rs6000.c (rs6000_expand_vector_set): Use vnand instead of vnor to exploit possible...
[gcc.git] / gcc / tree-vect-slp.c
1 /* SLP - Basic Block Vectorization
2 Copyright (C) 2007-2014 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "tree.h"
28 #include "stor-layout.h"
29 #include "target.h"
30 #include "basic-block.h"
31 #include "gimple-pretty-print.h"
32 #include "tree-ssa-alias.h"
33 #include "internal-fn.h"
34 #include "gimple-expr.h"
35 #include "is-a.h"
36 #include "gimple.h"
37 #include "gimple-iterator.h"
38 #include "gimple-ssa.h"
39 #include "tree-phinodes.h"
40 #include "ssa-iterators.h"
41 #include "stringpool.h"
42 #include "tree-ssanames.h"
43 #include "tree-pass.h"
44 #include "cfgloop.h"
45 #include "expr.h"
46 #include "recog.h" /* FIXME: for insn_data */
47 #include "optabs.h"
48 #include "tree-vectorizer.h"
49 #include "langhooks.h"
50
51 /* Extract the location of the basic block in the source code.
52 Return the basic block location if succeed and NULL if not. */
53
54 source_location
55 find_bb_location (basic_block bb)
56 {
57 gimple stmt = NULL;
58 gimple_stmt_iterator si;
59
60 if (!bb)
61 return UNKNOWN_LOCATION;
62
63 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
64 {
65 stmt = gsi_stmt (si);
66 if (gimple_location (stmt) != UNKNOWN_LOCATION)
67 return gimple_location (stmt);
68 }
69
70 return UNKNOWN_LOCATION;
71 }
72
73
74 /* Recursively free the memory allocated for the SLP tree rooted at NODE. */
75
76 static void
77 vect_free_slp_tree (slp_tree node)
78 {
79 int i;
80 slp_tree child;
81
82 if (!node)
83 return;
84
85 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
86 vect_free_slp_tree (child);
87
88 SLP_TREE_CHILDREN (node).release ();
89 SLP_TREE_SCALAR_STMTS (node).release ();
90 SLP_TREE_VEC_STMTS (node).release ();
91 SLP_TREE_LOAD_PERMUTATION (node).release ();
92
93 free (node);
94 }
95
96
97 /* Free the memory allocated for the SLP instance. */
98
99 void
100 vect_free_slp_instance (slp_instance instance)
101 {
102 vect_free_slp_tree (SLP_INSTANCE_TREE (instance));
103 SLP_INSTANCE_LOADS (instance).release ();
104 SLP_INSTANCE_BODY_COST_VEC (instance).release ();
105 free (instance);
106 }
107
108
109 /* Create an SLP node for SCALAR_STMTS. */
110
111 static slp_tree
112 vect_create_new_slp_node (vec<gimple> scalar_stmts)
113 {
114 slp_tree node;
115 gimple stmt = scalar_stmts[0];
116 unsigned int nops;
117
118 if (is_gimple_call (stmt))
119 nops = gimple_call_num_args (stmt);
120 else if (is_gimple_assign (stmt))
121 {
122 nops = gimple_num_ops (stmt) - 1;
123 if (gimple_assign_rhs_code (stmt) == COND_EXPR)
124 nops++;
125 }
126 else
127 return NULL;
128
129 node = XNEW (struct _slp_tree);
130 SLP_TREE_SCALAR_STMTS (node) = scalar_stmts;
131 SLP_TREE_VEC_STMTS (node).create (0);
132 SLP_TREE_CHILDREN (node).create (nops);
133 SLP_TREE_LOAD_PERMUTATION (node) = vNULL;
134
135 return node;
136 }
137
138
139 /* Allocate operands info for NOPS operands, and GROUP_SIZE def-stmts for each
140 operand. */
141 static vec<slp_oprnd_info>
142 vect_create_oprnd_info (int nops, int group_size)
143 {
144 int i;
145 slp_oprnd_info oprnd_info;
146 vec<slp_oprnd_info> oprnds_info;
147
148 oprnds_info.create (nops);
149 for (i = 0; i < nops; i++)
150 {
151 oprnd_info = XNEW (struct _slp_oprnd_info);
152 oprnd_info->def_stmts.create (group_size);
153 oprnd_info->first_dt = vect_uninitialized_def;
154 oprnd_info->first_op_type = NULL_TREE;
155 oprnd_info->first_pattern = false;
156 oprnds_info.quick_push (oprnd_info);
157 }
158
159 return oprnds_info;
160 }
161
162
163 /* Free operands info. */
164
165 static void
166 vect_free_oprnd_info (vec<slp_oprnd_info> &oprnds_info)
167 {
168 int i;
169 slp_oprnd_info oprnd_info;
170
171 FOR_EACH_VEC_ELT (oprnds_info, i, oprnd_info)
172 {
173 oprnd_info->def_stmts.release ();
174 XDELETE (oprnd_info);
175 }
176
177 oprnds_info.release ();
178 }
179
180
181 /* Find the place of the data-ref in STMT in the interleaving chain that starts
182 from FIRST_STMT. Return -1 if the data-ref is not a part of the chain. */
183
184 static int
185 vect_get_place_in_interleaving_chain (gimple stmt, gimple first_stmt)
186 {
187 gimple next_stmt = first_stmt;
188 int result = 0;
189
190 if (first_stmt != GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
191 return -1;
192
193 do
194 {
195 if (next_stmt == stmt)
196 return result;
197 result++;
198 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
199 }
200 while (next_stmt);
201
202 return -1;
203 }
204
205
206 /* Get the defs for the rhs of STMT (collect them in OPRNDS_INFO), check that
207 they are of a valid type and that they match the defs of the first stmt of
208 the SLP group (stored in OPRNDS_INFO). */
209
210 static bool
211 vect_get_and_check_slp_defs (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo,
212 gimple stmt, bool first,
213 vec<slp_oprnd_info> *oprnds_info)
214 {
215 tree oprnd;
216 unsigned int i, number_of_oprnds;
217 tree def;
218 gimple def_stmt;
219 enum vect_def_type dt = vect_uninitialized_def;
220 struct loop *loop = NULL;
221 bool pattern = false;
222 slp_oprnd_info oprnd_info;
223 int op_idx = 1;
224 tree compare_rhs = NULL_TREE;
225
226 if (loop_vinfo)
227 loop = LOOP_VINFO_LOOP (loop_vinfo);
228
229 if (is_gimple_call (stmt))
230 {
231 number_of_oprnds = gimple_call_num_args (stmt);
232 op_idx = 3;
233 }
234 else if (is_gimple_assign (stmt))
235 {
236 number_of_oprnds = gimple_num_ops (stmt) - 1;
237 if (gimple_assign_rhs_code (stmt) == COND_EXPR)
238 number_of_oprnds++;
239 }
240 else
241 return false;
242
243 for (i = 0; i < number_of_oprnds; i++)
244 {
245 if (compare_rhs)
246 {
247 oprnd = compare_rhs;
248 compare_rhs = NULL_TREE;
249 }
250 else
251 oprnd = gimple_op (stmt, op_idx++);
252
253 oprnd_info = (*oprnds_info)[i];
254
255 if (COMPARISON_CLASS_P (oprnd))
256 {
257 compare_rhs = TREE_OPERAND (oprnd, 1);
258 oprnd = TREE_OPERAND (oprnd, 0);
259 }
260
261 if (!vect_is_simple_use (oprnd, NULL, loop_vinfo, bb_vinfo, &def_stmt,
262 &def, &dt)
263 || (!def_stmt && dt != vect_constant_def))
264 {
265 if (dump_enabled_p ())
266 {
267 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
268 "Build SLP failed: can't find def for ");
269 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, oprnd);
270 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
271 }
272
273 return false;
274 }
275
276 /* Check if DEF_STMT is a part of a pattern in LOOP and get the def stmt
277 from the pattern. Check that all the stmts of the node are in the
278 pattern. */
279 if (def_stmt && gimple_bb (def_stmt)
280 && ((loop && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)))
281 || (!loop && gimple_bb (def_stmt) == BB_VINFO_BB (bb_vinfo)
282 && gimple_code (def_stmt) != GIMPLE_PHI))
283 && vinfo_for_stmt (def_stmt)
284 && STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (def_stmt))
285 && !STMT_VINFO_RELEVANT (vinfo_for_stmt (def_stmt))
286 && !STMT_VINFO_LIVE_P (vinfo_for_stmt (def_stmt)))
287 {
288 pattern = true;
289 if (!first && !oprnd_info->first_pattern)
290 {
291 if (dump_enabled_p ())
292 {
293 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
294 "Build SLP failed: some of the stmts"
295 " are in a pattern, and others are not ");
296 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, oprnd);
297 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
298 }
299
300 return false;
301 }
302
303 def_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt));
304 dt = STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt));
305
306 if (dt == vect_unknown_def_type)
307 {
308 if (dump_enabled_p ())
309 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
310 "Unsupported pattern.\n");
311 return false;
312 }
313
314 switch (gimple_code (def_stmt))
315 {
316 case GIMPLE_PHI:
317 def = gimple_phi_result (def_stmt);
318 break;
319
320 case GIMPLE_ASSIGN:
321 def = gimple_assign_lhs (def_stmt);
322 break;
323
324 default:
325 if (dump_enabled_p ())
326 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
327 "unsupported defining stmt:\n");
328 return false;
329 }
330 }
331
332 if (first)
333 {
334 oprnd_info->first_dt = dt;
335 oprnd_info->first_pattern = pattern;
336 oprnd_info->first_op_type = TREE_TYPE (oprnd);
337 }
338 else
339 {
340 /* Not first stmt of the group, check that the def-stmt/s match
341 the def-stmt/s of the first stmt. Allow different definition
342 types for reduction chains: the first stmt must be a
343 vect_reduction_def (a phi node), and the rest
344 vect_internal_def. */
345 if (((oprnd_info->first_dt != dt
346 && !(oprnd_info->first_dt == vect_reduction_def
347 && dt == vect_internal_def)
348 && !((oprnd_info->first_dt == vect_external_def
349 || oprnd_info->first_dt == vect_constant_def)
350 && (dt == vect_external_def
351 || dt == vect_constant_def)))
352 || !types_compatible_p (oprnd_info->first_op_type,
353 TREE_TYPE (oprnd))))
354 {
355 if (dump_enabled_p ())
356 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
357 "Build SLP failed: different types\n");
358
359 return false;
360 }
361 }
362
363 /* Check the types of the definitions. */
364 switch (dt)
365 {
366 case vect_constant_def:
367 case vect_external_def:
368 case vect_reduction_def:
369 break;
370
371 case vect_internal_def:
372 oprnd_info->def_stmts.quick_push (def_stmt);
373 break;
374
375 default:
376 /* FORNOW: Not supported. */
377 if (dump_enabled_p ())
378 {
379 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
380 "Build SLP failed: illegal type of def ");
381 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, def);
382 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
383 }
384
385 return false;
386 }
387 }
388
389 return true;
390 }
391
392
393 /* Verify if the scalar stmts STMTS are isomorphic, require data
394 permutation or are of unsupported types of operation. Return
395 true if they are, otherwise return false and indicate in *MATCHES
396 which stmts are not isomorphic to the first one. If MATCHES[0]
397 is false then this indicates the comparison could not be
398 carried out or the stmts will never be vectorized by SLP. */
399
400 static bool
401 vect_build_slp_tree_1 (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo,
402 vec<gimple> stmts, unsigned int group_size,
403 unsigned nops, unsigned int *max_nunits,
404 unsigned int vectorization_factor, bool *matches)
405 {
406 unsigned int i;
407 gimple stmt = stmts[0];
408 enum tree_code first_stmt_code = ERROR_MARK, rhs_code = ERROR_MARK;
409 enum tree_code first_cond_code = ERROR_MARK;
410 tree lhs;
411 bool need_same_oprnds = false;
412 tree vectype, scalar_type, first_op1 = NULL_TREE;
413 optab optab;
414 int icode;
415 enum machine_mode optab_op2_mode;
416 enum machine_mode vec_mode;
417 struct data_reference *first_dr;
418 HOST_WIDE_INT dummy;
419 gimple first_load = NULL, prev_first_load = NULL, old_first_load = NULL;
420 tree cond;
421
422 /* For every stmt in NODE find its def stmt/s. */
423 FOR_EACH_VEC_ELT (stmts, i, stmt)
424 {
425 matches[i] = false;
426
427 if (dump_enabled_p ())
428 {
429 dump_printf_loc (MSG_NOTE, vect_location, "Build SLP for ");
430 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
431 dump_printf (MSG_NOTE, "\n");
432 }
433
434 /* Fail to vectorize statements marked as unvectorizable. */
435 if (!STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (stmt)))
436 {
437 if (dump_enabled_p ())
438 {
439 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
440 "Build SLP failed: unvectorizable statement ");
441 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
442 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
443 }
444 /* Fatal mismatch. */
445 matches[0] = false;
446 return false;
447 }
448
449 lhs = gimple_get_lhs (stmt);
450 if (lhs == NULL_TREE)
451 {
452 if (dump_enabled_p ())
453 {
454 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
455 "Build SLP failed: not GIMPLE_ASSIGN nor "
456 "GIMPLE_CALL ");
457 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
458 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
459 }
460 /* Fatal mismatch. */
461 matches[0] = false;
462 return false;
463 }
464
465 if (is_gimple_assign (stmt)
466 && gimple_assign_rhs_code (stmt) == COND_EXPR
467 && (cond = gimple_assign_rhs1 (stmt))
468 && !COMPARISON_CLASS_P (cond))
469 {
470 if (dump_enabled_p ())
471 {
472 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
473 "Build SLP failed: condition is not "
474 "comparison ");
475 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
476 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
477 }
478 /* Fatal mismatch. */
479 matches[0] = false;
480 return false;
481 }
482
483 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy, &dummy);
484 vectype = get_vectype_for_scalar_type (scalar_type);
485 if (!vectype)
486 {
487 if (dump_enabled_p ())
488 {
489 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
490 "Build SLP failed: unsupported data-type ");
491 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
492 scalar_type);
493 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
494 }
495 /* Fatal mismatch. */
496 matches[0] = false;
497 return false;
498 }
499
500 /* In case of multiple types we need to detect the smallest type. */
501 if (*max_nunits < TYPE_VECTOR_SUBPARTS (vectype))
502 {
503 *max_nunits = TYPE_VECTOR_SUBPARTS (vectype);
504 if (bb_vinfo)
505 vectorization_factor = *max_nunits;
506 }
507
508 if (is_gimple_call (stmt))
509 {
510 rhs_code = CALL_EXPR;
511 if (gimple_call_internal_p (stmt)
512 || gimple_call_tail_p (stmt)
513 || gimple_call_noreturn_p (stmt)
514 || !gimple_call_nothrow_p (stmt)
515 || gimple_call_chain (stmt))
516 {
517 if (dump_enabled_p ())
518 {
519 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
520 "Build SLP failed: unsupported call type ");
521 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
