passes.texi (Tree-SSA passes): Document SLP pass.
[gcc.git] / gcc / tree-vect-patterns.c
1 /* Analysis Utilities for Loop Vectorization.
2 Copyright (C) 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Dorit Nuzman <dorit@il.ibm.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 3, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "target.h"
28 #include "basic-block.h"
29 #include "diagnostic.h"
30 #include "tree-flow.h"
31 #include "tree-dump.h"
32 #include "cfgloop.h"
33 #include "expr.h"
34 #include "optabs.h"
35 #include "params.h"
36 #include "tree-data-ref.h"
37 #include "tree-vectorizer.h"
38 #include "recog.h"
39 #include "toplev.h"
40
41 /* Function prototypes */
42 static void vect_pattern_recog_1
43 (gimple (* ) (gimple, tree *, tree *), gimple_stmt_iterator);
44 static bool widened_name_p (tree, gimple, tree *, gimple *);
45
46 /* Pattern recognition functions */
47 static gimple vect_recog_widen_sum_pattern (gimple, tree *, tree *);
48 static gimple vect_recog_widen_mult_pattern (gimple, tree *, tree *);
49 static gimple vect_recog_dot_prod_pattern (gimple, tree *, tree *);
50 static gimple vect_recog_pow_pattern (gimple, tree *, tree *);
51 static vect_recog_func_ptr vect_vect_recog_func_ptrs[NUM_PATTERNS] = {
52 vect_recog_widen_mult_pattern,
53 vect_recog_widen_sum_pattern,
54 vect_recog_dot_prod_pattern,
55 vect_recog_pow_pattern};
56
57
58 /* Function widened_name_p
59
60 Check whether NAME, an ssa-name used in USE_STMT,
61 is a result of a type-promotion, such that:
62 DEF_STMT: NAME = NOP (name0)
63 where the type of name0 (HALF_TYPE) is smaller than the type of NAME.
64 */
65
66 static bool
67 widened_name_p (tree name, gimple use_stmt, tree *half_type, gimple *def_stmt)
68 {
69 tree dummy;
70 gimple dummy_gimple;
71 loop_vec_info loop_vinfo;
72 stmt_vec_info stmt_vinfo;
73 tree type = TREE_TYPE (name);
74 tree oprnd0;
75 enum vect_def_type dt;
76 tree def;
77
78 stmt_vinfo = vinfo_for_stmt (use_stmt);
79 loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
80
81 if (!vect_is_simple_use (name, loop_vinfo, NULL, def_stmt, &def, &dt))
82 return false;
83
84 if (dt != vect_internal_def
85 && dt != vect_external_def && dt != vect_constant_def)
86 return false;
87
88 if (! *def_stmt)
89 return false;
90
91 if (!is_gimple_assign (*def_stmt))
92 return false;
93
94 if (gimple_assign_rhs_code (*def_stmt) != NOP_EXPR)
95 return false;
96
97 oprnd0 = gimple_assign_rhs1 (*def_stmt);
98
99 *half_type = TREE_TYPE (oprnd0);
100 if (!INTEGRAL_TYPE_P (type) || !INTEGRAL_TYPE_P (*half_type)
101 || (TYPE_UNSIGNED (type) != TYPE_UNSIGNED (*half_type))
102 || (TYPE_PRECISION (type) < (TYPE_PRECISION (*half_type) * 2)))
103 return false;
104
105 if (!vect_is_simple_use (oprnd0, loop_vinfo, NULL, &dummy_gimple, &dummy,
106 &dt))
107 return false;
108
109 return true;
110 }
111
112 /* Helper to return a new temporary for pattern of TYPE for STMT. If STMT
113 is NULL, the caller must set SSA_NAME_DEF_STMT for the returned SSA var. */
114
115 static tree
116 vect_recog_temp_ssa_var (tree type, gimple stmt)
117 {
118 tree var = create_tmp_var (type, "patt");
119
120 add_referenced_var (var);
121 var = make_ssa_name (var, stmt);
122 return var;
123 }
124
125 /* Function vect_recog_dot_prod_pattern
126
127 Try to find the following pattern:
128
129 type x_t, y_t;
130 TYPE1 prod;
131 TYPE2 sum = init;
132 loop:
133 sum_0 = phi <init, sum_1>
134 S1 x_t = ...
135 S2 y_t = ...
136 S3 x_T = (TYPE1) x_t;
137 S4 y_T = (TYPE1) y_t;
138 S5 prod = x_T * y_T;
139 [S6 prod = (TYPE2) prod; #optional]
140 S7 sum_1 = prod + sum_0;
141
142 where 'TYPE1' is exactly double the size of type 'type', and 'TYPE2' is the
143 same size of 'TYPE1' or bigger. This is a special case of a reduction
144 computation.
145
146 Input:
147
148 * LAST_STMT: A stmt from which the pattern search begins. In the example,
149 when this function is called with S7, the pattern {S3,S4,S5,S6,S7} will be
150 detected.
151
152 Output:
153
154 * TYPE_IN: The type of the input arguments to the pattern.
155
156 * TYPE_OUT: The type of the output of this pattern.
157
158 * Return value: A new stmt that will be used to replace the sequence of
159 stmts that constitute the pattern. In this case it will be:
160 WIDEN_DOT_PRODUCT <x_t, y_t, sum_0>
161
162 Note: The dot-prod idiom is a widening reduction pattern that is
163 vectorized without preserving all the intermediate results. It
164 produces only N/2 (widened) results (by summing up pairs of
165 intermediate results) rather than all N results. Therefore, we
166 cannot allow this pattern when we want to get all the results and in
167 the correct order (as is the case when this computation is in an
168 inner-loop nested in an outer-loop that us being vectorized). */
169
170 static gimple
171 vect_recog_dot_prod_pattern (gimple last_stmt, tree *type_in, tree *type_out)
172 {
173 gimple stmt;
174 tree oprnd0, oprnd1;
175 tree oprnd00, oprnd01;
176 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
177 tree type, half_type;
178 gimple pattern_stmt;
179 tree prod_type;
180 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
181 struct loop *loop = LOOP_VINFO_LOOP (loop_info);
182 tree var, rhs;
183
184 if (!is_gimple_assign (last_stmt))
185 return NULL;
186
187 type = gimple_expr_type (last_stmt);
188
189 /* Look for the following pattern
190 DX = (TYPE1) X;
191 DY = (TYPE1) Y;
192 DPROD = DX * DY;
193 DDPROD = (TYPE2) DPROD;
194 sum_1 = DDPROD + sum_0;
195 In which
196 - DX is double the size of X
197 - DY is double the size of Y
198 - DX, DY, DPROD all have the same type
199 - sum is the same size of DPROD or bigger
200 - sum has been recognized as a reduction variable.
