dump_printf (MSG_NOTE, "\n");
1390 }
1391
1392 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1393 (i.e., a phi in the tail of the outer-loop). */
1394 if (! is_loop_header_bb_p (bb))
1395 {
1396 /* FORNOW: we currently don't support the case that these phis
1397 are not used in the outerloop (unless it is double reduction,
1398 i.e., this phi is vect_reduction_def), cause this case
1399 requires to actually do something here. */
1400 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
1401 || STMT_VINFO_LIVE_P (stmt_info))
1402 && STMT_VINFO_DEF_TYPE (stmt_info)
1403 != vect_double_reduction_def)
1404 {
1405 if (dump_enabled_p ())
1406 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1407 "Unsupported loop-closed phi in "
1408 "outer-loop.\n");
1409 return false;
1410 }
1411
1412 /* If PHI is used in the outer loop, we check that its operand
1413 is defined in the inner loop. */
1414 if (STMT_VINFO_RELEVANT_P (stmt_info))
1415 {
1416 tree phi_op;
1417 gimple op_def_stmt;
1418
1419 if (gimple_phi_num_args (phi) != 1)
1420 return false;
1421
1422 phi_op = PHI_ARG_DEF (phi, 0);
1423 if (TREE_CODE (phi_op) != SSA_NAME)
1424 return false;
1425
1426 op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
1427 if (gimple_nop_p (op_def_stmt)
1428 || !flow_bb_inside_loop_p (loop, gimple_bb (op_def_stmt))
1429 || !vinfo_for_stmt (op_def_stmt))
1430 return false;
1431
1432 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1433 != vect_used_in_outer
1434 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1435 != vect_used_in_outer_by_reduction)
1436 return false;
1437 }
1438
1439 continue;
1440 }
1441
1442 gcc_assert (stmt_info);
1443
1444 if (STMT_VINFO_LIVE_P (stmt_info))
1445 {
1446 /* FORNOW: not yet supported. */
1447 if (dump_enabled_p ())
1448 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1449 "not vectorized: value used after loop.\n");
1450 return false;
1451 }
1452
1453 if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1454 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1455 {
1456 /* A scalar-dependence cycle that we don't support. */
1457 if (dump_enabled_p ())
1458 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1459 "not vectorized: scalar dependence cycle.\n");
1460 return false;
1461 }
1462
1463 if (STMT_VINFO_RELEVANT_P (stmt_info))
1464 {
1465 need_to_vectorize = true;
1466 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
1467 ok = vectorizable_induction (phi, NULL, NULL);
1468 }
1469
1470 if (!ok)
1471 {
1472 if (dump_enabled_p ())
1473 {
1474 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1475 "not vectorized: relevant phi not "
1476 "supported: ");
1477 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
1478 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
1479 }
1480 return false;
1481 }
1482 }
1483
1484 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1485 {
1486 gimple stmt = gsi_stmt (si);
1487 if (!gimple_clobber_p (stmt)
1488 && !vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
1489 return false;
1490 }
1491 } /* bbs */
1492
1493 /* All operations in the loop are either irrelevant (deal with loop
1494 control, or dead), or only used outside the loop and can be moved
1495 out of the loop (e.g. invariants, inductions). The loop can be
1496 optimized away by scalar optimizations. We're better off not
1497 touching this loop. */
1498 if (!need_to_vectorize)
1499 {
1500 if (dump_enabled_p ())
1501 dump_printf_loc (MSG_NOTE, vect_location,
1502 "All the computation can be taken out of the loop.\n");
1503 if (dump_enabled_p ())
1504 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1505 "not vectorized: redundant loop. no profit to "
1506 "vectorize.\n");
1507 return false;
1508 }
1509
1510 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
1511 dump_printf_loc (MSG_NOTE, vect_location,
1512 "vectorization_factor = %d, niters = "
1513 HOST_WIDE_INT_PRINT_DEC "\n", vectorization_factor,
1514 LOOP_VINFO_INT_NITERS (loop_vinfo));
1515
1516 if ((LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1517 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
1518 || ((max_niter = max_stmt_executions_int (loop)) != -1
1519 && (unsigned HOST_WIDE_INT) max_niter < vectorization_factor))
1520 {
1521 if (dump_enabled_p ())
1522 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1523 "not vectorized: iteration count too small.\n");
1524 if (dump_enabled_p ())
1525 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1526 "not vectorized: iteration count smaller than "
1527 "vectorization factor.\n");
1528 return false;
1529 }
1530
1531 /* Analyze cost. Decide if worth while to vectorize. */
1532
1533 /* Once VF is set, SLP costs should be updated since the number of created
1534 vector stmts depends on VF. */
1535 vect_update_slp_costs_according_to_vf (loop_vinfo);
1536
1537 vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
1538 &min_profitable_estimate);
1539 LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo) = min_profitable_iters;
1540
1541 if (min_profitable_iters < 0)
1542 {
1543 if (dump_enabled_p ())
1544 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1545 "not vectorized: vectorization not profitable.\n");
1546 if (dump_enabled_p ())
1547 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1548 "not vectorized: vector version will never be "
1549 "profitable.\n");
1550 return false;
1551 }
1552
1553 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1554 * vectorization_factor) - 1);
1555
1556
1557 /* Use the cost model only if it is more conservative than user specified
1558 threshold. */
1559
1560 th = (unsigned) min_scalar_loop_bound;
1561 if (min_profitable_iters
1562 && (!min_scalar_loop_bound
1563 || min_profitable_iters > min_scalar_loop_bound))
1564 th = (unsigned) min_profitable_iters;
1565
1566 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1567 && LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
1568 {
1569 if (dump_enabled_p ())
1570 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1571 "not vectorized: vectorization not profitable.\n");
1572 if (dump_enabled_p ())
1573 dump_printf_loc (MSG_NOTE, vect_location,
1574 "not vectorized: iteration count smaller than user "
1575 "specified loop bound parameter or minimum profitable "
1576 "iterations (whichever is more conservative).\n");
1577 return false;
1578 }
1579
1580 if ((estimated_niter = estimated_stmt_executions_int (loop)) != -1
1581 && ((unsigned HOST_WIDE_INT) estimated_niter
1582 <= MAX (th, (unsigned)min_profitable_estimate)))
1583 {
1584 if (dump_enabled_p ())
1585 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1586 "not vectorized: estimated iteration count too "
1587 "small.\n");
1588 if (dump_enabled_p ())
1589 dump_printf_loc (MSG_NOTE, vect_location,
1590 "not vectorized: estimated iteration count smaller "
1591 "than specified loop bound parameter or minimum "
1592 "profitable iterations (whichever is more "
1593 "conservative).\n");
1594 return false;
1595 }
1596
1597 return true;
1598 }
1599
1600
1601 /* Function vect_analyze_loop_2.
1602
1603 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1604 for it. The different analyses will record information in the
1605 loop_vec_info struct. */
1606 static bool
1607 vect_analyze_loop_2 (loop_vec_info loop_vinfo)
1608 {
1609 bool ok, slp = false;
1610 int max_vf = MAX_VECTORIZATION_FACTOR;
1611 int min_vf = 2;
1612
1613 /* Find all data references in the loop (which correspond to vdefs/vuses)
1614 and analyze their evolution in the loop. Also adjust the minimal
1615 vectorization factor according to the loads and stores.
1616
1617 FORNOW: Handle only simple, array references, which
1618 alignment can be forced, and aligned pointer-references. */
1619
1620 ok = vect_analyze_data_refs (loop_vinfo, NULL, &min_vf);
1621 if (!ok)
1622 {
1623 if (dump_enabled_p ())
1624 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1625 "bad data references.\n");
1626 return false;
1627 }
1628
1629 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1630 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1631
1632 ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
1633 if (!ok)
1634 {
1635 if (dump_enabled_p ())
1636 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1637 "bad data access.\n");
1638 return false;
1639 }
1640
1641 /* Classify all cross-iteration scalar data-flow cycles.
1642 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1643
1644 vect_analyze_scalar_cycles (loop_vinfo);
1645
1646 vect_pattern_recog (loop_vinfo, NULL);
1647
1648 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1649
1650 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1651 if (!ok)
1652 {
1653 if (dump_enabled_p ())
1654 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1655 "unexpected pattern.\n");
1656 return false;
1657 }
1658
1659 /* Analyze data dependences between the data-refs in the loop
1660 and adjust the maximum vectorization factor according to
1661 the dependences.
1662 FORNOW: fail at the first data dependence that we encounter. */
1663
1664 ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
1665 if (!ok
1666 || max_vf < min_vf)
1667 {
1668 if (dump_enabled_p ())
1669 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1670 "bad data dependence.\n");
1671 return false;
1672 }
1673
1674 ok = vect_determine_vectorization_factor (loop_vinfo);
1675 if (!ok)
1676 {
1677 if (dump_enabled_p ())
1678 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1679 "can't determine vectorization factor.\n");
1680 return false;
1681 }
1682 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1683 {
1684 if (dump_enabled_p ())
1685 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1686 "bad data dependence.\n");
1687 return false;
1688 }
1689
1690 /* Analyze the alignment of the data-refs in the loop.
1691 Fail if a data reference is found that cannot be vectorized. */
1692
1693 ok = vect_analyze_data_refs_alignment (loop_vinfo, NULL);
1694 if (!ok)
1695 {
1696 if (dump_enabled_p ())
1697 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1698 "bad data alignment.\n");
1699 return false;
1700 }
1701
1702 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
1703 It is important to call pruning after vect_analyze_data_ref_accesses,
1704 since we use grouping information gathered by interleaving analysis. */
1705 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
1706 if (!ok)
1707 {
1708 if (dump_enabled_p ())
1709 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1710 "too long list of versioning for alias "
1711 "run-time tests.\n");
1712 return false;
1713 }
1714
1715 /* This pass will decide on using loop versioning and/or loop peeling in
1716 order to enhance the alignment of data references in the loop. */
1717
1718 ok = vect_enhance_data_refs_alignment (loop_vinfo);
1719 if (!ok)
1720 {
1721 if (dump_enabled_p ())
1722 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1723 "bad data alignment.\n");
1724 return false;
1725 }
1726
1727 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1728 ok = vect_analyze_slp (loop_vinfo, NULL);
1729 if (ok)
1730 {
1731 /* Decide which possible SLP instances to SLP. */
1732 slp = vect_make_slp_decision (loop_vinfo);
1733
1734 /* Find stmts that need to be both vectorized and SLPed. */
1735 vect_detect_hybrid_slp (loop_vinfo);
1736 }
1737 else
1738 return false;
1739
1740 /* Scan all the operations in the loop and make sure they are
1741 vectorizable. */
1742
1743 ok = vect_analyze_loop_operations (loop_vinfo, slp);
1744 if (!ok)
1745 {
1746 if (dump_enabled_p ())
1747 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1748 "bad operation or unsupported loop bound.\n");
1749 return false;
1750 }
1751
1752 /* Decide whether we need to create an epilogue loop to handle
1753 remaining scalar iterations. */
1754 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1755 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1756 {
1757 if (ctz_hwi (LOOP_VINFO_INT_NITERS (loop_vinfo)
1758 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
1759 < exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
1760 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
1761 }
1762 else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
1763 || (tree_ctz (LOOP_VINFO_NITERS (loop_vinfo))
1764 < (unsigned)exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo))))
1765 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
1766
1767 /* If an epilogue loop is required make sure we can create one. */
1768 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
1769 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
1770 {
1771 if (dump_enabled_p ())
1772 dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required\n");
1773 if (!vect_can_advance_ivs_p (loop_vinfo)
1774 || !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo),
1775 single_exit (LOOP_VINFO_LOOP
1776 (loop_vinfo))))
1777 {
1778 if (dump_enabled_p ())
1779 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1780 "not vectorized: can't create required "
1781 "epilog loop\n");
1782 return false;
1783 }
1784 }
1785
1786 return true;
1787 }
1788
1789 /* Function vect_analyze_loop.
1790
1791 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1792 for it. The different analyses will record information in the
1793 loop_vec_info struct. */
1794 loop_vec_info
1795 vect_analyze_loop (struct loop *loop)
1796 {
1797 loop_vec_info loop_vinfo;
1798 unsigned int vector_sizes;
1799
1800 /* Autodetect first vector size we try. */
1801 current_vector_size = 0;
1802 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
1803
1804 if (dump_enabled_p ())
1805 dump_printf_loc (MSG_NOTE, vect_location,
1806 "===== analyze_loop_nest =====\n");
1807
1808 if (loop_outer (loop)
1809 && loop_vec_info_for_loop (loop_outer (loop))
1810 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
1811 {
1812 if (dump_enabled_p ())
1813 dump_printf_loc (MSG_NOTE, vect_location,
1814 "outer-loop already vectorized.\n");
1815 return NULL;
1816 }
1817
1818 while (1)
1819 {
1820 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
1821 loop_vinfo = vect_analyze_loop_form (loop);
1822 if (!loop_vinfo)
1823 {
1824 if (dump_enabled_p ())
1825 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1826 "bad loop form.\n");
1827 return NULL;
1828 }
1829
1830 if (vect_analyze_loop_2 (loop_vinfo))
1831 {
1832 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
1833
1834 return loop_vinfo;
1835 }
1836
1837 destroy_loop_vec_info (loop_vinfo, true);
1838
1839 vector_sizes &= ~current_vector_size;
1840 if (vector_sizes == 0
1841 || current_vector_size == 0)
1842 return NULL;
1843
1844 /* Try the next biggest vector size. */
1845 current_vector_size = 1 << floor_log2 (vector_sizes);
1846 if (dump_enabled_p ())
1847 dump_printf_loc (MSG_NOTE, vect_location,
1848 "***** Re-trying analysis with "
1849 "vector size %d\n", current_vector_size);
1850 }
1851 }
1852
1853
1854 /* Function reduction_code_for_scalar_code
1855
1856 Input:
1857 CODE - tree_code of a reduction operations.
1858
1859 Output:
1860 REDUC_CODE - the corresponding tree-code to be used to reduce the
1861 vector of partial results into a single scalar result (which
1862 will also reside in a vector) or ERROR_MARK if the operation is
1863 a supported reduction operation, but does not have such tree-code.
1864
1865 Return FALSE if CODE currently cannot be vectorized as reduction. */
1866
1867 static bool
1868 reduction_code_for_scalar_code (enum tree_code code,
1869 enum tree_code *reduc_code)
1870 {
1871 switch (code)
1872 {
1873 case MAX_EXPR:
1874 *reduc_code = REDUC_MAX_EXPR;
1875 return true;
1876
1877 case MIN_EXPR:
1878 *reduc_code = REDUC_MIN_EXPR;
1879 return true;
1880
1881 case PLUS_EXPR:
1882 *reduc_code = REDUC_PLUS_EXPR;
1883 return true;
1884
1885 case MULT_EXPR:
1886 case MINUS_EXPR:
1887 case BIT_IOR_EXPR:
1888 case BIT_XOR_EXPR:
1889 case BIT_AND_EXPR:
1890 *reduc_code = ERROR_MARK;
1891 return true;
1892
1893 default:
1894 return false;
1895 }
1896 }
1897
1898
1899 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
1900 STMT is printed with a message MSG. */
1901
1902 static void
1903 report_vect_op (int msg_type, gimple stmt, const char *msg)
1904 {
1905 dump_printf_loc (msg_type, vect_location, "%s", msg);
1906 dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
1907 dump_printf (msg_type, "\n");
1908 }
1909
1910
1911 /* Detect SLP reduction of the form:
1912
1913 #a1 = phi <a5, a0>
1914 a2 = operation (a1)
1915 a3 = operation (a2)
1916 a4 = operation (a3)
1917 a5 = operation (a4)
1918
1919 #a = phi <a5>
1920
1921 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
1922 FIRST_STMT is the first reduction stmt in the chain
1923 (a2 = operation (a1)).
1924
1925 Return TRUE if a reduction chain was detected. */
1926
1927 static bool
1928 vect_is_slp_reduction (loop_vec_info loop_info, gimple phi, gimple first_stmt)
1929 {
1930 struct loop *loop = (gimple_bb (phi))->loop_father;
1931 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
1932 enum tree_code code;
1933 gimple current_stmt = NULL, loop_use_stmt = NULL, first, next_stmt;
1934 stmt_vec_info use_stmt_info, current_stmt_info;
1935 tree lhs;
1936 imm_use_iterator imm_iter;
1937 use_operand_p use_p;
1938 int nloop_uses, size = 0, n_out_of_loop_uses;
1939 bool found = false;
1940
1941 if (loop != vect_loop)
1942 return false;
1943
1944 lhs = PHI_RESULT (phi);
1945 code = gimple_assign_rhs_code (first_stmt);
1946 while (1)
1947 {
1948 nloop_uses = 0;
1949 n_out_of_loop_uses = 0;
1950 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
1951 {
1952 gimple use_stmt = USE_STMT (use_p);
1953 if (is_gimple_debug (use_stmt))
1954 continue;
1955
1956 use_stmt = USE_STMT (use_p);
1957
1958 /* Check if we got back to the reduction phi. */
1959 if (use_stmt == phi)
1960 {
1961 loop_use_stmt = use_stmt;
1962 found = true;
1963 break;
1964 }
1965
1966 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
1967 {
1968 if (vinfo_for_stmt (use_stmt)
1969 && !STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
1970 {
1971 loop_use_stmt = use_stmt;
1972 nloop_uses++;
1973 }
1974 }
1975 else
1976 n_out_of_loop_uses++;
1977
1978 /* There are can be either a single use in the loop or two uses in
1979 phi nodes. */
1980 if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
1981 return false;
1982 }
1983
1984 if (found)
1985 break;
1986
1987 /* We reached a statement with no loop uses. */
1988 if (nloop_uses == 0)
1989 return false;
1990
1991 /* This is a loop exit phi, and we haven't reached the reduction phi. */
1992 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
1993 return false;
1994
1995 if (!is_gimple_assign (loop_use_stmt)
1996 || code != gimple_assign_rhs_code (loop_use_stmt)
1997 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
1998 return false;
1999
2000 /* Insert USE_STMT into reduction chain. */
2001 use_stmt_info = vinfo_for_stmt (loop_use_stmt);
2002 if (current_stmt)
2003 {
2004 current_stmt_info = vinfo_for_stmt (current_stmt);
2005 GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
2006 GROUP_FIRST_ELEMENT (use_stmt_info)
2007 = GROUP_FIRST_ELEMENT (current_stmt_info);
2008 }
2009 else
2010 GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
2011
2012 lhs = gimple_assign_lhs (loop_use_stmt);
2013 current_stmt = loop_use_stmt;
2014 size++;
2015 }
2016
2017 if (!found || loop_use_stmt != phi || size < 2)
2018 return false;
2019
2020 /* Swap the operands, if needed, to make the reduction operand be the second
2021 operand. */
2022 lhs = PHI_RESULT (phi);
2023 next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2024 while (next_stmt)
2025 {
2026 if (gimple_assign_rhs2 (next_stmt) == lhs)
2027 {
2028 tree op = gimple_assign_rhs1 (next_stmt);
2029 gimple def_stmt = NULL;
2030
2031 if (TREE_CODE (op) == SSA_NAME)
2032 def_stmt = SSA_NAME_DEF_STMT (op);
2033
2034 /* Check that the other def is either defined in the loop
2035 ("vect_internal_def"), or it's an induction (defined by a
2036 loop-header phi-node). */
2037 if (def_stmt
2038 && gimple_bb (def_stmt)
2039 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2040 && (is_gimple_assign (def_stmt)
2041 || is_gimple_call (def_stmt)
2042 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2043 == vect_induction_def
2044 || (gimple_code (def_stmt) == GIMPLE_PHI
2045 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2046 == vect_internal_def
2047 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2048 {
2049 lhs = gimple_assign_lhs (next_stmt);
2050 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2051 continue;
2052 }
2053
2054 return false;
2055 }
2056 else
2057 {
2058 tree op = gimple_assign_rhs2 (next_stmt);
2059 gimple def_stmt = NULL;
2060
2061 if (TREE_CODE (op) == SSA_NAME)
2062 def_stmt = SSA_NAME_DEF_STMT (op);
2063
2064 /* Check that the other def is either defined in the loop
2065 ("vect_internal_def"), or it's an induction (defined by a
2066 loop-header phi-node). */
2067 if (def_stmt
2068 && gimple_bb (def_stmt)
2069 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2070 && (is_gimple_assign (def_stmt)
2071 || is_gimple_call (def_stmt)
2072 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2073 == vect_induction_def
2074 || (gimple_code (def_stmt) == GIMPLE_PHI
2075 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2076 == vect_internal_def
2077 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2078 {
2079 if (dump_enabled_p ())
2080 {
2081 dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
2082 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
2083 dump_printf (MSG_NOTE, "\n");
2084 }
2085
2086 swap_ssa_operands (next_stmt,
2087 gimple_assign_rhs1_ptr (next_stmt),
2088 gimple_assign_rhs2_ptr (next_stmt));
2089 update_stmt (next_stmt);
2090
2091 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
2092 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2093 }
2094 else
2095 return false;
2096 }
2097
2098 lhs = gimple_assign_lhs (next_stmt);
2099 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2100 }
2101
2102 /* Save the chain for further analysis in SLP detection. */
2103 first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2104 LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
2105 GROUP_SIZE (vinfo_for_stmt (first)) = size;
2106
2107 return true;
2108 }
2109
2110
2111 /* Function vect_is_simple_reduction_1
2112
2113 (1) Detect a cross-iteration def-use cycle that represents a simple
2114 reduction computation. We look for the following pattern:
2115
2116 loop_header:
2117 a1 = phi < a0, a2 >
2118 a3 = ...
