omp-low.c (optimize_omp_library_calls): Use types_compatible_p instead of comparing...
[gcc.git] / gcc / tree-vect-patterns.c
1 /* Analysis Utilities for Loop Vectorization.
2 Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Dorit Nuzman <dorit@il.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "target.h"
28 #include "basic-block.h"
29 #include "diagnostic.h"
30 #include "tree-flow.h"
31 #include "tree-dump.h"
32 #include "cfgloop.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "params.h"
36 #include "tree-data-ref.h"
37 #include "tree-vectorizer.h"
38 #include "recog.h"
39 #include "toplev.h"
40
41 /* Function prototypes */
42 static void vect_pattern_recog_1
43 (gimple (* ) (gimple, tree *, tree *), gimple_stmt_iterator);
44 static bool widened_name_p (tree, gimple, tree *, gimple *);
45
46 /* Pattern recognition functions */
47 static gimple vect_recog_widen_sum_pattern (gimple, tree *, tree *);
48 static gimple vect_recog_widen_mult_pattern (gimple, tree *, tree *);
49 static gimple vect_recog_dot_prod_pattern (gimple, tree *, tree *);
50 static gimple vect_recog_pow_pattern (gimple, tree *, tree *);
51 static vect_recog_func_ptr vect_vect_recog_func_ptrs[NUM_PATTERNS] = {
52 vect_recog_widen_mult_pattern,
53 vect_recog_widen_sum_pattern,
54 vect_recog_dot_prod_pattern,
55 vect_recog_pow_pattern};
56
57
58 /* Function widened_name_p
59
60 Check whether NAME, an ssa-name used in USE_STMT,
61 is a result of a type-promotion, such that:
62 DEF_STMT: NAME = NOP (name0)
63 where the type of name0 (HALF_TYPE) is smaller than the type of NAME.
64 */
65
66 static bool
67 widened_name_p (tree name, gimple use_stmt, tree *half_type, gimple *def_stmt)
68 {
69 tree dummy;
70 gimple dummy_gimple;
71 loop_vec_info loop_vinfo;
72 stmt_vec_info stmt_vinfo;
73 tree type = TREE_TYPE (name);
74 tree oprnd0;
75 enum vect_def_type dt;
76 tree def;
77
78 stmt_vinfo = vinfo_for_stmt (use_stmt);
79 loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
80
81 if (!vect_is_simple_use (name, loop_vinfo, NULL, def_stmt, &def, &dt))
82 return false;
83
84 if (dt != vect_internal_def
85 && dt != vect_external_def && dt != vect_constant_def)
86 return false;
87
88 if (! *def_stmt)
89 return false;
90
91 if (!is_gimple_assign (*def_stmt))
92 return false;
93
94 if (gimple_assign_rhs_code (*def_stmt) != NOP_EXPR)
95 return false;
96
97 oprnd0 = gimple_assign_rhs1 (*def_stmt);
98
99 *half_type = TREE_TYPE (oprnd0);
100 if (!INTEGRAL_TYPE_P (type) || !INTEGRAL_TYPE_P (*half_type)
101 || (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (*half_type))
102 || (TYPE_PRECISION (type) < (TYPE_PRECISION (*half_type) * 2)))
103 return false;
104
105 if (!vect_is_simple_use (oprnd0, loop_vinfo, NULL, &dummy_gimple, &dummy,
106 &dt))
107 return false;
108
109 return true;
110 }
111
112 /* Helper to return a new temporary for pattern of TYPE for STMT. If STMT
113 is NULL, the caller must set SSA_NAME_DEF_STMT for the returned SSA var. */
114
115 static tree
116 vect_recog_temp_ssa_var (tree type, gimple stmt)
117 {
118 tree var = create_tmp_var (type, "patt");
119
120 add_referenced_var (var);
121 var = make_ssa_name (var, stmt);
122 return var;
123 }
124
125 /* Function vect_recog_dot_prod_pattern
126
127 Try to find the following pattern:
128
129 type x_t, y_t;
130 TYPE1 prod;
131 TYPE2 sum = init;
132 loop:
133 sum_0 = phi <init, sum_1>
134 S1 x_t = ...
135 S2 y_t = ...
136 S3 x_T = (TYPE1) x_t;
137 S4 y_T = (TYPE1) y_t;
138 S5 prod = x_T * y_T;
139 [S6 prod = (TYPE2) prod; #optional]
140 S7 sum_1 = prod + sum_0;
141
142 where 'TYPE1' is exactly double the size of type 'type', and 'TYPE2' is the
143 same size of 'TYPE1' or bigger. This is a special case of a reduction
144 computation.
