tree-vect-loop.c (vect_update_vf_for_slp): Split out from ...
[gcc.git] / gcc / tree-vect-slp.c
1 /* SLP - Basic Block Vectorization
2 Copyright (C) 2007-2015 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "hash-set.h"
28 #include "machmode.h"
29 #include "vec.h"
30 #include "double-int.h"
31 #include "input.h"
32 #include "alias.h"
33 #include "symtab.h"
34 #include "wide-int.h"
35 #include "inchash.h"
36 #include "tree.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
39 #include "target.h"
40 #include "predict.h"
41 #include "hard-reg-set.h"
42 #include "function.h"
43 #include "basic-block.h"
44 #include "gimple-pretty-print.h"
45 #include "tree-ssa-alias.h"
46 #include "internal-fn.h"
47 #include "gimple-expr.h"
48 #include "is-a.h"
49 #include "gimple.h"
50 #include "gimple-iterator.h"
51 #include "gimple-ssa.h"
52 #include "tree-phinodes.h"
53 #include "ssa-iterators.h"
54 #include "stringpool.h"
55 #include "tree-ssanames.h"
56 #include "tree-pass.h"
57 #include "cfgloop.h"
58 #include "hashtab.h"
59 #include "rtl.h"
60 #include "flags.h"
61 #include "statistics.h"
62 #include "real.h"
63 #include "fixed-value.h"
64 #include "insn-config.h"
65 #include "expmed.h"
66 #include "dojump.h"
67 #include "explow.h"
68 #include "calls.h"
69 #include "emit-rtl.h"
70 #include "varasm.h"
71 #include "stmt.h"
72 #include "expr.h"
73 #include "recog.h" /* FIXME: for insn_data */
74 #include "insn-codes.h"
75 #include "optabs.h"
76 #include "tree-vectorizer.h"
77 #include "langhooks.h"
78 #include "gimple-walk.h"
79
80 /* Extract the location of the basic block in the source code.
81 Return the basic block location if succeed and NULL if not. */
82
83 source_location
84 find_bb_location (basic_block bb)
85 {
86 gimple stmt = NULL;
87 gimple_stmt_iterator si;
88
89 if (!bb)
90 return UNKNOWN_LOCATION;
91
92 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
93 {
94 stmt = gsi_stmt (si);
95 if (gimple_location (stmt) != UNKNOWN_LOCATION)
96 return gimple_location (stmt);
97 }
98
99 return UNKNOWN_LOCATION;
100 }
101
102
103 /* Recursively free the memory allocated for the SLP tree rooted at NODE. */
104
105 static void
106 vect_free_slp_tree (slp_tree node)
107 {
108 int i;
109 slp_tree child;
110
111 if (!node)
112 return;
113
114 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
115 vect_free_slp_tree (child);
116
117 SLP_TREE_CHILDREN (node).release ();
118 SLP_TREE_SCALAR_STMTS (node).release ();
119 SLP_TREE_VEC_STMTS (node).release ();
120 SLP_TREE_LOAD_PERMUTATION (node).release ();
121
122 free (node);
123 }
124
125
126 /* Free the memory allocated for the SLP instance. */
127
128 void
129 vect_free_slp_instance (slp_instance instance)
130 {
131 vect_free_slp_tree (SLP_INSTANCE_TREE (instance));
132 SLP_INSTANCE_LOADS (instance).release ();
133 SLP_INSTANCE_BODY_COST_VEC (instance).release ();
134 free (instance);
135 }
136
137
138 /* Create an SLP node for SCALAR_STMTS. */
139
140 static slp_tree
141 vect_create_new_slp_node (vec<gimple> scalar_stmts)
142 {
143 slp_tree node;
144 gimple stmt = scalar_stmts[0];
145 unsigned int nops;
146
147 if (is_gimple_call (stmt))
148 nops = gimple_call_num_args (stmt);
149 else if (is_gimple_assign (stmt))
150 {
151 nops = gimple_num_ops (stmt) - 1;
152 if (gimple_assign_rhs_code (stmt) == COND_EXPR)
153 nops++;
154 }
155 else
156 return NULL;
157
158 node = XNEW (struct _slp_tree);
159 SLP_TREE_SCALAR_STMTS (node) = scalar_stmts;
160 SLP_TREE_VEC_STMTS (node).create (0);
161 SLP_TREE_CHILDREN (node).create (nops);
162 SLP_TREE_LOAD_PERMUTATION (node) = vNULL;
163 SLP_TREE_TWO_OPERATORS (node) = false;
164
165 return node;
166 }
167
168
169 /* Allocate operands info for NOPS operands, and GROUP_SIZE def-stmts for each
170 operand. */
171 static vec<slp_oprnd_info>
172 vect_create_oprnd_info (int nops, int group_size)
173 {
174 int i;
175 slp_oprnd_info oprnd_info;
176 vec<slp_oprnd_info> oprnds_info;
177
178 oprnds_info.create (nops);
179 for (i = 0; i < nops; i++)
180 {
181 oprnd_info = XNEW (struct _slp_oprnd_info);
182 oprnd_info->def_stmts.create (group_size);
183 oprnd_info->first_dt = vect_uninitialized_def;
184 oprnd_info->first_op_type = NULL_TREE;
185 oprnd_info->first_pattern = false;
186 oprnd_info->second_pattern = false;
187 oprnds_info.quick_push (oprnd_info);
188 }
189
190 return oprnds_info;
191 }
192
193
194 /* Free operands info. */
195
196 static void
197 vect_free_oprnd_info (vec<slp_oprnd_info> &oprnds_info)
198 {
199 int i;
200 slp_oprnd_info oprnd_info;
201
202 FOR_EACH_VEC_ELT (oprnds_info, i, oprnd_info)
203 {
204 oprnd_info->def_stmts.release ();
205 XDELETE (oprnd_info);
206 }
207
208 oprnds_info.release ();
209 }
210
211
212 /* Find the place of the data-ref in STMT in the interleaving chain that starts
213 from FIRST_STMT. Return -1 if the data-ref is not a part of the chain. */
214
215 static int
216 vect_get_place_in_interleaving_chain (gimple stmt, gimple first_stmt)
217 {
218 gimple next_stmt = first_stmt;
219 int result = 0;
220
221 if (first_stmt != GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
222 return -1;
223
224 do
225 {
226 if (next_stmt == stmt)
227 return result;
228 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
229 if (next_stmt)
230 result += GROUP_GAP (vinfo_for_stmt (next_stmt));
231 }
232 while (next_stmt);
233
234 return -1;
235 }
236
237
238 /* Get the defs for the rhs of STMT (collect them in OPRNDS_INFO), check that
239 they are of a valid type and that they match the defs of the first stmt of
240 the SLP group (stored in OPRNDS_INFO). If there was a fatal error
241 return -1, if the error could be corrected by swapping operands of the
242 operation return 1, if everything is ok return 0. */
243
244 static int
245 vect_get_and_check_slp_defs (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo,
246 gimple stmt, unsigned stmt_num,
247 vec<slp_oprnd_info> *oprnds_info)
248 {
249 tree oprnd;
250 unsigned int i, number_of_oprnds;
251 tree def;
252 gimple def_stmt;
253 enum vect_def_type dt = vect_uninitialized_def;
254 struct loop *loop = NULL;
255 bool pattern = false;
256 slp_oprnd_info oprnd_info;
257 int first_op_idx = 1;
258 bool commutative = false;
259 bool first_op_cond = false;
260 bool first = stmt_num == 0;
261 bool second = stmt_num == 1;
262
263 if (loop_vinfo)
264 loop = LOOP_VINFO_LOOP (loop_vinfo);
265
266 if (is_gimple_call (stmt))
267 {
268 number_of_oprnds = gimple_call_num_args (stmt);
269 first_op_idx = 3;
270 }
271 else if (is_gimple_assign (stmt))
272 {
273 enum tree_code code = gimple_assign_rhs_code (stmt);
274 number_of_oprnds = gimple_num_ops (stmt) - 1;
275 if (gimple_assign_rhs_code (stmt) == COND_EXPR)
276 {
277 first_op_cond = true;
278 commutative = true;
279 number_of_oprnds++;
280 }
281 else
282 commutative = commutative_tree_code (code);
283 }
284 else
285 return -1;
286
287 bool swapped = false;
288 for (i = 0; i < number_of_oprnds; i++)
289 {
290 again:
291 if (first_op_cond)
292 {
293 if (i == 0 || i == 1)
294 oprnd = TREE_OPERAND (gimple_op (stmt, first_op_idx),
295 swapped ? !i : i);
296 else
297 oprnd = gimple_op (stmt, first_op_idx + i - 1);
298 }
299 else
300 oprnd = gimple_op (stmt, first_op_idx + (swapped ? !i : i));
301
302 oprnd_info = (*oprnds_info)[i];
303
304 if (!vect_is_simple_use (oprnd, NULL, loop_vinfo, bb_vinfo, &def_stmt,
305 &def, &dt)
306 || (!def_stmt && dt != vect_constant_def))
307 {
308 if (dump_enabled_p ())
309 {
310 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
311 "Build SLP failed: can't find def for ");
312 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, oprnd);
313 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
314 }
315
316 return -1;
317 }
318
319 /* Check if DEF_STMT is a part of a pattern in LOOP and get the def stmt
320 from the pattern. Check that all the stmts of the node are in the
321 pattern. */
322 if (def_stmt && gimple_bb (def_stmt)
323 && ((loop && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)))
324 || (!loop && gimple_bb (def_stmt) == BB_VINFO_BB (bb_vinfo)
325 && gimple_code (def_stmt) != GIMPLE_PHI))
326 && vinfo_for_stmt (def_stmt)
327 && STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (def_stmt))
328 && !STMT_VINFO_RELEVANT (vinfo_for_stmt (def_stmt))
329 && !STMT_VINFO_LIVE_P (vinfo_for_stmt (def_stmt)))
330 {
331 pattern = true;
332 if (!first && !oprnd_info->first_pattern
333 /* Allow different pattern state for the defs of the
334 first stmt in reduction chains. */
335 && (oprnd_info->first_dt != vect_reduction_def
336 || (!second && !oprnd_info->second_pattern)))
337 {
338 if (i == 0
339 && !swapped
340 && commutative)
341 {
342 swapped = true;
343 goto again;
344 }
345
346 if (dump_enabled_p ())
347 {
348 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
349 "Build SLP failed: some of the stmts"
350 " are in a pattern, and others are not ");
351 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, oprnd);
352 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
353 }
354
355 return 1;
356 }
357
358 def_stmt = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (def_stmt));
359 dt = STMT_VINFO_DEF_TYPE (vinfo_for_stmt (def_stmt));
360
361 if (dt == vect_unknown_def_type)
362 {
363 if (dump_enabled_p ())
364 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
365 "Unsupported pattern.\n");
366 return -1;
367 }
368
369 switch (gimple_code (def_stmt))
370 {
371 case GIMPLE_PHI:
372 def = gimple_phi_result (def_stmt);
373 break;
374
375 case GIMPLE_ASSIGN:
376 def = gimple_assign_lhs (def_stmt);
377 break;
378
379 default:
380 if (dump_enabled_p ())
381 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
382 "unsupported defining stmt:\n");
383 return -1;
384 }
385 }
386
387 if (second)
388 oprnd_info->second_pattern = pattern;
389
390 if (first)
391 {
392 oprnd_info->first_dt = dt;
393 oprnd_info->first_pattern = pattern;
394 oprnd_info->first_op_type = TREE_TYPE (oprnd);
395 }
396 else
397 {
398 /* Not first stmt of the group, check that the def-stmt/s match
399 the def-stmt/s of the first stmt. Allow different definition
400 types for reduction chains: the first stmt must be a
401 vect_reduction_def (a phi node), and the rest
402 vect_internal_def. */
403 if (((oprnd_info->first_dt != dt
404 && !(oprnd_info->first_dt == vect_reduction_def
405 && dt == vect_internal_def)
406 && !((oprnd_info->first_dt == vect_external_def
407 || oprnd_info->first_dt == vect_constant_def)
408 && (dt == vect_external_def
409 || dt == vect_constant_def)))
410 || !types_compatible_p (oprnd_info->first_op_type,
411 TREE_TYPE (oprnd))))
412 {
413 /* Try swapping operands if we got a mismatch. */
414 if (i == 0
415 && !swapped
416 && commutative)
417 {
418 swapped = true;
419 goto again;
420 }
421
422 if (dump_enabled_p ())
423 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
424 "Build SLP failed: different types\n");
425
426 return 1;
427 }
428 }
429
430 /* Check the types of the definitions. */
431 switch (dt)
432 {
433 case vect_constant_def:
434 case vect_external_def:
435 case vect_reduction_def:
436 break;
437
438 case vect_internal_def:
439 oprnd_info->def_stmts.quick_push (def_stmt);
440 break;
441
442 default:
443 /* FORNOW: Not supported. */
444 if (dump_enabled_p ())
445 {
446 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
447 "Build SLP failed: illegal type of def ");
448 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, def);
449 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
450 }
451
452 return -1;
453 }
454 }
455
456 /* Swap operands. */
457 if (swapped)
458 {
459 if (first_op_cond)
460 {
461 tree cond = gimple_assign_rhs1 (stmt);
462 swap_ssa_operands (stmt, &TREE_OPERAND (cond, 0),
463 &TREE_OPERAND (cond, 1));
464 TREE_SET_CODE (cond, swap_tree_comparison (TREE_CODE (cond)));
465 }
466 else
467 swap_ssa_operands (stmt, gimple_assign_rhs1_ptr (stmt),
468 gimple_assign_rhs2_ptr (stmt));
469 }
470
471 return 0;
472 }
473
474
475 /* Verify if the scalar stmts STMTS are isomorphic, require data
476 permutation or are of unsupported types of operation. Return
477 true if they are, otherwise return false and indicate in *MATCHES
478 which stmts are not isomorphic to the first one. If MATCHES[0]
479 is false then this indicates the comparison could not be
480 carried out or the stmts will never be vectorized by SLP. */
481
482 static bool
483 vect_build_slp_tree_1 (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo,
484 vec<gimple> stmts, unsigned int group_size,
485 unsigned nops, unsigned int *max_nunits,
486 unsigned int vectorization_factor, bool *matches,
487 bool *two_operators)
488 {
489 unsigned int i;
490 gimple first_stmt = stmts[0], stmt = stmts[0];
491 enum tree_code first_stmt_code = ERROR_MARK;
492 enum tree_code alt_stmt_code = ERROR_MARK;
493 enum tree_code rhs_code = ERROR_MARK;
494 enum tree_code first_cond_code = ERROR_MARK;
495 tree lhs;
496 bool need_same_oprnds = false;
497 tree vectype, scalar_type, first_op1 = NULL_TREE;
498 optab optab;
499 int icode;
500 machine_mode optab_op2_mode;
501 machine_mode vec_mode;
502 struct data_reference *first_dr;
503 HOST_WIDE_INT dummy;
504 gimple first_load = NULL, prev_first_load = NULL, old_first_load = NULL;
505 tree cond;
506
507 /* For every stmt in NODE find its def stmt/s. */
508 FOR_EACH_VEC_ELT (stmts, i, stmt)
509 {
510 matches[i] = false;
511
512 if (dump_enabled_p ())
513 {
514 dump_printf_loc (MSG_NOTE, vect_location, "Build SLP for ");
515 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
516 dump_printf (MSG_NOTE, "\n");
517 }
518
519 /* Fail to vectorize statements marked as unvectorizable. */
520 if (!STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (stmt)))
521 {
522 if (dump_enabled_p ())
523 {
524 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
525 "Build SLP failed: unvectorizable statement ");
526 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
527 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
528 }
529 /* Fatal mismatch. */
530 matches[0] = false;
531 return false;
532 }
533
534 lhs = gimple_get_lhs (stmt);
535 if (lhs == NULL_TREE)
536 {
537 if (dump_enabled_p ())
538 {
539 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
540 "Build SLP failed: not GIMPLE_ASSIGN nor "
541 "GIMPLE_CALL ");
542 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
543 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
544 }
545 /* Fatal mismatch. */
546 matches[0] = false;
547 return false;
548 }
549
550 if (is_gimple_assign (stmt)
551 && gimple_assign_rhs_code (stmt) == COND_EXPR
552 && (cond = gimple_assign_rhs1 (stmt))
553 && !COMPARISON_CLASS_P (cond))
554 {
555 if (dump_enabled_p ())
556 {
557 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
558 "Build SLP failed: condition is not "
559 "comparison ");
560 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
561 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
562 }
563 /* Fatal mismatch. */
564 matches[0] = false;
565 return false;
566 }
567
568 scalar_type = vect_get_smallest_scalar_type (stmt, &dummy, &dummy);
569 vectype = get_vectype_for_scalar_type (scalar_type);
570 if (!vectype)
571 {
572 if (dump_enabled_p ())
573 {
574 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
575 "Build SLP failed: unsupported data-type ");
576 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
577 scalar_type);
