tree-vectorizer.h (NUM_PATTERNS): Increase.
[gcc.git] / gcc / tree-vect-patterns.c
1 /* Analysis Utilities for Loop Vectorization.
2 Copyright (C) 2006 Free Software Foundation, Inc.
3 Contributed by Dorit Nuzman <dorit@il.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "tree.h"
28
29 #include "target.h"
30 #include "basic-block.h"
31 #include "diagnostic.h"
32 #include "tree-flow.h"
33 #include "tree-dump.h"
34 #include "timevar.h"
35 #include "cfgloop.h"
36 #include "expr.h"
37 #include "optabs.h"
38 #include "params.h"
39 #include "tree-data-ref.h"
40 #include "tree-vectorizer.h"
41 #include "recog.h"
42 #include "toplev.h"
43
44 /* Function prototypes */
45 static void vect_pattern_recog_1
46 (tree (* ) (tree, tree *, tree *), block_stmt_iterator);
47 static bool widened_name_p (tree, tree, tree *, tree *);
48
49 /* Pattern recognition functions */
50 static tree vect_recog_widen_sum_pattern (tree, tree *, tree *);
51 static tree vect_recog_widen_mult_pattern (tree, tree *, tree *);
52 static tree vect_recog_dot_prod_pattern (tree, tree *, tree *);
53 static tree vect_recog_pow_pattern (tree, tree *, tree *);
54 static vect_recog_func_ptr vect_vect_recog_func_ptrs[NUM_PATTERNS] = {
55 vect_recog_widen_mult_pattern,
56 vect_recog_widen_sum_pattern,
57 vect_recog_dot_prod_pattern,
58 vect_recog_pow_pattern};
59
60
61 /* Function widened_name_p
62
63 Check whether NAME, an ssa-name used in USE_STMT,
64 is a result of a type-promotion, such that:
65 DEF_STMT: NAME = NOP (name0)
66 where the type of name0 (HALF_TYPE) is smaller than the type of NAME.
67 */
68
69 static bool
70 widened_name_p (tree name, tree use_stmt, tree *half_type, tree *def_stmt)
71 {
72 tree dummy;
73 loop_vec_info loop_vinfo;
74 stmt_vec_info stmt_vinfo;
75 tree expr;
76 tree type = TREE_TYPE (name);
77 tree oprnd0;
78 enum vect_def_type dt;
79 tree def;
80
81 stmt_vinfo = vinfo_for_stmt (use_stmt);
82 loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
83
84 if (!vect_is_simple_use (name, loop_vinfo, def_stmt, &def, &dt))
85 return false;
86
87 if (dt != vect_loop_def
88 && dt != vect_invariant_def && dt != vect_constant_def)
89 return false;
90
91 if (! *def_stmt)
92 return false;
93
94 if (TREE_CODE (*def_stmt) != MODIFY_EXPR)
95 return false;
96
97 expr = TREE_OPERAND (*def_stmt, 1);
98 if (TREE_CODE (expr) != NOP_EXPR)
99 return false;
100
101 oprnd0 = TREE_OPERAND (expr, 0);
102
103 *half_type = TREE_TYPE (oprnd0);
104 if (!INTEGRAL_TYPE_P (type) || !INTEGRAL_TYPE_P (*half_type)
105 || (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (*half_type))
106 || (TYPE_PRECISION (type) < (TYPE_PRECISION (*half_type) * 2)))
107 return false;
108
109 if (!vect_is_simple_use (oprnd0, loop_vinfo, &dummy, &dummy, &dt))
110 return false;
111
112 if (dt != vect_invariant_def && dt != vect_constant_def
113 && dt != vect_loop_def)
114 return false;
115
116 return true;
117 }
118
119
120 /* Function vect_recog_dot_prod_pattern
121
122 Try to find the following pattern:
123
124 type x_t, y_t;
125 TYPE1 prod;
126 TYPE2 sum = init;
127 loop:
128 sum_0 = phi <init, sum_1>
129 S1 x_t = ...
130 S2 y_t = ...
131 S3 x_T = (TYPE1) x_t;
132 S4 y_T = (TYPE1) y_t;
133 S5 prod = x_T * y_T;
134 [S6 prod = (TYPE2) prod; #optional]
135 S7 sum_1 = prod + sum_0;
136
137 where 'TYPE1' is exactly double the size of type 'type', and 'TYPE2' is the
138 same size of 'TYPE1' or bigger. This is a special case of a reduction
139 computation.