145
146 Input:
147
148 * LAST_STMT: A stmt from which the pattern search begins. In the example,
149 when this function is called with S7, the pattern {S3,S4,S5,S6,S7} will be
150 detected.
151
152 Output:
153
154 * TYPE_IN: The type of the input arguments to the pattern.
155
156 * TYPE_OUT: The type of the output of this pattern.
157
158 * Return value: A new stmt that will be used to replace the sequence of
159 stmts that constitute the pattern. In this case it will be:
160 WIDEN_DOT_PRODUCT <x_t, y_t, sum_0>
161
162 Note: The dot-prod idiom is a widening reduction pattern that is
163 vectorized without preserving all the intermediate results. It
164 produces only N/2 (widened) results (by summing up pairs of
165 intermediate results) rather than all N results. Therefore, we
166 cannot allow this pattern when we want to get all the results and in
167 the correct order (as is the case when this computation is in an
168 inner-loop nested in an outer-loop that us being vectorized). */
169
170 static gimple
171 vect_recog_dot_prod_pattern (gimple last_stmt, tree *type_in, tree *type_out)
172 {
173 gimple stmt;
174 tree oprnd0, oprnd1;
175 tree oprnd00, oprnd01;
176 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
177 tree type, half_type;
178 gimple pattern_stmt;
179 tree prod_type;
180 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
181 struct loop *loop = LOOP_VINFO_LOOP (loop_info);
182 tree var, rhs;
183
184 if (!is_gimple_assign (last_stmt))
185 return NULL;
186
187 type = gimple_expr_type (last_stmt);
188
189 /* Look for the following pattern
190 DX = (TYPE1) X;
191 DY = (TYPE1) Y;
192 DPROD = DX * DY;
193 DDPROD = (TYPE2) DPROD;
194 sum_1 = DDPROD + sum_0;
195 In which
196 - DX is double the size of X
197 - DY is double the size of Y
198 - DX, DY, DPROD all have the same type
199 - sum is the same size of DPROD or bigger
200 - sum has been recognized as a reduction variable.
201
202 This is equivalent to:
203 DPROD = X w* Y; #widen mult
204 sum_1 = DPROD w+ sum_0; #widen summation
205 or
206 DPROD = X w* Y; #widen mult
207 sum_1 = DPROD + sum_0; #summation
208 */
209
210 /* Starting from LAST_STMT, follow the defs of its uses in search
211 of the above pattern. */
212
213 if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
214 return NULL;
215
216 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
217 {
218 /* Has been detected as widening-summation? */
219
220 stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
221 type = gimple_expr_type (stmt);
222 if (gimple_assign_rhs_code (stmt) != WIDEN_SUM_EXPR)
223 return NULL;
224 oprnd0 = gimple_assign_rhs1 (stmt);
225 oprnd1 = gimple_assign_rhs2 (stmt);
226 half_type = TREE_TYPE (oprnd0);
227 }
228 else
229 {
230 gimple def_stmt;
231
232 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def)
233 return NULL;
234 oprnd0 = gimple_assign_rhs1 (last_stmt);
235 oprnd1 = gimple_assign_rhs2 (last_stmt);
236 if (!types_compatible_p (TREE_TYPE (oprnd0), type)
237 || !types_compatible_p (TREE_TYPE (oprnd1), type))
238 return NULL;
239 stmt = last_stmt;
240
241 if (widened_name_p (oprnd0, stmt, &half_type, &def_stmt))
242 {
243 stmt = def_stmt;
244 oprnd0 = gimple_assign_rhs1 (stmt);
245 }
246 else
247 half_type = type;
248 }
249
250 /* So far so good. Since last_stmt was detected as a (summation) reduction,