578 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
579 }
580 /* Fatal mismatch. */
581 matches[0] = false;
582 return false;
583 }
584
585 /* If populating the vector type requires unrolling then fail
586 before adjusting *max_nunits for basic-block vectorization. */
587 if (bb_vinfo
588 && TYPE_VECTOR_SUBPARTS (vectype) > group_size)
589 {
590 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
591 "Build SLP failed: unrolling required "
592 "in basic block SLP\n");
593 /* Fatal mismatch. */
594 matches[0] = false;
595 return false;
596 }
597
598 /* In case of multiple types we need to detect the smallest type. */
599 if (*max_nunits < TYPE_VECTOR_SUBPARTS (vectype))
600 {
601 *max_nunits = TYPE_VECTOR_SUBPARTS (vectype);
602 if (bb_vinfo)
603 vectorization_factor = *max_nunits;
604 }
605
606 if (gcall *call_stmt = dyn_cast <gcall *> (stmt))
607 {
608 rhs_code = CALL_EXPR;
609 if (gimple_call_internal_p (call_stmt)
610 || gimple_call_tail_p (call_stmt)
611 || gimple_call_noreturn_p (call_stmt)
612 || !gimple_call_nothrow_p (call_stmt)
613 || gimple_call_chain (call_stmt))
614 {
615 if (dump_enabled_p ())
616 {
617 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
618 "Build SLP failed: unsupported call type ");
619 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
620 call_stmt, 0);
621 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
622 }
623 /* Fatal mismatch. */
624 matches[0] = false;
625 return false;
626 }
627 }
628 else
629 rhs_code = gimple_assign_rhs_code (stmt);
630
631 /* Check the operation. */
632 if (i == 0)
633 {
634 first_stmt_code = rhs_code;
635
636 /* Shift arguments should be equal in all the packed stmts for a
637 vector shift with scalar shift operand. */
638 if (rhs_code == LSHIFT_EXPR || rhs_code == RSHIFT_EXPR
639 || rhs_code == LROTATE_EXPR
640 || rhs_code == RROTATE_EXPR)
641 {
642 vec_mode = TYPE_MODE (vectype);
643
644 /* First see if we have a vector/vector shift. */
645 optab = optab_for_tree_code (rhs_code, vectype,
646 optab_vector);
647
648 if (!optab
649 || optab_handler (optab, vec_mode) == CODE_FOR_nothing)
650 {
651 /* No vector/vector shift, try for a vector/scalar shift. */
652 optab = optab_for_tree_code (rhs_code, vectype,
653 optab_scalar);
654
655 if (!optab)
656 {
657 if (dump_enabled_p ())
658 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
659 "Build SLP failed: no optab.\n");
660 /* Fatal mismatch. */
661 matches[0] = false;
662 return false;
663 }
664 icode = (int) optab_handler (optab, vec_mode);
665 if (icode == CODE_FOR_nothing)
666 {
667 if (dump_enabled_p ())
668 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
669 "Build SLP failed: "
670 "op not supported by target.\n");
671 /* Fatal mismatch. */
672 matches[0] = false;
673 return false;
674 }
675 optab_op2_mode = insn_data[icode].operand[2].mode;
676 if (!VECTOR_MODE_P (optab_op2_mode))
677 {
678 need_same_oprnds = true;
679 first_op1 = gimple_assign_rhs2 (stmt);
680 }
681 }
682 }
683 else if (rhs_code == WIDEN_LSHIFT_EXPR)
684 {
685 need_same_oprnds = true;
686 first_op1 = gimple_assign_rhs2 (stmt);
687 }
688 }
689 else
690 {
691 if (first_stmt_code != rhs_code
692 && alt_stmt_code == ERROR_MARK)
693 alt_stmt_code = rhs_code;
694 if (first_stmt_code != rhs_code
695 && (first_stmt_code != IMAGPART_EXPR
696 || rhs_code != REALPART_EXPR)
697 && (first_stmt_code != REALPART_EXPR
698 || rhs_code != IMAGPART_EXPR)
699 /* Handle mismatches in plus/minus by computing both
700 and merging the results. */
701 && !((first_stmt_code == PLUS_EXPR
702 || first_stmt_code == MINUS_EXPR)
703 && (alt_stmt_code == PLUS_EXPR
704 || alt_stmt_code == MINUS_EXPR)
705 && rhs_code == alt_stmt_code)
706 && !(STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (stmt))
707 && (first_stmt_code == ARRAY_REF
708 || first_stmt_code == BIT_FIELD_REF
709 || first_stmt_code == INDIRECT_REF
710 || first_stmt_code == COMPONENT_REF
711 || first_stmt_code == MEM_REF)))
712 {
713 if (dump_enabled_p ())
714 {
715 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
716 "Build SLP failed: different operation "
717 "in stmt ");
718 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
719 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
720 "original stmt ");
721 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
722 first_stmt, 0);
723 }
724 /* Mismatch. */
725 continue;
726 }
727
728 if (need_same_oprnds
729 && !operand_equal_p (first_op1, gimple_assign_rhs2 (stmt), 0))
730 {
731 if (dump_enabled_p ())
732 {
733 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
734 "Build SLP failed: different shift "
735 "arguments in ");
736 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
737 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
738 }
739 /* Mismatch. */
740 continue;
741 }
742
743 if (rhs_code == CALL_EXPR)
744 {
745 gimple first_stmt = stmts[0];
746 if (gimple_call_num_args (stmt) != nops
747 || !operand_equal_p (gimple_call_fn (first_stmt),
748 gimple_call_fn (stmt), 0)
749 || gimple_call_fntype (first_stmt)
750 != gimple_call_fntype (stmt))
751 {
752 if (dump_enabled_p ())
753 {
754 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
755 "Build SLP failed: different calls in ");
756 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
757 stmt, 0);
758 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
759 }
760 /* Mismatch. */
761 continue;
762 }
763 }
764 }
765
766 /* Grouped store or load. */
767 if (STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (stmt)))
768 {
769 if (REFERENCE_CLASS_P (lhs))
770 {
771 /* Store. */
772 ;
773 }
774 else
775 {
776 /* Load. */
777 unsigned unrolling_factor
778 = least_common_multiple
779 (*max_nunits, group_size) / group_size;
780 /* FORNOW: Check that there is no gap between the loads
781 and no gap between the groups when we need to load
782 multiple groups at once.
783 ??? We should enhance this to only disallow gaps
784 inside vectors. */
785 if ((unrolling_factor > 1
786 && ((GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) == stmt
787 && GROUP_GAP (vinfo_for_stmt (stmt)) != 0)
788 /* If the group is split up then GROUP_GAP
789 isn't correct here, nor is GROUP_FIRST_ELEMENT. */
790 || GROUP_SIZE (vinfo_for_stmt (stmt)) > group_size))
791 || (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) != stmt
792 && GROUP_GAP (vinfo_for_stmt (stmt)) != 1))
793 {
794 if (dump_enabled_p ())
795 {
796 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
797 "Build SLP failed: grouped "
798 "loads have gaps ");
799 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
800 stmt, 0);
801 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
802 }
803 /* Fatal mismatch. */
804 matches[0] = false;
805 return false;
806 }
807
808 /* Check that the size of interleaved loads group is not
809 greater than the SLP group size. */
810 unsigned ncopies
811 = vectorization_factor / TYPE_VECTOR_SUBPARTS (vectype);
812 if (loop_vinfo
813 && GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)) == stmt
814 && ((GROUP_SIZE (vinfo_for_stmt (stmt))
815 - GROUP_GAP (vinfo_for_stmt (stmt)))
816 > ncopies * group_size))
817 {
818 if (dump_enabled_p ())
819 {
820 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
821 "Build SLP failed: the number "
822 "of interleaved loads is greater than "
823 "the SLP group size ");
824 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
825 stmt, 0);
826 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
827 }
828 /* Fatal mismatch. */
829 matches[0] = false;
830 return false;
831 }
832
833 old_first_load = first_load;
834 first_load = GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt));
835 if (prev_first_load)
836 {
837 /* Check that there are no loads from different interleaving
838 chains in the same node. */
839 if (prev_first_load != first_load)
840 {
841 if (dump_enabled_p ())
842 {
843 dump_printf_loc (MSG_MISSED_OPTIMIZATION,
844 vect_location,
845 "Build SLP failed: different "
846 "interleaving chains in one node ");
847 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
848 stmt, 0);
849 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
850 }
851 /* Mismatch. */
852 continue;
853 }
854 }
855 else
856 prev_first_load = first_load;
857
858 /* In some cases a group of loads is just the same load
859 repeated N times. Only analyze its cost once. */
860 if (first_load == stmt && old_first_load != first_load)
861 {
862 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt));
863 if (vect_supportable_dr_alignment (first_dr, false)
864 == dr_unaligned_unsupported)
865 {
866 if (dump_enabled_p ())
867 {
868 dump_printf_loc (MSG_MISSED_OPTIMIZATION,
869 vect_location,
870 "Build SLP failed: unsupported "
871 "unaligned load ");
872 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
873 stmt, 0);
874 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
875 }
876 /* Fatal mismatch. */
877 matches[0] = false;
878 return false;
879 }
880 }
881 }
882 } /* Grouped access. */
883 else
884 {
885 if (TREE_CODE_CLASS (rhs_code) == tcc_reference)
886 {
887 /* Not grouped load. */
888 if (dump_enabled_p ())
889 {
890 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
891 "Build SLP failed: not grouped load ");
892 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
893 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
894 }
895
896 /* FORNOW: Not grouped loads are not supported. */
897 /* Fatal mismatch. */
898 matches[0] = false;
899 return false;
900 }
901
902 /* Not memory operation. */
903 if (TREE_CODE_CLASS (rhs_code) != tcc_binary
904 && TREE_CODE_CLASS (rhs_code) != tcc_unary
905 && TREE_CODE_CLASS (rhs_code) != tcc_expression
906 && rhs_code != CALL_EXPR)
907 {
908 if (dump_enabled_p ())
909 {
910 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
911 "Build SLP failed: operation");
912 dump_printf (MSG_MISSED_OPTIMIZATION, " unsupported ");
913 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
914 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
915 }
916 /* Fatal mismatch. */
917 matches[0] = false;
918 return false;
919 }
920
921 if (rhs_code == COND_EXPR)
922 {
923 tree cond_expr = gimple_assign_rhs1 (stmt);
924
925 if (i == 0)
926 first_cond_code = TREE_CODE (cond_expr);
927 else if (first_cond_code != TREE_CODE (cond_expr))
928 {
929 if (dump_enabled_p ())
930 {
931 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
932 "Build SLP failed: different"
933 " operation");
934 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
935 stmt, 0);
936 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
937 }
938 /* Mismatch. */
939 continue;
940 }
941 }
942 }
943
944 matches[i] = true;
945 }
946
947 for (i = 0; i < group_size; ++i)
948 if (!matches[i])
949 return false;
950
951 /* If we allowed a two-operation SLP node verify the target can cope
952 with the permute we are going to use. */
953 if (alt_stmt_code != ERROR_MARK
954 && TREE_CODE_CLASS (alt_stmt_code) != tcc_reference)
955 {
956 unsigned char *sel
957 = XALLOCAVEC (unsigned char, TYPE_VECTOR_SUBPARTS (vectype));
958 for (i = 0; i < TYPE_VECTOR_SUBPARTS (vectype); ++i)
959 {
960 sel[i] = i;
961 if (gimple_assign_rhs_code (stmts[i % group_size]) == alt_stmt_code)
962 sel[i] += TYPE_VECTOR_SUBPARTS (vectype);
963 }
964 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
965 {
966 for (i = 0; i < group_size; ++i)
967 if (gimple_assign_rhs_code (stmts[i]) == alt_stmt_code)
968 {
969 matches[i] = false;
970 if (dump_enabled_p ())
971 {
972 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
973 "Build SLP failed: different operation "
974 "in stmt ");
975 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
976 stmts[i], 0);
977 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
978 "original stmt ");
979 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
980 first_stmt, 0);
981 }
982 }
983 return false;
984 }
985 *two_operators = true;
986 }
987
988 return true;
989 }
990
991 /* Recursively build an SLP tree starting from NODE.
992 Fail (and return a value not equal to zero) if def-stmts are not
993 isomorphic, require data permutation or are of unsupported types of
994 operation. Otherwise, return 0.
995 The value returned is the depth in the SLP tree where a mismatch
996 was found. */
997
998 static bool
999 vect_build_slp_tree (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo,
1000 slp_tree *node, unsigned int group_size,
1001 unsigned int *max_nunits,
1002 vec<slp_tree> *loads,
1003 unsigned int vectorization_factor,
1004 bool *matches, unsigned *npermutes, unsigned *tree_size,
1005 unsigned max_tree_size)
1006 {
1007 unsigned nops, i, this_tree_size = 0;
1008 gimple stmt;
1009
1010 matches[0] = false;
1011
1012 stmt = SLP_TREE_SCALAR_STMTS (*node)[0];
1013 if (is_gimple_call (stmt))
1014 nops = gimple_call_num_args (stmt);
1015 else if (is_gimple_assign (stmt))
1016 {
1017 nops = gimple_num_ops (stmt) - 1;
1018 if (gimple_assign_rhs_code (stmt) == COND_EXPR)
1019 nops++;
1020 }
1021 else
1022 return false;
1023
1024 bool two_operators = false;
1025 if (!vect_build_slp_tree_1 (loop_vinfo, bb_vinfo,
1026 SLP_TREE_SCALAR_STMTS (*node), group_size, nops,
1027 max_nunits, vectorization_factor, matches,
1028 &two_operators))
1029 return false;
1030 SLP_TREE_TWO_OPERATORS (*node) = two_operators;
1031
1032 /* If the SLP node is a load, terminate the recursion. */
1033 if (STMT_VINFO_GROUPED_ACCESS (vinfo_for_stmt (stmt))
1034 && DR_IS_READ (STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))))
1035 {
1036 loads->safe_push (*node);
1037 return true;
1038 }
1039
1040 /* Get at the operands, verifying they are compatible. */
1041 vec<slp_oprnd_info> oprnds_info = vect_create_oprnd_info (nops, group_size);
1042 slp_oprnd_info oprnd_info;
1043 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (*node), i, stmt)
1044 {
1045 switch (vect_get_and_check_slp_defs (loop_vinfo, bb_vinfo,
1046 stmt, i, &oprnds_info))
1047 {
1048 case 0:
1049 break;
1050 case -1:
1051 matches[0] = false;
1052 vect_free_oprnd_info (oprnds_info);
1053 return false;
1054 case 1:
1055 matches[i] = false;
1056 break;
1057 }
1058 }
1059 for (i = 0; i < group_size; ++i)
1060 if (!matches[i])
1061 {
1062 vect_free_oprnd_info (oprnds_info);
1063 return false;
1064 }
1065
1066 stmt = SLP_TREE_SCALAR_STMTS (*node)[0];
1067
1068 /* Create SLP_TREE nodes for the definition node/s. */
1069 FOR_EACH_VEC_ELT (oprnds_info, i, oprnd_info)
1070 {
1071 slp_tree child;
1072 unsigned old_nloads = loads->length ();
1073 unsigned old_max_nunits = *max_nunits;
1074
1075 if (oprnd_info->first_dt != vect_internal_def)
1076 continue;
1077
1078 if (++this_tree_size > max_tree_size)
1079 {
1080 vect_free_oprnd_info (oprnds_info);
1081 return false;
1082 }
1083
1084 child = vect_create_new_slp_node (oprnd_info->def_stmts);
1085 if (!child)
1086 {
1087 vect_free_oprnd_info (oprnds_info);
1088 return false;
1089 }
1090
1091 if (vect_build_slp_tree (loop_vinfo, bb_vinfo, &child,
1092 group_size, max_nunits, loads,
1093 vectorization_factor, matches,
1094 npermutes, &this_tree_size, max_tree_size))
1095 {
1096 oprnd_info->def_stmts = vNULL;
1097 SLP_TREE_CHILDREN (*node).quick_push (child);
1098 continue;
1099 }
1100
1101 /* If the SLP build failed fatally and we analyze a basic-block
1102 simply treat nodes we fail to build as externally defined
1103 (and thus build vectors from the scalar defs).