201
202 This is equivalent to:
203 DPROD = X w* Y; #widen mult
204 sum_1 = DPROD w+ sum_0; #widen summation
205 or
206 DPROD = X w* Y; #widen mult
207 sum_1 = DPROD + sum_0; #summation
208 */
209
210 /* Starting from LAST_STMT, follow the defs of its uses in search
211 of the above pattern. */
212
213 if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
214 return NULL;
215
216 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
217 {
218 /* Has been detected as widening-summation? */
219
220 stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
221 type = gimple_expr_type (stmt);
222 if (gimple_assign_rhs_code (stmt) != WIDEN_SUM_EXPR)
223 return NULL;
224 oprnd0 = gimple_assign_rhs1 (stmt);
225 oprnd1 = gimple_assign_rhs2 (stmt);
226 half_type = TREE_TYPE (oprnd0);
227 }
228 else
229 {
230 gimple def_stmt;
231
232 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def)
233 return NULL;
234 oprnd0 = gimple_assign_rhs1 (last_stmt);
235 oprnd1 = gimple_assign_rhs2 (last_stmt);
236 if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0)) != TYPE_MAIN_VARIANT (type)
237 || TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1)) != TYPE_MAIN_VARIANT (type))
238 return NULL;
239 stmt = last_stmt;
240
241 if (widened_name_p (oprnd0, stmt, &half_type, &def_stmt))
242 {
243 stmt = def_stmt;
244 oprnd0 = gimple_assign_rhs1 (stmt);
245 }
246 else
247 half_type = type;
248 }
249
250 /* So far so good. Since last_stmt was detected as a (summation) reduction,
251 we know that oprnd1 is the reduction variable (defined by a loop-header
252 phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
253 Left to check that oprnd0 is defined by a (widen_)mult_expr */
254
255 prod_type = half_type;
256 stmt = SSA_NAME_DEF_STMT (oprnd0);
257 /* FORNOW. Can continue analyzing the def-use chain when this stmt in a phi
258 inside the loop (in case we are analyzing an outer-loop). */
259 if (!is_gimple_assign (stmt))
260 return NULL;
261 stmt_vinfo = vinfo_for_stmt (stmt);
262 gcc_assert (stmt_vinfo);
263 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_internal_def)
264 return NULL;
265 if (gimple_assign_rhs_code (stmt) != MULT_EXPR)
266 return NULL;
267 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
268 {
269 /* Has been detected as a widening multiplication? */
270
271 stmt = STMT_VINFO_RELATED_STMT (stmt_vinfo);
272 if (gimple_assign_rhs_code (stmt) != WIDEN_MULT_EXPR)
273 return NULL;
274 stmt_vinfo = vinfo_for_stmt (stmt);
275 gcc_assert (stmt_vinfo);
276 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_internal_def);
277 oprnd00 = gimple_assign_rhs1 (stmt);
278 oprnd01 = gimple_assign_rhs2 (stmt);
279 }
280 else
281 {
282 tree half_type0, half_type1;
283 gimple def_stmt;
284 tree oprnd0, oprnd1;
285
286 oprnd0 = gimple_assign_rhs1 (stmt);
287 oprnd1 = gimple_assign_rhs2 (stmt);
288 if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0))
289 != TYPE_MAIN_VARIANT (prod_type)
290 || TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1))
291 != TYPE_MAIN_VARIANT (prod_type))
292 return NULL;
293 if (!widened_name_p (oprnd0, stmt, &half_type0, &def_stmt))
294 return NULL;
295 oprnd00 = gimple_assign_rhs1 (def_stmt);
296 if (!widened_name_p (oprnd1, stmt, &half_type1, &def_stmt))
297 return NULL;
298 oprnd01 = gimple_assign_rhs1 (def_stmt);
299 if (TYPE_MAIN_VARIANT (half_type0) != TYPE_MAIN_VARIANT (half_type1))
300 return NULL;
301 if (TYPE_PRECISION (prod_type) != TYPE_PRECISION (half_type0) * 2)
302 return NULL;
303 }
304
305 half_type = TREE_TYPE (oprnd00);
306 *type_in = half_type;
307 *type_out = type;
308
309 /* Pattern detected. Create a stmt to be used to replace the pattern: */
310 var = vect_recog_temp_ssa_var (type, NULL);
311 rhs = build3 (DOT_PROD_EXPR, type, oprnd00, oprnd01, oprnd1),
312 pattern_stmt = gimple_build_assign (var, rhs);
313
314 if (vect_print_dump_info (REPORT_DETAILS))
315 {
316 fprintf (vect_dump, "vect_recog_dot_prod_pattern: detected: ");
317 print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
318 }
319
320 /* We don't allow changing the order of the computation in the inner-loop
321 when doing outer-loop vectorization. */
322 if (nested_in_vect_loop_p (loop, last_stmt))
323 {
324 if (vect_print_dump_info (REPORT_DETAILS))
325 fprintf (vect_dump, "vect_recog_dot_prod_pattern: not allowed.");
326 return NULL;
327 }
328
329 return pattern_stmt;
330 }
331
332 /* Function vect_recog_widen_mult_pattern
333
334 Try to find the following pattern:
335
336 type a_t, b_t;
337 TYPE a_T, b_T, prod_T;
338
339 S1 a_t = ;
340 S2 b_t = ;
341 S3 a_T = (TYPE) a_t;
342 S4 b_T = (TYPE) b_t;
343 S5 prod_T = a_T * b_T;
344
345 where type 'TYPE' is at least double the size of type 'type'.