251 we know that oprnd1 is the reduction variable (defined by a loop-header
252 phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
253 Left to check that oprnd0 is defined by a (widen_)mult_expr */
254
255 prod_type = half_type;
256 stmt = SSA_NAME_DEF_STMT (oprnd0);
257 /* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
258 inside the loop (in case we are analyzing an outer-loop). */
259 if (!is_gimple_assign (stmt))
260 return NULL;
261 stmt_vinfo = vinfo_for_stmt (stmt);
262 gcc_assert (stmt_vinfo);
263 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_internal_def)
264 return NULL;
265 if (gimple_assign_rhs_code (stmt) != MULT_EXPR)
266 return NULL;
267 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
268 {
269 /* Has been detected as a widening multiplication? */
270
271 stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
272 if (gimple_assign_rhs_code (stmt) != WIDEN_MULT_EXPR)
273 return NULL;
274 stmt_vinfo = vinfo_for_stmt (stmt);
275 gcc_assert (stmt_vinfo);
276 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_internal_def);
277 oprnd00 = gimple_assign_rhs1 (stmt);
278 oprnd01 = gimple_assign_rhs2 (stmt);
279 }
280 else
281 {
282 tree half_type0, half_type1;
283 gimple def_stmt;
284 tree oprnd0, oprnd1;
285
286 oprnd0 = gimple_assign_rhs1 (stmt);
287 oprnd1 = gimple_assign_rhs2 (stmt);
288 if (!types_compatible_p (TREE_TYPE (oprnd0), prod_type)
289 || !types_compatible_p (TREE_TYPE (oprnd1), prod_type))
290 return NULL;
291 if (!widened_name_p (oprnd0, stmt, &half_type0, &def_stmt))
292 return NULL;
293 oprnd00 = gimple_assign_rhs1 (def_stmt);
294 if (!widened_name_p (oprnd1, stmt, &half_type1, &def_stmt))
295 return NULL;
296 oprnd01 = gimple_assign_rhs1 (def_stmt);
297 if (!types_compatible_p (half_type0, half_type1))
298 return NULL;
299 if (TYPE_PRECISION (prod_type) != TYPE_PRECISION (half_type0) * 2)
300 return NULL;
301 }
302
303 half_type = TREE_TYPE (oprnd00);
304 *type_in = half_type;
305 *type_out = type;
306
307 /* Pattern detected. Create a stmt to be used to replace the pattern: */
308 var = vect_recog_temp_ssa_var (type, NULL);
309 rhs = build3 (DOT_PROD_EXPR, type, oprnd00, oprnd01, oprnd1),
310 pattern_stmt = gimple_build_assign (var, rhs);
311
312 if (vect_print_dump_info (REPORT_DETAILS))
313 {
314 fprintf (vect_dump, "vect_recog_dot_prod_pattern: detected: ");
315 print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
316 }
317
318 /* We don't allow changing the order of the computation in the inner-loop
319 when doing outer-loop vectorization. */
320 gcc_assert (!nested_in_vect_loop_p (loop, last_stmt));
321
322 return pattern_stmt;
323 }
324
325 /* Function vect_recog_widen_mult_pattern
326
327 Try to find the following pattern:
328
329 type a_t, b_t;
330 TYPE a_T, b_T, prod_T;
331
332 S1 a_t = ;
333 S2 b_t = ;
334 S3 a_T = (TYPE) a_t;
335 S4 b_T = (TYPE) b_t;
336 S5 prod_T = a_T * b_T;
337
338 where type 'TYPE' is at least double the size of type 'type'.
339
340 Input:
341
342 * LAST_STMT: A stmt from which the pattern search begins. In the example,
343 when this function is called with S5, the pattern {S3,S4,S5} is be detected.
344
345 Output:
346
347 * TYPE_IN: The type of the input arguments to the pattern.
348
349 * TYPE_OUT: The type of the output of this pattern.