522 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
523 }
524 /* Fatal mismatch. */
525 matches[0] = false;
526 return false;
527 }
528 }
529 else
530 rhs_code = gimple_assign_rhs_code (stmt);
531
532 /* Check the operation. */
533 if (i == 0)
534 {
535 first_stmt_code = rhs_code;
536
537 /* Shift arguments should be equal in all the packed stmts for a
538 vector shift with scalar shift operand. */
539 if (rhs_code == LSHIFT_EXPR || rhs_code == RSHIFT_EXPR
540 || rhs_code == LROTATE_EXPR
541 || rhs_code == RROTATE_EXPR)
542 {
543 vec_mode = TYPE_MODE (vectype);
544
545 /* First see if we have a vector/vector shift. */
546 optab = optab_for_tree_code (rhs_code, vectype,
547 optab_vector);
548
549 if (!optab
550 || optab_handler (optab, vec_mode) == CODE_FOR_nothing)
551 {
552 /* No vector/vector shift, try for a vector/scalar shift. */
553 optab = optab_for_tree_code (rhs_code, vectype,
554 optab_scalar);
555
556 if (!optab)
557 {
558 if (dump_enabled_p ())
559 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
560 "Build SLP failed: no optab.\n");
561 /* Fatal mismatch. */
562 matches[0] = false;
563 return false;
564 }
565 icode = (int) optab_handler (optab, vec_mode);
566 if (icode == CODE_FOR_nothing)
567 {
568 if (dump_enabled_p ())
569 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
570 "Build SLP failed: "
571 "op not supported by target.\n");
572 /* Fatal mismatch. */
573 matches[0] = false;
574 return false;
575 }
576 optab_op2_mode = insn_data[icode].operand[2].mode;
577 if (!VECTOR_MODE_P (optab_op2_mode))
578 {
579 need_same_oprnds = true;
580 first_op1 = gimple_assign_rhs2 (stmt);
581 }
582 }
583 }
584 else if (rhs_code == WIDEN_LSHIFT_EXPR)
585 {
586 need_same_oprnds = true;
587 first_op1 = gimple_assign_rhs2 (stmt);
588 }
589 }
590 else
591 {
592 if (first_stmt_code != rhs_code
593 && (first_stmt_code != IMAGPART_EXPR
594 || rhs_code != REALPART_EXPR)
595 && (first_stmt_code != REALPART_EXPR
596 || rhs_code != IMAGPART_EXPR)
597 && !(STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (stmt))
598 && (first_stmt_code == ARRAY_REF
599 || first_stmt_code == BIT_FIELD_REF
600 || first_stmt_code == INDIRECT_REF
601 || first_stmt_code == COMPONENT_REF
602 || first_stmt_code == MEM_REF)))
603 {
604 if (dump_enabled_p ())
605 {
606 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
607 "Build SLP failed: different operation "
608 "in stmt ");
609 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
610 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
611 }
612 /* Mismatch. */
613 continue;
614 }
615
616 if (need_same_oprnds
617 && !operand_equal_p (first_op1, gimple_assign_rhs2 (stmt), 0))
618 {
619 if (dump_enabled_p ())
620 {
621 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
622 "Build SLP failed: different shift "
623 "arguments in ");
624 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
625 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
626 }
627 /* Mismatch. */
628 continue;
629 }
630
631 if (rhs_code == CALL_EXPR)
632 {
633 gimple first_stmt = stmts[0];
634 if (gimple_call_num_args (stmt) != nops
635 || !operand_equal_p (gimple_call_fn (first_stmt),
636 gimple_call_fn (stmt), 0)
637 || gimple_call_fntype (first_stmt)
638 != gimple_call_fntype (stmt))
639 {
640 if (dump_enabled_p ())
641 {
642 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
643 "Build SLP failed: different calls in ");
644 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
645 stmt, 0);
646 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
647 }
648 /* Mismatch. */
649 continue;
650 }
651 }
652 }
653
654 /* Grouped store or load. */
655 if (STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (stmt)))
656 {
657 if (REFERENCE_CLASS_P (lhs))
658 {
659 /* Store. */
660 ;
661 }
662 else
663 {
664 /* Load. */
665 unsigned unrolling_factor
666 = least_common_multiple
667 (*max_nunits, group_size) / group_size;
668 /* FORNOW: Check that there is no gap between the loads
669 and no gap between the groups when we need to load
670 multiple groups at once.
671 ??? We should enhance this to only disallow gaps
672 inside vectors. */
673 if ((unrolling_factor > 1
674 && GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) == stmt
675 && GROUP_GAP (vinfo_for_stmt (stmt)) != 0)
676 || (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) != stmt
677 && GROUP_GAP (vinfo_for_stmt (stmt)) != 1))
678 {
679 if (dump_enabled_p ())
680 {
681 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
682 "Build SLP failed: grouped "
683 "loads have gaps ");
684 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
685 stmt, 0);
686 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
687 }
688 /* Fatal mismatch. */
689 matches[0] = false;
690 return false;
691 }
692
693 /* Check that the size of interleaved loads group is not
694 greater than the SLP group size. */
695 unsigned ncopies
696 = vectorization_factor / TYPE_VECTOR_SUBPARTS (vectype);
697 if (loop_vinfo
698 && GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) == stmt
699 && ((GROUP_SIZE (vinfo_for_stmt (stmt))
700 - GROUP_GAP (vinfo_for_stmt (stmt)))
701 > ncopies * group_size))
702 {
703 if (dump_enabled_p ())
704 {
705 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
706 "Build SLP failed: the number "
707 "of interleaved loads is greater than "
708 "the SLP group size ");
709 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
710 stmt, 0);
711 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
712 }
713 /* Fatal mismatch. */
714 matches[0] = false;
715 return false;
716 }
717
718 old_first_load = first_load;
719 first_load = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt));
720 if (prev_first_load)
721 {
722 /* Check that there are no loads from different interleaving
723 chains in the same node. */
724 if (prev_first_load != first_load)
725 {
726 if (dump_enabled_p ())
727 {
728 dump_printf_loc (MSG_MISSED_OPTIMIZATION,
729 vect_location,
730 "Build SLP failed: different "
731 "interleaving chains in one node ");
732 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
733 stmt, 0);
734 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
735 }
736 /* Mismatch. */
737 continue;
738 }
739 }
740 else
741 prev_first_load = first_load;
742
743 /* In some cases a group of loads is just the same load
744 repeated N times. Only analyze its cost once. */
745 if (first_load == stmt && old_first_load != first_load)
746 {
747 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt));
748 if (vect_supportable_dr_alignment (first_dr, false)
749 == dr_unaligned_unsupported)
750 {
751 if (dump_enabled_p ())
752 {
753 dump_printf_loc (MSG_MISSED_OPTIMIZATION,
754 vect_location,
755 "Build SLP failed: unsupported "
756 "unaligned load ");
757 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
758 stmt, 0);
759 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
760 }
761 /* Fatal mismatch. */
762 matches[0] = false;
763 return false;
764 }
765 }
766 }
767 } /* Grouped access. */
768 else
769 {
770 if (TREE_CODE_CLASS (rhs_code) == tcc_reference)
771 {
772 /* Not grouped load. */
773 if (dump_enabled_p ())
774 {
775 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
776 "Build SLP failed: not grouped load ");
777 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
778 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
779 }
780
781 /* FORNOW: Not grouped loads are not supported. */
782 /* Fatal mismatch. */
783 matches[0] = false;
784 return false;
785 }
786
787 /* Not memory operation. */
788 if (TREE_CODE_CLASS (rhs_code) != tcc_binary
789 && TREE_CODE_CLASS (rhs_code) != tcc_unary
790 && rhs_code != COND_EXPR
791 && rhs_code != CALL_EXPR)
792 {
793 if (dump_enabled_p ())
794 {
795 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
796 "Build SLP failed: operation");
797 dump_printf (MSG_MISSED_OPTIMIZATION, " unsupported ");
798 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
799 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
800 }
801 /* Fatal mismatch. */
802 matches[0] = false;
803 return false;
804 }
805
806 if (rhs_code == COND_EXPR)
807 {
808 tree cond_expr = gimple_assign_rhs1 (stmt);
809
810 if (i == 0)
811 first_cond_code = TREE_CODE (cond_expr);
812 else if (first_cond_code != TREE_CODE (cond_expr))
813 {
814 if (dump_enabled_p ())
815 {
816 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
817 "Build SLP failed: different"
818 " operation");
819 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
820 stmt, 0);
821 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
822 }
823 /* Mismatch. */
824 continue;
825 }
826 }
827 }
828
829 matches[i] = true;
830 }
831
832 for (i = 0; i < group_size; ++i)
833 if (!matches[i])
834 return false;
835
836 return true;
837 }
838
839 /* Recursively build an SLP tree starting from NODE.
840 Fail (and return a value not equal to zero) if def-stmts are not
841 isomorphic, require data permutation or are of unsupported types of
842 operation. Otherwise, return 0.
843 The value returned is the depth in the SLP tree where a mismatch
844 was found. */
845
846 static bool
847 vect_build_slp_tree (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo,
848 slp_tree *node, unsigned int group_size,
849 unsigned int *max_nunits,
850 vec<slp_tree> *loads,
851 unsigned int vectorization_factor,
852 bool *matches, unsigned *npermutes)
853 {
854 unsigned nops, i, this_npermutes = 0;
855 gimple stmt;
856
857 if (!matches)
858 matches = XALLOCAVEC (bool, group_size);
859 if (!npermutes)
860 npermutes = &this_npermutes;
861
862 matches[0] = false;
863
864 stmt = SLP_TREE_SCALAR_STMTS (*node)[0];
865 if (is_gimple_call (stmt))
866 nops = gimple_call_num_args (stmt);
867 else if (is_gimple_assign (stmt))
868 {
869 nops = gimple_num_ops (stmt) - 1;
870 if (gimple_assign_rhs_code (stmt) == COND_EXPR)
871 nops++;
872 }
873 else
874 return false;
875
876 if (!vect_build_slp_tree_1 (loop_vinfo, bb_vinfo,
877 SLP_TREE_SCALAR_STMTS (*node), group_size, nops,
878 max_nunits, vectorization_factor, matches))
879 return false;
880
881 /* If the SLP node is a load, terminate the recursion. */
882 if (STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (stmt))
883 && DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
884 {
885 loads->safe_push (*node);
886 return true;
887 }
888
889 /* Get at the operands, verifying they are compatible. */
890 vec<slp_oprnd_info> oprnds_info = vect_create_oprnd_info (nops, group_size);
891 slp_oprnd_info oprnd_info;
892 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (*node), i, stmt)
893 {
894 if (!vect_get_and_check_slp_defs (loop_vinfo, bb_vinfo,
895 stmt, (i == 0), &oprnds_info))
896 {
897 vect_free_oprnd_info (oprnds_info);
898 return false;
899 }
900 }
901
902 stmt = SLP_TREE_SCALAR_STMTS (*node)[0];
903
904 /* Create SLP_TREE nodes for the definition node/s. */
905 FOR_EACH_VEC_ELT (oprnds_info, i, oprnd_info)
906 {
907 slp_tree child;
908 unsigned old_nloads = loads->length ();
909 unsigned old_max_nunits = *max_nunits;
910
911 if (oprnd_info->first_dt != vect_internal_def)
912 continue;
913
914 child = vect_create_new_slp_node (oprnd_info->def_stmts);
915 if (!child)
916 {
917 vect_free_oprnd_info (oprnds_info);
918 return false;
919 }
920
921 bool *matches = XALLOCAVEC (bool, group_size);
922 if (vect_build_slp_tree (loop_vinfo, bb_vinfo, &child,
923 group_size, max_nunits, loads,
924 vectorization_factor, matches, npermutes))
925 {
926 oprnd_info->def_stmts = vNULL;
927 SLP_TREE_CHILDREN (*node).quick_push (child);
928 continue;
929 }
930
931 /* If the SLP build for operand zero failed and operand zero
932 and one can be commutated try that for the scalar stmts
933 that failed the match. */
934 if (i == 0
935 /* A first scalar stmt mismatch signals a fatal mismatch. */
936 && matches[0]
937 /* ??? For COND_EXPRs we can swap the comparison operands
938 as well as the arms under some constraints. */
939 && nops == 2
940 && oprnds_info[1]->first_dt == vect_internal_def
941 && is_gimple_assign (stmt)
942 && commutative_tree_code (gimple_assign_rhs_code (stmt))
943 /* Do so only if the number of not successful permutes was nor more
944 than a cut-ff as re-trying the recursive match on
945 possibly each level of the tree would expose exponential
946 behavior. */
947 && *npermutes < 4)
948 {
949 /* Roll back. */
950 *max_nunits = old_max_nunits;
951 loads->truncate (old_nloads);
952 /* Swap mismatched definition stmts. */
953 for (unsigned j = 0; j < group_size; ++j)
954 if (!matches[j])
955 {
956 gimple tem = oprnds_info[0]->def_stmts[j];
957 oprnds_info[0]->def_stmts[j] = oprnds_info[1]->def_stmts[j];
958 oprnds_info[1]->def_stmts[j] = tem;
959 }
960 /* And try again ... */
961 if (vect_build_slp_tree (loop_vinfo, bb_vinfo, &child,
962 group_size, max_nunits, loads,
963 vectorization_factor,
964 matches, npermutes))
965 {
966 oprnd_info->def_stmts = vNULL;
967 SLP_TREE_CHILDREN (*node).quick_push (child);
968 continue;
969 }
970
971 ++*npermutes;
972 }
973
974 oprnd_info->def_stmts = vNULL;
975 vect_free_slp_tree (child);
976 vect_free_oprnd_info (oprnds_info);
977 return false;
978 }
979
980 vect_free_oprnd_info (oprnds_info);
981 return true;
982 }
983
984 /* Dump a slp tree NODE using flags specified in DUMP_KIND. */
985
986 static void
987 vect_print_slp_tree (int dump_kind, slp_tree node)
988 {
989 int i;
990 gimple stmt;
991 slp_tree child;
992
993 if (!node)
994 return;
995
996 dump_printf (dump_kind, "node ");
997 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt)
998 {
999 dump_printf (dump_kind, "\n\tstmt %d ", i);
1000 dump_gimple_stmt (dump_kind, TDF_SLIM, stmt, 0);
1001 }
1002 dump_printf (dump_kind, "\n");
1003
1004 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
1005 vect_print_slp_tree (dump_kind, child);
1006 }
1007
1008
1009 /* Mark the tree rooted at NODE with MARK (PURE_SLP or HYBRID).