2119 a2 = operation (a3, a1)
2120
2121 or
2122
2123 a3 = ...
2124 loop_header:
2125 a1 = phi < a0, a2 >
2126 a2 = operation (a3, a1)
2127
2128 such that:
2129 1. operation is commutative and associative and it is safe to
2130 change the order of the computation (if CHECK_REDUCTION is true)
2131 2. no uses for a2 in the loop (a2 is used out of the loop)
2132 3. no uses of a1 in the loop besides the reduction operation
2133 4. no uses of a1 outside the loop.
2134
2135 Conditions 1,4 are tested here.
2136 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
2137
2138 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
2139 nested cycles, if CHECK_REDUCTION is false.
2140
2141 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
2142 reductions:
2143
2144 a1 = phi < a0, a2 >
2145 inner loop (def of a3)
2146 a2 = phi < a3 >
2147
2148 If MODIFY is true it tries also to rework the code in-place to enable
2149 detection of more reduction patterns. For the time being we rewrite
2150 "res -= RHS" into "rhs += -RHS" when it seems worthwhile.
2151 */
2152
2153 static gimple
2154 vect_is_simple_reduction_1 (loop_vec_info loop_info, gimple phi,
2155 bool check_reduction, bool *double_reduc,
2156 bool modify)
2157 {
2158 struct loop *loop = (gimple_bb (phi))->loop_father;
2159 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2160 edge latch_e = loop_latch_edge (loop);
2161 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
2162 gimple def_stmt, def1 = NULL, def2 = NULL;
2163 enum tree_code orig_code, code;
2164 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
2165 tree type;
2166 int nloop_uses;
2167 tree name;
2168 imm_use_iterator imm_iter;
2169 use_operand_p use_p;
2170 bool phi_def;
2171
2172 *double_reduc = false;
2173
2174 /* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
2175 otherwise, we assume outer loop vectorization. */
2176 gcc_assert ((check_reduction && loop == vect_loop)
2177 || (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
2178
2179 name = PHI_RESULT (phi);
2180 nloop_uses = 0;
2181 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2182 {
2183 gimple use_stmt = USE_STMT (use_p);
2184 if (is_gimple_debug (use_stmt))
2185 continue;
2186
2187 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2188 {
2189 if (dump_enabled_p ())
2190 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2191 "intermediate value used outside loop.\n");
2192
2193 return NULL;
2194 }
2195
2196 if (vinfo_for_stmt (use_stmt)
2197 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2198 nloop_uses++;
2199 if (nloop_uses > 1)
2200 {
2201 if (dump_enabled_p ())
2202 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2203 "reduction used in loop.\n");
2204 return NULL;
2205 }
2206 }
2207
2208 if (TREE_CODE (loop_arg) != SSA_NAME)
2209 {
2210 if (dump_enabled_p ())
2211 {
2212 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2213 "reduction: not ssa_name: ");
2214 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
2215 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2216 }
2217 return NULL;
2218 }
2219
2220 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2221 if (!def_stmt)
2222 {
2223 if (dump_enabled_p ())
2224 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2225 "reduction: no def_stmt.\n");
2226 return NULL;
2227 }
2228
2229 if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
2230 {
2231 if (dump_enabled_p ())
2232 {
2233 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
2234 dump_printf (MSG_NOTE, "\n");
2235 }
2236 return NULL;
2237 }
2238
2239 if (is_gimple_assign (def_stmt))
2240 {
2241 name = gimple_assign_lhs (def_stmt);
2242 phi_def = false;
2243 }
2244 else
2245 {
2246 name = PHI_RESULT (def_stmt);
2247 phi_def = true;
2248 }
2249
2250 nloop_uses = 0;
2251 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2252 {
2253 gimple use_stmt = USE_STMT (use_p);
2254 if (is_gimple_debug (use_stmt))
2255 continue;
2256 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
2257 && vinfo_for_stmt (use_stmt)
2258 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2259 nloop_uses++;
2260 if (nloop_uses > 1)
2261 {
2262 if (dump_enabled_p ())
2263 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2264 "reduction used in loop.\n");
2265 return NULL;
2266 }
2267 }
2268
2269 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2270 defined in the inner loop. */
2271 if (phi_def)
2272 {
2273 op1 = PHI_ARG_DEF (def_stmt, 0);
2274
2275 if (gimple_phi_num_args (def_stmt) != 1
2276 || TREE_CODE (op1) != SSA_NAME)
2277 {
2278 if (dump_enabled_p ())
2279 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2280 "unsupported phi node definition.\n");
2281
2282 return NULL;
2283 }
2284
2285 def1 = SSA_NAME_DEF_STMT (op1);
2286 if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2287 && loop->inner
2288 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
2289 && is_gimple_assign (def1))
2290 {
2291 if (dump_enabled_p ())
2292 report_vect_op (MSG_NOTE, def_stmt,
2293 "detected double reduction: ");
2294
2295 *double_reduc = true;
2296 return def_stmt;
2297 }
2298
2299 return NULL;
2300 }
2301
2302 code = orig_code = gimple_assign_rhs_code (def_stmt);
2303
2304 /* We can handle "res -= x[i]", which is non-associative by
2305 simply rewriting this into "res += -x[i]". Avoid changing
2306 gimple instruction for the first simple tests and only do this
2307 if we're allowed to change code at all. */
2308 if (code == MINUS_EXPR
2309 && modify
2310 && (op1 = gimple_assign_rhs1 (def_stmt))
2311 && TREE_CODE (op1) == SSA_NAME
2312 && SSA_NAME_DEF_STMT (op1) == phi)
2313 code = PLUS_EXPR;
2314
2315 if (check_reduction
2316 && (!commutative_tree_code (code) || !associative_tree_code (code)))
2317 {
2318 if (dump_enabled_p ())
2319 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2320 "reduction: not commutative/associative: ");
2321 return NULL;
2322 }
2323
2324 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
2325 {
2326 if (code != COND_EXPR)
2327 {
2328 if (dump_enabled_p ())
2329 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2330 "reduction: not binary operation: ");
2331
2332 return NULL;
2333 }
2334
2335 op3 = gimple_assign_rhs1 (def_stmt);
2336 if (COMPARISON_CLASS_P (op3))
2337 {
2338 op4 = TREE_OPERAND (op3, 1);
2339 op3 = TREE_OPERAND (op3, 0);
2340 }
2341
2342 op1 = gimple_assign_rhs2 (def_stmt);
2343 op2 = gimple_assign_rhs3 (def_stmt);
2344
2345 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2346 {
2347 if (dump_enabled_p ())
2348 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2349 "reduction: uses not ssa_names: ");
2350
2351 return NULL;
2352 }
2353 }
2354 else
2355 {
2356 op1 = gimple_assign_rhs1 (def_stmt);
2357 op2 = gimple_assign_rhs2 (def_stmt);
2358
2359 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2360 {
2361 if (dump_enabled_p ())
2362 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2363 "reduction: uses not ssa_names: ");
2364
2365 return NULL;
2366 }
2367 }
2368
2369 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
2370 if ((TREE_CODE (op1) == SSA_NAME
2371 && !types_compatible_p (type,TREE_TYPE (op1)))
2372 || (TREE_CODE (op2) == SSA_NAME
2373 && !types_compatible_p (type, TREE_TYPE (op2)))
2374 || (op3 && TREE_CODE (op3) == SSA_NAME
2375 && !types_compatible_p (type, TREE_TYPE (op3)))
2376 || (op4 && TREE_CODE (op4) == SSA_NAME
2377 && !types_compatible_p (type, TREE_TYPE (op4))))
2378 {
2379 if (dump_enabled_p ())
2380 {
2381 dump_printf_loc (MSG_NOTE, vect_location,
2382 "reduction: multiple types: operation type: ");
2383 dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
2384 dump_printf (MSG_NOTE, ", operands types: ");
2385 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2386 TREE_TYPE (op1));
2387 dump_printf (MSG_NOTE, ",");
2388 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2389 TREE_TYPE (op2));
2390 if (op3)
2391 {
2392 dump_printf (MSG_NOTE, ",");
2393 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2394 TREE_TYPE (op3));
2395 }
2396
2397 if (op4)
2398 {
2399 dump_printf (MSG_NOTE, ",");
2400 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2401 TREE_TYPE (op4));
2402 }
2403 dump_printf (MSG_NOTE, "\n");
2404 }
2405
2406 return NULL;
2407 }
2408
2409 /* Check that it's ok to change the order of the computation.
2410 Generally, when vectorizing a reduction we change the order of the
2411 computation. This may change the behavior of the program in some
2412 cases, so we need to check that this is ok. One exception is when
2413 vectorizing an outer-loop: the inner-loop is executed sequentially,
2414 and therefore vectorizing reductions in the inner-loop during
2415 outer-loop vectorization is safe. */
2416
2417 /* CHECKME: check for !flag_finite_math_only too? */
2418 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
2419 && check_reduction)
2420 {
2421 /* Changing the order of operations changes the semantics. */
2422 if (dump_enabled_p ())
2423 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2424 "reduction: unsafe fp math optimization: ");
2425 return NULL;
2426 }
2427 else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
2428 && check_reduction)
2429 {
2430 /* Changing the order of operations changes the semantics. */
2431 if (dump_enabled_p ())
2432 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2433 "reduction: unsafe int math optimization: ");
2434 return NULL;
2435 }
2436 else if (SAT_FIXED_POINT_TYPE_P (type) && check_reduction)
2437 {
2438 /* Changing the order of operations changes the semantics. */
2439 if (dump_enabled_p ())
2440 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2441 "reduction: unsafe fixed-point math optimization: ");
2442 return NULL;
2443 }
2444
2445 /* If we detected "res -= x[i]" earlier, rewrite it into
2446 "res += -x[i]" now. If this turns out to be useless reassoc
2447 will clean it up again. */
2448 if (orig_code == MINUS_EXPR)
2449 {
2450 tree rhs = gimple_assign_rhs2 (def_stmt);
2451 tree negrhs = make_ssa_name (TREE_TYPE (rhs), NULL);
2452 gimple negate_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, negrhs,
2453 rhs, NULL);
2454 gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
2455 set_vinfo_for_stmt (negate_stmt, new_stmt_vec_info (negate_stmt,
2456 loop_info, NULL));
2457 gsi_insert_before (&gsi, negate_stmt, GSI_NEW_STMT);
2458 gimple_assign_set_rhs2 (def_stmt, negrhs);
2459 gimple_assign_set_rhs_code (def_stmt, PLUS_EXPR);
2460 update_stmt (def_stmt);
2461 }
2462
2463 /* Reduction is safe. We're dealing with one of the following:
2464 1) integer arithmetic and no trapv
2465 2) floating point arithmetic, and special flags permit this optimization
2466 3) nested cycle (i.e., outer loop vectorization). */
2467 if (TREE_CODE (op1) == SSA_NAME)
2468 def1 = SSA_NAME_DEF_STMT (op1);
2469
2470 if (TREE_CODE (op2) == SSA_NAME)
2471 def2 = SSA_NAME_DEF_STMT (op2);
2472
2473 if (code != COND_EXPR
2474 && ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
2475 {
2476 if (dump_enabled_p ())
2477 report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
2478 return NULL;
2479 }
2480
2481 /* Check that one def is the reduction def, defined by PHI,
2482 the other def is either defined in the loop ("vect_internal_def"),
2483 or it's an induction (defined by a loop-header phi-node). */
2484
2485 if (def2 && def2 == phi
2486 && (code == COND_EXPR
2487 || !def1 || gimple_nop_p (def1)
2488 || !flow_bb_inside_loop_p (loop, gimple_bb (def1))
2489 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
2490 && (is_gimple_assign (def1)
2491 || is_gimple_call (def1)
2492 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2493 == vect_induction_def
2494 || (gimple_code (def1) == GIMPLE_PHI
2495 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2496 == vect_internal_def
2497 && !is_loop_header_bb_p (gimple_bb (def1)))))))
2498 {
2499 if (dump_enabled_p ())
2500 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2501 return def_stmt;
2502 }
2503
2504 if (def1 && def1 == phi
2505 && (code == COND_EXPR
2506 || !def2 || gimple_nop_p (def2)
2507 || !flow_bb_inside_loop_p (loop, gimple_bb (def2))
2508 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
2509 && (is_gimple_assign (def2)
2510 || is_gimple_call (def2)
2511 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2512 == vect_induction_def
2513 || (gimple_code (def2) == GIMPLE_PHI
2514 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2515 == vect_internal_def
2516 && !is_loop_header_bb_p (gimple_bb (def2)))))))
2517 {
2518 if (check_reduction)
2519 {
2520 /* Swap operands (just for simplicity - so that the rest of the code
2521 can assume that the reduction variable is always the last (second)
2522 argument). */
2523 if (dump_enabled_p ())
2524 report_vect_op (MSG_NOTE, def_stmt,
2525 "detected reduction: need to swap operands: ");
2526
2527 swap_ssa_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
2528 gimple_assign_rhs2_ptr (def_stmt));
2529
2530 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
2531 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2532 }
2533 else
2534 {
2535 if (dump_enabled_p ())
2536 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2537 }
2538
2539 return def_stmt;
2540 }
2541
2542 /* Try to find SLP reduction chain. */
2543 if (check_reduction && vect_is_slp_reduction (loop_info, phi, def_stmt))
2544 {
2545 if (dump_enabled_p ())
2546 report_vect_op (MSG_NOTE, def_stmt,
2547 "reduction: detected reduction chain: ");
2548
2549 return def_stmt;
2550 }
2551
2552 if (dump_enabled_p ())
2553 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2554 "reduction: unknown pattern: ");
2555
2556 return NULL;
2557 }
2558
2559 /* Wrapper around vect_is_simple_reduction_1, that won't modify code
2560 in-place. Arguments as there. */
2561
2562 static gimple
2563 vect_is_simple_reduction (loop_vec_info loop_info, gimple phi,
2564 bool check_reduction, bool *double_reduc)
2565 {
2566 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2567 double_reduc, false);
2568 }
2569
2570 /* Wrapper around vect_is_simple_reduction_1, which will modify code
2571 in-place if it enables detection of more reductions. Arguments
2572 as there. */
2573
2574 gimple
2575 vect_force_simple_reduction (loop_vec_info loop_info, gimple phi,
2576 bool check_reduction, bool *double_reduc)
2577 {
2578 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2579 double_reduc, true);
2580 }
2581
2582 /* Calculate the cost of one scalar iteration of the loop. */
2583 int
2584 vect_get_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
2585 {
2586 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2587 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
2588 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
2589 int innerloop_iters, i, stmt_cost;
2590
2591 /* Count statements in scalar loop. Using this as scalar cost for a single
2592 iteration for now.
2593
2594 TODO: Add outer loop support.
2595
2596 TODO: Consider assigning different costs to different scalar
2597 statements. */
2598
2599 /* FORNOW. */
2600 innerloop_iters = 1;
2601 if (loop->inner)
2602 innerloop_iters = 50; /* FIXME */
2603
2604 for (i = 0; i < nbbs; i++)
2605 {
2606 gimple_stmt_iterator si;
2607 basic_block bb = bbs[i];
2608
2609 if (bb->loop_father == loop->inner)
2610 factor = innerloop_iters;
2611 else
2612 factor = 1;
2613
2614 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2615 {
2616 gimple stmt = gsi_stmt (si);
2617 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2618
2619 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
2620 continue;
2621
2622 /* Skip stmts that are not vectorized inside the loop. */
2623 if (stmt_info
2624 && !STMT_VINFO_RELEVANT_P (stmt_info)
2625 && (!STMT_VINFO_LIVE_P (stmt_info)
2626 || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
2627 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
2628 continue;
2629
2630 if (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt)))
2631 {
2632 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
2633 stmt_cost = vect_get_stmt_cost (scalar_load);
2634 else
2635 stmt_cost = vect_get_stmt_cost (scalar_store);
2636 }
2637 else
2638 stmt_cost = vect_get_stmt_cost (scalar_stmt);
2639
2640 scalar_single_iter_cost += stmt_cost * factor;
2641 }
2642 }
2643 return scalar_single_iter_cost;
2644 }
2645
2646 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
2647 int
2648 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
2649 int *peel_iters_epilogue,
2650 int scalar_single_iter_cost,
2651 stmt_vector_for_cost *prologue_cost_vec,
2652 stmt_vector_for_cost *epilogue_cost_vec)
2653 {
2654 int retval = 0;
2655 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2656
2657 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2658 {
2659 *peel_iters_epilogue = vf/2;
2660 if (dump_enabled_p ())
2661 dump_printf_loc (MSG_NOTE, vect_location,
2662 "cost model: epilogue peel iters set to vf/2 "
2663 "because loop iterations are unknown .\n");
2664
2665 /* If peeled iterations are known but number of scalar loop
2666 iterations are unknown, count a taken branch per peeled loop. */
2667 retval = record_stmt_cost (prologue_cost_vec, 2, cond_branch_taken,
2668 NULL, 0, vect_prologue);
2669 }
2670 else
2671 {
2672 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
2673 peel_iters_prologue = niters < peel_iters_prologue ?