1104 The cost model will reject outright expensive cases.
1105 ??? This doesn't treat cases where permutation ultimatively
1106 fails (or we don't try permutation below). Ideally we'd
1107 even compute a permutation that will end up with the maximum
1108 SLP tree size... */
1109 if (bb_vinfo
1110 && !matches[0]
1111 /* ??? Rejecting patterns this way doesn't work. We'd have to
1112 do extra work to cancel the pattern so the uses see the
1113 scalar version. */
1114 && !is_pattern_stmt_p (vinfo_for_stmt (stmt)))
1115 {
1116 unsigned int j;
1117 slp_tree grandchild;
1118
1119 /* Roll back. */
1120 *max_nunits = old_max_nunits;
1121 loads->truncate (old_nloads);
1122 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (child), j, grandchild)
1123 vect_free_slp_tree (grandchild);
1124 SLP_TREE_CHILDREN (child).truncate (0);
1125
1126 dump_printf_loc (MSG_NOTE, vect_location,
1127 "Building vector operands from scalars\n");
1128 oprnd_info->def_stmts = vNULL;
1129 vect_free_slp_tree (child);
1130 SLP_TREE_CHILDREN (*node).quick_push (NULL);
1131 continue;
1132 }
1133
1134 /* If the SLP build for operand zero failed and operand zero
1135 and one can be commutated try that for the scalar stmts
1136 that failed the match. */
1137 if (i == 0
1138 /* A first scalar stmt mismatch signals a fatal mismatch. */
1139 && matches[0]
1140 /* ??? For COND_EXPRs we can swap the comparison operands
1141 as well as the arms under some constraints. */
1142 && nops == 2
1143 && oprnds_info[1]->first_dt == vect_internal_def
1144 && is_gimple_assign (stmt)
1145 && commutative_tree_code (gimple_assign_rhs_code (stmt))
1146 && !SLP_TREE_TWO_OPERATORS (*node)
1147 /* Do so only if the number of not successful permutes was nor more
1148 than a cut-ff as re-trying the recursive match on
1149 possibly each level of the tree would expose exponential
1150 behavior. */
1151 && *npermutes < 4)
1152 {
1153 unsigned int j;
1154 slp_tree grandchild;
1155
1156 /* Roll back. */
1157 *max_nunits = old_max_nunits;
1158 loads->truncate (old_nloads);
1159 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (child), j, grandchild)
1160 vect_free_slp_tree (grandchild);
1161 SLP_TREE_CHILDREN (child).truncate (0);
1162
1163 /* Swap mismatched definition stmts. */
1164 dump_printf_loc (MSG_NOTE, vect_location,
1165 "Re-trying with swapped operands of stmts ");
1166 for (j = 0; j < group_size; ++j)
1167 if (!matches[j])
1168 {
1169 gimple tem = oprnds_info[0]->def_stmts[j];
1170 oprnds_info[0]->def_stmts[j] = oprnds_info[1]->def_stmts[j];
1171 oprnds_info[1]->def_stmts[j] = tem;
1172 dump_printf (MSG_NOTE, "%d ", j);
1173 }
1174 dump_printf (MSG_NOTE, "\n");
1175 /* And try again with scratch 'matches' ... */
1176 bool *tem = XALLOCAVEC (bool, group_size);
1177 if (vect_build_slp_tree (loop_vinfo, bb_vinfo, &child,
1178 group_size, max_nunits, loads,
1179 vectorization_factor,
1180 tem, npermutes, &this_tree_size,
1181 max_tree_size))
1182 {
1183 /* ... so if successful we can apply the operand swapping
1184 to the GIMPLE IL. This is necessary because for example
1185 vect_get_slp_defs uses operand indexes and thus expects
1186 canonical operand order. */
1187 for (j = 0; j < group_size; ++j)
1188 if (!matches[j])
1189 {
1190 gimple stmt = SLP_TREE_SCALAR_STMTS (*node)[j];
1191 swap_ssa_operands (stmt, gimple_assign_rhs1_ptr (stmt),
1192 gimple_assign_rhs2_ptr (stmt));
1193 }
1194 oprnd_info->def_stmts = vNULL;
1195 SLP_TREE_CHILDREN (*node).quick_push (child);
1196 continue;
1197 }
1198
1199 ++*npermutes;
1200 }
1201
1202 oprnd_info->def_stmts = vNULL;
1203 vect_free_slp_tree (child);
1204 vect_free_oprnd_info (oprnds_info);
1205 return false;
1206 }
1207
1208 if (tree_size)
1209 *tree_size += this_tree_size;
1210
1211 vect_free_oprnd_info (oprnds_info);
1212 return true;
1213 }
1214
1215 /* Dump a slp tree NODE using flags specified in DUMP_KIND. */
1216
1217 static void
1218 vect_print_slp_tree (int dump_kind, slp_tree node)
1219 {
1220 int i;
1221 gimple stmt;
1222 slp_tree child;
1223
1224 if (!node)
1225 return;
1226
1227 dump_printf (dump_kind, "node ");
1228 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt)
1229 {
1230 dump_printf (dump_kind, "\n\tstmt %d ", i);
1231 dump_gimple_stmt (dump_kind, TDF_SLIM, stmt, 0);
1232 }
1233 dump_printf (dump_kind, "\n");
1234
1235 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
1236 vect_print_slp_tree (dump_kind, child);
1237 }
1238
1239
1240 /* Mark the tree rooted at NODE with MARK (PURE_SLP or HYBRID).
1241 If MARK is HYBRID, it refers to a specific stmt in NODE (the stmt at index
1242 J). Otherwise, MARK is PURE_SLP and J is -1, which indicates that all the
1243 stmts in NODE are to be marked. */
1244
1245 static void
1246 vect_mark_slp_stmts (slp_tree node, enum slp_vect_type mark, int j)
1247 {
1248 int i;
1249 gimple stmt;
1250 slp_tree child;
1251
1252 if (!node)
1253 return;
1254
1255 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt)
1256 if (j < 0 || i == j)
1257 STMT_SLP_TYPE (vinfo_for_stmt (stmt)) = mark;
1258
1259 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
1260 vect_mark_slp_stmts (child, mark, j);
1261 }
1262
1263
1264 /* Mark the statements of the tree rooted at NODE as relevant (vect_used). */
1265
1266 static void
1267 vect_mark_slp_stmts_relevant (slp_tree node)
1268 {
1269 int i;
1270 gimple stmt;
1271 stmt_vec_info stmt_info;
1272 slp_tree child;
1273
1274 if (!node)
1275 return;
1276
1277 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt)
1278 {
1279 stmt_info = vinfo_for_stmt (stmt);
1280 gcc_assert (!STMT_VINFO_RELEVANT (stmt_info)
1281 || STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_scope);
1282 STMT_VINFO_RELEVANT (stmt_info) = vect_used_in_scope;
1283 }
1284
1285 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
1286 vect_mark_slp_stmts_relevant (child);
1287 }
1288
1289
1290 /* Rearrange the statements of NODE according to PERMUTATION. */
1291
1292 static void
1293 vect_slp_rearrange_stmts (slp_tree node, unsigned int group_size,
1294 vec<unsigned> permutation)
1295 {
1296 gimple stmt;
1297 vec<gimple> tmp_stmts;
1298 unsigned int i;
1299 slp_tree child;
1300
1301 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
1302 vect_slp_rearrange_stmts (child, group_size, permutation);
1303
1304 gcc_assert (group_size == SLP_TREE_SCALAR_STMTS (node).length ());
1305 tmp_stmts.create (group_size);
1306 tmp_stmts.quick_grow_cleared (group_size);
1307
1308 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt)
1309 tmp_stmts[permutation[i]] = stmt;
1310
1311 SLP_TREE_SCALAR_STMTS (node).release ();
1312 SLP_TREE_SCALAR_STMTS (node) = tmp_stmts;
1313 }
1314
1315
1316 /* Check if the required load permutations in the SLP instance
1317 SLP_INSTN are supported. */
1318
1319 static bool
1320 vect_supported_load_permutation_p (slp_instance slp_instn)
1321 {
1322 unsigned int group_size = SLP_INSTANCE_GROUP_SIZE (slp_instn);
1323 unsigned int i, j, k, next;
1324 sbitmap load_index;
1325 slp_tree node;
1326 gimple stmt, load, next_load, first_load;
1327 struct data_reference *dr;
1328
1329 if (dump_enabled_p ())
1330 {
1331 dump_printf_loc (MSG_NOTE, vect_location, "Load permutation ");
1332 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (slp_instn), i, node)
1333 if (node->load_permutation.exists ())
1334 FOR_EACH_VEC_ELT (node->load_permutation, j, next)
1335 dump_printf (MSG_NOTE, "%d ", next);
1336 else
1337 for (k = 0; k < group_size; ++k)
1338 dump_printf (MSG_NOTE, "%d ", k);
1339 dump_printf (MSG_NOTE, "\n");
1340 }
1341
1342 /* In case of reduction every load permutation is allowed, since the order
1343 of the reduction statements is not important (as opposed to the case of
1344 grouped stores). The only condition we need to check is that all the
1345 load nodes are of the same size and have the same permutation (and then
1346 rearrange all the nodes of the SLP instance according to this
1347 permutation). */
1348
1349 /* Check that all the load nodes are of the same size. */
1350 /* ??? Can't we assert this? */
1351 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (slp_instn), i, node)
1352 if (SLP_TREE_SCALAR_STMTS (node).length () != (unsigned) group_size)
1353 return false;
1354
1355 node = SLP_INSTANCE_TREE (slp_instn);
1356 stmt = SLP_TREE_SCALAR_STMTS (node)[0];
1357
1358 /* Reduction (there are no data-refs in the root).
1359 In reduction chain the order of the loads is important. */
1360 if (!STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt))
1361 && !GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
1362 {
1363 slp_tree load;
1364 unsigned int lidx;
1365
1366 /* Compare all the permutation sequences to the first one. We know
1367 that at least one load is permuted. */
1368 node = SLP_INSTANCE_LOADS (slp_instn)[0];
1369 if (!node->load_permutation.exists ())
1370 return false;
1371 for (i = 1; SLP_INSTANCE_LOADS (slp_instn).iterate (i, &load); ++i)
1372 {
1373 if (!load->load_permutation.exists ())
1374 return false;
1375 FOR_EACH_VEC_ELT (load->load_permutation, j, lidx)
1376 if (lidx != node->load_permutation[j])
1377 return false;
1378 }
1379
1380 /* Check that the loads in the first sequence are different and there
1381 are no gaps between them. */
1382 load_index = sbitmap_alloc (group_size);
1383 bitmap_clear (load_index);
1384 FOR_EACH_VEC_ELT (node->load_permutation, i, lidx)
1385 {
1386 if (bitmap_bit_p (load_index, lidx))
1387 {
1388 sbitmap_free (load_index);
1389 return false;
1390 }
1391 bitmap_set_bit (load_index, lidx);
1392 }
1393 for (i = 0; i < group_size; i++)
1394 if (!bitmap_bit_p (load_index, i))
1395 {
1396 sbitmap_free (load_index);
1397 return false;
1398 }
1399 sbitmap_free (load_index);
1400
1401 /* This permutation is valid for reduction. Since the order of the
1402 statements in the nodes is not important unless they are memory
1403 accesses, we can rearrange the statements in all the nodes
1404 according to the order of the loads. */
1405 vect_slp_rearrange_stmts (SLP_INSTANCE_TREE (slp_instn), group_size,
1406 node->load_permutation);
1407
1408 /* We are done, no actual permutations need to be generated. */
1409 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (slp_instn), i, node)
1410 SLP_TREE_LOAD_PERMUTATION (node).release ();
1411 return true;
1412 }
1413
1414 /* In basic block vectorization we allow any subchain of an interleaving
1415 chain.
1416 FORNOW: not supported in loop SLP because of realignment compications. */
1417 if (STMT_VINFO_BB_VINFO (vinfo_for_stmt (stmt)))
1418 {
1419 /* Check whether the loads in an instance form a subchain and thus
1420 no permutation is necessary. */
1421 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (slp_instn), i, node)
1422 {
1423 if (!SLP_TREE_LOAD_PERMUTATION (node).exists ())
1424 continue;
1425 bool subchain_p = true;
1426 next_load = NULL;
1427 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), j, load)
1428 {
1429 if (j != 0 && next_load != load)
1430 {
1431 subchain_p = false;
1432 break;
1433 }
1434 next_load = GROUP_NEXT_ELEMENT (vinfo_for_stmt (load));
1435 }
1436 if (subchain_p)
1437 SLP_TREE_LOAD_PERMUTATION (node).release ();
1438 else
1439 {
1440 /* Verify the permutation can be generated. */
1441 vec<tree> tem;
1442 if (!vect_transform_slp_perm_load (node, tem, NULL,
1443 1, slp_instn, true))
1444 {
1445 dump_printf_loc (MSG_MISSED_OPTIMIZATION,
1446 vect_location,
1447 "unsupported load permutation\n");
1448 return false;
1449 }
1450 }
1451 }
1452
1453 /* Check that the alignment of the first load in every subchain, i.e.,
1454 the first statement in every load node, is supported.
1455 ??? This belongs in alignment checking. */
1456 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (slp_instn), i, node)
1457 {
1458 first_load = SLP_TREE_SCALAR_STMTS (node)[0];
1459 if (first_load != GROUP_FIRST_ELEMENT (vinfo_for_stmt (first_load)))
1460 {
1461 dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_load));
1462 if (vect_supportable_dr_alignment (dr, false)
1463 == dr_unaligned_unsupported)
1464 {
1465 if (dump_enabled_p ())
1466 {
1467 dump_printf_loc (MSG_MISSED_OPTIMIZATION,
1468 vect_location,
1469 "unsupported unaligned load ");
1470 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
1471 first_load, 0);
1472 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
1473 }
1474 return false;
1475 }
1476 }
1477 }
1478
1479 return true;
1480 }
1481
1482 /* FORNOW: the only supported permutation is 0..01..1.. of length equal to
1483 GROUP_SIZE and where each sequence of same drs is of GROUP_SIZE length as
1484 well (unless it's reduction). */
1485 if (SLP_INSTANCE_LOADS (slp_instn).length () != group_size)
1486 return false;
1487 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (slp_instn), i, node)
1488 if (!node->load_permutation.exists ())
1489 return false;
1490
1491 load_index = sbitmap_alloc (group_size);
1492 bitmap_clear (load_index);
1493 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (slp_instn), i, node)
1494 {
1495 unsigned int lidx = node->load_permutation[0];
1496 if (bitmap_bit_p (load_index, lidx))
1497 {
1498 sbitmap_free (load_index);
1499 return false;
1500 }
1501 bitmap_set_bit (load_index, lidx);
1502 FOR_EACH_VEC_ELT (node->load_permutation, j, k)
1503 if (k != lidx)
1504 {
1505 sbitmap_free (load_index);
1506 return false;
1507 }
1508 }
1509 for (i = 0; i < group_size; i++)
1510 if (!bitmap_bit_p (load_index, i))
1511 {
1512 sbitmap_free (load_index);
1513 return false;
1514 }
1515 sbitmap_free (load_index);
1516
1517 FOR_EACH_VEC_ELT (SLP_INSTANCE_LOADS (slp_instn), i, node)
1518 if (node->load_permutation.exists ()
1519 && !vect_transform_slp_perm_load
1520 (node, vNULL, NULL,
1521 SLP_INSTANCE_UNROLLING_FACTOR (slp_instn), slp_instn, true))
1522 return false;
1523 return true;
1524 }
1525
1526
1527 /* Find the last store in SLP INSTANCE. */
1528
1529 static gimple
1530 vect_find_last_scalar_stmt_in_slp (slp_tree node)
1531 {
1532 gimple last = NULL, stmt;
1533
1534 for (int i = 0; SLP_TREE_SCALAR_STMTS (node).iterate (i, &stmt); i++)
1535 {
1536 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
1537 if (is_pattern_stmt_p (stmt_vinfo))
1538 last = get_later_stmt (STMT_VINFO_RELATED_STMT (stmt_vinfo), last);
1539 else
1540 last = get_later_stmt (stmt, last);
1541 }
1542
1543 return last;
1544 }
1545
1546 /* Compute the cost for the SLP node NODE in the SLP instance INSTANCE. */
1547
1548 static void
1549 vect_analyze_slp_cost_1 (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo,
1550 slp_instance instance, slp_tree node,
1551 stmt_vector_for_cost *prologue_cost_vec,
1552 unsigned ncopies_for_cost)
1553 {
1554 stmt_vector_for_cost *body_cost_vec = &SLP_INSTANCE_BODY_COST_VEC (instance);
1555
1556 unsigned i;
1557 slp_tree child;
1558 gimple stmt, s;
1559 stmt_vec_info stmt_info;
1560 tree lhs;
1561 unsigned group_size = SLP_INSTANCE_GROUP_SIZE (instance);
1562
1563 /* Recurse down the SLP tree. */
1564 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
1565 if (child)
1566 vect_analyze_slp_cost_1 (loop_vinfo, bb_vinfo,
1567 instance, child, prologue_cost_vec,
1568 ncopies_for_cost);
1569
1570 /* Look at the first scalar stmt to determine the cost. */
1571 stmt = SLP_TREE_SCALAR_STMTS (node)[0];
1572 stmt_info = vinfo_for_stmt (stmt);
1573 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1574 {
1575 if (DR_IS_WRITE (STMT_VINFO_DATA_REF (stmt_info)))
1576 vect_model_store_cost (stmt_info, ncopies_for_cost, false,
1577 vect_uninitialized_def,
1578 node, prologue_cost_vec, body_cost_vec);
1579 else
1580 {
1581 int i;
1582 gcc_checking_assert (DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info)));
1583 vect_model_load_cost (stmt_info, ncopies_for_cost, false,
1584 node, prologue_cost_vec, body_cost_vec);
1585 /* If the load is permuted record the cost for the permutation.
