cfgloop.h (struct loop): Rename force_vect into force_vectorize.
[gcc.git] / gcc / tree-vect-loop.c
1 /* Loop Vectorization
2 Copyright (C) 2003-2014 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com> and
4 Ira Rosen <irar@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "stor-layout.h"
29 #include "basic-block.h"
30 #include "gimple-pretty-print.h"
31 #include "tree-ssa-alias.h"
32 #include "internal-fn.h"
33 #include "gimple-expr.h"
34 #include "is-a.h"
35 #include "gimple.h"
36 #include "gimplify.h"
37 #include "gimple-iterator.h"
38 #include "gimplify-me.h"
39 #include "gimple-ssa.h"
40 #include "tree-phinodes.h"
41 #include "ssa-iterators.h"
42 #include "stringpool.h"
43 #include "tree-ssanames.h"
44 #include "tree-ssa-loop-ivopts.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "tree-pass.h"
48 #include "cfgloop.h"
49 #include "expr.h"
50 #include "recog.h"
51 #include "optabs.h"
52 #include "params.h"
53 #include "diagnostic-core.h"
54 #include "tree-chrec.h"
55 #include "tree-scalar-evolution.h"
56 #include "tree-vectorizer.h"
57 #include "target.h"
58
59 /* Loop Vectorization Pass.
60
61 This pass tries to vectorize loops.
62
63 For example, the vectorizer transforms the following simple loop:
64
65 short a[N]; short b[N]; short c[N]; int i;
66
67 for (i=0; i<N; i++){
68 a[i] = b[i] + c[i];
69 }
70
71 as if it was manually vectorized by rewriting the source code into:
72
73 typedef int __attribute__((mode(V8HI))) v8hi;
74 short a[N]; short b[N]; short c[N]; int i;
75 v8hi *pa = (v8hi*)a, *pb = (v8hi*)b, *pc = (v8hi*)c;
76 v8hi va, vb, vc;
77
78 for (i=0; i<N/8; i++){
79 vb = pb[i];
80 vc = pc[i];
81 va = vb + vc;
82 pa[i] = va;
83 }
84
85 The main entry to this pass is vectorize_loops(), in which
86 the vectorizer applies a set of analyses on a given set of loops,
87 followed by the actual vectorization transformation for the loops that
88 had successfully passed the analysis phase.
89 Throughout this pass we make a distinction between two types of
90 data: scalars (which are represented by SSA_NAMES), and memory references
91 ("data-refs"). These two types of data require different handling both
92 during analysis and transformation. The types of data-refs that the
93 vectorizer currently supports are ARRAY_REFS which base is an array DECL
94 (not a pointer), and INDIRECT_REFS through pointers; both array and pointer
95 accesses are required to have a simple (consecutive) access pattern.
96
97 Analysis phase:
98 ===============
99 The driver for the analysis phase is vect_analyze_loop().
100 It applies a set of analyses, some of which rely on the scalar evolution
101 analyzer (scev) developed by Sebastian Pop.
102
103 During the analysis phase the vectorizer records some information
104 per stmt in a "stmt_vec_info" struct which is attached to each stmt in the
105 loop, as well as general information about the loop as a whole, which is
106 recorded in a "loop_vec_info" struct attached to each loop.
107
108 Transformation phase:
109 =====================
110 The loop transformation phase scans all the stmts in the loop, and
111 creates a vector stmt (or a sequence of stmts) for each scalar stmt S in
112 the loop that needs to be vectorized. It inserts the vector code sequence
113 just before the scalar stmt S, and records a pointer to the vector code
114 in STMT_VINFO_VEC_STMT (stmt_info) (stmt_info is the stmt_vec_info struct
115 attached to S). This pointer will be used for the vectorization of following
116 stmts which use the def of stmt S. Stmt S is removed if it writes to memory;
117 otherwise, we rely on dead code elimination for removing it.
118
119 For example, say stmt S1 was vectorized into stmt VS1:
120
121 VS1: vb = px[i];
122 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
123 S2: a = b;
124
125 To vectorize stmt S2, the vectorizer first finds the stmt that defines
126 the operand 'b' (S1), and gets the relevant vector def 'vb' from the
127 vector stmt VS1 pointed to by STMT_VINFO_VEC_STMT (stmt_info (S1)). The
128 resulting sequence would be:
129
130 VS1: vb = px[i];
131 S1: b = x[i]; STMT_VINFO_VEC_STMT (stmt_info (S1)) = VS1
132 VS2: va = vb;
133 S2: a = b; STMT_VINFO_VEC_STMT (stmt_info (S2)) = VS2
134
135 Operands that are not SSA_NAMEs, are data-refs that appear in
136 load/store operations (like 'x[i]' in S1), and are handled differently.
137
138 Target modeling:
139 =================
140 Currently the only target specific information that is used is the
141 size of the vector (in bytes) - "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD".
142 Targets that can support different sizes of vectors, for now will need
143 to specify one value for "TARGET_VECTORIZE_UNITS_PER_SIMD_WORD". More
144 flexibility will be added in the future.
145
146 Since we only vectorize operations which vector form can be
147 expressed using existing tree codes, to verify that an operation is
148 supported, the vectorizer checks the relevant optab at the relevant
149 machine_mode (e.g, optab_handler (add_optab, V8HImode)). If
150 the value found is CODE_FOR_nothing, then there's no target support, and
151 we can't vectorize the stmt.
152
153 For additional information on this project see:
154 http://gcc.gnu.org/projects/tree-ssa/vectorization.html
155 */
156
157 static void vect_estimate_min_profitable_iters (loop_vec_info, int *, int *);
158
159 /* Function vect_determine_vectorization_factor
160
161 Determine the vectorization factor (VF). VF is the number of data elements
162 that are operated upon in parallel in a single iteration of the vectorized
163 loop. For example, when vectorizing a loop that operates on 4byte elements,
164 on a target with vector size (VS) 16byte, the VF is set to 4, since 4
165 elements can fit in a single vector register.
166
167 We currently support vectorization of loops in which all types operated upon
168 are of the same size. Therefore this function currently sets VF according to
169 the size of the types operated upon, and fails if there are multiple sizes
170 in the loop.
171
172 VF is also the factor by which the loop iterations are strip-mined, e.g.:
173 original loop:
174 for (i=0; i<N; i++){
175 a[i] = b[i] + c[i];
176 }
177
178 vectorized loop:
179 for (i=0; i<N; i+=VF){
180 a[i:VF] = b[i:VF] + c[i:VF];
181 }
182 */
183
184 static bool
185 vect_determine_vectorization_factor (loop_vec_info loop_vinfo)
186 {
187 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
188 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
189 int nbbs = loop->num_nodes;
190 gimple_stmt_iterator si;
191 unsigned int vectorization_factor = 0;
192 tree scalar_type;
193 gimple phi;
194 tree vectype;
195 unsigned int nunits;
196 stmt_vec_info stmt_info;
197 int i;
198 HOST_WIDE_INT dummy;
199 gimple stmt, pattern_stmt = NULL;
200 gimple_seq pattern_def_seq = NULL;
201 gimple_stmt_iterator pattern_def_si = gsi_none ();
202 bool analyze_pattern_stmt = false;
203
204 if (dump_enabled_p ())
205 dump_printf_loc (MSG_NOTE, vect_location,
206 "=== vect_determine_vectorization_factor ===\n");
207
208 for (i = 0; i < nbbs; i++)
209 {
210 basic_block bb = bbs[i];
211
212 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
213 {
214 phi = gsi_stmt (si);
215 stmt_info = vinfo_for_stmt (phi);
216 if (dump_enabled_p ())
217 {
218 dump_printf_loc (MSG_NOTE, vect_location, "==> examining phi: ");
219 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
220 dump_printf (MSG_NOTE, "\n");
221 }
222
223 gcc_assert (stmt_info);
224
225 if (STMT_VINFO_RELEVANT_P (stmt_info))
226 {
227 gcc_assert (!STMT_VINFO_VECTYPE (stmt_info));
228 scalar_type = TREE_TYPE (PHI_RESULT (phi));
229
230 if (dump_enabled_p ())
231 {
232 dump_printf_loc (MSG_NOTE, vect_location,
233 "get vectype for scalar type: ");
234 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
235 dump_printf (MSG_NOTE, "\n");
236 }
237
238 vectype = get_vectype_for_scalar_type (scalar_type);
239 if (!vectype)
240 {
241 if (dump_enabled_p ())
242 {
243 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
244 "not vectorized: unsupported "
245 "data-type ");
246 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
247 scalar_type);
248 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
249 }
250 return false;
251 }
252 STMT_VINFO_VECTYPE (stmt_info) = vectype;
253
254 if (dump_enabled_p ())
255 {
256 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
257 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
258 dump_printf (MSG_NOTE, "\n");
259 }
260
261 nunits = TYPE_VECTOR_SUBPARTS (vectype);
262 if (dump_enabled_p ())
263 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n",
264 nunits);
265
266 if (!vectorization_factor
267 || (nunits > vectorization_factor))
268 vectorization_factor = nunits;
269 }
270 }
271
272 for (si = gsi_start_bb (bb); !gsi_end_p (si) || analyze_pattern_stmt;)
273 {
274 tree vf_vectype;
275
276 if (analyze_pattern_stmt)
277 stmt = pattern_stmt;
278 else
279 stmt = gsi_stmt (si);
280
281 stmt_info = vinfo_for_stmt (stmt);
282
283 if (dump_enabled_p ())
284 {
285 dump_printf_loc (MSG_NOTE, vect_location,
286 "==> examining statement: ");
287 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
288 dump_printf (MSG_NOTE, "\n");
289 }
290
291 gcc_assert (stmt_info);
292
293 /* Skip stmts which do not need to be vectorized. */
294 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
295 && !STMT_VINFO_LIVE_P (stmt_info))
296 || gimple_clobber_p (stmt))
297 {
298 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
299 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
300 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
301 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
302 {
303 stmt = pattern_stmt;
304 stmt_info = vinfo_for_stmt (pattern_stmt);
305 if (dump_enabled_p ())
306 {
307 dump_printf_loc (MSG_NOTE, vect_location,
308 "==> examining pattern statement: ");
309 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
310 dump_printf (MSG_NOTE, "\n");
311 }
312 }
313 else
314 {
315 if (dump_enabled_p ())
316 dump_printf_loc (MSG_NOTE, vect_location, "skip.\n");
317 gsi_next (&si);
318 continue;
319 }
320 }
321 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
322 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
323 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
324 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
325 analyze_pattern_stmt = true;
326
327 /* If a pattern statement has def stmts, analyze them too. */
328 if (is_pattern_stmt_p (stmt_info))
329 {
330 if (pattern_def_seq == NULL)
331 {
332 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
333 pattern_def_si = gsi_start (pattern_def_seq);
334 }
335 else if (!gsi_end_p (pattern_def_si))
336 gsi_next (&pattern_def_si);
337 if (pattern_def_seq != NULL)
338 {
339 gimple pattern_def_stmt = NULL;
340 stmt_vec_info pattern_def_stmt_info = NULL;
341
342 while (!gsi_end_p (pattern_def_si))
343 {
344 pattern_def_stmt = gsi_stmt (pattern_def_si);
345 pattern_def_stmt_info
346 = vinfo_for_stmt (pattern_def_stmt);
347 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
348 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
349 break;
350 gsi_next (&pattern_def_si);
351 }
352
353 if (!gsi_end_p (pattern_def_si))
354 {
355 if (dump_enabled_p ())
356 {
357 dump_printf_loc (MSG_NOTE, vect_location,
358 "==> examining pattern def stmt: ");
359 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
360 pattern_def_stmt, 0);
361 dump_printf (MSG_NOTE, "\n");
362 }
363
364 stmt = pattern_def_stmt;
365 stmt_info = pattern_def_stmt_info;
366 }
367 else
368 {
369 pattern_def_si = gsi_none ();
370 analyze_pattern_stmt = false;
371 }
372 }
373 else
374 analyze_pattern_stmt = false;
375 }
376
377 if (gimple_get_lhs (stmt) == NULL_TREE
378 /* MASK_STORE has no lhs, but is ok. */
379 && (!is_gimple_call (stmt)
380 || !gimple_call_internal_p (stmt)
381 || gimple_call_internal_fn (stmt) != IFN_MASK_STORE))
382 {
383 if (is_gimple_call (stmt))
384 {
385 /* Ignore calls with no lhs. These must be calls to
386 #pragma omp simd functions, and what vectorization factor
387 it really needs can't be determined until
388 vectorizable_simd_clone_call. */
389 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
390 {
391 pattern_def_seq = NULL;
392 gsi_next (&si);
393 }
394 continue;
395 }
396 if (dump_enabled_p ())
397 {
398 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
399 "not vectorized: irregular stmt.");
400 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt,
401 0);
402 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
403 }
404 return false;
405 }
406
407 if (VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))))
408 {
409 if (dump_enabled_p ())
410 {
411 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
412 "not vectorized: vector stmt in loop:");
413 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
414 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
415 }
416 return false;
417 }
418
419 if (STMT_VINFO_VECTYPE (stmt_info))
420 {
421 /* The only case when a vectype had been already set is for stmts
422 that contain a dataref, or for "pattern-stmts" (stmts
423 generated by the vectorizer to represent/replace a certain
424 idiom). */
425 gcc_assert (STMT_VINFO_DATA_REF (stmt_info)
426 || is_pattern_stmt_p (stmt_info)
427 || !gsi_end_p (pattern_def_si));
428 vectype = STMT_VINFO_VECTYPE (stmt_info);
429 }
430 else
431 {
432 gcc_assert (!STMT_VINFO_DATA_REF (stmt_info));
433 if (is_gimple_call (stmt)
434 && gimple_call_internal_p (stmt)
435 && gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
436 scalar_type = TREE_TYPE (gimple_call_arg (stmt, 3));
437 else
438 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
439 if (dump_enabled_p ())
440 {
441 dump_printf_loc (MSG_NOTE, vect_location,
442 "get vectype for scalar type: ");
443 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
444 dump_printf (MSG_NOTE, "\n");
445 }
446 vectype = get_vectype_for_scalar_type (scalar_type);
447 if (!vectype)
448 {
449 if (dump_enabled_p ())
450 {
451 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
452 "not vectorized: unsupported "
453 "data-type ");
454 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
455 scalar_type);
456 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
457 }
458 return false;
459 }
460
461 STMT_VINFO_VECTYPE (stmt_info) = vectype;
462
463 if (dump_enabled_p ())
464 {
465 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
466 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
467 dump_printf (MSG_NOTE, "\n");
468 }
469 }
470
471 /* The vectorization factor is according to the smallest
472 scalar type (or the largest vector size, but we only
473 support one vector size per loop). */
474 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy,
475 &dummy);
476 if (dump_enabled_p ())
477 {
478 dump_printf_loc (MSG_NOTE, vect_location,
479 "get vectype for scalar type: ");
480 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
481 dump_printf (MSG_NOTE, "\n");
482 }
483 vf_vectype = get_vectype_for_scalar_type (scalar_type);
484 if (!vf_vectype)
485 {
486 if (dump_enabled_p ())
487 {
488 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
489 "not vectorized: unsupported data-type ");
490 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
491 scalar_type);
492 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
493 }
494 return false;
495 }
496
497 if ((GET_MODE_SIZE (TYPE_MODE (vectype))
498 != GET_MODE_SIZE (TYPE_MODE (vf_vectype))))
499 {
500 if (dump_enabled_p ())
501 {
502 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
503 "not vectorized: different sized vector "
504 "types in statement, ");
505 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
506 vectype);
507 dump_printf (MSG_MISSED_OPTIMIZATION, " and ");
508 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
509 vf_vectype);
510 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
511 }
512 return false;
513 }
514
515 if (dump_enabled_p ())
516 {
517 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
518 dump_generic_expr (MSG_NOTE, TDF_SLIM, vf_vectype);
519 dump_printf (MSG_NOTE, "\n");
520 }
521
522 nunits = TYPE_VECTOR_SUBPARTS (vf_vectype);
523 if (dump_enabled_p ())
524 dump_printf_loc (MSG_NOTE, vect_location, "nunits = %d\n", nunits);
525 if (!vectorization_factor
526 || (nunits > vectorization_factor))
527 vectorization_factor = nunits;
528
529 if (!analyze_pattern_stmt && gsi_end_p (pattern_def_si))
530 {
531 pattern_def_seq = NULL;
532 gsi_next (&si);
533 }
534 }
535 }
536
537 /* TODO: Analyze cost. Decide if worth while to vectorize. */
538 if (dump_enabled_p ())
539 dump_printf_loc (MSG_NOTE, vect_location, "vectorization factor = %d\n",
540 vectorization_factor);
541 if (vectorization_factor <= 1)
542 {
543 if (dump_enabled_p ())
544 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
545 "not vectorized: unsupported data-type\n");
546 return false;
547 }
548 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
549
550 return true;
551 }
552
553
554 /* Function vect_is_simple_iv_evolution.
555
556 FORNOW: A simple evolution of an induction variables in the loop is
557 considered a polynomial evolution. */
558
559 static bool
560 vect_is_simple_iv_evolution (unsigned loop_nb, tree access_fn, tree * init,
561 tree * step)
562 {
563 tree init_expr;
564 tree step_expr;
565 tree evolution_part = evolution_part_in_loop_num (access_fn, loop_nb);
566 basic_block bb;
567
568 /* When there is no evolution in this loop, the evolution function
569 is not "simple". */
570 if (evolution_part == NULL_TREE)
571 return false;
572
573 /* When the evolution is a polynomial of degree >= 2
574 the evolution function is not "simple". */
575 if (tree_is_chrec (evolution_part))
576 return false;
577
578 step_expr = evolution_part;
579 init_expr = unshare_expr (initial_condition_in_loop_num (access_fn, loop_nb));
580
581 if (dump_enabled_p ())
582 {
583 dump_printf_loc (MSG_NOTE, vect_location, "step: ");
584 dump_generic_expr (MSG_NOTE, TDF_SLIM, step_expr);
585 dump_printf (MSG_NOTE, ", init: ");
586 dump_generic_expr (MSG_NOTE, TDF_SLIM, init_expr);
587 dump_printf (MSG_NOTE, "\n");
588 }
589
590 *init = init_expr;
591 *step = step_expr;
592
593 if (TREE_CODE (step_expr) != INTEGER_CST
594 && (TREE_CODE (step_expr) != SSA_NAME
595 || ((bb = gimple_bb (SSA_NAME_DEF_STMT (step_expr)))
596 && flow_bb_inside_loop_p (get_loop (cfun, loop_nb), bb))
597 || (!INTEGRAL_TYPE_P (TREE_TYPE (step_expr))
598 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr))
599 || !flag_associative_math)))
600 && (TREE_CODE (step_expr) != REAL_CST
601 || !flag_associative_math))
602 {
603 if (dump_enabled_p ())
604 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
605 "step unknown.\n");
606 return false;
607 }
608
609 return true;
610 }
611
612 /* Function vect_analyze_scalar_cycles_1.
613
614 Examine the cross iteration def-use cycles of scalar variables
615 in LOOP. LOOP_VINFO represents the loop that is now being
616 considered for vectorization (can be LOOP, or an outer-loop
617 enclosing LOOP). */
618
619 static void
620 vect_analyze_scalar_cycles_1 (loop_vec_info loop_vinfo, struct loop *loop)
621 {
622 basic_block bb = loop->header;
623 tree init, step;
624 auto_vec<gimple, 64> worklist;
625 gimple_stmt_iterator gsi;
626 bool double_reduc;
627
628 if (dump_enabled_p ())
629 dump_printf_loc (MSG_NOTE, vect_location,
630 "=== vect_analyze_scalar_cycles ===\n");
631
632 /* First - identify all inductions. Reduction detection assumes that all the
633 inductions have been identified, therefore, this order must not be
634 changed. */
635 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
636 {
637 gimple phi = gsi_stmt (gsi);
638 tree access_fn = NULL;
639 tree def = PHI_RESULT (phi);
640 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
641
642 if (dump_enabled_p ())
643 {
644 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
645 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
646 dump_printf (MSG_NOTE, "\n");
647 }
648
649 /* Skip virtual phi's. The data dependences that are associated with
650 virtual defs/uses (i.e., memory accesses) are analyzed elsewhere. */
651 if (virtual_operand_p (def))
652 continue;
653
654 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_unknown_def_type;
655
656 /* Analyze the evolution function. */
657 access_fn = analyze_scalar_evolution (loop, def);
658 if (access_fn)
659 {
660 STRIP_NOPS (access_fn);
661 if (dump_enabled_p ())
662 {
663 dump_printf_loc (MSG_NOTE, vect_location,
664 "Access function of PHI: ");
665 dump_generic_expr (MSG_NOTE, TDF_SLIM, access_fn);
666 dump_printf (MSG_NOTE, "\n");
667 }
668 STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo)
669 = evolution_part_in_loop_num (access_fn, loop->num);
670 }
671
672 if (!access_fn
673 || !vect_is_simple_iv_evolution (loop->num, access_fn, &init, &step)
674 || (LOOP_VINFO_LOOP (loop_vinfo) != loop
675 && TREE_CODE (step) != INTEGER_CST))
676 {
677 worklist.safe_push (phi);
678 continue;
679 }
680
681 gcc_assert (STMT_VINFO_LOOP_PHI_EVOLUTION_PART (stmt_vinfo) != NULL_TREE);
682
683 if (dump_enabled_p ())
684 dump_printf_loc (MSG_NOTE, vect_location, "Detected induction.\n");
685 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_induction_def;
686 }
687
688
689 /* Second - identify all reductions and nested cycles. */
690 while (worklist.length () > 0)
691 {
692 gimple phi = worklist.pop ();
693 tree def = PHI_RESULT (phi);
694 stmt_vec_info stmt_vinfo = vinfo_for_stmt (phi);
695 gimple reduc_stmt;
696 bool nested_cycle;
697
698 if (dump_enabled_p ())
699 {
700 dump_printf_loc (MSG_NOTE, vect_location, "Analyze phi: ");
701 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
702 dump_printf (MSG_NOTE, "\n");
703 }
704
705 gcc_assert (!virtual_operand_p (def)
706 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_unknown_def_type);
707
708 nested_cycle = (loop != LOOP_VINFO_LOOP (loop_vinfo));
709 reduc_stmt = vect_force_simple_reduction (loop_vinfo, phi, !nested_cycle,
710 &double_reduc);
711 if (reduc_stmt)
712 {
713 if (double_reduc)
714 {
715 if (dump_enabled_p ())
716 dump_printf_loc (MSG_NOTE, vect_location,
717 "Detected double reduction.\n");
718
719 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_double_reduction_def;
720 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
721 vect_double_reduction_def;
722 }
723 else
724 {
725 if (nested_cycle)
726 {
727 if (dump_enabled_p ())
728 dump_printf_loc (MSG_NOTE, vect_location,
729 "Detected vectorizable nested cycle.\n");
730
731 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_nested_cycle;
732 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
733 vect_nested_cycle;
734 }
735 else
736 {
737 if (dump_enabled_p ())
738 dump_printf_loc (MSG_NOTE, vect_location,
739 "Detected reduction.\n");
740
741 STMT_VINFO_DEF_TYPE (stmt_vinfo) = vect_reduction_def;
742 STMT_VINFO_DEF_TYPE (vinfo_for_stmt (reduc_stmt)) =
743 vect_reduction_def;
744 /* Store the reduction cycles for possible vectorization in
745 loop-aware SLP. */
746 LOOP_VINFO_REDUCTIONS (loop_vinfo).safe_push (reduc_stmt);
747 }
748 }
749 }
750 else
751 if (dump_enabled_p ())
752 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
753 "Unknown def-use cycle pattern.\n");
754 }
755 }
756
757
758 /* Function vect_analyze_scalar_cycles.
759
760 Examine the cross iteration def-use cycles of scalar variables, by
761 analyzing the loop-header PHIs of scalar variables. Classify each
762 cycle as one of the following: invariant, induction, reduction, unknown.
763 We do that for the loop represented by LOOP_VINFO, and also to its
764 inner-loop, if exists.
765 Examples for scalar cycles:
766
767 Example1: reduction:
768
769 loop1:
770 for (i=0; i<N; i++)
771 sum += a[i];
772
773 Example2: induction:
774
775 loop2:
776 for (i=0; i<N; i++)
777 a[i] = i; */
778
779 static void
780 vect_analyze_scalar_cycles (loop_vec_info loop_vinfo)
781 {
782 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
783
784 vect_analyze_scalar_cycles_1 (loop_vinfo, loop);
785
786 /* When vectorizing an outer-loop, the inner-loop is executed sequentially.
787 Reductions in such inner-loop therefore have different properties than
788 the reductions in the nest that gets vectorized:
789 1. When vectorized, they are executed in the same order as in the original
790 scalar loop, so we can't change the order of computation when
791 vectorizing them.
792 2. FIXME: Inner-loop reductions can be used in the inner-loop, so the
793 current checks are too strict. */
794
795 if (loop->inner)
796 vect_analyze_scalar_cycles_1 (loop_vinfo, loop->inner);
797 }
798
799
800 /* Function vect_get_loop_niters.
801
802 Determine how many iterations the loop is executed and place it
803 in NUMBER_OF_ITERATIONS. Place the number of latch iterations
804 in NUMBER_OF_ITERATIONSM1.
805
806 Return the loop exit condition. */
807
808 static gimple
809 vect_get_loop_niters (struct loop *loop, tree *number_of_iterations,
810 tree *number_of_iterationsm1)
811 {
812 tree niters;
813
814 if (dump_enabled_p ())
815 dump_printf_loc (MSG_NOTE, vect_location,
816 "=== get_loop_niters ===\n");
817
818 niters = number_of_latch_executions (loop);
819 *number_of_iterationsm1 = niters;
820
821 /* We want the number of loop header executions which is the number
822 of latch executions plus one.
823 ??? For UINT_MAX latch executions this number overflows to zero
824 for loops like do { n++; } while (n != 0); */
825 if (niters && !chrec_contains_undetermined (niters))
826 niters = fold_build2 (PLUS_EXPR, TREE_TYPE (niters), unshare_expr (niters),
827 build_int_cst (TREE_TYPE (niters), 1));
828 *number_of_iterations = niters;
829
830 return get_loop_exit_condition (loop);
831 }
832
833
834 /* Function bb_in_loop_p
835
836 Used as predicate for dfs order traversal of the loop bbs. */
837
838 static bool
839 bb_in_loop_p (const_basic_block bb, const void *data)
840 {
841 const struct loop *const loop = (const struct loop *)data;
842 if (flow_bb_inside_loop_p (loop, bb))
843 return true;
844 return false;
845 }
846
847
848 /* Function new_loop_vec_info.
849
850 Create and initialize a new loop_vec_info struct for LOOP, as well as
851 stmt_vec_info structs for all the stmts in LOOP. */
852
853 static loop_vec_info
854 new_loop_vec_info (struct loop *loop)
855 {
856 loop_vec_info res;
857 basic_block *bbs;
858 gimple_stmt_iterator si;
859 unsigned int i, nbbs;
860
861 res = (loop_vec_info) xcalloc (1, sizeof (struct _loop_vec_info));
862 LOOP_VINFO_LOOP (res) = loop;
863
864 bbs = get_loop_body (loop);
865
866 /* Create/Update stmt_info for all stmts in the loop. */
867 for (i = 0; i < loop->num_nodes; i++)
868 {
869 basic_block bb = bbs[i];
870
871 /* BBs in a nested inner-loop will have been already processed (because
872 we will have called vect_analyze_loop_form for any nested inner-loop).
873 Therefore, for stmts in an inner-loop we just want to update the
874 STMT_VINFO_LOOP_VINFO field of their stmt_info to point to the new
875 loop_info of the outer-loop we are currently considering to vectorize
876 (instead of the loop_info of the inner-loop).