1010 If MARK is HYBRID, it refers to a specific stmt in NODE (the stmt at index
1011 J). Otherwise, MARK is PURE_SLP and J is -1, which indicates that all the
1012 stmts in NODE are to be marked. */
1013
1014 static void
1015 vect_mark_slp_stmts (slp_tree node, enum slp_vect_type mark, int j)
1016 {
1017 int i;
1018 gimple stmt;
1019 slp_tree child;
1020
1021 if (!node)
1022 return;
1023
1024 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt)
1025 if (j < 0 || i == j)
1026 STMT_SLP_TYPE (vinfo_for_stmt (stmt)) = mark;
1027
1028 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
1029 vect_mark_slp_stmts (child, mark, j);
1030 }
1031
1032
1033 /* Mark the statements of the tree rooted at NODE as relevant (vect_used). */
1034
1035 static void
1036 vect_mark_slp_stmts_relevant (slp_tree node)
1037 {
1038 int i;
1039 gimple stmt;
1040 stmt_vec_info stmt_info;
1041 slp_tree child;
1042
1043 if (!node)
1044 return;
1045
1046 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt)
1047 {
1048 stmt_info = vinfo_for_stmt (stmt);
1049 gcc_assert (!STMT_VINFO_RELEVANT (stmt_info)
1050 || STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope);
1051 STMT_VINFO_RELEVANT (stmt_info) = vect_used_in_scope;
1052 }
1053
1054 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
1055 vect_mark_slp_stmts_relevant (child);
1056 }
1057
1058
1059 /* Rearrange the statements of NODE according to PERMUTATION. */
1060
1061 static void
1062 vect_slp_rearrange_stmts (slp_tree node, unsigned int group_size,
1063 vec<unsigned> permutation)
1064 {
1065 gimple stmt;
1066 vec<gimple> tmp_stmts;
1067 unsigned int i;
1068 slp_tree child;
1069
1070 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
1071 vect_slp_rearrange_stmts (child, group_size, permutation);
1072
1073 gcc_assert (group_size == SLP_TREE_SCALAR_STMTS (node).length ());
1074 tmp_stmts.create (group_size);
1075 tmp_stmts.quick_grow_cleared (group_size);
1076
1077 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt)
1078 tmp_stmts[permutation[i]] = stmt;
1079
1080 SLP_TREE_SCALAR_STMTS (node).release ();
1081 SLP_TREE_SCALAR_STMTS (node) = tmp_stmts;
1082 }
1083
1084
1085 /* Check if the required load permutations in the SLP instance
1086 SLP_INSTN are supported. */
1087
1088 static bool
1089 vect_supported_load_permutation_p (slp_instance slp_instn)
1090 {
1091 unsigned int group_size = SLP_INSTANCE_GROUP_SIZE (slp_instn);
1092 unsigned int i, j, k, next;
1093 sbitmap load_index;
1094 slp_tree node;
1095 gimple stmt, load, next_load, first_load;
1096 struct data_reference *dr;
1097
1098 if (dump_enabled_p ())
1099 {
1100 dump_printf_loc (MSG_NOTE, vect_location, "Load permutation ");
1101 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (slp_instn), i, node)
1102 if (node->load_permutation.exists ())
1103 FOR_EACH_VEC_ELT (node->load_permutation, j, next)
1104 dump_printf (MSG_NOTE, "%d ", next);
1105 else
1106 for (k = 0; k < group_size; ++k)
1107 dump_printf (MSG_NOTE, "%d ", k);
1108 dump_printf (MSG_NOTE, "\n");
1109 }
1110
1111 /* In case of reduction every load permutation is allowed, since the order
1112 of the reduction statements is not important (as opposed to the case of
1113 grouped stores). The only condition we need to check is that all the
1114 load nodes are of the same size and have the same permutation (and then
1115 rearrange all the nodes of the SLP instance according to this
1116 permutation). */
1117
1118 /* Check that all the load nodes are of the same size. */
1119 /* ??? Can't we assert this? */
1120 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (slp_instn), i, node)
1121 if (SLP_TREE_SCALAR_STMTS (node).length () != (unsigned) group_size)
1122 return false;
1123
1124 node = SLP_INSTANCE_TREE (slp_instn);
1125 stmt = SLP_TREE_SCALAR_STMTS (node)[0];
1126
1127 /* Reduction (there are no data-refs in the root).
1128 In reduction chain the order of the loads is important. */
1129 if (!STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))
1130 && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
1131 {
1132 slp_tree load;
1133 unsigned int lidx;
1134
1135 /* Compare all the permutation sequences to the first one. We know
1136 that at least one load is permuted. */
1137 node = SLP_INSTANCE_LOADS (slp_instn)[0];
1138 if (!node->load_permutation.exists ())
1139 return false;
1140 for (i = 1; SLP_INSTANCE_LOADS (slp_instn).iterate (i, &load); ++i)
1141 {
1142 if (!load->load_permutation.exists ())
1143 return false;
1144 FOR_EACH_VEC_ELT (load->load_permutation, j, lidx)
1145 if (lidx != node->load_permutation[j])
1146 return false;
1147 }
1148
1149 /* Check that the loads in the first sequence are different and there
1150 are no gaps between them. */
1151 load_index = sbitmap_alloc (group_size);
1152 bitmap_clear (load_index);
1153 FOR_EACH_VEC_ELT (node->load_permutation, i, lidx)
1154 {
1155 if (bitmap_bit_p (load_index, lidx))
1156 {
1157 sbitmap_free (load_index);
1158 return false;
1159 }
1160 bitmap_set_bit (load_index, lidx);
1161 }
1162 for (i = 0; i < group_size; i++)
1163 if (!bitmap_bit_p (load_index, i))
1164 {
1165 sbitmap_free (load_index);
1166 return false;
1167 }
1168 sbitmap_free (load_index);
1169
1170 /* This permutation is valid for reduction. Since the order of the
1171 statements in the nodes is not important unless they are memory
1172 accesses, we can rearrange the statements in all the nodes
1173 according to the order of the loads. */
1174 vect_slp_rearrange_stmts (SLP_INSTANCE_TREE (slp_instn), group_size,
1175 node->load_permutation);
1176
1177 /* We are done, no actual permutations need to be generated. */
1178 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (slp_instn), i, node)
1179 SLP_TREE_LOAD_PERMUTATION (node).release ();
1180 return true;
1181 }
1182
1183 /* In basic block vectorization we allow any subchain of an interleaving
1184 chain.
1185 FORNOW: not supported in loop SLP because of realignment compications. */
1186 if (STMT_VINFO_BB_VINFO (vinfo_for_stmt (stmt)))
1187 {
1188 /* Check that for every node in the instance the loads
1189 form a subchain. */
1190 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (slp_instn), i, node)
1191 {
1192 next_load = NULL;
1193 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), j, load)
1194 {
1195 if (j != 0 && next_load != load)
1196 return false;
1197 next_load = GROUP_NEXT_ELEMENT (vinfo_for_stmt (load));
1198 }
1199 }
1200
1201 /* Check that the alignment of the first load in every subchain, i.e.,
1202 the first statement in every load node, is supported.
1203 ??? This belongs in alignment checking. */
1204 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (slp_instn), i, node)
1205 {
1206 first_load = SLP_TREE_SCALAR_STMTS (node)[0];
1207 if (first_load != GROUP_FIRST_ELEMENT (vinfo_for_stmt (first_load)))
1208 {
1209 dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_load));
1210 if (vect_supportable_dr_alignment (dr, false)
1211 == dr_unaligned_unsupported)
1212 {
1213 if (dump_enabled_p ())
1214 {
1215 dump_printf_loc (MSG_MISSED_OPTIMIZATION,
1216 vect_location,
1217 "unsupported unaligned load ");
1218 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
1219 first_load, 0);
1220 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
1221 }
1222 return false;
1223 }
1224 }
1225 }
1226
1227 /* We are done, no actual permutations need to be generated. */
1228 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (slp_instn), i, node)
1229 SLP_TREE_LOAD_PERMUTATION (node).release ();
1230 return true;
1231 }
1232
1233 /* FORNOW: the only supported permutation is 0..01..1.. of length equal to
1234 GROUP_SIZE and where each sequence of same drs is of GROUP_SIZE length as
1235 well (unless it's reduction). */
1236 if (SLP_INSTANCE_LOADS (slp_instn).length () != group_size)
1237 return false;
1238 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (slp_instn), i, node)
1239 if (!node->load_permutation.exists ())
1240 return false;
1241
1242 load_index = sbitmap_alloc (group_size);
1243 bitmap_clear (load_index);
1244 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (slp_instn), i, node)
1245 {
1246 unsigned int lidx = node->load_permutation[0];
1247 if (bitmap_bit_p (load_index, lidx))
1248 {
1249 sbitmap_free (load_index);
1250 return false;
1251 }
1252 bitmap_set_bit (load_index, lidx);
1253 FOR_EACH_VEC_ELT (node->load_permutation, j, k)
1254 if (k != lidx)
1255 {
1256 sbitmap_free (load_index);
1257 return false;
1258 }
1259 }
1260 for (i = 0; i < group_size; i++)
1261 if (!bitmap_bit_p (load_index, i))
1262 {
1263 sbitmap_free (load_index);
1264 return false;
1265 }
1266 sbitmap_free (load_index);
1267
1268 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (slp_instn), i, node)
1269 if (node->load_permutation.exists ()
1270 && !vect_transform_slp_perm_load
1271 (node, vNULL, NULL,
1272 SLP_INSTANCE_UNROLLING_FACTOR (slp_instn), slp_instn, true))
1273 return false;
1274 return true;
1275 }
1276
1277
1278 /* Find the first load in the loop that belongs to INSTANCE.
1279 When loads are in several SLP nodes, there can be a case in which the first
1280 load does not appear in the first SLP node to be transformed, causing
1281 incorrect order of statements. Since we generate all the loads together,
1282 they must be inserted before the first load of the SLP instance and not
1283 before the first load of the first node of the instance. */
1284
1285 static gimple
1286 vect_find_first_load_in_slp_instance (slp_instance instance)
1287 {
1288 int i, j;
1289 slp_tree load_node;
1290 gimple first_load = NULL, load;
1291
1292 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (instance), i, load_node)
1293 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (load_node), j, load)
1294 first_load = get_earlier_stmt (load, first_load);
1295
1296 return first_load;
1297 }
1298
1299
1300 /* Find the last store in SLP INSTANCE. */
1301
1302 static gimple
1303 vect_find_last_store_in_slp_instance (slp_instance instance)
1304 {
1305 int i;
1306 slp_tree node;
1307 gimple last_store = NULL, store;
1308
1309 node = SLP_INSTANCE_TREE (instance);
1310 for (i = 0; SLP_TREE_SCALAR_STMTS (node).iterate (i, &store); i++)
1311 last_store = get_later_stmt (store, last_store);
1312
1313 return last_store;
1314 }
1315
1316 /* Compute the cost for the SLP node NODE in the SLP instance INSTANCE. */
1317
1318 static void
1319 vect_analyze_slp_cost_1 (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo,
1320 slp_instance instance, slp_tree node,
1321 stmt_vector_for_cost *prologue_cost_vec,
1322 unsigned ncopies_for_cost)
1323 {
1324 stmt_vector_for_cost *body_cost_vec = &SLP_INSTANCE_BODY_COST_VEC (instance);
1325
1326 unsigned i;
1327 slp_tree child;
1328 gimple stmt, s;
1329 stmt_vec_info stmt_info;
1330 tree lhs;
1331 unsigned group_size = SLP_INSTANCE_GROUP_SIZE (instance);
1332
1333 /* Recurse down the SLP tree. */
1334 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
1335 vect_analyze_slp_cost_1 (loop_vinfo, bb_vinfo,
1336 instance, child, prologue_cost_vec,
1337 ncopies_for_cost);
1338
1339 /* Look at the first scalar stmt to determine the cost. */
1340 stmt = SLP_TREE_SCALAR_STMTS (node)[0];
1341 stmt_info = vinfo_for_stmt (stmt);
1342 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1343 {
1344 if (DR_IS_WRITE (STMT_VINFO_DATA_REF (stmt_info)))
1345 vect_model_store_cost (stmt_info, ncopies_for_cost, false,
1346 vect_uninitialized_def,
1347 node, prologue_cost_vec, body_cost_vec);
1348 else
1349 {
1350 int i;
1351 gcc_checking_assert (DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info)));
1352 vect_model_load_cost (stmt_info, ncopies_for_cost, false,
1353 node, prologue_cost_vec, body_cost_vec);
1354 /* If the load is permuted record the cost for the permutation.