1586 ??? Loads from multiple chains are let through here only
1587 for a single special case involving complex numbers where
1588 in the end no permutation is necessary. */
1589 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, s)
1590 if ((STMT_VINFO_GROUP_FIRST_ELEMENT (vinfo_for_stmt (s))
1591 == STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_info))
1592 && vect_get_place_in_interleaving_chain
1593 (s, STMT_VINFO_GROUP_FIRST_ELEMENT (stmt_info)) != i)
1594 {
1595 record_stmt_cost (body_cost_vec, group_size, vec_perm,
1596 stmt_info, 0, vect_body);
1597 break;
1598 }
1599 }
1600 }
1601 else
1602 {
1603 record_stmt_cost (body_cost_vec, ncopies_for_cost, vector_stmt,
1604 stmt_info, 0, vect_body);
1605 if (SLP_TREE_TWO_OPERATORS (node))
1606 {
1607 record_stmt_cost (body_cost_vec, ncopies_for_cost, vector_stmt,
1608 stmt_info, 0, vect_body);
1609 record_stmt_cost (body_cost_vec, ncopies_for_cost, vec_perm,
1610 stmt_info, 0, vect_body);
1611 }
1612 }
1613
1614 /* Scan operands and account for prologue cost of constants/externals.
1615 ??? This over-estimates cost for multiple uses and should be
1616 re-engineered. */
1617 lhs = gimple_get_lhs (stmt);
1618 for (i = 0; i < gimple_num_ops (stmt); ++i)
1619 {
1620 tree def, op = gimple_op (stmt, i);
1621 gimple def_stmt;
1622 enum vect_def_type dt;
1623 if (!op || op == lhs)
1624 continue;
1625 if (vect_is_simple_use (op, NULL, loop_vinfo, bb_vinfo,
1626 &def_stmt, &def, &dt))
1627 {
1628 /* Without looking at the actual initializer a vector of
1629 constants can be implemented as load from the constant pool.
1630 ??? We need to pass down stmt_info for a vector type
1631 even if it points to the wrong stmt. */
1632 if (dt == vect_constant_def)
1633 record_stmt_cost (prologue_cost_vec, 1, vector_load,
1634 stmt_info, 0, vect_prologue);
1635 else if (dt == vect_external_def)
1636 record_stmt_cost (prologue_cost_vec, 1, vec_construct,
1637 stmt_info, 0, vect_prologue);
1638 }
1639 }
1640 }
1641
1642 /* Compute the cost for the SLP instance INSTANCE. */
1643
1644 static void
1645 vect_analyze_slp_cost (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo,
1646 slp_instance instance, unsigned nunits)
1647 {
1648 stmt_vector_for_cost body_cost_vec, prologue_cost_vec;
1649 unsigned ncopies_for_cost;
1650 stmt_info_for_cost *si;
1651 unsigned i;
1652
1653 /* Calculate the number of vector stmts to create based on the unrolling
1654 factor (number of vectors is 1 if NUNITS >= GROUP_SIZE, and is
1655 GROUP_SIZE / NUNITS otherwise. */
1656 unsigned group_size = SLP_INSTANCE_GROUP_SIZE (instance);
1657 ncopies_for_cost = least_common_multiple (nunits, group_size) / nunits;
1658
1659 prologue_cost_vec.create (10);
1660 body_cost_vec.create (10);
1661 SLP_INSTANCE_BODY_COST_VEC (instance) = body_cost_vec;
1662 vect_analyze_slp_cost_1 (loop_vinfo, bb_vinfo,
1663 instance, SLP_INSTANCE_TREE (instance),
1664 &prologue_cost_vec, ncopies_for_cost);
1665
1666 /* Record the prologue costs, which were delayed until we were
1667 sure that SLP was successful. Unlike the body costs, we know
1668 the final values now regardless of the loop vectorization factor. */
1669 void *data = (loop_vinfo ? LOOP_VINFO_TARGET_COST_DATA (loop_vinfo)
1670 : BB_VINFO_TARGET_COST_DATA (bb_vinfo));
1671 FOR_EACH_VEC_ELT (prologue_cost_vec, i, si)
1672 {
1673 struct _stmt_vec_info *stmt_info
1674 = si->stmt ? vinfo_for_stmt (si->stmt) : NULL;
1675 (void) add_stmt_cost (data, si->count, si->kind, stmt_info,
1676 si->misalign, vect_prologue);
1677 }
1678
1679 prologue_cost_vec.release ();
1680 }
1681
1682 /* Analyze an SLP instance starting from a group of grouped stores. Call
1683 vect_build_slp_tree to build a tree of packed stmts if possible.
1684 Return FALSE if it's impossible to SLP any stmt in the loop. */
1685
1686 static bool
1687 vect_analyze_slp_instance (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo,
1688 gimple stmt, unsigned max_tree_size)
1689 {
1690 slp_instance new_instance;
1691 slp_tree node;
1692 unsigned int group_size = GROUP_SIZE (vinfo_for_stmt (stmt));
1693 unsigned int unrolling_factor = 1, nunits;
1694 tree vectype, scalar_type = NULL_TREE;
1695 gimple next;
1696 unsigned int vectorization_factor = 0;
1697 int i;
1698 unsigned int max_nunits = 0;
1699 vec<slp_tree> loads;
1700 struct data_reference *dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (stmt));
1701 vec<gimple> scalar_stmts;
1702
1703 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
1704 {
1705 if (dr)
1706 {
1707 scalar_type = TREE_TYPE (DR_REF (dr));
1708 vectype = get_vectype_for_scalar_type (scalar_type);
1709 }
1710 else
1711 {
1712 gcc_assert (loop_vinfo);
1713 vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
1714 }
1715
1716 group_size = GROUP_SIZE (vinfo_for_stmt (stmt));
1717 }
1718 else
1719 {
1720 gcc_assert (loop_vinfo);
1721 vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
1722 group_size = LOOP_VINFO_REDUCTIONS (loop_vinfo).length ();
1723 }
1724
1725 if (!vectype)
1726 {
1727 if (dump_enabled_p ())
1728 {
1729 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1730 "Build SLP failed: unsupported data-type ");
1731 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, scalar_type);
1732 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
1733 }
1734
1735 return false;
1736 }
1737
1738 nunits = TYPE_VECTOR_SUBPARTS (vectype);
1739 if (loop_vinfo)
1740 vectorization_factor = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
1741 else
1742 vectorization_factor = nunits;
1743
1744 /* Calculate the unrolling factor. */
1745 unrolling_factor = least_common_multiple (nunits, group_size) / group_size;
1746 if (unrolling_factor != 1 && !loop_vinfo)
1747 {
1748 if (dump_enabled_p ())
1749 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1750 "Build SLP failed: unrolling required in basic"
1751 " block SLP\n");
1752
1753 return false;
1754 }
1755
1756 /* Create a node (a root of the SLP tree) for the packed grouped stores. */
1757 scalar_stmts.create (group_size);
1758 next = stmt;
1759 if (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt)))
1760 {
1761 /* Collect the stores and store them in SLP_TREE_SCALAR_STMTS. */
1762 while (next)
1763 {
1764 if (STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (next))
1765 && STMT_VINFO_RELATED_STMT (vinfo_for_stmt (next)))
1766 scalar_stmts.safe_push (
1767 STMT_VINFO_RELATED_STMT (vinfo_for_stmt (next)));
1768 else
1769 scalar_stmts.safe_push (next);
1770 next = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next));
1771 }
1772 }
1773 else
1774 {
1775 /* Collect reduction statements. */
1776 vec<gimple> reductions = LOOP_VINFO_REDUCTIONS (loop_vinfo);
1777 for (i = 0; reductions.iterate (i, &next); i++)
1778 scalar_stmts.safe_push (next);
1779 }
1780
1781 node = vect_create_new_slp_node (scalar_stmts);
1782
1783 loads.create (group_size);
1784
1785 /* Build the tree for the SLP instance. */
1786 bool *matches = XALLOCAVEC (bool, group_size);
1787 unsigned npermutes = 0;
1788 if (vect_build_slp_tree (loop_vinfo, bb_vinfo, &node, group_size,
1789 &max_nunits, &loads,
1790 vectorization_factor, matches, &npermutes, NULL,
1791 max_tree_size))
1792 {
1793 /* Calculate the unrolling factor based on the smallest type. */
1794 if (max_nunits > nunits)
1795 unrolling_factor = least_common_multiple (max_nunits, group_size)
1796 / group_size;
1797
1798 if (unrolling_factor != 1 && !loop_vinfo)
1799 {
1800 if (dump_enabled_p ())
1801 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1802 "Build SLP failed: unrolling required in basic"
1803 " block SLP\n");
1804 vect_free_slp_tree (node);
1805 loads.release ();
1806 return false;
1807 }
1808
1809 /* Create a new SLP instance. */
1810 new_instance = XNEW (struct _slp_instance);
1811 SLP_INSTANCE_TREE (new_instance) = node;
1812 SLP_INSTANCE_GROUP_SIZE (new_instance) = group_size;
1813 SLP_INSTANCE_UNROLLING_FACTOR (new_instance) = unrolling_factor;
1814 SLP_INSTANCE_BODY_COST_VEC (new_instance) = vNULL;
1815 SLP_INSTANCE_LOADS (new_instance) = loads;
1816
1817 /* Compute the load permutation. */
1818 slp_tree load_node;
1819 bool loads_permuted = false;
1820 FOR_EACH_VEC_ELT (loads, i, load_node)
1821 {
1822 vec<unsigned> load_permutation;
1823 int j;
1824 gimple load, first_stmt;
1825 bool this_load_permuted = false;
1826 load_permutation.create (group_size);
1827 first_stmt = GROUP_FIRST_ELEMENT
1828 (vinfo_for_stmt (SLP_TREE_SCALAR_STMTS (load_node)[0]));
1829 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (load_node), j, load)
1830 {
1831 int load_place
1832 = vect_get_place_in_interleaving_chain (load, first_stmt);
1833 gcc_assert (load_place != -1);
1834 if (load_place != j)
1835 this_load_permuted = true;
1836 load_permutation.safe_push (load_place);
1837 }
1838 if (!this_load_permuted)
1839 {
1840 load_permutation.release ();
1841 continue;
1842 }
1843 SLP_TREE_LOAD_PERMUTATION (load_node) = load_permutation;
1844 loads_permuted = true;
1845 }
1846
1847 if (loads_permuted)
1848 {
1849 if (!vect_supported_load_permutation_p (new_instance))
1850 {
1851 if (dump_enabled_p ())
1852 {
1853 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1854 "Build SLP failed: unsupported load "
1855 "permutation ");
1856 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
1857 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
1858 }
1859 vect_free_slp_instance (new_instance);
1860 return false;
1861 }
1862 }
1863
1864
1865 if (loop_vinfo)
1866 {
1867 /* Compute the costs of this SLP instance. Delay this for BB
1868 vectorization as we don't have vector types computed yet. */
1869 vect_analyze_slp_cost (loop_vinfo, bb_vinfo,
1870 new_instance, TYPE_VECTOR_SUBPARTS (vectype));
1871 LOOP_VINFO_SLP_INSTANCES (loop_vinfo).safe_push (new_instance);
1872 }
1873 else
1874 BB_VINFO_SLP_INSTANCES (bb_vinfo).safe_push (new_instance);
1875
1876 if (dump_enabled_p ())
1877 vect_print_slp_tree (MSG_NOTE, node);
1878
1879 return true;
1880 }
1881
1882 /* Failed to SLP. */
1883 /* Free the allocated memory. */
1884 vect_free_slp_tree (node);
1885 loads.release ();
1886
1887 return false;
1888 }
1889
1890
1891 /* Check if there are stmts in the loop can be vectorized using SLP. Build SLP
1892 trees of packed scalar stmts if SLP is possible. */
1893
1894 bool
1895 vect_analyze_slp (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo,
1896 unsigned max_tree_size)
1897 {
1898 unsigned int i;
1899 vec<gimple> grouped_stores;
1900 vec<gimple> reductions = vNULL;
1901 vec<gimple> reduc_chains = vNULL;
1902 gimple first_element;
1903 bool ok = false;
1904
1905 if (dump_enabled_p ())
1906 dump_printf_loc (MSG_NOTE, vect_location, "=== vect_analyze_slp ===\n");
1907
1908 if (loop_vinfo)
1909 {
1910 grouped_stores = LOOP_VINFO_GROUPED_STORES (loop_vinfo);
1911 reduc_chains = LOOP_VINFO_REDUCTION_CHAINS (loop_vinfo);
1912 reductions = LOOP_VINFO_REDUCTIONS (loop_vinfo);
1913 }
1914 else
1915 grouped_stores = BB_VINFO_GROUPED_STORES (bb_vinfo);
1916
1917 /* Find SLP sequences starting from groups of grouped stores. */
1918 FOR_EACH_VEC_ELT (grouped_stores, i, first_element)
1919 if (vect_analyze_slp_instance (loop_vinfo, bb_vinfo, first_element,
1920 max_tree_size))
1921 ok = true;
1922
1923 if (reduc_chains.length () > 0)
1924 {
1925 /* Find SLP sequences starting from reduction chains. */
1926 FOR_EACH_VEC_ELT (reduc_chains, i, first_element)
1927 if (vect_analyze_slp_instance (loop_vinfo, bb_vinfo, first_element,
1928 max_tree_size))
1929 ok = true;
1930 else
1931 return false;
1932
1933 /* Don't try to vectorize SLP reductions if reduction chain was
1934 detected. */
1935 return ok;
1936 }
1937
1938 /* Find SLP sequences starting from groups of reductions. */
1939 if (reductions.length () > 1
1940 && vect_analyze_slp_instance (loop_vinfo, bb_vinfo, reductions[0],
1941 max_tree_size))
1942 ok = true;
1943
1944 return true;
1945 }
1946
1947
1948 /* For each possible SLP instance decide whether to SLP it and calculate overall
1949 unrolling factor needed to SLP the loop. Return TRUE if decided to SLP at
1950 least one instance. */
1951
1952 bool
1953 vect_make_slp_decision (loop_vec_info loop_vinfo)
1954 {
1955 unsigned int i, unrolling_factor = 1;
1956 vec<slp_instance> slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
1957 slp_instance instance;
1958 int decided_to_slp = 0;
1959
1960 if (dump_enabled_p ())
1961 dump_printf_loc (MSG_NOTE, vect_location, "=== vect_make_slp_decision ==="
1962 "\n");
1963
1964 FOR_EACH_VEC_ELT (slp_instances, i, instance)
1965 {
1966 /* FORNOW: SLP if you can. */
1967 if (unrolling_factor < SLP_INSTANCE_UNROLLING_FACTOR (instance))