877 For stmts in other BBs we need to create a stmt_info from scratch. */
878 if (bb->loop_father != loop)
879 {
880 /* Inner-loop bb. */
881 gcc_assert (loop->inner && bb->loop_father == loop->inner);
882 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
883 {
884 gimple phi = gsi_stmt (si);
885 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
886 loop_vec_info inner_loop_vinfo =
887 STMT_VINFO_LOOP_VINFO (stmt_info);
888 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
889 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
890 }
891 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
892 {
893 gimple stmt = gsi_stmt (si);
894 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
895 loop_vec_info inner_loop_vinfo =
896 STMT_VINFO_LOOP_VINFO (stmt_info);
897 gcc_assert (loop->inner == LOOP_VINFO_LOOP (inner_loop_vinfo));
898 STMT_VINFO_LOOP_VINFO (stmt_info) = res;
899 }
900 }
901 else
902 {
903 /* bb in current nest. */
904 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
905 {
906 gimple phi = gsi_stmt (si);
907 gimple_set_uid (phi, 0);
908 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, res, NULL));
909 }
910
911 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
912 {
913 gimple stmt = gsi_stmt (si);
914 gimple_set_uid (stmt, 0);
915 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, res, NULL));
916 }
917 }
918 }
919
920 /* CHECKME: We want to visit all BBs before their successors (except for
921 latch blocks, for which this assertion wouldn't hold). In the simple
922 case of the loop forms we allow, a dfs order of the BBs would the same
923 as reversed postorder traversal, so we are safe. */
924
925 free (bbs);
926 bbs = XCNEWVEC (basic_block, loop->num_nodes);
927 nbbs = dfs_enumerate_from (loop->header, 0, bb_in_loop_p,
928 bbs, loop->num_nodes, loop);
929 gcc_assert (nbbs == loop->num_nodes);
930
931 LOOP_VINFO_BBS (res) = bbs;
932 LOOP_VINFO_NITERSM1 (res) = NULL;
933 LOOP_VINFO_NITERS (res) = NULL;
934 LOOP_VINFO_NITERS_UNCHANGED (res) = NULL;
935 LOOP_VINFO_COST_MODEL_MIN_ITERS (res) = 0;
936 LOOP_VINFO_COST_MODEL_THRESHOLD (res) = 0;
937 LOOP_VINFO_VECTORIZABLE_P (res) = 0;
938 LOOP_VINFO_PEELING_FOR_ALIGNMENT (res) = 0;
939 LOOP_VINFO_VECT_FACTOR (res) = 0;
940 LOOP_VINFO_LOOP_NEST (res).create (3);
941 LOOP_VINFO_DATAREFS (res).create (10);
942 LOOP_VINFO_DDRS (res).create (10 * 10);
943 LOOP_VINFO_UNALIGNED_DR (res) = NULL;
944 LOOP_VINFO_MAY_MISALIGN_STMTS (res).create (
945 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIGNMENT_CHECKS));
946 LOOP_VINFO_MAY_ALIAS_DDRS (res).create (
947 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
948 LOOP_VINFO_GROUPED_STORES (res).create (10);
949 LOOP_VINFO_REDUCTIONS (res).create (10);
950 LOOP_VINFO_REDUCTION_CHAINS (res).create (10);
951 LOOP_VINFO_SLP_INSTANCES (res).create (10);
952 LOOP_VINFO_SLP_UNROLLING_FACTOR (res) = 1;
953 LOOP_VINFO_TARGET_COST_DATA (res) = init_cost (loop);
954 LOOP_VINFO_PEELING_FOR_GAPS (res) = false;
955 LOOP_VINFO_PEELING_FOR_NITER (res) = false;
956 LOOP_VINFO_OPERANDS_SWAPPED (res) = false;
957
958 return res;
959 }
960
961
962 /* Function destroy_loop_vec_info.
963
964 Free LOOP_VINFO struct, as well as all the stmt_vec_info structs of all the
965 stmts in the loop. */
966
967 void
968 destroy_loop_vec_info (loop_vec_info loop_vinfo, bool clean_stmts)
969 {
970 struct loop *loop;
971 basic_block *bbs;
972 int nbbs;
973 gimple_stmt_iterator si;
974 int j;
975 vec<slp_instance> slp_instances;
976 slp_instance instance;
977 bool swapped;
978
979 if (!loop_vinfo)
980 return;
981
982 loop = LOOP_VINFO_LOOP (loop_vinfo);
983
984 bbs = LOOP_VINFO_BBS (loop_vinfo);
985 nbbs = clean_stmts ? loop->num_nodes : 0;
986 swapped = LOOP_VINFO_OPERANDS_SWAPPED (loop_vinfo);
987
988 for (j = 0; j < nbbs; j++)
989 {
990 basic_block bb = bbs[j];
991 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
992 free_stmt_vec_info (gsi_stmt (si));
993
994 for (si = gsi_start_bb (bb); !gsi_end_p (si); )
995 {
996 gimple stmt = gsi_stmt (si);
997
998 /* We may have broken canonical form by moving a constant
999 into RHS1 of a commutative op. Fix such occurrences. */
1000 if (swapped && is_gimple_assign (stmt))
1001 {
1002 enum tree_code code = gimple_assign_rhs_code (stmt);
1003
1004 if ((code == PLUS_EXPR
1005 || code == POINTER_PLUS_EXPR
1006 || code == MULT_EXPR)
1007 && CONSTANT_CLASS_P (gimple_assign_rhs1 (stmt)))
1008 swap_ssa_operands (stmt,
1009 gimple_assign_rhs1_ptr (stmt),
1010 gimple_assign_rhs2_ptr (stmt));
1011 }
1012
1013 /* Free stmt_vec_info. */
1014 free_stmt_vec_info (stmt);
1015 gsi_next (&si);
1016 }
1017 }
1018
1019 free (LOOP_VINFO_BBS (loop_vinfo));
1020 vect_destroy_datarefs (loop_vinfo, NULL);
1021 free_dependence_relations (LOOP_VINFO_DDRS (loop_vinfo));
1022 LOOP_VINFO_LOOP_NEST (loop_vinfo).release ();
1023 LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).release ();
1024 LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).release ();
1025 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
1026 FOR_EACH_VEC_ELT (slp_instances, j, instance)
1027 vect_free_slp_instance (instance);
1028
1029 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).release ();
1030 LOOP_VINFO_GROUPED_STORES (loop_vinfo).release ();
1031 LOOP_VINFO_REDUCTIONS (loop_vinfo).release ();
1032 LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).release ();
1033
1034 if (LOOP_VINFO_PEELING_HTAB (loop_vinfo).is_created ())
1035 LOOP_VINFO_PEELING_HTAB (loop_vinfo).dispose ();
1036
1037 destroy_cost_data (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo));
1038
1039 free (loop_vinfo);
1040 loop->aux = NULL;
1041 }
1042
1043
1044 /* Function vect_analyze_loop_1.
1045
1046 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1047 for it. The different analyses will record information in the
1048 loop_vec_info struct. This is a subset of the analyses applied in
1049 vect_analyze_loop, to be applied on an inner-loop nested in the loop
1050 that is now considered for (outer-loop) vectorization. */
1051
1052 static loop_vec_info
1053 vect_analyze_loop_1 (struct loop *loop)
1054 {
1055 loop_vec_info loop_vinfo;
1056
1057 if (dump_enabled_p ())
1058 dump_printf_loc (MSG_NOTE, vect_location,
1059 "===== analyze_loop_nest_1 =====\n");
1060
1061 /* Check the CFG characteristics of the loop (nesting, entry/exit, etc. */
1062
1063 loop_vinfo = vect_analyze_loop_form (loop);
1064 if (!loop_vinfo)
1065 {
1066 if (dump_enabled_p ())
1067 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1068 "bad inner-loop form.\n");
1069 return NULL;
1070 }
1071
1072 return loop_vinfo;
1073 }
1074
1075
1076 /* Function vect_analyze_loop_form.
1077
1078 Verify that certain CFG restrictions hold, including:
1079 - the loop has a pre-header
1080 - the loop has a single entry and exit
1081 - the loop exit condition is simple enough, and the number of iterations
1082 can be analyzed (a countable loop). */
1083
1084 loop_vec_info
1085 vect_analyze_loop_form (struct loop *loop)
1086 {
1087 loop_vec_info loop_vinfo;
1088 gimple loop_cond;
1089 tree number_of_iterations = NULL, number_of_iterationsm1 = NULL;
1090 loop_vec_info inner_loop_vinfo = NULL;
1091
1092 if (dump_enabled_p ())
1093 dump_printf_loc (MSG_NOTE, vect_location,
1094 "=== vect_analyze_loop_form ===\n");
1095
1096 /* Different restrictions apply when we are considering an inner-most loop,
1097 vs. an outer (nested) loop.
1098 (FORNOW. May want to relax some of these restrictions in the future). */
1099
1100 if (!loop->inner)
1101 {
1102 /* Inner-most loop. We currently require that the number of BBs is
1103 exactly 2 (the header and latch). Vectorizable inner-most loops
1104 look like this:
1105
1106 (pre-header)
1107 |
1108 header <--------+
1109 | | |
1110 | +--> latch --+
1111 |
1112 (exit-bb) */
1113
1114 if (loop->num_nodes != 2)
1115 {
1116 if (dump_enabled_p ())
1117 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1118 "not vectorized: control flow in loop.\n");
1119 return NULL;
1120 }
1121
1122 if (empty_block_p (loop->header))
1123 {
1124 if (dump_enabled_p ())
1125 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1126 "not vectorized: empty loop.\n");
1127 return NULL;
1128 }
1129 }
1130 else
1131 {
1132 struct loop *innerloop = loop->inner;
1133 edge entryedge;
1134
1135 /* Nested loop. We currently require that the loop is doubly-nested,
1136 contains a single inner loop, and the number of BBs is exactly 5.
1137 Vectorizable outer-loops look like this:
1138
1139 (pre-header)
1140 |
1141 header <---+
1142 | |
1143 inner-loop |
1144 | |
1145 tail ------+
1146 |
1147 (exit-bb)
1148
1149 The inner-loop has the properties expected of inner-most loops
1150 as described above. */
1151
1152 if ((loop->inner)->inner || (loop->inner)->next)
1153 {
1154 if (dump_enabled_p ())
1155 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1156 "not vectorized: multiple nested loops.\n");
1157 return NULL;
1158 }
1159
1160 /* Analyze the inner-loop. */
1161 inner_loop_vinfo = vect_analyze_loop_1 (loop->inner);
1162 if (!inner_loop_vinfo)
1163 {
1164 if (dump_enabled_p ())
1165 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1166 "not vectorized: Bad inner loop.\n");
1167 return NULL;
1168 }
1169
1170 if (!expr_invariant_in_loop_p (loop,
1171 LOOP_VINFO_NITERS (inner_loop_vinfo)))
1172 {
1173 if (dump_enabled_p ())
1174 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1175 "not vectorized: inner-loop count not"
1176 " invariant.\n");
1177 destroy_loop_vec_info (inner_loop_vinfo, true);
1178 return NULL;
1179 }
1180
1181 if (loop->num_nodes != 5)
1182 {
1183 if (dump_enabled_p ())
1184 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1185 "not vectorized: control flow in loop.\n");
1186 destroy_loop_vec_info (inner_loop_vinfo, true);
1187 return NULL;
1188 }
1189
1190 gcc_assert (EDGE_COUNT (innerloop->header->preds) == 2);
1191 entryedge = EDGE_PRED (innerloop->header, 0);
1192 if (EDGE_PRED (innerloop->header, 0)->src == innerloop->latch)
1193 entryedge = EDGE_PRED (innerloop->header, 1);
1194
1195 if (entryedge->src != loop->header
1196 || !single_exit (innerloop)
1197 || single_exit (innerloop)->dest != EDGE_PRED (loop->latch, 0)->src)
1198 {
1199 if (dump_enabled_p ())
1200 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1201 "not vectorized: unsupported outerloop form.\n");
1202 destroy_loop_vec_info (inner_loop_vinfo, true);
1203 return NULL;
1204 }
1205
1206 if (dump_enabled_p ())
1207 dump_printf_loc (MSG_NOTE, vect_location,
1208 "Considering outer-loop vectorization.\n");
1209 }
1210
1211 if (!single_exit (loop)
1212 || EDGE_COUNT (loop->header->preds) != 2)
1213 {
1214 if (dump_enabled_p ())
1215 {
1216 if (!single_exit (loop))
1217 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1218 "not vectorized: multiple exits.\n");
1219 else if (EDGE_COUNT (loop->header->preds) != 2)
1220 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1221 "not vectorized: too many incoming edges.\n");
1222 }
1223 if (inner_loop_vinfo)
1224 destroy_loop_vec_info (inner_loop_vinfo, true);
1225 return NULL;
1226 }
1227
1228 /* We assume that the loop exit condition is at the end of the loop. i.e,
1229 that the loop is represented as a do-while (with a proper if-guard
1230 before the loop if needed), where the loop header contains all the
1231 executable statements, and the latch is empty. */
1232 if (!empty_block_p (loop->latch)
1233 || !gimple_seq_empty_p (phi_nodes (loop->latch)))
1234 {
1235 if (dump_enabled_p ())
1236 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1237 "not vectorized: latch block not empty.\n");
1238 if (inner_loop_vinfo)
1239 destroy_loop_vec_info (inner_loop_vinfo, true);
1240 return NULL;
1241 }
1242
1243 /* Make sure there exists a single-predecessor exit bb: */
1244 if (!single_pred_p (single_exit (loop)->dest))
1245 {
1246 edge e = single_exit (loop);
1247 if (!(e->flags & EDGE_ABNORMAL))
1248 {
1249 split_loop_exit_edge (e);
1250 if (dump_enabled_p ())
1251 dump_printf (MSG_NOTE, "split exit edge.\n");
1252 }
1253 else
1254 {
1255 if (dump_enabled_p ())
1256 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1257 "not vectorized: abnormal loop exit edge.\n");
1258 if (inner_loop_vinfo)
1259 destroy_loop_vec_info (inner_loop_vinfo, true);
1260 return NULL;
1261 }
1262 }
1263
1264 loop_cond = vect_get_loop_niters (loop, &number_of_iterations,
1265 &number_of_iterationsm1);
1266 if (!loop_cond)
1267 {
1268 if (dump_enabled_p ())
1269 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1270 "not vectorized: complicated exit condition.\n");
1271 if (inner_loop_vinfo)
1272 destroy_loop_vec_info (inner_loop_vinfo, true);
1273 return NULL;
1274 }
1275
1276 if (!number_of_iterations
1277 || chrec_contains_undetermined (number_of_iterations))
1278 {
1279 if (dump_enabled_p ())
1280 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1281 "not vectorized: number of iterations cannot be "
1282 "computed.\n");
1283 if (inner_loop_vinfo)
1284 destroy_loop_vec_info (inner_loop_vinfo, true);
1285 return NULL;
1286 }
1287
1288 if (integer_zerop (number_of_iterations))
1289 {
1290 if (dump_enabled_p ())
1291 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1292 "not vectorized: number of iterations = 0.\n");
1293 if (inner_loop_vinfo)
1294 destroy_loop_vec_info (inner_loop_vinfo, true);
1295 return NULL;
1296 }
1297
1298 loop_vinfo = new_loop_vec_info (loop);
1299 LOOP_VINFO_NITERSM1 (loop_vinfo) = number_of_iterationsm1;
1300 LOOP_VINFO_NITERS (loop_vinfo) = number_of_iterations;
1301 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = number_of_iterations;
1302
1303 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
1304 {
1305 if (dump_enabled_p ())
1306 {
1307 dump_printf_loc (MSG_NOTE, vect_location,
1308 "Symbolic number of iterations is ");
1309 dump_generic_expr (MSG_NOTE, TDF_DETAILS, number_of_iterations);
1310 dump_printf (MSG_NOTE, "\n");
1311 }
1312 }
1313
1314 STMT_VINFO_TYPE (vinfo_for_stmt (loop_cond)) = loop_exit_ctrl_vec_info_type;
1315
1316 /* CHECKME: May want to keep it around it in the future. */
1317 if (inner_loop_vinfo)
1318 destroy_loop_vec_info (inner_loop_vinfo, false);
1319
1320 gcc_assert (!loop->aux);
1321 loop->aux = loop_vinfo;
1322 return loop_vinfo;
1323 }
1324
1325
1326 /* Function vect_analyze_loop_operations.
1327
1328 Scan the loop stmts and make sure they are all vectorizable. */
1329
1330 static bool
1331 vect_analyze_loop_operations (loop_vec_info loop_vinfo, bool slp)
1332 {
1333 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1334 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
1335 int nbbs = loop->num_nodes;
1336 gimple_stmt_iterator si;
1337 unsigned int vectorization_factor = 0;
1338 int i;
1339 gimple phi;
1340 stmt_vec_info stmt_info;
1341 bool need_to_vectorize = false;
1342 int min_profitable_iters;
1343 int min_scalar_loop_bound;
1344 unsigned int th;
1345 bool only_slp_in_loop = true, ok;
1346 HOST_WIDE_INT max_niter;
1347 HOST_WIDE_INT estimated_niter;
1348 int min_profitable_estimate;
1349
1350 if (dump_enabled_p ())
1351 dump_printf_loc (MSG_NOTE, vect_location,
1352 "=== vect_analyze_loop_operations ===\n");
1353
1354 gcc_assert (LOOP_VINFO_VECT_FACTOR (loop_vinfo));
1355 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1356 if (slp)
1357 {
1358 /* If all the stmts in the loop can be SLPed, we perform only SLP, and
1359 vectorization factor of the loop is the unrolling factor required by
1360 the SLP instances. If that unrolling factor is 1, we say, that we
1361 perform pure SLP on loop - cross iteration parallelism is not
1362 exploited. */
1363 for (i = 0; i < nbbs; i++)
1364 {
1365 basic_block bb = bbs[i];
1366 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1367 {
1368 gimple stmt = gsi_stmt (si);
1369 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1370 gcc_assert (stmt_info);
1371 if ((STMT_VINFO_RELEVANT_P (stmt_info)
1372 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
1373 && !PURE_SLP_STMT (stmt_info))
1374 /* STMT needs both SLP and loop-based vectorization. */
1375 only_slp_in_loop = false;
1376 }
1377 }
1378
1379 if (only_slp_in_loop)
1380 vectorization_factor = LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo);
1381 else
1382 vectorization_factor = least_common_multiple (vectorization_factor,
1383 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo));
1384
1385 LOOP_VINFO_VECT_FACTOR (loop_vinfo) = vectorization_factor;
1386 if (dump_enabled_p ())
1387 dump_printf_loc (MSG_NOTE, vect_location,
1388 "Updating vectorization factor to %d\n",
1389 vectorization_factor);
1390 }
1391
1392 for (i = 0; i < nbbs; i++)
1393 {
1394 basic_block bb = bbs[i];
1395
1396 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
1397 {
1398 phi = gsi_stmt (si);
1399 ok = true;
1400
1401 stmt_info = vinfo_for_stmt (phi);
1402 if (dump_enabled_p ())
1403 {
1404 dump_printf_loc (MSG_NOTE, vect_location, "examining phi: ");
1405 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
1406 dump_printf (MSG_NOTE, "\n");
1407 }
1408
1409 /* Inner-loop loop-closed exit phi in outer-loop vectorization
1410 (i.e., a phi in the tail of the outer-loop). */
1411 if (! is_loop_header_bb_p (bb))
1412 {
1413 /* FORNOW: we currently don't support the case that these phis
1414 are not used in the outerloop (unless it is double reduction,
1415 i.e., this phi is vect_reduction_def), cause this case
1416 requires to actually do something here. */
1417 if ((!STMT_VINFO_RELEVANT_P (stmt_info)
1418 || STMT_VINFO_LIVE_P (stmt_info))
1419 && STMT_VINFO_DEF_TYPE (stmt_info)
1420 != vect_double_reduction_def)
1421 {
1422 if (dump_enabled_p ())
1423 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1424 "Unsupported loop-closed phi in "
1425 "outer-loop.\n");
1426 return false;
1427 }
1428
1429 /* If PHI is used in the outer loop, we check that its operand
1430 is defined in the inner loop. */
1431 if (STMT_VINFO_RELEVANT_P (stmt_info))
1432 {
1433 tree phi_op;
1434 gimple op_def_stmt;
1435
1436 if (gimple_phi_num_args (phi) != 1)
1437 return false;
1438
1439 phi_op = PHI_ARG_DEF (phi, 0);
1440 if (TREE_CODE (phi_op) != SSA_NAME)
1441 return false;
1442
1443 op_def_stmt = SSA_NAME_DEF_STMT (phi_op);
1444 if (gimple_nop_p (op_def_stmt)
1445 || !flow_bb_inside_loop_p (loop, gimple_bb (op_def_stmt))
1446 || !vinfo_for_stmt (op_def_stmt))
1447 return false;
1448
1449 if (STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1450 != vect_used_in_outer
1451 && STMT_VINFO_RELEVANT (vinfo_for_stmt (op_def_stmt))
1452 != vect_used_in_outer_by_reduction)
1453 return false;
1454 }
1455
1456 continue;
1457 }
1458
1459 gcc_assert (stmt_info);
1460
1461 if (STMT_VINFO_LIVE_P (stmt_info))
1462 {
1463 /* FORNOW: not yet supported. */
1464 if (dump_enabled_p ())
1465 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1466 "not vectorized: value used after loop.\n");
1467 return false;
1468 }
1469
1470 if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope
1471 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_induction_def)
1472 {
1473 /* A scalar-dependence cycle that we don't support. */
1474 if (dump_enabled_p ())
1475 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1476 "not vectorized: scalar dependence cycle.\n");
1477 return false;
1478 }
1479
1480 if (STMT_VINFO_RELEVANT_P (stmt_info))
1481 {
1482 need_to_vectorize = true;
1483 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
1484 ok = vectorizable_induction (phi, NULL, NULL);
1485 }
1486
1487 if (!ok)
1488 {
1489 if (dump_enabled_p ())
1490 {
1491 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1492 "not vectorized: relevant phi not "
1493 "supported: ");
1494 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, phi, 0);
1495 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
1496 }
1497 return false;
1498 }
1499 }
1500
1501 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1502 {
1503 gimple stmt = gsi_stmt (si);
1504 if (!gimple_clobber_p (stmt)
1505 && !vect_analyze_stmt (stmt, &need_to_vectorize, NULL))
1506 return false;
1507 }
1508 } /* bbs */
1509
1510 /* All operations in the loop are either irrelevant (deal with loop
1511 control, or dead), or only used outside the loop and can be moved
1512 out of the loop (e.g. invariants, inductions). The loop can be
1513 optimized away by scalar optimizations. We're better off not
1514 touching this loop. */
1515 if (!need_to_vectorize)
1516 {
1517 if (dump_enabled_p ())
1518 dump_printf_loc (MSG_NOTE, vect_location,
1519 "All the computation can be taken out of the loop.\n");
1520 if (dump_enabled_p ())
1521 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1522 "not vectorized: redundant loop. no profit to "
1523 "vectorize.\n");
1524 return false;
1525 }
1526
1527 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo) && dump_enabled_p ())
1528 dump_printf_loc (MSG_NOTE, vect_location,
1529 "vectorization_factor = %d, niters = "
1530 HOST_WIDE_INT_PRINT_DEC "\n", vectorization_factor,
1531 LOOP_VINFO_INT_NITERS (loop_vinfo));
1532
1533 if ((LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1534 && (LOOP_VINFO_INT_NITERS (loop_vinfo) < vectorization_factor))
1535 || ((max_niter = max_stmt_executions_int (loop)) != -1
1536 && (unsigned HOST_WIDE_INT) max_niter < vectorization_factor))
1537 {
1538 if (dump_enabled_p ())
1539 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1540 "not vectorized: iteration count too small.\n");
1541 if (dump_enabled_p ())
1542 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1543 "not vectorized: iteration count smaller than "
1544 "vectorization factor.\n");
1545 return false;
1546 }
1547
1548 /* Analyze cost. Decide if worth while to vectorize. */
1549
1550 /* Once VF is set, SLP costs should be updated since the number of created
1551 vector stmts depends on VF. */
1552 vect_update_slp_costs_according_to_vf (loop_vinfo);
1553
1554 vect_estimate_min_profitable_iters (loop_vinfo, &min_profitable_iters,
1555 &min_profitable_estimate);
1556 LOOP_VINFO_COST_MODEL_MIN_ITERS (loop_vinfo) = min_profitable_iters;
1557
1558 if (min_profitable_iters < 0)
1559 {
1560 if (dump_enabled_p ())
1561 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1562 "not vectorized: vectorization not profitable.\n");
1563 if (dump_enabled_p ())
1564 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1565 "not vectorized: vector version will never be "
1566 "profitable.\n");
1567 return false;
1568 }
1569
1570 min_scalar_loop_bound = ((PARAM_VALUE (PARAM_MIN_VECT_LOOP_BOUND)
1571 * vectorization_factor) - 1);
1572
1573
1574 /* Use the cost model only if it is more conservative than user specified
1575 threshold. */
1576
1577 th = (unsigned) min_scalar_loop_bound;
1578 if (min_profitable_iters
1579 && (!min_scalar_loop_bound
1580 || min_profitable_iters > min_scalar_loop_bound))
1581 th = (unsigned) min_profitable_iters;
1582
1583 LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) = th;
1584
1585 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1586 && LOOP_VINFO_INT_NITERS (loop_vinfo) <= th)
1587 {
1588 if (dump_enabled_p ())
1589 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1590 "not vectorized: vectorization not profitable.\n");
1591 if (dump_enabled_p ())
1592 dump_printf_loc (MSG_NOTE, vect_location,
1593 "not vectorized: iteration count smaller than user "
1594 "specified loop bound parameter or minimum profitable "
1595 "iterations (whichever is more conservative).\n");
1596 return false;
1597 }
1598
1599 if ((estimated_niter = estimated_stmt_executions_int (loop)) != -1
1600 && ((unsigned HOST_WIDE_INT) estimated_niter
1601 <= MAX (th, (unsigned)min_profitable_estimate)))
1602 {
1603 if (dump_enabled_p ())
1604 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1605 "not vectorized: estimated iteration count too "
1606 "small.\n");
1607 if (dump_enabled_p ())
1608 dump_printf_loc (MSG_NOTE, vect_location,
1609 "not vectorized: estimated iteration count smaller "
1610 "than specified loop bound parameter or minimum "
1611 "profitable iterations (whichever is more "
1612 "conservative).\n");
1613 return false;
1614 }
1615
1616 return true;
1617 }
1618
1619
1620 /* Function vect_analyze_loop_2.
1621
1622 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1623 for it. The different analyses will record information in the
1624 loop_vec_info struct. */
1625 static bool
1626 vect_analyze_loop_2 (loop_vec_info loop_vinfo)
1627 {
1628 bool ok, slp = false;
1629 int max_vf = MAX_VECTORIZATION_FACTOR;
1630 int min_vf = 2;
1631 unsigned int th;
1632
1633 /* Find all data references in the loop (which correspond to vdefs/vuses)
1634 and analyze their evolution in the loop. Also adjust the minimal
1635 vectorization factor according to the loads and stores.
1636
1637 FORNOW: Handle only simple, array references, which
1638 alignment can be forced, and aligned pointer-references. */
1639
1640 ok = vect_analyze_data_refs (loop_vinfo, NULL, &min_vf);
1641 if (!ok)
1642 {
1643 if (dump_enabled_p ())
1644 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1645 "bad data references.\n");
1646 return false;
1647 }
1648
1649 /* Analyze the access patterns of the data-refs in the loop (consecutive,
1650 complex, etc.). FORNOW: Only handle consecutive access pattern. */
1651
1652 ok = vect_analyze_data_ref_accesses (loop_vinfo, NULL);
1653 if (!ok)
1654 {
1655 if (dump_enabled_p ())
1656 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1657 "bad data access.\n");
1658 return false;
1659 }
1660
1661 /* Classify all cross-iteration scalar data-flow cycles.