346
347 Input:
348
349 * LAST_STMT: A stmt from which the pattern search begins. In the example,
350 when this function is called with S5, the pattern {S3,S4,S5} is be detected.
351
352 Output:
353
354 * TYPE_IN: The type of the input arguments to the pattern.
355
356 * TYPE_OUT: The type of the output of this pattern.
357
358 * Return value: A new stmt that will be used to replace the sequence of
359 stmts that constitute the pattern. In this case it will be:
360 WIDEN_MULT <a_t, b_t>
361 */
362
363 static gimple
364 vect_recog_widen_mult_pattern (gimple last_stmt,
365 tree *type_in,
366 tree *type_out)
367 {
368 gimple def_stmt0, def_stmt1;
369 tree oprnd0, oprnd1;
370 tree type, half_type0, half_type1;
371 gimple pattern_stmt;
372 tree vectype;
373 tree dummy;
374 tree var;
375 enum tree_code dummy_code;
376 int dummy_int;
377 VEC (tree, heap) *dummy_vec;
378
379 if (!is_gimple_assign (last_stmt))
380 return NULL;
381
382 type = gimple_expr_type (last_stmt);
383
384 /* Starting from LAST_STMT, follow the defs of its uses in search
385 of the above pattern. */
386
387 if (gimple_assign_rhs_code (last_stmt) != MULT_EXPR)
388 return NULL;
389
390 oprnd0 = gimple_assign_rhs1 (last_stmt);
391 oprnd1 = gimple_assign_rhs2 (last_stmt);
392 if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0)) != TYPE_MAIN_VARIANT (type)
393 || TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1)) != TYPE_MAIN_VARIANT (type))
394 return NULL;
395
396 /* Check argument 0 */
397 if (!widened_name_p (oprnd0, last_stmt, &half_type0, &def_stmt0))
398 return NULL;
399 oprnd0 = gimple_assign_rhs1 (def_stmt0);
400
401 /* Check argument 1 */
402 if (!widened_name_p (oprnd1, last_stmt, &half_type1, &def_stmt1))
403 return NULL;
404 oprnd1 = gimple_assign_rhs1 (def_stmt1);
405
406 if (TYPE_MAIN_VARIANT (half_type0) != TYPE_MAIN_VARIANT (half_type1))
407 return NULL;
408
409 /* Pattern detected. */
410 if (vect_print_dump_info (REPORT_DETAILS))
411 fprintf (vect_dump, "vect_recog_widen_mult_pattern: detected: ");
412
413 /* Check target support */
414 vectype = get_vectype_for_scalar_type (half_type0);
415 if (!vectype
416 || !supportable_widening_operation (WIDEN_MULT_EXPR, last_stmt, vectype,
417 &dummy, &dummy, &dummy_code,
418 &dummy_code, &dummy_int, &dummy_vec))
419 return NULL;
420
421 *type_in = vectype;
422 *type_out = NULL_TREE;
423
424 /* Pattern supported. Create a stmt to be used to replace the pattern: */
425 var = vect_recog_temp_ssa_var (type, NULL);
426 pattern_stmt = gimple_build_assign_with_ops (WIDEN_MULT_EXPR, var, oprnd0,
427 oprnd1);
428 SSA_NAME_DEF_STMT (var) = pattern_stmt;
429
430 if (vect_print_dump_info (REPORT_DETAILS))
431 print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
432
433 return pattern_stmt;
434 }
435
436
437 /* Function vect_recog_pow_pattern
438
439 Try to find the following pattern:
440
441 x = POW (y, N);
442
443 with POW being one of pow, powf, powi, powif and N being
444 either 2 or 0.5.