140
141 Input:
142
143 * LAST_STMT: A stmt from which the pattern search begins. In the example,
144 when this function is called with S7, the pattern {S3,S4,S5,S6,S7} will be
145 detected.
146
147 Output:
148
149 * TYPE_IN: The type of the input arguments to the pattern.
150
151 * TYPE_OUT: The type of the output of this pattern.
152
153 * Return value: A new stmt that will be used to replace the sequence of
154 stmts that constitute the pattern. In this case it will be:
155 WIDEN_DOT_PRODUCT <x_t, y_t, sum_0>
156 */
157
158 static tree
159 vect_recog_dot_prod_pattern (tree last_stmt, tree *type_in, tree *type_out)
160 {
161 tree stmt, expr;
162 tree oprnd0, oprnd1;
163 tree oprnd00, oprnd01;
164 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
165 tree type, half_type;
166 tree pattern_expr;
167 tree prod_type;
168
169 if (TREE_CODE (last_stmt) != MODIFY_EXPR)
170 return NULL;
171
172 expr = TREE_OPERAND (last_stmt, 1);
173 type = TREE_TYPE (expr);
174
175 /* Look for the following pattern
176 DX = (TYPE1) X;
177 DY = (TYPE1) Y;
178 DPROD = DX * DY;
179 DDPROD = (TYPE2) DPROD;
180 sum_1 = DDPROD + sum_0;
181 In which
182 - DX is double the size of X
183 - DY is double the size of Y
184 - DX, DY, DPROD all have the same type
185 - sum is the same size of DPROD or bigger
186 - sum has been recognized as a reduction variable.
187
188 This is equivalent to:
189 DPROD = X w* Y; #widen mult
190 sum_1 = DPROD w+ sum_0; #widen summation
191 or
192 DPROD = X w* Y; #widen mult
193 sum_1 = DPROD + sum_0; #summation
194 */
195
196 /* Starting from LAST_STMT, follow the defs of its uses in search
197 of the above pattern. */
198
199 if (TREE_CODE (expr) != PLUS_EXPR)
200 return NULL;
201
202 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
203 {
204 /* Has been detected as widening-summation? */
205
206 stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
207 expr = TREE_OPERAND (stmt, 1);
208 type = TREE_TYPE (expr);
209 if (TREE_CODE (expr) != WIDEN_SUM_EXPR)
210 return NULL;
211 oprnd0 = TREE_OPERAND (expr, 0);
212 oprnd1 = TREE_OPERAND (expr, 1);
213 half_type = TREE_TYPE (oprnd0);
214 }
215 else
216 {
217 tree def_stmt;
218
219 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def)
220 return NULL;
221 oprnd0 = TREE_OPERAND (expr, 0);
222 oprnd1 = TREE_OPERAND (expr, 1);
223 if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0)) != TYPE_MAIN_VARIANT (type)
224 || TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1)) != TYPE_MAIN_VARIANT (type))
225 return NULL;
226 stmt = last_stmt;
227
228 if (widened_name_p (oprnd0, stmt, &half_type, &def_stmt))
229 {
230 stmt = def_stmt;
231 expr = TREE_OPERAND (stmt, 1);
232 oprnd0 = TREE_OPERAND (expr, 0);
233 }
234 else
235 half_type = type;
236 }
237
238 /* So far so good. Since last_stmt was detected as a (summation) reduction,
239 we know that oprnd1 is the reduction variable (defined by a loop-header