1355 ??? Loads from multiple chains are let through here only
1356 for a single special case involving complex numbers where
1357 in the end no permutation is necessary. */
1358 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, s)
1359 if ((STMT_VINFO_GROUP_FIRST_ELEMENT (vinfo_for_stmt (s))
1360 == STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_info))
1361 && vect_get_place_in_interleaving_chain
1362 (s, STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_info)) != i)
1363 {
1364 record_stmt_cost (body_cost_vec, group_size, vec_perm,
1365 stmt_info, 0, vect_body);
1366 break;
1367 }
1368 }
1369 }
1370 else
1371 record_stmt_cost (body_cost_vec, ncopies_for_cost, vector_stmt,
1372 stmt_info, 0, vect_body);
1373
1374 /* Scan operands and account for prologue cost of constants/externals.
1375 ??? This over-estimates cost for multiple uses and should be
1376 re-engineered. */
1377 lhs = gimple_get_lhs (stmt);
1378 for (i = 0; i < gimple_num_ops (stmt); ++i)
1379 {
1380 tree def, op = gimple_op (stmt, i);
1381 gimple def_stmt;
1382 enum vect_def_type dt;
1383 if (!op || op == lhs)
1384 continue;
1385 if (vect_is_simple_use (op, NULL, loop_vinfo, bb_vinfo,
1386 &def_stmt, &def, &dt)
1387 && (dt == vect_constant_def || dt == vect_external_def))
1388 record_stmt_cost (prologue_cost_vec, 1, vector_stmt,
1389 stmt_info, 0, vect_prologue);
1390 }
1391 }
1392
1393 /* Compute the cost for the SLP instance INSTANCE. */
1394
1395 static void
1396 vect_analyze_slp_cost (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo,
1397 slp_instance instance, unsigned nunits)
1398 {
1399 stmt_vector_for_cost body_cost_vec, prologue_cost_vec;
1400 unsigned ncopies_for_cost;
1401 stmt_info_for_cost *si;
1402 unsigned i;
1403
1404 /* Calculate the number of vector stmts to create based on the unrolling
1405 factor (number of vectors is 1 if NUNITS >= GROUP_SIZE, and is
1406 GROUP_SIZE / NUNITS otherwise. */
1407 unsigned group_size = SLP_INSTANCE_GROUP_SIZE (instance);
1408 ncopies_for_cost = least_common_multiple (nunits, group_size) / nunits;
1409
1410 prologue_cost_vec.create (10);
1411 body_cost_vec.create (10);
1412 SLP_INSTANCE_BODY_COST_VEC (instance) = body_cost_vec;
1413 vect_analyze_slp_cost_1 (loop_vinfo, bb_vinfo,
1414 instance, SLP_INSTANCE_TREE (instance),
1415 &prologue_cost_vec, ncopies_for_cost);
1416
1417 /* Record the prologue costs, which were delayed until we were
1418 sure that SLP was successful. Unlike the body costs, we know
1419 the final values now regardless of the loop vectorization factor. */
1420 void *data = (loop_vinfo ? LOOP_VINFO_TARGET_COST_DATA (loop_vinfo)
1421 : BB_VINFO_TARGET_COST_DATA (bb_vinfo));
1422 FOR_EACH_VEC_ELT (prologue_cost_vec, i, si)
1423 {
1424 struct _stmt_vec_info *stmt_info
1425 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
1426 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
1427 si->misalign, vect_prologue);
1428 }
1429
1430 prologue_cost_vec.release ();
1431 }
1432
1433 /* Analyze an SLP instance starting from a group of grouped stores. Call
1434 vect_build_slp_tree to build a tree of packed stmts if possible.
1435 Return FALSE if it's impossible to SLP any stmt in the loop. */
1436
1437 static bool
1438 vect_analyze_slp_instance (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo,
1439 gimple stmt)
1440 {
1441 slp_instance new_instance;
1442 slp_tree node;
1443 unsigned int group_size = GROUP_SIZE (vinfo_for_stmt (stmt));
1444 unsigned int unrolling_factor = 1, nunits;
1445 tree vectype, scalar_type = NULL_TREE;
1446 gimple next;
1447 unsigned int vectorization_factor = 0;
1448 int i;
1449 unsigned int max_nunits = 0;
1450 vec<slp_tree> loads;
1451 struct data_reference *dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt));
1452 vec<gimple> scalar_stmts;
1453
1454 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
1455 {
1456 if (dr)
1457 {
1458 scalar_type = TREE_TYPE (DR_REF (dr));
1459 vectype = get_vectype_for_scalar_type (scalar_type);
1460 }
1461 else
1462 {
1463 gcc_assert (loop_vinfo);
1464 vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
1465 }
1466
1467 group_size = GROUP_SIZE (vinfo_for_stmt (stmt));
1468 }
1469 else
1470 {
1471 gcc_assert (loop_vinfo);
1472 vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
1473 group_size = LOOP_VINFO_REDUCTIONS (loop_vinfo).length ();
1474 }
1475
1476 if (!vectype)
1477 {
1478 if (dump_enabled_p ())
1479 {
1480 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1481 "Build SLP failed: unsupported data-type ");
1482 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, scalar_type);
1483 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
1484 }
1485
1486 return false;
1487 }
1488
1489 nunits = TYPE_VECTOR_SUBPARTS (vectype);
1490 if (loop_vinfo)
1491 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1492 else
1493 vectorization_factor = nunits;
1494
1495 /* Calculate the unrolling factor. */
1496 unrolling_factor = least_common_multiple (nunits, group_size) / group_size;
1497 if (unrolling_factor != 1 && !loop_vinfo)
1498 {
1499 if (dump_enabled_p ())
1500 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1501 "Build SLP failed: unrolling required in basic"
1502 " block SLP\n");
1503
1504 return false;
1505 }
1506
1507 /* Create a node (a root of the SLP tree) for the packed grouped stores. */
1508 scalar_stmts.create (group_size);
1509 next = stmt;
1510 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
1511 {
1512 /* Collect the stores and store them in SLP_TREE_SCALAR_STMTS. */
1513 while (next)
1514 {
1515 if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (next))
1516 && STMT_VINFO_RELATED_STMT (vinfo_for_stmt (next)))
1517 scalar_stmts.safe_push (
1518 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (next)));
1519 else
1520 scalar_stmts.safe_push (next);
1521 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
1522 }
1523 }
1524 else
1525 {
1526 /* Collect reduction statements. */
1527 vec<gimple> reductions = LOOP_VINFO_REDUCTIONS (loop_vinfo);
1528 for (i = 0; reductions.iterate (i, &next); i++)
1529 scalar_stmts.safe_push (next);
1530 }
1531
1532 node = vect_create_new_slp_node (scalar_stmts);
1533
1534 loads.create (group_size);
1535
1536 /* Build the tree for the SLP instance. */
1537 if (vect_build_slp_tree (loop_vinfo, bb_vinfo, &node, group_size,
1538 &max_nunits, &loads,
1539 vectorization_factor, NULL, NULL))
1540 {
1541 /* Calculate the unrolling factor based on the smallest type. */
1542 if (max_nunits > nunits)
1543 unrolling_factor = least_common_multiple (max_nunits, group_size)
1544 / group_size;
1545
1546 if (unrolling_factor != 1 && !loop_vinfo)
1547 {
1548 if (dump_enabled_p ())
1549 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1550 "Build SLP failed: unrolling required in basic"
1551 " block SLP\n");
1552 vect_free_slp_tree (node);
1553 loads.release ();
1554 return false;
1555 }
1556
1557 /* Create a new SLP instance. */
1558 new_instance = XNEW (struct _slp_instance);
1559 SLP_INSTANCE_TREE (new_instance) = node;
1560 SLP_INSTANCE_GROUP_SIZE (new_instance) = group_size;
1561 SLP_INSTANCE_UNROLLING_FACTOR (new_instance) = unrolling_factor;
1562 SLP_INSTANCE_BODY_COST_VEC (new_instance) = vNULL;
1563 SLP_INSTANCE_LOADS (new_instance) = loads;
1564 SLP_INSTANCE_FIRST_LOAD_STMT (new_instance) = NULL;
1565
1566 /* Compute the load permutation. */
1567 slp_tree load_node;
1568 bool loads_permuted = false;
1569 FOR_EACH_VEC_ELT (loads, i, load_node)
1570 {
1571 vec<unsigned> load_permutation;
1572 int j;
1573 gimple load, first_stmt;
1574 bool this_load_permuted = false;
1575 load_permutation.create (group_size);
1576 first_stmt = GROUP_FIRST_ELEMENT
1577 (vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (load_node)[0]));
1578 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (load_node), j, load)
1579 {
1580 int load_place
1581 = vect_get_place_in_interleaving_chain (load, first_stmt);
1582 gcc_assert (load_place != -1);
1583 if (load_place != j)
1584 this_load_permuted = true;
1585 load_permutation.safe_push (load_place);
1586 }
1587 if (!this_load_permuted)
1588 {
1589 load_permutation.release ();
1590 continue;
1591 }
1592 SLP_TREE_LOAD_PERMUTATION (load_node) = load_permutation;
1593 loads_permuted = true;
1594 }
1595
1596 if (loads_permuted)
1597 {
1598 if (!vect_supported_load_permutation_p (new_instance))
1599 {
1600 if (dump_enabled_p ())
1601 {
1602 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1603 "Build SLP failed: unsupported load "
1604 "permutation ");
1605 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
1606 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
1607 }
1608 vect_free_slp_instance (new_instance);
1609 return false;
1610 }
1611
1612 SLP_INSTANCE_FIRST_LOAD_STMT (new_instance)
1613 = vect_find_first_load_in_slp_instance (new_instance);
1614 }
1615
1616 /* Compute the costs of this SLP instance. */
1617 vect_analyze_slp_cost (loop_vinfo, bb_vinfo,
1618 new_instance, TYPE_VECTOR_SUBPARTS (vectype));
1619
1620 if (loop_vinfo)
1621 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).safe_push (new_instance);
1622 else
1623 BB_VINFO_SLP_INSTANCES (bb_vinfo).safe_push (new_instance);
1624
1625 if (dump_enabled_p ())
1626 vect_print_slp_tree (MSG_NOTE, node);
1627
1628 return true;
1629 }
1630
1631 /* Failed to SLP. */
1632 /* Free the allocated memory. */
1633 vect_free_slp_tree (node);
1634 loads.release ();
1635
1636 return false;
1637 }
1638
1639
1640 /* Check if there are stmts in the loop can be vectorized using SLP. Build SLP
1641 trees of packed scalar stmts if SLP is possible. */
1642
1643 bool
1644 vect_analyze_slp (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
1645 {
1646 unsigned int i;
1647 vec<gimple> grouped_stores;
1648 vec<gimple> reductions = vNULL;
1649 vec<gimple> reduc_chains = vNULL;
1650 gimple first_element;
1651 bool ok = false;
1652
1653 if (dump_enabled_p ())
1654 dump_printf_loc (MSG_NOTE, vect_location, "=== vect_analyze_slp ===\n");
1655
1656 if (loop_vinfo)
1657 {
1658 grouped_stores = LOOP_VINFO_GROUPED_STORES (loop_vinfo);
1659 reduc_chains = LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo);
1660 reductions = LOOP_VINFO_REDUCTIONS (loop_vinfo);
1661 }
1662 else
1663 grouped_stores = BB_VINFO_GROUPED_STORES (bb_vinfo);
1664
1665 /* Find SLP sequences starting from groups of grouped stores. */
1666 FOR_EACH_VEC_ELT (grouped_stores, i, first_element)
1667 if (vect_analyze_slp_instance (loop_vinfo, bb_vinfo, first_element))
1668 ok = true;
1669
1670 if (bb_vinfo && !ok)
1671 {
1672 if (dump_enabled_p ())
1673 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1674 "Failed to SLP the basic block.\n");
1675
1676 return false;
1677 }
1678
1679 if (loop_vinfo
1680 && LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo).length () > 0)
1681 {
1682 /* Find SLP sequences starting from reduction chains. */
1683 FOR_EACH_VEC_ELT (reduc_chains, i, first_element)
1684 if (vect_analyze_slp_instance (loop_vinfo, bb_vinfo, first_element))
1685 ok = true;
1686 else
1687 return false;
1688
1689 /* Don't try to vectorize SLP reductions if reduction chain was
1690 detected. */
1691 return ok;
1692 }
1693
1694 /* Find SLP sequences starting from groups of reductions. */
1695 if (loop_vinfo && LOOP_VINFO_REDUCTIONS (loop_vinfo).length () > 1
1696 && vect_analyze_slp_instance (loop_vinfo, bb_vinfo, reductions[0]))
1697 ok = true;
1698
1699 return true;
1700 }
1701
1702
1703 /* For each possible SLP instance decide whether to SLP it and calculate overall
1704 unrolling factor needed to SLP the loop. Return TRUE if decided to SLP at
1705 least one instance. */
1706
1707 bool
1708 vect_make_slp_decision (loop_vec_info loop_vinfo)
1709 {
1710 unsigned int i, unrolling_factor = 1;
1711 vec<slp_instance> slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
1712 slp_instance instance;
1713 int decided_to_slp = 0;
1714
1715 if (dump_enabled_p ())
1716 dump_printf_loc (MSG_NOTE, vect_location, "=== vect_make_slp_decision ==="
1717 "\n");
1718
1719 FOR_EACH_VEC_ELT (slp_instances, i, instance)
1720 {
1721 /* FORNOW: SLP if you can. */
1722 if (unrolling_factor < SLP_INSTANCE_UNROLLING_FACTOR (instance))
1723 unrolling_factor = SLP_INSTANCE_UNROLLING_FACTOR (instance);
1724
1725 /* Mark all the stmts that belong to INSTANCE as PURE_SLP stmts. Later we
1726 call vect_detect_hybrid_slp () to find stmts that need hybrid SLP and
1727 loop-based vectorization. Such stmts will be marked as HYBRID. */
1728 vect_mark_slp_stmts (SLP_INSTANCE_TREE (instance), pure_slp, -1);
1729 decided_to_slp++;
1730 }
1731
1732 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo) = unrolling_factor;
1733
1734 if (decided_to_slp && dump_enabled_p ())
1735 dump_printf_loc (MSG_NOTE, vect_location,
1736 "Decided to SLP %d instances. Unrolling factor %d\n",
1737 decided_to_slp, unrolling_factor);
1738
1739 return (decided_to_slp > 0);
1740 }
1741
1742
1743 /* Find stmts that must be both vectorized and SLPed (since they feed stmts that