445
446 Input:
447
448 * LAST_STMT: A stmt from which the pattern search begins.
449
450 Output:
451
452 * TYPE_IN: The type of the input arguments to the pattern.
453
454 * TYPE_OUT: The type of the output of this pattern.
455
456 * Return value: A new stmt that will be used to replace the sequence of
457 stmts that constitute the pattern. In this case it will be:
458 x = x * x
459 or
460 x = sqrt (x)
461 */
462
463 static gimple
464 vect_recog_pow_pattern (gimple last_stmt, tree *type_in, tree *type_out)
465 {
466 tree type;
467 tree fn, base, exp = NULL;
468 gimple stmt;
469 tree var;
470
471 if (!is_gimple_call (last_stmt) || gimple_call_lhs (last_stmt) == NULL)
472 return NULL;
473
474 type = gimple_expr_type (last_stmt);
475
476 fn = gimple_call_fndecl (last_stmt);
477 switch (DECL_FUNCTION_CODE (fn))
478 {
479 case BUILT_IN_POWIF:
480 case BUILT_IN_POWI:
481 case BUILT_IN_POWF:
482 case BUILT_IN_POW:
483 base = gimple_call_arg (last_stmt, 0);
484 exp = gimple_call_arg (last_stmt, 1);
485 if (TREE_CODE (exp) != REAL_CST
486 && TREE_CODE (exp) != INTEGER_CST)
487 return NULL;
488 break;
489
490 default:
491 return NULL;
492 }
493
494 /* We now have a pow or powi builtin function call with a constant
495 exponent. */
496
497 *type_out = NULL_TREE;
498
499 /* Catch squaring. */
500 if ((host_integerp (exp, 0)
501 && tree_low_cst (exp, 0) == 2)
502 || (TREE_CODE (exp) == REAL_CST
503 && REAL_VALUES_EQUAL (TREE_REAL_CST (exp), dconst2)))
504 {
505 *type_in = TREE_TYPE (base);
506
507 var = vect_recog_temp_ssa_var (TREE_TYPE (base), NULL);
508 stmt = gimple_build_assign_with_ops (MULT_EXPR, var, base, base);
509 SSA_NAME_DEF_STMT (var) = stmt;
510 return stmt;
511 }
512
513 /* Catch square root. */
514 if (TREE_CODE (exp) == REAL_CST
515 && REAL_VALUES_EQUAL (TREE_REAL_CST (exp), dconsthalf))
516 {
517 tree newfn = mathfn_built_in (TREE_TYPE (base), BUILT_IN_SQRT);
518 *type_in = get_vectype_for_scalar_type (TREE_TYPE (base));
519 if (*type_in)
520 {
521 gimple stmt = gimple_build_call (newfn, 1, base);
522 if (vectorizable_function (stmt, *type_in, *type_in)
523 != NULL_TREE)
524 {
525 var = vect_recog_temp_ssa_var (TREE_TYPE (base), stmt);
526 gimple_call_set_lhs (stmt, var);
527 return stmt;
528 }
529 }
530 }
531
532 return NULL;
533 }
534
535
536 /* Function vect_recog_widen_sum_pattern
537
538 Try to find the following pattern:
539
540 type x_t;
541 TYPE x_T, sum = init;
542 loop:
543 sum_0 = phi <init, sum_1>
544 S1 x_t = *p;
545 S2 x_T = (TYPE) x_t;
546 S3 sum_1 = x_T + sum_0;
547
548 where type 'TYPE' is at least double the size of type 'type', i.e - we're
549 summing elements of type 'type' into an accumulator of type 'TYPE'. This is
550 a special case of a reduction computation.
551
552 Input:
553
554 * LAST_STMT: A stmt from which the pattern search begins. In the example,
555 when this function is called with S3, the pattern {S2,S3} will be detected.
556
557 Output:
558
559 * TYPE_IN: The type of the input arguments to the pattern.
560
561 * TYPE_OUT: The type of the output of this pattern.