1662 Cross-iteration cycles caused by virtual phis are analyzed separately. */
1663
1664 vect_analyze_scalar_cycles (loop_vinfo);
1665
1666 vect_pattern_recog (loop_vinfo, NULL);
1667
1668 /* Data-flow analysis to detect stmts that do not need to be vectorized. */
1669
1670 ok = vect_mark_stmts_to_be_vectorized (loop_vinfo);
1671 if (!ok)
1672 {
1673 if (dump_enabled_p ())
1674 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1675 "unexpected pattern.\n");
1676 return false;
1677 }
1678
1679 /* Analyze data dependences between the data-refs in the loop
1680 and adjust the maximum vectorization factor according to
1681 the dependences.
1682 FORNOW: fail at the first data dependence that we encounter. */
1683
1684 ok = vect_analyze_data_ref_dependences (loop_vinfo, &max_vf);
1685 if (!ok
1686 || max_vf < min_vf)
1687 {
1688 if (dump_enabled_p ())
1689 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1690 "bad data dependence.\n");
1691 return false;
1692 }
1693
1694 ok = vect_determine_vectorization_factor (loop_vinfo);
1695 if (!ok)
1696 {
1697 if (dump_enabled_p ())
1698 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1699 "can't determine vectorization factor.\n");
1700 return false;
1701 }
1702 if (max_vf < LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1703 {
1704 if (dump_enabled_p ())
1705 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1706 "bad data dependence.\n");
1707 return false;
1708 }
1709
1710 /* Analyze the alignment of the data-refs in the loop.
1711 Fail if a data reference is found that cannot be vectorized. */
1712
1713 ok = vect_analyze_data_refs_alignment (loop_vinfo, NULL);
1714 if (!ok)
1715 {
1716 if (dump_enabled_p ())
1717 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1718 "bad data alignment.\n");
1719 return false;
1720 }
1721
1722 /* Prune the list of ddrs to be tested at run-time by versioning for alias.
1723 It is important to call pruning after vect_analyze_data_ref_accesses,
1724 since we use grouping information gathered by interleaving analysis. */
1725 ok = vect_prune_runtime_alias_test_list (loop_vinfo);
1726 if (!ok)
1727 {
1728 if (dump_enabled_p ())
1729 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1730 "number of versioning for alias "
1731 "run-time tests exceeds %d "
1732 "(--param vect-max-version-for-alias-checks)\n",
1733 PARAM_VALUE (PARAM_VECT_MAX_VERSION_FOR_ALIAS_CHECKS));
1734 return false;
1735 }
1736
1737 /* This pass will decide on using loop versioning and/or loop peeling in
1738 order to enhance the alignment of data references in the loop. */
1739
1740 ok = vect_enhance_data_refs_alignment (loop_vinfo);
1741 if (!ok)
1742 {
1743 if (dump_enabled_p ())
1744 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1745 "bad data alignment.\n");
1746 return false;
1747 }
1748
1749 /* Check the SLP opportunities in the loop, analyze and build SLP trees. */
1750 ok = vect_analyze_slp (loop_vinfo, NULL);
1751 if (ok)
1752 {
1753 /* Decide which possible SLP instances to SLP. */
1754 slp = vect_make_slp_decision (loop_vinfo);
1755
1756 /* Find stmts that need to be both vectorized and SLPed. */
1757 vect_detect_hybrid_slp (loop_vinfo);
1758 }
1759 else
1760 return false;
1761
1762 /* Scan all the operations in the loop and make sure they are
1763 vectorizable. */
1764
1765 ok = vect_analyze_loop_operations (loop_vinfo, slp);
1766 if (!ok)
1767 {
1768 if (dump_enabled_p ())
1769 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1770 "bad operation or unsupported loop bound.\n");
1771 return false;
1772 }
1773
1774 /* Decide whether we need to create an epilogue loop to handle
1775 remaining scalar iterations. */
1776 th = ((LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo) + 1)
1777 / LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1778 * LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1779
1780 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
1781 && LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) > 0)
1782 {
1783 if (ctz_hwi (LOOP_VINFO_INT_NITERS (loop_vinfo)
1784 - LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
1785 < exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo)))
1786 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
1787 }
1788 else if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo)
1789 || (tree_ctz (LOOP_VINFO_NITERS (loop_vinfo))
1790 < (unsigned)exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo))
1791 /* In case of versioning, check if the maximum number of
1792 iterations is greater than th. If they are identical,
1793 the epilogue is unnecessary. */
1794 && ((!LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo)
1795 && !LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
1796 || (unsigned HOST_WIDE_INT)max_stmt_executions_int
1797 (LOOP_VINFO_LOOP (loop_vinfo)) > th)))
1798 LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo) = true;
1799
1800 /* If an epilogue loop is required make sure we can create one. */
1801 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
1802 || LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo))
1803 {
1804 if (dump_enabled_p ())
1805 dump_printf_loc (MSG_NOTE, vect_location, "epilog loop required\n");
1806 if (!vect_can_advance_ivs_p (loop_vinfo)
1807 || !slpeel_can_duplicate_loop_p (LOOP_VINFO_LOOP (loop_vinfo),
1808 single_exit (LOOP_VINFO_LOOP
1809 (loop_vinfo))))
1810 {
1811 if (dump_enabled_p ())
1812 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1813 "not vectorized: can't create required "
1814 "epilog loop\n");
1815 return false;
1816 }
1817 }
1818
1819 return true;
1820 }
1821
1822 /* Function vect_analyze_loop.
1823
1824 Apply a set of analyses on LOOP, and create a loop_vec_info struct
1825 for it. The different analyses will record information in the
1826 loop_vec_info struct. */
1827 loop_vec_info
1828 vect_analyze_loop (struct loop *loop)
1829 {
1830 loop_vec_info loop_vinfo;
1831 unsigned int vector_sizes;
1832
1833 /* Autodetect first vector size we try. */
1834 current_vector_size = 0;
1835 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
1836
1837 if (dump_enabled_p ())
1838 dump_printf_loc (MSG_NOTE, vect_location,
1839 "===== analyze_loop_nest =====\n");
1840
1841 if (loop_outer (loop)
1842 && loop_vec_info_for_loop (loop_outer (loop))
1843 && LOOP_VINFO_VECTORIZABLE_P (loop_vec_info_for_loop (loop_outer (loop))))
1844 {
1845 if (dump_enabled_p ())
1846 dump_printf_loc (MSG_NOTE, vect_location,
1847 "outer-loop already vectorized.\n");
1848 return NULL;
1849 }
1850
1851 while (1)
1852 {
1853 /* Check the CFG characteristics of the loop (nesting, entry/exit). */
1854 loop_vinfo = vect_analyze_loop_form (loop);
1855 if (!loop_vinfo)
1856 {
1857 if (dump_enabled_p ())
1858 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1859 "bad loop form.\n");
1860 return NULL;
1861 }
1862
1863 if (vect_analyze_loop_2 (loop_vinfo))
1864 {
1865 LOOP_VINFO_VECTORIZABLE_P (loop_vinfo) = 1;
1866
1867 return loop_vinfo;
1868 }
1869
1870 destroy_loop_vec_info (loop_vinfo, true);
1871
1872 vector_sizes &= ~current_vector_size;
1873 if (vector_sizes == 0
1874 || current_vector_size == 0)
1875 return NULL;
1876
1877 /* Try the next biggest vector size. */
1878 current_vector_size = 1 << floor_log2 (vector_sizes);
1879 if (dump_enabled_p ())
1880 dump_printf_loc (MSG_NOTE, vect_location,
1881 "***** Re-trying analysis with "
1882 "vector size %d\n", current_vector_size);
1883 }
1884 }
1885
1886
1887 /* Function reduction_code_for_scalar_code
1888
1889 Input:
1890 CODE - tree_code of a reduction operations.
1891
1892 Output:
1893 REDUC_CODE - the corresponding tree-code to be used to reduce the
1894 vector of partial results into a single scalar result (which
1895 will also reside in a vector) or ERROR_MARK if the operation is
1896 a supported reduction operation, but does not have such tree-code.
1897
1898 Return FALSE if CODE currently cannot be vectorized as reduction. */
1899
1900 static bool
1901 reduction_code_for_scalar_code (enum tree_code code,
1902 enum tree_code *reduc_code)
1903 {
1904 switch (code)
1905 {
1906 case MAX_EXPR:
1907 *reduc_code = REDUC_MAX_EXPR;
1908 return true;
1909
1910 case MIN_EXPR:
1911 *reduc_code = REDUC_MIN_EXPR;
1912 return true;
1913
1914 case PLUS_EXPR:
1915 *reduc_code = REDUC_PLUS_EXPR;
1916 return true;
1917
1918 case MULT_EXPR:
1919 case MINUS_EXPR:
1920 case BIT_IOR_EXPR:
1921 case BIT_XOR_EXPR:
1922 case BIT_AND_EXPR:
1923 *reduc_code = ERROR_MARK;
1924 return true;
1925
1926 default:
1927 return false;
1928 }
1929 }
1930
1931
1932 /* Error reporting helper for vect_is_simple_reduction below. GIMPLE statement
1933 STMT is printed with a message MSG. */
1934
1935 static void
1936 report_vect_op (int msg_type, gimple stmt, const char *msg)
1937 {
1938 dump_printf_loc (msg_type, vect_location, "%s", msg);
1939 dump_gimple_stmt (msg_type, TDF_SLIM, stmt, 0);
1940 dump_printf (msg_type, "\n");
1941 }
1942
1943
1944 /* Detect SLP reduction of the form:
1945
1946 #a1 = phi <a5, a0>
1947 a2 = operation (a1)
1948 a3 = operation (a2)
1949 a4 = operation (a3)
1950 a5 = operation (a4)
1951
1952 #a = phi <a5>
1953
1954 PHI is the reduction phi node (#a1 = phi <a5, a0> above)
1955 FIRST_STMT is the first reduction stmt in the chain
1956 (a2 = operation (a1)).
1957
1958 Return TRUE if a reduction chain was detected. */
1959
1960 static bool
1961 vect_is_slp_reduction (loop_vec_info loop_info, gimple phi, gimple first_stmt)
1962 {
1963 struct loop *loop = (gimple_bb (phi))->loop_father;
1964 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
1965 enum tree_code code;
1966 gimple current_stmt = NULL, loop_use_stmt = NULL, first, next_stmt;
1967 stmt_vec_info use_stmt_info, current_stmt_info;
1968 tree lhs;
1969 imm_use_iterator imm_iter;
1970 use_operand_p use_p;
1971 int nloop_uses, size = 0, n_out_of_loop_uses;
1972 bool found = false;
1973
1974 if (loop != vect_loop)
1975 return false;
1976
1977 lhs = PHI_RESULT (phi);
1978 code = gimple_assign_rhs_code (first_stmt);
1979 while (1)
1980 {
1981 nloop_uses = 0;
1982 n_out_of_loop_uses = 0;
1983 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
1984 {
1985 gimple use_stmt = USE_STMT (use_p);
1986 if (is_gimple_debug (use_stmt))
1987 continue;
1988
1989 /* Check if we got back to the reduction phi. */
1990 if (use_stmt == phi)
1991 {
1992 loop_use_stmt = use_stmt;
1993 found = true;
1994 break;
1995 }
1996
1997 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
1998 {
1999 if (vinfo_for_stmt (use_stmt)
2000 && !STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
2001 {
2002 loop_use_stmt = use_stmt;
2003 nloop_uses++;
2004 }
2005 }
2006 else
2007 n_out_of_loop_uses++;
2008
2009 /* There are can be either a single use in the loop or two uses in
2010 phi nodes. */
2011 if (nloop_uses > 1 || (n_out_of_loop_uses && nloop_uses))
2012 return false;
2013 }
2014
2015 if (found)
2016 break;
2017
2018 /* We reached a statement with no loop uses. */
2019 if (nloop_uses == 0)
2020 return false;
2021
2022 /* This is a loop exit phi, and we haven't reached the reduction phi. */
2023 if (gimple_code (loop_use_stmt) == GIMPLE_PHI)
2024 return false;
2025
2026 if (!is_gimple_assign (loop_use_stmt)
2027 || code != gimple_assign_rhs_code (loop_use_stmt)
2028 || !flow_bb_inside_loop_p (loop, gimple_bb (loop_use_stmt)))
2029 return false;
2030
2031 /* Insert USE_STMT into reduction chain. */
2032 use_stmt_info = vinfo_for_stmt (loop_use_stmt);
2033 if (current_stmt)
2034 {
2035 current_stmt_info = vinfo_for_stmt (current_stmt);
2036 GROUP_NEXT_ELEMENT (current_stmt_info) = loop_use_stmt;
2037 GROUP_FIRST_ELEMENT (use_stmt_info)
2038 = GROUP_FIRST_ELEMENT (current_stmt_info);
2039 }
2040 else
2041 GROUP_FIRST_ELEMENT (use_stmt_info) = loop_use_stmt;
2042
2043 lhs = gimple_assign_lhs (loop_use_stmt);
2044 current_stmt = loop_use_stmt;
2045 size++;
2046 }
2047
2048 if (!found || loop_use_stmt != phi || size < 2)
2049 return false;
2050
2051 /* Swap the operands, if needed, to make the reduction operand be the second
2052 operand. */
2053 lhs = PHI_RESULT (phi);
2054 next_stmt = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2055 while (next_stmt)
2056 {
2057 if (gimple_assign_rhs2 (next_stmt) == lhs)
2058 {
2059 tree op = gimple_assign_rhs1 (next_stmt);
2060 gimple def_stmt = NULL;
2061
2062 if (TREE_CODE (op) == SSA_NAME)
2063 def_stmt = SSA_NAME_DEF_STMT (op);
2064
2065 /* Check that the other def is either defined in the loop
2066 ("vect_internal_def"), or it's an induction (defined by a
2067 loop-header phi-node). */
2068 if (def_stmt
2069 && gimple_bb (def_stmt)
2070 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2071 && (is_gimple_assign (def_stmt)
2072 || is_gimple_call (def_stmt)
2073 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2074 == vect_induction_def
2075 || (gimple_code (def_stmt) == GIMPLE_PHI
2076 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2077 == vect_internal_def
2078 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2079 {
2080 lhs = gimple_assign_lhs (next_stmt);
2081 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2082 continue;
2083 }
2084
2085 return false;
2086 }
2087 else
2088 {
2089 tree op = gimple_assign_rhs2 (next_stmt);
2090 gimple def_stmt = NULL;
2091
2092 if (TREE_CODE (op) == SSA_NAME)
2093 def_stmt = SSA_NAME_DEF_STMT (op);
2094
2095 /* Check that the other def is either defined in the loop
2096 ("vect_internal_def"), or it's an induction (defined by a
2097 loop-header phi-node). */
2098 if (def_stmt
2099 && gimple_bb (def_stmt)
2100 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2101 && (is_gimple_assign (def_stmt)
2102 || is_gimple_call (def_stmt)
2103 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2104 == vect_induction_def
2105 || (gimple_code (def_stmt) == GIMPLE_PHI
2106 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
2107 == vect_internal_def
2108 && !is_loop_header_bb_p (gimple_bb (def_stmt)))))
2109 {
2110 if (dump_enabled_p ())
2111 {
2112 dump_printf_loc (MSG_NOTE, vect_location, "swapping oprnds: ");
2113 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, next_stmt, 0);
2114 dump_printf (MSG_NOTE, "\n");
2115 }
2116
2117 swap_ssa_operands (next_stmt,
2118 gimple_assign_rhs1_ptr (next_stmt),
2119 gimple_assign_rhs2_ptr (next_stmt));
2120 update_stmt (next_stmt);
2121
2122 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (next_stmt)))
2123 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2124 }
2125 else
2126 return false;
2127 }
2128
2129 lhs = gimple_assign_lhs (next_stmt);
2130 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
2131 }
2132
2133 /* Save the chain for further analysis in SLP detection. */
2134 first = GROUP_FIRST_ELEMENT (vinfo_for_stmt (current_stmt));
2135 LOOP_VINFO_REDUCTION_CHAINS (loop_info).safe_push (first);
2136 GROUP_SIZE (vinfo_for_stmt (first)) = size;
2137
2138 return true;
2139 }
2140
2141
2142 /* Function vect_is_simple_reduction_1
2143
2144 (1) Detect a cross-iteration def-use cycle that represents a simple
2145 reduction computation. We look for the following pattern:
2146
2147 loop_header:
2148 a1 = phi < a0, a2 >
2149 a3 = ...
2150 a2 = operation (a3, a1)
2151
2152 or
2153
2154 a3 = ...
2155 loop_header:
2156 a1 = phi < a0, a2 >
2157 a2 = operation (a3, a1)
2158
2159 such that:
2160 1. operation is commutative and associative and it is safe to
2161 change the order of the computation (if CHECK_REDUCTION is true)
2162 2. no uses for a2 in the loop (a2 is used out of the loop)
2163 3. no uses of a1 in the loop besides the reduction operation
2164 4. no uses of a1 outside the loop.
2165
2166 Conditions 1,4 are tested here.
2167 Conditions 2,3 are tested in vect_mark_stmts_to_be_vectorized.
2168
2169 (2) Detect a cross-iteration def-use cycle in nested loops, i.e.,
2170 nested cycles, if CHECK_REDUCTION is false.
2171
2172 (3) Detect cycles of phi nodes in outer-loop vectorization, i.e., double
2173 reductions:
2174
2175 a1 = phi < a0, a2 >
2176 inner loop (def of a3)
2177 a2 = phi < a3 >
2178
2179 If MODIFY is true it tries also to rework the code in-place to enable
2180 detection of more reduction patterns. For the time being we rewrite
2181 "res -= RHS" into "rhs += -RHS" when it seems worthwhile.
2182 */
2183
2184 static gimple
2185 vect_is_simple_reduction_1 (loop_vec_info loop_info, gimple phi,
2186 bool check_reduction, bool *double_reduc,
2187 bool modify)
2188 {
2189 struct loop *loop = (gimple_bb (phi))->loop_father;
2190 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
2191 edge latch_e = loop_latch_edge (loop);
2192 tree loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
2193 gimple def_stmt, def1 = NULL, def2 = NULL;
2194 enum tree_code orig_code, code;
2195 tree op1, op2, op3 = NULL_TREE, op4 = NULL_TREE;
2196 tree type;
2197 int nloop_uses;
2198 tree name;
2199 imm_use_iterator imm_iter;
2200 use_operand_p use_p;
2201 bool phi_def;
2202
2203 *double_reduc = false;
2204
2205 /* If CHECK_REDUCTION is true, we assume inner-most loop vectorization,
2206 otherwise, we assume outer loop vectorization. */
2207 gcc_assert ((check_reduction && loop == vect_loop)
2208 || (!check_reduction && flow_loop_nested_p (vect_loop, loop)));
2209
2210 name = PHI_RESULT (phi);
2211 /* ??? If there are no uses of the PHI result the inner loop reduction
2212 won't be detected as possibly double-reduction by vectorizable_reduction
2213 because that tries to walk the PHI arg from the preheader edge which
2214 can be constant. See PR60382. */
2215 if (has_zero_uses (name))
2216 return NULL;
2217 nloop_uses = 0;
2218 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2219 {
2220 gimple use_stmt = USE_STMT (use_p);
2221 if (is_gimple_debug (use_stmt))
2222 continue;
2223
2224 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
2225 {
2226 if (dump_enabled_p ())
2227 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2228 "intermediate value used outside loop.\n");
2229
2230 return NULL;
2231 }
2232
2233 if (vinfo_for_stmt (use_stmt)
2234 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2235 nloop_uses++;
2236 if (nloop_uses > 1)
2237 {
2238 if (dump_enabled_p ())
2239 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2240 "reduction used in loop.\n");
2241 return NULL;
2242 }
2243 }
2244
2245 if (TREE_CODE (loop_arg) != SSA_NAME)
2246 {
2247 if (dump_enabled_p ())
2248 {
2249 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2250 "reduction: not ssa_name: ");
2251 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, loop_arg);
2252 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2253 }
2254 return NULL;
2255 }
2256
2257 def_stmt = SSA_NAME_DEF_STMT (loop_arg);
2258 if (!def_stmt)
2259 {
2260 if (dump_enabled_p ())
2261 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2262 "reduction: no def_stmt.\n");
2263 return NULL;
2264 }
2265
2266 if (!is_gimple_assign (def_stmt) && gimple_code (def_stmt) != GIMPLE_PHI)
2267 {
2268 if (dump_enabled_p ())
2269 {
2270 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
2271 dump_printf (MSG_NOTE, "\n");
2272 }
2273 return NULL;
2274 }
2275
2276 if (is_gimple_assign (def_stmt))
2277 {
2278 name = gimple_assign_lhs (def_stmt);
2279 phi_def = false;
2280 }
2281 else
2282 {
2283 name = PHI_RESULT (def_stmt);
2284 phi_def = true;
2285 }
2286
2287 nloop_uses = 0;
2288 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, name)
2289 {
2290 gimple use_stmt = USE_STMT (use_p);
2291 if (is_gimple_debug (use_stmt))
2292 continue;
2293 if (flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
2294 && vinfo_for_stmt (use_stmt)
2295 && !is_pattern_stmt_p (vinfo_for_stmt (use_stmt)))
2296 nloop_uses++;
2297 if (nloop_uses > 1)
2298 {
2299 if (dump_enabled_p ())
2300 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2301 "reduction used in loop.\n");
2302 return NULL;
2303 }
2304 }
2305
2306 /* If DEF_STMT is a phi node itself, we expect it to have a single argument
2307 defined in the inner loop. */
2308 if (phi_def)
2309 {
2310 op1 = PHI_ARG_DEF (def_stmt, 0);
2311
2312 if (gimple_phi_num_args (def_stmt) != 1
2313 || TREE_CODE (op1) != SSA_NAME)
2314 {
2315 if (dump_enabled_p ())
2316 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2317 "unsupported phi node definition.\n");
2318
2319 return NULL;
2320 }
2321
2322 def1 = SSA_NAME_DEF_STMT (op1);
2323 if (flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
2324 && loop->inner
2325 && flow_bb_inside_loop_p (loop->inner, gimple_bb (def1))
2326 && is_gimple_assign (def1))
2327 {
2328 if (dump_enabled_p ())
2329 report_vect_op (MSG_NOTE, def_stmt,
2330 "detected double reduction: ");
2331
2332 *double_reduc = true;
2333 return def_stmt;
2334 }
2335
2336 return NULL;
2337 }
2338
2339 code = orig_code = gimple_assign_rhs_code (def_stmt);
2340
2341 /* We can handle "res -= x[i]", which is non-associative by
2342 simply rewriting this into "res += -x[i]". Avoid changing
2343 gimple instruction for the first simple tests and only do this
2344 if we're allowed to change code at all. */
2345 if (code == MINUS_EXPR
2346 && modify
2347 && (op1 = gimple_assign_rhs1 (def_stmt))
2348 && TREE_CODE (op1) == SSA_NAME
2349 && SSA_NAME_DEF_STMT (op1) == phi)
2350 code = PLUS_EXPR;
2351
2352 if (check_reduction
2353 && (!commutative_tree_code (code) || !associative_tree_code (code)))
2354 {
2355 if (dump_enabled_p ())
2356 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2357 "reduction: not commutative/associative: ");
2358 return NULL;
2359 }
2360
2361 if (get_gimple_rhs_class (code) != GIMPLE_BINARY_RHS)
2362 {
2363 if (code != COND_EXPR)
2364 {
2365 if (dump_enabled_p ())
2366 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2367 "reduction: not binary operation: ");
2368
2369 return NULL;
2370 }
2371
2372 op3 = gimple_assign_rhs1 (def_stmt);
2373 if (COMPARISON_CLASS_P (op3))
2374 {
2375 op4 = TREE_OPERAND (op3, 1);
2376 op3 = TREE_OPERAND (op3, 0);
2377 }
2378
2379 op1 = gimple_assign_rhs2 (def_stmt);
2380 op2 = gimple_assign_rhs3 (def_stmt);
2381
2382 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2383 {
2384 if (dump_enabled_p ())
2385 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2386 "reduction: uses not ssa_names: ");
2387
2388 return NULL;
2389 }
2390 }
2391 else
2392 {
2393 op1 = gimple_assign_rhs1 (def_stmt);
2394 op2 = gimple_assign_rhs2 (def_stmt);
2395
2396 if (TREE_CODE (op1) != SSA_NAME && TREE_CODE (op2) != SSA_NAME)
2397 {
2398 if (dump_enabled_p ())
2399 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2400 "reduction: uses not ssa_names: ");
2401
2402 return NULL;
2403 }
2404 }
2405
2406 type = TREE_TYPE (gimple_assign_lhs (def_stmt));
2407 if ((TREE_CODE (op1) == SSA_NAME
2408 && !types_compatible_p (type,TREE_TYPE (op1)))
2409 || (TREE_CODE (op2) == SSA_NAME
2410 && !types_compatible_p (type, TREE_TYPE (op2)))
2411 || (op3 && TREE_CODE (op3) == SSA_NAME
2412 && !types_compatible_p (type, TREE_TYPE (op3)))
2413 || (op4 && TREE_CODE (op4) == SSA_NAME
2414 && !types_compatible_p (type, TREE_TYPE (op4))))
2415 {
2416 if (dump_enabled_p ())
2417 {
2418 dump_printf_loc (MSG_NOTE, vect_location,
2419 "reduction: multiple types: operation type: ");
2420 dump_generic_expr (MSG_NOTE, TDF_SLIM, type);
2421 dump_printf (MSG_NOTE, ", operands types: ");
2422 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2423 TREE_TYPE (op1));
2424 dump_printf (MSG_NOTE, ",");
2425 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2426 TREE_TYPE (op2));
2427 if (op3)
2428 {
2429 dump_printf (MSG_NOTE, ",");
2430 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2431 TREE_TYPE (op3));
2432 }
2433
2434 if (op4)
2435 {
2436 dump_printf (MSG_NOTE, ",");
2437 dump_generic_expr (MSG_NOTE, TDF_SLIM,
2438 TREE_TYPE (op4));
2439 }
2440 dump_printf (MSG_NOTE, "\n");
2441 }
2442
2443 return NULL;
2444 }
2445
2446 /* Check that it's ok to change the order of the computation.