1744 can't be SLPed) in the tree rooted at NODE. Mark such stmts as HYBRID. */
1745
1746 static void
1747 vect_detect_hybrid_slp_stmts (slp_tree node)
1748 {
1749 int i;
1750 vec<gimple> stmts = SLP_TREE_SCALAR_STMTS (node);
1751 gimple stmt = stmts[0];
1752 imm_use_iterator imm_iter;
1753 gimple use_stmt;
1754 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
1755 slp_tree child;
1756 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
1757 struct loop *loop = NULL;
1758 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo);
1759 basic_block bb = NULL;
1760
1761 if (!node)
1762 return;
1763
1764 if (loop_vinfo)
1765 loop = LOOP_VINFO_LOOP (loop_vinfo);
1766 else
1767 bb = BB_VINFO_BB (bb_vinfo);
1768
1769 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt)
1770 if (PURE_SLP_STMT (vinfo_for_stmt (stmt))
1771 && TREE_CODE (gimple_op (stmt, 0)) == SSA_NAME)
1772 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, gimple_op (stmt, 0))
1773 if (gimple_bb (use_stmt)
1774 && ((loop && flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
1775 || bb == gimple_bb (use_stmt))
1776 && (stmt_vinfo = vinfo_for_stmt (use_stmt))
1777 && !STMT_SLP_TYPE (stmt_vinfo)
1778 && (STMT_VINFO_RELEVANT (stmt_vinfo)
1779 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (stmt_vinfo)))
1780 && !(gimple_code (use_stmt) == GIMPLE_PHI
1781 && STMT_VINFO_DEF_TYPE (stmt_vinfo)
1782 == vect_reduction_def))
1783 vect_mark_slp_stmts (node, hybrid, i);
1784
1785 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
1786 vect_detect_hybrid_slp_stmts (child);
1787 }
1788
1789
1790 /* Find stmts that must be both vectorized and SLPed. */
1791
1792 void
1793 vect_detect_hybrid_slp (loop_vec_info loop_vinfo)
1794 {
1795 unsigned int i;
1796 vec<slp_instance> slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
1797 slp_instance instance;
1798
1799 if (dump_enabled_p ())
1800 dump_printf_loc (MSG_NOTE, vect_location, "=== vect_detect_hybrid_slp ==="
1801 "\n");
1802
1803 FOR_EACH_VEC_ELT (slp_instances, i, instance)
1804 vect_detect_hybrid_slp_stmts (SLP_INSTANCE_TREE (instance));
1805 }
1806
1807
1808 /* Create and initialize a new bb_vec_info struct for BB, as well as
1809 stmt_vec_info structs for all the stmts in it. */
1810
1811 static bb_vec_info
1812 new_bb_vec_info (basic_block bb)
1813 {
1814 bb_vec_info res = NULL;
1815 gimple_stmt_iterator gsi;
1816
1817 res = (bb_vec_info) xcalloc (1, sizeof (struct _bb_vec_info));
1818 BB_VINFO_BB (res) = bb;
1819
1820 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1821 {
1822 gimple stmt = gsi_stmt (gsi);
1823 gimple_set_uid (stmt, 0);
1824 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, NULL, res));
1825 }
1826
1827 BB_VINFO_GROUPED_STORES (res).create (10);
1828 BB_VINFO_SLP_INSTANCES (res).create (2);
1829 BB_VINFO_TARGET_COST_DATA (res) = init_cost (NULL);
1830
1831 bb->aux = res;
1832 return res;
1833 }
1834
1835
1836 /* Free BB_VINFO struct, as well as all the stmt_vec_info structs of all the
1837 stmts in the basic block. */
1838
1839 static void
1840 destroy_bb_vec_info (bb_vec_info bb_vinfo)
1841 {
1842 vec<slp_instance> slp_instances;
1843 slp_instance instance;
1844 basic_block bb;
1845 gimple_stmt_iterator si;
1846 unsigned i;
1847
1848 if (!bb_vinfo)
1849 return;
1850
1851 bb = BB_VINFO_BB (bb_vinfo);
1852
1853 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
1854 {
1855 gimple stmt = gsi_stmt (si);
1856 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1857
1858 if (stmt_info)
1859 /* Free stmt_vec_info. */
1860 free_stmt_vec_info (stmt);
1861 }
1862
1863 vect_destroy_datarefs (NULL, bb_vinfo);
1864 free_dependence_relations (BB_VINFO_DDRS (bb_vinfo));
1865 BB_VINFO_GROUPED_STORES (bb_vinfo).release ();
1866 slp_instances = BB_VINFO_SLP_INSTANCES (bb_vinfo);
1867 FOR_EACH_VEC_ELT (slp_instances, i, instance)
1868 vect_free_slp_instance (instance);
1869 BB_VINFO_SLP_INSTANCES (bb_vinfo).release ();
1870 destroy_cost_data (BB_VINFO_TARGET_COST_DATA (bb_vinfo));
1871 free (bb_vinfo);
1872 bb->aux = NULL;
1873 }
1874
1875
1876 /* Analyze statements contained in SLP tree node after recursively analyzing
1877 the subtree. Return TRUE if the operations are supported. */
1878
1879 static bool
1880 vect_slp_analyze_node_operations (bb_vec_info bb_vinfo, slp_tree node)
1881 {
1882 bool dummy;
1883 int i;
1884 gimple stmt;
1885 slp_tree child;
1886
1887 if (!node)
1888 return true;
1889
1890 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
1891 if (!vect_slp_analyze_node_operations (bb_vinfo, child))
1892 return false;
1893
1894 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt)
1895 {
1896 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1897 gcc_assert (stmt_info);
1898 gcc_assert (PURE_SLP_STMT (stmt_info));
1899
1900 if (!vect_analyze_stmt (stmt, &dummy, node))
1901 return false;
1902 }
1903
1904 return true;
1905 }
1906
1907
1908 /* Analyze statements in SLP instances of the basic block. Return TRUE if the
1909 operations are supported. */
1910
1911 static bool
1912 vect_slp_analyze_operations (bb_vec_info bb_vinfo)
1913 {
1914 vec<slp_instance> slp_instances = BB_VINFO_SLP_INSTANCES (bb_vinfo);
1915 slp_instance instance;
1916 int i;
1917
1918 for (i = 0; slp_instances.iterate (i, &instance); )
1919 {
1920 if (!vect_slp_analyze_node_operations (bb_vinfo,
1921 SLP_INSTANCE_TREE (instance)))
1922 {
1923 vect_free_slp_instance (instance);
1924 slp_instances.ordered_remove (i);
1925 }
1926 else
1927 i++;
1928 }
1929
1930 if (!slp_instances.length ())
1931 return false;
1932
1933 return true;
1934 }
1935
1936
1937 /* Compute the scalar cost of the SLP node NODE and its children
1938 and return it. Do not account defs that are marked in LIFE and
1939 update LIFE according to uses of NODE. */
1940
1941 static unsigned
1942 vect_bb_slp_scalar_cost (basic_block bb,
1943 slp_tree node, vec<bool, va_heap> *life)
1944 {
1945 unsigned scalar_cost = 0;
1946 unsigned i;
1947 gimple stmt;
1948 slp_tree child;
1949
1950 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt)
1951 {
1952 unsigned stmt_cost;
1953 ssa_op_iter op_iter;
1954 def_operand_p def_p;
1955 stmt_vec_info stmt_info;
1956
1957 if ((*life)[i])
1958 continue;
1959
1960 /* If there is a non-vectorized use of the defs then the scalar
1961 stmt is kept live in which case we do not account it or any
1962 required defs in the SLP children in the scalar cost. This
1963 way we make the vectorization more costly when compared to
1964 the scalar cost. */
1965 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, op_iter, SSA_OP_DEF)
1966 {
1967 imm_use_iterator use_iter;
1968 gimple use_stmt;
1969 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, DEF_FROM_PTR (def_p))
1970 if (!is_gimple_debug (use_stmt)
1971 && (gimple_code (use_stmt) == GIMPLE_PHI
1972 || gimple_bb (use_stmt) != bb
1973 || !STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (use_stmt))))
1974 {
1975 (*life)[i] = true;
1976 BREAK_FROM_IMM_USE_STMT (use_iter);
1977 }
1978 }
1979 if ((*life)[i])
1980 continue;
1981
1982 stmt_info = vinfo_for_stmt (stmt);
1983 if (STMT_VINFO_DATA_REF (stmt_info))
1984 {
1985 if (DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info)))
1986 stmt_cost = vect_get_stmt_cost (scalar_load);
1987 else
1988 stmt_cost = vect_get_stmt_cost (scalar_store);
1989 }
1990 else
1991 stmt_cost = vect_get_stmt_cost (scalar_stmt);
1992
1993 scalar_cost += stmt_cost;
1994 }
1995
1996 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
1997 scalar_cost += vect_bb_slp_scalar_cost (bb, child, life);
1998
1999 return scalar_cost;
2000 }
2001
2002 /* Check if vectorization of the basic block is profitable. */
2003
2004 static bool
2005 vect_bb_vectorization_profitable_p (bb_vec_info bb_vinfo)
2006 {
2007 vec<slp_instance> slp_instances = BB_VINFO_SLP_INSTANCES (bb_vinfo);
2008 slp_instance instance;
2009 int i, j;
2010 unsigned int vec_inside_cost = 0, vec_outside_cost = 0, scalar_cost = 0;
2011 unsigned int vec_prologue_cost = 0, vec_epilogue_cost = 0;
2012 void *target_cost_data = BB_VINFO_TARGET_COST_DATA (bb_vinfo);
2013 stmt_vec_info stmt_info = NULL;
2014 stmt_vector_for_cost body_cost_vec;
2015 stmt_info_for_cost *ci;
2016
2017 /* Calculate vector costs. */
2018 FOR_EACH_VEC_ELT (slp_instances, i, instance)
2019 {
2020 body_cost_vec = SLP_INSTANCE_BODY_COST_VEC (instance);
2021
2022 FOR_EACH_VEC_ELT (body_cost_vec, j, ci)
2023 {
2024 stmt_info = ci->stmt ? vinfo_for_stmt (ci->stmt) : NULL;
2025 (void) add_stmt_cost (target_cost_data, ci->count, ci->kind,
2026 stmt_info, ci->misalign, vect_body);
2027 }
2028 }
2029
2030 /* Calculate scalar cost. */
2031 FOR_EACH_VEC_ELT (slp_instances, i, instance)
2032 {
2033 auto_vec<bool, 20> life;
2034 life.safe_grow_cleared (SLP_INSTANCE_GROUP_SIZE (instance));
2035 scalar_cost += vect_bb_slp_scalar_cost (BB_VINFO_BB (bb_vinfo),
2036 SLP_INSTANCE_TREE (instance),
2037 &life);
2038 }
2039
2040 /* Complete the target-specific cost calculation. */
2041 finish_cost (BB_VINFO_TARGET_COST_DATA (bb_vinfo), &vec_prologue_cost,
2042 &vec_inside_cost, &vec_epilogue_cost);
2043
2044 vec_outside_cost = vec_prologue_cost + vec_epilogue_cost;
2045
2046 if (dump_enabled_p ())
2047 {
2048 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
2049 dump_printf (MSG_NOTE, " Vector inside of basic block cost: %d\n",
2050 vec_inside_cost);
2051 dump_printf (MSG_NOTE, " Vector prologue cost: %d\n", vec_prologue_cost);
2052 dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n", vec_epilogue_cost);
2053 dump_printf (MSG_NOTE, " Scalar cost of basic block: %d\n", scalar_cost);
2054 }
2055
2056 /* Vectorization is profitable if its cost is less than the cost of scalar
2057 version. */
2058 if (vec_outside_cost + vec_inside_cost >= scalar_cost)
2059 return false;
2060
2061 return true;
2062 }
2063
2064 /* Check if the basic block can be vectorized. */
2065
2066 static bb_vec_info
2067 vect_slp_analyze_bb_1 (basic_block bb)
2068 {
2069 bb_vec_info bb_vinfo;
2070 vec<slp_instance> slp_instances;
2071 slp_instance instance;
2072 int i;
2073 int min_vf = 2;
2074
2075 bb_vinfo = new_bb_vec_info (bb);
2076 if (!bb_vinfo)
2077 return NULL;
2078
2079 if (!vect_analyze_data_refs (NULL, bb_vinfo, &min_vf))
2080 {
2081 if (dump_enabled_p ())
2082 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2083 "not vectorized: unhandled data-ref in basic "
2084 "block.\n");
2085
2086 destroy_bb_vec_info (bb_vinfo);
2087 return NULL;
2088 }
2089
2090 if (BB_VINFO_DATAREFS (bb_vinfo).length () < 2)
2091 {
2092 if (dump_enabled_p ())
2093 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2094 "not vectorized: not enough data-refs in "
2095 "basic block.\n");
2096
2097 destroy_bb_vec_info (bb_vinfo);
2098 return NULL;
2099 }
2100
2101 if (!vect_analyze_data_ref_accesses (NULL, bb_vinfo))
2102 {
2103 if (dump_enabled_p ())
2104 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2105 "not vectorized: unhandled data access in "
2106 "basic block.\n");
2107
2108 destroy_bb_vec_info (bb_vinfo);
2109 return NULL;
2110 }
2111
2112 vect_pattern_recog (NULL, bb_vinfo);
2113
2114 if (!vect_analyze_data_refs_alignment (NULL, bb_vinfo))
2115 {
2116 if (dump_enabled_p ())
2117 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2118 "not vectorized: bad data alignment in basic "
2119 "block.\n");
2120
2121 destroy_bb_vec_info (bb_vinfo);
2122 return NULL;
2123 }
2124
2125 /* Check the SLP opportunities in the basic block, analyze and build SLP
2126 trees. */
2127 if (!vect_analyze_slp (NULL, bb_vinfo))
2128 {
2129 if (dump_enabled_p ())
2130 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2131 "not vectorized: failed to find SLP opportunities "
2132 "in basic block.\n");
2133
2134 destroy_bb_vec_info (bb_vinfo);
2135 return NULL;
2136 }
2137
2138 slp_instances = BB_VINFO_SLP_INSTANCES (bb_vinfo);
2139
2140 /* Mark all the statements that we want to vectorize as pure SLP and
2141 relevant. */
2142 FOR_EACH_VEC_ELT (slp_instances, i, instance)
2143 {
2144 vect_mark_slp_stmts (SLP_INSTANCE_TREE (instance), pure_slp, -1);
2145 vect_mark_slp_stmts_relevant (SLP_INSTANCE_TREE (instance));
2146 }
2147
2148 /* Mark all the statements that we do not want to vectorize. */
2149 for (gimple_stmt_iterator gsi = gsi_start_bb (BB_VINFO_BB (bb_vinfo));
2150 !gsi_end_p (gsi); gsi_next (&gsi))
2151 {
2152 stmt_vec_info vinfo = vinfo_for_stmt (gsi_stmt (gsi));
2153 if (STMT_SLP_TYPE (vinfo) != pure_slp)
2154 STMT_VINFO_VECTORIZABLE (vinfo) = false;
2155 }
2156
2157 /* Analyze dependences. At this point all stmts not participating in
2158 vectorization have to be marked. Dependence analysis assumes
2159 that we either vectorize all SLP instances or none at all. */
2160 if (!vect_slp_analyze_data_ref_dependences (bb_vinfo))
2161 {
2162 if (dump_enabled_p ())
2163 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2164 "not vectorized: unhandled data dependence "
2165 "in basic block.\n");
2166
2167 destroy_bb_vec_info (bb_vinfo);
2168 return NULL;
2169 }
2170
2171 if (!vect_verify_datarefs_alignment (NULL, bb_vinfo))
2172 {