562
563 * Return value: A new stmt that will be used to replace the sequence of
564 stmts that constitute the pattern. In this case it will be:
565 WIDEN_SUM <x_t, sum_0>
566
567 Note: The widening-sum idiom is a widening reduction pattern that is
568 vectorized without preserving all the intermediate results. It
569 produces only N/2 (widened) results (by summing up pairs of
570 intermediate results) rather than all N results. Therefore, we
571 cannot allow this pattern when we want to get all the results and in
572 the correct order (as is the case when this computation is in an
573 inner-loop nested in an outer-loop that us being vectorized). */
574
575 static gimple
576 vect_recog_widen_sum_pattern (gimple last_stmt, tree *type_in, tree *type_out)
577 {
578 gimple stmt;
579 tree oprnd0, oprnd1;
580 stmt_vec_info stmt_vinfo = vinfo_for_stmt (last_stmt);
581 tree type, half_type;
582 gimple pattern_stmt;
583 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
584 struct loop *loop = LOOP_VINFO_LOOP (loop_info);
585 tree var;
586
587 if (!is_gimple_assign (last_stmt))
588 return NULL;
589
590 type = gimple_expr_type (last_stmt);
591
592 /* Look for the following pattern
593 DX = (TYPE) X;
594 sum_1 = DX + sum_0;
595 In which DX is at least double the size of X, and sum_1 has been
596 recognized as a reduction variable.
597 */
598
599 /* Starting from LAST_STMT, follow the defs of its uses in search
600 of the above pattern. */
601
602 if (gimple_assign_rhs_code (last_stmt) != PLUS_EXPR)
603 return NULL;
604
605 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def)
606 return NULL;
607
608 oprnd0 = gimple_assign_rhs1 (last_stmt);
609 oprnd1 = gimple_assign_rhs2 (last_stmt);
610 if (TYPE_MAIN_VARIANT (TREE_TYPE (oprnd0)) != TYPE_MAIN_VARIANT (type)
611 || TYPE_MAIN_VARIANT (TREE_TYPE (oprnd1)) != TYPE_MAIN_VARIANT (type))
612 return NULL;
613
614 /* So far so good. Since last_stmt was detected as a (summation) reduction,
615 we know that oprnd1 is the reduction variable (defined by a loop-header
616 phi), and oprnd0 is an ssa-name defined by a stmt in the loop body.
617 Left to check that oprnd0 is defined by a cast from type 'type' to type
618 'TYPE'. */
619
620 if (!widened_name_p (oprnd0, last_stmt, &half_type, &stmt))
621 return NULL;
622
623 oprnd0 = gimple_assign_rhs1 (stmt);
624 *type_in = half_type;
625 *type_out = type;
626
627 /* Pattern detected. Create a stmt to be used to replace the pattern: */
628 var = vect_recog_temp_ssa_var (type, NULL);
629 pattern_stmt = gimple_build_assign_with_ops (WIDEN_SUM_EXPR, var,
630 oprnd0, oprnd1);
631 SSA_NAME_DEF_STMT (var) = pattern_stmt;
632
633 if (vect_print_dump_info (REPORT_DETAILS))
634 {
635 fprintf (vect_dump, "vect_recog_widen_sum_pattern: detected: ");
636 print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
637 }
638
639 /* We don't allow changing the order of the computation in the inner-loop
640 when doing outer-loop vectorization. */
641 if (nested_in_vect_loop_p (loop, last_stmt))
642 {
643 if (vect_print_dump_info (REPORT_DETAILS))
644 fprintf (vect_dump, "vect_recog_widen_sum_pattern: not allowed.");
645 return NULL;
646 }
647
648 return pattern_stmt;
649 }
650
651
652 /* Function vect_pattern_recog_1
653
654 Input:
655 PATTERN_RECOG_FUNC: A pointer to a function that detects a certain
656 computation pattern.
657 STMT: A stmt from which the pattern search should start.
658
659 If PATTERN_RECOG_FUNC successfully detected the pattern, it creates an
660 expression that computes the same functionality and can be used to
661 replace the sequence of stmts that are involved in the pattern.