1968 unrolling_factor = SLP_INSTANCE_UNROLLING_FACTOR (instance);
1969
1970 /* Mark all the stmts that belong to INSTANCE as PURE_SLP stmts. Later we
1971 call vect_detect_hybrid_slp () to find stmts that need hybrid SLP and
1972 loop-based vectorization. Such stmts will be marked as HYBRID. */
1973 vect_mark_slp_stmts (SLP_INSTANCE_TREE (instance), pure_slp, -1);
1974 decided_to_slp++;
1975 }
1976
1977 LOOP_VINFO_SLP_UNROLLING_FACTOR (loop_vinfo) = unrolling_factor;
1978
1979 if (decided_to_slp && dump_enabled_p ())
1980 dump_printf_loc (MSG_NOTE, vect_location,
1981 "Decided to SLP %d instances. Unrolling factor %d\n",
1982 decided_to_slp, unrolling_factor);
1983
1984 return (decided_to_slp > 0);
1985 }
1986
1987
1988 /* Find stmts that must be both vectorized and SLPed (since they feed stmts that
1989 can't be SLPed) in the tree rooted at NODE. Mark such stmts as HYBRID. */
1990
1991 static void
1992 vect_detect_hybrid_slp_stmts (slp_tree node, unsigned i, slp_vect_type stype)
1993 {
1994 gimple stmt = SLP_TREE_SCALAR_STMTS (node)[i];
1995 imm_use_iterator imm_iter;
1996 gimple use_stmt;
1997 stmt_vec_info use_vinfo, stmt_vinfo = vinfo_for_stmt (stmt);
1998 slp_tree child;
1999 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
2000 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2001 int j;
2002
2003 /* Propagate hybrid down the SLP tree. */
2004 if (stype == hybrid)
2005 ;
2006 else if (HYBRID_SLP_STMT (stmt_vinfo))
2007 stype = hybrid;
2008 else
2009 {
2010 /* Check if a pure SLP stmt has uses in non-SLP stmts. */
2011 gcc_checking_assert (PURE_SLP_STMT (stmt_vinfo));
2012 if (TREE_CODE (gimple_op (stmt, 0)) == SSA_NAME)
2013 FOR_EACH_IMM_USE_STMT (use_stmt, imm_iter, gimple_op (stmt, 0))
2014 if (gimple_bb (use_stmt)
2015 && flow_bb_inside_loop_p (loop, gimple_bb (use_stmt))
2016 && (use_vinfo = vinfo_for_stmt (use_stmt))
2017 && !STMT_SLP_TYPE (use_vinfo)
2018 && (STMT_VINFO_RELEVANT (use_vinfo)
2019 || VECTORIZABLE_CYCLE_DEF (STMT_VINFO_DEF_TYPE (use_vinfo))
2020 || (STMT_VINFO_IN_PATTERN_P (use_vinfo)
2021 && STMT_VINFO_RELATED_STMT (use_vinfo)
2022 && !STMT_SLP_TYPE (vinfo_for_stmt
2023 (STMT_VINFO_RELATED_STMT (use_vinfo)))))
2024 && !(gimple_code (use_stmt) == GIMPLE_PHI
2025 && STMT_VINFO_DEF_TYPE (use_vinfo) == vect_reduction_def))
2026 stype = hybrid;
2027 }
2028
2029 if (stype == hybrid)
2030 STMT_SLP_TYPE (stmt_vinfo) = hybrid;
2031
2032 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), j, child)
2033 if (child)
2034 vect_detect_hybrid_slp_stmts (child, i, stype);
2035 }
2036
2037 /* Helpers for vect_detect_hybrid_slp walking pattern stmt uses. */
2038
2039 static tree
2040 vect_detect_hybrid_slp_1 (tree *tp, int *, void *data)
2041 {
2042 walk_stmt_info *wi = (walk_stmt_info *)data;
2043 struct loop *loopp = (struct loop *)wi->info;
2044
2045 if (wi->is_lhs)
2046 return NULL_TREE;
2047
2048 if (TREE_CODE (*tp) == SSA_NAME
2049 && !SSA_NAME_IS_DEFAULT_DEF (*tp))
2050 {
2051 gimple def_stmt = SSA_NAME_DEF_STMT (*tp);
2052 if (flow_bb_inside_loop_p (loopp, gimple_bb (def_stmt))
2053 && PURE_SLP_STMT (vinfo_for_stmt (def_stmt)))
2054 STMT_SLP_TYPE (vinfo_for_stmt (def_stmt)) = hybrid;
2055 }
2056
2057 return NULL_TREE;
2058 }
2059
2060 static tree
2061 vect_detect_hybrid_slp_2 (gimple_stmt_iterator *gsi, bool *handled,
2062 walk_stmt_info *)
2063 {
2064 /* If the stmt is in a SLP instance then this isn't a reason
2065 to mark use definitions in other SLP instances as hybrid. */
2066 if (STMT_SLP_TYPE (vinfo_for_stmt (gsi_stmt (*gsi))) != loop_vect)
2067 *handled = true;
2068 return NULL_TREE;
2069 }
2070
2071 /* Find stmts that must be both vectorized and SLPed. */
2072
2073 void
2074 vect_detect_hybrid_slp (loop_vec_info loop_vinfo)
2075 {
2076 unsigned int i;
2077 vec<slp_instance> slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
2078 slp_instance instance;
2079
2080 if (dump_enabled_p ())
2081 dump_printf_loc (MSG_NOTE, vect_location, "=== vect_detect_hybrid_slp ==="
2082 "\n");
2083
2084 /* First walk all pattern stmt in the loop and mark defs of uses as
2085 hybrid because immediate uses in them are not recorded. */
2086 for (i = 0; i < LOOP_VINFO_LOOP (loop_vinfo)->num_nodes; ++i)
2087 {
2088 basic_block bb = LOOP_VINFO_BBS (loop_vinfo)[i];
2089 for (gimple_stmt_iterator gsi = gsi_start_bb (bb); !gsi_end_p (gsi);
2090 gsi_next (&gsi))
2091 {
2092 gimple stmt = gsi_stmt (gsi);
2093 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2094 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
2095 {
2096 walk_stmt_info wi;
2097 memset (&wi, 0, sizeof (wi));
2098 wi.info = LOOP_VINFO_LOOP (loop_vinfo);
2099 gimple_stmt_iterator gsi2
2100 = gsi_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
2101 walk_gimple_stmt (&gsi2, vect_detect_hybrid_slp_2,
2102 vect_detect_hybrid_slp_1, &wi);
2103 walk_gimple_seq (STMT_VINFO_PATTERN_DEF_SEQ (stmt_info),
2104 vect_detect_hybrid_slp_2,
2105 vect_detect_hybrid_slp_1, &wi);
2106 }
2107 }
2108 }
2109
2110 /* Then walk the SLP instance trees marking stmts with uses in
2111 non-SLP stmts as hybrid, also propagating hybrid down the
2112 SLP tree, collecting the above info on-the-fly. */
2113 FOR_EACH_VEC_ELT (slp_instances, i, instance)
2114 {
2115 for (unsigned i = 0; i < SLP_INSTANCE_GROUP_SIZE (instance); ++i)
2116 vect_detect_hybrid_slp_stmts (SLP_INSTANCE_TREE (instance),
2117 i, pure_slp);
2118 }
2119 }
2120
2121
2122 /* Create and initialize a new bb_vec_info struct for BB, as well as
2123 stmt_vec_info structs for all the stmts in it. */
2124
2125 static bb_vec_info
2126 new_bb_vec_info (basic_block bb)
2127 {
2128 bb_vec_info res = NULL;
2129 gimple_stmt_iterator gsi;
2130
2131 res = (bb_vec_info) xcalloc (1, sizeof (struct _bb_vec_info));
2132 BB_VINFO_BB (res) = bb;
2133
2134 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2135 {
2136 gimple stmt = gsi_stmt (gsi);
2137 gimple_set_uid (stmt, 0);
2138 set_vinfo_for_stmt (stmt, new_stmt_vec_info (stmt, NULL, res));
2139 }
2140
2141 BB_VINFO_GROUPED_STORES (res).create (10);
2142 BB_VINFO_SLP_INSTANCES (res).create (2);
2143 BB_VINFO_TARGET_COST_DATA (res) = init_cost (NULL);
2144
2145 bb->aux = res;
2146 return res;
2147 }
2148
2149
2150 /* Free BB_VINFO struct, as well as all the stmt_vec_info structs of all the
2151 stmts in the basic block. */
2152
2153 static void
2154 destroy_bb_vec_info (bb_vec_info bb_vinfo)
2155 {
2156 vec<slp_instance> slp_instances;
2157 slp_instance instance;
2158 basic_block bb;
2159 gimple_stmt_iterator si;
2160 unsigned i;
2161
2162 if (!bb_vinfo)
2163 return;
2164
2165 bb = BB_VINFO_BB (bb_vinfo);
2166
2167 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2168 {
2169 gimple stmt = gsi_stmt (si);
2170 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2171
2172 if (stmt_info)
2173 /* Free stmt_vec_info. */
2174 free_stmt_vec_info (stmt);
2175 }
2176
2177 vect_destroy_datarefs (NULL, bb_vinfo);
2178 free_dependence_relations (BB_VINFO_DDRS (bb_vinfo));
2179 BB_VINFO_GROUPED_STORES (bb_vinfo).release ();
2180 slp_instances = BB_VINFO_SLP_INSTANCES (bb_vinfo);
2181 FOR_EACH_VEC_ELT (slp_instances, i, instance)
2182 vect_free_slp_instance (instance);
2183 BB_VINFO_SLP_INSTANCES (bb_vinfo).release ();
2184 destroy_cost_data (BB_VINFO_TARGET_COST_DATA (bb_vinfo));
2185 free (bb_vinfo);
2186 bb->aux = NULL;
2187 }
2188
2189
2190 /* Analyze statements contained in SLP tree node after recursively analyzing
2191 the subtree. Return TRUE if the operations are supported. */
2192
2193 static bool
2194 vect_slp_analyze_node_operations (slp_tree node)
2195 {
2196 bool dummy;
2197 int i;
2198 gimple stmt;
2199 slp_tree child;
2200
2201 if (!node)
2202 return true;
2203
2204 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
2205 if (!vect_slp_analyze_node_operations (child))
2206 return false;
2207
2208 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt)
2209 {
2210 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2211 gcc_assert (stmt_info);
2212 gcc_assert (STMT_SLP_TYPE (stmt_info) != loop_vect);
2213
2214 if (!vect_analyze_stmt (stmt, &dummy, node))
2215 return false;
2216 }
2217
2218 return true;
2219 }
2220
2221
2222 /* Analyze statements in SLP instances of the basic block. Return TRUE if the
2223 operations are supported. */
2224
2225 bool
2226 vect_slp_analyze_operations (vec<slp_instance> slp_instances)
2227 {
2228 slp_instance instance;
2229 int i;
2230
2231 if (dump_enabled_p ())
2232 dump_printf_loc (MSG_NOTE, vect_location,
2233 "=== vect_slp_analyze_operations ===\n");
2234
2235 for (i = 0; slp_instances.iterate (i, &instance); )
2236 {
2237 if (!vect_slp_analyze_node_operations (SLP_INSTANCE_TREE (instance)))
2238 {
2239 dump_printf_loc (MSG_NOTE, vect_location,
2240 "removing SLP instance operations starting from: ");
2241 dump_gimple_stmt (MSG_NOTE, TDF_SLIM,
2242 SLP_TREE_SCALAR_STMTS
2243 (SLP_INSTANCE_TREE (instance))[0], 0);
2244 vect_free_slp_instance (instance);
2245 slp_instances.ordered_remove (i);
2246 }
2247 else
2248 i++;
2249 }
2250
2251 if (!slp_instances.length ())
2252 return false;
2253
2254 return true;
2255 }
2256
2257
2258 /* Compute the scalar cost of the SLP node NODE and its children
2259 and return it. Do not account defs that are marked in LIFE and
2260 update LIFE according to uses of NODE. */
2261
2262 static unsigned
2263 vect_bb_slp_scalar_cost (basic_block bb,
2264 slp_tree node, vec<bool, va_heap> *life)
2265 {
2266 unsigned scalar_cost = 0;
2267 unsigned i;
2268 gimple stmt;
2269 slp_tree child;
2270
2271 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt)
2272 {
2273 unsigned stmt_cost;
2274 ssa_op_iter op_iter;
2275 def_operand_p def_p;
2276 stmt_vec_info stmt_info;
2277
2278 if ((*life)[i])
2279 continue;
2280
2281 /* If there is a non-vectorized use of the defs then the scalar
2282 stmt is kept live in which case we do not account it or any
2283 required defs in the SLP children in the scalar cost. This
2284 way we make the vectorization more costly when compared to
2285 the scalar cost. */
2286 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, op_iter, SSA_OP_DEF)
2287 {
2288 imm_use_iterator use_iter;
2289 gimple use_stmt;
2290 FOR_EACH_IMM_USE_STMT (use_stmt, use_iter, DEF_FROM_PTR (def_p))
2291 if (!is_gimple_debug (use_stmt)
2292 && (gimple_code (use_stmt) == GIMPLE_PHI
2293 || gimple_bb (use_stmt) != bb
2294 || !STMT_VINFO_VECTORIZABLE (vinfo_for_stmt (use_stmt))))
2295 {
2296 (*life)[i] = true;
2297 BREAK_FROM_IMM_USE_STMT (use_iter);
2298 }
2299 }
2300 if ((*life)[i])
2301 continue;
2302
2303 stmt_info = vinfo_for_stmt (stmt);
2304 if (STMT_VINFO_DATA_REF (stmt_info))
2305 {
2306 if (DR_IS_READ (STMT_VINFO_DATA_REF (stmt_info)))
2307 stmt_cost = vect_get_stmt_cost (scalar_load);
2308 else
2309 stmt_cost = vect_get_stmt_cost (scalar_store);
2310 }
2311 else
2312 stmt_cost = vect_get_stmt_cost (scalar_stmt);
2313
2314 scalar_cost += stmt_cost;
2315 }
2316
2317 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
2318 if (child)
2319 scalar_cost += vect_bb_slp_scalar_cost (bb, child, life);
2320
2321 return scalar_cost;
2322 }
2323
2324 /* Check if vectorization of the basic block is profitable. */
2325
2326 static bool
2327 vect_bb_vectorization_profitable_p (bb_vec_info bb_vinfo)
2328 {
2329 vec<slp_instance> slp_instances = BB_VINFO_SLP_INSTANCES (bb_vinfo);
2330 slp_instance instance;
2331 int i, j;
2332 unsigned int vec_inside_cost = 0, vec_outside_cost = 0, scalar_cost = 0;
2333 unsigned int vec_prologue_cost = 0, vec_epilogue_cost = 0;
2334 void *target_cost_data = BB_VINFO_TARGET_COST_DATA (bb_vinfo);
2335 stmt_vec_info stmt_info = NULL;
2336 stmt_vector_for_cost body_cost_vec;
2337 stmt_info_for_cost *ci;
2338
2339 /* Calculate vector costs. */
2340 FOR_EACH_VEC_ELT (slp_instances, i, instance)
2341 {
2342 body_cost_vec = SLP_INSTANCE_BODY_COST_VEC (instance);
2343
2344 FOR_EACH_VEC_ELT (body_cost_vec, j, ci)
2345 {
2346 stmt_info = ci->stmt ? vinfo_for_stmt (ci->stmt) : NULL;
2347 (void) add_stmt_cost (target_cost_data, ci->count, ci->kind,
2348 stmt_info, ci->misalign, vect_body);
2349 }
2350 }
2351
2352 /* Calculate scalar cost. */
2353 FOR_EACH_VEC_ELT (slp_instances, i, instance)
2354 {
2355 auto_vec<bool, 20> life;
2356 life.safe_grow_cleared (SLP_INSTANCE_GROUP_SIZE (instance));
2357 scalar_cost += vect_bb_slp_scalar_cost (BB_VINFO_BB (bb_vinfo),
2358 SLP_INSTANCE_TREE (instance),
2359 &life);
2360 }
2361
2362 /* Complete the target-specific cost calculation. */
2363 finish_cost (BB_VINFO_TARGET_COST_DATA (bb_vinfo), &vec_prologue_cost,
2364 &vec_inside_cost, &vec_epilogue_cost);
2365