350
351 * Return value: A new stmt that will be used to replace the sequence of
352 stmts that constitute the pattern. In this case it will be:
353 WIDEN_MULT <a_t, b_t>
354 */
355
356 static gimple
357 vect_recog_widen_mult_pattern (gimple last_stmt,
358 tree *type_in,
359 tree *type_out)
360 {
361 gimple def_stmt0, def_stmt1;
362 tree oprnd0, oprnd1;
363 tree type, half_type0, half_type1;
364 gimple pattern_stmt;
365 tree vectype;
366 tree dummy;
367 tree var;
368 enum tree_code dummy_code;
369 int dummy_int;
370 VEC (tree, heap) *dummy_vec;
371
372 if (!is_gimple_assign (last_stmt))
373 return NULL;
374
375 type = gimple_expr_type (last_stmt);
376
377 /* Starting from LAST_STMT, follow the defs of its uses in search
378 of the above pattern. */
379
380 if (gimple_assign_rhs_code (last_stmt) != MULT_EXPR)
381 return NULL;
382
383 oprnd0 = gimple_assign_rhs1 (last_stmt);
384 oprnd1 = gimple_assign_rhs2 (last_stmt);
385 if (!types_compatible_p (TREE_TYPE (oprnd0), type)
386 || !types_compatible_p (TREE_TYPE (oprnd1), type))
387 return NULL;
388
389 /* Check argument 0 */
390 if (!widened_name_p (oprnd0, last_stmt, &half_type0, &def_stmt0))
391 return NULL;
392 oprnd0 = gimple_assign_rhs1 (def_stmt0);
393
394 /* Check argument 1 */
395 if (!widened_name_p (oprnd1, last_stmt, &half_type1, &def_stmt1))
396 return NULL;
397 oprnd1 = gimple_assign_rhs1 (def_stmt1);
398
399 if (!types_compatible_p (half_type0, half_type1))
400 return NULL;
401
402 /* Pattern detected. */
403 if (vect_print_dump_info (REPORT_DETAILS))
404 fprintf (vect_dump, "vect_recog_widen_mult_pattern: detected: ");
405
406 /* Check target support */
407 vectype = get_vectype_for_scalar_type (half_type0);
408 if (!vectype
409 || !supportable_widening_operation (WIDEN_MULT_EXPR, last_stmt, vectype,
410 &dummy, &dummy, &dummy_code,
411 &dummy_code, &dummy_int, &dummy_vec))
412 return NULL;
413
414 *type_in = vectype;
415 *type_out = NULL_TREE;
416
417 /* Pattern supported. Create a stmt to be used to replace the pattern: */
418 var = vect_recog_temp_ssa_var (type, NULL);
419 pattern_stmt = gimple_build_assign_with_ops (WIDEN_MULT_EXPR, var, oprnd0,
420 oprnd1);
421 SSA_NAME_DEF_STMT (var) = pattern_stmt;
422
423 if (vect_print_dump_info (REPORT_DETAILS))
424 print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
425
426 return pattern_stmt;
427 }
428
429
430 /* Function vect_recog_pow_pattern
431
432 Try to find the following pattern:
433
434 x = POW (y, N);
435
436 with POW being one of pow, powf, powi, powif and N being
437 either 2 or 0.5.
438
439 Input:
440
441 * LAST_STMT: A stmt from which the pattern search begins.
442
443 Output:
444
445 * TYPE_IN: The type of the input arguments to the pattern.
446
447 * TYPE_OUT: The type of the output of this pattern.
448
449 * Return value: A new stmt that will be used to replace the sequence of
450 stmts that constitute the pattern. In this case it will be:
451 x = x * x
452 or
453 x = sqrt (x)
454 */
455
456 static gimple
457 vect_recog_pow_pattern (gimple last_stmt, tree *type_in, tree *type_out)
458 {
459 tree type;
460 tree fn, base, exp = NULL;
461 gimple stmt;
462 tree var;
463
464 if (!is_gimple_call (last_stmt) || gimple_call_lhs (last_stmt) == NULL)
465 return NULL;
466
467 type = gimple_expr_type (last_stmt);
468
469 fn = gimple_call_fndecl (last_stmt);
470 switch (DECL_FUNCTION_CODE (fn))
471 {
472 case BUILT_IN_POWIF:
473 case BUILT_IN_POWI:
474 case BUILT_IN_POWF:
475 case BUILT_IN_POW:
476 base = gimple_call_arg (last_stmt, 0);
477 exp = gimple_call_arg (last_stmt, 1);
478 if (TREE_CODE (exp) != REAL_CST
479 && TREE_CODE (exp) != INTEGER_CST)
480 return NULL;
481 break;
482
483 default:
484 return NULL;
485 }
486
487 /* We now have a pow or powi builtin function call with a constant
488 exponent. */
489
490 *type_out = NULL_TREE;
491
492 /* Catch squaring. */
493 if ((host_integerp (exp, 0)
494 && tree_low_cst (exp, 0) == 2)
495 || (TREE_CODE (exp) == REAL_CST
496 && REAL_VALUES_EQUAL (TREE_REAL_CST (exp), dconst2)))
497 {
498 *type_in = TREE_TYPE (base);
499
500 var = vect_recog_temp_ssa_var (TREE_TYPE (base), NULL);
501 stmt = gimple_build_assign_with_ops (MULT_EXPR, var, base, base);
502 SSA_NAME_DEF_STMT (var) = stmt;
503 return stmt;
504 }
505
506 /* Catch square root. */
507 if (TREE_CODE (exp) == REAL_CST
508 && REAL_VALUES_EQUAL (TREE_REAL_CST (exp), dconsthalf))
509 {