2674 niters : peel_iters_prologue;
2675 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
2676 /* If we need to peel for gaps, but no peeling is required, we have to
2677 peel VF iterations. */
2678 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
2679 *peel_iters_epilogue = vf;
2680 }
2681
2682 if (peel_iters_prologue)
2683 retval += record_stmt_cost (prologue_cost_vec,
2684 peel_iters_prologue * scalar_single_iter_cost,
2685 scalar_stmt, NULL, 0, vect_prologue);
2686 if (*peel_iters_epilogue)
2687 retval += record_stmt_cost (epilogue_cost_vec,
2688 *peel_iters_epilogue * scalar_single_iter_cost,
2689 scalar_stmt, NULL, 0, vect_epilogue);
2690 return retval;
2691 }
2692
2693 /* Function vect_estimate_min_profitable_iters
2694
2695 Return the number of iterations required for the vector version of the
2696 loop to be profitable relative to the cost of the scalar version of the
2697 loop. */
2698
2699 static void
2700 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
2701 int *ret_min_profitable_niters,
2702 int *ret_min_profitable_estimate)
2703 {
2704 int min_profitable_iters;
2705 int min_profitable_estimate;
2706 int peel_iters_prologue;
2707 int peel_iters_epilogue;
2708 unsigned vec_inside_cost = 0;
2709 int vec_outside_cost = 0;
2710 unsigned vec_prologue_cost = 0;
2711 unsigned vec_epilogue_cost = 0;
2712 int scalar_single_iter_cost = 0;
2713 int scalar_outside_cost = 0;
2714 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2715 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2716 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2717
2718 /* Cost model disabled. */
2719 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
2720 {
2721 dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
2722 *ret_min_profitable_niters = 0;
2723 *ret_min_profitable_estimate = 0;
2724 return;
2725 }
2726
2727 /* Requires loop versioning tests to handle misalignment. */
2728 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2729 {
2730 /* FIXME: Make cost depend on complexity of individual check. */
2731 unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
2732 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
2733 vect_prologue);
2734 dump_printf (MSG_NOTE,
2735 "cost model: Adding cost of checks for loop "
2736 "versioning to treat misalignment.\n");
2737 }
2738
2739 /* Requires loop versioning with alias checks. */
2740 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2741 {
2742 /* FIXME: Make cost depend on complexity of individual check. */
2743 unsigned len = LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).length ();
2744 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
2745 vect_prologue);
2746 dump_printf (MSG_NOTE,
2747 "cost model: Adding cost of checks for loop "
2748 "versioning aliasing.\n");
2749 }
2750
2751 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2752 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2753 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
2754 vect_prologue);
2755
2756 /* Count statements in scalar loop. Using this as scalar cost for a single
2757 iteration for now.
2758
2759 TODO: Add outer loop support.
2760
2761 TODO: Consider assigning different costs to different scalar
2762 statements. */
2763
2764 scalar_single_iter_cost = vect_get_single_scalar_iteration_cost (loop_vinfo);
2765
2766 /* Add additional cost for the peeled instructions in prologue and epilogue
2767 loop.
2768
2769 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
2770 at compile-time - we assume it's vf/2 (the worst would be vf-1).
2771
2772 TODO: Build an expression that represents peel_iters for prologue and
2773 epilogue to be used in a run-time test. */
2774
2775 if (npeel < 0)
2776 {
2777 peel_iters_prologue = vf/2;
2778 dump_printf (MSG_NOTE, "cost model: "
2779 "prologue peel iters set to vf/2.\n");
2780
2781 /* If peeling for alignment is unknown, loop bound of main loop becomes
2782 unknown. */
2783 peel_iters_epilogue = vf/2;
2784 dump_printf (MSG_NOTE, "cost model: "
2785 "epilogue peel iters set to vf/2 because "
2786 "peeling for alignment is unknown.\n");
2787
2788 /* If peeled iterations are unknown, count a taken branch and a not taken
2789 branch per peeled loop. Even if scalar loop iterations are known,
2790 vector iterations are not known since peeled prologue iterations are
2791 not known. Hence guards remain the same. */
2792 (void) add_stmt_cost (target_cost_data, 2, cond_branch_taken,
2793 NULL, 0, vect_prologue);
2794 (void) add_stmt_cost (target_cost_data, 2, cond_branch_not_taken,
2795 NULL, 0, vect_prologue);
2796 /* FORNOW: Don't attempt to pass individual scalar instructions to
2797 the model; just assume linear cost for scalar iterations. */
2798 (void) add_stmt_cost (target_cost_data,
2799 peel_iters_prologue * scalar_single_iter_cost,
2800 scalar_stmt, NULL, 0, vect_prologue);
2801 (void) add_stmt_cost (target_cost_data,
2802 peel_iters_epilogue * scalar_single_iter_cost,
2803 scalar_stmt, NULL, 0, vect_epilogue);
2804 }
2805 else
2806 {
2807 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
2808 stmt_info_for_cost *si;
2809 int j;
2810 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2811
2812 prologue_cost_vec.create (2);
2813 epilogue_cost_vec.create (2);
2814 peel_iters_prologue = npeel;
2815
2816 (void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
2817 &peel_iters_epilogue,
2818 scalar_single_iter_cost,
2819 &prologue_cost_vec,
2820 &epilogue_cost_vec);
2821
2822 FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
2823 {
2824 struct _stmt_vec_info *stmt_info
2825 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
2826 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
2827 si->misalign, vect_prologue);
2828 }
2829
2830 FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
2831 {
2832 struct _stmt_vec_info *stmt_info
2833 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
2834 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
2835 si->misalign, vect_epilogue);
2836 }
2837
2838 prologue_cost_vec.release ();
2839 epilogue_cost_vec.release ();
2840 }
2841
2842 /* FORNOW: The scalar outside cost is incremented in one of the
2843 following ways:
2844
2845 1. The vectorizer checks for alignment and aliasing and generates
2846 a condition that allows dynamic vectorization. A cost model
2847 check is ANDED with the versioning condition. Hence scalar code
2848 path now has the added cost of the versioning check.
2849
2850 if (cost > th & versioning_check)
2851 jmp to vector code
2852
2853 Hence run-time scalar is incremented by not-taken branch cost.
2854
2855 2. The vectorizer then checks if a prologue is required. If the
2856 cost model check was not done before during versioning, it has to
2857 be done before the prologue check.
2858
2859 if (cost <= th)
2860 prologue = scalar_iters
2861 if (prologue == 0)
2862 jmp to vector code
2863 else
2864 execute prologue
2865 if (prologue == num_iters)
2866 go to exit
2867
2868 Hence the run-time scalar cost is incremented by a taken branch,
2869 plus a not-taken branch, plus a taken branch cost.
2870
2871 3. The vectorizer then checks if an epilogue is required. If the
2872 cost model check was not done before during prologue check, it
2873 has to be done with the epilogue check.
2874
2875 if (prologue == 0)
2876 jmp to vector code
2877 else
2878 execute prologue
2879 if (prologue == num_iters)
2880 go to exit
2881 vector code:
2882 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
2883 jmp to epilogue
2884
2885 Hence the run-time scalar cost should be incremented by 2 taken
2886 branches.
2887
2888 TODO: The back end may reorder the BBS's differently and reverse
2889 conditions/branch directions. Change the estimates below to
2890 something more reasonable. */
2891
2892 /* If the number of iterations is known and we do not do versioning, we can
2893 decide whether to vectorize at compile time. Hence the scalar version
2894 do not carry cost model guard costs. */
2895 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2896 || LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2897 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2898 {
2899 /* Cost model check occurs at versioning. */
2900 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2901 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2902 scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
2903 else
2904 {
2905 /* Cost model check occurs at prologue generation. */
2906 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2907 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
2908 + vect_get_stmt_cost (cond_branch_not_taken);
2909 /* Cost model check occurs at epilogue generation. */
2910 else
2911 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
2912 }
2913 }
2914
2915 /* Complete the target-specific cost calculations. */
2916 finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
2917 &vec_inside_cost, &vec_epilogue_cost);
2918
2919 vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
2920
2921 /* Calculate number of iterations required to make the vector version
2922 profitable, relative to the loop bodies only. The following condition
2923 must hold true:
2924 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
2925 where
2926 SIC = scalar iteration cost, VIC = vector iteration cost,
2927 VOC = vector outside cost, VF = vectorization factor,
2928 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
2929 SOC = scalar outside cost for run time cost model check. */
2930
2931 if ((scalar_single_iter_cost * vf) > (int) vec_inside_cost)
2932 {
2933 if (vec_outside_cost <= 0)
2934 min_profitable_iters = 1;
2935 else
2936 {
2937 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
2938 - vec_inside_cost * peel_iters_prologue
2939 - vec_inside_cost * peel_iters_epilogue)
2940 / ((scalar_single_iter_cost * vf)
2941 - vec_inside_cost);
2942
2943 if ((scalar_single_iter_cost * vf * min_profitable_iters)
2944 <= (((int) vec_inside_cost * min_profitable_iters)
2945 + (((int) vec_outside_cost - scalar_outside_cost) * vf)))
2946 min_profitable_iters++;
2947 }
2948 }
2949 /* vector version will never be profitable. */
2950 else
2951 {
2952 if (LOOP_VINFO_LOOP (loop_vinfo)->force_vect)
2953 warning_at (vect_location, OPT_Wopenmp_simd, "vectorization "
2954 "did not happen for a simd loop");
2955
2956 if (dump_enabled_p ())
2957 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2958 "cost model: the vector iteration cost = %d "
2959 "divided by the scalar iteration cost = %d "
2960 "is greater or equal to the vectorization factor = %d"
2961 ".\n",
2962 vec_inside_cost, scalar_single_iter_cost, vf);
2963 *ret_min_profitable_niters = -1;
2964 *ret_min_profitable_estimate = -1;
2965 return;
2966 }
2967
2968 if (dump_enabled_p ())
2969 {
2970 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
2971 dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
2972 vec_inside_cost);
2973 dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
2974 vec_prologue_cost);
2975 dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
2976 vec_epilogue_cost);
2977 dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
2978 scalar_single_iter_cost);
2979 dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
2980 scalar_outside_cost);
2981 dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
2982 vec_outside_cost);
2983 dump_printf (MSG_NOTE, " prologue iterations: %d\n",
2984 peel_iters_prologue);
2985 dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
2986 peel_iters_epilogue);
2987 dump_printf (MSG_NOTE,
2988 " Calculated minimum iters for profitability: %d\n",
2989 min_profitable_iters);
2990 dump_printf (MSG_NOTE, "\n");
2991 }
2992
2993 min_profitable_iters =
2994 min_profitable_iters < vf ? vf : min_profitable_iters;
2995
2996 /* Because the condition we create is:
2997 if (niters <= min_profitable_iters)
2998 then skip the vectorized loop. */
2999 min_profitable_iters--;
3000
3001 if (dump_enabled_p ())
3002 dump_printf_loc (MSG_NOTE, vect_location,
3003 " Runtime profitability threshold = %d\n",
3004 min_profitable_iters);
3005
3006 *ret_min_profitable_niters = min_profitable_iters;
3007
3008 /* Calculate number of iterations required to make the vector version
3009 profitable, relative to the loop bodies only.
3010
3011 Non-vectorized variant is SIC * niters and it must win over vector
3012 variant on the expected loop trip count. The following condition must hold true:
3013 SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
3014
3015 if (vec_outside_cost <= 0)
3016 min_profitable_estimate = 1;
3017 else
3018 {
3019 min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost) * vf
3020 - vec_inside_cost * peel_iters_prologue
3021 - vec_inside_cost * peel_iters_epilogue)
3022 / ((scalar_single_iter_cost * vf)
3023 - vec_inside_cost);
3024 }
3025 min_profitable_estimate --;
3026 min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
3027 if (dump_enabled_p ())
3028 dump_printf_loc (MSG_NOTE, vect_location,
3029 " Static estimate profitability threshold = %d\n",
3030 min_profitable_iters);
3031
3032 *ret_min_profitable_estimate = min_profitable_estimate;
3033 }
3034
3035
3036 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
3037 functions. Design better to avoid maintenance issues. */
3038
3039 /* Function vect_model_reduction_cost.
3040
3041 Models cost for a reduction operation, including the vector ops
3042 generated within the strip-mine loop, the initial definition before
3043 the loop, and the epilogue code that must be generated. */
3044
3045 static bool
3046 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
3047 int ncopies)
3048 {
3049 int prologue_cost = 0, epilogue_cost = 0;
3050 enum tree_code code;
3051 optab optab;
3052 tree vectype;
3053 gimple stmt, orig_stmt;
3054 tree reduction_op;
3055 enum machine_mode mode;
3056 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3057 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3058 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3059
3060 /* Cost of reduction op inside loop. */
3061 unsigned inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3062 stmt_info, 0, vect_body);
3063 stmt = STMT_VINFO_STMT (stmt_info);
3064
3065 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3066 {
3067 case GIMPLE_SINGLE_RHS:
3068 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt)) == ternary_op);
3069 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
3070 break;
3071 case GIMPLE_UNARY_RHS:
3072 reduction_op = gimple_assign_rhs1 (stmt);
3073 break;
3074 case GIMPLE_BINARY_RHS:
3075 reduction_op = gimple_assign_rhs2 (stmt);
3076 break;
3077 case GIMPLE_TERNARY_RHS:
3078 reduction_op = gimple_assign_rhs3 (stmt);
3079 break;
3080 default:
3081 gcc_unreachable ();
3082 }
3083
3084 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3085 if (!vectype)
3086 {
3087 if (dump_enabled_p ())
3088 {
3089 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3090 "unsupported data-type ");
3091 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
3092 TREE_TYPE (reduction_op));
3093 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3094 }
3095 return false;
3096 }
3097
3098 mode = TYPE_MODE (vectype);
3099 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3100
3101 if (!orig_stmt)
3102 orig_stmt = STMT_VINFO_STMT (stmt_info);
3103
3104 code = gimple_assign_rhs_code (orig_stmt);
3105
3106 /* Add in cost for initial definition. */
3107 prologue_cost += add_stmt_cost (target_cost_data, 1, scalar_to_vec,
3108 stmt_info, 0, vect_prologue);
3109
3110 /* Determine cost of epilogue code.
3111
3112 We have a reduction operator that will reduce the vector in one statement.
3113 Also requires scalar extract. */
3114
3115 if (!nested_in_vect_loop_p (loop, orig_stmt))
3116 {
3117 if (reduc_code != ERROR_MARK)
3118 {
3119 epilogue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
3120 stmt_info, 0, vect_epilogue);
3121 epilogue_cost += add_stmt_cost (target_cost_data, 1, vec_to_scalar,
3122 stmt_info, 0, vect_epilogue);
3123 }
3124 else
3125 {
3126 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
3127 tree bitsize =
3128 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
3129 int element_bitsize = tree_to_uhwi (bitsize);
3130 int nelements = vec_size_in_bits / element_bitsize;
3131
3132 optab = optab_for_tree_code (code, vectype, optab_default);
3133
3134 /* We have a whole vector shift available. */
3135 if (VECTOR_MODE_P (mode)
3136 && optab_handler (optab, mode) != CODE_FOR_nothing
3137 && optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3138 {
3139 /* Final reduction via vector shifts and the reduction operator.
3140 Also requires scalar extract. */
3141 epilogue_cost += add_stmt_cost (target_cost_data,
3142 exact_log2 (nelements) * 2,
3143 vector_stmt, stmt_info, 0,
3144 vect_epilogue);
3145 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3146 vec_to_scalar, stmt_info, 0,
3147 vect_epilogue);
3148 }
3149 else
3150 /* Use extracts and reduction op for final reduction. For N
3151 elements, we have N extracts and N-1 reduction ops. */
3152 epilogue_cost += add_stmt_cost (target_cost_data,
3153 nelements + nelements - 1,
3154 vector_stmt, stmt_info, 0,
3155 vect_epilogue);
3156 }
3157 }
3158
3159 if (dump_enabled_p ())
3160 dump_printf (MSG_NOTE,
3161 "vect_model_reduction_cost: inside_cost = %d, "
3162 "prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
3163 prologue_cost, epilogue_cost);
3164
3165 return true;
3166 }
3167
3168
3169 /* Function vect_model_induction_cost.