2173 if (dump_enabled_p ())
2174 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2175 "not vectorized: unsupported alignment in basic "
2176 "block.\n");
2177 destroy_bb_vec_info (bb_vinfo);
2178 return NULL;
2179 }
2180
2181 if (!vect_slp_analyze_operations (bb_vinfo))
2182 {
2183 if (dump_enabled_p ())
2184 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2185 "not vectorized: bad operation in basic block.\n");
2186
2187 destroy_bb_vec_info (bb_vinfo);
2188 return NULL;
2189 }
2190
2191 /* Cost model: check if the vectorization is worthwhile. */
2192 if (!unlimited_cost_model (NULL)
2193 && !vect_bb_vectorization_profitable_p (bb_vinfo))
2194 {
2195 if (dump_enabled_p ())
2196 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2197 "not vectorized: vectorization is not "
2198 "profitable.\n");
2199
2200 destroy_bb_vec_info (bb_vinfo);
2201 return NULL;
2202 }
2203
2204 if (dump_enabled_p ())
2205 dump_printf_loc (MSG_NOTE, vect_location,
2206 "Basic block will be vectorized using SLP\n");
2207
2208 return bb_vinfo;
2209 }
2210
2211
2212 bb_vec_info
2213 vect_slp_analyze_bb (basic_block bb)
2214 {
2215 bb_vec_info bb_vinfo;
2216 int insns = 0;
2217 gimple_stmt_iterator gsi;
2218 unsigned int vector_sizes;
2219
2220 if (dump_enabled_p ())
2221 dump_printf_loc (MSG_NOTE, vect_location, "===vect_slp_analyze_bb===\n");
2222
2223 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2224 {
2225 gimple stmt = gsi_stmt (gsi);
2226 if (!is_gimple_debug (stmt)
2227 && !gimple_nop_p (stmt)
2228 && gimple_code (stmt) != GIMPLE_LABEL)
2229 insns++;
2230 }
2231
2232 if (insns > PARAM_VALUE (PARAM_SLP_MAX_INSNS_IN_BB))
2233 {
2234 if (dump_enabled_p ())
2235 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2236 "not vectorized: too many instructions in "
2237 "basic block.\n");
2238
2239 return NULL;
2240 }
2241
2242 /* Autodetect first vector size we try. */
2243 current_vector_size = 0;
2244 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
2245
2246 while (1)
2247 {
2248 bb_vinfo = vect_slp_analyze_bb_1 (bb);
2249 if (bb_vinfo)
2250 return bb_vinfo;
2251
2252 destroy_bb_vec_info (bb_vinfo);
2253
2254 vector_sizes &= ~current_vector_size;
2255 if (vector_sizes == 0
2256 || current_vector_size == 0)
2257 return NULL;
2258
2259 /* Try the next biggest vector size. */
2260 current_vector_size = 1 << floor_log2 (vector_sizes);
2261 if (dump_enabled_p ())
2262 dump_printf_loc (MSG_NOTE, vect_location,
2263 "***** Re-trying analysis with "
2264 "vector size %d\n", current_vector_size);
2265 }
2266 }
2267
2268
2269 /* SLP costs are calculated according to SLP instance unrolling factor (i.e.,
2270 the number of created vector stmts depends on the unrolling factor).
2271 However, the actual number of vector stmts for every SLP node depends on
2272 VF which is set later in vect_analyze_operations (). Hence, SLP costs
2273 should be updated. In this function we assume that the inside costs
2274 calculated in vect_model_xxx_cost are linear in ncopies. */
2275
2276 void
2277 vect_update_slp_costs_according_to_vf (loop_vec_info loop_vinfo)
2278 {
2279 unsigned int i, j, vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2280 vec<slp_instance> slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
2281 slp_instance instance;
2282 stmt_vector_for_cost body_cost_vec;
2283 stmt_info_for_cost *si;
2284 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2285
2286 if (dump_enabled_p ())
2287 dump_printf_loc (MSG_NOTE, vect_location,
2288 "=== vect_update_slp_costs_according_to_vf ===\n");
2289
2290 FOR_EACH_VEC_ELT (slp_instances, i, instance)
2291 {
2292 /* We assume that costs are linear in ncopies. */
2293 int ncopies = vf / SLP_INSTANCE_UNROLLING_FACTOR (instance);
2294
2295 /* Record the instance's instructions in the target cost model.
2296 This was delayed until here because the count of instructions
2297 isn't known beforehand. */
2298 body_cost_vec = SLP_INSTANCE_BODY_COST_VEC (instance);
2299
2300 FOR_EACH_VEC_ELT (body_cost_vec, j, si)
2301 (void) add_stmt_cost (data, si->count * ncopies, si->kind,
2302 vinfo_for_stmt (si->stmt), si->misalign,
2303 vect_body);
2304 }
2305 }
2306
2307
2308 /* For constant and loop invariant defs of SLP_NODE this function returns
2309 (vector) defs (VEC_OPRNDS) that will be used in the vectorized stmts.
2310 OP_NUM determines if we gather defs for operand 0 or operand 1 of the RHS of
2311 scalar stmts. NUMBER_OF_VECTORS is the number of vector defs to create.
2312 REDUC_INDEX is the index of the reduction operand in the statements, unless
2313 it is -1. */
2314
2315 static void
2316 vect_get_constant_vectors (tree op, slp_tree slp_node,
2317 vec<tree> *vec_oprnds,
2318 unsigned int op_num, unsigned int number_of_vectors,
2319 int reduc_index)
2320 {
2321 vec<gimple> stmts = SLP_TREE_SCALAR_STMTS (slp_node);
2322 gimple stmt = stmts[0];
2323 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
2324 unsigned nunits;
2325 tree vec_cst;
2326 tree *elts;
2327 unsigned j, number_of_places_left_in_vector;
2328 tree vector_type;
2329 tree vop;
2330 int group_size = stmts.length ();
2331 unsigned int vec_num, i;
2332 unsigned number_of_copies = 1;
2333 vec<tree> voprnds;
2334 voprnds.create (number_of_vectors);
2335 bool constant_p, is_store;
2336 tree neutral_op = NULL;
2337 enum tree_code code = gimple_expr_code (stmt);
2338 gimple def_stmt;
2339 struct loop *loop;
2340 gimple_seq ctor_seq = NULL;
2341
2342 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
2343 && reduc_index != -1)
2344 {
2345 op_num = reduc_index - 1;
2346 op = gimple_op (stmt, reduc_index);
2347 /* For additional copies (see the explanation of NUMBER_OF_COPIES below)
2348 we need either neutral operands or the original operands. See
2349 get_initial_def_for_reduction() for details. */
2350 switch (code)
2351 {
2352 case WIDEN_SUM_EXPR:
2353 case DOT_PROD_EXPR:
2354 case PLUS_EXPR:
2355 case MINUS_EXPR:
2356 case BIT_IOR_EXPR:
2357 case BIT_XOR_EXPR:
2358 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (op)))
2359 neutral_op = build_real (TREE_TYPE (op), dconst0);
2360 else
2361 neutral_op = build_int_cst (TREE_TYPE (op), 0);
2362
2363 break;
2364
2365 case MULT_EXPR:
2366 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (op)))
2367 neutral_op = build_real (TREE_TYPE (op), dconst1);
2368 else
2369 neutral_op = build_int_cst (TREE_TYPE (op), 1);
2370
2371 break;
2372
2373 case BIT_AND_EXPR:
2374 neutral_op = build_int_cst (TREE_TYPE (op), -1);
2375 break;
2376
2377 case MAX_EXPR:
2378 case MIN_EXPR:
2379 def_stmt = SSA_NAME_DEF_STMT (op);
2380 loop = (gimple_bb (stmt))->loop_father;
2381 neutral_op = PHI_ARG_DEF_FROM_EDGE (def_stmt,
2382 loop_preheader_edge (loop));
2383 break;
2384
2385 default:
2386 neutral_op = NULL;
2387 }
2388 }
2389
2390 if (STMT_VINFO_DATA_REF (stmt_vinfo))
2391 {
2392 is_store = true;
2393 op = gimple_assign_rhs1 (stmt);
2394 }
2395 else
2396 is_store = false;
2397
2398 gcc_assert (op);
2399
2400 if (CONSTANT_CLASS_P (op))
2401 constant_p = true;
2402 else
2403 constant_p = false;
2404
2405 vector_type = get_vectype_for_scalar_type (TREE_TYPE (op));
2406 gcc_assert (vector_type);
2407 nunits = TYPE_VECTOR_SUBPARTS (vector_type);
2408
2409 /* NUMBER_OF_COPIES is the number of times we need to use the same values in
2410 created vectors. It is greater than 1 if unrolling is performed.
2411
2412 For example, we have two scalar operands, s1 and s2 (e.g., group of
2413 strided accesses of size two), while NUNITS is four (i.e., four scalars
2414 of this type can be packed in a vector). The output vector will contain
2415 two copies of each scalar operand: {s1, s2, s1, s2}. (NUMBER_OF_COPIES
2416 will be 2).
2417
2418 If GROUP_SIZE > NUNITS, the scalars will be split into several vectors
2419 containing the operands.
2420
2421 For example, NUNITS is four as before, and the group size is 8
2422 (s1, s2, ..., s8). We will create two vectors {s1, s2, s3, s4} and
2423 {s5, s6, s7, s8}. */
2424
2425 number_of_copies = least_common_multiple (nunits, group_size) / group_size;
2426
2427 number_of_places_left_in_vector = nunits;
2428 elts = XALLOCAVEC (tree, nunits);
2429 for (j = 0; j < number_of_copies; j++)
2430 {
2431 for (i = group_size - 1; stmts.iterate (i, &stmt); i--)
2432 {
2433 if (is_store)
2434 op = gimple_assign_rhs1 (stmt);
2435 else
2436 {
2437 switch (code)
2438 {
2439 case COND_EXPR:
2440 if (op_num == 0 || op_num == 1)
2441 {
2442 tree cond = gimple_assign_rhs1 (stmt);
2443 op = TREE_OPERAND (cond, op_num);
2444 }
2445 else
2446 {
2447 if (op_num == 2)
2448 op = gimple_assign_rhs2 (stmt);
2449 else
2450 op = gimple_assign_rhs3 (stmt);
2451 }
2452 break;
2453
2454 case CALL_EXPR:
2455 op = gimple_call_arg (stmt, op_num);
2456 break;
2457
2458 case LSHIFT_EXPR:
2459 case RSHIFT_EXPR:
2460 case LROTATE_EXPR:
2461 case RROTATE_EXPR:
2462 op = gimple_op (stmt, op_num + 1);
2463 /* Unlike the other binary operators, shifts/rotates have
2464 the shift count being int, instead of the same type as
2465 the lhs, so make sure the scalar is the right type if
2466 we are dealing with vectors of
2467 long long/long/short/char. */
2468 if (op_num == 1 && TREE_CODE (op) == INTEGER_CST)
2469 op = fold_convert (TREE_TYPE (vector_type), op);
2470 break;
2471
2472 default:
2473 op = gimple_op (stmt, op_num + 1);
2474 break;
2475 }
2476 }
2477
2478 if (reduc_index != -1)
2479 {
2480 loop = (gimple_bb (stmt))->loop_father;
2481 def_stmt = SSA_NAME_DEF_STMT (op);
2482
2483 gcc_assert (loop);
2484
2485 /* Get the def before the loop. In reduction chain we have only
2486 one initial value. */
2487 if ((j != (number_of_copies - 1)
2488 || (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt))
2489 && i != 0))
2490 && neutral_op)
2491 op = neutral_op;
2492 else
2493 op = PHI_ARG_DEF_FROM_EDGE (def_stmt,
2494 loop_preheader_edge (loop));
2495 }
2496
2497 /* Create 'vect_ = {op0,op1,...,opn}'. */
2498 number_of_places_left_in_vector--;
2499 if (!types_compatible_p (TREE_TYPE (vector_type), TREE_TYPE (op)))
2500 {
2501 if (CONSTANT_CLASS_P (op))
2502 {
2503 op = fold_unary (VIEW_CONVERT_EXPR,
2504 TREE_TYPE (vector_type), op);
2505 gcc_assert (op && CONSTANT_CLASS_P (op));
2506 }
2507 else
2508 {
2509 tree new_temp
2510 = make_ssa_name (TREE_TYPE (vector_type), NULL);
2511 gimple init_stmt;
2512 op = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (vector_type),
2513 op);
2514 init_stmt
2515 = gimple_build_assign_with_ops (VIEW_CONVERT_EXPR,
2516 new_temp, op, NULL_TREE);
2517 gimple_seq_add_stmt (&ctor_seq, init_stmt);
2518 op = new_temp;
2519 }
2520 }
2521 elts[number_of_places_left_in_vector] = op;
2522 if (!CONSTANT_CLASS_P (op))
2523 constant_p = false;
2524
2525 if (number_of_places_left_in_vector == 0)
2526 {
2527 number_of_places_left_in_vector = nunits;
2528
2529 if (constant_p)
2530 vec_cst = build_vector (vector_type, elts);
2531 else
2532 {
2533 vec<constructor_elt, va_gc> *v;
2534 unsigned k;
2535 vec_alloc (v, nunits);
2536 for (k = 0; k < nunits; ++k)
2537 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[k]);
2538 vec_cst = build_constructor (vector_type, v);
2539 }
2540 voprnds.quick_push (vect_init_vector (stmt, vec_cst,
2541 vector_type, NULL));
2542 if (ctor_seq != NULL)
2543 {
2544 gimple init_stmt = SSA_NAME_DEF_STMT (voprnds.last ());
2545 gimple_stmt_iterator gsi = gsi_for_stmt (init_stmt);
2546 gsi_insert_seq_before_without_update (&gsi, ctor_seq,
2547 GSI_SAME_STMT);
2548 ctor_seq = NULL;
2549 }
2550 }
2551 }
2552 }
2553
2554 /* Since the vectors are created in the reverse order, we should invert
2555 them. */
2556 vec_num = voprnds.length ();
2557 for (j = vec_num; j != 0; j--)
2558 {
2559 vop = voprnds[j - 1];
2560 vec_oprnds->quick_push (vop);
2561 }
2562
2563 voprnds.release ();
2564
2565 /* In case that VF is greater than the unrolling factor needed for the SLP
2566 group of stmts, NUMBER_OF_VECTORS to be created is greater than
2567 NUMBER_OF_SCALARS/NUNITS or NUNITS/NUMBER_OF_SCALARS, and hence we have
2568 to replicate the vectors. */
2569 while (number_of_vectors > vec_oprnds->length ())
2570 {
2571 tree neutral_vec = NULL;
2572
2573 if (neutral_op)
2574 {
2575 if (!neutral_vec)
2576 neutral_vec = build_vector_from_val (vector_type, neutral_op);
2577
2578 vec_oprnds->quick_push (neutral_vec);
2579 }
2580 else
2581 {
2582 for (i = 0; vec_oprnds->iterate (i, &vop) && i < vec_num; i++)
2583 vec_oprnds->quick_push (vop);
2584 }
2585 }
2586 }
2587
2588
2589 /* Get vectorized definitions from SLP_NODE that contains corresponding
2590 vectorized def-stmts. */
2591
2592 static void
2593 vect_get_slp_vect_defs (slp_tree slp_node, vec<tree> *vec_oprnds)
2594 {
2595 tree vec_oprnd;
2596 gimple vec_def_stmt;
2597 unsigned int i;
2598
2599 gcc_assert (SLP_TREE_VEC_STMTS (slp_node).exists ());
2600
2601 FOR_EACH_VEC_ELT (SLP_TREE_VEC_STMTS (slp_node), i, vec_def_stmt)
2602 {
2603 gcc_assert (vec_def_stmt);
2604 vec_oprnd = gimple_get_lhs (vec_def_stmt);
2605 vec_oprnds->quick_push (vec_oprnd);
2606 }
2607 }
2608
2609
2610 /* Get vectorized definitions for SLP_NODE.