240 phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
241 Left to check that oprnd0 is defined by a (widen_)mult_expr */
242
243 prod_type = half_type;
244 stmt = SSA_NAME_DEF_STMT (oprnd0);
245 gcc_assert (stmt);
246 stmt_vinfo = vinfo_for_stmt (stmt);
247 gcc_assert (stmt_vinfo);
248 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_loop_def)
249 return NULL;
250 expr = TREE_OPERAND (stmt, 1);
251 if (TREE_CODE (expr) != MULT_EXPR)
252 return NULL;
253 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
254 {
255 /* Has been detected as a widening multiplication? */
256
257 stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
258 expr = TREE_OPERAND (stmt, 1);
259 if (TREE_CODE (expr) != WIDEN_MULT_EXPR)
260 return NULL;
261 stmt_vinfo = vinfo_for_stmt (stmt);
262 gcc_assert (stmt_vinfo);
263 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_loop_def);
264 oprnd00 = TREE_OPERAND (expr, 0);
265 oprnd01 = TREE_OPERAND (expr, 1);
266 }
267 else
268 {
269 tree half_type0, half_type1;
270 tree def_stmt;
271 tree oprnd0, oprnd1;
272
273 oprnd0 = TREE_OPERAND (expr, 0);
274 oprnd1 = TREE_OPERAND (expr, 1);
275 if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0))
276 != TYPE_MAIN_VARIANT (prod_type)
277 || TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1))
278 != TYPE_MAIN_VARIANT (prod_type))
279 return NULL;
280 if (!widened_name_p (oprnd0, stmt, &half_type0, &def_stmt))
281 return NULL;
282 oprnd00 = TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0);
283 if (!widened_name_p (oprnd1, stmt, &half_type1, &def_stmt))
284 return NULL;
285 oprnd01 = TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0);
286 if (TYPE_MAIN_VARIANT (half_type0) != TYPE_MAIN_VARIANT (half_type1))
287 return NULL;
288 if (TYPE_PRECISION (prod_type) != TYPE_PRECISION (half_type0) * 2)
289 return NULL;
290 }
291
292 half_type = TREE_TYPE (oprnd00);
293 *type_in = half_type;
294 *type_out = type;
295
296 /* Pattern detected. Create a stmt to be used to replace the pattern: */
297 pattern_expr = build3 (DOT_PROD_EXPR, type, oprnd00, oprnd01, oprnd1);
298 if (vect_print_dump_info (REPORT_DETAILS))
299 {
300 fprintf (vect_dump, "vect_recog_dot_prod_pattern: detected: ");
301 print_generic_expr (vect_dump, pattern_expr, TDF_SLIM);
302 }
303 return pattern_expr;
304 }
305
306
307 /* Function vect_recog_widen_mult_pattern
308
309 Try to find the following pattern:
310
311 type a_t, b_t;
312 TYPE a_T, b_T, prod_T;
313
314 S1 a_t = ;
315 S2 b_t = ;
316 S3 a_T = (TYPE) a_t;
317 S4 b_T = (TYPE) b_t;
318 S5 prod_T = a_T * b_T;
319
320 where type 'TYPE' is at least double the size of type 'type'.
321
322 Input:
323
324 * LAST_STMT: A stmt from which the pattern search begins. In the example,
325 when this function is called with S5, the pattern {S3,S4,S5} is be detected.
326
327 Output:
328
329 * TYPE_IN: The type of the input arguments to the pattern.
330
331 * TYPE_OUT: The type of the output of this pattern.