3170
3171 Models cost for induction operations. */
3172
3173 static void
3174 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
3175 {
3176 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3177 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3178 unsigned inside_cost, prologue_cost;
3179
3180 /* loop cost for vec_loop. */
3181 inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3182 stmt_info, 0, vect_body);
3183
3184 /* prologue cost for vec_init and vec_step. */
3185 prologue_cost = add_stmt_cost (target_cost_data, 2, scalar_to_vec,
3186 stmt_info, 0, vect_prologue);
3187
3188 if (dump_enabled_p ())
3189 dump_printf_loc (MSG_NOTE, vect_location,
3190 "vect_model_induction_cost: inside_cost = %d, "
3191 "prologue_cost = %d .\n", inside_cost, prologue_cost);
3192 }
3193
3194
3195 /* Function get_initial_def_for_induction
3196
3197 Input:
3198 STMT - a stmt that performs an induction operation in the loop.
3199 IV_PHI - the initial value of the induction variable
3200
3201 Output:
3202 Return a vector variable, initialized with the first VF values of
3203 the induction variable. E.g., for an iv with IV_PHI='X' and
3204 evolution S, for a vector of 4 units, we want to return:
3205 [X, X + S, X + 2*S, X + 3*S]. */
3206
3207 static tree
3208 get_initial_def_for_induction (gimple iv_phi)
3209 {
3210 stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
3211 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3212 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3213 tree vectype;
3214 int nunits;
3215 edge pe = loop_preheader_edge (loop);
3216 struct loop *iv_loop;
3217 basic_block new_bb;
3218 tree new_vec, vec_init, vec_step, t;
3219 tree new_var;
3220 tree new_name;
3221 gimple init_stmt, induction_phi, new_stmt;
3222 tree induc_def, vec_def, vec_dest;
3223 tree init_expr, step_expr;
3224 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3225 int i;
3226 int ncopies;
3227 tree expr;
3228 stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
3229 bool nested_in_vect_loop = false;
3230 gimple_seq stmts = NULL;
3231 imm_use_iterator imm_iter;
3232 use_operand_p use_p;
3233 gimple exit_phi;
3234 edge latch_e;
3235 tree loop_arg;
3236 gimple_stmt_iterator si;
3237 basic_block bb = gimple_bb (iv_phi);
3238 tree stepvectype;
3239 tree resvectype;
3240
3241 /* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
3242 if (nested_in_vect_loop_p (loop, iv_phi))
3243 {
3244 nested_in_vect_loop = true;
3245 iv_loop = loop->inner;
3246 }
3247 else
3248 iv_loop = loop;
3249 gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
3250
3251 latch_e = loop_latch_edge (iv_loop);
3252 loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
3253
3254 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
3255 gcc_assert (step_expr != NULL_TREE);
3256
3257 pe = loop_preheader_edge (iv_loop);
3258 init_expr = PHI_ARG_DEF_FROM_EDGE (iv_phi,
3259 loop_preheader_edge (iv_loop));
3260
3261 vectype = get_vectype_for_scalar_type (TREE_TYPE (init_expr));
3262 resvectype = get_vectype_for_scalar_type (TREE_TYPE (PHI_RESULT (iv_phi)));
3263 gcc_assert (vectype);
3264 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3265 ncopies = vf / nunits;
3266
3267 gcc_assert (phi_info);
3268 gcc_assert (ncopies >= 1);
3269
3270 /* Convert the step to the desired type. */
3271 step_expr = force_gimple_operand (fold_convert (TREE_TYPE (vectype),
3272 step_expr),
3273 &stmts, true, NULL_TREE);
3274 if (stmts)
3275 {
3276 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3277 gcc_assert (!new_bb);
3278 }
3279
3280 /* Find the first insertion point in the BB. */
3281 si = gsi_after_labels (bb);
3282
3283 /* Create the vector that holds the initial_value of the induction. */
3284 if (nested_in_vect_loop)
3285 {
3286 /* iv_loop is nested in the loop to be vectorized. init_expr had already
3287 been created during vectorization of previous stmts. We obtain it
3288 from the STMT_VINFO_VEC_STMT of the defining stmt. */
3289 vec_init = vect_get_vec_def_for_operand (init_expr, iv_phi, NULL);
3290 /* If the initial value is not of proper type, convert it. */
3291 if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
3292 {
3293 new_stmt = gimple_build_assign_with_ops
3294 (VIEW_CONVERT_EXPR,
3295 vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_"),
3296 build1 (VIEW_CONVERT_EXPR, vectype, vec_init), NULL_TREE);
3297 vec_init = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
3298 gimple_assign_set_lhs (new_stmt, vec_init);
3299 new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
3300 new_stmt);
3301 gcc_assert (!new_bb);
3302 set_vinfo_for_stmt (new_stmt,
3303 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3304 }
3305 }
3306 else
3307 {
3308 vec<constructor_elt, va_gc> *v;
3309
3310 /* iv_loop is the loop to be vectorized. Create:
3311 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
3312 new_var = vect_get_new_vect_var (TREE_TYPE (vectype),
3313 vect_scalar_var, "var_");
3314 new_name = force_gimple_operand (fold_convert (TREE_TYPE (vectype),
3315 init_expr),
3316 &stmts, false, new_var);
3317 if (stmts)
3318 {
3319 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3320 gcc_assert (!new_bb);
3321 }
3322
3323 vec_alloc (v, nunits);
3324 bool constant_p = is_gimple_min_invariant (new_name);
3325 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3326 for (i = 1; i < nunits; i++)
3327 {
3328 /* Create: new_name_i = new_name + step_expr */
3329 new_name = fold_build2 (PLUS_EXPR, TREE_TYPE (new_name),
3330 new_name, step_expr);
3331 if (!is_gimple_min_invariant (new_name))
3332 {
3333 init_stmt = gimple_build_assign (new_var, new_name);
3334 new_name = make_ssa_name (new_var, init_stmt);
3335 gimple_assign_set_lhs (init_stmt, new_name);
3336 new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
3337 gcc_assert (!new_bb);
3338 if (dump_enabled_p ())
3339 {
3340 dump_printf_loc (MSG_NOTE, vect_location,
3341 "created new init_stmt: ");
3342 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, init_stmt, 0);
3343 dump_printf (MSG_NOTE, "\n");
3344 }
3345 constant_p = false;
3346 }
3347 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3348 }
3349 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
3350 if (constant_p)
3351 new_vec = build_vector_from_ctor (vectype, v);
3352 else
3353 new_vec = build_constructor (vectype, v);
3354 vec_init = vect_init_vector (iv_phi, new_vec, vectype, NULL);
3355 }
3356
3357
3358 /* Create the vector that holds the step of the induction. */
3359 if (nested_in_vect_loop)
3360 /* iv_loop is nested in the loop to be vectorized. Generate:
3361 vec_step = [S, S, S, S] */
3362 new_name = step_expr;
3363 else
3364 {
3365 /* iv_loop is the loop to be vectorized. Generate:
3366 vec_step = [VF*S, VF*S, VF*S, VF*S] */
3367 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
3368 {
3369 expr = build_int_cst (integer_type_node, vf);
3370 expr = fold_convert (TREE_TYPE (step_expr), expr);
3371 }
3372 else
3373 expr = build_int_cst (TREE_TYPE (step_expr), vf);
3374 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3375 expr, step_expr);
3376 if (TREE_CODE (step_expr) == SSA_NAME)
3377 new_name = vect_init_vector (iv_phi, new_name,
3378 TREE_TYPE (step_expr), NULL);
3379 }
3380
3381 t = unshare_expr (new_name);
3382 gcc_assert (CONSTANT_CLASS_P (new_name)
3383 || TREE_CODE (new_name) == SSA_NAME);
3384 stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
3385 gcc_assert (stepvectype);
3386 new_vec = build_vector_from_val (stepvectype, t);
3387 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3388
3389
3390 /* Create the following def-use cycle:
3391 loop prolog:
3392 vec_init = ...
3393 vec_step = ...
3394 loop:
3395 vec_iv = PHI <vec_init, vec_loop>
3396 ...
3397 STMT
3398 ...
3399 vec_loop = vec_iv + vec_step; */
3400
3401 /* Create the induction-phi that defines the induction-operand. */
3402 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
3403 induction_phi = create_phi_node (vec_dest, iv_loop->header);
3404 set_vinfo_for_stmt (induction_phi,
3405 new_stmt_vec_info (induction_phi, loop_vinfo, NULL));
3406 induc_def = PHI_RESULT (induction_phi);
3407
3408 /* Create the iv update inside the loop */
3409 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
3410 induc_def, vec_step);
3411 vec_def = make_ssa_name (vec_dest, new_stmt);
3412 gimple_assign_set_lhs (new_stmt, vec_def);
3413 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3414 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo,
3415 NULL));
3416
3417 /* Set the arguments of the phi node: */
3418 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
3419 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
3420 UNKNOWN_LOCATION);
3421
3422
3423 /* In case that vectorization factor (VF) is bigger than the number
3424 of elements that we can fit in a vectype (nunits), we have to generate
3425 more than one vector stmt - i.e - we need to "unroll" the
3426 vector stmt by a factor VF/nunits. For more details see documentation
3427 in vectorizable_operation. */
3428
3429 if (ncopies > 1)
3430 {
3431 stmt_vec_info prev_stmt_vinfo;
3432 /* FORNOW. This restriction should be relaxed. */
3433 gcc_assert (!nested_in_vect_loop);
3434
3435 /* Create the vector that holds the step of the induction. */
3436 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
3437 {
3438 expr = build_int_cst (integer_type_node, nunits);
3439 expr = fold_convert (TREE_TYPE (step_expr), expr);
3440 }
3441 else
3442 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
3443 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3444 expr, step_expr);
3445 if (TREE_CODE (step_expr) == SSA_NAME)
3446 new_name = vect_init_vector (iv_phi, new_name,
3447 TREE_TYPE (step_expr), NULL);
3448 t = unshare_expr (new_name);
3449 gcc_assert (CONSTANT_CLASS_P (new_name)
3450 || TREE_CODE (new_name) == SSA_NAME);
3451 new_vec = build_vector_from_val (stepvectype, t);
3452 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3453
3454 vec_def = induc_def;
3455 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
3456 for (i = 1; i < ncopies; i++)
3457 {
3458 /* vec_i = vec_prev + vec_step */
3459 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
3460 vec_def, vec_step);
3461 vec_def = make_ssa_name (vec_dest, new_stmt);
3462 gimple_assign_set_lhs (new_stmt, vec_def);
3463
3464 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3465 if (!useless_type_conversion_p (resvectype, vectype))
3466 {
3467 new_stmt = gimple_build_assign_with_ops
3468 (VIEW_CONVERT_EXPR,
3469 vect_get_new_vect_var (resvectype, vect_simple_var,
3470 "vec_iv_"),
3471 build1 (VIEW_CONVERT_EXPR, resvectype,
3472 gimple_assign_lhs (new_stmt)), NULL_TREE);
3473 gimple_assign_set_lhs (new_stmt,
3474 make_ssa_name
3475 (gimple_assign_lhs (new_stmt), new_stmt));
3476 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3477 }
3478 set_vinfo_for_stmt (new_stmt,
3479 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3480 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
3481 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
3482 }
3483 }
3484
3485 if (nested_in_vect_loop)
3486 {
3487 /* Find the loop-closed exit-phi of the induction, and record
3488 the final vector of induction results: */
3489 exit_phi = NULL;
3490 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
3491 {
3492 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (USE_STMT (use_p))))
3493 {
3494 exit_phi = USE_STMT (use_p);
3495 break;
3496 }
3497 }
3498 if (exit_phi)
3499 {
3500 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
3501 /* FORNOW. Currently not supporting the case that an inner-loop induction
3502 is not used in the outer-loop (i.e. only outside the outer-loop). */
3503 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
3504 && !STMT_VINFO_LIVE_P (stmt_vinfo));
3505
3506 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
3507 if (dump_enabled_p ())
3508 {
3509 dump_printf_loc (MSG_NOTE, vect_location,
3510 "vector of inductions after inner-loop:");
3511 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
3512 dump_printf (MSG_NOTE, "\n");
3513 }
3514 }
3515 }
3516
3517
3518 if (dump_enabled_p ())
3519 {
3520 dump_printf_loc (MSG_NOTE, vect_location,
3521 "transform induction: created def-use cycle: ");
3522 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
3523 dump_printf (MSG_NOTE, "\n");
3524 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
3525 SSA_NAME_DEF_STMT (vec_def), 0);
3526 dump_printf (MSG_NOTE, "\n");
3527 }
3528
3529 STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
3530 if (!useless_type_conversion_p (resvectype, vectype))
3531 {
3532 new_stmt = gimple_build_assign_with_ops
3533 (VIEW_CONVERT_EXPR,
3534 vect_get_new_vect_var (resvectype, vect_simple_var, "vec_iv_"),
3535 build1 (VIEW_CONVERT_EXPR, resvectype, induc_def), NULL_TREE);
3536 induc_def = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
3537 gimple_assign_set_lhs (new_stmt, induc_def);
3538 si = gsi_after_labels (bb);
3539 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3540 set_vinfo_for_stmt (new_stmt,
3541 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3542 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_stmt))
3543 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (induction_phi));
3544 }
3545
3546 return induc_def;
3547 }
3548
3549
3550 /* Function get_initial_def_for_reduction
3551
3552 Input:
3553 STMT - a stmt that performs a reduction operation in the loop.
3554 INIT_VAL - the initial value of the reduction variable
3555
3556 Output:
3557 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
3558 of the reduction (used for adjusting the epilog - see below).
3559 Return a vector variable, initialized according to the operation that STMT
3560 performs. This vector will be used as the initial value of the
3561 vector of partial results.
3562
3563 Option1 (adjust in epilog): Initialize the vector as follows:
3564 add/bit or/xor: [0,0,...,0,0]
3565 mult/bit and: [1,1,...,1,1]
3566 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
3567 and when necessary (e.g. add/mult case) let the caller know
3568 that it needs to adjust the result by init_val.
3569
3570 Option2: Initialize the vector as follows:
3571 add/bit or/xor: [init_val,0,0,...,0]
3572 mult/bit and: [init_val,1,1,...,1]
3573 min/max/cond_expr: [init_val,init_val,...,init_val]
3574 and no adjustments are needed.
3575
3576 For example, for the following code:
3577
3578 s = init_val;
3579 for (i=0;i<n;i++)
3580 s = s + a[i];
3581
3582 STMT is 's = s + a[i]', and the reduction variable is 's'.
3583 For a vector of 4 units, we want to return either [0,0,0,init_val],
3584 or [0,0,0,0] and let the caller know that it needs to adjust
3585 the result at the end by 'init_val'.
3586
3587 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
3588 initialization vector is simpler (same element in all entries), if
3589 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
3590
3591 A cost model should help decide between these two schemes. */
3592
3593 tree
3594 get_initial_def_for_reduction (gimple stmt, tree init_val,
3595 tree *adjustment_def)
3596 {
3597 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
3598 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3599 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3600 tree scalar_type = TREE_TYPE (init_val);
3601 tree vectype = get_vectype_for_scalar_type (scalar_type);
3602 int nunits;
3603 enum tree_code code = gimple_assign_rhs_code (stmt);
3604 tree def_for_init;
3605 tree init_def;
3606 tree *elts;
3607 int i;
3608 bool nested_in_vect_loop = false;
3609 tree init_value;
3610 REAL_VALUE_TYPE real_init_val = dconst0;
3611 int int_init_val = 0;
3612 gimple def_stmt = NULL;
3613
3614 gcc_assert (vectype);
3615 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3616
3617 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
3618 || SCALAR_FLOAT_TYPE_P (scalar_type));
3619
3620 if (nested_in_vect_loop_p (loop, stmt))
3621 nested_in_vect_loop = true;
3622 else
3623 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
3624
3625 /* In case of double reduction we only create a vector variable to be put
3626 in the reduction phi node. The actual statement creation is done in
3627 vect_create_epilog_for_reduction. */
3628 if (adjustment_def && nested_in_vect_loop
3629 && TREE_CODE (init_val) == SSA_NAME
3630 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
3631 && gimple_code (def_stmt) == GIMPLE_PHI
3632 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
3633 && vinfo_for_stmt (def_stmt)
3634 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
3635 == vect_double_reduction_def)
3636 {
3637 *adjustment_def = NULL;
3638 return vect_create_destination_var (init_val, vectype);
3639 }
3640
3641 if (TREE_CONSTANT (init_val))
3642 {
3643 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3644 init_value = build_real (scalar_type, TREE_REAL_CST (init_val));
3645 else
3646 init_value = build_int_cst (scalar_type, TREE_INT_CST_LOW (init_val));
3647 }
3648 else
3649 init_value = init_val;
3650
3651 switch (code)
3652 {
3653 case WIDEN_SUM_EXPR:
3654 case DOT_PROD_EXPR:
3655 case PLUS_EXPR:
3656 case MINUS_EXPR:
3657 case BIT_IOR_EXPR:
3658 case BIT_XOR_EXPR:
3659 case MULT_EXPR:
3660 case BIT_AND_EXPR:
3661 /* ADJUSMENT_DEF is NULL when called from
3662 vect_create_epilog_for_reduction to vectorize double reduction. */
3663 if (adjustment_def)
3664 {
3665 if (nested_in_vect_loop)
3666 *adjustment_def = vect_get_vec_def_for_operand (init_val, stmt,
3667 NULL);
3668 else
3669 *adjustment_def = init_val;
3670 }
3671
3672 if (code == MULT_EXPR)
3673 {
3674 real_init_val = dconst1;
3675 int_init_val = 1;
3676 }
3677
3678 if (code == BIT_AND_EXPR)
3679 int_init_val = -1;
3680
3681 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3682 def_for_init = build_real (scalar_type, real_init_val);
3683 else
3684 def_for_init = build_int_cst (scalar_type, int_init_val);
3685
3686 /* Create a vector of '0' or '1' except the first element. */
3687 elts = XALLOCAVEC (tree, nunits);
3688 for (i = nunits - 2; i >= 0; --i)
3689 elts[i + 1] = def_for_init;
3690
3691 /* Option1: the first element is '0' or '1' as well. */
3692 if (adjustment_def)
3693 {
3694 elts[0] = def_for_init;
3695 init_def = build_vector (vectype, elts);
3696 break;
3697 }
3698
3699 /* Option2: the first element is INIT_VAL. */
3700 elts[0] = init_val;
3701 if (TREE_CONSTANT (init_val))
3702 init_def = build_vector (vectype, elts);
3703 else
3704 {
3705 vec<constructor_elt, va_gc> *v;
3706 vec_alloc (v, nunits);
3707 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init_val);
3708 for (i = 1; i < nunits; ++i)
3709 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
3710 init_def = build_constructor (vectype, v);
3711 }
3712
3713 break;
3714
3715 case MIN_EXPR:
3716 case MAX_EXPR:
3717 case COND_EXPR:
3718 if (adjustment_def)
3719 {
3720 *adjustment_def = NULL_TREE;
3721 init_def = vect_get_vec_def_for_operand (init_val, stmt, NULL);
3722 break;
3723 }
3724
3725 init_def = build_vector_from_val (vectype, init_value);
3726 break;
3727
3728 default:
3729 gcc_unreachable ();
3730 }
3731
3732 return init_def;
3733 }
3734
3735
3736 /* Function vect_create_epilog_for_reduction
3737
3738 Create code at the loop-epilog to finalize the result of a reduction
3739 computation.
3740
3741 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
3742 reduction statements.
3743 STMT is the scalar reduction stmt that is being vectorized.
3744 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
3745 number of elements that we can fit in a vectype (nunits). In this case
3746 we have to generate more than one vector stmt - i.e - we need to "unroll"
3747 the vector stmt by a factor VF/nunits. For more details see documentation
3748 in vectorizable_operation.
3749 REDUC_CODE is the tree-code for the epilog reduction.
3750 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
3751 computation.
3752 REDUC_INDEX is the index of the operand in the right hand side of the
3753 statement that is defined by REDUCTION_PHI.
3754 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
3755 SLP_NODE is an SLP node containing a group of reduction statements. The
3756 first one in this group is STMT.
3757
3758 This function:
3759 1. Creates the reduction def-use cycles: sets the arguments for
3760 REDUCTION_PHIS:
3761 The loop-entry argument is the vectorized initial-value of the reduction.
3762 The loop-latch argument is taken from VECT_DEFS - the vector of partial
3763 sums.