2611 If the scalar definitions are loop invariants or constants, collect them and
2612 call vect_get_constant_vectors() to create vector stmts.
2613 Otherwise, the def-stmts must be already vectorized and the vectorized stmts
2614 must be stored in the corresponding child of SLP_NODE, and we call
2615 vect_get_slp_vect_defs () to retrieve them. */
2616
2617 void
2618 vect_get_slp_defs (vec<tree> ops, slp_tree slp_node,
2619 vec<vec<tree> > *vec_oprnds, int reduc_index)
2620 {
2621 gimple first_stmt;
2622 int number_of_vects = 0, i;
2623 unsigned int child_index = 0;
2624 HOST_WIDE_INT lhs_size_unit, rhs_size_unit;
2625 slp_tree child = NULL;
2626 vec<tree> vec_defs;
2627 tree oprnd;
2628 bool vectorized_defs;
2629
2630 first_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[0];
2631 FOR_EACH_VEC_ELT (ops, i, oprnd)
2632 {
2633 /* For each operand we check if it has vectorized definitions in a child
2634 node or we need to create them (for invariants and constants). We
2635 check if the LHS of the first stmt of the next child matches OPRND.
2636 If it does, we found the correct child. Otherwise, we call
2637 vect_get_constant_vectors (), and not advance CHILD_INDEX in order
2638 to check this child node for the next operand. */
2639 vectorized_defs = false;
2640 if (SLP_TREE_CHILDREN (slp_node).length () > child_index)
2641 {
2642 child = SLP_TREE_CHILDREN (slp_node)[child_index];
2643
2644 /* We have to check both pattern and original def, if available. */
2645 gimple first_def = SLP_TREE_SCALAR_STMTS (child)[0];
2646 gimple related = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (first_def));
2647
2648 if (operand_equal_p (oprnd, gimple_get_lhs (first_def), 0)
2649 || (related
2650 && operand_equal_p (oprnd, gimple_get_lhs (related), 0)))
2651 {
2652 /* The number of vector defs is determined by the number of
2653 vector statements in the node from which we get those
2654 statements. */
2655 number_of_vects = SLP_TREE_NUMBER_OF_VEC_STMTS (child);
2656 vectorized_defs = true;
2657 child_index++;
2658 }
2659 }
2660
2661 if (!vectorized_defs)
2662 {
2663 if (i == 0)
2664 {
2665 number_of_vects = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
2666 /* Number of vector stmts was calculated according to LHS in
2667 vect_schedule_slp_instance (), fix it by replacing LHS with
2668 RHS, if necessary. See vect_get_smallest_scalar_type () for
2669 details. */
2670 vect_get_smallest_scalar_type (first_stmt, &lhs_size_unit,
2671 &rhs_size_unit);
2672 if (rhs_size_unit != lhs_size_unit)
2673 {
2674 number_of_vects *= rhs_size_unit;
2675 number_of_vects /= lhs_size_unit;
2676 }
2677 }
2678 }
2679
2680 /* Allocate memory for vectorized defs. */
2681 vec_defs = vNULL;
2682 vec_defs.create (number_of_vects);
2683
2684 /* For reduction defs we call vect_get_constant_vectors (), since we are
2685 looking for initial loop invariant values. */
2686 if (vectorized_defs && reduc_index == -1)
2687 /* The defs are already vectorized. */
2688 vect_get_slp_vect_defs (child, &vec_defs);
2689 else
2690 /* Build vectors from scalar defs. */
2691 vect_get_constant_vectors (oprnd, slp_node, &vec_defs, i,
2692 number_of_vects, reduc_index);
2693
2694 vec_oprnds->quick_push (vec_defs);
2695
2696 /* For reductions, we only need initial values. */
2697 if (reduc_index != -1)
2698 return;
2699 }
2700 }
2701
2702
2703 /* Create NCOPIES permutation statements using the mask MASK_BYTES (by
2704 building a vector of type MASK_TYPE from it) and two input vectors placed in
2705 DR_CHAIN at FIRST_VEC_INDX and SECOND_VEC_INDX for the first copy and
2706 shifting by STRIDE elements of DR_CHAIN for every copy.
2707 (STRIDE is the number of vectorized stmts for NODE divided by the number of
2708 copies).
2709 VECT_STMTS_COUNTER specifies the index in the vectorized stmts of NODE, where
2710 the created stmts must be inserted. */
2711
2712 static inline void
2713 vect_create_mask_and_perm (gimple stmt, gimple next_scalar_stmt,
2714 tree mask, int first_vec_indx, int second_vec_indx,
2715 gimple_stmt_iterator *gsi, slp_tree node,
2716 tree vectype, vec<tree> dr_chain,
2717 int ncopies, int vect_stmts_counter)
2718 {
2719 tree perm_dest;
2720 gimple perm_stmt = NULL;
2721 stmt_vec_info next_stmt_info;
2722 int i, stride;
2723 tree first_vec, second_vec, data_ref;
2724
2725 stride = SLP_TREE_NUMBER_OF_VEC_STMTS (node) / ncopies;
2726
2727 /* Initialize the vect stmts of NODE to properly insert the generated
2728 stmts later. */
2729 for (i = SLP_TREE_VEC_STMTS (node).length ();
2730 i < (int) SLP_TREE_NUMBER_OF_VEC_STMTS (node); i++)
2731 SLP_TREE_VEC_STMTS (node).quick_push (NULL);
2732
2733 perm_dest = vect_create_destination_var (gimple_assign_lhs (stmt), vectype);
2734 for (i = 0; i < ncopies; i++)
2735 {
2736 first_vec = dr_chain[first_vec_indx];
2737 second_vec = dr_chain[second_vec_indx];
2738
2739 /* Generate the permute statement. */
2740 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, perm_dest,
2741 first_vec, second_vec, mask);
2742 data_ref = make_ssa_name (perm_dest, perm_stmt);
2743 gimple_set_lhs (perm_stmt, data_ref);
2744 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
2745
2746 /* Store the vector statement in NODE. */
2747 SLP_TREE_VEC_STMTS (node)[stride * i + vect_stmts_counter] = perm_stmt;
2748
2749 first_vec_indx += stride;
2750 second_vec_indx += stride;
2751 }
2752
2753 /* Mark the scalar stmt as vectorized. */
2754 next_stmt_info = vinfo_for_stmt (next_scalar_stmt);
2755 STMT_VINFO_VEC_STMT (next_stmt_info) = perm_stmt;
2756 }
2757
2758
2759 /* Given FIRST_MASK_ELEMENT - the mask element in element representation,
2760 return in CURRENT_MASK_ELEMENT its equivalent in target specific
2761 representation. Check that the mask is valid and return FALSE if not.
2762 Return TRUE in NEED_NEXT_VECTOR if the permutation requires to move to
2763 the next vector, i.e., the current first vector is not needed. */
2764
2765 static bool
2766 vect_get_mask_element (gimple stmt, int first_mask_element, int m,
2767 int mask_nunits, bool only_one_vec, int index,
2768 unsigned char *mask, int *current_mask_element,
2769 bool *need_next_vector, int *number_of_mask_fixes,
2770 bool *mask_fixed, bool *needs_first_vector)
2771 {
2772 int i;
2773
2774 /* Convert to target specific representation. */
2775 *current_mask_element = first_mask_element + m;
2776 /* Adjust the value in case it's a mask for second and third vectors. */
2777 *current_mask_element -= mask_nunits * (*number_of_mask_fixes - 1);
2778
2779 if (*current_mask_element < mask_nunits)
2780 *needs_first_vector = true;
2781
2782 /* We have only one input vector to permute but the mask accesses values in
2783 the next vector as well. */
2784 if (only_one_vec && *current_mask_element >= mask_nunits)
2785 {
2786 if (dump_enabled_p ())
2787 {
2788 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2789 "permutation requires at least two vectors ");
2790 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
2791 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2792 }
2793
2794 return false;
2795 }
2796
2797 /* The mask requires the next vector. */
2798 if (*current_mask_element >= mask_nunits * 2)
2799 {
2800 if (*needs_first_vector || *mask_fixed)
2801 {
2802 /* We either need the first vector too or have already moved to the
2803 next vector. In both cases, this permutation needs three
2804 vectors. */
2805 if (dump_enabled_p ())
2806 {
2807 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2808 "permutation requires at "
2809 "least three vectors ");
2810 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
2811 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2812 }
2813
2814 return false;
2815 }
2816
2817 /* We move to the next vector, dropping the first one and working with
2818 the second and the third - we need to adjust the values of the mask
2819 accordingly. */
2820 *current_mask_element -= mask_nunits * *number_of_mask_fixes;
2821
2822 for (i = 0; i < index; i++)
2823 mask[i] -= mask_nunits * *number_of_mask_fixes;
2824
2825 (*number_of_mask_fixes)++;
2826 *mask_fixed = true;
2827 }
2828
2829 *need_next_vector = *mask_fixed;
2830
2831 /* This was the last element of this mask. Start a new one. */
2832 if (index == mask_nunits - 1)
2833 {
2834 *number_of_mask_fixes = 1;
2835 *mask_fixed = false;
2836 *needs_first_vector = false;
2837 }
2838
2839 return true;
2840 }
2841
2842
2843 /* Generate vector permute statements from a list of loads in DR_CHAIN.
2844 If ANALYZE_ONLY is TRUE, only check that it is possible to create valid
2845 permute statements for the SLP node NODE of the SLP instance
2846 SLP_NODE_INSTANCE. */
2847
2848 bool
2849 vect_transform_slp_perm_load (slp_tree node, vec<tree> dr_chain,
2850 gimple_stmt_iterator *gsi, int vf,
2851 slp_instance slp_node_instance, bool analyze_only)
2852 {
2853 gimple stmt = SLP_TREE_SCALAR_STMTS (node)[0];
2854 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2855 tree mask_element_type = NULL_TREE, mask_type;
2856 int i, j, k, nunits, vec_index = 0, scalar_index;
2857 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2858 gimple next_scalar_stmt;
2859 int group_size = SLP_INSTANCE_GROUP_SIZE (slp_node_instance);
2860 int first_mask_element;
2861 int index, unroll_factor, current_mask_element, ncopies;
2862 unsigned char *mask;
2863 bool only_one_vec = false, need_next_vector = false;
2864 int first_vec_index, second_vec_index, orig_vec_stmts_num, vect_stmts_counter;
2865 int number_of_mask_fixes = 1;
2866 bool mask_fixed = false;
2867 bool needs_first_vector = false;
2868 enum machine_mode mode;
2869
2870 mode = TYPE_MODE (vectype);
2871
2872 if (!can_vec_perm_p (mode, false, NULL))
2873 {
2874 if (dump_enabled_p ())
2875 {
2876 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2877 "no vect permute for ");
2878 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
2879 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2880 }
2881 return false;
2882 }
2883
2884 /* The generic VEC_PERM_EXPR code always uses an integral type of the
2885 same size as the vector element being permuted. */
2886 mask_element_type = lang_hooks.types.type_for_mode
2887 (int_mode_for_mode (TYPE_MODE (TREE_TYPE (vectype))), 1);
2888 mask_type = get_vectype_for_scalar_type (mask_element_type);
2889 nunits = TYPE_VECTOR_SUBPARTS (vectype);
2890 mask = XALLOCAVEC (unsigned char, nunits);
2891 unroll_factor = SLP_INSTANCE_UNROLLING_FACTOR (slp_node_instance);
2892
2893 /* The number of vector stmts to generate based only on SLP_NODE_INSTANCE
2894 unrolling factor. */
2895 orig_vec_stmts_num = group_size *
2896 SLP_INSTANCE_UNROLLING_FACTOR (slp_node_instance) / nunits;
2897 if (orig_vec_stmts_num == 1)
2898 only_one_vec = true;
2899
2900 /* Number of copies is determined by the final vectorization factor
2901 relatively to SLP_NODE_INSTANCE unrolling factor. */
2902 ncopies = vf / SLP_INSTANCE_UNROLLING_FACTOR (slp_node_instance);
2903
2904 if (!STMT_VINFO_GROUPED_ACCESS (stmt_info))
2905 return false;
2906
2907 /* Generate permutation masks for every NODE. Number of masks for each NODE
2908 is equal to GROUP_SIZE.