332
333 * Return value: A new stmt that will be used to replace the sequence of
334 stmts that constitute the pattern. In this case it will be:
335 WIDEN_MULT <a_t, b_t>
336 */
337
338 static tree
339 vect_recog_widen_mult_pattern (tree last_stmt,
340 tree *type_in,
341 tree *type_out)
342 {
343 tree expr;
344 tree def_stmt0, def_stmt1;
345 tree oprnd0, oprnd1;
346 tree type, half_type0, half_type1;
347 tree pattern_expr;
348 tree vectype;
349 tree dummy;
350 enum tree_code dummy_code;
351
352 if (TREE_CODE (last_stmt) != MODIFY_EXPR)
353 return NULL;
354
355 expr = TREE_OPERAND (last_stmt, 1);
356 type = TREE_TYPE (expr);
357
358 /* Starting from LAST_STMT, follow the defs of its uses in search
359 of the above pattern. */
360
361 if (TREE_CODE (expr) != MULT_EXPR)
362 return NULL;
363
364 oprnd0 = TREE_OPERAND (expr, 0);
365 oprnd1 = TREE_OPERAND (expr, 1);
366 if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0)) != TYPE_MAIN_VARIANT (type)
367 || TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1)) != TYPE_MAIN_VARIANT (type))
368 return NULL;
369
370 /* Check argument 0 */
371 if (!widened_name_p (oprnd0, last_stmt, &half_type0, &def_stmt0))
372 return NULL;
373 oprnd0 = TREE_OPERAND (TREE_OPERAND (def_stmt0, 1), 0);
374
375 /* Check argument 1 */
376 if (!widened_name_p (oprnd1, last_stmt, &half_type1, &def_stmt1))
377 return NULL;
378 oprnd1 = TREE_OPERAND (TREE_OPERAND (def_stmt1, 1), 0);
379
380 if (TYPE_MAIN_VARIANT (half_type0) != TYPE_MAIN_VARIANT (half_type1))
381 return NULL;
382
383 /* Pattern detected. */
384 if (vect_print_dump_info (REPORT_DETAILS))
385 fprintf (vect_dump, "vect_recog_widen_mult_pattern: detected: ");
386
387 /* Check target support */
388 vectype = get_vectype_for_scalar_type (half_type0);
389 if (!supportable_widening_operation (WIDEN_MULT_EXPR, last_stmt, vectype,
390 &dummy, &dummy, &dummy_code,
391 &dummy_code))
392 return NULL;
393
394 *type_in = vectype;
395 *type_out = NULL_TREE;
396
397 /* Pattern supported. Create a stmt to be used to replace the pattern: */
398 pattern_expr = build2 (WIDEN_MULT_EXPR, type, oprnd0, oprnd1);
399 if (vect_print_dump_info (REPORT_DETAILS))
400 print_generic_expr (vect_dump, pattern_expr, TDF_SLIM);
401 return pattern_expr;
402 }
403
404
405 /* Function vect_recog_pow_pattern
406
407 Try to find the following pattern:
408
409 x = POW (y, N);
410
411 with POW being one of pow, powf, powi, powif and N being
412 either 2 or 0.5.
413
414 Input:
415
416 * LAST_STMT: A stmt from which the pattern search begins.
417
418 Output:
419
420 * TYPE_IN: The type of the input arguments to the pattern.
421
422 * TYPE_OUT: The type of the output of this pattern.
423
424 * Return value: A new stmt that will be used to replace the sequence of
425 stmts that constitute the pattern. In this case it will be:
426 x * x
427 or
428 sqrt (x)
429 */
430
431 static tree
432 vect_recog_pow_pattern (tree last_stmt, tree *type_in, tree *type_out)
433 {
434 tree expr;
435 tree type;
436 tree fn, arglist, base, exp;
437
438 if (TREE_CODE (last_stmt) != MODIFY_EXPR)
439 return NULL;
440
441 expr = TREE_OPERAND (last_stmt, 1);
442 type = TREE_TYPE (expr);
443
444 if (TREE_CODE (expr) != CALL_EXPR)
445 return NULL_TREE;
446
447 fn = get_callee_fndecl (expr);
448 arglist = TREE_OPERAND (expr, 1);
449 switch (DECL_FUNCTION_CODE (fn))
450 {
451 case BUILT_IN_POWIF:
452 case BUILT_IN_POWI:
453 case BUILT_IN_POWF:
454 case BUILT_IN_POW:
455 base = TREE_VALUE (arglist);
456 exp = TREE_VALUE (TREE_CHAIN (arglist));
457 if (TREE_CODE (exp) != REAL_CST
458 && TREE_CODE (exp) != INTEGER_CST)
459 return NULL_TREE;
460 break;
461
462 default:;
463 return NULL_TREE;
464 }
465
466 /* We now have a pow or powi builtin function call with a constant
467 exponent. */
468
469 *type_in = get_vectype_for_scalar_type (TREE_TYPE (base));
470 *type_out = NULL_TREE;
471
472 /* Catch squaring. */
473 if ((host_integerp (exp, 0)
474 && tree_low_cst (exp, 0) == 2)
475 || (TREE_CODE (exp) == REAL_CST
476 && REAL_VALUES_EQUAL (TREE_REAL_CST (exp), dconst2)))
477 return build2 (MULT_EXPR, TREE_TYPE (base), base, base);
478
479 /* Catch square root. */
480 if (TREE_CODE (exp) == REAL_CST
481 && REAL_VALUES_EQUAL (TREE_REAL_CST (exp), dconsthalf))
482 {
483 tree newfn = mathfn_built_in (TREE_TYPE (base), BUILT_IN_SQRT);
484 tree newarglist = build_tree_list (NULL_TREE, base);
485 return build_function_call_expr (newfn, newarglist);
486 }
487
488 return NULL_TREE;
489 }
490
491
492 /* Function vect_recog_widen_sum_pattern
493
494 Try to find the following pattern:
495
496 type x_t;
497 TYPE x_T, sum = init;
498 loop:
499 sum_0 = phi <init, sum_1>
500 S1 x_t = *p;
501 S2 x_T = (TYPE) x_t;
502 S3 sum_1 = x_T + sum_0;
503
504 where type 'TYPE' is at least double the size of type 'type', i.e - we're
505 summing elements of type 'type' into an accumulator of type 'TYPE'. This is
506 a special case of a reduction computation.