3764 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
3765 by applying the operation specified by REDUC_CODE if available, or by
3766 other means (whole-vector shifts or a scalar loop).
3767 The function also creates a new phi node at the loop exit to preserve
3768 loop-closed form, as illustrated below.
3769
3770 The flow at the entry to this function:
3771
3772 loop:
3773 vec_def = phi <null, null> # REDUCTION_PHI
3774 VECT_DEF = vector_stmt # vectorized form of STMT
3775 s_loop = scalar_stmt # (scalar) STMT
3776 loop_exit:
3777 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3778 use <s_out0>
3779 use <s_out0>
3780
3781 The above is transformed by this function into:
3782
3783 loop:
3784 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3785 VECT_DEF = vector_stmt # vectorized form of STMT
3786 s_loop = scalar_stmt # (scalar) STMT
3787 loop_exit:
3788 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3789 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3790 v_out2 = reduce <v_out1>
3791 s_out3 = extract_field <v_out2, 0>
3792 s_out4 = adjust_result <s_out3>
3793 use <s_out4>
3794 use <s_out4>
3795 */
3796
3797 static void
3798 vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple stmt,
3799 int ncopies, enum tree_code reduc_code,
3800 vec<gimple> reduction_phis,
3801 int reduc_index, bool double_reduc,
3802 slp_tree slp_node)
3803 {
3804 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3805 stmt_vec_info prev_phi_info;
3806 tree vectype;
3807 enum machine_mode mode;
3808 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3809 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
3810 basic_block exit_bb;
3811 tree scalar_dest;
3812 tree scalar_type;
3813 gimple new_phi = NULL, phi;
3814 gimple_stmt_iterator exit_gsi;
3815 tree vec_dest;
3816 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
3817 gimple epilog_stmt = NULL;
3818 enum tree_code code = gimple_assign_rhs_code (stmt);
3819 gimple exit_phi;
3820 tree bitsize, bitpos;
3821 tree adjustment_def = NULL;
3822 tree vec_initial_def = NULL;
3823 tree reduction_op, expr, def;
3824 tree orig_name, scalar_result;
3825 imm_use_iterator imm_iter, phi_imm_iter;
3826 use_operand_p use_p, phi_use_p;
3827 bool extract_scalar_result = false;
3828 gimple use_stmt, orig_stmt, reduction_phi = NULL;
3829 bool nested_in_vect_loop = false;
3830 auto_vec<gimple> new_phis;
3831 auto_vec<gimple> inner_phis;
3832 enum vect_def_type dt = vect_unknown_def_type;
3833 int j, i;
3834 auto_vec<tree> scalar_results;
3835 unsigned int group_size = 1, k, ratio;
3836 auto_vec<tree> vec_initial_defs;
3837 auto_vec<gimple> phis;
3838 bool slp_reduc = false;
3839 tree new_phi_result;
3840 gimple inner_phi = NULL;
3841
3842 if (slp_node)
3843 group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
3844
3845 if (nested_in_vect_loop_p (loop, stmt))
3846 {
3847 outer_loop = loop;
3848 loop = loop->inner;
3849 nested_in_vect_loop = true;
3850 gcc_assert (!slp_node);
3851 }
3852
3853 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3854 {
3855 case GIMPLE_SINGLE_RHS:
3856 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
3857 == ternary_op);
3858 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
3859 break;
3860 case GIMPLE_UNARY_RHS:
3861 reduction_op = gimple_assign_rhs1 (stmt);
3862 break;
3863 case GIMPLE_BINARY_RHS:
3864 reduction_op = reduc_index ?
3865 gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt);
3866 break;
3867 case GIMPLE_TERNARY_RHS:
3868 reduction_op = gimple_op (stmt, reduc_index + 1);
3869 break;
3870 default:
3871 gcc_unreachable ();
3872 }
3873
3874 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3875 gcc_assert (vectype);
3876 mode = TYPE_MODE (vectype);
3877
3878 /* 1. Create the reduction def-use cycle:
3879 Set the arguments of REDUCTION_PHIS, i.e., transform
3880
3881 loop:
3882 vec_def = phi <null, null> # REDUCTION_PHI
3883 VECT_DEF = vector_stmt # vectorized form of STMT
3884 ...
3885
3886 into:
3887
3888 loop:
3889 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3890 VECT_DEF = vector_stmt # vectorized form of STMT
3891 ...
3892
3893 (in case of SLP, do it for all the phis). */
3894
3895 /* Get the loop-entry arguments. */
3896 if (slp_node)
3897 vect_get_vec_defs (reduction_op, NULL_TREE, stmt, &vec_initial_defs,
3898 NULL, slp_node, reduc_index);
3899 else
3900 {
3901 vec_initial_defs.create (1);
3902 /* For the case of reduction, vect_get_vec_def_for_operand returns
3903 the scalar def before the loop, that defines the initial value
3904 of the reduction variable. */
3905 vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
3906 &adjustment_def);
3907 vec_initial_defs.quick_push (vec_initial_def);
3908 }
3909
3910 /* Set phi nodes arguments. */
3911 FOR_EACH_VEC_ELT (reduction_phis, i, phi)
3912 {
3913 tree vec_init_def = vec_initial_defs[i];
3914 tree def = vect_defs[i];
3915 for (j = 0; j < ncopies; j++)
3916 {
3917 /* Set the loop-entry arg of the reduction-phi. */
3918 add_phi_arg (phi, vec_init_def, loop_preheader_edge (loop),
3919 UNKNOWN_LOCATION);
3920
3921 /* Set the loop-latch arg for the reduction-phi. */
3922 if (j > 0)
3923 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
3924
3925 add_phi_arg (phi, def, loop_latch_edge (loop), UNKNOWN_LOCATION);
3926
3927 if (dump_enabled_p ())
3928 {
3929 dump_printf_loc (MSG_NOTE, vect_location,
3930 "transform reduction: created def-use cycle: ");
3931 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
3932 dump_printf (MSG_NOTE, "\n");
3933 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
3934 dump_printf (MSG_NOTE, "\n");
3935 }
3936
3937 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
3938 }
3939 }
3940
3941 /* 2. Create epilog code.
3942 The reduction epilog code operates across the elements of the vector
3943 of partial results computed by the vectorized loop.
3944 The reduction epilog code consists of:
3945
3946 step 1: compute the scalar result in a vector (v_out2)
3947 step 2: extract the scalar result (s_out3) from the vector (v_out2)
3948 step 3: adjust the scalar result (s_out3) if needed.
3949
3950 Step 1 can be accomplished using one the following three schemes:
3951 (scheme 1) using reduc_code, if available.
3952 (scheme 2) using whole-vector shifts, if available.
3953 (scheme 3) using a scalar loop. In this case steps 1+2 above are
3954 combined.
3955
3956 The overall epilog code looks like this:
3957
3958 s_out0 = phi <s_loop> # original EXIT_PHI
3959 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3960 v_out2 = reduce <v_out1> # step 1
3961 s_out3 = extract_field <v_out2, 0> # step 2
3962 s_out4 = adjust_result <s_out3> # step 3
3963
3964 (step 3 is optional, and steps 1 and 2 may be combined).
3965 Lastly, the uses of s_out0 are replaced by s_out4. */
3966
3967
3968 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
3969 v_out1 = phi <VECT_DEF>
3970 Store them in NEW_PHIS. */
3971
3972 exit_bb = single_exit (loop)->dest;
3973 prev_phi_info = NULL;
3974 new_phis.create (vect_defs.length ());
3975 FOR_EACH_VEC_ELT (vect_defs, i, def)
3976 {
3977 for (j = 0; j < ncopies; j++)
3978 {
3979 tree new_def = copy_ssa_name (def, NULL);
3980 phi = create_phi_node (new_def, exit_bb);
3981 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo, NULL));
3982 if (j == 0)
3983 new_phis.quick_push (phi);
3984 else
3985 {
3986 def = vect_get_vec_def_for_stmt_copy (dt, def);
3987 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
3988 }
3989
3990 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
3991 prev_phi_info = vinfo_for_stmt (phi);
3992 }
3993 }
3994
3995 /* The epilogue is created for the outer-loop, i.e., for the loop being
3996 vectorized. Create exit phis for the outer loop. */
3997 if (double_reduc)
3998 {
3999 loop = outer_loop;
4000 exit_bb = single_exit (loop)->dest;
4001 inner_phis.create (vect_defs.length ());
4002 FOR_EACH_VEC_ELT (new_phis, i, phi)
4003 {
4004 tree new_result = copy_ssa_name (PHI_RESULT (phi), NULL);
4005 gimple outer_phi = create_phi_node (new_result, exit_bb);
4006 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4007 PHI_RESULT (phi));
4008 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4009 loop_vinfo, NULL));
4010 inner_phis.quick_push (phi);
4011 new_phis[i] = outer_phi;
4012 prev_phi_info = vinfo_for_stmt (outer_phi);
4013 while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
4014 {
4015 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4016 new_result = copy_ssa_name (PHI_RESULT (phi), NULL);
4017 outer_phi = create_phi_node (new_result, exit_bb);
4018 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4019 PHI_RESULT (phi));
4020 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4021 loop_vinfo, NULL));
4022 STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
4023 prev_phi_info = vinfo_for_stmt (outer_phi);
4024 }
4025 }
4026 }
4027
4028 exit_gsi = gsi_after_labels (exit_bb);
4029
4030 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
4031 (i.e. when reduc_code is not available) and in the final adjustment
4032 code (if needed). Also get the original scalar reduction variable as
4033 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
4034 represents a reduction pattern), the tree-code and scalar-def are
4035 taken from the original stmt that the pattern-stmt (STMT) replaces.
4036 Otherwise (it is a regular reduction) - the tree-code and scalar-def
4037 are taken from STMT. */
4038
4039 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4040 if (!orig_stmt)
4041 {
4042 /* Regular reduction */
4043 orig_stmt = stmt;
4044 }
4045 else
4046 {
4047 /* Reduction pattern */
4048 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
4049 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
4050 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
4051 }
4052
4053 code = gimple_assign_rhs_code (orig_stmt);
4054 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
4055 partial results are added and not subtracted. */
4056 if (code == MINUS_EXPR)
4057 code = PLUS_EXPR;
4058
4059 scalar_dest = gimple_assign_lhs (orig_stmt);
4060 scalar_type = TREE_TYPE (scalar_dest);
4061 scalar_results.create (group_size);
4062 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
4063 bitsize = TYPE_SIZE (scalar_type);
4064
4065 /* In case this is a reduction in an inner-loop while vectorizing an outer
4066 loop - we don't need to extract a single scalar result at the end of the
4067 inner-loop (unless it is double reduction, i.e., the use of reduction is
4068 outside the outer-loop). The final vector of partial results will be used
4069 in the vectorized outer-loop, or reduced to a scalar result at the end of
4070 the outer-loop. */
4071 if (nested_in_vect_loop && !double_reduc)
4072 goto vect_finalize_reduction;
4073
4074 /* SLP reduction without reduction chain, e.g.,
4075 # a1 = phi <a2, a0>
4076 # b1 = phi <b2, b0>
4077 a2 = operation (a1)
4078 b2 = operation (b1) */
4079 slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
4080
4081 /* In case of reduction chain, e.g.,
4082 # a1 = phi <a3, a0>
4083 a2 = operation (a1)
4084 a3 = operation (a2),
4085
4086 we may end up with more than one vector result. Here we reduce them to
4087 one vector. */
4088 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4089 {
4090 tree first_vect = PHI_RESULT (new_phis[0]);
4091 tree tmp;
4092 gimple new_vec_stmt = NULL;
4093
4094 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4095 for (k = 1; k < new_phis.length (); k++)
4096 {
4097 gimple next_phi = new_phis[k];
4098 tree second_vect = PHI_RESULT (next_phi);
4099
4100 tmp = build2 (code, vectype, first_vect, second_vect);
4101 new_vec_stmt = gimple_build_assign (vec_dest, tmp);
4102 first_vect = make_ssa_name (vec_dest, new_vec_stmt);
4103 gimple_assign_set_lhs (new_vec_stmt, first_vect);
4104 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
4105 }
4106
4107 new_phi_result = first_vect;
4108 if (new_vec_stmt)
4109 {
4110 new_phis.truncate (0);
4111 new_phis.safe_push (new_vec_stmt);
4112 }
4113 }
4114 else
4115 new_phi_result = PHI_RESULT (new_phis[0]);
4116
4117 /* 2.3 Create the reduction code, using one of the three schemes described
4118 above. In SLP we simply need to extract all the elements from the
4119 vector (without reducing them), so we use scalar shifts. */
4120 if (reduc_code != ERROR_MARK && !slp_reduc)
4121 {
4122 tree tmp;
4123
4124 /*** Case 1: Create:
4125 v_out2 = reduc_expr <v_out1> */
4126
4127 if (dump_enabled_p ())
4128 dump_printf_loc (MSG_NOTE, vect_location,
4129 "Reduce using direct vector reduction.\n");
4130
4131 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4132 tmp = build1 (reduc_code, vectype, new_phi_result);
4133 epilog_stmt = gimple_build_assign (vec_dest, tmp);
4134 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4135 gimple_assign_set_lhs (epilog_stmt, new_temp);
4136 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4137
4138 extract_scalar_result = true;
4139 }
4140 else
4141 {
4142 enum tree_code shift_code = ERROR_MARK;
4143 bool have_whole_vector_shift = true;
4144 int bit_offset;
4145 int element_bitsize = tree_to_uhwi (bitsize);
4146 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
4147 tree vec_temp;
4148
4149 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
4150 shift_code = VEC_RSHIFT_EXPR;
4151 else
4152 have_whole_vector_shift = false;
4153
4154 /* Regardless of whether we have a whole vector shift, if we're
4155 emulating the operation via tree-vect-generic, we don't want
4156 to use it. Only the first round of the reduction is likely
4157 to still be profitable via emulation. */
4158 /* ??? It might be better to emit a reduction tree code here, so that
4159 tree-vect-generic can expand the first round via bit tricks. */
4160 if (!VECTOR_MODE_P (mode))
4161 have_whole_vector_shift = false;
4162 else
4163 {
4164 optab optab = optab_for_tree_code (code, vectype, optab_default);
4165 if (optab_handler (optab, mode) == CODE_FOR_nothing)
4166 have_whole_vector_shift = false;
4167 }
4168
4169 if (have_whole_vector_shift && !slp_reduc)
4170 {
4171 /*** Case 2: Create:
4172 for (offset = VS/2; offset >= element_size; offset/=2)
4173 {
4174 Create: va' = vec_shift <va, offset>
4175 Create: va = vop <va, va'>
4176 } */
4177
4178 if (dump_enabled_p ())
4179 dump_printf_loc (MSG_NOTE, vect_location,
4180 "Reduce using vector shifts\n");
4181
4182 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4183 new_temp = new_phi_result;
4184 for (bit_offset = vec_size_in_bits/2;
4185 bit_offset >= element_bitsize;
4186 bit_offset /= 2)
4187 {
4188 tree bitpos = size_int (bit_offset);
4189
4190 epilog_stmt = gimple_build_assign_with_ops (shift_code,
4191 vec_dest, new_temp, bitpos);
4192 new_name = make_ssa_name (vec_dest, epilog_stmt);
4193 gimple_assign_set_lhs (epilog_stmt, new_name);
4194 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4195
4196 epilog_stmt = gimple_build_assign_with_ops (code, vec_dest,
4197 new_name, new_temp);
4198 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4199 gimple_assign_set_lhs (epilog_stmt, new_temp);
4200 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4201 }
4202
4203 extract_scalar_result = true;
4204 }
4205 else
4206 {
4207 tree rhs;
4208
4209 /*** Case 3: Create:
4210 s = extract_field <v_out2, 0>
4211 for (offset = element_size;
4212 offset < vector_size;
4213 offset += element_size;)
4214 {
4215 Create: s' = extract_field <v_out2, offset>
4216 Create: s = op <s, s'> // For non SLP cases
4217 } */
4218
4219 if (dump_enabled_p ())
4220 dump_printf_loc (MSG_NOTE, vect_location,
4221 "Reduce using scalar code.\n");
4222
4223 vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
4224 FOR_EACH_VEC_ELT (new_phis, i, new_phi)
4225 {
4226 if (gimple_code (new_phi) == GIMPLE_PHI)
4227 vec_temp = PHI_RESULT (new_phi);
4228 else
4229 vec_temp = gimple_assign_lhs (new_phi);
4230 rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
4231 bitsize_zero_node);
4232 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4233 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4234 gimple_assign_set_lhs (epilog_stmt, new_temp);
4235 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4236
4237 /* In SLP we don't need to apply reduction operation, so we just
4238 collect s' values in SCALAR_RESULTS. */
4239 if (slp_reduc)
4240 scalar_results.safe_push (new_temp);
4241
4242 for (bit_offset = element_bitsize;
4243 bit_offset < vec_size_in_bits;
4244 bit_offset += element_bitsize)
4245 {
4246 tree bitpos = bitsize_int (bit_offset);
4247 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
4248 bitsize, bitpos);
4249
4250 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4251 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
4252 gimple_assign_set_lhs (epilog_stmt, new_name);
4253 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4254
4255 if (slp_reduc)
4256 {
4257 /* In SLP we don't need to apply reduction operation, so
4258 we just collect s' values in SCALAR_RESULTS. */
4259 new_temp = new_name;
4260 scalar_results.safe_push (new_name);
4261 }
4262 else
4263 {
4264 epilog_stmt = gimple_build_assign_with_ops (code,
4265 new_scalar_dest, new_name, new_temp);
4266 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4267 gimple_assign_set_lhs (epilog_stmt, new_temp);
4268 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4269 }
4270 }
4271 }
4272
4273 /* The only case where we need to reduce scalar results in SLP, is
4274 unrolling. If the size of SCALAR_RESULTS is greater than
4275 GROUP_SIZE, we reduce them combining elements modulo
4276 GROUP_SIZE. */
4277 if (slp_reduc)
4278 {
4279 tree res, first_res, new_res;
4280 gimple new_stmt;
4281
4282 /* Reduce multiple scalar results in case of SLP unrolling. */
4283 for (j = group_size; scalar_results.iterate (j, &res);
4284 j++)
4285 {
4286 first_res = scalar_results[j % group_size];
4287 new_stmt = gimple_build_assign_with_ops (code,
4288 new_scalar_dest, first_res, res);
4289 new_res = make_ssa_name (new_scalar_dest, new_stmt);
4290 gimple_assign_set_lhs (new_stmt, new_res);
4291 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
4292 scalar_results[j % group_size] = new_res;
4293 }
4294 }
4295 else
4296 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
4297 scalar_results.safe_push (new_temp);
4298
4299 extract_scalar_result = false;
4300 }
4301 }
4302
4303 /* 2.4 Extract the final scalar result. Create:
4304 s_out3 = extract_field <v_out2, bitpos> */
4305
4306 if (extract_scalar_result)
4307 {
4308 tree rhs;
4309
4310 if (dump_enabled_p ())
4311 dump_printf_loc (MSG_NOTE, vect_location,
4312 "extract scalar result\n");
4313
4314 if (BYTES_BIG_ENDIAN)
4315 bitpos = size_binop (MULT_EXPR,
4316 bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
4317 TYPE_SIZE (scalar_type));
4318 else
4319 bitpos = bitsize_zero_node;
4320
4321 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
4322 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4323 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4324 gimple_assign_set_lhs (epilog_stmt, new_temp);
4325 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4326 scalar_results.safe_push (new_temp);
4327 }
4328
4329 vect_finalize_reduction:
4330
4331 if (double_reduc)
4332 loop = loop->inner;
4333
4334 /* 2.5 Adjust the final result by the initial value of the reduction
4335 variable. (When such adjustment is not needed, then
4336 'adjustment_def' is zero). For example, if code is PLUS we create:
4337 new_temp = loop_exit_def + adjustment_def */
4338
4339 if (adjustment_def)
4340 {
4341 gcc_assert (!slp_reduc);
4342 if (nested_in_vect_loop)
4343 {
4344 new_phi = new_phis[0];
4345 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
4346 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
4347 new_dest = vect_create_destination_var (scalar_dest, vectype);
4348 }
4349 else
4350 {
4351 new_temp = scalar_results[0];
4352 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
4353 expr = build2 (code, scalar_type, new_temp, adjustment_def);
4354 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
4355 }
4356
4357 epilog_stmt = gimple_build_assign (new_dest, expr);
4358 new_temp = make_ssa_name (new_dest, epilog_stmt);
4359 gimple_assign_set_lhs (epilog_stmt, new_temp);
4360 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4361 if (nested_in_vect_loop)
4362 {
4363 set_vinfo_for_stmt (epilog_stmt,
4364 new_stmt_vec_info (epilog_stmt, loop_vinfo,
4365 NULL));
4366 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
4367 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
4368
4369 if (!double_reduc)
4370 scalar_results.quick_push (new_temp);
4371 else
4372 scalar_results[0] = new_temp;
4373 }
4374 else
4375 scalar_results[0] = new_temp;
4376
4377 new_phis[0] = epilog_stmt;
4378 }
4379
4380 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
4381 phis with new adjusted scalar results, i.e., replace use <s_out0>
4382 with use <s_out4>.