2447 Generally, when vectorizing a reduction we change the order of the
2448 computation. This may change the behavior of the program in some
2449 cases, so we need to check that this is ok. One exception is when
2450 vectorizing an outer-loop: the inner-loop is executed sequentially,
2451 and therefore vectorizing reductions in the inner-loop during
2452 outer-loop vectorization is safe. */
2453
2454 /* CHECKME: check for !flag_finite_math_only too? */
2455 if (SCALAR_FLOAT_TYPE_P (type) && !flag_associative_math
2456 && check_reduction)
2457 {
2458 /* Changing the order of operations changes the semantics. */
2459 if (dump_enabled_p ())
2460 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2461 "reduction: unsafe fp math optimization: ");
2462 return NULL;
2463 }
2464 else if (INTEGRAL_TYPE_P (type) && TYPE_OVERFLOW_TRAPS (type)
2465 && check_reduction)
2466 {
2467 /* Changing the order of operations changes the semantics. */
2468 if (dump_enabled_p ())
2469 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2470 "reduction: unsafe int math optimization: ");
2471 return NULL;
2472 }
2473 else if (SAT_FIXED_POINT_TYPE_P (type) && check_reduction)
2474 {
2475 /* Changing the order of operations changes the semantics. */
2476 if (dump_enabled_p ())
2477 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2478 "reduction: unsafe fixed-point math optimization: ");
2479 return NULL;
2480 }
2481
2482 /* If we detected "res -= x[i]" earlier, rewrite it into
2483 "res += -x[i]" now. If this turns out to be useless reassoc
2484 will clean it up again. */
2485 if (orig_code == MINUS_EXPR)
2486 {
2487 tree rhs = gimple_assign_rhs2 (def_stmt);
2488 tree negrhs = make_ssa_name (TREE_TYPE (rhs), NULL);
2489 gimple negate_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, negrhs,
2490 rhs, NULL);
2491 gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
2492 set_vinfo_for_stmt (negate_stmt, new_stmt_vec_info (negate_stmt,
2493 loop_info, NULL));
2494 gsi_insert_before (&gsi, negate_stmt, GSI_NEW_STMT);
2495 gimple_assign_set_rhs2 (def_stmt, negrhs);
2496 gimple_assign_set_rhs_code (def_stmt, PLUS_EXPR);
2497 update_stmt (def_stmt);
2498 }
2499
2500 /* Reduction is safe. We're dealing with one of the following:
2501 1) integer arithmetic and no trapv
2502 2) floating point arithmetic, and special flags permit this optimization
2503 3) nested cycle (i.e., outer loop vectorization). */
2504 if (TREE_CODE (op1) == SSA_NAME)
2505 def1 = SSA_NAME_DEF_STMT (op1);
2506
2507 if (TREE_CODE (op2) == SSA_NAME)
2508 def2 = SSA_NAME_DEF_STMT (op2);
2509
2510 if (code != COND_EXPR
2511 && ((!def1 || gimple_nop_p (def1)) && (!def2 || gimple_nop_p (def2))))
2512 {
2513 if (dump_enabled_p ())
2514 report_vect_op (MSG_NOTE, def_stmt, "reduction: no defs for operands: ");
2515 return NULL;
2516 }
2517
2518 /* Check that one def is the reduction def, defined by PHI,
2519 the other def is either defined in the loop ("vect_internal_def"),
2520 or it's an induction (defined by a loop-header phi-node). */
2521
2522 if (def2 && def2 == phi
2523 && (code == COND_EXPR
2524 || !def1 || gimple_nop_p (def1)
2525 || !flow_bb_inside_loop_p (loop, gimple_bb (def1))
2526 || (def1 && flow_bb_inside_loop_p (loop, gimple_bb (def1))
2527 && (is_gimple_assign (def1)
2528 || is_gimple_call (def1)
2529 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2530 == vect_induction_def
2531 || (gimple_code (def1) == GIMPLE_PHI
2532 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def1))
2533 == vect_internal_def
2534 && !is_loop_header_bb_p (gimple_bb (def1)))))))
2535 {
2536 if (dump_enabled_p ())
2537 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2538 return def_stmt;
2539 }
2540
2541 if (def1 && def1 == phi
2542 && (code == COND_EXPR
2543 || !def2 || gimple_nop_p (def2)
2544 || !flow_bb_inside_loop_p (loop, gimple_bb (def2))
2545 || (def2 && flow_bb_inside_loop_p (loop, gimple_bb (def2))
2546 && (is_gimple_assign (def2)
2547 || is_gimple_call (def2)
2548 || STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2549 == vect_induction_def
2550 || (gimple_code (def2) == GIMPLE_PHI
2551 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def2))
2552 == vect_internal_def
2553 && !is_loop_header_bb_p (gimple_bb (def2)))))))
2554 {
2555 if (check_reduction)
2556 {
2557 /* Swap operands (just for simplicity - so that the rest of the code
2558 can assume that the reduction variable is always the last (second)
2559 argument). */
2560 if (dump_enabled_p ())
2561 report_vect_op (MSG_NOTE, def_stmt,
2562 "detected reduction: need to swap operands: ");
2563
2564 swap_ssa_operands (def_stmt, gimple_assign_rhs1_ptr (def_stmt),
2565 gimple_assign_rhs2_ptr (def_stmt));
2566
2567 if (CONSTANT_CLASS_P (gimple_assign_rhs1 (def_stmt)))
2568 LOOP_VINFO_OPERANDS_SWAPPED (loop_info) = true;
2569 }
2570 else
2571 {
2572 if (dump_enabled_p ())
2573 report_vect_op (MSG_NOTE, def_stmt, "detected reduction: ");
2574 }
2575
2576 return def_stmt;
2577 }
2578
2579 /* Try to find SLP reduction chain. */
2580 if (check_reduction && vect_is_slp_reduction (loop_info, phi, def_stmt))
2581 {
2582 if (dump_enabled_p ())
2583 report_vect_op (MSG_NOTE, def_stmt,
2584 "reduction: detected reduction chain: ");
2585
2586 return def_stmt;
2587 }
2588
2589 if (dump_enabled_p ())
2590 report_vect_op (MSG_MISSED_OPTIMIZATION, def_stmt,
2591 "reduction: unknown pattern: ");
2592
2593 return NULL;
2594 }
2595
2596 /* Wrapper around vect_is_simple_reduction_1, that won't modify code
2597 in-place. Arguments as there. */
2598
2599 static gimple
2600 vect_is_simple_reduction (loop_vec_info loop_info, gimple phi,
2601 bool check_reduction, bool *double_reduc)
2602 {
2603 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2604 double_reduc, false);
2605 }
2606
2607 /* Wrapper around vect_is_simple_reduction_1, which will modify code
2608 in-place if it enables detection of more reductions. Arguments
2609 as there. */
2610
2611 gimple
2612 vect_force_simple_reduction (loop_vec_info loop_info, gimple phi,
2613 bool check_reduction, bool *double_reduc)
2614 {
2615 return vect_is_simple_reduction_1 (loop_info, phi, check_reduction,
2616 double_reduc, true);
2617 }
2618
2619 /* Calculate the cost of one scalar iteration of the loop. */
2620 int
2621 vect_get_single_scalar_iteration_cost (loop_vec_info loop_vinfo)
2622 {
2623 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2624 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
2625 int nbbs = loop->num_nodes, factor, scalar_single_iter_cost = 0;
2626 int innerloop_iters, i, stmt_cost;
2627
2628 /* Count statements in scalar loop. Using this as scalar cost for a single
2629 iteration for now.
2630
2631 TODO: Add outer loop support.
2632
2633 TODO: Consider assigning different costs to different scalar
2634 statements. */
2635
2636 /* FORNOW. */
2637 innerloop_iters = 1;
2638 if (loop->inner)
2639 innerloop_iters = 50; /* FIXME */
2640
2641 for (i = 0; i < nbbs; i++)
2642 {
2643 gimple_stmt_iterator si;
2644 basic_block bb = bbs[i];
2645
2646 if (bb->loop_father == loop->inner)
2647 factor = innerloop_iters;
2648 else
2649 factor = 1;
2650
2651 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2652 {
2653 gimple stmt = gsi_stmt (si);
2654 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2655
2656 if (!is_gimple_assign (stmt) && !is_gimple_call (stmt))
2657 continue;
2658
2659 /* Skip stmts that are not vectorized inside the loop. */
2660 if (stmt_info
2661 && !STMT_VINFO_RELEVANT_P (stmt_info)
2662 && (!STMT_VINFO_LIVE_P (stmt_info)
2663 || !VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_info)))
2664 && !STMT_VINFO_IN_PATTERN_P (stmt_info))
2665 continue;
2666
2667 if (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt)))
2668 {
2669 if (DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
2670 stmt_cost = vect_get_stmt_cost (scalar_load);
2671 else
2672 stmt_cost = vect_get_stmt_cost (scalar_store);
2673 }
2674 else
2675 stmt_cost = vect_get_stmt_cost (scalar_stmt);
2676
2677 scalar_single_iter_cost += stmt_cost * factor;
2678 }
2679 }
2680 return scalar_single_iter_cost;
2681 }
2682
2683 /* Calculate cost of peeling the loop PEEL_ITERS_PROLOGUE times. */
2684 int
2685 vect_get_known_peeling_cost (loop_vec_info loop_vinfo, int peel_iters_prologue,
2686 int *peel_iters_epilogue,
2687 int scalar_single_iter_cost,
2688 stmt_vector_for_cost *prologue_cost_vec,
2689 stmt_vector_for_cost *epilogue_cost_vec)
2690 {
2691 int retval = 0;
2692 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2693
2694 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
2695 {
2696 *peel_iters_epilogue = vf/2;
2697 if (dump_enabled_p ())
2698 dump_printf_loc (MSG_NOTE, vect_location,
2699 "cost model: epilogue peel iters set to vf/2 "
2700 "because loop iterations are unknown .\n");
2701
2702 /* If peeled iterations are known but number of scalar loop
2703 iterations are unknown, count a taken branch per peeled loop. */
2704 retval = record_stmt_cost (prologue_cost_vec, 2, cond_branch_taken,
2705 NULL, 0, vect_prologue);
2706 }
2707 else
2708 {
2709 int niters = LOOP_VINFO_INT_NITERS (loop_vinfo);
2710 peel_iters_prologue = niters < peel_iters_prologue ?
2711 niters : peel_iters_prologue;
2712 *peel_iters_epilogue = (niters - peel_iters_prologue) % vf;
2713 /* If we need to peel for gaps, but no peeling is required, we have to
2714 peel VF iterations. */
2715 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) && !*peel_iters_epilogue)
2716 *peel_iters_epilogue = vf;
2717 }
2718
2719 if (peel_iters_prologue)
2720 retval += record_stmt_cost (prologue_cost_vec,
2721 peel_iters_prologue * scalar_single_iter_cost,
2722 scalar_stmt, NULL, 0, vect_prologue);
2723 if (*peel_iters_epilogue)
2724 retval += record_stmt_cost (epilogue_cost_vec,
2725 *peel_iters_epilogue * scalar_single_iter_cost,
2726 scalar_stmt, NULL, 0, vect_epilogue);
2727 return retval;
2728 }
2729
2730 /* Function vect_estimate_min_profitable_iters
2731
2732 Return the number of iterations required for the vector version of the
2733 loop to be profitable relative to the cost of the scalar version of the
2734 loop. */
2735
2736 static void
2737 vect_estimate_min_profitable_iters (loop_vec_info loop_vinfo,
2738 int *ret_min_profitable_niters,
2739 int *ret_min_profitable_estimate)
2740 {
2741 int min_profitable_iters;
2742 int min_profitable_estimate;
2743 int peel_iters_prologue;
2744 int peel_iters_epilogue;
2745 unsigned vec_inside_cost = 0;
2746 int vec_outside_cost = 0;
2747 unsigned vec_prologue_cost = 0;
2748 unsigned vec_epilogue_cost = 0;
2749 int scalar_single_iter_cost = 0;
2750 int scalar_outside_cost = 0;
2751 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2752 int npeel = LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo);
2753 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2754
2755 /* Cost model disabled. */
2756 if (unlimited_cost_model (LOOP_VINFO_LOOP (loop_vinfo)))
2757 {
2758 dump_printf_loc (MSG_NOTE, vect_location, "cost model disabled.\n");
2759 *ret_min_profitable_niters = 0;
2760 *ret_min_profitable_estimate = 0;
2761 return;
2762 }
2763
2764 /* Requires loop versioning tests to handle misalignment. */
2765 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo))
2766 {
2767 /* FIXME: Make cost depend on complexity of individual check. */
2768 unsigned len = LOOP_VINFO_MAY_MISALIGN_STMTS (loop_vinfo).length ();
2769 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
2770 vect_prologue);
2771 dump_printf (MSG_NOTE,
2772 "cost model: Adding cost of checks for loop "
2773 "versioning to treat misalignment.\n");
2774 }
2775
2776 /* Requires loop versioning with alias checks. */
2777 if (LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2778 {
2779 /* FIXME: Make cost depend on complexity of individual check. */
2780 unsigned len = LOOP_VINFO_MAY_ALIAS_DDRS (loop_vinfo).length ();
2781 (void) add_stmt_cost (target_cost_data, len, vector_stmt, NULL, 0,
2782 vect_prologue);
2783 dump_printf (MSG_NOTE,
2784 "cost model: Adding cost of checks for loop "
2785 "versioning aliasing.\n");
2786 }
2787
2788 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2789 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2790 (void) add_stmt_cost (target_cost_data, 1, cond_branch_taken, NULL, 0,
2791 vect_prologue);
2792
2793 /* Count statements in scalar loop. Using this as scalar cost for a single
2794 iteration for now.
2795
2796 TODO: Add outer loop support.
2797
2798 TODO: Consider assigning different costs to different scalar
2799 statements. */
2800
2801 scalar_single_iter_cost = vect_get_single_scalar_iteration_cost (loop_vinfo);
2802
2803 /* Add additional cost for the peeled instructions in prologue and epilogue
2804 loop.
2805
2806 FORNOW: If we don't know the value of peel_iters for prologue or epilogue
2807 at compile-time - we assume it's vf/2 (the worst would be vf-1).
2808
2809 TODO: Build an expression that represents peel_iters for prologue and
2810 epilogue to be used in a run-time test. */
2811
2812 if (npeel < 0)
2813 {
2814 peel_iters_prologue = vf/2;
2815 dump_printf (MSG_NOTE, "cost model: "
2816 "prologue peel iters set to vf/2.\n");
2817
2818 /* If peeling for alignment is unknown, loop bound of main loop becomes
2819 unknown. */
2820 peel_iters_epilogue = vf/2;
2821 dump_printf (MSG_NOTE, "cost model: "
2822 "epilogue peel iters set to vf/2 because "
2823 "peeling for alignment is unknown.\n");
2824
2825 /* If peeled iterations are unknown, count a taken branch and a not taken
2826 branch per peeled loop. Even if scalar loop iterations are known,
2827 vector iterations are not known since peeled prologue iterations are
2828 not known. Hence guards remain the same. */
2829 (void) add_stmt_cost (target_cost_data, 2, cond_branch_taken,
2830 NULL, 0, vect_prologue);
2831 (void) add_stmt_cost (target_cost_data, 2, cond_branch_not_taken,
2832 NULL, 0, vect_prologue);
2833 /* FORNOW: Don't attempt to pass individual scalar instructions to
2834 the model; just assume linear cost for scalar iterations. */
2835 (void) add_stmt_cost (target_cost_data,
2836 peel_iters_prologue * scalar_single_iter_cost,
2837 scalar_stmt, NULL, 0, vect_prologue);
2838 (void) add_stmt_cost (target_cost_data,
2839 peel_iters_epilogue * scalar_single_iter_cost,
2840 scalar_stmt, NULL, 0, vect_epilogue);
2841 }
2842 else
2843 {
2844 stmt_vector_for_cost prologue_cost_vec, epilogue_cost_vec;
2845 stmt_info_for_cost *si;
2846 int j;
2847 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2848
2849 prologue_cost_vec.create (2);
2850 epilogue_cost_vec.create (2);
2851 peel_iters_prologue = npeel;
2852
2853 (void) vect_get_known_peeling_cost (loop_vinfo, peel_iters_prologue,
2854 &peel_iters_epilogue,
2855 scalar_single_iter_cost,
2856 &prologue_cost_vec,
2857 &epilogue_cost_vec);
2858
2859 FOR_EACH_VEC_ELT (prologue_cost_vec, j, si)
2860 {
2861 struct _stmt_vec_info *stmt_info
2862 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
2863 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
2864 si->misalign, vect_prologue);
2865 }
2866
2867 FOR_EACH_VEC_ELT (epilogue_cost_vec, j, si)
2868 {
2869 struct _stmt_vec_info *stmt_info
2870 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
2871 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
2872 si->misalign, vect_epilogue);
2873 }
2874
2875 prologue_cost_vec.release ();
2876 epilogue_cost_vec.release ();
2877 }
2878
2879 /* FORNOW: The scalar outside cost is incremented in one of the
2880 following ways:
2881
2882 1. The vectorizer checks for alignment and aliasing and generates
2883 a condition that allows dynamic vectorization. A cost model
2884 check is ANDED with the versioning condition. Hence scalar code
2885 path now has the added cost of the versioning check.
2886
2887 if (cost > th & versioning_check)
2888 jmp to vector code
2889
2890 Hence run-time scalar is incremented by not-taken branch cost.
2891
2892 2. The vectorizer then checks if a prologue is required. If the
2893 cost model check was not done before during versioning, it has to
2894 be done before the prologue check.
2895
2896 if (cost <= th)
2897 prologue = scalar_iters
2898 if (prologue == 0)
2899 jmp to vector code
2900 else
2901 execute prologue
2902 if (prologue == num_iters)
2903 go to exit
2904
2905 Hence the run-time scalar cost is incremented by a taken branch,
2906 plus a not-taken branch, plus a taken branch cost.
2907
2908 3. The vectorizer then checks if an epilogue is required. If the
2909 cost model check was not done before during prologue check, it
2910 has to be done with the epilogue check.
2911
2912 if (prologue == 0)
2913 jmp to vector code
2914 else
2915 execute prologue
2916 if (prologue == num_iters)
2917 go to exit
2918 vector code:
2919 if ((cost <= th) | (scalar_iters-prologue-epilogue == 0))
2920 jmp to epilogue
2921
2922 Hence the run-time scalar cost should be incremented by 2 taken
2923 branches.
2924
2925 TODO: The back end may reorder the BBS's differently and reverse
2926 conditions/branch directions. Change the estimates below to
2927 something more reasonable. */
2928
2929 /* If the number of iterations is known and we do not do versioning, we can
2930 decide whether to vectorize at compile time. Hence the scalar version
2931 do not carry cost model guard costs. */
2932 if (!LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo)
2933 || LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2934 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2935 {
2936 /* Cost model check occurs at versioning. */
2937 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
2938 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
2939 scalar_outside_cost += vect_get_stmt_cost (cond_branch_not_taken);
2940 else
2941 {
2942 /* Cost model check occurs at prologue generation. */
2943 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo) < 0)
2944 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken)
2945 + vect_get_stmt_cost (cond_branch_not_taken);
2946 /* Cost model check occurs at epilogue generation. */
2947 else
2948 scalar_outside_cost += 2 * vect_get_stmt_cost (cond_branch_taken);
2949 }
2950 }
2951
2952 /* Complete the target-specific cost calculations. */
2953 finish_cost (LOOP_VINFO_TARGET_COST_DATA (loop_vinfo), &vec_prologue_cost,
2954 &vec_inside_cost, &vec_epilogue_cost);
2955
2956 vec_outside_cost = (int)(vec_prologue_cost + vec_epilogue_cost);
2957
2958 /* Calculate number of iterations required to make the vector version
2959 profitable, relative to the loop bodies only. The following condition
2960 must hold true:
2961 SIC * niters + SOC > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC
2962 where
2963 SIC = scalar iteration cost, VIC = vector iteration cost,
2964 VOC = vector outside cost, VF = vectorization factor,
2965 PL_ITERS = prologue iterations, EP_ITERS= epilogue iterations
2966 SOC = scalar outside cost for run time cost model check. */
2967
2968 if ((scalar_single_iter_cost * vf) > (int) vec_inside_cost)
2969 {
2970 if (vec_outside_cost <= 0)
2971 min_profitable_iters = 1;
2972 else
2973 {
2974 min_profitable_iters = ((vec_outside_cost - scalar_outside_cost) * vf
2975 - vec_inside_cost * peel_iters_prologue
2976 - vec_inside_cost * peel_iters_epilogue)
2977 / ((scalar_single_iter_cost * vf)
2978 - vec_inside_cost);
2979
2980 if ((scalar_single_iter_cost * vf * min_profitable_iters)
2981 <= (((int) vec_inside_cost * min_profitable_iters)
2982 + (((int) vec_outside_cost - scalar_outside_cost) * vf)))
2983 min_profitable_iters++;
2984 }
2985 }
2986 /* vector version will never be profitable. */
2987 else
2988 {
2989 if (LOOP_VINFO_LOOP (loop_vinfo)->force_vectorize)
2990 warning_at (vect_location, OPT_Wopenmp_simd, "vectorization "
2991 "did not happen for a simd loop");
2992
2993 if (dump_enabled_p ())
2994 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2995 "cost model: the vector iteration cost = %d "
2996 "divided by the scalar iteration cost = %d "
2997 "is greater or equal to the vectorization factor = %d"
2998 ".\n",
2999 vec_inside_cost, scalar_single_iter_cost, vf);
3000 *ret_min_profitable_niters = -1;
3001 *ret_min_profitable_estimate = -1;
3002 return;
3003 }
3004
3005 if (dump_enabled_p ())
3006 {
3007 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
3008 dump_printf (MSG_NOTE, " Vector inside of loop cost: %d\n",
3009 vec_inside_cost);
3010 dump_printf (MSG_NOTE, " Vector prologue cost: %d\n",
3011 vec_prologue_cost);
3012 dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n",
3013 vec_epilogue_cost);
3014 dump_printf (MSG_NOTE, " Scalar iteration cost: %d\n",
3015 scalar_single_iter_cost);
3016 dump_printf (MSG_NOTE, " Scalar outside cost: %d\n",
3017 scalar_outside_cost);
3018 dump_printf (MSG_NOTE, " Vector outside cost: %d\n",
3019 vec_outside_cost);
3020 dump_printf (MSG_NOTE, " prologue iterations: %d\n",
3021 peel_iters_prologue);
3022 dump_printf (MSG_NOTE, " epilogue iterations: %d\n",
3023 peel_iters_epilogue);
3024 dump_printf (MSG_NOTE,
3025 " Calculated minimum iters for profitability: %d\n",
3026 min_profitable_iters);
3027 dump_printf (MSG_NOTE, "\n");
3028 }
3029
3030 min_profitable_iters =
3031 min_profitable_iters < vf ? vf : min_profitable_iters;
3032
3033 /* Because the condition we create is:
3034 if (niters <= min_profitable_iters)
3035 then skip the vectorized loop. */
3036 min_profitable_iters--;
3037
3038 if (dump_enabled_p ())
3039 dump_printf_loc (MSG_NOTE, vect_location,
3040 " Runtime profitability threshold = %d\n",
3041 min_profitable_iters);
3042
3043 *ret_min_profitable_niters = min_profitable_iters;
3044
3045 /* Calculate number of iterations required to make the vector version
3046 profitable, relative to the loop bodies only.
3047
3048 Non-vectorized variant is SIC * niters and it must win over vector
3049 variant on the expected loop trip count. The following condition must hold true:
3050 SIC * niters > VIC * ((niters-PL_ITERS-EP_ITERS)/VF) + VOC + SOC */
3051
3052 if (vec_outside_cost <= 0)
3053 min_profitable_estimate = 1;
3054 else
3055 {
3056 min_profitable_estimate = ((vec_outside_cost + scalar_outside_cost) * vf
3057 - vec_inside_cost * peel_iters_prologue
3058 - vec_inside_cost * peel_iters_epilogue)
3059 / ((scalar_single_iter_cost * vf)
3060 - vec_inside_cost);
3061 }
3062 min_profitable_estimate --;
3063 min_profitable_estimate = MAX (min_profitable_estimate, min_profitable_iters);
3064 if (dump_enabled_p ())
3065 dump_printf_loc (MSG_NOTE, vect_location,
3066 " Static estimate profitability threshold = %d\n",
3067 min_profitable_iters);
3068
3069 *ret_min_profitable_estimate = min_profitable_estimate;
3070 }
3071
3072
3073 /* TODO: Close dependency between vect_model_*_cost and vectorizable_*
3074 functions. Design better to avoid maintenance issues. */
3075
3076 /* Function vect_model_reduction_cost.
3077
3078 Models cost for a reduction operation, including the vector ops
3079 generated within the strip-mine loop, the initial definition before
3080 the loop, and the epilogue code that must be generated. */
3081
3082 static bool
3083 vect_model_reduction_cost (stmt_vec_info stmt_info, enum tree_code reduc_code,
3084 int ncopies)
3085 {
3086 int prologue_cost = 0, epilogue_cost = 0;
3087 enum tree_code code;
3088 optab optab;
3089 tree vectype;
3090 gimple stmt, orig_stmt;
3091 tree reduction_op;
3092 enum machine_mode mode;
3093 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3094 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3095 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3096
3097 /* Cost of reduction op inside loop. */
3098 unsigned inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3099 stmt_info, 0, vect_body);
3100 stmt = STMT_VINFO_STMT (stmt_info);
3101
3102 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3103 {
3104 case GIMPLE_SINGLE_RHS:
3105 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt)) == ternary_op);
3106 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), 2);
3107 break;
3108 case GIMPLE_UNARY_RHS:
3109 reduction_op = gimple_assign_rhs1 (stmt);
3110 break;
3111 case GIMPLE_BINARY_RHS:
3112 reduction_op = gimple_assign_rhs2 (stmt);
3113 break;
3114 case GIMPLE_TERNARY_RHS:
3115 reduction_op = gimple_assign_rhs3 (stmt);
3116 break;
3117 default:
3118 gcc_unreachable ();
3119 }
3120
3121 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3122 if (!vectype)
3123 {
3124 if (dump_enabled_p ())
3125 {
3126 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3127 "unsupported data-type ");
3128 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
3129 TREE_TYPE (reduction_op));
3130 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3131 }
3132 return false;
3133 }
3134
3135 mode = TYPE_MODE (vectype);
3136 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
3137
3138 if (!orig_stmt)
3139 orig_stmt = STMT_VINFO_STMT (stmt_info);
3140
3141 code = gimple_assign_rhs_code (orig_stmt);
3142
3143 /* Add in cost for initial definition. */
3144 prologue_cost += add_stmt_cost (target_cost_data, 1, scalar_to_vec,
3145 stmt_info, 0, vect_prologue);
3146
3147 /* Determine cost of epilogue code.
3148
3149 We have a reduction operator that will reduce the vector in one statement.
3150 Also requires scalar extract. */
3151
3152 if (!nested_in_vect_loop_p (loop, orig_stmt))
3153 {
3154 if (reduc_code != ERROR_MARK)
3155 {
3156 epilogue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
3157 stmt_info, 0, vect_epilogue);
3158 epilogue_cost += add_stmt_cost (target_cost_data, 1, vec_to_scalar,
3159 stmt_info, 0, vect_epilogue);
3160 }
3161 else
3162 {
3163 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
3164 tree bitsize =
3165 TYPE_SIZE (TREE_TYPE (gimple_assign_lhs (orig_stmt)));
3166 int element_bitsize = tree_to_uhwi (bitsize);
3167 int nelements = vec_size_in_bits / element_bitsize;
3168
3169 optab = optab_for_tree_code (code, vectype, optab_default);
3170
3171 /* We have a whole vector shift available. */
3172 if (VECTOR_MODE_P (mode)
3173 && optab_handler (optab, mode) != CODE_FOR_nothing
3174 && optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
3175 {
3176 /* Final reduction via vector shifts and the reduction operator.
3177 Also requires scalar extract. */
3178 epilogue_cost += add_stmt_cost (target_cost_data,
3179 exact_log2 (nelements) * 2,
3180 vector_stmt, stmt_info, 0,
3181 vect_epilogue);
3182 epilogue_cost += add_stmt_cost (target_cost_data, 1,
3183 vec_to_scalar, stmt_info, 0,
3184 vect_epilogue);
3185 }
3186 else
3187 /* Use extracts and reduction op for final reduction. For N
3188 elements, we have N extracts and N-1 reduction ops. */
3189 epilogue_cost += add_stmt_cost (target_cost_data,
3190 nelements + nelements - 1,
3191 vector_stmt, stmt_info, 0,
3192 vect_epilogue);
3193 }
3194 }
3195
3196 if (dump_enabled_p ())
3197 dump_printf (MSG_NOTE,
3198 "vect_model_reduction_cost: inside_cost = %d, "
3199 "prologue_cost = %d, epilogue_cost = %d .\n", inside_cost,
3200 prologue_cost, epilogue_cost);
3201
3202 return true;
3203 }
3204
3205
3206 /* Function vect_model_induction_cost.