662
663 Output:
664 This function checks if the expression returned by PATTERN_RECOG_FUNC is
665 supported in vector form by the target. We use 'TYPE_IN' to obtain the
666 relevant vector type. If 'TYPE_IN' is already a vector type, then this
667 indicates that target support had already been checked by PATTERN_RECOG_FUNC.
668 If 'TYPE_OUT' is also returned by PATTERN_RECOG_FUNC, we check that it fits
669 to the available target pattern.
670
671 This function also does some bookkeeping, as explained in the documentation
672 for vect_recog_pattern. */
673
674 static void
675 vect_pattern_recog_1 (
676 gimple (* vect_recog_func) (gimple, tree *, tree *),
677 gimple_stmt_iterator si)
678 {
679 gimple stmt = gsi_stmt (si), pattern_stmt;
680 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
681 stmt_vec_info pattern_stmt_info;
682 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
683 tree pattern_vectype;
684 tree type_in, type_out;
685 enum tree_code code;
686
687 pattern_stmt = (* vect_recog_func) (stmt, &type_in, &type_out);
688 if (!pattern_stmt)
689 return;
690
691 if (VECTOR_MODE_P (TYPE_MODE (type_in)))
692 {
693 /* No need to check target support (already checked by the pattern
694 recognition function). */
695 pattern_vectype = type_in;
696 }
697 else
698 {
699 enum machine_mode vec_mode;
700 enum insn_code icode;
701 optab optab;
702
703 /* Check target support */
704 pattern_vectype = get_vectype_for_scalar_type (type_in);
705 if (!pattern_vectype)
706 return;
707
708 if (is_gimple_assign (pattern_stmt))
709 code = gimple_assign_rhs_code (pattern_stmt);
710 else
711 {
712 gcc_assert (is_gimple_call (pattern_stmt));
713 code = CALL_EXPR;
714 }
715
716 optab = optab_for_tree_code (code, pattern_vectype, optab_default);
717 vec_mode = TYPE_MODE (pattern_vectype);
718 if (!optab
719 || (icode = optab_handler (optab, vec_mode)->insn_code) ==
720 CODE_FOR_nothing
721 || (type_out
722 && (!get_vectype_for_scalar_type (type_out)
723 || (insn_data[icode].operand[0].mode !=
724 TYPE_MODE (get_vectype_for_scalar_type (type_out))))))
725 return;
726 }
727
728 /* Found a vectorizable pattern. */
729 if (vect_print_dump_info (REPORT_DETAILS))
730 {
731 fprintf (vect_dump, "pattern recognized: ");
732 print_gimple_stmt (vect_dump, pattern_stmt, 0, TDF_SLIM);
733 }
734
735 /* Mark the stmts that are involved in the pattern. */
736 gsi_insert_before (&si, pattern_stmt, GSI_SAME_STMT);
737 set_vinfo_for_stmt (pattern_stmt,
738 new_stmt_vec_info (pattern_stmt, loop_vinfo, NULL));
739 pattern_stmt_info = vinfo_for_stmt (pattern_stmt);
740
741 STMT_VINFO_RELATED_STMT (pattern_stmt_info) = stmt;
742 STMT_VINFO_DEF_TYPE (pattern_stmt_info) = STMT_VINFO_DEF_TYPE (stmt_info);
743 STMT_VINFO_VECTYPE (pattern_stmt_info) = pattern_vectype;
744 STMT_VINFO_IN_PATTERN_P (stmt_info) = true;
745 STMT_VINFO_RELATED_STMT (stmt_info) = pattern_stmt;
746
747 return;
748 }
749
750
751 /* Function vect_pattern_recog
752
753 Input:
754 LOOP_VINFO - a struct_loop_info of a loop in which we want to look for
755 computation idioms.