4383
4384 Transform:
4385 loop_exit:
4386 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4387 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4388 v_out2 = reduce <v_out1>
4389 s_out3 = extract_field <v_out2, 0>
4390 s_out4 = adjust_result <s_out3>
4391 use <s_out0>
4392 use <s_out0>
4393
4394 into:
4395
4396 loop_exit:
4397 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4398 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4399 v_out2 = reduce <v_out1>
4400 s_out3 = extract_field <v_out2, 0>
4401 s_out4 = adjust_result <s_out3>
4402 use <s_out4>
4403 use <s_out4> */
4404
4405
4406 /* In SLP reduction chain we reduce vector results into one vector if
4407 necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
4408 the last stmt in the reduction chain, since we are looking for the loop
4409 exit phi node. */
4410 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4411 {
4412 scalar_dest = gimple_assign_lhs (
4413 SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1]);
4414 group_size = 1;
4415 }
4416
4417 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
4418 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
4419 need to match SCALAR_RESULTS with corresponding statements. The first
4420 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
4421 the first vector stmt, etc.
4422 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
4423 if (group_size > new_phis.length ())
4424 {
4425 ratio = group_size / new_phis.length ();
4426 gcc_assert (!(group_size % new_phis.length ()));
4427 }
4428 else
4429 ratio = 1;
4430
4431 for (k = 0; k < group_size; k++)
4432 {
4433 if (k % ratio == 0)
4434 {
4435 epilog_stmt = new_phis[k / ratio];
4436 reduction_phi = reduction_phis[k / ratio];
4437 if (double_reduc)
4438 inner_phi = inner_phis[k / ratio];
4439 }
4440
4441 if (slp_reduc)
4442 {
4443 gimple current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
4444
4445 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
4446 /* SLP statements can't participate in patterns. */
4447 gcc_assert (!orig_stmt);
4448 scalar_dest = gimple_assign_lhs (current_stmt);
4449 }
4450
4451 phis.create (3);
4452 /* Find the loop-closed-use at the loop exit of the original scalar
4453 result. (The reduction result is expected to have two immediate uses -
4454 one at the latch block, and one at the loop exit). */
4455 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4456 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))
4457 && !is_gimple_debug (USE_STMT (use_p)))
4458 phis.safe_push (USE_STMT (use_p));
4459
4460 /* While we expect to have found an exit_phi because of loop-closed-ssa
4461 form we can end up without one if the scalar cycle is dead. */
4462
4463 FOR_EACH_VEC_ELT (phis, i, exit_phi)
4464 {
4465 if (outer_loop)
4466 {
4467 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
4468 gimple vect_phi;
4469
4470 /* FORNOW. Currently not supporting the case that an inner-loop
4471 reduction is not used in the outer-loop (but only outside the
4472 outer-loop), unless it is double reduction. */
4473 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
4474 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
4475 || double_reduc);
4476
4477 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
4478 if (!double_reduc
4479 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
4480 != vect_double_reduction_def)
4481 continue;
4482
4483 /* Handle double reduction:
4484
4485 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
4486 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
4487 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
4488 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
4489
4490 At that point the regular reduction (stmt2 and stmt3) is
4491 already vectorized, as well as the exit phi node, stmt4.
4492 Here we vectorize the phi node of double reduction, stmt1, and
4493 update all relevant statements. */
4494
4495 /* Go through all the uses of s2 to find double reduction phi
4496 node, i.e., stmt1 above. */
4497 orig_name = PHI_RESULT (exit_phi);
4498 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4499 {
4500 stmt_vec_info use_stmt_vinfo;
4501 stmt_vec_info new_phi_vinfo;
4502 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
4503 basic_block bb = gimple_bb (use_stmt);
4504 gimple use;
4505
4506 /* Check that USE_STMT is really double reduction phi
4507 node. */
4508 if (gimple_code (use_stmt) != GIMPLE_PHI
4509 || gimple_phi_num_args (use_stmt) != 2
4510 || bb->loop_father != outer_loop)
4511 continue;
4512 use_stmt_vinfo = vinfo_for_stmt (use_stmt);
4513 if (!use_stmt_vinfo
4514 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
4515 != vect_double_reduction_def)
4516 continue;
4517
4518 /* Create vector phi node for double reduction:
4519 vs1 = phi <vs0, vs2>
4520 vs1 was created previously in this function by a call to
4521 vect_get_vec_def_for_operand and is stored in
4522 vec_initial_def;
4523 vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
4524 vs0 is created here. */
4525
4526 /* Create vector phi node. */
4527 vect_phi = create_phi_node (vec_initial_def, bb);
4528 new_phi_vinfo = new_stmt_vec_info (vect_phi,
4529 loop_vec_info_for_loop (outer_loop), NULL);
4530 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
4531
4532 /* Create vs0 - initial def of the double reduction phi. */
4533 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
4534 loop_preheader_edge (outer_loop));
4535 init_def = get_initial_def_for_reduction (stmt,
4536 preheader_arg, NULL);
4537 vect_phi_init = vect_init_vector (use_stmt, init_def,
4538 vectype, NULL);
4539
4540 /* Update phi node arguments with vs0 and vs2. */
4541 add_phi_arg (vect_phi, vect_phi_init,
4542 loop_preheader_edge (outer_loop),
4543 UNKNOWN_LOCATION);
4544 add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
4545 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
4546 if (dump_enabled_p ())
4547 {
4548 dump_printf_loc (MSG_NOTE, vect_location,
4549 "created double reduction phi node: ");
4550 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
4551 dump_printf (MSG_NOTE, "\n");
4552 }
4553
4554 vect_phi_res = PHI_RESULT (vect_phi);
4555
4556 /* Replace the use, i.e., set the correct vs1 in the regular
4557 reduction phi node. FORNOW, NCOPIES is always 1, so the
4558 loop is redundant. */
4559 use = reduction_phi;
4560 for (j = 0; j < ncopies; j++)
4561 {
4562 edge pr_edge = loop_preheader_edge (loop);
4563 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
4564 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
4565 }
4566 }
4567 }
4568 }
4569
4570 phis.release ();
4571 if (nested_in_vect_loop)
4572 {
4573 if (double_reduc)
4574 loop = outer_loop;
4575 else
4576 continue;
4577 }
4578
4579 phis.create (3);
4580 /* Find the loop-closed-use at the loop exit of the original scalar
4581 result. (The reduction result is expected to have two immediate uses,
4582 one at the latch block, and one at the loop exit). For double
4583 reductions we are looking for exit phis of the outer loop. */
4584 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4585 {
4586 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
4587 {
4588 if (!is_gimple_debug (USE_STMT (use_p)))
4589 phis.safe_push (USE_STMT (use_p));
4590 }
4591 else
4592 {
4593 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
4594 {
4595 tree phi_res = PHI_RESULT (USE_STMT (use_p));
4596
4597 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
4598 {
4599 if (!flow_bb_inside_loop_p (loop,
4600 gimple_bb (USE_STMT (phi_use_p)))
4601 && !is_gimple_debug (USE_STMT (phi_use_p)))
4602 phis.safe_push (USE_STMT (phi_use_p));
4603 }
4604 }
4605 }
4606 }
4607
4608 FOR_EACH_VEC_ELT (phis, i, exit_phi)
4609 {
4610 /* Replace the uses: */
4611 orig_name = PHI_RESULT (exit_phi);
4612 scalar_result = scalar_results[k];
4613 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4614 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
4615 SET_USE (use_p, scalar_result);
4616 }
4617
4618 phis.release ();
4619 }
4620 }
4621
4622
4623 /* Function vectorizable_reduction.
4624
4625 Check if STMT performs a reduction operation that can be vectorized.
4626 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4627 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
4628 Return FALSE if not a vectorizable STMT, TRUE otherwise.
4629
4630 This function also handles reduction idioms (patterns) that have been
4631 recognized in advance during vect_pattern_recog. In this case, STMT may be
4632 of this form:
4633 X = pattern_expr (arg0, arg1, ..., X)
4634 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
4635 sequence that had been detected and replaced by the pattern-stmt (STMT).
4636
4637 In some cases of reduction patterns, the type of the reduction variable X is
4638 different than the type of the other arguments of STMT.
4639 In such cases, the vectype that is used when transforming STMT into a vector
4640 stmt is different than the vectype that is used to determine the
4641 vectorization factor, because it consists of a different number of elements
4642 than the actual number of elements that are being operated upon in parallel.
4643
4644 For example, consider an accumulation of shorts into an int accumulator.
4645 On some targets it's possible to vectorize this pattern operating on 8
4646 shorts at a time (hence, the vectype for purposes of determining the
4647 vectorization factor should be V8HI); on the other hand, the vectype that
4648 is used to create the vector form is actually V4SI (the type of the result).
4649
4650 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
4651 indicates what is the actual level of parallelism (V8HI in the example), so
4652 that the right vectorization factor would be derived. This vectype
4653 corresponds to the type of arguments to the reduction stmt, and should *NOT*
4654 be used to create the vectorized stmt. The right vectype for the vectorized
4655 stmt is obtained from the type of the result X:
4656 get_vectype_for_scalar_type (TREE_TYPE (X))
4657
4658 This means that, contrary to "regular" reductions (or "regular" stmts in
4659 general), the following equation:
4660 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
4661 does *NOT* necessarily hold for reduction patterns. */
4662
4663 bool
4664 vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
4665 gimple *vec_stmt, slp_tree slp_node)
4666 {
4667 tree vec_dest;
4668 tree scalar_dest;
4669 tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
4670 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4671 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
4672 tree vectype_in = NULL_TREE;
4673 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4674 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4675 enum tree_code code, orig_code, epilog_reduc_code;
4676 enum machine_mode vec_mode;
4677 int op_type;
4678 optab optab, reduc_optab;
4679 tree new_temp = NULL_TREE;
4680 tree def;
4681 gimple def_stmt;
4682 enum vect_def_type dt;
4683 gimple new_phi = NULL;
4684 tree scalar_type;
4685 bool is_simple_use;
4686 gimple orig_stmt;
4687 stmt_vec_info orig_stmt_info;
4688 tree expr = NULL_TREE;
4689 int i;
4690 int ncopies;
4691 int epilog_copies;
4692 stmt_vec_info prev_stmt_info, prev_phi_info;
4693 bool single_defuse_cycle = false;
4694 tree reduc_def = NULL_TREE;
4695 gimple new_stmt = NULL;
4696 int j;
4697 tree ops[3];
4698 bool nested_cycle = false, found_nested_cycle_def = false;
4699 gimple reduc_def_stmt = NULL;
4700 /* The default is that the reduction variable is the last in statement. */
4701 int reduc_index = 2;
4702 bool double_reduc = false, dummy;
4703 basic_block def_bb;
4704 struct loop * def_stmt_loop, *outer_loop = NULL;
4705 tree def_arg;
4706 gimple def_arg_stmt;
4707 auto_vec<tree> vec_oprnds0;
4708 auto_vec<tree> vec_oprnds1;
4709 auto_vec<tree> vect_defs;
4710 auto_vec<gimple> phis;
4711 int vec_num;
4712 tree def0, def1, tem, op0, op1 = NULL_TREE;
4713
4714 /* In case of reduction chain we switch to the first stmt in the chain, but
4715 we don't update STMT_INFO, since only the last stmt is marked as reduction
4716 and has reduction properties. */
4717 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4718 stmt = GROUP_FIRST_ELEMENT (stmt_info);
4719
4720 if (nested_in_vect_loop_p (loop, stmt))
4721 {
4722 outer_loop = loop;
4723 loop = loop->inner;
4724 nested_cycle = true;
4725 }
4726
4727 /* 1. Is vectorizable reduction? */
4728 /* Not supportable if the reduction variable is used in the loop, unless
4729 it's a reduction chain. */
4730 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
4731 && !GROUP_FIRST_ELEMENT (stmt_info))
4732 return false;
4733
4734 /* Reductions that are not used even in an enclosing outer-loop,
4735 are expected to be "live" (used out of the loop). */
4736 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
4737 && !STMT_VINFO_LIVE_P (stmt_info))
4738 return false;
4739
4740 /* Make sure it was already recognized as a reduction computation. */
4741 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
4742 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
4743 return false;
4744
4745 /* 2. Has this been recognized as a reduction pattern?
4746
4747 Check if STMT represents a pattern that has been recognized
4748 in earlier analysis stages. For stmts that represent a pattern,
4749 the STMT_VINFO_RELATED_STMT field records the last stmt in
4750 the original sequence that constitutes the pattern. */
4751
4752 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4753 if (orig_stmt)
4754 {
4755 orig_stmt_info = vinfo_for_stmt (orig_stmt);
4756 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
4757 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
4758 }
4759
4760 /* 3. Check the operands of the operation. The first operands are defined
4761 inside the loop body. The last operand is the reduction variable,
4762 which is defined by the loop-header-phi. */
4763
4764 gcc_assert (is_gimple_assign (stmt));
4765
4766 /* Flatten RHS. */
4767 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
4768 {
4769 case GIMPLE_SINGLE_RHS:
4770 op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
4771 if (op_type == ternary_op)
4772 {
4773 tree rhs = gimple_assign_rhs1 (stmt);
4774 ops[0] = TREE_OPERAND (rhs, 0);
4775 ops[1] = TREE_OPERAND (rhs, 1);
4776 ops[2] = TREE_OPERAND (rhs, 2);
4777 code = TREE_CODE (rhs);
4778 }
4779 else
4780 return false;
4781 break;
4782
4783 case GIMPLE_BINARY_RHS:
4784 code = gimple_assign_rhs_code (stmt);
4785 op_type = TREE_CODE_LENGTH (code);
4786 gcc_assert (op_type == binary_op);
4787 ops[0] = gimple_assign_rhs1 (stmt);
4788 ops[1] = gimple_assign_rhs2 (stmt);
4789 break;
4790
4791 case GIMPLE_TERNARY_RHS:
4792 code = gimple_assign_rhs_code (stmt);
4793 op_type = TREE_CODE_LENGTH (code);
4794 gcc_assert (op_type == ternary_op);
4795 ops[0] = gimple_assign_rhs1 (stmt);
4796 ops[1] = gimple_assign_rhs2 (stmt);
4797 ops[2] = gimple_assign_rhs3 (stmt);
4798 break;
4799
4800 case GIMPLE_UNARY_RHS:
4801 return false;
4802
4803 default:
4804 gcc_unreachable ();
4805 }
4806
4807 if (code == COND_EXPR && slp_node)
4808 return false;
4809
4810 scalar_dest = gimple_assign_lhs (stmt);
4811 scalar_type = TREE_TYPE (scalar_dest);
4812 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
4813 && !SCALAR_FLOAT_TYPE_P (scalar_type))
4814 return false;
4815
4816 /* Do not try to vectorize bit-precision reductions. */
4817 if ((TYPE_PRECISION (scalar_type)
4818 != GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
4819 return false;
4820
4821 /* All uses but the last are expected to be defined in the loop.