3207
3208 Models cost for induction operations. */
3209
3210 static void
3211 vect_model_induction_cost (stmt_vec_info stmt_info, int ncopies)
3212 {
3213 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3214 void *target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
3215 unsigned inside_cost, prologue_cost;
3216
3217 /* loop cost for vec_loop. */
3218 inside_cost = add_stmt_cost (target_cost_data, ncopies, vector_stmt,
3219 stmt_info, 0, vect_body);
3220
3221 /* prologue cost for vec_init and vec_step. */
3222 prologue_cost = add_stmt_cost (target_cost_data, 2, scalar_to_vec,
3223 stmt_info, 0, vect_prologue);
3224
3225 if (dump_enabled_p ())
3226 dump_printf_loc (MSG_NOTE, vect_location,
3227 "vect_model_induction_cost: inside_cost = %d, "
3228 "prologue_cost = %d .\n", inside_cost, prologue_cost);
3229 }
3230
3231
3232 /* Function get_initial_def_for_induction
3233
3234 Input:
3235 STMT - a stmt that performs an induction operation in the loop.
3236 IV_PHI - the initial value of the induction variable
3237
3238 Output:
3239 Return a vector variable, initialized with the first VF values of
3240 the induction variable. E.g., for an iv with IV_PHI='X' and
3241 evolution S, for a vector of 4 units, we want to return:
3242 [X, X + S, X + 2*S, X + 3*S]. */
3243
3244 static tree
3245 get_initial_def_for_induction (gimple iv_phi)
3246 {
3247 stmt_vec_info stmt_vinfo = vinfo_for_stmt (iv_phi);
3248 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3249 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3250 tree vectype;
3251 int nunits;
3252 edge pe = loop_preheader_edge (loop);
3253 struct loop *iv_loop;
3254 basic_block new_bb;
3255 tree new_vec, vec_init, vec_step, t;
3256 tree new_var;
3257 tree new_name;
3258 gimple init_stmt, induction_phi, new_stmt;
3259 tree induc_def, vec_def, vec_dest;
3260 tree init_expr, step_expr;
3261 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3262 int i;
3263 int ncopies;
3264 tree expr;
3265 stmt_vec_info phi_info = vinfo_for_stmt (iv_phi);
3266 bool nested_in_vect_loop = false;
3267 gimple_seq stmts = NULL;
3268 imm_use_iterator imm_iter;
3269 use_operand_p use_p;
3270 gimple exit_phi;
3271 edge latch_e;
3272 tree loop_arg;
3273 gimple_stmt_iterator si;
3274 basic_block bb = gimple_bb (iv_phi);
3275 tree stepvectype;
3276 tree resvectype;
3277
3278 /* Is phi in an inner-loop, while vectorizing an enclosing outer-loop? */
3279 if (nested_in_vect_loop_p (loop, iv_phi))
3280 {
3281 nested_in_vect_loop = true;
3282 iv_loop = loop->inner;
3283 }
3284 else
3285 iv_loop = loop;
3286 gcc_assert (iv_loop == (gimple_bb (iv_phi))->loop_father);
3287
3288 latch_e = loop_latch_edge (iv_loop);
3289 loop_arg = PHI_ARG_DEF_FROM_EDGE (iv_phi, latch_e);
3290
3291 step_expr = STMT_VINFO_LOOP_PHI_EVOLUTION_PART (phi_info);
3292 gcc_assert (step_expr != NULL_TREE);
3293
3294 pe = loop_preheader_edge (iv_loop);
3295 init_expr = PHI_ARG_DEF_FROM_EDGE (iv_phi,
3296 loop_preheader_edge (iv_loop));
3297
3298 vectype = get_vectype_for_scalar_type (TREE_TYPE (init_expr));
3299 resvectype = get_vectype_for_scalar_type (TREE_TYPE (PHI_RESULT (iv_phi)));
3300 gcc_assert (vectype);
3301 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3302 ncopies = vf / nunits;
3303
3304 gcc_assert (phi_info);
3305 gcc_assert (ncopies >= 1);
3306
3307 /* Convert the step to the desired type. */
3308 step_expr = force_gimple_operand (fold_convert (TREE_TYPE (vectype),
3309 step_expr),
3310 &stmts, true, NULL_TREE);
3311 if (stmts)
3312 {
3313 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3314 gcc_assert (!new_bb);
3315 }
3316
3317 /* Find the first insertion point in the BB. */
3318 si = gsi_after_labels (bb);
3319
3320 /* Create the vector that holds the initial_value of the induction. */
3321 if (nested_in_vect_loop)
3322 {
3323 /* iv_loop is nested in the loop to be vectorized. init_expr had already
3324 been created during vectorization of previous stmts. We obtain it
3325 from the STMT_VINFO_VEC_STMT of the defining stmt. */
3326 vec_init = vect_get_vec_def_for_operand (init_expr, iv_phi, NULL);
3327 /* If the initial value is not of proper type, convert it. */
3328 if (!useless_type_conversion_p (vectype, TREE_TYPE (vec_init)))
3329 {
3330 new_stmt = gimple_build_assign_with_ops
3331 (VIEW_CONVERT_EXPR,
3332 vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_"),
3333 build1 (VIEW_CONVERT_EXPR, vectype, vec_init), NULL_TREE);
3334 vec_init = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
3335 gimple_assign_set_lhs (new_stmt, vec_init);
3336 new_bb = gsi_insert_on_edge_immediate (loop_preheader_edge (iv_loop),
3337 new_stmt);
3338 gcc_assert (!new_bb);
3339 set_vinfo_for_stmt (new_stmt,
3340 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3341 }
3342 }
3343 else
3344 {
3345 vec<constructor_elt, va_gc> *v;
3346
3347 /* iv_loop is the loop to be vectorized. Create:
3348 vec_init = [X, X+S, X+2*S, X+3*S] (S = step_expr, X = init_expr) */
3349 new_var = vect_get_new_vect_var (TREE_TYPE (vectype),
3350 vect_scalar_var, "var_");
3351 new_name = force_gimple_operand (fold_convert (TREE_TYPE (vectype),
3352 init_expr),
3353 &stmts, false, new_var);
3354 if (stmts)
3355 {
3356 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3357 gcc_assert (!new_bb);
3358 }
3359
3360 vec_alloc (v, nunits);
3361 bool constant_p = is_gimple_min_invariant (new_name);
3362 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3363 for (i = 1; i < nunits; i++)
3364 {
3365 /* Create: new_name_i = new_name + step_expr */
3366 new_name = fold_build2 (PLUS_EXPR, TREE_TYPE (new_name),
3367 new_name, step_expr);
3368 if (!is_gimple_min_invariant (new_name))
3369 {
3370 init_stmt = gimple_build_assign (new_var, new_name);
3371 new_name = make_ssa_name (new_var, init_stmt);
3372 gimple_assign_set_lhs (init_stmt, new_name);
3373 new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
3374 gcc_assert (!new_bb);
3375 if (dump_enabled_p ())
3376 {
3377 dump_printf_loc (MSG_NOTE, vect_location,
3378 "created new init_stmt: ");
3379 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, init_stmt, 0);
3380 dump_printf (MSG_NOTE, "\n");
3381 }
3382 constant_p = false;
3383 }
3384 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, new_name);
3385 }
3386 /* Create a vector from [new_name_0, new_name_1, ..., new_name_nunits-1] */
3387 if (constant_p)
3388 new_vec = build_vector_from_ctor (vectype, v);
3389 else
3390 new_vec = build_constructor (vectype, v);
3391 vec_init = vect_init_vector (iv_phi, new_vec, vectype, NULL);
3392 }
3393
3394
3395 /* Create the vector that holds the step of the induction. */
3396 if (nested_in_vect_loop)
3397 /* iv_loop is nested in the loop to be vectorized. Generate:
3398 vec_step = [S, S, S, S] */
3399 new_name = step_expr;
3400 else
3401 {
3402 /* iv_loop is the loop to be vectorized. Generate:
3403 vec_step = [VF*S, VF*S, VF*S, VF*S] */
3404 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
3405 {
3406 expr = build_int_cst (integer_type_node, vf);
3407 expr = fold_convert (TREE_TYPE (step_expr), expr);
3408 }
3409 else
3410 expr = build_int_cst (TREE_TYPE (step_expr), vf);
3411 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3412 expr, step_expr);
3413 if (TREE_CODE (step_expr) == SSA_NAME)
3414 new_name = vect_init_vector (iv_phi, new_name,
3415 TREE_TYPE (step_expr), NULL);
3416 }
3417
3418 t = unshare_expr (new_name);
3419 gcc_assert (CONSTANT_CLASS_P (new_name)
3420 || TREE_CODE (new_name) == SSA_NAME);
3421 stepvectype = get_vectype_for_scalar_type (TREE_TYPE (new_name));
3422 gcc_assert (stepvectype);
3423 new_vec = build_vector_from_val (stepvectype, t);
3424 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3425
3426
3427 /* Create the following def-use cycle:
3428 loop prolog:
3429 vec_init = ...
3430 vec_step = ...
3431 loop:
3432 vec_iv = PHI <vec_init, vec_loop>
3433 ...
3434 STMT
3435 ...
3436 vec_loop = vec_iv + vec_step; */
3437
3438 /* Create the induction-phi that defines the induction-operand. */
3439 vec_dest = vect_get_new_vect_var (vectype, vect_simple_var, "vec_iv_");
3440 induction_phi = create_phi_node (vec_dest, iv_loop->header);
3441 set_vinfo_for_stmt (induction_phi,
3442 new_stmt_vec_info (induction_phi, loop_vinfo, NULL));
3443 induc_def = PHI_RESULT (induction_phi);
3444
3445 /* Create the iv update inside the loop */
3446 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
3447 induc_def, vec_step);
3448 vec_def = make_ssa_name (vec_dest, new_stmt);
3449 gimple_assign_set_lhs (new_stmt, vec_def);
3450 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3451 set_vinfo_for_stmt (new_stmt, new_stmt_vec_info (new_stmt, loop_vinfo,
3452 NULL));
3453
3454 /* Set the arguments of the phi node: */
3455 add_phi_arg (induction_phi, vec_init, pe, UNKNOWN_LOCATION);
3456 add_phi_arg (induction_phi, vec_def, loop_latch_edge (iv_loop),
3457 UNKNOWN_LOCATION);
3458
3459
3460 /* In case that vectorization factor (VF) is bigger than the number
3461 of elements that we can fit in a vectype (nunits), we have to generate
3462 more than one vector stmt - i.e - we need to "unroll" the
3463 vector stmt by a factor VF/nunits. For more details see documentation
3464 in vectorizable_operation. */
3465
3466 if (ncopies > 1)
3467 {
3468 stmt_vec_info prev_stmt_vinfo;
3469 /* FORNOW. This restriction should be relaxed. */
3470 gcc_assert (!nested_in_vect_loop);
3471
3472 /* Create the vector that holds the step of the induction. */
3473 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (step_expr)))
3474 {
3475 expr = build_int_cst (integer_type_node, nunits);
3476 expr = fold_convert (TREE_TYPE (step_expr), expr);
3477 }
3478 else
3479 expr = build_int_cst (TREE_TYPE (step_expr), nunits);
3480 new_name = fold_build2 (MULT_EXPR, TREE_TYPE (step_expr),
3481 expr, step_expr);
3482 if (TREE_CODE (step_expr) == SSA_NAME)
3483 new_name = vect_init_vector (iv_phi, new_name,
3484 TREE_TYPE (step_expr), NULL);
3485 t = unshare_expr (new_name);
3486 gcc_assert (CONSTANT_CLASS_P (new_name)
3487 || TREE_CODE (new_name) == SSA_NAME);
3488 new_vec = build_vector_from_val (stepvectype, t);
3489 vec_step = vect_init_vector (iv_phi, new_vec, stepvectype, NULL);
3490
3491 vec_def = induc_def;
3492 prev_stmt_vinfo = vinfo_for_stmt (induction_phi);
3493 for (i = 1; i < ncopies; i++)
3494 {
3495 /* vec_i = vec_prev + vec_step */
3496 new_stmt = gimple_build_assign_with_ops (PLUS_EXPR, vec_dest,
3497 vec_def, vec_step);
3498 vec_def = make_ssa_name (vec_dest, new_stmt);
3499 gimple_assign_set_lhs (new_stmt, vec_def);
3500
3501 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3502 if (!useless_type_conversion_p (resvectype, vectype))
3503 {
3504 new_stmt = gimple_build_assign_with_ops
3505 (VIEW_CONVERT_EXPR,
3506 vect_get_new_vect_var (resvectype, vect_simple_var,
3507 "vec_iv_"),
3508 build1 (VIEW_CONVERT_EXPR, resvectype,
3509 gimple_assign_lhs (new_stmt)), NULL_TREE);
3510 gimple_assign_set_lhs (new_stmt,
3511 make_ssa_name
3512 (gimple_assign_lhs (new_stmt), new_stmt));
3513 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3514 }
3515 set_vinfo_for_stmt (new_stmt,
3516 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3517 STMT_VINFO_RELATED_STMT (prev_stmt_vinfo) = new_stmt;
3518 prev_stmt_vinfo = vinfo_for_stmt (new_stmt);
3519 }
3520 }
3521
3522 if (nested_in_vect_loop)
3523 {
3524 /* Find the loop-closed exit-phi of the induction, and record
3525 the final vector of induction results: */
3526 exit_phi = NULL;
3527 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
3528 {
3529 gimple use_stmt = USE_STMT (use_p);
3530 if (is_gimple_debug (use_stmt))
3531 continue;
3532
3533 if (!flow_bb_inside_loop_p (iv_loop, gimple_bb (use_stmt)))
3534 {
3535 exit_phi = use_stmt;
3536 break;
3537 }
3538 }
3539 if (exit_phi)
3540 {
3541 stmt_vec_info stmt_vinfo = vinfo_for_stmt (exit_phi);
3542 /* FORNOW. Currently not supporting the case that an inner-loop induction
3543 is not used in the outer-loop (i.e. only outside the outer-loop). */
3544 gcc_assert (STMT_VINFO_RELEVANT_P (stmt_vinfo)
3545 && !STMT_VINFO_LIVE_P (stmt_vinfo));
3546
3547 STMT_VINFO_VEC_STMT (stmt_vinfo) = new_stmt;
3548 if (dump_enabled_p ())
3549 {
3550 dump_printf_loc (MSG_NOTE, vect_location,
3551 "vector of inductions after inner-loop:");
3552 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
3553 dump_printf (MSG_NOTE, "\n");
3554 }
3555 }
3556 }
3557
3558
3559 if (dump_enabled_p ())
3560 {
3561 dump_printf_loc (MSG_NOTE, vect_location,
3562 "transform induction: created def-use cycle: ");
3563 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, induction_phi, 0);
3564 dump_printf (MSG_NOTE, "\n");
3565 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
3566 SSA_NAME_DEF_STMT (vec_def), 0);
3567 dump_printf (MSG_NOTE, "\n");
3568 }
3569
3570 STMT_VINFO_VEC_STMT (phi_info) = induction_phi;
3571 if (!useless_type_conversion_p (resvectype, vectype))
3572 {
3573 new_stmt = gimple_build_assign_with_ops
3574 (VIEW_CONVERT_EXPR,
3575 vect_get_new_vect_var (resvectype, vect_simple_var, "vec_iv_"),
3576 build1 (VIEW_CONVERT_EXPR, resvectype, induc_def), NULL_TREE);
3577 induc_def = make_ssa_name (gimple_assign_lhs (new_stmt), new_stmt);
3578 gimple_assign_set_lhs (new_stmt, induc_def);
3579 si = gsi_after_labels (bb);
3580 gsi_insert_before (&si, new_stmt, GSI_SAME_STMT);
3581 set_vinfo_for_stmt (new_stmt,
3582 new_stmt_vec_info (new_stmt, loop_vinfo, NULL));
3583 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_stmt))
3584 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (induction_phi));
3585 }
3586
3587 return induc_def;
3588 }
3589
3590
3591 /* Function get_initial_def_for_reduction
3592
3593 Input:
3594 STMT - a stmt that performs a reduction operation in the loop.
3595 INIT_VAL - the initial value of the reduction variable
3596
3597 Output:
3598 ADJUSTMENT_DEF - a tree that holds a value to be added to the final result
3599 of the reduction (used for adjusting the epilog - see below).
3600 Return a vector variable, initialized according to the operation that STMT
3601 performs. This vector will be used as the initial value of the
3602 vector of partial results.
3603
3604 Option1 (adjust in epilog): Initialize the vector as follows:
3605 add/bit or/xor: [0,0,...,0,0]
3606 mult/bit and: [1,1,...,1,1]
3607 min/max/cond_expr: [init_val,init_val,..,init_val,init_val]
3608 and when necessary (e.g. add/mult case) let the caller know
3609 that it needs to adjust the result by init_val.
3610
3611 Option2: Initialize the vector as follows:
3612 add/bit or/xor: [init_val,0,0,...,0]
3613 mult/bit and: [init_val,1,1,...,1]
3614 min/max/cond_expr: [init_val,init_val,...,init_val]
3615 and no adjustments are needed.
3616
3617 For example, for the following code:
3618
3619 s = init_val;
3620 for (i=0;i<n;i++)
3621 s = s + a[i];
3622
3623 STMT is 's = s + a[i]', and the reduction variable is 's'.
3624 For a vector of 4 units, we want to return either [0,0,0,init_val],
3625 or [0,0,0,0] and let the caller know that it needs to adjust
3626 the result at the end by 'init_val'.
3627
3628 FORNOW, we are using the 'adjust in epilog' scheme, because this way the
3629 initialization vector is simpler (same element in all entries), if
3630 ADJUSTMENT_DEF is not NULL, and Option2 otherwise.
3631
3632 A cost model should help decide between these two schemes. */
3633
3634 tree
3635 get_initial_def_for_reduction (gimple stmt, tree init_val,
3636 tree *adjustment_def)
3637 {
3638 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
3639 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
3640 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
3641 tree scalar_type = TREE_TYPE (init_val);
3642 tree vectype = get_vectype_for_scalar_type (scalar_type);
3643 int nunits;
3644 enum tree_code code = gimple_assign_rhs_code (stmt);
3645 tree def_for_init;
3646 tree init_def;
3647 tree *elts;
3648 int i;
3649 bool nested_in_vect_loop = false;
3650 tree init_value;
3651 REAL_VALUE_TYPE real_init_val = dconst0;
3652 int int_init_val = 0;
3653 gimple def_stmt = NULL;
3654
3655 gcc_assert (vectype);
3656 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3657
3658 gcc_assert (POINTER_TYPE_P (scalar_type) || INTEGRAL_TYPE_P (scalar_type)
3659 || SCALAR_FLOAT_TYPE_P (scalar_type));
3660
3661 if (nested_in_vect_loop_p (loop, stmt))
3662 nested_in_vect_loop = true;
3663 else
3664 gcc_assert (loop == (gimple_bb (stmt))->loop_father);
3665
3666 /* In case of double reduction we only create a vector variable to be put
3667 in the reduction phi node. The actual statement creation is done in
3668 vect_create_epilog_for_reduction. */
3669 if (adjustment_def && nested_in_vect_loop
3670 && TREE_CODE (init_val) == SSA_NAME
3671 && (def_stmt = SSA_NAME_DEF_STMT (init_val))
3672 && gimple_code (def_stmt) == GIMPLE_PHI
3673 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt))
3674 && vinfo_for_stmt (def_stmt)
3675 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt))
3676 == vect_double_reduction_def)
3677 {
3678 *adjustment_def = NULL;
3679 return vect_create_destination_var (init_val, vectype);
3680 }
3681
3682 if (TREE_CONSTANT (init_val))
3683 {
3684 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3685 init_value = build_real (scalar_type, TREE_REAL_CST (init_val));
3686 else
3687 init_value = build_int_cst (scalar_type, TREE_INT_CST_LOW (init_val));
3688 }
3689 else
3690 init_value = init_val;
3691
3692 switch (code)
3693 {
3694 case WIDEN_SUM_EXPR:
3695 case DOT_PROD_EXPR:
3696 case PLUS_EXPR:
3697 case MINUS_EXPR:
3698 case BIT_IOR_EXPR:
3699 case BIT_XOR_EXPR:
3700 case MULT_EXPR:
3701 case BIT_AND_EXPR:
3702 /* ADJUSMENT_DEF is NULL when called from
3703 vect_create_epilog_for_reduction to vectorize double reduction. */
3704 if (adjustment_def)
3705 {
3706 if (nested_in_vect_loop)
3707 *adjustment_def = vect_get_vec_def_for_operand (init_val, stmt,
3708 NULL);
3709 else
3710 *adjustment_def = init_val;
3711 }
3712
3713 if (code == MULT_EXPR)
3714 {
3715 real_init_val = dconst1;
3716 int_init_val = 1;
3717 }
3718
3719 if (code == BIT_AND_EXPR)
3720 int_init_val = -1;
3721
3722 if (SCALAR_FLOAT_TYPE_P (scalar_type))
3723 def_for_init = build_real (scalar_type, real_init_val);
3724 else
3725 def_for_init = build_int_cst (scalar_type, int_init_val);
3726
3727 /* Create a vector of '0' or '1' except the first element. */
3728 elts = XALLOCAVEC (tree, nunits);
3729 for (i = nunits - 2; i >= 0; --i)
3730 elts[i + 1] = def_for_init;
3731
3732 /* Option1: the first element is '0' or '1' as well. */
3733 if (adjustment_def)
3734 {
3735 elts[0] = def_for_init;
3736 init_def = build_vector (vectype, elts);
3737 break;
3738 }
3739
3740 /* Option2: the first element is INIT_VAL. */
3741 elts[0] = init_val;
3742 if (TREE_CONSTANT (init_val))
3743 init_def = build_vector (vectype, elts);
3744 else
3745 {
3746 vec<constructor_elt, va_gc> *v;
3747 vec_alloc (v, nunits);
3748 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, init_val);
3749 for (i = 1; i < nunits; ++i)
3750 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[i]);
3751 init_def = build_constructor (vectype, v);
3752 }
3753
3754 break;
3755
3756 case MIN_EXPR:
3757 case MAX_EXPR:
3758 case COND_EXPR:
3759 if (adjustment_def)
3760 {
3761 *adjustment_def = NULL_TREE;
3762 init_def = vect_get_vec_def_for_operand (init_val, stmt, NULL);
3763 break;
3764 }
3765
3766 init_def = build_vector_from_val (vectype, init_value);
3767 break;
3768
3769 default:
3770 gcc_unreachable ();
3771 }
3772
3773 return init_def;
3774 }
3775
3776
3777 /* Function vect_create_epilog_for_reduction
3778
3779 Create code at the loop-epilog to finalize the result of a reduction
3780 computation.
3781
3782 VECT_DEFS is list of vector of partial results, i.e., the lhs's of vector
3783 reduction statements.
3784 STMT is the scalar reduction stmt that is being vectorized.
3785 NCOPIES is > 1 in case the vectorization factor (VF) is bigger than the
3786 number of elements that we can fit in a vectype (nunits). In this case
3787 we have to generate more than one vector stmt - i.e - we need to "unroll"
3788 the vector stmt by a factor VF/nunits. For more details see documentation
3789 in vectorizable_operation.
3790 REDUC_CODE is the tree-code for the epilog reduction.
3791 REDUCTION_PHIS is a list of the phi-nodes that carry the reduction
3792 computation.
3793 REDUC_INDEX is the index of the operand in the right hand side of the
3794 statement that is defined by REDUCTION_PHI.
3795 DOUBLE_REDUC is TRUE if double reduction phi nodes should be handled.
3796 SLP_NODE is an SLP node containing a group of reduction statements. The
3797 first one in this group is STMT.
3798
3799 This function:
3800 1. Creates the reduction def-use cycles: sets the arguments for
3801 REDUCTION_PHIS:
3802 The loop-entry argument is the vectorized initial-value of the reduction.
3803 The loop-latch argument is taken from VECT_DEFS - the vector of partial
3804 sums.
3805 2. "Reduces" each vector of partial results VECT_DEFS into a single result,
3806 by applying the operation specified by REDUC_CODE if available, or by
3807 other means (whole-vector shifts or a scalar loop).
3808 The function also creates a new phi node at the loop exit to preserve
3809 loop-closed form, as illustrated below.
3810
3811 The flow at the entry to this function:
3812
3813 loop:
3814 vec_def = phi <null, null> # REDUCTION_PHI
3815 VECT_DEF = vector_stmt # vectorized form of STMT
3816 s_loop = scalar_stmt # (scalar) STMT
3817 loop_exit:
3818 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3819 use <s_out0>
3820 use <s_out0>
3821
3822 The above is transformed by this function into:
3823
3824 loop:
3825 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3826 VECT_DEF = vector_stmt # vectorized form of STMT
3827 s_loop = scalar_stmt # (scalar) STMT
3828 loop_exit:
3829 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
3830 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
3831 v_out2 = reduce <v_out1>
3832 s_out3 = extract_field <v_out2, 0>
3833 s_out4 = adjust_result <s_out3>
3834 use <s_out4>
3835 use <s_out4>
3836 */
3837
3838 static void
3839 vect_create_epilog_for_reduction (vec<tree> vect_defs, gimple stmt,
3840 int ncopies, enum tree_code reduc_code,
3841 vec<gimple> reduction_phis,
3842 int reduc_index, bool double_reduc,
3843 slp_tree slp_node)
3844 {
3845 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3846 stmt_vec_info prev_phi_info;
3847 tree vectype;
3848 enum machine_mode mode;
3849 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3850 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo), *outer_loop = NULL;
3851 basic_block exit_bb;
3852 tree scalar_dest;
3853 tree scalar_type;
3854 gimple new_phi = NULL, phi;
3855 gimple_stmt_iterator exit_gsi;
3856 tree vec_dest;
3857 tree new_temp = NULL_TREE, new_dest, new_name, new_scalar_dest;
3858 gimple epilog_stmt = NULL;
3859 enum tree_code code = gimple_assign_rhs_code (stmt);
3860 gimple exit_phi;
3861 tree bitsize, bitpos;
3862 tree adjustment_def = NULL;
3863 tree vec_initial_def = NULL;
3864 tree reduction_op, expr, def;
3865 tree orig_name, scalar_result;
3866 imm_use_iterator imm_iter, phi_imm_iter;
3867 use_operand_p use_p, phi_use_p;
3868 bool extract_scalar_result = false;
3869 gimple use_stmt, orig_stmt, reduction_phi = NULL;
3870 bool nested_in_vect_loop = false;
3871 auto_vec<gimple> new_phis;
3872 auto_vec<gimple> inner_phis;
3873 enum vect_def_type dt = vect_unknown_def_type;
3874 int j, i;
3875 auto_vec<tree> scalar_results;
3876 unsigned int group_size = 1, k, ratio;
3877 auto_vec<tree> vec_initial_defs;
3878 auto_vec<gimple> phis;
3879 bool slp_reduc = false;
3880 tree new_phi_result;
3881 gimple inner_phi = NULL;
3882
3883 if (slp_node)
3884 group_size = SLP_TREE_SCALAR_STMTS (slp_node).length ();
3885
3886 if (nested_in_vect_loop_p (loop, stmt))
3887 {
3888 outer_loop = loop;
3889 loop = loop->inner;
3890 nested_in_vect_loop = true;
3891 gcc_assert (!slp_node);
3892 }
3893
3894 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
3895 {
3896 case GIMPLE_SINGLE_RHS:
3897 gcc_assert (TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt))
3898 == ternary_op);
3899 reduction_op = TREE_OPERAND (gimple_assign_rhs1 (stmt), reduc_index);
3900 break;
3901 case GIMPLE_UNARY_RHS:
3902 reduction_op = gimple_assign_rhs1 (stmt);
3903 break;
3904 case GIMPLE_BINARY_RHS:
3905 reduction_op = reduc_index ?
3906 gimple_assign_rhs2 (stmt) : gimple_assign_rhs1 (stmt);
3907 break;
3908 case GIMPLE_TERNARY_RHS:
3909 reduction_op = gimple_op (stmt, reduc_index + 1);
3910 break;
3911 default:
3912 gcc_unreachable ();
3913 }
3914
3915 vectype = get_vectype_for_scalar_type (TREE_TYPE (reduction_op));
3916 gcc_assert (vectype);
3917 mode = TYPE_MODE (vectype);
3918
3919 /* 1. Create the reduction def-use cycle:
3920 Set the arguments of REDUCTION_PHIS, i.e., transform
3921
3922 loop:
3923 vec_def = phi <null, null> # REDUCTION_PHI
3924 VECT_DEF = vector_stmt # vectorized form of STMT
3925 ...