756
757 Output - for each computation idiom that is detected we insert a new stmt
758 that provides the same functionality and that can be vectorized. We
759 also record some information in the struct_stmt_info of the relevant
760 stmts, as explained below:
761
762 At the entry to this function we have the following stmts, with the
763 following initial value in the STMT_VINFO fields:
764
765 stmt in_pattern_p related_stmt vec_stmt
766 S1: a_i = .... - - -
767 S2: a_2 = ..use(a_i).. - - -
768 S3: a_1 = ..use(a_2).. - - -
769 S4: a_0 = ..use(a_1).. - - -
770 S5: ... = ..use(a_0).. - - -
771
772 Say the sequence {S1,S2,S3,S4} was detected as a pattern that can be
773 represented by a single stmt. We then:
774 - create a new stmt S6 that will replace the pattern.
775 - insert the new stmt S6 before the last stmt in the pattern
776 - fill in the STMT_VINFO fields as follows:
777
778 in_pattern_p related_stmt vec_stmt
779 S1: a_i = .... - - -
780 S2: a_2 = ..use(a_i).. - - -
781 S3: a_1 = ..use(a_2).. - - -
782 > S6: a_new = .... - S4 -
783 S4: a_0 = ..use(a_1).. true S6 -
784 S5: ... = ..use(a_0).. - - -
785
786 (the last stmt in the pattern (S4) and the new pattern stmt (S6) point
787 to each other through the RELATED_STMT field).
788
789 S6 will be marked as relevant in vect_mark_stmts_to_be_vectorized instead
790 of S4 because it will replace all its uses. Stmts {S1,S2,S3} will
791 remain irrelevant unless used by stmts other than S4.
792
793 If vectorization succeeds, vect_transform_stmt will skip over {S1,S2,S3}
794 (because they are marked as irrelevant). It will vectorize S6, and record
795 a pointer to the new vector stmt VS6 both from S6 (as usual), and also
796 from S4. We do that so that when we get to vectorizing stmts that use the
797 def of S4 (like S5 that uses a_0), we'll know where to take the relevant
798 vector-def from. S4 will be skipped, and S5 will be vectorized as usual:
799
800 in_pattern_p related_stmt vec_stmt
801 S1: a_i = .... - - -
802 S2: a_2 = ..use(a_i).. - - -
803 S3: a_1 = ..use(a_2).. - - -
804 > VS6: va_new = .... - - -
805 S6: a_new = .... - S4 VS6
806 S4: a_0 = ..use(a_1).. true S6 VS6
807 > VS5: ... = ..vuse(va_new).. - - -
808 S5: ... = ..use(a_0).. - - -
809
810 DCE could then get rid of {S1,S2,S3,S4,S5,S6} (if their defs are not used
811 elsewhere), and we'll end up with:
812
813 VS6: va_new = ....
814 VS5: ... = ..vuse(va_new)..
815
816 If vectorization does not succeed, DCE will clean S6 away (its def is
817 not used), and we'll end up with the original sequence.
818 */
819
820 void
821 vect_pattern_recog (loop_vec_info loop_vinfo)
822 {
823 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
824 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
825 unsigned int nbbs = loop->num_nodes;
826 gimple_stmt_iterator si;
827 gimple stmt;
828 unsigned int i, j;
829 gimple (* vect_recog_func_ptr) (gimple, tree *, tree *);
830
831 if (vect_print_dump_info (REPORT_DETAILS))
832 fprintf (vect_dump, "=== vect_pattern_recog ===");
833
834 /* Scan through the loop stmts, applying the pattern recognition
835 functions starting at each stmt visited: */
836 for (i = 0; i < nbbs; i++)
837 {
838 basic_block bb = bbs[i];
839 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
840 {
841 stmt = gsi_stmt (si);
842
843 /* Scan over all generic vect_recog_xxx_pattern functions. */
844 for (j = 0; j < NUM_PATTERNS; j++)
845 {
846 vect_recog_func_ptr = vect_vect_recog_func_ptrs[j];
847 vect_pattern_recog_1 (vect_recog_func_ptr, si);
848 }
849 }
850 }
851 }