4822 The last use is the reduction variable. In case of nested cycle this
4823 assumption is not true: we use reduc_index to record the index of the
4824 reduction variable. */
4825 for (i = 0; i < op_type - 1; i++)
4826 {
4827 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
4828 if (i == 0 && code == COND_EXPR)
4829 continue;
4830
4831 is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
4832 &def_stmt, &def, &dt, &tem);
4833 if (!vectype_in)
4834 vectype_in = tem;
4835 gcc_assert (is_simple_use);
4836
4837 if (dt != vect_internal_def
4838 && dt != vect_external_def
4839 && dt != vect_constant_def
4840 && dt != vect_induction_def
4841 && !(dt == vect_nested_cycle && nested_cycle))
4842 return false;
4843
4844 if (dt == vect_nested_cycle)
4845 {
4846 found_nested_cycle_def = true;
4847 reduc_def_stmt = def_stmt;
4848 reduc_index = i;
4849 }
4850 }
4851
4852 is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
4853 &def_stmt, &def, &dt, &tem);
4854 if (!vectype_in)
4855 vectype_in = tem;
4856 gcc_assert (is_simple_use);
4857 if (!(dt == vect_reduction_def
4858 || dt == vect_nested_cycle
4859 || ((dt == vect_internal_def || dt == vect_external_def
4860 || dt == vect_constant_def || dt == vect_induction_def)
4861 && nested_cycle && found_nested_cycle_def)))
4862 {
4863 /* For pattern recognized stmts, orig_stmt might be a reduction,
4864 but some helper statements for the pattern might not, or
4865 might be COND_EXPRs with reduction uses in the condition. */
4866 gcc_assert (orig_stmt);
4867 return false;
4868 }
4869 if (!found_nested_cycle_def)
4870 reduc_def_stmt = def_stmt;
4871
4872 gcc_assert (gimple_code (reduc_def_stmt) == GIMPLE_PHI);
4873 if (orig_stmt)
4874 gcc_assert (orig_stmt == vect_is_simple_reduction (loop_vinfo,
4875 reduc_def_stmt,
4876 !nested_cycle,
4877 &dummy));
4878 else
4879 {
4880 gimple tmp = vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
4881 !nested_cycle, &dummy);
4882 /* We changed STMT to be the first stmt in reduction chain, hence we
4883 check that in this case the first element in the chain is STMT. */
4884 gcc_assert (stmt == tmp
4885 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
4886 }
4887
4888 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
4889 return false;
4890
4891 if (slp_node || PURE_SLP_STMT (stmt_info))
4892 ncopies = 1;
4893 else
4894 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4895 / TYPE_VECTOR_SUBPARTS (vectype_in));
4896
4897 gcc_assert (ncopies >= 1);
4898
4899 vec_mode = TYPE_MODE (vectype_in);
4900
4901 if (code == COND_EXPR)
4902 {
4903 if (!vectorizable_condition (stmt, gsi, NULL, ops[reduc_index], 0, NULL))
4904 {
4905 if (dump_enabled_p ())
4906 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4907 "unsupported condition in reduction\n");
4908
4909 return false;
4910 }
4911 }
4912 else
4913 {
4914 /* 4. Supportable by target? */
4915
4916 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
4917 || code == LROTATE_EXPR || code == RROTATE_EXPR)
4918 {
4919 /* Shifts and rotates are only supported by vectorizable_shifts,
4920 not vectorizable_reduction. */
4921 if (dump_enabled_p ())
4922 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4923 "unsupported shift or rotation.\n");
4924 return false;
4925 }
4926
4927 /* 4.1. check support for the operation in the loop */
4928 optab = optab_for_tree_code (code, vectype_in, optab_default);
4929 if (!optab)
4930 {
4931 if (dump_enabled_p ())
4932 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4933 "no optab.\n");
4934
4935 return false;
4936 }
4937
4938 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
4939 {
4940 if (dump_enabled_p ())
4941 dump_printf (MSG_NOTE, "op not supported by target.\n");
4942
4943 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
4944 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4945 < vect_min_worthwhile_factor (code))
4946 return false;
4947
4948 if (dump_enabled_p ())
4949 dump_printf (MSG_NOTE, "proceeding using word mode.\n");
4950 }
4951
4952 /* Worthwhile without SIMD support? */
4953 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
4954 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4955 < vect_min_worthwhile_factor (code))
4956 {
4957 if (dump_enabled_p ())
4958 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4959 "not worthwhile without SIMD support.\n");
4960
4961 return false;
4962 }
4963 }
4964
4965 /* 4.2. Check support for the epilog operation.
4966
4967 If STMT represents a reduction pattern, then the type of the
4968 reduction variable may be different than the type of the rest
4969 of the arguments. For example, consider the case of accumulation
4970 of shorts into an int accumulator; The original code:
4971 S1: int_a = (int) short_a;
4972 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
4973
4974 was replaced with:
4975 STMT: int_acc = widen_sum <short_a, int_acc>
4976
4977 This means that:
4978 1. The tree-code that is used to create the vector operation in the
4979 epilog code (that reduces the partial results) is not the
4980 tree-code of STMT, but is rather the tree-code of the original
4981 stmt from the pattern that STMT is replacing. I.e, in the example
4982 above we want to use 'widen_sum' in the loop, but 'plus' in the
4983 epilog.
4984 2. The type (mode) we use to check available target support
4985 for the vector operation to be created in the *epilog*, is
4986 determined by the type of the reduction variable (in the example
4987 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
4988 However the type (mode) we use to check available target support
4989 for the vector operation to be created *inside the loop*, is
4990 determined by the type of the other arguments to STMT (in the
4991 example we'd check this: optab_handler (widen_sum_optab,
4992 vect_short_mode)).
4993
4994 This is contrary to "regular" reductions, in which the types of all
4995 the arguments are the same as the type of the reduction variable.
4996 For "regular" reductions we can therefore use the same vector type
4997 (and also the same tree-code) when generating the epilog code and
4998 when generating the code inside the loop. */
4999
5000 if (orig_stmt)
5001 {
5002 /* This is a reduction pattern: get the vectype from the type of the
5003 reduction variable, and get the tree-code from orig_stmt. */
5004 orig_code = gimple_assign_rhs_code (orig_stmt);
5005 gcc_assert (vectype_out);
5006 vec_mode = TYPE_MODE (vectype_out);
5007 }
5008 else
5009 {
5010 /* Regular reduction: use the same vectype and tree-code as used for
5011 the vector code inside the loop can be used for the epilog code. */
5012 orig_code = code;
5013 }
5014
5015 if (nested_cycle)
5016 {
5017 def_bb = gimple_bb (reduc_def_stmt);
5018 def_stmt_loop = def_bb->loop_father;
5019 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
5020 loop_preheader_edge (def_stmt_loop));
5021 if (TREE_CODE (def_arg) == SSA_NAME
5022 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
5023 && gimple_code (def_arg_stmt) == GIMPLE_PHI
5024 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
5025 && vinfo_for_stmt (def_arg_stmt)
5026 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
5027 == vect_double_reduction_def)
5028 double_reduc = true;
5029 }
5030
5031 epilog_reduc_code = ERROR_MARK;
5032 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
5033 {
5034 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
5035 optab_default);
5036 if (!reduc_optab)
5037 {
5038 if (dump_enabled_p ())
5039 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5040 "no optab for reduction.\n");
5041
5042 epilog_reduc_code = ERROR_MARK;
5043 }
5044
5045 if (reduc_optab
5046 && optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
5047 {
5048 if (dump_enabled_p ())
5049 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5050 "reduc op not supported by target.\n");
5051
5052 epilog_reduc_code = ERROR_MARK;
5053 }
5054 }
5055 else
5056 {
5057 if (!nested_cycle || double_reduc)
5058 {
5059 if (dump_enabled_p ())
5060 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5061 "no reduc code for scalar code.\n");
5062
5063 return false;
5064 }
5065 }
5066
5067 if (double_reduc && ncopies > 1)
5068 {
5069 if (dump_enabled_p ())
5070 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5071 "multiple types in double reduction\n");
5072
5073 return false;
5074 }
5075
5076 /* In case of widenning multiplication by a constant, we update the type
5077 of the constant to be the type of the other operand. We check that the
5078 constant fits the type in the pattern recognition pass. */
5079 if (code == DOT_PROD_EXPR
5080 && !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
5081 {
5082 if (TREE_CODE (ops[0]) == INTEGER_CST)
5083 ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
5084 else if (TREE_CODE (ops[1]) == INTEGER_CST)
5085 ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
5086 else
5087 {
5088 if (dump_enabled_p ())
5089 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5090 "invalid types in dot-prod\n");
5091
5092 return false;
5093 }
5094 }
5095
5096 if (!vec_stmt) /* transformation not required. */
5097 {
5098 if (!vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies))
5099 return false;
5100 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
5101 return true;
5102 }
5103
5104 /** Transform. **/
5105
5106 if (dump_enabled_p ())
5107 dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");
5108
5109 /* FORNOW: Multiple types are not supported for condition. */
5110 if (code == COND_EXPR)
5111 gcc_assert (ncopies == 1);
5112
5113 /* Create the destination vector */
5114 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
5115
5116 /* In case the vectorization factor (VF) is bigger than the number
5117 of elements that we can fit in a vectype (nunits), we have to generate
5118 more than one vector stmt - i.e - we need to "unroll" the
5119 vector stmt by a factor VF/nunits. For more details see documentation
5120 in vectorizable_operation. */
5121
5122 /* If the reduction is used in an outer loop we need to generate
5123 VF intermediate results, like so (e.g. for ncopies=2):
5124 r0 = phi (init, r0)
5125 r1 = phi (init, r1)
5126 r0 = x0 + r0;
5127 r1 = x1 + r1;
5128 (i.e. we generate VF results in 2 registers).
5129 In this case we have a separate def-use cycle for each copy, and therefore
5130 for each copy we get the vector def for the reduction variable from the
5131 respective phi node created for this copy.
5132
5133 Otherwise (the reduction is unused in the loop nest), we can combine
5134 together intermediate results, like so (e.g. for ncopies=2):
5135 r = phi (init, r)
5136 r = x0 + r;
5137 r = x1 + r;
5138 (i.e. we generate VF/2 results in a single register).
5139 In this case for each copy we get the vector def for the reduction variable
5140 from the vectorized reduction operation generated in the previous iteration.
5141 */
5142
5143 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
5144 {
5145 single_defuse_cycle = true;
5146 epilog_copies = 1;
5147 }
5148 else
5149 epilog_copies = ncopies;
5150
5151 prev_stmt_info = NULL;
5152 prev_phi_info = NULL;
5153 if (slp_node)
5154 {
5155 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
5156 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype_out)
5157 == TYPE_VECTOR_SUBPARTS (vectype_in));
5158 }
5159 else
5160 {
5161 vec_num = 1;
5162 vec_oprnds0.create (1);
5163 if (op_type == ternary_op)
5164 vec_oprnds1.create (1);
5165 }
5166
5167 phis.create (vec_num);
5168 vect_defs.create (vec_num);
5169 if (!slp_node)
5170 vect_defs.quick_push (NULL_TREE);
5171
5172 for (j = 0; j < ncopies; j++)
5173 {
5174 if (j == 0 || !single_defuse_cycle)
5175 {
5176 for (i = 0; i < vec_num; i++)
5177 {
5178 /* Create the reduction-phi that defines the reduction
5179 operand. */
5180 new_phi = create_phi_node (vec_dest, loop->header);
5181 set_vinfo_for_stmt (new_phi,
5182 new_stmt_vec_info (new_phi, loop_vinfo,
5183 NULL));
5184 if (j == 0 || slp_node)
5185 phis.quick_push (new_phi);
5186 }
5187 }
5188
5189 if (code == COND_EXPR)
5190 {
5191 gcc_assert (!slp_node);
5192 vectorizable_condition (stmt, gsi, vec_stmt,
5193 PHI_RESULT (phis[0]),
5194 reduc_index, NULL);
5195 /* Multiple types are not supported for condition. */
5196 break;
5197 }
5198
5199 /* Handle uses. */
5200 if (j == 0)
5201 {
5202 op0 = ops[!reduc_index];
5203 if (op_type == ternary_op)
5204 {
5205 if (reduc_index == 0)
5206 op1 = ops[2];
5207 else
5208 op1 = ops[1];
5209 }
5210
5211 if (slp_node)
5212 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
5213 slp_node, -1);
5214 else
5215 {
5216 loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
5217 stmt, NULL);
5218 vec_oprnds0.quick_push (loop_vec_def0);
5219 if (op_type == ternary_op)
5220 {
5221 loop_vec_def1 = vect_get_vec_def_for_operand (op1, stmt,
5222 NULL);
5223 vec_oprnds1.quick_push (loop_vec_def1);
5224 }
5225 }
5226 }
5227 else
5228 {
5229 if (!slp_node)
5230 {
5231 enum vect_def_type dt;
5232 gimple dummy_stmt;
5233 tree dummy;
5234
5235 vect_is_simple_use (ops[!reduc_index], stmt, loop_vinfo, NULL,
5236 &dummy_stmt, &dummy, &dt);
5237 loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt,
5238 loop_vec_def0);
5239 vec_oprnds0[0] = loop_vec_def0;
5240 if (op_type == ternary_op)
5241 {
5242 vect_is_simple_use (op1, stmt, loop_vinfo, NULL, &dummy_stmt,
5243 &dummy, &dt);
5244 loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
5245 loop_vec_def1);
5246 vec_oprnds1[0] = loop_vec_def1;
5247 }
5248 }
5249
5250 if (single_defuse_cycle)
5251 reduc_def = gimple_assign_lhs (new_stmt);
5252
5253 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
5254 }
5255
5256 FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
5257 {
5258 if (slp_node)
5259 reduc_def = PHI_RESULT (phis[i]);
5260 else
5261 {
5262 if (!single_defuse_cycle || j == 0)
5263 reduc_def = PHI_RESULT (new_phi);
5264 }
5265
5266 def1 = ((op_type == ternary_op)
5267 ? vec_oprnds1[i] : NULL);
5268 if (op_type == binary_op)
5269 {
5270 if (reduc_index == 0)
5271 expr = build2 (code, vectype_out, reduc_def, def0);
5272 else
5273 expr = build2 (code, vectype_out, def0, reduc_def);
5274 }
5275 else
5276 {
5277 if (reduc_index == 0)
5278 expr = build3 (code, vectype_out, reduc_def, def0, def1);
5279 else
5280 {
5281 if (reduc_index == 1)
5282 expr = build3 (code, vectype_out, def0, reduc_def, def1);
5283 else
5284 expr = build3 (code, vectype_out, def0, def1, reduc_def);
5285 }
5286 }
5287
5288 new_stmt = gimple_build_assign (vec_dest, expr);
5289 new_temp = make_ssa_name (vec_dest, new_stmt);
5290 gimple_assign_set_lhs (new_stmt, new_temp);
5291 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5292
5293 if (slp_node)
5294 {
5295 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
5296 vect_defs.quick_push (new_temp);
5297 }
5298 else
5299 vect_defs[0] = new_temp;
5300 }
5301
5302 if (slp_node)
5303 continue;
5304
5305 if (j == 0)
5306 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5307 else
5308 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5309
5310 prev_stmt_info = vinfo_for_stmt (new_stmt);
5311 prev_phi_info = vinfo_for_stmt (new_phi);
5312 }
5313
5314 /* Finalize the reduction-phi (set its arguments) and create the
5315 epilog reduction code. */
5316 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
5317 {
5318 new_temp = gimple_assign_lhs (*vec_stmt);
5319 vect_defs[0] = new_temp;
5320 }
5321
5322 vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
5323 epilog_reduc_code, phis, reduc_index,
5324 double_reduc, slp_node);
5325
5326 return true;
5327 }
5328
5329 /* Function vect_min_worthwhile_factor.
5330
5331 For a loop where we could vectorize the operation indicated by CODE,
5332 return the minimum vectorization factor that makes it worthwhile
5333 to use generic vectors. */
5334 int
5335 vect_min_worthwhile_factor (enum tree_code code)
5336 {
5337 switch (code)
5338 {
5339 case PLUS_EXPR:
5340 case MINUS_EXPR:
5341 case NEGATE_EXPR:
5342 return 4;
5343
5344 case BIT_AND_EXPR:
5345 case BIT_IOR_EXPR:
5346 case BIT_XOR_EXPR:
5347 case BIT_NOT_EXPR:
5348 return 2;
5349
5350 default:
5351 return INT_MAX;
5352 }
5353 }
5354
5355
5356 /* Function vectorizable_induction
5357
5358 Check if PHI performs an induction computation that can be vectorized.
5359 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
5360 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
5361 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
5362
5363 bool
5364 vectorizable_induction (gimple phi, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
5365 gimple *vec_stmt)
5366 {
5367 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
5368 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5369 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5370 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5371 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
5372 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
5373 tree vec_def;
5374
5375 gcc_assert (ncopies >= 1);
5376 /* FORNOW. These restrictions should be relaxed. */
5377 if (nested_in_vect_loop_p (loop, phi))
5378 {
5379 imm_use_iterator imm_iter;
5380 use_operand_p use_p;
5381 gimple exit_phi;
5382 edge latch_e;
5383 tree loop_arg;
5384
5385 if (ncopies > 1)
5386 {
5387 if (dump_enabled_p ())
5388 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5389 "multiple types in nested loop.\n");
5390 return false;
5391 }
5392
5393 exit_phi = NULL;
5394 latch_e = loop_latch_edge (loop->inner);
5395 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
5396 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
5397 {
5398 if (!flow_bb_inside_loop_p (loop->inner,
5399 gimple_bb (USE_STMT (use_p))))
5400 {
5401 exit_phi = USE_STMT (use_p);
5402 break;
5403 }
5404 }
5405 if (exit_phi)
5406 {
5407 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
5408 if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
5409 && !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
5410 {
5411 if (dump_enabled_p ())
5412 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5413 "inner-loop induction only used outside "
5414 "of the outer vectorized loop.\n");
5415 return false;
5416 }
5417 }
5418 }
5419
5420 if (!STMT_VINFO_RELEVANT_P (stmt_info))
5421 return false;
5422
5423 /* FORNOW: SLP not supported. */
5424 if (STMT_SLP_TYPE (stmt_info))
5425 return false;
5426
5427 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
5428
5429 if (gimple_code (phi) != GIMPLE_PHI)
5430 return false;
5431
5432 if (!vec_stmt) /* transformation not required. */
5433 {
5434 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
5435 if (dump_enabled_p ())
5436 dump_printf_loc (MSG_NOTE, vect_location,
5437 "=== vectorizable_induction ===\n");
5438 vect_model_induction_cost (stmt_info, ncopies);
5439 return true;
5440 }
5441
5442 /** Transform. **/
5443
5444 if (dump_enabled_p ())
5445 dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
5446
5447 vec_def = get_initial_def_for_induction (phi);
5448 *vec_stmt = SSA_NAME_DEF_STMT (vec_def);
5449 return true;
5450 }
5451
5452 /* Function vectorizable_live_operation.
5453
5454 STMT computes a value that is used outside the loop. Check if
5455 it can be supported. */
5456
5457 bool
5458 vectorizable_live_operation (gimple stmt,
5459 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
5460 gimple *vec_stmt)
5461 {
5462 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5463 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5464 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5465 int i;
5466 int op_type;
5467 tree op;
5468 tree def;
5469 gimple def_stmt;
5470 enum vect_def_type dt;
5471 enum tree_code code;
5472 enum gimple_rhs_class rhs_class;
5473
5474 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
5475
5476 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
5477 return false;
5478
5479 if (!is_gimple_assign (stmt))
5480 {
5481 if (gimple_call_internal_p (stmt)
5482 && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE
5483 && gimple_call_lhs (stmt)
5484 && loop->simduid
5485 && TREE_CODE (gimple_call_arg (stmt, 0)) == SSA_NAME
5486 && loop->simduid
5487 == SSA_NAME_VAR (gimple_call_arg (stmt, 0)))
5488 {
5489 edge e = single_exit (loop);
5490 basic_block merge_bb = e->dest;
5491 imm_use_iterator imm_iter;
5492 use_operand_p use_p;
5493 tree lhs = gimple_call_lhs (stmt);
5494
5495 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
5496 {
5497 gimple use_stmt = USE_STMT (use_p);
5498 if (gimple_code (use_stmt) == GIMPLE_PHI
5499 || gimple_bb (use_stmt) == merge_bb)
5500 {
5501 if (vec_stmt)
5502 {
5503 tree vfm1
5504 = build_int_cst (unsigned_type_node,
5505 loop_vinfo->vectorization_factor - 1);
5506 SET_PHI_ARG_DEF (use_stmt, e->dest_idx, vfm1);
5507 }
5508 return true;
5509 }
5510 }
5511 }
5512
5513 return false;
5514 }
5515
5516 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
5517 return false;
5518
5519 /* FORNOW. CHECKME. */
5520 if (nested_in_vect_loop_p (loop, stmt))
5521 return false;
5522
5523 code = gimple_assign_rhs_code (stmt);
5524 op_type = TREE_CODE_LENGTH (code);
5525 rhs_class = get_gimple_rhs_class (code);
5526 gcc_assert (rhs_class != GIMPLE_UNARY_RHS || op_type == unary_op);
5527 gcc_assert (rhs_class != GIMPLE_BINARY_RHS || op_type == binary_op);
5528
5529 /* FORNOW: support only if all uses are invariant. This means
5530 that the scalar operations can remain in place, unvectorized.