3926
3927 into:
3928
3929 loop:
3930 vec_def = phi <vec_init, VECT_DEF> # REDUCTION_PHI
3931 VECT_DEF = vector_stmt # vectorized form of STMT
3932 ...
3933
3934 (in case of SLP, do it for all the phis). */
3935
3936 /* Get the loop-entry arguments. */
3937 if (slp_node)
3938 vect_get_vec_defs (reduction_op, NULL_TREE, stmt, &vec_initial_defs,
3939 NULL, slp_node, reduc_index);
3940 else
3941 {
3942 vec_initial_defs.create (1);
3943 /* For the case of reduction, vect_get_vec_def_for_operand returns
3944 the scalar def before the loop, that defines the initial value
3945 of the reduction variable. */
3946 vec_initial_def = vect_get_vec_def_for_operand (reduction_op, stmt,
3947 &adjustment_def);
3948 vec_initial_defs.quick_push (vec_initial_def);
3949 }
3950
3951 /* Set phi nodes arguments. */
3952 FOR_EACH_VEC_ELT (reduction_phis, i, phi)
3953 {
3954 tree vec_init_def = vec_initial_defs[i];
3955 tree def = vect_defs[i];
3956 for (j = 0; j < ncopies; j++)
3957 {
3958 /* Set the loop-entry arg of the reduction-phi. */
3959 add_phi_arg (phi, vec_init_def, loop_preheader_edge (loop),
3960 UNKNOWN_LOCATION);
3961
3962 /* Set the loop-latch arg for the reduction-phi. */
3963 if (j > 0)
3964 def = vect_get_vec_def_for_stmt_copy (vect_unknown_def_type, def);
3965
3966 add_phi_arg (phi, def, loop_latch_edge (loop), UNKNOWN_LOCATION);
3967
3968 if (dump_enabled_p ())
3969 {
3970 dump_printf_loc (MSG_NOTE, vect_location,
3971 "transform reduction: created def-use cycle: ");
3972 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
3973 dump_printf (MSG_NOTE, "\n");
3974 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, SSA_NAME_DEF_STMT (def), 0);
3975 dump_printf (MSG_NOTE, "\n");
3976 }
3977
3978 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
3979 }
3980 }
3981
3982 /* 2. Create epilog code.
3983 The reduction epilog code operates across the elements of the vector
3984 of partial results computed by the vectorized loop.
3985 The reduction epilog code consists of:
3986
3987 step 1: compute the scalar result in a vector (v_out2)
3988 step 2: extract the scalar result (s_out3) from the vector (v_out2)
3989 step 3: adjust the scalar result (s_out3) if needed.
3990
3991 Step 1 can be accomplished using one the following three schemes:
3992 (scheme 1) using reduc_code, if available.
3993 (scheme 2) using whole-vector shifts, if available.
3994 (scheme 3) using a scalar loop. In this case steps 1+2 above are
3995 combined.
3996
3997 The overall epilog code looks like this:
3998
3999 s_out0 = phi <s_loop> # original EXIT_PHI
4000 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4001 v_out2 = reduce <v_out1> # step 1
4002 s_out3 = extract_field <v_out2, 0> # step 2
4003 s_out4 = adjust_result <s_out3> # step 3
4004
4005 (step 3 is optional, and steps 1 and 2 may be combined).
4006 Lastly, the uses of s_out0 are replaced by s_out4. */
4007
4008
4009 /* 2.1 Create new loop-exit-phis to preserve loop-closed form:
4010 v_out1 = phi <VECT_DEF>
4011 Store them in NEW_PHIS. */
4012
4013 exit_bb = single_exit (loop)->dest;
4014 prev_phi_info = NULL;
4015 new_phis.create (vect_defs.length ());
4016 FOR_EACH_VEC_ELT (vect_defs, i, def)
4017 {
4018 for (j = 0; j < ncopies; j++)
4019 {
4020 tree new_def = copy_ssa_name (def, NULL);
4021 phi = create_phi_node (new_def, exit_bb);
4022 set_vinfo_for_stmt (phi, new_stmt_vec_info (phi, loop_vinfo, NULL));
4023 if (j == 0)
4024 new_phis.quick_push (phi);
4025 else
4026 {
4027 def = vect_get_vec_def_for_stmt_copy (dt, def);
4028 STMT_VINFO_RELATED_STMT (prev_phi_info) = phi;
4029 }
4030
4031 SET_PHI_ARG_DEF (phi, single_exit (loop)->dest_idx, def);
4032 prev_phi_info = vinfo_for_stmt (phi);
4033 }
4034 }
4035
4036 /* The epilogue is created for the outer-loop, i.e., for the loop being
4037 vectorized. Create exit phis for the outer loop. */
4038 if (double_reduc)
4039 {
4040 loop = outer_loop;
4041 exit_bb = single_exit (loop)->dest;
4042 inner_phis.create (vect_defs.length ());
4043 FOR_EACH_VEC_ELT (new_phis, i, phi)
4044 {
4045 tree new_result = copy_ssa_name (PHI_RESULT (phi), NULL);
4046 gimple outer_phi = create_phi_node (new_result, exit_bb);
4047 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4048 PHI_RESULT (phi));
4049 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4050 loop_vinfo, NULL));
4051 inner_phis.quick_push (phi);
4052 new_phis[i] = outer_phi;
4053 prev_phi_info = vinfo_for_stmt (outer_phi);
4054 while (STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi)))
4055 {
4056 phi = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (phi));
4057 new_result = copy_ssa_name (PHI_RESULT (phi), NULL);
4058 outer_phi = create_phi_node (new_result, exit_bb);
4059 SET_PHI_ARG_DEF (outer_phi, single_exit (loop)->dest_idx,
4060 PHI_RESULT (phi));
4061 set_vinfo_for_stmt (outer_phi, new_stmt_vec_info (outer_phi,
4062 loop_vinfo, NULL));
4063 STMT_VINFO_RELATED_STMT (prev_phi_info) = outer_phi;
4064 prev_phi_info = vinfo_for_stmt (outer_phi);
4065 }
4066 }
4067 }
4068
4069 exit_gsi = gsi_after_labels (exit_bb);
4070
4071 /* 2.2 Get the relevant tree-code to use in the epilog for schemes 2,3
4072 (i.e. when reduc_code is not available) and in the final adjustment
4073 code (if needed). Also get the original scalar reduction variable as
4074 defined in the loop. In case STMT is a "pattern-stmt" (i.e. - it
4075 represents a reduction pattern), the tree-code and scalar-def are
4076 taken from the original stmt that the pattern-stmt (STMT) replaces.
4077 Otherwise (it is a regular reduction) - the tree-code and scalar-def
4078 are taken from STMT. */
4079
4080 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4081 if (!orig_stmt)
4082 {
4083 /* Regular reduction */
4084 orig_stmt = stmt;
4085 }
4086 else
4087 {
4088 /* Reduction pattern */
4089 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt);
4090 gcc_assert (STMT_VINFO_IN_PATTERN_P (stmt_vinfo));
4091 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
4092 }
4093
4094 code = gimple_assign_rhs_code (orig_stmt);
4095 /* For MINUS_EXPR the initial vector is [init_val,0,...,0], therefore,
4096 partial results are added and not subtracted. */
4097 if (code == MINUS_EXPR)
4098 code = PLUS_EXPR;
4099
4100 scalar_dest = gimple_assign_lhs (orig_stmt);
4101 scalar_type = TREE_TYPE (scalar_dest);
4102 scalar_results.create (group_size);
4103 new_scalar_dest = vect_create_destination_var (scalar_dest, NULL);
4104 bitsize = TYPE_SIZE (scalar_type);
4105
4106 /* In case this is a reduction in an inner-loop while vectorizing an outer
4107 loop - we don't need to extract a single scalar result at the end of the
4108 inner-loop (unless it is double reduction, i.e., the use of reduction is
4109 outside the outer-loop). The final vector of partial results will be used
4110 in the vectorized outer-loop, or reduced to a scalar result at the end of
4111 the outer-loop. */
4112 if (nested_in_vect_loop && !double_reduc)
4113 goto vect_finalize_reduction;
4114
4115 /* SLP reduction without reduction chain, e.g.,
4116 # a1 = phi <a2, a0>
4117 # b1 = phi <b2, b0>
4118 a2 = operation (a1)
4119 b2 = operation (b1) */
4120 slp_reduc = (slp_node && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)));
4121
4122 /* In case of reduction chain, e.g.,
4123 # a1 = phi <a3, a0>
4124 a2 = operation (a1)
4125 a3 = operation (a2),
4126
4127 we may end up with more than one vector result. Here we reduce them to
4128 one vector. */
4129 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4130 {
4131 tree first_vect = PHI_RESULT (new_phis[0]);
4132 tree tmp;
4133 gimple new_vec_stmt = NULL;
4134
4135 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4136 for (k = 1; k < new_phis.length (); k++)
4137 {
4138 gimple next_phi = new_phis[k];
4139 tree second_vect = PHI_RESULT (next_phi);
4140
4141 tmp = build2 (code, vectype, first_vect, second_vect);
4142 new_vec_stmt = gimple_build_assign (vec_dest, tmp);
4143 first_vect = make_ssa_name (vec_dest, new_vec_stmt);
4144 gimple_assign_set_lhs (new_vec_stmt, first_vect);
4145 gsi_insert_before (&exit_gsi, new_vec_stmt, GSI_SAME_STMT);
4146 }
4147
4148 new_phi_result = first_vect;
4149 if (new_vec_stmt)
4150 {
4151 new_phis.truncate (0);
4152 new_phis.safe_push (new_vec_stmt);
4153 }
4154 }
4155 else
4156 new_phi_result = PHI_RESULT (new_phis[0]);
4157
4158 /* 2.3 Create the reduction code, using one of the three schemes described
4159 above. In SLP we simply need to extract all the elements from the
4160 vector (without reducing them), so we use scalar shifts. */
4161 if (reduc_code != ERROR_MARK && !slp_reduc)
4162 {
4163 tree tmp;
4164
4165 /*** Case 1: Create:
4166 v_out2 = reduc_expr <v_out1> */
4167
4168 if (dump_enabled_p ())
4169 dump_printf_loc (MSG_NOTE, vect_location,
4170 "Reduce using direct vector reduction.\n");
4171
4172 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4173 tmp = build1 (reduc_code, vectype, new_phi_result);
4174 epilog_stmt = gimple_build_assign (vec_dest, tmp);
4175 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4176 gimple_assign_set_lhs (epilog_stmt, new_temp);
4177 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4178
4179 extract_scalar_result = true;
4180 }
4181 else
4182 {
4183 enum tree_code shift_code = ERROR_MARK;
4184 bool have_whole_vector_shift = true;
4185 int bit_offset;
4186 int element_bitsize = tree_to_uhwi (bitsize);
4187 int vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
4188 tree vec_temp;
4189
4190 if (optab_handler (vec_shr_optab, mode) != CODE_FOR_nothing)
4191 shift_code = VEC_RSHIFT_EXPR;
4192 else
4193 have_whole_vector_shift = false;
4194
4195 /* Regardless of whether we have a whole vector shift, if we're
4196 emulating the operation via tree-vect-generic, we don't want
4197 to use it. Only the first round of the reduction is likely
4198 to still be profitable via emulation. */
4199 /* ??? It might be better to emit a reduction tree code here, so that
4200 tree-vect-generic can expand the first round via bit tricks. */
4201 if (!VECTOR_MODE_P (mode))
4202 have_whole_vector_shift = false;
4203 else
4204 {
4205 optab optab = optab_for_tree_code (code, vectype, optab_default);
4206 if (optab_handler (optab, mode) == CODE_FOR_nothing)
4207 have_whole_vector_shift = false;
4208 }
4209
4210 if (have_whole_vector_shift && !slp_reduc)
4211 {
4212 /*** Case 2: Create:
4213 for (offset = VS/2; offset >= element_size; offset/=2)
4214 {
4215 Create: va' = vec_shift <va, offset>
4216 Create: va = vop <va, va'>
4217 } */
4218
4219 if (dump_enabled_p ())
4220 dump_printf_loc (MSG_NOTE, vect_location,
4221 "Reduce using vector shifts\n");
4222
4223 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4224 new_temp = new_phi_result;
4225 for (bit_offset = vec_size_in_bits/2;
4226 bit_offset >= element_bitsize;
4227 bit_offset /= 2)
4228 {
4229 tree bitpos = size_int (bit_offset);
4230
4231 epilog_stmt = gimple_build_assign_with_ops (shift_code,
4232 vec_dest, new_temp, bitpos);
4233 new_name = make_ssa_name (vec_dest, epilog_stmt);
4234 gimple_assign_set_lhs (epilog_stmt, new_name);
4235 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4236
4237 epilog_stmt = gimple_build_assign_with_ops (code, vec_dest,
4238 new_name, new_temp);
4239 new_temp = make_ssa_name (vec_dest, epilog_stmt);
4240 gimple_assign_set_lhs (epilog_stmt, new_temp);
4241 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4242 }
4243
4244 extract_scalar_result = true;
4245 }
4246 else
4247 {
4248 tree rhs;
4249
4250 /*** Case 3: Create:
4251 s = extract_field <v_out2, 0>
4252 for (offset = element_size;
4253 offset < vector_size;
4254 offset += element_size;)
4255 {
4256 Create: s' = extract_field <v_out2, offset>
4257 Create: s = op <s, s'> // For non SLP cases
4258 } */
4259
4260 if (dump_enabled_p ())
4261 dump_printf_loc (MSG_NOTE, vect_location,
4262 "Reduce using scalar code.\n");
4263
4264 vec_size_in_bits = tree_to_uhwi (TYPE_SIZE (vectype));
4265 FOR_EACH_VEC_ELT (new_phis, i, new_phi)
4266 {
4267 if (gimple_code (new_phi) == GIMPLE_PHI)
4268 vec_temp = PHI_RESULT (new_phi);
4269 else
4270 vec_temp = gimple_assign_lhs (new_phi);
4271 rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp, bitsize,
4272 bitsize_zero_node);
4273 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4274 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4275 gimple_assign_set_lhs (epilog_stmt, new_temp);
4276 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4277
4278 /* In SLP we don't need to apply reduction operation, so we just
4279 collect s' values in SCALAR_RESULTS. */
4280 if (slp_reduc)
4281 scalar_results.safe_push (new_temp);
4282
4283 for (bit_offset = element_bitsize;
4284 bit_offset < vec_size_in_bits;
4285 bit_offset += element_bitsize)
4286 {
4287 tree bitpos = bitsize_int (bit_offset);
4288 tree rhs = build3 (BIT_FIELD_REF, scalar_type, vec_temp,
4289 bitsize, bitpos);
4290
4291 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4292 new_name = make_ssa_name (new_scalar_dest, epilog_stmt);
4293 gimple_assign_set_lhs (epilog_stmt, new_name);
4294 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4295
4296 if (slp_reduc)
4297 {
4298 /* In SLP we don't need to apply reduction operation, so
4299 we just collect s' values in SCALAR_RESULTS. */
4300 new_temp = new_name;
4301 scalar_results.safe_push (new_name);
4302 }
4303 else
4304 {
4305 epilog_stmt = gimple_build_assign_with_ops (code,
4306 new_scalar_dest, new_name, new_temp);
4307 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4308 gimple_assign_set_lhs (epilog_stmt, new_temp);
4309 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4310 }
4311 }
4312 }
4313
4314 /* The only case where we need to reduce scalar results in SLP, is
4315 unrolling. If the size of SCALAR_RESULTS is greater than
4316 GROUP_SIZE, we reduce them combining elements modulo
4317 GROUP_SIZE. */
4318 if (slp_reduc)
4319 {
4320 tree res, first_res, new_res;
4321 gimple new_stmt;
4322
4323 /* Reduce multiple scalar results in case of SLP unrolling. */
4324 for (j = group_size; scalar_results.iterate (j, &res);
4325 j++)
4326 {
4327 first_res = scalar_results[j % group_size];
4328 new_stmt = gimple_build_assign_with_ops (code,
4329 new_scalar_dest, first_res, res);
4330 new_res = make_ssa_name (new_scalar_dest, new_stmt);
4331 gimple_assign_set_lhs (new_stmt, new_res);
4332 gsi_insert_before (&exit_gsi, new_stmt, GSI_SAME_STMT);
4333 scalar_results[j % group_size] = new_res;
4334 }
4335 }
4336 else
4337 /* Not SLP - we have one scalar to keep in SCALAR_RESULTS. */
4338 scalar_results.safe_push (new_temp);
4339
4340 extract_scalar_result = false;
4341 }
4342 }
4343
4344 /* 2.4 Extract the final scalar result. Create:
4345 s_out3 = extract_field <v_out2, bitpos> */
4346
4347 if (extract_scalar_result)
4348 {
4349 tree rhs;
4350
4351 if (dump_enabled_p ())
4352 dump_printf_loc (MSG_NOTE, vect_location,
4353 "extract scalar result\n");
4354
4355 if (BYTES_BIG_ENDIAN)
4356 bitpos = size_binop (MULT_EXPR,
4357 bitsize_int (TYPE_VECTOR_SUBPARTS (vectype) - 1),
4358 TYPE_SIZE (scalar_type));
4359 else
4360 bitpos = bitsize_zero_node;
4361
4362 rhs = build3 (BIT_FIELD_REF, scalar_type, new_temp, bitsize, bitpos);
4363 epilog_stmt = gimple_build_assign (new_scalar_dest, rhs);
4364 new_temp = make_ssa_name (new_scalar_dest, epilog_stmt);
4365 gimple_assign_set_lhs (epilog_stmt, new_temp);
4366 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4367 scalar_results.safe_push (new_temp);
4368 }
4369
4370 vect_finalize_reduction:
4371
4372 if (double_reduc)
4373 loop = loop->inner;
4374
4375 /* 2.5 Adjust the final result by the initial value of the reduction
4376 variable. (When such adjustment is not needed, then
4377 'adjustment_def' is zero). For example, if code is PLUS we create:
4378 new_temp = loop_exit_def + adjustment_def */
4379
4380 if (adjustment_def)
4381 {
4382 gcc_assert (!slp_reduc);
4383 if (nested_in_vect_loop)
4384 {
4385 new_phi = new_phis[0];
4386 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) == VECTOR_TYPE);
4387 expr = build2 (code, vectype, PHI_RESULT (new_phi), adjustment_def);
4388 new_dest = vect_create_destination_var (scalar_dest, vectype);
4389 }
4390 else
4391 {
4392 new_temp = scalar_results[0];
4393 gcc_assert (TREE_CODE (TREE_TYPE (adjustment_def)) != VECTOR_TYPE);
4394 expr = build2 (code, scalar_type, new_temp, adjustment_def);
4395 new_dest = vect_create_destination_var (scalar_dest, scalar_type);
4396 }
4397
4398 epilog_stmt = gimple_build_assign (new_dest, expr);
4399 new_temp = make_ssa_name (new_dest, epilog_stmt);
4400 gimple_assign_set_lhs (epilog_stmt, new_temp);
4401 gsi_insert_before (&exit_gsi, epilog_stmt, GSI_SAME_STMT);
4402 if (nested_in_vect_loop)
4403 {
4404 set_vinfo_for_stmt (epilog_stmt,
4405 new_stmt_vec_info (epilog_stmt, loop_vinfo,
4406 NULL));
4407 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (epilog_stmt)) =
4408 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (new_phi));
4409
4410 if (!double_reduc)
4411 scalar_results.quick_push (new_temp);
4412 else
4413 scalar_results[0] = new_temp;
4414 }
4415 else
4416 scalar_results[0] = new_temp;
4417
4418 new_phis[0] = epilog_stmt;
4419 }
4420
4421 /* 2.6 Handle the loop-exit phis. Replace the uses of scalar loop-exit
4422 phis with new adjusted scalar results, i.e., replace use <s_out0>
4423 with use <s_out4>.
4424
4425 Transform:
4426 loop_exit:
4427 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4428 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4429 v_out2 = reduce <v_out1>
4430 s_out3 = extract_field <v_out2, 0>
4431 s_out4 = adjust_result <s_out3>
4432 use <s_out0>
4433 use <s_out0>
4434
4435 into:
4436
4437 loop_exit:
4438 s_out0 = phi <s_loop> # (scalar) EXIT_PHI
4439 v_out1 = phi <VECT_DEF> # NEW_EXIT_PHI
4440 v_out2 = reduce <v_out1>
4441 s_out3 = extract_field <v_out2, 0>
4442 s_out4 = adjust_result <s_out3>
4443 use <s_out4>
4444 use <s_out4> */
4445
4446
4447 /* In SLP reduction chain we reduce vector results into one vector if
4448 necessary, hence we set here GROUP_SIZE to 1. SCALAR_DEST is the LHS of
4449 the last stmt in the reduction chain, since we are looking for the loop
4450 exit phi node. */
4451 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4452 {
4453 scalar_dest = gimple_assign_lhs (
4454 SLP_TREE_SCALAR_STMTS (slp_node)[group_size - 1]);
4455 group_size = 1;
4456 }
4457
4458 /* In SLP we may have several statements in NEW_PHIS and REDUCTION_PHIS (in
4459 case that GROUP_SIZE is greater than vectorization factor). Therefore, we
4460 need to match SCALAR_RESULTS with corresponding statements. The first
4461 (GROUP_SIZE / number of new vector stmts) scalar results correspond to
4462 the first vector stmt, etc.
4463 (RATIO is equal to (GROUP_SIZE / number of new vector stmts)). */
4464 if (group_size > new_phis.length ())
4465 {
4466 ratio = group_size / new_phis.length ();
4467 gcc_assert (!(group_size % new_phis.length ()));
4468 }
4469 else
4470 ratio = 1;
4471
4472 for (k = 0; k < group_size; k++)
4473 {
4474 if (k % ratio == 0)
4475 {
4476 epilog_stmt = new_phis[k / ratio];
4477 reduction_phi = reduction_phis[k / ratio];
4478 if (double_reduc)
4479 inner_phi = inner_phis[k / ratio];
4480 }
4481
4482 if (slp_reduc)
4483 {
4484 gimple current_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[k];
4485
4486 orig_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (current_stmt));
4487 /* SLP statements can't participate in patterns. */
4488 gcc_assert (!orig_stmt);
4489 scalar_dest = gimple_assign_lhs (current_stmt);
4490 }
4491
4492 phis.create (3);
4493 /* Find the loop-closed-use at the loop exit of the original scalar
4494 result. (The reduction result is expected to have two immediate uses -
4495 one at the latch block, and one at the loop exit). */
4496 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4497 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p)))
4498 && !is_gimple_debug (USE_STMT (use_p)))
4499 phis.safe_push (USE_STMT (use_p));
4500
4501 /* While we expect to have found an exit_phi because of loop-closed-ssa
4502 form we can end up without one if the scalar cycle is dead. */
4503
4504 FOR_EACH_VEC_ELT (phis, i, exit_phi)
4505 {
4506 if (outer_loop)
4507 {
4508 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
4509 gimple vect_phi;
4510
4511 /* FORNOW. Currently not supporting the case that an inner-loop
4512 reduction is not used in the outer-loop (but only outside the
4513 outer-loop), unless it is double reduction. */
4514 gcc_assert ((STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
4515 && !STMT_VINFO_LIVE_P (exit_phi_vinfo))
4516 || double_reduc);
4517
4518 STMT_VINFO_VEC_STMT (exit_phi_vinfo) = epilog_stmt;
4519 if (!double_reduc
4520 || STMT_VINFO_DEF_TYPE (exit_phi_vinfo)
4521 != vect_double_reduction_def)
4522 continue;
4523
4524 /* Handle double reduction:
4525
4526 stmt1: s1 = phi <s0, s2> - double reduction phi (outer loop)
4527 stmt2: s3 = phi <s1, s4> - (regular) reduc phi (inner loop)
4528 stmt3: s4 = use (s3) - (regular) reduc stmt (inner loop)
4529 stmt4: s2 = phi <s4> - double reduction stmt (outer loop)
4530
4531 At that point the regular reduction (stmt2 and stmt3) is
4532 already vectorized, as well as the exit phi node, stmt4.
4533 Here we vectorize the phi node of double reduction, stmt1, and
4534 update all relevant statements. */
4535
4536 /* Go through all the uses of s2 to find double reduction phi
4537 node, i.e., stmt1 above. */
4538 orig_name = PHI_RESULT (exit_phi);
4539 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4540 {
4541 stmt_vec_info use_stmt_vinfo;
4542 stmt_vec_info new_phi_vinfo;
4543 tree vect_phi_init, preheader_arg, vect_phi_res, init_def;
4544 basic_block bb = gimple_bb (use_stmt);
4545 gimple use;
4546
4547 /* Check that USE_STMT is really double reduction phi
4548 node. */
4549 if (gimple_code (use_stmt) != GIMPLE_PHI
4550 || gimple_phi_num_args (use_stmt) != 2
4551 || bb->loop_father != outer_loop)
4552 continue;
4553 use_stmt_vinfo = vinfo_for_stmt (use_stmt);
4554 if (!use_stmt_vinfo
4555 || STMT_VINFO_DEF_TYPE (use_stmt_vinfo)
4556 != vect_double_reduction_def)
4557 continue;
4558
4559 /* Create vector phi node for double reduction:
4560 vs1 = phi <vs0, vs2>
4561 vs1 was created previously in this function by a call to
4562 vect_get_vec_def_for_operand and is stored in
4563 vec_initial_def;
4564 vs2 is defined by INNER_PHI, the vectorized EXIT_PHI;
4565 vs0 is created here. */
4566
4567 /* Create vector phi node. */
4568 vect_phi = create_phi_node (vec_initial_def, bb);
4569 new_phi_vinfo = new_stmt_vec_info (vect_phi,
4570 loop_vec_info_for_loop (outer_loop), NULL);
4571 set_vinfo_for_stmt (vect_phi, new_phi_vinfo);
4572
4573 /* Create vs0 - initial def of the double reduction phi. */
4574 preheader_arg = PHI_ARG_DEF_FROM_EDGE (use_stmt,
4575 loop_preheader_edge (outer_loop));
4576 init_def = get_initial_def_for_reduction (stmt,
4577 preheader_arg, NULL);
4578 vect_phi_init = vect_init_vector (use_stmt, init_def,
4579 vectype, NULL);
4580
4581 /* Update phi node arguments with vs0 and vs2. */
4582 add_phi_arg (vect_phi, vect_phi_init,
4583 loop_preheader_edge (outer_loop),
4584 UNKNOWN_LOCATION);
4585 add_phi_arg (vect_phi, PHI_RESULT (inner_phi),
4586 loop_latch_edge (outer_loop), UNKNOWN_LOCATION);
4587 if (dump_enabled_p ())
4588 {
4589 dump_printf_loc (MSG_NOTE, vect_location,
4590 "created double reduction phi node: ");
4591 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vect_phi, 0);
4592 dump_printf (MSG_NOTE, "\n");
4593 }
4594
4595 vect_phi_res = PHI_RESULT (vect_phi);
4596
4597 /* Replace the use, i.e., set the correct vs1 in the regular
4598 reduction phi node. FORNOW, NCOPIES is always 1, so the
4599 loop is redundant. */
4600 use = reduction_phi;
4601 for (j = 0; j < ncopies; j++)
4602 {
4603 edge pr_edge = loop_preheader_edge (loop);
4604 SET_PHI_ARG_DEF (use, pr_edge->dest_idx, vect_phi_res);
4605 use = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (use));
4606 }
4607 }
4608 }
4609 }
4610
4611 phis.release ();
4612 if (nested_in_vect_loop)
4613 {
4614 if (double_reduc)
4615 loop = outer_loop;
4616 else
4617 continue;
4618 }
4619
4620 phis.create (3);
4621 /* Find the loop-closed-use at the loop exit of the original scalar
4622 result. (The reduction result is expected to have two immediate uses,
4623 one at the latch block, and one at the loop exit). For double
4624 reductions we are looking for exit phis of the outer loop. */
4625 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4626 {
4627 if (!flow_bb_inside_loop_p (loop, gimple_bb (USE_STMT (use_p))))
4628 {
4629 if (!is_gimple_debug (USE_STMT (use_p)))
4630 phis.safe_push (USE_STMT (use_p));
4631 }
4632 else
4633 {
4634 if (double_reduc && gimple_code (USE_STMT (use_p)) == GIMPLE_PHI)
4635 {
4636 tree phi_res = PHI_RESULT (USE_STMT (use_p));
4637
4638 FOR_EACH_IMM_USE_FAST (phi_use_p, phi_imm_iter, phi_res)
4639 {
4640 if (!flow_bb_inside_loop_p (loop,
4641 gimple_bb (USE_STMT (phi_use_p)))
4642 && !is_gimple_debug (USE_STMT (phi_use_p)))
4643 phis.safe_push (USE_STMT (phi_use_p));
4644 }
4645 }
4646 }
4647 }
4648
4649 FOR_EACH_VEC_ELT (phis, i, exit_phi)
4650 {
4651 /* Replace the uses: */
4652 orig_name = PHI_RESULT (exit_phi);
4653 scalar_result = scalar_results[k];
4654 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, orig_name)
4655 FOR_EACH_IMM_USE_ON_STMT (use_p, imm_iter)
4656 SET_USE (use_p, scalar_result);
4657 }
4658
4659 phis.release ();
4660 }
4661 }
4662
4663
4664 /* Function vectorizable_reduction.