2366 vec_outside_cost = vec_prologue_cost + vec_epilogue_cost;
2367
2368 if (dump_enabled_p ())
2369 {
2370 dump_printf_loc (MSG_NOTE, vect_location, "Cost model analysis: \n");
2371 dump_printf (MSG_NOTE, " Vector inside of basic block cost: %d\n",
2372 vec_inside_cost);
2373 dump_printf (MSG_NOTE, " Vector prologue cost: %d\n", vec_prologue_cost);
2374 dump_printf (MSG_NOTE, " Vector epilogue cost: %d\n", vec_epilogue_cost);
2375 dump_printf (MSG_NOTE, " Scalar cost of basic block: %d\n", scalar_cost);
2376 }
2377
2378 /* Vectorization is profitable if its cost is less than the cost of scalar
2379 version. */
2380 if (vec_outside_cost + vec_inside_cost >= scalar_cost)
2381 return false;
2382
2383 return true;
2384 }
2385
2386 /* Check if the basic block can be vectorized. */
2387
2388 static bb_vec_info
2389 vect_slp_analyze_bb_1 (basic_block bb)
2390 {
2391 bb_vec_info bb_vinfo;
2392 vec<slp_instance> slp_instances;
2393 slp_instance instance;
2394 int i;
2395 int min_vf = 2;
2396 unsigned n_stmts = 0;
2397
2398 bb_vinfo = new_bb_vec_info (bb);
2399 if (!bb_vinfo)
2400 return NULL;
2401
2402 if (!vect_analyze_data_refs (NULL, bb_vinfo, &min_vf, &n_stmts))
2403 {
2404 if (dump_enabled_p ())
2405 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2406 "not vectorized: unhandled data-ref in basic "
2407 "block.\n");
2408
2409 destroy_bb_vec_info (bb_vinfo);
2410 return NULL;
2411 }
2412
2413 if (BB_VINFO_DATAREFS (bb_vinfo).length () < 2)
2414 {
2415 if (dump_enabled_p ())
2416 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2417 "not vectorized: not enough data-refs in "
2418 "basic block.\n");
2419
2420 destroy_bb_vec_info (bb_vinfo);
2421 return NULL;
2422 }
2423
2424 if (!vect_analyze_data_ref_accesses (NULL, bb_vinfo))
2425 {
2426 if (dump_enabled_p ())
2427 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2428 "not vectorized: unhandled data access in "
2429 "basic block.\n");
2430
2431 destroy_bb_vec_info (bb_vinfo);
2432 return NULL;
2433 }
2434
2435 vect_pattern_recog (NULL, bb_vinfo);
2436
2437 if (!vect_analyze_data_refs_alignment (NULL, bb_vinfo))
2438 {
2439 if (dump_enabled_p ())
2440 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2441 "not vectorized: bad data alignment in basic "
2442 "block.\n");
2443
2444 destroy_bb_vec_info (bb_vinfo);
2445 return NULL;
2446 }
2447
2448 /* Check the SLP opportunities in the basic block, analyze and build SLP
2449 trees. */
2450 if (!vect_analyze_slp (NULL, bb_vinfo, n_stmts))
2451 {
2452 if (dump_enabled_p ())
2453 {
2454 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2455 "Failed to SLP the basic block.\n");
2456 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2457 "not vectorized: failed to find SLP opportunities "
2458 "in basic block.\n");
2459 }
2460
2461 destroy_bb_vec_info (bb_vinfo);
2462 return NULL;
2463 }
2464
2465 slp_instances = BB_VINFO_SLP_INSTANCES (bb_vinfo);
2466
2467 /* Mark all the statements that we want to vectorize as pure SLP and
2468 relevant. */
2469 FOR_EACH_VEC_ELT (slp_instances, i, instance)
2470 {
2471 vect_mark_slp_stmts (SLP_INSTANCE_TREE (instance), pure_slp, -1);
2472 vect_mark_slp_stmts_relevant (SLP_INSTANCE_TREE (instance));
2473 }
2474
2475 /* Mark all the statements that we do not want to vectorize. */
2476 for (gimple_stmt_iterator gsi = gsi_start_bb (BB_VINFO_BB (bb_vinfo));
2477 !gsi_end_p (gsi); gsi_next (&gsi))
2478 {
2479 stmt_vec_info vinfo = vinfo_for_stmt (gsi_stmt (gsi));
2480 if (STMT_SLP_TYPE (vinfo) != pure_slp)
2481 STMT_VINFO_VECTORIZABLE (vinfo) = false;
2482 }
2483
2484 /* Analyze dependences. At this point all stmts not participating in
2485 vectorization have to be marked. Dependence analysis assumes
2486 that we either vectorize all SLP instances or none at all. */
2487 if (!vect_slp_analyze_data_ref_dependences (bb_vinfo))
2488 {
2489 if (dump_enabled_p ())
2490 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2491 "not vectorized: unhandled data dependence "
2492 "in basic block.\n");
2493
2494 destroy_bb_vec_info (bb_vinfo);
2495 return NULL;
2496 }
2497
2498 if (!vect_verify_datarefs_alignment (NULL, bb_vinfo))
2499 {
2500 if (dump_enabled_p ())
2501 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2502 "not vectorized: unsupported alignment in basic "
2503 "block.\n");
2504 destroy_bb_vec_info (bb_vinfo);
2505 return NULL;
2506 }
2507
2508 if (!vect_slp_analyze_operations (BB_VINFO_SLP_INSTANCES (bb_vinfo)))
2509 {
2510 if (dump_enabled_p ())
2511 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2512 "not vectorized: bad operation in basic block.\n");
2513
2514 destroy_bb_vec_info (bb_vinfo);
2515 return NULL;
2516 }
2517
2518 /* Compute the costs of the SLP instances. */
2519 FOR_EACH_VEC_ELT (slp_instances, i, instance)
2520 {
2521 gimple stmt = SLP_TREE_SCALAR_STMTS (SLP_INSTANCE_TREE (instance))[0];
2522 tree vectype = STMT_VINFO_VECTYPE (vinfo_for_stmt (stmt));
2523 vect_analyze_slp_cost (NULL, bb_vinfo,
2524 instance, TYPE_VECTOR_SUBPARTS (vectype));
2525 }
2526
2527 /* Cost model: check if the vectorization is worthwhile. */
2528 if (!unlimited_cost_model (NULL)
2529 && !vect_bb_vectorization_profitable_p (bb_vinfo))
2530 {
2531 if (dump_enabled_p ())
2532 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2533 "not vectorized: vectorization is not "
2534 "profitable.\n");
2535
2536 destroy_bb_vec_info (bb_vinfo);
2537 return NULL;
2538 }
2539
2540 if (dump_enabled_p ())
2541 dump_printf_loc (MSG_NOTE, vect_location,
2542 "Basic block will be vectorized using SLP\n");
2543
2544 return bb_vinfo;
2545 }
2546
2547
2548 bb_vec_info
2549 vect_slp_analyze_bb (basic_block bb)
2550 {
2551 bb_vec_info bb_vinfo;
2552 int insns = 0;
2553 gimple_stmt_iterator gsi;
2554 unsigned int vector_sizes;
2555
2556 if (dump_enabled_p ())
2557 dump_printf_loc (MSG_NOTE, vect_location, "===vect_slp_analyze_bb===\n");
2558
2559 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2560 {
2561 gimple stmt = gsi_stmt (gsi);
2562 if (!is_gimple_debug (stmt)
2563 && !gimple_nop_p (stmt)
2564 && gimple_code (stmt) != GIMPLE_LABEL)
2565 insns++;
2566 }
2567
2568 if (insns > PARAM_VALUE (PARAM_SLP_MAX_INSNS_IN_BB))
2569 {
2570 if (dump_enabled_p ())
2571 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2572 "not vectorized: too many instructions in "
2573 "basic block.\n");
2574
2575 return NULL;
2576 }
2577
2578 /* Autodetect first vector size we try. */
2579 current_vector_size = 0;
2580 vector_sizes = targetm.vectorize.autovectorize_vector_sizes ();
2581
2582 while (1)
2583 {
2584 bb_vinfo = vect_slp_analyze_bb_1 (bb);
2585 if (bb_vinfo)
2586 return bb_vinfo;
2587
2588 destroy_bb_vec_info (bb_vinfo);
2589
2590 vector_sizes &= ~current_vector_size;
2591 if (vector_sizes == 0
2592 || current_vector_size == 0)
2593 return NULL;
2594
2595 /* Try the next biggest vector size. */
2596 current_vector_size = 1 << floor_log2 (vector_sizes);
2597 if (dump_enabled_p ())
2598 dump_printf_loc (MSG_NOTE, vect_location,
2599 "***** Re-trying analysis with "
2600 "vector size %d\n", current_vector_size);
2601 }
2602 }
2603
2604
2605 /* SLP costs are calculated according to SLP instance unrolling factor (i.e.,
2606 the number of created vector stmts depends on the unrolling factor).
2607 However, the actual number of vector stmts for every SLP node depends on
2608 VF which is set later in vect_analyze_operations (). Hence, SLP costs
2609 should be updated. In this function we assume that the inside costs
2610 calculated in vect_model_xxx_cost are linear in ncopies. */
2611
2612 void
2613 vect_update_slp_costs_according_to_vf (loop_vec_info loop_vinfo)
2614 {
2615 unsigned int i, j, vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2616 vec<slp_instance> slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
2617 slp_instance instance;
2618 stmt_vector_for_cost body_cost_vec;
2619 stmt_info_for_cost *si;
2620 void *data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
2621
2622 if (dump_enabled_p ())
2623 dump_printf_loc (MSG_NOTE, vect_location,
2624 "=== vect_update_slp_costs_according_to_vf ===\n");
2625
2626 FOR_EACH_VEC_ELT (slp_instances, i, instance)
2627 {
2628 /* We assume that costs are linear in ncopies. */
2629 int ncopies = vf / SLP_INSTANCE_UNROLLING_FACTOR (instance);
2630
2631 /* Record the instance's instructions in the target cost model.
2632 This was delayed until here because the count of instructions
2633 isn't known beforehand. */
2634 body_cost_vec = SLP_INSTANCE_BODY_COST_VEC (instance);
2635
2636 FOR_EACH_VEC_ELT (body_cost_vec, j, si)
2637 (void) add_stmt_cost (data, si->count * ncopies, si->kind,
2638 vinfo_for_stmt (si->stmt), si->misalign,
2639 vect_body);
2640 }
2641 }
2642
2643
2644 /* For constant and loop invariant defs of SLP_NODE this function returns
2645 (vector) defs (VEC_OPRNDS) that will be used in the vectorized stmts.
2646 OP_NUM determines if we gather defs for operand 0 or operand 1 of the RHS of
2647 scalar stmts. NUMBER_OF_VECTORS is the number of vector defs to create.
2648 REDUC_INDEX is the index of the reduction operand in the statements, unless
2649 it is -1. */
2650
2651 static void
2652 vect_get_constant_vectors (tree op, slp_tree slp_node,
2653 vec<tree> *vec_oprnds,
2654 unsigned int op_num, unsigned int number_of_vectors,
2655 int reduc_index)
2656 {
2657 vec<gimple> stmts = SLP_TREE_SCALAR_STMTS (slp_node);
2658 gimple stmt = stmts[0];
2659 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
2660 unsigned nunits;
2661 tree vec_cst;
2662 tree *elts;
2663 unsigned j, number_of_places_left_in_vector;
2664 tree vector_type;
2665 tree vop;
2666 int group_size = stmts.length ();
2667 unsigned int vec_num, i;
2668 unsigned number_of_copies = 1;
2669 vec<tree> voprnds;
2670 voprnds.create (number_of_vectors);
2671 bool constant_p, is_store;
2672 tree neutral_op = NULL;
2673 enum tree_code code = gimple_expr_code (stmt);
2674 gimple def_stmt;
2675 struct loop *loop;
2676 gimple_seq ctor_seq = NULL;
2677
2678 vector_type = get_vectype_for_scalar_type (TREE_TYPE (op));
2679 nunits = TYPE_VECTOR_SUBPARTS (vector_type);
2680
2681 if (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
2682 && reduc_index != -1)
2683 {
2684 op_num = reduc_index;
2685 op = gimple_op (stmt, op_num + 1);
2686 /* For additional copies (see the explanation of NUMBER_OF_COPIES below)
2687 we need either neutral operands or the original operands. See
2688 get_initial_def_for_reduction() for details. */
2689 switch (code)
2690 {
2691 case WIDEN_SUM_EXPR:
2692 case DOT_PROD_EXPR:
2693 case SAD_EXPR:
2694 case PLUS_EXPR:
2695 case MINUS_EXPR:
2696 case BIT_IOR_EXPR:
2697 case BIT_XOR_EXPR:
2698 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (op)))
2699 neutral_op = build_real (TREE_TYPE (op), dconst0);
2700 else
2701 neutral_op = build_int_cst (TREE_TYPE (op), 0);
2702
2703 break;
2704
2705 case MULT_EXPR:
2706 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (op)))
2707 neutral_op = build_real (TREE_TYPE (op), dconst1);
2708 else
2709 neutral_op = build_int_cst (TREE_TYPE (op), 1);
2710
2711 break;
2712
2713 case BIT_AND_EXPR:
2714 neutral_op = build_int_cst (TREE_TYPE (op), -1);
2715 break;
2716
2717 /* For MIN/MAX we don't have an easy neutral operand but
2718 the initial values can be used fine here. Only for
2719 a reduction chain we have to force a neutral element. */
2720 case MAX_EXPR:
2721 case MIN_EXPR:
2722 if (!GROUP_FIRST_ELEMENT (stmt_vinfo))
2723 neutral_op = NULL;
2724 else
2725 {
2726 def_stmt = SSA_NAME_DEF_STMT (op);
2727 loop = (gimple_bb (stmt))->loop_father;
2728 neutral_op = PHI_ARG_DEF_FROM_EDGE (def_stmt,
2729 loop_preheader_edge (loop));
2730 }
2731 break;
2732
2733 default:
2734 gcc_assert (!GROUP_FIRST_ELEMENT (stmt_vinfo));
2735 neutral_op = NULL;
2736 }
2737 }
2738
2739 if (STMT_VINFO_DATA_REF (stmt_vinfo))
2740 {
2741 is_store = true;
2742 op = gimple_assign_rhs1 (stmt);
2743 }
2744 else
2745 is_store = false;
2746
2747 gcc_assert (op);
2748
2749 if (CONSTANT_CLASS_P (op))
2750 constant_p = true;
2751 else
2752 constant_p = false;
2753
2754 /* NUMBER_OF_COPIES is the number of times we need to use the same values in
2755 created vectors. It is greater than 1 if unrolling is performed.
2756
2757 For example, we have two scalar operands, s1 and s2 (e.g., group of
2758 strided accesses of size two), while NUNITS is four (i.e., four scalars
2759 of this type can be packed in a vector). The output vector will contain
2760 two copies of each scalar operand: {s1, s2, s1, s2}. (NUMBER_OF_COPIES
2761 will be 2).
2762
2763 If GROUP_SIZE > NUNITS, the scalars will be split into several vectors
2764 containing the operands.