5531 The original last scalar value that they compute will be used. */
5532
5533 for (i = 0; i < op_type; i++)
5534 {
5535 if (rhs_class == GIMPLE_SINGLE_RHS)
5536 op = TREE_OPERAND (gimple_op (stmt, 1), i);
5537 else
5538 op = gimple_op (stmt, i + 1);
5539 if (op
5540 && !vect_is_simple_use (op, stmt, loop_vinfo, NULL, &def_stmt, &def,
5541 &dt))
5542 {
5543 if (dump_enabled_p ())
5544 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5545 "use not simple.\n");
5546 return false;
5547 }
5548
5549 if (dt != vect_external_def && dt != vect_constant_def)
5550 return false;
5551 }
5552
5553 /* No transformation is required for the cases we currently support. */
5554 return true;
5555 }
5556
5557 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
5558
5559 static void
5560 vect_loop_kill_debug_uses (struct loop *loop, gimple stmt)
5561 {
5562 ssa_op_iter op_iter;
5563 imm_use_iterator imm_iter;
5564 def_operand_p def_p;
5565 gimple ustmt;
5566
5567 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
5568 {
5569 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
5570 {
5571 basic_block bb;
5572
5573 if (!is_gimple_debug (ustmt))
5574 continue;
5575
5576 bb = gimple_bb (ustmt);
5577
5578 if (!flow_bb_inside_loop_p (loop, bb))
5579 {
5580 if (gimple_debug_bind_p (ustmt))
5581 {
5582 if (dump_enabled_p ())
5583 dump_printf_loc (MSG_NOTE, vect_location,
5584 "killing debug use\n");
5585
5586 gimple_debug_bind_reset_value (ustmt);
5587 update_stmt (ustmt);
5588 }
5589 else
5590 gcc_unreachable ();
5591 }
5592 }
5593 }
5594 }
5595
5596
5597 /* This function builds ni_name = number of iterations. Statements
5598 are emitted on the loop preheader edge. */
5599
5600 static tree
5601 vect_build_loop_niters (loop_vec_info loop_vinfo)
5602 {
5603 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
5604 if (TREE_CODE (ni) == INTEGER_CST)
5605 return ni;
5606 else
5607 {
5608 tree ni_name, var;
5609 gimple_seq stmts = NULL;
5610 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
5611
5612 var = create_tmp_var (TREE_TYPE (ni), "niters");
5613 ni_name = force_gimple_operand (ni, &stmts, false, var);
5614 if (stmts)
5615 gsi_insert_seq_on_edge_immediate (pe, stmts);
5616
5617 return ni_name;
5618 }
5619 }
5620
5621
5622 /* This function generates the following statements:
5623
5624 ni_name = number of iterations loop executes
5625 ratio = ni_name / vf
5626 ratio_mult_vf_name = ratio * vf
5627
5628 and places them on the loop preheader edge. */
5629
5630 static void
5631 vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
5632 tree ni_name,
5633 tree *ratio_mult_vf_name_ptr,
5634 tree *ratio_name_ptr)
5635 {
5636 tree ni_minus_gap_name;
5637 tree var;
5638 tree ratio_name;
5639 tree ratio_mult_vf_name;
5640 tree ni = LOOP_VINFO_NITERS (loop_vinfo);
5641 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
5642 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
5643 tree log_vf;
5644
5645 log_vf = build_int_cst (TREE_TYPE (ni), exact_log2 (vf));
5646
5647 /* If epilogue loop is required because of data accesses with gaps, we
5648 subtract one iteration from the total number of iterations here for
5649 correct calculation of RATIO. */
5650 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
5651 {
5652 ni_minus_gap_name = fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
5653 ni_name,
5654 build_one_cst (TREE_TYPE (ni_name)));
5655 if (!is_gimple_val (ni_minus_gap_name))
5656 {
5657 var = create_tmp_var (TREE_TYPE (ni), "ni_gap");
5658 gimple stmts = NULL;
5659 ni_minus_gap_name = force_gimple_operand (ni_minus_gap_name, &stmts,
5660 true, var);
5661 gsi_insert_seq_on_edge_immediate (pe, stmts);
5662 }
5663 }
5664 else
5665 ni_minus_gap_name = ni_name;
5666
5667 /* Create: ratio = ni >> log2(vf) */
5668
5669 ratio_name = fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_minus_gap_name),
5670 ni_minus_gap_name, log_vf);
5671 if (!is_gimple_val (ratio_name))
5672 {
5673 var = create_tmp_var (TREE_TYPE (ni), "bnd");
5674 gimple stmts = NULL;
5675 ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
5676 gsi_insert_seq_on_edge_immediate (pe, stmts);
5677 }
5678 *ratio_name_ptr = ratio_name;
5679
5680 /* Create: ratio_mult_vf = ratio << log2 (vf). */
5681
5682 if (ratio_mult_vf_name_ptr)
5683 {
5684 ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
5685 ratio_name, log_vf);
5686 if (!is_gimple_val (ratio_mult_vf_name))
5687 {
5688 var = create_tmp_var (TREE_TYPE (ni), "ratio_mult_vf");
5689 gimple stmts = NULL;
5690 ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
5691 true, var);
5692 gsi_insert_seq_on_edge_immediate (pe, stmts);
5693 }
5694 *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
5695 }
5696
5697 return;
5698 }
5699
5700
5701 /* Function vect_transform_loop.
5702
5703 The analysis phase has determined that the loop is vectorizable.
5704 Vectorize the loop - created vectorized stmts to replace the scalar
5705 stmts in the loop, and update the loop exit condition. */
5706
5707 void
5708 vect_transform_loop (loop_vec_info loop_vinfo)
5709 {
5710 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5711 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
5712 int nbbs = loop->num_nodes;
5713 gimple_stmt_iterator si;
5714 int i;
5715 tree ratio = NULL;
5716 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
5717 bool grouped_store;
5718 bool slp_scheduled = false;
5719 gimple stmt, pattern_stmt;
5720 gimple_seq pattern_def_seq = NULL;
5721 gimple_stmt_iterator pattern_def_si = gsi_none ();
5722 bool transform_pattern_stmt = false;
5723 bool check_profitability = false;
5724 int th;
5725 /* Record number of iterations before we started tampering with the profile. */
5726 gcov_type expected_iterations = expected_loop_iterations_unbounded (loop);
5727
5728 if (dump_enabled_p ())
5729 dump_printf_loc (MSG_NOTE, vect_location, "=== vec_transform_loop ===\n");
5730
5731 /* If profile is inprecise, we have chance to fix it up. */
5732 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5733 expected_iterations = LOOP_VINFO_INT_NITERS (loop_vinfo);
5734
5735 /* Use the more conservative vectorization threshold. If the number
5736 of iterations is constant assume the cost check has been performed
5737 by our caller. If the threshold makes all loops profitable that
5738 run at least the vectorization factor number of times checking
5739 is pointless, too. */
5740 th = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
5741 * LOOP_VINFO_VECT_FACTOR (loop_vinfo)) - 1);
5742 th = MAX (th, LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo));
5743 if (th >= LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1
5744 && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5745 {
5746 if (dump_enabled_p ())
5747 dump_printf_loc (MSG_NOTE, vect_location,
5748 "Profitability threshold is %d loop iterations.\n",
5749 th);
5750 check_profitability = true;
5751 }
5752
5753 /* Version the loop first, if required, so the profitability check
5754 comes first. */
5755
5756 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
5757 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
5758 {
5759 vect_loop_versioning (loop_vinfo, th, check_profitability);
5760 check_profitability = false;
5761 }
5762
5763 tree ni_name = vect_build_loop_niters (loop_vinfo);
5764 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = ni_name;
5765
5766 /* Peel the loop if there are data refs with unknown alignment.
5767 Only one data ref with unknown store is allowed. */
5768
5769 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
5770 {
5771 vect_do_peeling_for_alignment (loop_vinfo, ni_name,
5772 th, check_profitability);
5773 check_profitability = false;
5774 /* The above adjusts LOOP_VINFO_NITERS, so cause ni_name to
5775 be re-computed. */
5776 ni_name = NULL_TREE;
5777 }
5778
5779 /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
5780 compile time constant), or it is a constant that doesn't divide by the
5781 vectorization factor, then an epilog loop needs to be created.
5782 We therefore duplicate the loop: the original loop will be vectorized,
5783 and will compute the first (n/VF) iterations. The second copy of the loop
5784 will remain scalar and will compute the remaining (n%VF) iterations.
5785 (VF is the vectorization factor). */
5786
5787 if (LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)
5788 || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
5789 {
5790 tree ratio_mult_vf;
5791 if (!ni_name)
5792 ni_name = vect_build_loop_niters (loop_vinfo);
5793 vect_generate_tmps_on_preheader (loop_vinfo, ni_name, &ratio_mult_vf,
5794 &ratio);
5795 vect_do_peeling_for_loop_bound (loop_vinfo, ni_name, ratio_mult_vf,
5796 th, check_profitability);
5797 }
5798 else if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5799 ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
5800 LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
5801 else
5802 {
5803 if (!ni_name)
5804 ni_name = vect_build_loop_niters (loop_vinfo);
5805 vect_generate_tmps_on_preheader (loop_vinfo, ni_name, NULL, &ratio);
5806 }
5807
5808 /* 1) Make sure the loop header has exactly two entries
5809 2) Make sure we have a preheader basic block. */
5810
5811 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
5812
5813 split_edge (loop_preheader_edge (loop));
5814
5815 /* FORNOW: the vectorizer supports only loops which body consist
5816 of one basic block (header + empty latch). When the vectorizer will
5817 support more involved loop forms, the order by which the BBs are
5818 traversed need to be reconsidered. */
5819
5820 for (i = 0; i < nbbs; i++)
5821 {
5822 basic_block bb = bbs[i];
5823 stmt_vec_info stmt_info;
5824 gimple phi;
5825
5826 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5827 {
5828 phi = gsi_stmt (si);
5829 if (dump_enabled_p ())
5830 {
5831 dump_printf_loc (MSG_NOTE, vect_location,
5832 "------>vectorizing phi: ");
5833 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
5834 dump_printf (MSG_NOTE, "\n");
5835 }
5836 stmt_info = vinfo_for_stmt (phi);
5837 if (!stmt_info)
5838 continue;
5839
5840 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
5841 vect_loop_kill_debug_uses (loop, phi);
5842
5843 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5844 && !STMT_VINFO_LIVE_P (stmt_info))
5845 continue;
5846
5847 if ((TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
5848 != (unsigned HOST_WIDE_INT) vectorization_factor)
5849 && dump_enabled_p ())
5850 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
5851
5852 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
5853 {
5854 if (dump_enabled_p ())
5855 dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
5856 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
5857 }
5858 }
5859
5860 pattern_stmt = NULL;
5861 for (si = gsi_start_bb (bb); !gsi_end_p (si) || transform_pattern_stmt;)
5862 {
5863 bool is_store;
5864
5865 if (transform_pattern_stmt)
5866 stmt = pattern_stmt;
5867 else
5868 {
5869 stmt = gsi_stmt (si);
5870 /* During vectorization remove existing clobber stmts. */
5871 if (gimple_clobber_p (stmt))
5872 {
5873 unlink_stmt_vdef (stmt);
5874 gsi_remove (&si, true);
5875 release_defs (stmt);
5876 continue;
5877 }
5878 }
5879
5880 if (dump_enabled_p ())
5881 {
5882 dump_printf_loc (MSG_NOTE, vect_location,
5883 "------>vectorizing statement: ");
5884 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
5885 dump_printf (MSG_NOTE, "\n");
5886 }
5887
5888 stmt_info = vinfo_for_stmt (stmt);
5889
5890 /* vector stmts created in the outer-loop during vectorization of
5891 stmts in an inner-loop may not have a stmt_info, and do not
5892 need to be vectorized. */
5893 if (!stmt_info)
5894 {
5895 gsi_next (&si);
5896 continue;
5897 }
5898
5899 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
5900 vect_loop_kill_debug_uses (loop, stmt);
5901
5902 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5903 && !STMT_VINFO_LIVE_P (stmt_info))
5904 {
5905 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5906 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
5907 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5908 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5909 {
5910 stmt = pattern_stmt;
5911 stmt_info = vinfo_for_stmt (stmt);
5912 }
5913 else
5914 {
5915 gsi_next (&si);
5916 continue;
5917 }
5918 }
5919 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5920 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
5921 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5922 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5923 transform_pattern_stmt = true;
5924
5925 /* If pattern statement has def stmts, vectorize them too. */
5926 if (is_pattern_stmt_p (stmt_info))
5927 {
5928 if (pattern_def_seq == NULL)
5929 {
5930 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
5931 pattern_def_si = gsi_start (pattern_def_seq);
5932 }
5933 else if (!gsi_end_p (pattern_def_si))
5934 gsi_next (&pattern_def_si);
5935 if (pattern_def_seq != NULL)
5936 {
5937 gimple pattern_def_stmt = NULL;
5938 stmt_vec_info pattern_def_stmt_info = NULL;
5939
5940 while (!gsi_end_p (pattern_def_si))
5941 {
5942 pattern_def_stmt = gsi_stmt (pattern_def_si);
5943 pattern_def_stmt_info
5944 = vinfo_for_stmt (pattern_def_stmt);
5945 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
5946 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
5947 break;
5948 gsi_next (&pattern_def_si);
5949 }
5950
5951 if (!gsi_end_p (pattern_def_si))
5952 {
5953 if (dump_enabled_p ())
5954 {
5955 dump_printf_loc (MSG_NOTE, vect_location,
5956 "==> vectorizing pattern def "
5957 "stmt: ");
5958 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
5959 pattern_def_stmt, 0);
5960 dump_printf (MSG_NOTE, "\n");
5961 }
5962
5963 stmt = pattern_def_stmt;
5964 stmt_info = pattern_def_stmt_info;
5965 }
5966 else
5967 {
5968 pattern_def_si = gsi_none ();
5969 transform_pattern_stmt = false;
5970 }
5971 }
5972 else
5973 transform_pattern_stmt = false;
5974 }
5975
5976 if (STMT_VINFO_VECTYPE (stmt_info))
5977 {
5978 unsigned int nunits
5979 = (unsigned int)
5980 TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
5981 if (!STMT_SLP_TYPE (stmt_info)
5982 && nunits != (unsigned int) vectorization_factor
5983 && dump_enabled_p ())
5984 /* For SLP VF is set according to unrolling factor, and not
5985 to vector size, hence for SLP this print is not valid. */
5986 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
5987 }
5988
5989 /* SLP. Schedule all the SLP instances when the first SLP stmt is
5990 reached. */
5991 if (STMT_SLP_TYPE (stmt_info))
5992 {
5993 if (!slp_scheduled)
5994 {
5995 slp_scheduled = true;
5996
5997 if (dump_enabled_p ())
5998 dump_printf_loc (MSG_NOTE, vect_location,
5999 "=== scheduling SLP instances ===\n");
6000
6001 vect_schedule_slp (loop_vinfo, NULL);
6002 }
6003
6004 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
6005 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
6006 {
6007 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
6008 {
6009 pattern_def_seq = NULL;
6010 gsi_next (&si);
6011 }
6012 continue;
6013 }
6014 }
6015
6016 /* -------- vectorize statement ------------ */
6017 if (dump_enabled_p ())
6018 dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");
6019
6020 grouped_store = false;
6021 is_store = vect_transform_stmt (stmt, &si, &grouped_store, NULL, NULL);
6022 if (is_store)
6023 {
6024 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
6025 {
6026 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
6027 interleaving chain was completed - free all the stores in
6028 the chain. */
6029 gsi_next (&si);
6030 vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
6031 continue;
6032 }
6033 else
6034 {
6035 /* Free the attached stmt_vec_info and remove the stmt. */
6036 gimple store = gsi_stmt (si);
6037 free_stmt_vec_info (store);
6038 unlink_stmt_vdef (store);
6039 gsi_remove (&si, true);
6040 release_defs (store);
6041 continue;
6042 }
6043 }
6044
6045 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
6046 {
6047 pattern_def_seq = NULL;
6048 gsi_next (&si);
6049 }
6050 } /* stmts in BB */
6051 } /* BBs in loop */
6052
6053 slpeel_make_loop_iterate_ntimes (loop, ratio);
6054
6055 /* Reduce loop iterations by the vectorization factor. */
6056 scale_loop_profile (loop, GCOV_COMPUTE_SCALE (1, vectorization_factor),
6057 expected_iterations / vectorization_factor);
6058 loop->nb_iterations_upper_bound
6059 = loop->nb_iterations_upper_bound.udiv (double_int::from_uhwi (vectorization_factor),
6060 FLOOR_DIV_EXPR);
6061 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
6062 && loop->nb_iterations_upper_bound != double_int_zero)
6063 loop->nb_iterations_upper_bound = loop->nb_iterations_upper_bound - double_int_one;
6064 if (loop->any_estimate)
6065 {
6066 loop->nb_iterations_estimate
6067 = loop->nb_iterations_estimate.udiv (double_int::from_uhwi (vectorization_factor),
6068 FLOOR_DIV_EXPR);
6069 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
6070 && loop->nb_iterations_estimate != double_int_zero)
6071 loop->nb_iterations_estimate = loop->nb_iterations_estimate - double_int_one;
6072 }
6073
6074 if (dump_enabled_p ())
6075 {
6076 dump_printf_loc (MSG_NOTE, vect_location,
6077 "LOOP VECTORIZED\n");
6078 if (loop->inner)
6079 dump_printf_loc (MSG_NOTE, vect_location,
6080 "OUTER LOOP VECTORIZED\n");
6081 dump_printf (MSG_NOTE, "\n");
6082 }
6083 }