4665
4666 Check if STMT performs a reduction operation that can be vectorized.
4667 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4668 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
4669 Return FALSE if not a vectorizable STMT, TRUE otherwise.
4670
4671 This function also handles reduction idioms (patterns) that have been
4672 recognized in advance during vect_pattern_recog. In this case, STMT may be
4673 of this form:
4674 X = pattern_expr (arg0, arg1, ..., X)
4675 and it's STMT_VINFO_RELATED_STMT points to the last stmt in the original
4676 sequence that had been detected and replaced by the pattern-stmt (STMT).
4677
4678 In some cases of reduction patterns, the type of the reduction variable X is
4679 different than the type of the other arguments of STMT.
4680 In such cases, the vectype that is used when transforming STMT into a vector
4681 stmt is different than the vectype that is used to determine the
4682 vectorization factor, because it consists of a different number of elements
4683 than the actual number of elements that are being operated upon in parallel.
4684
4685 For example, consider an accumulation of shorts into an int accumulator.
4686 On some targets it's possible to vectorize this pattern operating on 8
4687 shorts at a time (hence, the vectype for purposes of determining the
4688 vectorization factor should be V8HI); on the other hand, the vectype that
4689 is used to create the vector form is actually V4SI (the type of the result).
4690
4691 Upon entry to this function, STMT_VINFO_VECTYPE records the vectype that
4692 indicates what is the actual level of parallelism (V8HI in the example), so
4693 that the right vectorization factor would be derived. This vectype
4694 corresponds to the type of arguments to the reduction stmt, and should *NOT*
4695 be used to create the vectorized stmt. The right vectype for the vectorized
4696 stmt is obtained from the type of the result X:
4697 get_vectype_for_scalar_type (TREE_TYPE (X))
4698
4699 This means that, contrary to "regular" reductions (or "regular" stmts in
4700 general), the following equation:
4701 STMT_VINFO_VECTYPE == get_vectype_for_scalar_type (TREE_TYPE (X))
4702 does *NOT* necessarily hold for reduction patterns. */
4703
4704 bool
4705 vectorizable_reduction (gimple stmt, gimple_stmt_iterator *gsi,
4706 gimple *vec_stmt, slp_tree slp_node)
4707 {
4708 tree vec_dest;
4709 tree scalar_dest;
4710 tree loop_vec_def0 = NULL_TREE, loop_vec_def1 = NULL_TREE;
4711 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4712 tree vectype_out = STMT_VINFO_VECTYPE (stmt_info);
4713 tree vectype_in = NULL_TREE;
4714 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4715 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
4716 enum tree_code code, orig_code, epilog_reduc_code;
4717 enum machine_mode vec_mode;
4718 int op_type;
4719 optab optab, reduc_optab;
4720 tree new_temp = NULL_TREE;
4721 tree def;
4722 gimple def_stmt;
4723 enum vect_def_type dt;
4724 gimple new_phi = NULL;
4725 tree scalar_type;
4726 bool is_simple_use;
4727 gimple orig_stmt;
4728 stmt_vec_info orig_stmt_info;
4729 tree expr = NULL_TREE;
4730 int i;
4731 int ncopies;
4732 int epilog_copies;
4733 stmt_vec_info prev_stmt_info, prev_phi_info;
4734 bool single_defuse_cycle = false;
4735 tree reduc_def = NULL_TREE;
4736 gimple new_stmt = NULL;
4737 int j;
4738 tree ops[3];
4739 bool nested_cycle = false, found_nested_cycle_def = false;
4740 gimple reduc_def_stmt = NULL;
4741 /* The default is that the reduction variable is the last in statement. */
4742 int reduc_index = 2;
4743 bool double_reduc = false, dummy;
4744 basic_block def_bb;
4745 struct loop * def_stmt_loop, *outer_loop = NULL;
4746 tree def_arg;
4747 gimple def_arg_stmt;
4748 auto_vec<tree> vec_oprnds0;
4749 auto_vec<tree> vec_oprnds1;
4750 auto_vec<tree> vect_defs;
4751 auto_vec<gimple> phis;
4752 int vec_num;
4753 tree def0, def1, tem, op0, op1 = NULL_TREE;
4754
4755 /* In case of reduction chain we switch to the first stmt in the chain, but
4756 we don't update STMT_INFO, since only the last stmt is marked as reduction
4757 and has reduction properties. */
4758 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
4759 stmt = GROUP_FIRST_ELEMENT (stmt_info);
4760
4761 if (nested_in_vect_loop_p (loop, stmt))
4762 {
4763 outer_loop = loop;
4764 loop = loop->inner;
4765 nested_cycle = true;
4766 }
4767
4768 /* 1. Is vectorizable reduction? */
4769 /* Not supportable if the reduction variable is used in the loop, unless
4770 it's a reduction chain. */
4771 if (STMT_VINFO_RELEVANT (stmt_info) > vect_used_in_outer
4772 && !GROUP_FIRST_ELEMENT (stmt_info))
4773 return false;
4774
4775 /* Reductions that are not used even in an enclosing outer-loop,
4776 are expected to be "live" (used out of the loop). */
4777 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope
4778 && !STMT_VINFO_LIVE_P (stmt_info))
4779 return false;
4780
4781 /* Make sure it was already recognized as a reduction computation. */
4782 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_reduction_def
4783 && STMT_VINFO_DEF_TYPE (stmt_info) != vect_nested_cycle)
4784 return false;
4785
4786 /* 2. Has this been recognized as a reduction pattern?
4787
4788 Check if STMT represents a pattern that has been recognized
4789 in earlier analysis stages. For stmts that represent a pattern,
4790 the STMT_VINFO_RELATED_STMT field records the last stmt in
4791 the original sequence that constitutes the pattern. */
4792
4793 orig_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
4794 if (orig_stmt)
4795 {
4796 orig_stmt_info = vinfo_for_stmt (orig_stmt);
4797 gcc_assert (STMT_VINFO_IN_PATTERN_P (orig_stmt_info));
4798 gcc_assert (!STMT_VINFO_IN_PATTERN_P (stmt_info));
4799 }
4800
4801 /* 3. Check the operands of the operation. The first operands are defined
4802 inside the loop body. The last operand is the reduction variable,
4803 which is defined by the loop-header-phi. */
4804
4805 gcc_assert (is_gimple_assign (stmt));
4806
4807 /* Flatten RHS. */
4808 switch (get_gimple_rhs_class (gimple_assign_rhs_code (stmt)))
4809 {
4810 case GIMPLE_SINGLE_RHS:
4811 op_type = TREE_OPERAND_LENGTH (gimple_assign_rhs1 (stmt));
4812 if (op_type == ternary_op)
4813 {
4814 tree rhs = gimple_assign_rhs1 (stmt);
4815 ops[0] = TREE_OPERAND (rhs, 0);
4816 ops[1] = TREE_OPERAND (rhs, 1);
4817 ops[2] = TREE_OPERAND (rhs, 2);
4818 code = TREE_CODE (rhs);
4819 }
4820 else
4821 return false;
4822 break;
4823
4824 case GIMPLE_BINARY_RHS:
4825 code = gimple_assign_rhs_code (stmt);
4826 op_type = TREE_CODE_LENGTH (code);
4827 gcc_assert (op_type == binary_op);
4828 ops[0] = gimple_assign_rhs1 (stmt);
4829 ops[1] = gimple_assign_rhs2 (stmt);
4830 break;
4831
4832 case GIMPLE_TERNARY_RHS:
4833 code = gimple_assign_rhs_code (stmt);
4834 op_type = TREE_CODE_LENGTH (code);
4835 gcc_assert (op_type == ternary_op);
4836 ops[0] = gimple_assign_rhs1 (stmt);
4837 ops[1] = gimple_assign_rhs2 (stmt);
4838 ops[2] = gimple_assign_rhs3 (stmt);
4839 break;
4840
4841 case GIMPLE_UNARY_RHS:
4842 return false;
4843
4844 default:
4845 gcc_unreachable ();
4846 }
4847
4848 if (code == COND_EXPR && slp_node)
4849 return false;
4850
4851 scalar_dest = gimple_assign_lhs (stmt);
4852 scalar_type = TREE_TYPE (scalar_dest);
4853 if (!POINTER_TYPE_P (scalar_type) && !INTEGRAL_TYPE_P (scalar_type)
4854 && !SCALAR_FLOAT_TYPE_P (scalar_type))
4855 return false;
4856
4857 /* Do not try to vectorize bit-precision reductions. */
4858 if ((TYPE_PRECISION (scalar_type)
4859 != GET_MODE_PRECISION (TYPE_MODE (scalar_type))))
4860 return false;
4861
4862 /* All uses but the last are expected to be defined in the loop.
4863 The last use is the reduction variable. In case of nested cycle this
4864 assumption is not true: we use reduc_index to record the index of the
4865 reduction variable. */
4866 for (i = 0; i < op_type - 1; i++)
4867 {
4868 /* The condition of COND_EXPR is checked in vectorizable_condition(). */
4869 if (i == 0 && code == COND_EXPR)
4870 continue;
4871
4872 is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
4873 &def_stmt, &def, &dt, &tem);
4874 if (!vectype_in)
4875 vectype_in = tem;
4876 gcc_assert (is_simple_use);
4877
4878 if (dt != vect_internal_def
4879 && dt != vect_external_def
4880 && dt != vect_constant_def
4881 && dt != vect_induction_def
4882 && !(dt == vect_nested_cycle && nested_cycle))
4883 return false;
4884
4885 if (dt == vect_nested_cycle)
4886 {
4887 found_nested_cycle_def = true;
4888 reduc_def_stmt = def_stmt;
4889 reduc_index = i;
4890 }
4891 }
4892
4893 is_simple_use = vect_is_simple_use_1 (ops[i], stmt, loop_vinfo, NULL,
4894 &def_stmt, &def, &dt, &tem);
4895 if (!vectype_in)
4896 vectype_in = tem;
4897 gcc_assert (is_simple_use);
4898 if (!(dt == vect_reduction_def
4899 || dt == vect_nested_cycle
4900 || ((dt == vect_internal_def || dt == vect_external_def
4901 || dt == vect_constant_def || dt == vect_induction_def)
4902 && nested_cycle && found_nested_cycle_def)))
4903 {
4904 /* For pattern recognized stmts, orig_stmt might be a reduction,
4905 but some helper statements for the pattern might not, or
4906 might be COND_EXPRs with reduction uses in the condition. */
4907 gcc_assert (orig_stmt);
4908 return false;
4909 }
4910 if (!found_nested_cycle_def)
4911 reduc_def_stmt = def_stmt;
4912
4913 gcc_assert (gimple_code (reduc_def_stmt) == GIMPLE_PHI);
4914 if (orig_stmt)
4915 gcc_assert (orig_stmt == vect_is_simple_reduction (loop_vinfo,
4916 reduc_def_stmt,
4917 !nested_cycle,
4918 &dummy));
4919 else
4920 {
4921 gimple tmp = vect_is_simple_reduction (loop_vinfo, reduc_def_stmt,
4922 !nested_cycle, &dummy);
4923 /* We changed STMT to be the first stmt in reduction chain, hence we
4924 check that in this case the first element in the chain is STMT. */
4925 gcc_assert (stmt == tmp
4926 || GROUP_FIRST_ELEMENT (vinfo_for_stmt (tmp)) == stmt);
4927 }
4928
4929 if (STMT_VINFO_LIVE_P (vinfo_for_stmt (reduc_def_stmt)))
4930 return false;
4931
4932 if (slp_node || PURE_SLP_STMT (stmt_info))
4933 ncopies = 1;
4934 else
4935 ncopies = (LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4936 / TYPE_VECTOR_SUBPARTS (vectype_in));
4937
4938 gcc_assert (ncopies >= 1);
4939
4940 vec_mode = TYPE_MODE (vectype_in);
4941
4942 if (code == COND_EXPR)
4943 {
4944 if (!vectorizable_condition (stmt, gsi, NULL, ops[reduc_index], 0, NULL))
4945 {
4946 if (dump_enabled_p ())
4947 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4948 "unsupported condition in reduction\n");
4949
4950 return false;
4951 }
4952 }
4953 else
4954 {
4955 /* 4. Supportable by target? */
4956
4957 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR
4958 || code == LROTATE_EXPR || code == RROTATE_EXPR)
4959 {
4960 /* Shifts and rotates are only supported by vectorizable_shifts,
4961 not vectorizable_reduction. */
4962 if (dump_enabled_p ())
4963 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4964 "unsupported shift or rotation.\n");
4965 return false;
4966 }
4967
4968 /* 4.1. check support for the operation in the loop */
4969 optab = optab_for_tree_code (code, vectype_in, optab_default);
4970 if (!optab)
4971 {
4972 if (dump_enabled_p ())
4973 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4974 "no optab.\n");
4975
4976 return false;
4977 }
4978
4979 if (optab_handler (optab, vec_mode) == CODE_FOR_nothing)
4980 {
4981 if (dump_enabled_p ())
4982 dump_printf (MSG_NOTE, "op not supported by target.\n");
4983
4984 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
4985 || LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4986 < vect_min_worthwhile_factor (code))
4987 return false;
4988
4989 if (dump_enabled_p ())
4990 dump_printf (MSG_NOTE, "proceeding using word mode.\n");
4991 }
4992
4993 /* Worthwhile without SIMD support? */
4994 if (!VECTOR_MODE_P (TYPE_MODE (vectype_in))
4995 && LOOP_VINFO_VECT_FACTOR (loop_vinfo)
4996 < vect_min_worthwhile_factor (code))
4997 {
4998 if (dump_enabled_p ())
4999 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5000 "not worthwhile without SIMD support.\n");
5001
5002 return false;
5003 }
5004 }
5005
5006 /* 4.2. Check support for the epilog operation.
5007
5008 If STMT represents a reduction pattern, then the type of the
5009 reduction variable may be different than the type of the rest
5010 of the arguments. For example, consider the case of accumulation
5011 of shorts into an int accumulator; The original code:
5012 S1: int_a = (int) short_a;
5013 orig_stmt-> S2: int_acc = plus <int_a ,int_acc>;
5014
5015 was replaced with:
5016 STMT: int_acc = widen_sum <short_a, int_acc>
5017
5018 This means that:
5019 1. The tree-code that is used to create the vector operation in the
5020 epilog code (that reduces the partial results) is not the
5021 tree-code of STMT, but is rather the tree-code of the original
5022 stmt from the pattern that STMT is replacing. I.e, in the example
5023 above we want to use 'widen_sum' in the loop, but 'plus' in the
5024 epilog.
5025 2. The type (mode) we use to check available target support
5026 for the vector operation to be created in the *epilog*, is
5027 determined by the type of the reduction variable (in the example
5028 above we'd check this: optab_handler (plus_optab, vect_int_mode])).
5029 However the type (mode) we use to check available target support
5030 for the vector operation to be created *inside the loop*, is
5031 determined by the type of the other arguments to STMT (in the
5032 example we'd check this: optab_handler (widen_sum_optab,
5033 vect_short_mode)).
5034
5035 This is contrary to "regular" reductions, in which the types of all
5036 the arguments are the same as the type of the reduction variable.
5037 For "regular" reductions we can therefore use the same vector type
5038 (and also the same tree-code) when generating the epilog code and
5039 when generating the code inside the loop. */
5040
5041 if (orig_stmt)
5042 {
5043 /* This is a reduction pattern: get the vectype from the type of the
5044 reduction variable, and get the tree-code from orig_stmt. */
5045 orig_code = gimple_assign_rhs_code (orig_stmt);
5046 gcc_assert (vectype_out);
5047 vec_mode = TYPE_MODE (vectype_out);
5048 }
5049 else
5050 {
5051 /* Regular reduction: use the same vectype and tree-code as used for
5052 the vector code inside the loop can be used for the epilog code. */
5053 orig_code = code;
5054 }
5055
5056 if (nested_cycle)
5057 {
5058 def_bb = gimple_bb (reduc_def_stmt);
5059 def_stmt_loop = def_bb->loop_father;
5060 def_arg = PHI_ARG_DEF_FROM_EDGE (reduc_def_stmt,
5061 loop_preheader_edge (def_stmt_loop));
5062 if (TREE_CODE (def_arg) == SSA_NAME
5063 && (def_arg_stmt = SSA_NAME_DEF_STMT (def_arg))
5064 && gimple_code (def_arg_stmt) == GIMPLE_PHI
5065 && flow_bb_inside_loop_p (outer_loop, gimple_bb (def_arg_stmt))
5066 && vinfo_for_stmt (def_arg_stmt)
5067 && STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_arg_stmt))
5068 == vect_double_reduction_def)
5069 double_reduc = true;
5070 }
5071
5072 epilog_reduc_code = ERROR_MARK;
5073 if (reduction_code_for_scalar_code (orig_code, &epilog_reduc_code))
5074 {
5075 reduc_optab = optab_for_tree_code (epilog_reduc_code, vectype_out,
5076 optab_default);
5077 if (!reduc_optab)
5078 {
5079 if (dump_enabled_p ())
5080 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5081 "no optab for reduction.\n");
5082
5083 epilog_reduc_code = ERROR_MARK;
5084 }
5085
5086 if (reduc_optab
5087 && optab_handler (reduc_optab, vec_mode) == CODE_FOR_nothing)
5088 {
5089 if (dump_enabled_p ())
5090 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5091 "reduc op not supported by target.\n");
5092
5093 epilog_reduc_code = ERROR_MARK;
5094 }
5095 }
5096 else
5097 {
5098 if (!nested_cycle || double_reduc)
5099 {
5100 if (dump_enabled_p ())
5101 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5102 "no reduc code for scalar code.\n");
5103
5104 return false;
5105 }
5106 }
5107
5108 if (double_reduc && ncopies > 1)
5109 {
5110 if (dump_enabled_p ())
5111 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5112 "multiple types in double reduction\n");
5113
5114 return false;
5115 }
5116
5117 /* In case of widenning multiplication by a constant, we update the type
5118 of the constant to be the type of the other operand. We check that the
5119 constant fits the type in the pattern recognition pass. */
5120 if (code == DOT_PROD_EXPR
5121 && !types_compatible_p (TREE_TYPE (ops[0]), TREE_TYPE (ops[1])))
5122 {
5123 if (TREE_CODE (ops[0]) == INTEGER_CST)
5124 ops[0] = fold_convert (TREE_TYPE (ops[1]), ops[0]);
5125 else if (TREE_CODE (ops[1]) == INTEGER_CST)
5126 ops[1] = fold_convert (TREE_TYPE (ops[0]), ops[1]);
5127 else
5128 {
5129 if (dump_enabled_p ())
5130 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5131 "invalid types in dot-prod\n");
5132
5133 return false;
5134 }
5135 }
5136
5137 if (!vec_stmt) /* transformation not required. */
5138 {
5139 if (!vect_model_reduction_cost (stmt_info, epilog_reduc_code, ncopies))
5140 return false;
5141 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
5142 return true;
5143 }
5144
5145 /** Transform. **/
5146
5147 if (dump_enabled_p ())
5148 dump_printf_loc (MSG_NOTE, vect_location, "transform reduction.\n");
5149
5150 /* FORNOW: Multiple types are not supported for condition. */
5151 if (code == COND_EXPR)
5152 gcc_assert (ncopies == 1);
5153
5154 /* Create the destination vector */
5155 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
5156
5157 /* In case the vectorization factor (VF) is bigger than the number
5158 of elements that we can fit in a vectype (nunits), we have to generate
5159 more than one vector stmt - i.e - we need to "unroll" the
5160 vector stmt by a factor VF/nunits. For more details see documentation
5161 in vectorizable_operation. */
5162
5163 /* If the reduction is used in an outer loop we need to generate
5164 VF intermediate results, like so (e.g. for ncopies=2):
5165 r0 = phi (init, r0)
5166 r1 = phi (init, r1)
5167 r0 = x0 + r0;
5168 r1 = x1 + r1;
5169 (i.e. we generate VF results in 2 registers).
5170 In this case we have a separate def-use cycle for each copy, and therefore
5171 for each copy we get the vector def for the reduction variable from the
5172 respective phi node created for this copy.
5173
5174 Otherwise (the reduction is unused in the loop nest), we can combine
5175 together intermediate results, like so (e.g. for ncopies=2):
5176 r = phi (init, r)
5177 r = x0 + r;
5178 r = x1 + r;
5179 (i.e. we generate VF/2 results in a single register).
5180 In this case for each copy we get the vector def for the reduction variable
5181 from the vectorized reduction operation generated in the previous iteration.
5182 */
5183
5184 if (STMT_VINFO_RELEVANT (stmt_info) == vect_unused_in_scope)
5185 {
5186 single_defuse_cycle = true;
5187 epilog_copies = 1;
5188 }
5189 else
5190 epilog_copies = ncopies;
5191
5192 prev_stmt_info = NULL;
5193 prev_phi_info = NULL;
5194 if (slp_node)
5195 {
5196 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
5197 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype_out)
5198 == TYPE_VECTOR_SUBPARTS (vectype_in));
5199 }
5200 else
5201 {
5202 vec_num = 1;
5203 vec_oprnds0.create (1);
5204 if (op_type == ternary_op)
5205 vec_oprnds1.create (1);
5206 }
5207
5208 phis.create (vec_num);
5209 vect_defs.create (vec_num);
5210 if (!slp_node)
5211 vect_defs.quick_push (NULL_TREE);
5212
5213 for (j = 0; j < ncopies; j++)
5214 {
5215 if (j == 0 || !single_defuse_cycle)
5216 {
5217 for (i = 0; i < vec_num; i++)
5218 {
5219 /* Create the reduction-phi that defines the reduction
5220 operand. */
5221 new_phi = create_phi_node (vec_dest, loop->header);
5222 set_vinfo_for_stmt (new_phi,
5223 new_stmt_vec_info (new_phi, loop_vinfo,
5224 NULL));
5225 if (j == 0 || slp_node)
5226 phis.quick_push (new_phi);
5227 }
5228 }
5229
5230 if (code == COND_EXPR)
5231 {
5232 gcc_assert (!slp_node);
5233 vectorizable_condition (stmt, gsi, vec_stmt,
5234 PHI_RESULT (phis[0]),
5235 reduc_index, NULL);
5236 /* Multiple types are not supported for condition. */
5237 break;
5238 }
5239
5240 /* Handle uses. */
5241 if (j == 0)
5242 {
5243 op0 = ops[!reduc_index];
5244 if (op_type == ternary_op)
5245 {
5246 if (reduc_index == 0)
5247 op1 = ops[2];
5248 else
5249 op1 = ops[1];
5250 }
5251
5252 if (slp_node)
5253 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
5254 slp_node, -1);
5255 else
5256 {
5257 loop_vec_def0 = vect_get_vec_def_for_operand (ops[!reduc_index],
5258 stmt, NULL);
5259 vec_oprnds0.quick_push (loop_vec_def0);
5260 if (op_type == ternary_op)
5261 {
5262 loop_vec_def1 = vect_get_vec_def_for_operand (op1, stmt,
5263 NULL);
5264 vec_oprnds1.quick_push (loop_vec_def1);
5265 }
5266 }
5267 }
5268 else
5269 {
5270 if (!slp_node)
5271 {
5272 enum vect_def_type dt;
5273 gimple dummy_stmt;
5274 tree dummy;
5275
5276 vect_is_simple_use (ops[!reduc_index], stmt, loop_vinfo, NULL,
5277 &dummy_stmt, &dummy, &dt);
5278 loop_vec_def0 = vect_get_vec_def_for_stmt_copy (dt,
5279 loop_vec_def0);
5280 vec_oprnds0[0] = loop_vec_def0;
5281 if (op_type == ternary_op)
5282 {
5283 vect_is_simple_use (op1, stmt, loop_vinfo, NULL, &dummy_stmt,
5284 &dummy, &dt);
5285 loop_vec_def1 = vect_get_vec_def_for_stmt_copy (dt,
5286 loop_vec_def1);
5287 vec_oprnds1[0] = loop_vec_def1;
5288 }
5289 }
5290
5291 if (single_defuse_cycle)
5292 reduc_def = gimple_assign_lhs (new_stmt);
5293
5294 STMT_VINFO_RELATED_STMT (prev_phi_info) = new_phi;
5295 }
5296
5297 FOR_EACH_VEC_ELT (vec_oprnds0, i, def0)
5298 {
5299 if (slp_node)
5300 reduc_def = PHI_RESULT (phis[i]);
5301 else
5302 {
5303 if (!single_defuse_cycle || j == 0)
5304 reduc_def = PHI_RESULT (new_phi);
5305 }
5306
5307 def1 = ((op_type == ternary_op)
5308 ? vec_oprnds1[i] : NULL);
5309 if (op_type == binary_op)
5310 {
5311 if (reduc_index == 0)
5312 expr = build2 (code, vectype_out, reduc_def, def0);
5313 else
5314 expr = build2 (code, vectype_out, def0, reduc_def);
5315 }
5316 else
5317 {
5318 if (reduc_index == 0)
5319 expr = build3 (code, vectype_out, reduc_def, def0, def1);
5320 else
5321 {
5322 if (reduc_index == 1)
5323 expr = build3 (code, vectype_out, def0, reduc_def, def1);
5324 else
5325 expr = build3 (code, vectype_out, def0, def1, reduc_def);
5326 }
5327 }
5328
5329 new_stmt = gimple_build_assign (vec_dest, expr);
5330 new_temp = make_ssa_name (vec_dest, new_stmt);
5331 gimple_assign_set_lhs (new_stmt, new_temp);
5332 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5333
5334 if (slp_node)
5335 {
5336 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
5337 vect_defs.quick_push (new_temp);
5338 }
5339 else
5340 vect_defs[0] = new_temp;
5341 }
5342
5343 if (slp_node)
5344 continue;
5345
5346 if (j == 0)
5347 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5348 else
5349 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5350
5351 prev_stmt_info = vinfo_for_stmt (new_stmt);
5352 prev_phi_info = vinfo_for_stmt (new_phi);
5353 }
5354
5355 /* Finalize the reduction-phi (set its arguments) and create the
5356 epilog reduction code. */
5357 if ((!single_defuse_cycle || code == COND_EXPR) && !slp_node)
5358 {
5359 new_temp = gimple_assign_lhs (*vec_stmt);
5360 vect_defs[0] = new_temp;
5361 }
5362
5363 vect_create_epilog_for_reduction (vect_defs, stmt, epilog_copies,
5364 epilog_reduc_code, phis, reduc_index,
5365 double_reduc, slp_node);
5366
5367 return true;
5368 }
5369
5370 /* Function vect_min_worthwhile_factor.