507
508 Input:
509
510 * LAST_STMT: A stmt from which the pattern search begins. In the example,
511 when this function is called with S3, the pattern {S2,S3} will be detected.
512
513 Output:
514
515 * TYPE_IN: The type of the input arguments to the pattern.
516
517 * TYPE_OUT: The type of the output of this pattern.
518
519 * Return value: A new stmt that will be used to replace the sequence of
520 stmts that constitute the pattern. In this case it will be:
521 WIDEN_SUM <x_t, sum_0>
522 */
523
524 static tree
525 vect_recog_widen_sum_pattern (tree last_stmt, tree *type_in, tree *type_out)
526 {
527 tree stmt, expr;
528 tree oprnd0, oprnd1;
529 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
530 tree type, half_type;
531 tree pattern_expr;
532
533 if (TREE_CODE (last_stmt) != MODIFY_EXPR)
534 return NULL;
535
536 expr = TREE_OPERAND (last_stmt, 1);
537 type = TREE_TYPE (expr);
538
539 /* Look for the following pattern
540 DX = (TYPE) X;
541 sum_1 = DX + sum_0;
542 In which DX is at least double the size of X, and sum_1 has been
543 recognized as a reduction variable.
544 */
545
546 /* Starting from LAST_STMT, follow the defs of its uses in search
547 of the above pattern. */
548
549 if (TREE_CODE (expr) != PLUS_EXPR)
550 return NULL;
551
552 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def)
553 return NULL;
554
555 oprnd0 = TREE_OPERAND (expr, 0);
556 oprnd1 = TREE_OPERAND (expr, 1);
557 if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0)) != TYPE_MAIN_VARIANT (type)
558 || TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1)) != TYPE_MAIN_VARIANT (type))
559 return NULL;
560
561 /* So far so good. Since last_stmt was detected as a (summation) reduction,
562 we know that oprnd1 is the reduction variable (defined by a loop-header
563 phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
564 Left to check that oprnd0 is defined by a cast from type 'type' to type
565 'TYPE'. */
566
567 if (!widened_name_p (oprnd0, last_stmt, &half_type, &stmt))
568 return NULL;
569
570 oprnd0 = TREE_OPERAND (TREE_OPERAND (stmt, 1), 0);
571 *type_in = half_type;
572 *type_out = type;
573
574 /* Pattern detected. Create a stmt to be used to replace the pattern: */
575 pattern_expr = build2 (WIDEN_SUM_EXPR, type, oprnd0, oprnd1);
576 if (vect_print_dump_info (REPORT_DETAILS))
577 {
578 fprintf (vect_dump, "vect_recog_widen_sum_pattern: detected: ");
579 print_generic_expr (vect_dump, pattern_expr, TDF_SLIM);
580 }
581 return pattern_expr;
582 }
583
584
585 /* Function vect_pattern_recog_1
586
587 Input:
588 PATTERN_RECOG_FUNC: A pointer to a function that detects a certain
589 computation pattern.