2765
2766 For example, NUNITS is four as before, and the group size is 8
2767 (s1, s2, ..., s8). We will create two vectors {s1, s2, s3, s4} and
2768 {s5, s6, s7, s8}. */
2769
2770 number_of_copies = least_common_multiple (nunits, group_size) / group_size;
2771
2772 number_of_places_left_in_vector = nunits;
2773 elts = XALLOCAVEC (tree, nunits);
2774 bool place_after_defs = false;
2775 for (j = 0; j < number_of_copies; j++)
2776 {
2777 for (i = group_size - 1; stmts.iterate (i, &stmt); i--)
2778 {
2779 if (is_store)
2780 op = gimple_assign_rhs1 (stmt);
2781 else
2782 {
2783 switch (code)
2784 {
2785 case COND_EXPR:
2786 if (op_num == 0 || op_num == 1)
2787 {
2788 tree cond = gimple_assign_rhs1 (stmt);
2789 op = TREE_OPERAND (cond, op_num);
2790 }
2791 else
2792 {
2793 if (op_num == 2)
2794 op = gimple_assign_rhs2 (stmt);
2795 else
2796 op = gimple_assign_rhs3 (stmt);
2797 }
2798 break;
2799
2800 case CALL_EXPR:
2801 op = gimple_call_arg (stmt, op_num);
2802 break;
2803
2804 case LSHIFT_EXPR:
2805 case RSHIFT_EXPR:
2806 case LROTATE_EXPR:
2807 case RROTATE_EXPR:
2808 op = gimple_op (stmt, op_num + 1);
2809 /* Unlike the other binary operators, shifts/rotates have
2810 the shift count being int, instead of the same type as
2811 the lhs, so make sure the scalar is the right type if
2812 we are dealing with vectors of
2813 long long/long/short/char. */
2814 if (op_num == 1 && TREE_CODE (op) == INTEGER_CST)
2815 op = fold_convert (TREE_TYPE (vector_type), op);
2816 break;
2817
2818 default:
2819 op = gimple_op (stmt, op_num + 1);
2820 break;
2821 }
2822 }
2823
2824 if (reduc_index != -1)
2825 {
2826 loop = (gimple_bb (stmt))->loop_father;
2827 def_stmt = SSA_NAME_DEF_STMT (op);
2828
2829 gcc_assert (loop);
2830
2831 /* Get the def before the loop. In reduction chain we have only
2832 one initial value. */
2833 if ((j != (number_of_copies - 1)
2834 || (GROUP_FIRST_ELEMENT (vinfo_for_stmt (stmt))
2835 && i != 0))
2836 && neutral_op)
2837 op = neutral_op;
2838 else
2839 op = PHI_ARG_DEF_FROM_EDGE (def_stmt,
2840 loop_preheader_edge (loop));
2841 }
2842
2843 /* Create 'vect_ = {op0,op1,...,opn}'. */
2844 number_of_places_left_in_vector--;
2845 tree orig_op = op;
2846 if (!types_compatible_p (TREE_TYPE (vector_type), TREE_TYPE (op)))
2847 {
2848 if (CONSTANT_CLASS_P (op))
2849 {
2850 op = fold_unary (VIEW_CONVERT_EXPR,
2851 TREE_TYPE (vector_type), op);
2852 gcc_assert (op && CONSTANT_CLASS_P (op));
2853 }
2854 else
2855 {
2856 tree new_temp = make_ssa_name (TREE_TYPE (vector_type));
2857 gimple init_stmt;
2858 op = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (vector_type), op);
2859 init_stmt
2860 = gimple_build_assign (new_temp, VIEW_CONVERT_EXPR, op);
2861 gimple_seq_add_stmt (&ctor_seq, init_stmt);
2862 op = new_temp;
2863 }
2864 }
2865 elts[number_of_places_left_in_vector] = op;
2866 if (!CONSTANT_CLASS_P (op))
2867 constant_p = false;
2868 if (TREE_CODE (orig_op) == SSA_NAME
2869 && !SSA_NAME_IS_DEFAULT_DEF (orig_op)
2870 && STMT_VINFO_BB_VINFO (stmt_vinfo)
2871 && (STMT_VINFO_BB_VINFO (stmt_vinfo)->bb
2872 == gimple_bb (SSA_NAME_DEF_STMT (orig_op))))
2873 place_after_defs = true;
2874
2875 if (number_of_places_left_in_vector == 0)
2876 {
2877 number_of_places_left_in_vector = nunits;
2878
2879 if (constant_p)
2880 vec_cst = build_vector (vector_type, elts);
2881 else
2882 {
2883 vec<constructor_elt, va_gc> *v;
2884 unsigned k;
2885 vec_alloc (v, nunits);
2886 for (k = 0; k < nunits; ++k)
2887 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, elts[k]);
2888 vec_cst = build_constructor (vector_type, v);
2889 }
2890 tree init;
2891 gimple_stmt_iterator gsi;
2892 if (place_after_defs)
2893 {
2894 gsi = gsi_for_stmt
2895 (vect_find_last_scalar_stmt_in_slp (slp_node));
2896 init = vect_init_vector (stmt, vec_cst, vector_type, &gsi);
2897 }
2898 else
2899 init = vect_init_vector (stmt, vec_cst, vector_type, NULL);
2900 if (ctor_seq != NULL)
2901 {
2902 gsi = gsi_for_stmt (SSA_NAME_DEF_STMT (init));
2903 gsi_insert_seq_before_without_update (&gsi, ctor_seq,
2904 GSI_SAME_STMT);
2905 ctor_seq = NULL;
2906 }
2907 voprnds.quick_push (init);
2908 place_after_defs = false;
2909 }
2910 }
2911 }
2912
2913 /* Since the vectors are created in the reverse order, we should invert
2914 them. */
2915 vec_num = voprnds.length ();
2916 for (j = vec_num; j != 0; j--)
2917 {
2918 vop = voprnds[j - 1];
2919 vec_oprnds->quick_push (vop);
2920 }
2921
2922 voprnds.release ();
2923
2924 /* In case that VF is greater than the unrolling factor needed for the SLP
2925 group of stmts, NUMBER_OF_VECTORS to be created is greater than
2926 NUMBER_OF_SCALARS/NUNITS or NUNITS/NUMBER_OF_SCALARS, and hence we have
2927 to replicate the vectors. */
2928 while (number_of_vectors > vec_oprnds->length ())
2929 {
2930 tree neutral_vec = NULL;
2931
2932 if (neutral_op)
2933 {
2934 if (!neutral_vec)
2935 neutral_vec = build_vector_from_val (vector_type, neutral_op);
2936
2937 vec_oprnds->quick_push (neutral_vec);
2938 }
2939 else
2940 {
2941 for (i = 0; vec_oprnds->iterate (i, &vop) && i < vec_num; i++)
2942 vec_oprnds->quick_push (vop);
2943 }
2944 }
2945 }
2946
2947
2948 /* Get vectorized definitions from SLP_NODE that contains corresponding
2949 vectorized def-stmts. */
2950
2951 static void
2952 vect_get_slp_vect_defs (slp_tree slp_node, vec<tree> *vec_oprnds)
2953 {
2954 tree vec_oprnd;
2955 gimple vec_def_stmt;
2956 unsigned int i;
2957
2958 gcc_assert (SLP_TREE_VEC_STMTS (slp_node).exists ());
2959
2960 FOR_EACH_VEC_ELT (SLP_TREE_VEC_STMTS (slp_node), i, vec_def_stmt)
2961 {
2962 gcc_assert (vec_def_stmt);
2963 vec_oprnd = gimple_get_lhs (vec_def_stmt);
2964 vec_oprnds->quick_push (vec_oprnd);
2965 }
2966 }
2967
2968
2969 /* Get vectorized definitions for SLP_NODE.
2970 If the scalar definitions are loop invariants or constants, collect them and
2971 call vect_get_constant_vectors() to create vector stmts.
2972 Otherwise, the def-stmts must be already vectorized and the vectorized stmts
2973 must be stored in the corresponding child of SLP_NODE, and we call
2974 vect_get_slp_vect_defs () to retrieve them. */
2975
2976 void
2977 vect_get_slp_defs (vec<tree> ops, slp_tree slp_node,
2978 vec<vec<tree> > *vec_oprnds, int reduc_index)
2979 {
2980 gimple first_stmt;
2981 int number_of_vects = 0, i;
2982 unsigned int child_index = 0;
2983 HOST_WIDE_INT lhs_size_unit, rhs_size_unit;
2984 slp_tree child = NULL;
2985 vec<tree> vec_defs;
2986 tree oprnd;
2987 bool vectorized_defs;
2988
2989 first_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[0];
2990 FOR_EACH_VEC_ELT (ops, i, oprnd)
2991 {
2992 /* For each operand we check if it has vectorized definitions in a child
2993 node or we need to create them (for invariants and constants). We
2994 check if the LHS of the first stmt of the next child matches OPRND.
2995 If it does, we found the correct child. Otherwise, we call
2996 vect_get_constant_vectors (), and not advance CHILD_INDEX in order
2997 to check this child node for the next operand. */
2998 vectorized_defs = false;
2999 if (SLP_TREE_CHILDREN (slp_node).length () > child_index)
3000 {
3001 child = SLP_TREE_CHILDREN (slp_node)[child_index];
3002
3003 /* We have to check both pattern and original def, if available. */
3004 if (child)
3005 {
3006 gimple first_def = SLP_TREE_SCALAR_STMTS (child)[0];
3007 gimple related
3008 = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (first_def));
3009
3010 if (operand_equal_p (oprnd, gimple_get_lhs (first_def), 0)
3011 || (related
3012 && operand_equal_p (oprnd, gimple_get_lhs (related), 0)))
3013 {
3014 /* The number of vector defs is determined by the number of
3015 vector statements in the node from which we get those
3016 statements. */
3017 number_of_vects = SLP_TREE_NUMBER_OF_VEC_STMTS (child);
3018 vectorized_defs = true;
3019 child_index++;
3020 }
3021 }
3022 else
3023 child_index++;
3024 }
3025
3026 if (!vectorized_defs)
3027 {
3028 if (i == 0)
3029 {
3030 number_of_vects = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
3031 /* Number of vector stmts was calculated according to LHS in
3032 vect_schedule_slp_instance (), fix it by replacing LHS with
3033 RHS, if necessary. See vect_get_smallest_scalar_type () for
3034 details. */
3035 vect_get_smallest_scalar_type (first_stmt, &lhs_size_unit,
3036 &rhs_size_unit);
3037 if (rhs_size_unit != lhs_size_unit)
3038 {
3039 number_of_vects *= rhs_size_unit;
3040 number_of_vects /= lhs_size_unit;
3041 }
3042 }
3043 }
3044
3045 /* Allocate memory for vectorized defs. */
3046 vec_defs = vNULL;
3047 vec_defs.create (number_of_vects);
3048
3049 /* For reduction defs we call vect_get_constant_vectors (), since we are
3050 looking for initial loop invariant values. */
3051 if (vectorized_defs && reduc_index == -1)
3052 /* The defs are already vectorized. */
3053 vect_get_slp_vect_defs (child, &vec_defs);
3054 else
3055 /* Build vectors from scalar defs. */
3056 vect_get_constant_vectors (oprnd, slp_node, &vec_defs, i,
3057 number_of_vects, reduc_index);
3058
3059 vec_oprnds->quick_push (vec_defs);
3060
3061 /* For reductions, we only need initial values. */
3062 if (reduc_index != -1)
3063 return;
3064 }
3065 }
3066
3067
3068 /* Create NCOPIES permutation statements using the mask MASK_BYTES (by
3069 building a vector of type MASK_TYPE from it) and two input vectors placed in
3070 DR_CHAIN at FIRST_VEC_INDX and SECOND_VEC_INDX for the first copy and
3071 shifting by STRIDE elements of DR_CHAIN for every copy.
3072 (STRIDE is the number of vectorized stmts for NODE divided by the number of
3073 copies).
3074 VECT_STMTS_COUNTER specifies the index in the vectorized stmts of NODE, where
3075 the created stmts must be inserted. */
3076
3077 static inline void
3078 vect_create_mask_and_perm (gimple stmt, gimple next_scalar_stmt,
3079 tree mask, int first_vec_indx, int second_vec_indx,
3080 gimple_stmt_iterator *gsi, slp_tree node,
3081 tree vectype, vec<tree> dr_chain,
3082 int ncopies, int vect_stmts_counter)
3083 {
3084 tree perm_dest;
3085 gimple perm_stmt = NULL;
3086 stmt_vec_info next_stmt_info;
3087 int i, stride;
3088 tree first_vec, second_vec, data_ref;
3089
3090 stride = SLP_TREE_NUMBER_OF_VEC_STMTS (node) / ncopies;
3091
3092 /* Initialize the vect stmts of NODE to properly insert the generated
3093 stmts later. */
3094 for (i = SLP_TREE_VEC_STMTS (node).length ();
3095 i < (int) SLP_TREE_NUMBER_OF_VEC_STMTS (node); i++)
3096 SLP_TREE_VEC_STMTS (node).quick_push (NULL);
3097
3098 perm_dest = vect_create_destination_var (gimple_assign_lhs (stmt), vectype);
3099 for (i = 0; i < ncopies; i++)
3100 {
3101 first_vec = dr_chain[first_vec_indx];
3102 second_vec = dr_chain[second_vec_indx];
3103
3104 /* Generate the permute statement. */
3105 perm_stmt = gimple_build_assign (perm_dest, VEC_PERM_EXPR,
3106 first_vec, second_vec, mask);
3107 data_ref = make_ssa_name (perm_dest, perm_stmt);
3108 gimple_set_lhs (perm_stmt, data_ref);
3109 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
3110
3111 /* Store the vector statement in NODE. */
3112 SLP_TREE_VEC_STMTS (node)[stride * i + vect_stmts_counter] = perm_stmt;
3113
3114 first_vec_indx += stride;
3115 second_vec_indx += stride;
3116 }
3117
3118 /* Mark the scalar stmt as vectorized. */
3119 next_stmt_info = vinfo_for_stmt (next_scalar_stmt);
3120 STMT_VINFO_VEC_STMT (next_stmt_info) = perm_stmt;
3121 }
3122
3123
3124 /* Given FIRST_MASK_ELEMENT - the mask element in element representation,
3125 return in CURRENT_MASK_ELEMENT its equivalent in target specific
3126 representation. Check that the mask is valid and return FALSE if not.
3127 Return TRUE in NEED_NEXT_VECTOR if the permutation requires to move to
3128 the next vector, i.e., the current first vector is not needed. */
3129
3130 static bool
3131 vect_get_mask_element (gimple stmt, int first_mask_element, int m,
3132 int mask_nunits, bool only_one_vec, int index,
3133 unsigned char *mask, int *current_mask_element,
3134 bool *need_next_vector, int *number_of_mask_fixes,
3135 bool *mask_fixed, bool *needs_first_vector)
3136 {
3137 int i;
3138
3139 /* Convert to target specific representation. */
3140 *current_mask_element = first_mask_element + m;
3141 /* Adjust the value in case it's a mask for second and third vectors. */
3142 *current_mask_element -= mask_nunits * (*number_of_mask_fixes - 1);
3143
3144 if (*current_mask_element < 0)
3145 {
3146 if (dump_enabled_p ())
3147 {
3148 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3149 "permutation requires past vector ");
3150 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3151 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3152 }
3153 return false;
3154 }
3155
3156 if (*current_mask_element < mask_nunits)
3157 *needs_first_vector = true;
3158
3159 /* We have only one input vector to permute but the mask accesses values in
3160 the next vector as well. */
3161 if (only_one_vec && *current_mask_element >= mask_nunits)
3162 {
3163 if (dump_enabled_p ())
3164 {
3165 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3166 "permutation requires at least two vectors ");
3167 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3168 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3169 }
3170
3171 return false;
3172 }
3173
3174 /* The mask requires the next vector. */
3175 while (*current_mask_element >= mask_nunits * 2)
3176 {
3177 if (*needs_first_vector || *mask_fixed)
3178 {
3179 /* We either need the first vector too or have already moved to the
3180 next vector. In both cases, this permutation needs three
3181 vectors. */
3182 if (dump_enabled_p ())
3183 {
3184 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3185 "permutation requires at "
3186 "least three vectors ");
3187 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3188 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3189 }
3190
3191 return false;
3192 }
3193
3194 /* We move to the next vector, dropping the first one and working with
3195 the second and the third - we need to adjust the values of the mask
3196 accordingly. */
3197 *current_mask_element -= mask_nunits * *number_of_mask_fixes;
3198
3199 for (i = 0; i < index; i++)
3200 mask[i] -= mask_nunits * *number_of_mask_fixes;
3201
3202 (*number_of_mask_fixes)++;
3203 *mask_fixed = true;
3204 }
3205
3206 *need_next_vector = *mask_fixed;
3207
3208 /* This was the last element of this mask. Start a new one. */
3209 if (index == mask_nunits - 1)
3210 {
3211 *number_of_mask_fixes = 1;
3212 *mask_fixed = false;
3213 *needs_first_vector = false;
3214 }
3215
3216 return true;
3217 }
3218
3219
3220 /* Generate vector permute statements from a list of loads in DR_CHAIN.