5371
5372 For a loop where we could vectorize the operation indicated by CODE,
5373 return the minimum vectorization factor that makes it worthwhile
5374 to use generic vectors. */
5375 int
5376 vect_min_worthwhile_factor (enum tree_code code)
5377 {
5378 switch (code)
5379 {
5380 case PLUS_EXPR:
5381 case MINUS_EXPR:
5382 case NEGATE_EXPR:
5383 return 4;
5384
5385 case BIT_AND_EXPR:
5386 case BIT_IOR_EXPR:
5387 case BIT_XOR_EXPR:
5388 case BIT_NOT_EXPR:
5389 return 2;
5390
5391 default:
5392 return INT_MAX;
5393 }
5394 }
5395
5396
5397 /* Function vectorizable_induction
5398
5399 Check if PHI performs an induction computation that can be vectorized.
5400 If VEC_STMT is also passed, vectorize the induction PHI: create a vectorized
5401 phi to replace it, put it in VEC_STMT, and add it to the same basic block.
5402 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
5403
5404 bool
5405 vectorizable_induction (gimple phi, gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
5406 gimple *vec_stmt)
5407 {
5408 stmt_vec_info stmt_info = vinfo_for_stmt (phi);
5409 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5410 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5411 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5412 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
5413 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
5414 tree vec_def;
5415
5416 gcc_assert (ncopies >= 1);
5417 /* FORNOW. These restrictions should be relaxed. */
5418 if (nested_in_vect_loop_p (loop, phi))
5419 {
5420 imm_use_iterator imm_iter;
5421 use_operand_p use_p;
5422 gimple exit_phi;
5423 edge latch_e;
5424 tree loop_arg;
5425
5426 if (ncopies > 1)
5427 {
5428 if (dump_enabled_p ())
5429 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5430 "multiple types in nested loop.\n");
5431 return false;
5432 }
5433
5434 exit_phi = NULL;
5435 latch_e = loop_latch_edge (loop->inner);
5436 loop_arg = PHI_ARG_DEF_FROM_EDGE (phi, latch_e);
5437 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, loop_arg)
5438 {
5439 gimple use_stmt = USE_STMT (use_p);
5440 if (is_gimple_debug (use_stmt))
5441 continue;
5442
5443 if (!flow_bb_inside_loop_p (loop->inner, gimple_bb (use_stmt)))
5444 {
5445 exit_phi = use_stmt;
5446 break;
5447 }
5448 }
5449 if (exit_phi)
5450 {
5451 stmt_vec_info exit_phi_vinfo = vinfo_for_stmt (exit_phi);
5452 if (!(STMT_VINFO_RELEVANT_P (exit_phi_vinfo)
5453 && !STMT_VINFO_LIVE_P (exit_phi_vinfo)))
5454 {
5455 if (dump_enabled_p ())
5456 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5457 "inner-loop induction only used outside "
5458 "of the outer vectorized loop.\n");
5459 return false;
5460 }
5461 }
5462 }
5463
5464 if (!STMT_VINFO_RELEVANT_P (stmt_info))
5465 return false;
5466
5467 /* FORNOW: SLP not supported. */
5468 if (STMT_SLP_TYPE (stmt_info))
5469 return false;
5470
5471 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def);
5472
5473 if (gimple_code (phi) != GIMPLE_PHI)
5474 return false;
5475
5476 if (!vec_stmt) /* transformation not required. */
5477 {
5478 STMT_VINFO_TYPE (stmt_info) = induc_vec_info_type;
5479 if (dump_enabled_p ())
5480 dump_printf_loc (MSG_NOTE, vect_location,
5481 "=== vectorizable_induction ===\n");
5482 vect_model_induction_cost (stmt_info, ncopies);
5483 return true;
5484 }
5485
5486 /** Transform. **/
5487
5488 if (dump_enabled_p ())
5489 dump_printf_loc (MSG_NOTE, vect_location, "transform induction phi.\n");
5490
5491 vec_def = get_initial_def_for_induction (phi);
5492 *vec_stmt = SSA_NAME_DEF_STMT (vec_def);
5493 return true;
5494 }
5495
5496 /* Function vectorizable_live_operation.
5497
5498 STMT computes a value that is used outside the loop. Check if
5499 it can be supported. */
5500
5501 bool
5502 vectorizable_live_operation (gimple stmt,
5503 gimple_stmt_iterator *gsi ATTRIBUTE_UNUSED,
5504 gimple *vec_stmt)
5505 {
5506 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5507 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5508 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5509 int i;
5510 int op_type;
5511 tree op;
5512 tree def;
5513 gimple def_stmt;
5514 enum vect_def_type dt;
5515 enum tree_code code;
5516 enum gimple_rhs_class rhs_class;
5517
5518 gcc_assert (STMT_VINFO_LIVE_P (stmt_info));
5519
5520 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def)
5521 return false;
5522
5523 if (!is_gimple_assign (stmt))
5524 {
5525 if (gimple_call_internal_p (stmt)
5526 && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE
5527 && gimple_call_lhs (stmt)
5528 && loop->simduid
5529 && TREE_CODE (gimple_call_arg (stmt, 0)) == SSA_NAME
5530 && loop->simduid
5531 == SSA_NAME_VAR (gimple_call_arg (stmt, 0)))
5532 {
5533 edge e = single_exit (loop);
5534 basic_block merge_bb = e->dest;
5535 imm_use_iterator imm_iter;
5536 use_operand_p use_p;
5537 tree lhs = gimple_call_lhs (stmt);
5538
5539 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
5540 {
5541 gimple use_stmt = USE_STMT (use_p);
5542 if (gimple_code (use_stmt) == GIMPLE_PHI
5543 && gimple_bb (use_stmt) == merge_bb)
5544 {
5545 if (vec_stmt)
5546 {
5547 tree vfm1
5548 = build_int_cst (unsigned_type_node,
5549 loop_vinfo->vectorization_factor - 1);
5550 SET_PHI_ARG_DEF (use_stmt, e->dest_idx, vfm1);
5551 }
5552 return true;
5553 }
5554 }
5555 }
5556
5557 return false;
5558 }
5559
5560 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
5561 return false;
5562
5563 /* FORNOW. CHECKME. */
5564 if (nested_in_vect_loop_p (loop, stmt))
5565 return false;
5566
5567 code = gimple_assign_rhs_code (stmt);
5568 op_type = TREE_CODE_LENGTH (code);
5569 rhs_class = get_gimple_rhs_class (code);
5570 gcc_assert (rhs_class != GIMPLE_UNARY_RHS || op_type == unary_op);
5571 gcc_assert (rhs_class != GIMPLE_BINARY_RHS || op_type == binary_op);
5572
5573 /* FORNOW: support only if all uses are invariant. This means
5574 that the scalar operations can remain in place, unvectorized.
5575 The original last scalar value that they compute will be used. */
5576
5577 for (i = 0; i < op_type; i++)
5578 {
5579 if (rhs_class == GIMPLE_SINGLE_RHS)
5580 op = TREE_OPERAND (gimple_op (stmt, 1), i);
5581 else
5582 op = gimple_op (stmt, i + 1);
5583 if (op
5584 && !vect_is_simple_use (op, stmt, loop_vinfo, NULL, &def_stmt, &def,
5585 &dt))
5586 {
5587 if (dump_enabled_p ())
5588 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5589 "use not simple.\n");
5590 return false;
5591 }
5592
5593 if (dt != vect_external_def && dt != vect_constant_def)
5594 return false;
5595 }
5596
5597 /* No transformation is required for the cases we currently support. */
5598 return true;
5599 }
5600
5601 /* Kill any debug uses outside LOOP of SSA names defined in STMT. */
5602
5603 static void
5604 vect_loop_kill_debug_uses (struct loop *loop, gimple stmt)
5605 {
5606 ssa_op_iter op_iter;
5607 imm_use_iterator imm_iter;
5608 def_operand_p def_p;
5609 gimple ustmt;
5610
5611 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
5612 {
5613 FOR_EACH_IMM_USE_STMT (ustmt, imm_iter, DEF_FROM_PTR (def_p))
5614 {
5615 basic_block bb;
5616
5617 if (!is_gimple_debug (ustmt))
5618 continue;
5619
5620 bb = gimple_bb (ustmt);
5621
5622 if (!flow_bb_inside_loop_p (loop, bb))
5623 {
5624 if (gimple_debug_bind_p (ustmt))
5625 {
5626 if (dump_enabled_p ())
5627 dump_printf_loc (MSG_NOTE, vect_location,
5628 "killing debug use\n");
5629
5630 gimple_debug_bind_reset_value (ustmt);
5631 update_stmt (ustmt);
5632 }
5633 else
5634 gcc_unreachable ();
5635 }
5636 }
5637 }
5638 }
5639
5640
5641 /* This function builds ni_name = number of iterations. Statements
5642 are emitted on the loop preheader edge. */
5643
5644 static tree
5645 vect_build_loop_niters (loop_vec_info loop_vinfo)
5646 {
5647 tree ni = unshare_expr (LOOP_VINFO_NITERS (loop_vinfo));
5648 if (TREE_CODE (ni) == INTEGER_CST)
5649 return ni;
5650 else
5651 {
5652 tree ni_name, var;
5653 gimple_seq stmts = NULL;
5654 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
5655
5656 var = create_tmp_var (TREE_TYPE (ni), "niters");
5657 ni_name = force_gimple_operand (ni, &stmts, false, var);
5658 if (stmts)
5659 gsi_insert_seq_on_edge_immediate (pe, stmts);
5660
5661 return ni_name;
5662 }
5663 }
5664
5665
5666 /* This function generates the following statements:
5667
5668 ni_name = number of iterations loop executes
5669 ratio = ni_name / vf
5670 ratio_mult_vf_name = ratio * vf
5671
5672 and places them on the loop preheader edge. */
5673
5674 static void
5675 vect_generate_tmps_on_preheader (loop_vec_info loop_vinfo,
5676 tree ni_name,
5677 tree *ratio_mult_vf_name_ptr,
5678 tree *ratio_name_ptr)
5679 {
5680 tree ni_minus_gap_name;
5681 tree var;
5682 tree ratio_name;
5683 tree ratio_mult_vf_name;
5684 int vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
5685 edge pe = loop_preheader_edge (LOOP_VINFO_LOOP (loop_vinfo));
5686 tree log_vf;
5687
5688 log_vf = build_int_cst (TREE_TYPE (ni_name), exact_log2 (vf));
5689
5690 /* If epilogue loop is required because of data accesses with gaps, we
5691 subtract one iteration from the total number of iterations here for
5692 correct calculation of RATIO. */
5693 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
5694 {
5695 ni_minus_gap_name = fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
5696 ni_name,
5697 build_one_cst (TREE_TYPE (ni_name)));
5698 if (!is_gimple_val (ni_minus_gap_name))
5699 {
5700 var = create_tmp_var (TREE_TYPE (ni_name), "ni_gap");
5701 gimple stmts = NULL;
5702 ni_minus_gap_name = force_gimple_operand (ni_minus_gap_name, &stmts,
5703 true, var);
5704 gsi_insert_seq_on_edge_immediate (pe, stmts);
5705 }
5706 }
5707 else
5708 ni_minus_gap_name = ni_name;
5709
5710 /* Create: ratio = ni >> log2(vf) */
5711 /* ??? As we have ni == number of latch executions + 1, ni could
5712 have overflown to zero. So avoid computing ratio based on ni
5713 but compute it using the fact that we know ratio will be at least
5714 one, thus via (ni - vf) >> log2(vf) + 1. */
5715 ratio_name
5716 = fold_build2 (PLUS_EXPR, TREE_TYPE (ni_name),
5717 fold_build2 (RSHIFT_EXPR, TREE_TYPE (ni_name),
5718 fold_build2 (MINUS_EXPR, TREE_TYPE (ni_name),
5719 ni_minus_gap_name,
5720 build_int_cst
5721 (TREE_TYPE (ni_name), vf)),
5722 log_vf),
5723 build_int_cst (TREE_TYPE (ni_name), 1));
5724 if (!is_gimple_val (ratio_name))
5725 {
5726 var = create_tmp_var (TREE_TYPE (ni_name), "bnd");
5727 gimple stmts = NULL;
5728 ratio_name = force_gimple_operand (ratio_name, &stmts, true, var);
5729 gsi_insert_seq_on_edge_immediate (pe, stmts);
5730 }
5731 *ratio_name_ptr = ratio_name;
5732
5733 /* Create: ratio_mult_vf = ratio << log2 (vf). */
5734
5735 if (ratio_mult_vf_name_ptr)
5736 {
5737 ratio_mult_vf_name = fold_build2 (LSHIFT_EXPR, TREE_TYPE (ratio_name),
5738 ratio_name, log_vf);
5739 if (!is_gimple_val (ratio_mult_vf_name))
5740 {
5741 var = create_tmp_var (TREE_TYPE (ni_name), "ratio_mult_vf");
5742 gimple stmts = NULL;
5743 ratio_mult_vf_name = force_gimple_operand (ratio_mult_vf_name, &stmts,
5744 true, var);
5745 gsi_insert_seq_on_edge_immediate (pe, stmts);
5746 }
5747 *ratio_mult_vf_name_ptr = ratio_mult_vf_name;
5748 }
5749
5750 return;
5751 }
5752
5753
5754 /* Function vect_transform_loop.
5755
5756 The analysis phase has determined that the loop is vectorizable.
5757 Vectorize the loop - created vectorized stmts to replace the scalar
5758 stmts in the loop, and update the loop exit condition. */
5759
5760 void
5761 vect_transform_loop (loop_vec_info loop_vinfo)
5762 {
5763 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
5764 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
5765 int nbbs = loop->num_nodes;
5766 gimple_stmt_iterator si;
5767 int i;
5768 tree ratio = NULL;
5769 int vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
5770 bool grouped_store;
5771 bool slp_scheduled = false;
5772 gimple stmt, pattern_stmt;
5773 gimple_seq pattern_def_seq = NULL;
5774 gimple_stmt_iterator pattern_def_si = gsi_none ();
5775 bool transform_pattern_stmt = false;
5776 bool check_profitability = false;
5777 int th;
5778 /* Record number of iterations before we started tampering with the profile. */
5779 gcov_type expected_iterations = expected_loop_iterations_unbounded (loop);
5780
5781 if (dump_enabled_p ())
5782 dump_printf_loc (MSG_NOTE, vect_location, "=== vec_transform_loop ===\n");
5783
5784 /* If profile is inprecise, we have chance to fix it up. */
5785 if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5786 expected_iterations = LOOP_VINFO_INT_NITERS (loop_vinfo);
5787
5788 /* Use the more conservative vectorization threshold. If the number
5789 of iterations is constant assume the cost check has been performed
5790 by our caller. If the threshold makes all loops profitable that
5791 run at least the vectorization factor number of times checking
5792 is pointless, too. */
5793 th = LOOP_VINFO_COST_MODEL_THRESHOLD (loop_vinfo);
5794 if (th >= LOOP_VINFO_VECT_FACTOR (loop_vinfo) - 1
5795 && !LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5796 {
5797 if (dump_enabled_p ())
5798 dump_printf_loc (MSG_NOTE, vect_location,
5799 "Profitability threshold is %d loop iterations.\n",
5800 th);
5801 check_profitability = true;
5802 }
5803
5804 /* Version the loop first, if required, so the profitability check
5805 comes first. */
5806
5807 if (LOOP_REQUIRES_VERSIONING_FOR_ALIGNMENT (loop_vinfo)
5808 || LOOP_REQUIRES_VERSIONING_FOR_ALIAS (loop_vinfo))
5809 {
5810 vect_loop_versioning (loop_vinfo, th, check_profitability);
5811 check_profitability = false;
5812 }
5813
5814 tree ni_name = vect_build_loop_niters (loop_vinfo);
5815 LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo) = ni_name;
5816
5817 /* Peel the loop if there are data refs with unknown alignment.
5818 Only one data ref with unknown store is allowed. */
5819
5820 if (LOOP_VINFO_PEELING_FOR_ALIGNMENT (loop_vinfo))
5821 {
5822 vect_do_peeling_for_alignment (loop_vinfo, ni_name,
5823 th, check_profitability);
5824 check_profitability = false;
5825 /* The above adjusts LOOP_VINFO_NITERS, so cause ni_name to
5826 be re-computed. */
5827 ni_name = NULL_TREE;
5828 }
5829
5830 /* If the loop has a symbolic number of iterations 'n' (i.e. it's not a
5831 compile time constant), or it is a constant that doesn't divide by the
5832 vectorization factor, then an epilog loop needs to be created.
5833 We therefore duplicate the loop: the original loop will be vectorized,
5834 and will compute the first (n/VF) iterations. The second copy of the loop
5835 will remain scalar and will compute the remaining (n%VF) iterations.
5836 (VF is the vectorization factor). */
5837
5838 if (LOOP_VINFO_PEELING_FOR_NITER (loop_vinfo)
5839 || LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo))
5840 {
5841 tree ratio_mult_vf;
5842 if (!ni_name)
5843 ni_name = vect_build_loop_niters (loop_vinfo);
5844 vect_generate_tmps_on_preheader (loop_vinfo, ni_name, &ratio_mult_vf,
5845 &ratio);
5846 vect_do_peeling_for_loop_bound (loop_vinfo, ni_name, ratio_mult_vf,
5847 th, check_profitability);
5848 }
5849 else if (LOOP_VINFO_NITERS_KNOWN_P (loop_vinfo))
5850 ratio = build_int_cst (TREE_TYPE (LOOP_VINFO_NITERS (loop_vinfo)),
5851 LOOP_VINFO_INT_NITERS (loop_vinfo) / vectorization_factor);
5852 else
5853 {
5854 if (!ni_name)
5855 ni_name = vect_build_loop_niters (loop_vinfo);
5856 vect_generate_tmps_on_preheader (loop_vinfo, ni_name, NULL, &ratio);
5857 }
5858
5859 /* 1) Make sure the loop header has exactly two entries
5860 2) Make sure we have a preheader basic block. */
5861
5862 gcc_assert (EDGE_COUNT (loop->header->preds) == 2);
5863
5864 split_edge (loop_preheader_edge (loop));
5865
5866 /* FORNOW: the vectorizer supports only loops which body consist
5867 of one basic block (header + empty latch). When the vectorizer will
5868 support more involved loop forms, the order by which the BBs are
5869 traversed need to be reconsidered. */
5870
5871 for (i = 0; i < nbbs; i++)
5872 {
5873 basic_block bb = bbs[i];
5874 stmt_vec_info stmt_info;
5875 gimple phi;
5876
5877 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5878 {
5879 phi = gsi_stmt (si);
5880 if (dump_enabled_p ())
5881 {
5882 dump_printf_loc (MSG_NOTE, vect_location,
5883 "------>vectorizing phi: ");
5884 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
5885 dump_printf (MSG_NOTE, "\n");
5886 }
5887 stmt_info = vinfo_for_stmt (phi);
5888 if (!stmt_info)
5889 continue;
5890
5891 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
5892 vect_loop_kill_debug_uses (loop, phi);
5893
5894 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5895 && !STMT_VINFO_LIVE_P (stmt_info))
5896 continue;
5897
5898 if (STMT_VINFO_VECTYPE (stmt_info)
5899 && (TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info))
5900 != (unsigned HOST_WIDE_INT) vectorization_factor)
5901 && dump_enabled_p ())
5902 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
5903
5904 if (STMT_VINFO_DEF_TYPE (stmt_info) == vect_induction_def)
5905 {
5906 if (dump_enabled_p ())
5907 dump_printf_loc (MSG_NOTE, vect_location, "transform phi.\n");
5908 vect_transform_stmt (phi, NULL, NULL, NULL, NULL);
5909 }
5910 }
5911
5912 pattern_stmt = NULL;
5913 for (si = gsi_start_bb (bb); !gsi_end_p (si) || transform_pattern_stmt;)
5914 {
5915 bool is_store;
5916
5917 if (transform_pattern_stmt)
5918 stmt = pattern_stmt;
5919 else
5920 {
5921 stmt = gsi_stmt (si);
5922 /* During vectorization remove existing clobber stmts. */
5923 if (gimple_clobber_p (stmt))
5924 {
5925 unlink_stmt_vdef (stmt);
5926 gsi_remove (&si, true);
5927 release_defs (stmt);
5928 continue;
5929 }
5930 }
5931
5932 if (dump_enabled_p ())
5933 {
5934 dump_printf_loc (MSG_NOTE, vect_location,
5935 "------>vectorizing statement: ");
5936 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
5937 dump_printf (MSG_NOTE, "\n");
5938 }
5939
5940 stmt_info = vinfo_for_stmt (stmt);
5941
5942 /* vector stmts created in the outer-loop during vectorization of
5943 stmts in an inner-loop may not have a stmt_info, and do not
5944 need to be vectorized. */
5945 if (!stmt_info)
5946 {
5947 gsi_next (&si);
5948 continue;
5949 }
5950
5951 if (MAY_HAVE_DEBUG_STMTS && !STMT_VINFO_LIVE_P (stmt_info))
5952 vect_loop_kill_debug_uses (loop, stmt);
5953
5954 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5955 && !STMT_VINFO_LIVE_P (stmt_info))
5956 {
5957 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5958 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
5959 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5960 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5961 {
5962 stmt = pattern_stmt;
5963 stmt_info = vinfo_for_stmt (stmt);
5964 }
5965 else
5966 {
5967 gsi_next (&si);
5968 continue;
5969 }
5970 }
5971 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5972 && (pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info))
5973 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5974 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5975 transform_pattern_stmt = true;
5976
5977 /* If pattern statement has def stmts, vectorize them too. */
5978 if (is_pattern_stmt_p (stmt_info))
5979 {
5980 if (pattern_def_seq == NULL)
5981 {
5982 pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info);
5983 pattern_def_si = gsi_start (pattern_def_seq);
5984 }
5985 else if (!gsi_end_p (pattern_def_si))
5986 gsi_next (&pattern_def_si);
5987 if (pattern_def_seq != NULL)
5988 {
5989 gimple pattern_def_stmt = NULL;
5990 stmt_vec_info pattern_def_stmt_info = NULL;
5991
5992 while (!gsi_end_p (pattern_def_si))
5993 {
5994 pattern_def_stmt = gsi_stmt (pattern_def_si);
5995 pattern_def_stmt_info
5996 = vinfo_for_stmt (pattern_def_stmt);
5997 if (STMT_VINFO_RELEVANT_P (pattern_def_stmt_info)
5998 || STMT_VINFO_LIVE_P (pattern_def_stmt_info))
5999 break;
6000 gsi_next (&pattern_def_si);
6001 }
6002
6003 if (!gsi_end_p (pattern_def_si))
6004 {
6005 if (dump_enabled_p ())
6006 {
6007 dump_printf_loc (MSG_NOTE, vect_location,
6008 "==> vectorizing pattern def "
6009 "stmt: ");
6010 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
6011 pattern_def_stmt, 0);
6012 dump_printf (MSG_NOTE, "\n");
6013 }
6014
6015 stmt = pattern_def_stmt;
6016 stmt_info = pattern_def_stmt_info;
6017 }
6018 else
6019 {
6020 pattern_def_si = gsi_none ();
6021 transform_pattern_stmt = false;
6022 }
6023 }
6024 else
6025 transform_pattern_stmt = false;
6026 }
6027
6028 if (STMT_VINFO_VECTYPE (stmt_info))
6029 {
6030 unsigned int nunits
6031 = (unsigned int)
6032 TYPE_VECTOR_SUBPARTS (STMT_VINFO_VECTYPE (stmt_info));
6033 if (!STMT_SLP_TYPE (stmt_info)
6034 && nunits != (unsigned int) vectorization_factor
6035 && dump_enabled_p ())
6036 /* For SLP VF is set according to unrolling factor, and not
6037 to vector size, hence for SLP this print is not valid. */
6038 dump_printf_loc (MSG_NOTE, vect_location, "multiple-types.\n");
6039 }
6040
6041 /* SLP. Schedule all the SLP instances when the first SLP stmt is
6042 reached. */
6043 if (STMT_SLP_TYPE (stmt_info))
6044 {
6045 if (!slp_scheduled)
6046 {
6047 slp_scheduled = true;
6048
6049 if (dump_enabled_p ())
6050 dump_printf_loc (MSG_NOTE, vect_location,
6051 "=== scheduling SLP instances ===\n");
6052
6053 vect_schedule_slp (loop_vinfo, NULL);
6054 }
6055
6056 /* Hybrid SLP stmts must be vectorized in addition to SLP. */
6057 if (!vinfo_for_stmt (stmt) || PURE_SLP_STMT (stmt_info))
6058 {
6059 if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
6060 {
6061 pattern_def_seq = NULL;
6062 gsi_next (&si);
6063 }
6064 continue;
6065 }
6066 }
6067
6068 /* -------- vectorize statement ------------ */
6069 if (dump_enabled_p ())
6070 dump_printf_loc (MSG_NOTE, vect_location, "transform statement.\n");
6071
6072 grouped_store = false;
6073 is_store = vect_transform_stmt (stmt, &si, &grouped_store, NULL, NULL);
6074 if (is_store)
6075 {
6076 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
6077 {
6078 /* Interleaving. If IS_STORE is TRUE, the vectorization of the
6079 interleaving chain was completed - free all the stores in
6080 the chain. */
6081 gsi_next (&si);
6082 vect_remove_stores (GROUP_FIRST_ELEMENT (stmt_info));
6083 }
6084 else
6085 {
6086 /* Free the attached stmt_vec_info and remove the stmt. */
6087 gimple store = gsi_stmt (si);
6088 free_stmt_vec_info (store);
6089 unlink_stmt_vdef (store);
6090 gsi_remove (&si, true);
6091 release_defs (store);
6092 }
6093
6094 /* Stores can only appear at the end of pattern statements. */
6095 gcc_assert (!transform_pattern_stmt);
6096 pattern_def_seq = NULL;
6097 }
6098 else if (!transform_pattern_stmt && gsi_end_p (pattern_def_si))
6099 {
6100 pattern_def_seq = NULL;
6101 gsi_next (&si);
6102 }
6103 } /* stmts in BB */
6104 } /* BBs in loop */
6105
6106 slpeel_make_loop_iterate_ntimes (loop, ratio);
6107
6108 /* Reduce loop iterations by the vectorization factor. */
6109 scale_loop_profile (loop, GCOV_COMPUTE_SCALE (1, vectorization_factor),
6110 expected_iterations / vectorization_factor);
6111 loop->nb_iterations_upper_bound
6112 = loop->nb_iterations_upper_bound.udiv (double_int::from_uhwi (vectorization_factor),
6113 FLOOR_DIV_EXPR);
6114 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
6115 && loop->nb_iterations_upper_bound != double_int_zero)
6116 loop->nb_iterations_upper_bound = loop->nb_iterations_upper_bound - double_int_one;
6117 if (loop->any_estimate)
6118 {
6119 loop->nb_iterations_estimate
6120 = loop->nb_iterations_estimate.udiv (double_int::from_uhwi (vectorization_factor),
6121 FLOOR_DIV_EXPR);
6122 if (LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo)
6123 && loop->nb_iterations_estimate != double_int_zero)
6124 loop->nb_iterations_estimate = loop->nb_iterations_estimate - double_int_one;
6125 }
6126
6127 if (dump_enabled_p ())
6128 {
6129 dump_printf_loc (MSG_NOTE, vect_location,
6130 "LOOP VECTORIZED\n");
6131 if (loop->inner)
6132 dump_printf_loc (MSG_NOTE, vect_location,
6133 "OUTER LOOP VECTORIZED\n");
6134 dump_printf (MSG_NOTE, "\n");
6135 }
6136 }