590 STMT: A stmt from which the pattern search should start.
591
592 If PATTERN_RECOG_FUNC successfully detected the pattern, it creates an
593 expression that computes the same functionality and can be used to
594 replace the sequence of stmts that are involved in the pattern.
595
596 Output:
597 This function checks if the expression returned by PATTERN_RECOG_FUNC is
598 supported in vector form by the target. We use 'TYPE_IN' to obtain the
599 relevant vector type. If 'TYPE_IN' is already a vector type, then this
600 indicates that target support had already been checked by PATTERN_RECOG_FUNC.
601 If 'TYPE_OUT' is also returned by PATTERN_RECOG_FUNC, we check that it fits
602 to the available target pattern.
603
604 This function also does some bookkeeping, as explained in the documentation
605 for vect_recog_pattern. */
606
607 static void
608 vect_pattern_recog_1 (
609 tree (* vect_recog_func) (tree, tree *, tree *),
610 block_stmt_iterator si)
611 {
612 tree stmt = bsi_stmt (si);
613 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
614 stmt_vec_info pattern_stmt_info;
615 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
616 tree pattern_expr;
617 tree pattern_vectype;
618 tree type_in, type_out;
619 tree pattern_type;
620 enum tree_code code;
621 tree var, var_name;
622 stmt_ann_t ann;
623
624 pattern_expr = (* vect_recog_func) (stmt, &type_in, &type_out);
625 if (!pattern_expr)
626 return;
627
628 if (VECTOR_MODE_P (TYPE_MODE (type_in)))
629 {
630 /* No need to check target support (already checked by the pattern
631 recognition function). */
632 pattern_vectype = type_in;
633 }
634 else
635 {
636 enum tree_code vec_mode;
637 enum insn_code icode;
638 optab optab;
639
640 /* Check target support */
641 pattern_vectype = get_vectype_for_scalar_type (type_in);
642 optab = optab_for_tree_code (TREE_CODE (pattern_expr), pattern_vectype);
643 vec_mode = TYPE_MODE (pattern_vectype);
644 if (!optab
645 || (icode = optab->handlers[(int) vec_mode].insn_code) ==
646 CODE_FOR_nothing
647 || (type_out
648 && (insn_data[icode].operand[0].mode !=
649 TYPE_MODE (get_vectype_for_scalar_type (type_out)))))
650 return;
651 }
652
653 /* Found a vectorizable pattern. */
654 if (vect_print_dump_info (REPORT_DETAILS))
655 {
656 fprintf (vect_dump, "pattern recognized: ");
657 print_generic_expr (vect_dump, pattern_expr, TDF_SLIM);
658 }
659
660 /* Mark the stmts that are involved in the pattern,
661 create a new stmt to express the pattern and insert it. */
662 code = TREE_CODE (pattern_expr);
663 pattern_type = TREE_TYPE (pattern_expr);
664 var = create_tmp_var (pattern_type, "patt");
665 add_referenced_var (var);
666 var_name = make_ssa_name (var, NULL_TREE);
667 pattern_expr = build2 (MODIFY_EXPR, void_type_node, var_name, pattern_expr);
668 SSA_NAME_DEF_STMT (var_name) = pattern_expr;
669 bsi_insert_before (&si, pattern_expr, BSI_SAME_STMT);
670 ann = stmt_ann (pattern_expr);
671 set_stmt_info (ann, new_stmt_vec_info (pattern_expr, loop_vinfo));
672 pattern_stmt_info = vinfo_for_stmt (pattern_expr);
673
674 STMT_VINFO_RELATED_STMT (pattern_stmt_info) = stmt;
675 STMT_VINFO_DEF_TYPE (pattern_stmt_info) = STMT_VINFO_DEF_TYPE (stmt_info);
676 STMT_VINFO_VECTYPE (pattern_stmt_info) = pattern_vectype;
677 STMT_VINFO_IN_PATTERN_P (stmt_info) = true;
678 STMT_VINFO_RELATED_STMT (stmt_info) = pattern_expr;
679
680 return;
681 }
682
683
684 /* Function vect_pattern_recog
685
686 Input:
687 LOOP_VINFO - a struct_loop_info of a loop in which we want to look for
688 computation idioms.