510 tree newfn = mathfn_built_in (TREE_TYPE (base), BUILT_IN_SQRT);
511 *type_in = get_vectype_for_scalar_type (TREE_TYPE (base));
512 if (*type_in)
513 {
514 gimple stmt = gimple_build_call (newfn, 1, base);
515 if (vectorizable_function (stmt, *type_in, *type_in)
516 != NULL_TREE)
517 {
518 var = vect_recog_temp_ssa_var (TREE_TYPE (base), stmt);
519 gimple_call_set_lhs (stmt, var);
520 return stmt;
521 }
522 }
523 }
524
525 return NULL;
526 }
527
528
529 /* Function vect_recog_widen_sum_pattern
530
531 Try to find the following pattern:
532
533 type x_t;
534 TYPE x_T, sum = init;
535 loop:
536 sum_0 = phi <init, sum_1>
537 S1 x_t = *p;
538 S2 x_T = (TYPE) x_t;
539 S3 sum_1 = x_T + sum_0;
540
541 where type 'TYPE' is at least double the size of type 'type', i.e - we're
542 summing elements of type 'type' into an accumulator of type 'TYPE'. This is
543 a special case of a reduction computation.
544
545 Input:
546
547 * LAST_STMT: A stmt from which the pattern search begins. In the example,
548 when this function is called with S3, the pattern {S2,S3} will be detected.
549
550 Output:
551
552 * TYPE_IN: The type of the input arguments to the pattern.
553
554 * TYPE_OUT: The type of the output of this pattern.
555
556 * Return value: A new stmt that will be used to replace the sequence of
557 stmts that constitute the pattern. In this case it will be:
558 WIDEN_SUM <x_t, sum_0>
559
560 Note: The widening-sum idiom is a widening reduction pattern that is
561 vectorized without preserving all the intermediate results. It
562 produces only N/2 (widened) results (by summing up pairs of
563 intermediate results) rather than all N results. Therefore, we
564 cannot allow this pattern when we want to get all the results and in
565 the correct order (as is the case when this computation is in an
566 inner-loop nested in an outer-loop that us being vectorized). */
567
568 static gimple
569 vect_recog_widen_sum_pattern (gimple last_stmt, tree *type_in, tree *type_out)
570 {
571 gimple stmt;
572 tree oprnd0, oprnd1;
573 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
574 tree type, half_type;
575 gimple pattern_stmt;
576 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
577 struct loop *loop = LOOP_VINFO_LOOP (loop_info);
578 tree var;
579
580 if (!is_gimple_assign (last_stmt))
581 return NULL;
582
583 type = gimple_expr_type (last_stmt);
584
585 /* Look for the following pattern
586 DX = (TYPE) X;
587 sum_1 = DX + sum_0;
588 In which DX is at least double the size of X, and sum_1 has been
589 recognized as a reduction variable.
590 */
591
592 /* Starting from LAST_STMT, follow the defs of its uses in search
593 of the above pattern. */
594
595 if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
596 return NULL;
597
598 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def)
599 return NULL;
600
601 oprnd0 = gimple_assign_rhs1 (last_stmt);
602 oprnd1 = gimple_assign_rhs2 (last_stmt);
603 if (!types_compatible_p (TREE_TYPE (oprnd0), type)
604 || !types_compatible_p (TREE_TYPE (oprnd1), type))
605 return NULL;
606
607 /* So far so good. Since last_stmt was detected as a (summation) reduction,
608 we know that oprnd1 is the reduction variable (defined by a loop-header
609 phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
610 Left to check that oprnd0 is defined by a cast from type 'type' to type
611 'TYPE'. */
612
613 if (!widened_name_p (oprnd0, last_stmt, &half_type, &stmt))
614 return NULL;
615
616 oprnd0 = gimple_assign_rhs1 (stmt);
617 *type_in = half_type;
618 *type_out = type;
619
620 /* Pattern detected. Create a stmt to be used to replace the pattern: */
621 var = vect_recog_temp_ssa_var (type, NULL);
622 pattern_stmt = gimple_build_assign_with_ops (WIDEN_SUM_EXPR, var,
623 oprnd0, oprnd1);
624 SSA_NAME_DEF_STMT (var) = pattern_stmt;
625
626 if (vect_print_dump_info (REPORT_DETAILS))
627 {
628 fprintf (vect_dump, "vect_recog_widen_sum_pattern: detected: ");
629 print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
630 }
631
632 /* We don't allow changing the order of the computation in the inner-loop
633 when doing outer-loop vectorization. */
634 gcc_assert (!nested_in_vect_loop_p (loop, last_stmt));
635
636 return pattern_stmt;
637 }
638
639
640 /* Function vect_pattern_recog_1
641
642 Input:
643 PATTERN_RECOG_FUNC: A pointer to a function that detects a certain
644 computation pattern.