2909 E.g., we have a group of three nodes with three loads from the same
2910 location in each node, and the vector size is 4. I.e., we have a
2911 a0b0c0a1b1c1... sequence and we need to create the following vectors:
2912 for a's: a0a0a0a1 a1a1a2a2 a2a3a3a3
2913 for b's: b0b0b0b1 b1b1b2b2 b2b3b3b3
2914 ...
2915
2916 The masks for a's should be: {0,0,0,3} {3,3,6,6} {6,9,9,9}.
2917 The last mask is illegal since we assume two operands for permute
2918 operation, and the mask element values can't be outside that range.
2919 Hence, the last mask must be converted into {2,5,5,5}.
2920 For the first two permutations we need the first and the second input
2921 vectors: {a0,b0,c0,a1} and {b1,c1,a2,b2}, and for the last permutation
2922 we need the second and the third vectors: {b1,c1,a2,b2} and
2923 {c2,a3,b3,c3}. */
2924
2925 {
2926 scalar_index = 0;
2927 index = 0;
2928 vect_stmts_counter = 0;
2929 vec_index = 0;
2930 first_vec_index = vec_index++;
2931 if (only_one_vec)
2932 second_vec_index = first_vec_index;
2933 else
2934 second_vec_index = vec_index++;
2935
2936 for (j = 0; j < unroll_factor; j++)
2937 {
2938 for (k = 0; k < group_size; k++)
2939 {
2940 i = SLP_TREE_LOAD_PERMUTATION (node)[k];
2941 first_mask_element = i + j * group_size;
2942 if (!vect_get_mask_element (stmt, first_mask_element, 0,
2943 nunits, only_one_vec, index,
2944 mask, &current_mask_element,
2945 &need_next_vector,
2946 &number_of_mask_fixes, &mask_fixed,
2947 &needs_first_vector))
2948 return false;
2949 mask[index++] = current_mask_element;
2950
2951 if (index == nunits)
2952 {
2953 index = 0;
2954 if (!can_vec_perm_p (mode, false, mask))
2955 {
2956 if (dump_enabled_p ())
2957 {
2958 dump_printf_loc (MSG_MISSED_OPTIMIZATION,
2959 vect_location,
2960 "unsupported vect permute { ");
2961 for (i = 0; i < nunits; ++i)
2962 dump_printf (MSG_MISSED_OPTIMIZATION, "%d ",
2963 mask[i]);
2964 dump_printf (MSG_MISSED_OPTIMIZATION, "}\n");
2965 }
2966 return false;
2967 }
2968
2969 if (!analyze_only)
2970 {
2971 int l;
2972 tree mask_vec, *mask_elts;
2973 mask_elts = XALLOCAVEC (tree, nunits);
2974 for (l = 0; l < nunits; ++l)
2975 mask_elts[l] = build_int_cst (mask_element_type,
2976 mask[l]);
2977 mask_vec = build_vector (mask_type, mask_elts);
2978
2979 if (need_next_vector)
2980 {
2981 first_vec_index = second_vec_index;
2982 second_vec_index = vec_index;
2983 }
2984
2985 next_scalar_stmt
2986 = SLP_TREE_SCALAR_STMTS (node)[scalar_index++];
2987
2988 vect_create_mask_and_perm (stmt, next_scalar_stmt,
2989 mask_vec, first_vec_index, second_vec_index,
2990 gsi, node, vectype, dr_chain,
2991 ncopies, vect_stmts_counter++);
2992 }
2993 }
2994 }
2995 }
2996 }
2997
2998 return true;
2999 }
3000
3001
3002
3003 /* Vectorize SLP instance tree in postorder. */
3004
3005 static bool
3006 vect_schedule_slp_instance (slp_tree node, slp_instance instance,
3007 unsigned int vectorization_factor)
3008 {
3009 gimple stmt;
3010 bool grouped_store, is_store;
3011 gimple_stmt_iterator si;
3012 stmt_vec_info stmt_info;
3013 unsigned int vec_stmts_size, nunits, group_size;
3014 tree vectype;
3015 int i;
3016 slp_tree child;
3017
3018 if (!node)
3019 return false;
3020
3021 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
3022 vect_schedule_slp_instance (child, instance, vectorization_factor);
3023
3024 stmt = SLP_TREE_SCALAR_STMTS (node)[0];
3025 stmt_info = vinfo_for_stmt (stmt);
3026
3027 /* VECTYPE is the type of the destination. */
3028 vectype = STMT_VINFO_VECTYPE (stmt_info);
3029 nunits = (unsigned int) TYPE_VECTOR_SUBPARTS (vectype);
3030 group_size = SLP_INSTANCE_GROUP_SIZE (instance);
3031
3032 /* For each SLP instance calculate number of vector stmts to be created
3033 for the scalar stmts in each node of the SLP tree. Number of vector
3034 elements in one vector iteration is the number of scalar elements in
3035 one scalar iteration (GROUP_SIZE) multiplied by VF divided by vector
3036 size. */
3037 vec_stmts_size = (vectorization_factor * group_size) / nunits;
3038
3039 if (!SLP_TREE_VEC_STMTS (node).exists ())
3040 {
3041 SLP_TREE_VEC_STMTS (node).create (vec_stmts_size);
3042 SLP_TREE_NUMBER_OF_VEC_STMTS (node) = vec_stmts_size;
3043 }
3044
3045 if (dump_enabled_p ())
3046 {
3047 dump_printf_loc (MSG_NOTE,vect_location,
3048 "------>vectorizing SLP node starting from: ");
3049 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
3050 dump_printf (MSG_NOTE, "\n");
3051 }
3052
3053 /* Loads should be inserted before the first load. */
3054 if (SLP_INSTANCE_FIRST_LOAD_STMT (instance)
3055 && STMT_VINFO_GROUPED_ACCESS (stmt_info)
3056 && !REFERENCE_CLASS_P (gimple_get_lhs (stmt))
3057 && SLP_TREE_LOAD_PERMUTATION (node).exists ())
3058 si = gsi_for_stmt (SLP_INSTANCE_FIRST_LOAD_STMT (instance));
3059 else if (is_pattern_stmt_p (stmt_info))
3060 si = gsi_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
3061 else
3062 si = gsi_for_stmt (stmt);
3063
3064 /* Stores should be inserted just before the last store. */
3065 if (STMT_VINFO_GROUPED_ACCESS (stmt_info)
3066 && REFERENCE_CLASS_P (gimple_get_lhs (stmt)))
3067 {
3068 gimple last_store = vect_find_last_store_in_slp_instance (instance);
3069 if (is_pattern_stmt_p (vinfo_for_stmt (last_store)))
3070 last_store = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (last_store));
3071 si = gsi_for_stmt (last_store);
3072 }
3073
3074 /* Mark the first element of the reduction chain as reduction to properly
3075 transform the node. In the analysis phase only the last element of the
3076 chain is marked as reduction. */
3077 if (GROUP_FIRST_ELEMENT (stmt_info) && !STMT_VINFO_GROUPED_ACCESS (stmt_info)
3078 && GROUP_FIRST_ELEMENT (stmt_info) == stmt)
3079 {
3080 STMT_VINFO_DEF_TYPE (stmt_info) = vect_reduction_def;
3081 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
3082 }
3083
3084 is_store = vect_transform_stmt (stmt, &si, &grouped_store, node, instance);
3085 return is_store;
3086 }
3087
3088 /* Replace scalar calls from SLP node NODE with setting of their lhs to zero.
3089 For loop vectorization this is done in vectorizable_call, but for SLP
3090 it needs to be deferred until end of vect_schedule_slp, because multiple
3091 SLP instances may refer to the same scalar stmt. */
3092
3093 static void
3094 vect_remove_slp_scalar_calls (slp_tree node)
3095 {
3096 gimple stmt, new_stmt;
3097 gimple_stmt_iterator gsi;
3098 int i;
3099 slp_tree child;
3100 tree lhs;
3101 stmt_vec_info stmt_info;
3102
3103 if (!node)
3104 return;
3105
3106 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
3107 vect_remove_slp_scalar_calls (child);
3108
3109 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt)
3110 {
3111 if (!is_gimple_call (stmt) || gimple_bb (stmt) == NULL)
3112 continue;
3113 stmt_info = vinfo_for_stmt (stmt);
3114 if (stmt_info == NULL
3115 || is_pattern_stmt_p (stmt_info)
3116 || !PURE_SLP_STMT (stmt_info))
3117 continue;
3118 lhs = gimple_call_lhs (stmt);
3119 new_stmt = gimple_build_assign (lhs, build_zero_cst (TREE_TYPE (lhs)));
3120 set_vinfo_for_stmt (new_stmt, stmt_info);
3121 set_vinfo_for_stmt (stmt, NULL);
3122 STMT_VINFO_STMT (stmt_info) = new_stmt;
3123 gsi = gsi_for_stmt (stmt);
3124 gsi_replace (&gsi, new_stmt, false);
3125 SSA_NAME_DEF_STMT (gimple_assign_lhs (new_stmt)) = new_stmt;
3126 }
3127 }
3128
3129 /* Generate vector code for all SLP instances in the loop/basic block. */
3130
3131 bool
3132 vect_schedule_slp (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
3133 {
3134 vec<slp_instance> slp_instances;
3135 slp_instance instance;
3136 unsigned int i, vf;
3137 bool is_store = false;
3138
3139 if (loop_vinfo)
3140 {
3141 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
3142 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3143 }
3144 else
3145 {
3146 slp_instances = BB_VINFO_SLP_INSTANCES (bb_vinfo);
3147 vf = 1;
3148 }
3149
3150 FOR_EACH_VEC_ELT (slp_instances, i, instance)
3151 {
3152 /* Schedule the tree of INSTANCE. */
3153 is_store = vect_schedule_slp_instance (SLP_INSTANCE_TREE (instance),
3154 instance, vf);
3155 if (dump_enabled_p ())
3156 dump_printf_loc (MSG_NOTE, vect_location,
3157 "vectorizing stmts using SLP.\n");
3158 }
3159
3160 FOR_EACH_VEC_ELT (slp_instances, i, instance)
3161 {
3162 slp_tree root = SLP_INSTANCE_TREE (instance);
3163 gimple store;
3164 unsigned int j;
3165 gimple_stmt_iterator gsi;
3166
3167 /* Remove scalar call stmts. Do not do this for basic-block
3168 vectorization as not all uses may be vectorized.
3169 ??? Why should this be necessary? DCE should be able to
3170 remove the stmts itself.
3171 ??? For BB vectorization we can as well remove scalar
3172 stmts starting from the SLP tree root if they have no
3173 uses. */
3174 if (loop_vinfo)
3175 vect_remove_slp_scalar_calls (root);
3176
3177 for (j = 0; SLP_TREE_SCALAR_STMTS (root).iterate (j, &store)
3178 && j < SLP_INSTANCE_GROUP_SIZE (instance); j++)
3179 {
3180 if (!STMT_VINFO_DATA_REF (vinfo_for_stmt (store)))
3181 break;
3182
3183 if (is_pattern_stmt_p (vinfo_for_stmt (store)))
3184 store = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (store));
3185 /* Free the attached stmt_vec_info and remove the stmt. */
3186 gsi = gsi_for_stmt (store);
3187 unlink_stmt_vdef (store);
3188 gsi_remove (&gsi, true);
3189 release_defs (store);
3190 free_stmt_vec_info (store);
3191 }
3192 }
3193
3194 return is_store;
3195 }
3196
3197
3198 /* Vectorize the basic block. */
3199
3200 void
3201 vect_slp_transform_bb (basic_block bb)
3202 {
3203 bb_vec_info bb_vinfo = vec_info_for_bb (bb);
3204 gimple_stmt_iterator si;
3205
3206 gcc_assert (bb_vinfo);
3207
3208 if (dump_enabled_p ())
3209 dump_printf_loc (MSG_NOTE, vect_location, "SLPing BB\n");
3210
3211 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
3212 {
3213 gimple stmt = gsi_stmt (si);
3214 stmt_vec_info stmt_info;
3215
3216 if (dump_enabled_p ())
3217 {
3218 dump_printf_loc (MSG_NOTE, vect_location,
3219 "------>SLPing statement: ");
3220 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
3221 dump_printf (MSG_NOTE, "\n");
3222 }
3223
3224 stmt_info = vinfo_for_stmt (stmt);
3225 gcc_assert (stmt_info);
3226
3227 /* Schedule all the SLP instances when the first SLP stmt is reached. */
3228 if (STMT_SLP_TYPE (stmt_info))
3229 {
3230 vect_schedule_slp (NULL, bb_vinfo);
3231 break;
3232 }
3233 }
3234
3235 if (dump_enabled_p ())
3236 dump_printf_loc (MSG_NOTE, vect_location,
3237 "BASIC BLOCK VECTORIZED\n");
3238
3239 destroy_bb_vec_info (bb_vinfo);
3240 }