689
690 Output - for each computation idiom that is detected we insert a new stmt
691 that provides the same functionality and that can be vectorized. We
692 also record some information in the struct_stmt_info of the relevant
693 stmts, as explained below:
694
695 At the entry to this function we have the following stmts, with the
696 following initial value in the STMT_VINFO fields:
697
698 stmt in_pattern_p related_stmt vec_stmt
699 S1: a_i = .... - - -
700 S2: a_2 = ..use(a_i).. - - -
701 S3: a_1 = ..use(a_2).. - - -
702 S4: a_0 = ..use(a_1).. - - -
703 S5: ... = ..use(a_0).. - - -
704
705 Say the sequence {S1,S2,S3,S4} was detected as a pattern that can be
706 represented by a single stmt. We then:
707 - create a new stmt S6 that will replace the pattern.
708 - insert the new stmt S6 before the last stmt in the pattern
709 - fill in the STMT_VINFO fields as follows:
710
711 in_pattern_p related_stmt vec_stmt
712 S1: a_i = .... - - -
713 S2: a_2 = ..use(a_i).. - - -
714 S3: a_1 = ..use(a_2).. - - -
715 > S6: a_new = .... - S4 -
716 S4: a_0 = ..use(a_1).. true S6 -
717 S5: ... = ..use(a_0).. - - -
718
719 (the last stmt in the pattern (S4) and the new pattern stmt (S6) point
720 to each other through the RELATED_STMT field).
721
722 S6 will be marked as relevant in vect_mark_stmts_to_be_vectorized instead
723 of S4 because it will replace all its uses. Stmts {S1,S2,S3} will
724 remain irrelevant unless used by stmts other than S4.
725
726 If vectorization succeeds, vect_transform_stmt will skip over {S1,S2,S3}
727 (because they are marked as irrelevant). It will vectorize S6, and record
728 a pointer to the new vector stmt VS6 both from S6 (as usual), and also
729 from S4. We do that so that when we get to vectorizing stmts that use the
730 def of S4 (like S5 that uses a_0), we'll know where to take the relevant
731 vector-def from. S4 will be skipped, and S5 will be vectorized as usual:
732
733 in_pattern_p related_stmt vec_stmt
734 S1: a_i = .... - - -
735 S2: a_2 = ..use(a_i).. - - -
736 S3: a_1 = ..use(a_2).. - - -
737 > VS6: va_new = .... - - -
738 S6: a_new = .... - S4 VS6
739 S4: a_0 = ..use(a_1).. true S6 VS6
740 > VS5: ... = ..vuse(va_new).. - - -
741 S5: ... = ..use(a_0).. - - -
742
743 DCE could then get rid of {S1,S2,S3,S4,S5,S6} (if their defs are not used
744 elsewhere), and we'll end up with:
745
746 VS6: va_new = ....
747 VS5: ... = ..vuse(va_new)..
748
749 If vectorization does not succeed, DCE will clean S6 away (its def is
750 not used), and we'll end up with the original sequence.
751 */
752
753 void
754 vect_pattern_recog (loop_vec_info loop_vinfo)
755 {
756 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
757 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
758 unsigned int nbbs = loop->num_nodes;
759 block_stmt_iterator si;
760 tree stmt;
761 unsigned int i, j;
762 tree (* vect_recog_func_ptr) (tree, tree *, tree *);
763
764 if (vect_print_dump_info (REPORT_DETAILS))
765 fprintf (vect_dump, "=== vect_pattern_recog ===");
766
767 /* Scan through the loop stmts, applying the pattern recognition
768 functions starting at each stmt visited: */
769 for (i = 0; i < nbbs; i++)
770 {
771 basic_block bb = bbs[i];
772 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
773 {
774 stmt = bsi_stmt (si);
775
776 /* Scan over all generic vect_recog_xxx_pattern functions. */
777 for (j = 0; j < NUM_PATTERNS; j++)
778 {
779 vect_recog_func_ptr = vect_vect_recog_func_ptrs[j];
780 vect_pattern_recog_1 (vect_recog_func_ptr, si);
781 }
782 }
783 }
784 }