645 STMT: A stmt from which the pattern search should start.
646
647 If PATTERN_RECOG_FUNC successfully detected the pattern, it creates an
648 expression that computes the same functionality and can be used to
649 replace the sequence of stmts that are involved in the pattern.
650
651 Output:
652 This function checks if the expression returned by PATTERN_RECOG_FUNC is
653 supported in vector form by the target. We use 'TYPE_IN' to obtain the
654 relevant vector type. If 'TYPE_IN' is already a vector type, then this
655 indicates that target support had already been checked by PATTERN_RECOG_FUNC.
656 If 'TYPE_OUT' is also returned by PATTERN_RECOG_FUNC, we check that it fits
657 to the available target pattern.
658
659 This function also does some bookkeeping, as explained in the documentation
660 for vect_recog_pattern. */
661
662 static void
663 vect_pattern_recog_1 (
664 gimple (* vect_recog_func) (gimple, tree *, tree *),
665 gimple_stmt_iterator si)
666 {
667 gimple stmt = gsi_stmt (si), pattern_stmt;
668 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
669 stmt_vec_info pattern_stmt_info;
670 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
671 tree pattern_vectype;
672 tree type_in, type_out;
673 enum tree_code code;
674
675 pattern_stmt = (* vect_recog_func) (stmt, &type_in, &type_out);
676 if (!pattern_stmt)
677 return;
678
679 if (VECTOR_MODE_P (TYPE_MODE (type_in)))
680 {
681 /* No need to check target support (already checked by the pattern
682 recognition function). */
683 pattern_vectype = type_in;
684 }
685 else
686 {
687 enum machine_mode vec_mode;
688 enum insn_code icode;
689 optab optab;
690
691 /* Check target support */
692 pattern_vectype = get_vectype_for_scalar_type (type_in);
693 if (!pattern_vectype)
694 return;
695
696 if (is_gimple_assign (pattern_stmt))
697 code = gimple_assign_rhs_code (pattern_stmt);
698 else
699 {
700 gcc_assert (is_gimple_call (pattern_stmt));
701 code = CALL_EXPR;
702 }
703
704 optab = optab_for_tree_code (code, pattern_vectype, optab_default);
705 vec_mode = TYPE_MODE (pattern_vectype);
706 if (!optab
707 || (icode = optab_handler (optab, vec_mode)->insn_code) ==
708 CODE_FOR_nothing
709 || (type_out
710 && (!get_vectype_for_scalar_type (type_out)
711 || (insn_data[icode].operand[0].mode !=
712 TYPE_MODE (get_vectype_for_scalar_type (type_out))))))
713 return;
714 }
715
716 /* Found a vectorizable pattern. */
717 if (vect_print_dump_info (REPORT_DETAILS))
718 {
719 fprintf (vect_dump, "pattern recognized: ");
720 print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
721 }
722
723 /* Mark the stmts that are involved in the pattern. */
724 gsi_insert_before (&si, pattern_stmt, GSI_SAME_STMT);
725 set_vinfo_for_stmt (pattern_stmt,
726 new_stmt_vec_info (pattern_stmt, loop_vinfo, NULL));
727 pattern_stmt_info = vinfo_for_stmt (pattern_stmt);
728
729 STMT_VINFO_RELATED_STMT (pattern_stmt_info) = stmt;
730 STMT_VINFO_DEF_TYPE (pattern_stmt_info) = STMT_VINFO_DEF_TYPE (stmt_info);
731 STMT_VINFO_VECTYPE (pattern_stmt_info) = pattern_vectype;
732 STMT_VINFO_IN_PATTERN_P (stmt_info) = true;
733 STMT_VINFO_RELATED_STMT (stmt_info) = pattern_stmt;
734
735 return;
736 }
737
738
739 /* Function vect_pattern_recog
740
741 Input:
742 LOOP_VINFO - a struct_loop_info of a loop in which we want to look for
743 computation idioms.
744
745 Output - for each computation idiom that is detected we insert a new stmt
746 that provides the same functionality and that can be vectorized. We
747 also record some information in the struct_stmt_info of the relevant
748 stmts, as explained below:
749
750 At the entry to this function we have the following stmts, with the
751 following initial value in the STMT_VINFO fields:
752
753 stmt in_pattern_p related_stmt vec_stmt
754 S1: a_i = .... - - -
755 S2: a_2 = ..use(a_i).. - - -
756 S3: a_1 = ..use(a_2).. - - -
757 S4: a_0 = ..use(a_1).. - - -
758 S5: ... = ..use(a_0).. - - -
759
760 Say the sequence {S1,S2,S3,S4} was detected as a pattern that can be
761 represented by a single stmt. We then:
762 - create a new stmt S6 that will replace the pattern.
763 - insert the new stmt S6 before the last stmt in the pattern
764 - fill in the STMT_VINFO fields as follows:
765
766 in_pattern_p related_stmt vec_stmt
767 S1: a_i = .... - - -
768 S2: a_2 = ..use(a_i).. - - -
769 S3: a_1 = ..use(a_2).. - - -
770 > S6: a_new = .... - S4 -
771 S4: a_0 = ..use(a_1).. true S6 -
772 S5: ... = ..use(a_0).. - - -
773
774 (the last stmt in the pattern (S4) and the new pattern stmt (S6) point
775 to each other through the RELATED_STMT field).
776
777 S6 will be marked as relevant in vect_mark_stmts_to_be_vectorized instead
778 of S4 because it will replace all its uses. Stmts {S1,S2,S3} will
779 remain irrelevant unless used by stmts other than S4.
780
781 If vectorization succeeds, vect_transform_stmt will skip over {S1,S2,S3}
782 (because they are marked as irrelevant). It will vectorize S6, and record
783 a pointer to the new vector stmt VS6 both from S6 (as usual), and also
784 from S4. We do that so that when we get to vectorizing stmts that use the
785 def of S4 (like S5 that uses a_0), we'll know where to take the relevant
786 vector-def from. S4 will be skipped, and S5 will be vectorized as usual:
787
788 in_pattern_p related_stmt vec_stmt
789 S1: a_i = .... - - -
790 S2: a_2 = ..use(a_i).. - - -
791 S3: a_1 = ..use(a_2).. - - -
792 > VS6: va_new = .... - - -
793 S6: a_new = .... - S4 VS6
794 S4: a_0 = ..use(a_1).. true S6 VS6
795 > VS5: ... = ..vuse(va_new).. - - -
796 S5: ... = ..use(a_0).. - - -
797
798 DCE could then get rid of {S1,S2,S3,S4,S5,S6} (if their defs are not used
799 elsewhere), and we'll end up with:
800
801 VS6: va_new = ....
802 VS5: ... = ..vuse(va_new)..
803
804 If vectorization does not succeed, DCE will clean S6 away (its def is
805 not used), and we'll end up with the original sequence.
806 */
807
808 void
809 vect_pattern_recog (loop_vec_info loop_vinfo)
810 {
811 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
812 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
813 unsigned int nbbs = loop->num_nodes;
814 gimple_stmt_iterator si;
815 gimple stmt;
816 unsigned int i, j;
817 gimple (* vect_recog_func_ptr) (gimple, tree *, tree *);
818
819 if (vect_print_dump_info (REPORT_DETAILS))
820 fprintf (vect_dump, "=== vect_pattern_recog ===");
821
822 /* Scan through the loop stmts, applying the pattern recognition
823 functions starting at each stmt visited: */
824 for (i = 0; i < nbbs; i++)
825 {
826 basic_block bb = bbs[i];
827 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
828 {
829 stmt = gsi_stmt (si);
830
831 /* Scan over all generic vect_recog_xxx_pattern functions. */
832 for (j = 0; j < NUM_PATTERNS; j++)
833 {
834 vect_recog_func_ptr = vect_vect_recog_func_ptrs[j];
835 vect_pattern_recog_1 (vect_recog_func_ptr, si);
836 }
837 }
838 }
839 }