3221 If ANALYZE_ONLY is TRUE, only check that it is possible to create valid
3222 permute statements for the SLP node NODE of the SLP instance
3223 SLP_NODE_INSTANCE. */
3224
3225 bool
3226 vect_transform_slp_perm_load (slp_tree node, vec<tree> dr_chain,
3227 gimple_stmt_iterator *gsi, int vf,
3228 slp_instance slp_node_instance, bool analyze_only)
3229 {
3230 gimple stmt = SLP_TREE_SCALAR_STMTS (node)[0];
3231 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3232 tree mask_element_type = NULL_TREE, mask_type;
3233 int i, j, k, nunits, vec_index = 0, scalar_index;
3234 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3235 gimple next_scalar_stmt;
3236 int group_size = SLP_INSTANCE_GROUP_SIZE (slp_node_instance);
3237 int first_mask_element;
3238 int index, unroll_factor, current_mask_element, ncopies;
3239 unsigned char *mask;
3240 bool only_one_vec = false, need_next_vector = false;
3241 int first_vec_index, second_vec_index, orig_vec_stmts_num, vect_stmts_counter;
3242 int number_of_mask_fixes = 1;
3243 bool mask_fixed = false;
3244 bool needs_first_vector = false;
3245 machine_mode mode;
3246
3247 mode = TYPE_MODE (vectype);
3248
3249 if (!can_vec_perm_p (mode, false, NULL))
3250 {
3251 if (dump_enabled_p ())
3252 {
3253 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3254 "no vect permute for ");
3255 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
3256 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3257 }
3258 return false;
3259 }
3260
3261 /* The generic VEC_PERM_EXPR code always uses an integral type of the
3262 same size as the vector element being permuted. */
3263 mask_element_type = lang_hooks.types.type_for_mode
3264 (int_mode_for_mode (TYPE_MODE (TREE_TYPE (vectype))), 1);
3265 mask_type = get_vectype_for_scalar_type (mask_element_type);
3266 nunits = TYPE_VECTOR_SUBPARTS (vectype);
3267 mask = XALLOCAVEC (unsigned char, nunits);
3268 unroll_factor = SLP_INSTANCE_UNROLLING_FACTOR (slp_node_instance);
3269
3270 /* The number of vector stmts to generate based only on SLP_NODE_INSTANCE
3271 unrolling factor. */
3272 orig_vec_stmts_num = group_size *
3273 SLP_INSTANCE_UNROLLING_FACTOR (slp_node_instance) / nunits;
3274 if (orig_vec_stmts_num == 1)
3275 only_one_vec = true;
3276
3277 /* Number of copies is determined by the final vectorization factor
3278 relatively to SLP_NODE_INSTANCE unrolling factor. */
3279 ncopies = vf / SLP_INSTANCE_UNROLLING_FACTOR (slp_node_instance);
3280
3281 if (!STMT_VINFO_GROUPED_ACCESS (stmt_info))
3282 return false;
3283
3284 /* Generate permutation masks for every NODE. Number of masks for each NODE
3285 is equal to GROUP_SIZE.
3286 E.g., we have a group of three nodes with three loads from the same
3287 location in each node, and the vector size is 4. I.e., we have a
3288 a0b0c0a1b1c1... sequence and we need to create the following vectors:
3289 for a's: a0a0a0a1 a1a1a2a2 a2a3a3a3
3290 for b's: b0b0b0b1 b1b1b2b2 b2b3b3b3
3291 ...
3292
3293 The masks for a's should be: {0,0,0,3} {3,3,6,6} {6,9,9,9}.
3294 The last mask is illegal since we assume two operands for permute
3295 operation, and the mask element values can't be outside that range.
3296 Hence, the last mask must be converted into {2,5,5,5}.
3297 For the first two permutations we need the first and the second input
3298 vectors: {a0,b0,c0,a1} and {b1,c1,a2,b2}, and for the last permutation
3299 we need the second and the third vectors: {b1,c1,a2,b2} and
3300 {c2,a3,b3,c3}. */
3301
3302 {
3303 scalar_index = 0;
3304 index = 0;
3305 vect_stmts_counter = 0;
3306 vec_index = 0;
3307 first_vec_index = vec_index++;
3308 if (only_one_vec)
3309 second_vec_index = first_vec_index;
3310 else
3311 second_vec_index = vec_index++;
3312
3313 for (j = 0; j < unroll_factor; j++)
3314 {
3315 for (k = 0; k < group_size; k++)
3316 {
3317 i = SLP_TREE_LOAD_PERMUTATION (node)[k];
3318 first_mask_element = i + j * group_size;
3319 if (!vect_get_mask_element (stmt, first_mask_element, 0,
3320 nunits, only_one_vec, index,
3321 mask, &current_mask_element,
3322 &need_next_vector,
3323 &number_of_mask_fixes, &mask_fixed,
3324 &needs_first_vector))
3325 return false;
3326 gcc_assert (current_mask_element >= 0
3327 && current_mask_element < 2 * nunits);
3328 mask[index++] = current_mask_element;
3329
3330 if (index == nunits)
3331 {
3332 index = 0;
3333 if (!can_vec_perm_p (mode, false, mask))
3334 {
3335 if (dump_enabled_p ())
3336 {
3337 dump_printf_loc (MSG_MISSED_OPTIMIZATION,
3338 vect_location,
3339 "unsupported vect permute { ");
3340 for (i = 0; i < nunits; ++i)
3341 dump_printf (MSG_MISSED_OPTIMIZATION, "%d ",
3342 mask[i]);
3343 dump_printf (MSG_MISSED_OPTIMIZATION, "}\n");
3344 }
3345 return false;
3346 }
3347
3348 if (!analyze_only)
3349 {
3350 int l;
3351 tree mask_vec, *mask_elts;
3352 mask_elts = XALLOCAVEC (tree, nunits);
3353 for (l = 0; l < nunits; ++l)
3354 mask_elts[l] = build_int_cst (mask_element_type,
3355 mask[l]);
3356 mask_vec = build_vector (mask_type, mask_elts);
3357
3358 if (need_next_vector)
3359 {
3360 first_vec_index = second_vec_index;
3361 second_vec_index = vec_index;
3362 }
3363
3364 next_scalar_stmt
3365 = SLP_TREE_SCALAR_STMTS (node)[scalar_index++];
3366
3367 vect_create_mask_and_perm (stmt, next_scalar_stmt,
3368 mask_vec, first_vec_index, second_vec_index,
3369 gsi, node, vectype, dr_chain,
3370 ncopies, vect_stmts_counter++);
3371 }
3372 }
3373 }
3374 }
3375 }
3376
3377 return true;
3378 }
3379
3380
3381
3382 /* Vectorize SLP instance tree in postorder. */
3383
3384 static bool
3385 vect_schedule_slp_instance (slp_tree node, slp_instance instance,
3386 unsigned int vectorization_factor)
3387 {
3388 gimple stmt;
3389 bool grouped_store, is_store;
3390 gimple_stmt_iterator si;
3391 stmt_vec_info stmt_info;
3392 unsigned int vec_stmts_size, nunits, group_size;
3393 tree vectype;
3394 int i;
3395 slp_tree child;
3396
3397 if (!node)
3398 return false;
3399
3400 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
3401 vect_schedule_slp_instance (child, instance, vectorization_factor);
3402
3403 stmt = SLP_TREE_SCALAR_STMTS (node)[0];
3404 stmt_info = vinfo_for_stmt (stmt);
3405
3406 /* VECTYPE is the type of the destination. */
3407 vectype = STMT_VINFO_VECTYPE (stmt_info);
3408 nunits = (unsigned int) TYPE_VECTOR_SUBPARTS (vectype);
3409 group_size = SLP_INSTANCE_GROUP_SIZE (instance);
3410
3411 /* For each SLP instance calculate number of vector stmts to be created
3412 for the scalar stmts in each node of the SLP tree. Number of vector
3413 elements in one vector iteration is the number of scalar elements in
3414 one scalar iteration (GROUP_SIZE) multiplied by VF divided by vector
3415 size. */
3416 vec_stmts_size = (vectorization_factor * group_size) / nunits;
3417
3418 if (!SLP_TREE_VEC_STMTS (node).exists ())
3419 {
3420 SLP_TREE_VEC_STMTS (node).create (vec_stmts_size);
3421 SLP_TREE_NUMBER_OF_VEC_STMTS (node) = vec_stmts_size;
3422 }
3423
3424 if (dump_enabled_p ())
3425 {
3426 dump_printf_loc (MSG_NOTE,vect_location,
3427 "------>vectorizing SLP node starting from: ");
3428 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
3429 dump_printf (MSG_NOTE, "\n");
3430 }
3431
3432 /* Vectorized stmts go before the last scalar stmt which is where
3433 all uses are ready. */
3434 si = gsi_for_stmt (vect_find_last_scalar_stmt_in_slp (node));
3435
3436 /* Mark the first element of the reduction chain as reduction to properly
3437 transform the node. In the analysis phase only the last element of the
3438 chain is marked as reduction. */
3439 if (GROUP_FIRST_ELEMENT (stmt_info) && !STMT_VINFO_GROUPED_ACCESS (stmt_info)
3440 && GROUP_FIRST_ELEMENT (stmt_info) == stmt)
3441 {
3442 STMT_VINFO_DEF_TYPE (stmt_info) = vect_reduction_def;
3443 STMT_VINFO_TYPE (stmt_info) = reduc_vec_info_type;
3444 }
3445
3446 /* Handle two-operation SLP nodes by vectorizing the group with
3447 both operations and then performing a merge. */
3448 if (SLP_TREE_TWO_OPERATORS (node))
3449 {
3450 enum tree_code code0 = gimple_assign_rhs_code (stmt);
3451 enum tree_code ocode;
3452 gimple ostmt;
3453 unsigned char *mask = XALLOCAVEC (unsigned char, group_size);
3454 bool allsame = true;
3455 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, ostmt)
3456 if (gimple_assign_rhs_code (ostmt) != code0)
3457 {
3458 mask[i] = 1;
3459 allsame = false;
3460 ocode = gimple_assign_rhs_code (ostmt);
3461 }
3462 else
3463 mask[i] = 0;
3464 if (!allsame)
3465 {
3466 vec<gimple> v0;
3467 vec<gimple> v1;
3468 unsigned j;
3469 tree tmask = NULL_TREE;
3470 vect_transform_stmt (stmt, &si, &grouped_store, node, instance);
3471 v0 = SLP_TREE_VEC_STMTS (node).copy ();
3472 SLP_TREE_VEC_STMTS (node).truncate (0);
3473 gimple_assign_set_rhs_code (stmt, ocode);
3474 vect_transform_stmt (stmt, &si, &grouped_store, node, instance);
3475 gimple_assign_set_rhs_code (stmt, code0);
3476 v1 = SLP_TREE_VEC_STMTS (node).copy ();
3477 SLP_TREE_VEC_STMTS (node).truncate (0);
3478 tree meltype = build_nonstandard_integer_type
3479 (GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (vectype))), 1);
3480 tree mvectype = get_same_sized_vectype (meltype, vectype);
3481 unsigned k = 0, l;
3482 for (j = 0; j < v0.length (); ++j)
3483 {
3484 tree *melts = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (vectype));
3485 for (l = 0; l < TYPE_VECTOR_SUBPARTS (vectype); ++l)
3486 {
3487 if (k >= group_size)
3488 k = 0;
3489 melts[l] = build_int_cst
3490 (meltype, mask[k++] * TYPE_VECTOR_SUBPARTS (vectype) + l);
3491 }
3492 tmask = build_vector (mvectype, melts);
3493
3494 /* ??? Not all targets support a VEC_PERM_EXPR with a
3495 constant mask that would translate to a vec_merge RTX
3496 (with their vec_perm_const_ok). We can either not
3497 vectorize in that case or let veclower do its job.
3498 Unfortunately that isn't too great and at least for
3499 plus/minus we'd eventually like to match targets
3500 vector addsub instructions. */
3501 gimple vstmt;
3502 vstmt = gimple_build_assign (make_ssa_name (vectype),
3503 VEC_PERM_EXPR,
3504 gimple_assign_lhs (v0[j]),
3505 gimple_assign_lhs (v1[j]), tmask);
3506 vect_finish_stmt_generation (stmt, vstmt, &si);
3507 SLP_TREE_VEC_STMTS (node).quick_push (vstmt);
3508 }
3509 v0.release ();
3510 v1.release ();
3511 return false;
3512 }
3513 }
3514 is_store = vect_transform_stmt (stmt, &si, &grouped_store, node, instance);
3515 return is_store;
3516 }
3517
3518 /* Replace scalar calls from SLP node NODE with setting of their lhs to zero.
3519 For loop vectorization this is done in vectorizable_call, but for SLP
3520 it needs to be deferred until end of vect_schedule_slp, because multiple
3521 SLP instances may refer to the same scalar stmt. */
3522
3523 static void
3524 vect_remove_slp_scalar_calls (slp_tree node)
3525 {
3526 gimple stmt, new_stmt;
3527 gimple_stmt_iterator gsi;
3528 int i;
3529 slp_tree child;
3530 tree lhs;
3531 stmt_vec_info stmt_info;
3532
3533 if (!node)
3534 return;
3535
3536 FOR_EACH_VEC_ELT (SLP_TREE_CHILDREN (node), i, child)
3537 vect_remove_slp_scalar_calls (child);
3538
3539 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (node), i, stmt)
3540 {
3541 if (!is_gimple_call (stmt) || gimple_bb (stmt) == NULL)
3542 continue;
3543 stmt_info = vinfo_for_stmt (stmt);
3544 if (stmt_info == NULL
3545 || is_pattern_stmt_p (stmt_info)
3546 || !PURE_SLP_STMT (stmt_info))
3547 continue;
3548 lhs = gimple_call_lhs (stmt);
3549 new_stmt = gimple_build_assign (lhs, build_zero_cst (TREE_TYPE (lhs)));
3550 set_vinfo_for_stmt (new_stmt, stmt_info);
3551 set_vinfo_for_stmt (stmt, NULL);
3552 STMT_VINFO_STMT (stmt_info) = new_stmt;
3553 gsi = gsi_for_stmt (stmt);
3554 gsi_replace (&gsi, new_stmt, false);
3555 SSA_NAME_DEF_STMT (gimple_assign_lhs (new_stmt)) = new_stmt;
3556 }
3557 }
3558
3559 /* Generate vector code for all SLP instances in the loop/basic block. */
3560
3561 bool
3562 vect_schedule_slp (loop_vec_info loop_vinfo, bb_vec_info bb_vinfo)
3563 {
3564 vec<slp_instance> slp_instances;
3565 slp_instance instance;
3566 unsigned int i, vf;
3567 bool is_store = false;
3568
3569 if (loop_vinfo)
3570 {
3571 slp_instances = LOOP_VINFO_SLP_INSTANCES (loop_vinfo);
3572 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3573 }
3574 else
3575 {
3576 slp_instances = BB_VINFO_SLP_INSTANCES (bb_vinfo);
3577 vf = 1;
3578 }
3579
3580 FOR_EACH_VEC_ELT (slp_instances, i, instance)
3581 {
3582 /* Schedule the tree of INSTANCE. */
3583 is_store = vect_schedule_slp_instance (SLP_INSTANCE_TREE (instance),
3584 instance, vf);
3585 if (dump_enabled_p ())
3586 dump_printf_loc (MSG_NOTE, vect_location,
3587 "vectorizing stmts using SLP.\n");
3588 }
3589
3590 FOR_EACH_VEC_ELT (slp_instances, i, instance)
3591 {
3592 slp_tree root = SLP_INSTANCE_TREE (instance);
3593 gimple store;
3594 unsigned int j;
3595 gimple_stmt_iterator gsi;
3596
3597 /* Remove scalar call stmts. Do not do this for basic-block
3598 vectorization as not all uses may be vectorized.
3599 ??? Why should this be necessary? DCE should be able to
3600 remove the stmts itself.
3601 ??? For BB vectorization we can as well remove scalar
3602 stmts starting from the SLP tree root if they have no
3603 uses. */
3604 if (loop_vinfo)
3605 vect_remove_slp_scalar_calls (root);
3606
3607 for (j = 0; SLP_TREE_SCALAR_STMTS (root).iterate (j, &store)
3608 && j < SLP_INSTANCE_GROUP_SIZE (instance); j++)
3609 {
3610 if (!STMT_VINFO_DATA_REF (vinfo_for_stmt (store)))
3611 break;
3612
3613 if (is_pattern_stmt_p (vinfo_for_stmt (store)))
3614 store = STMT_VINFO_RELATED_STMT (vinfo_for_stmt (store));
3615 /* Free the attached stmt_vec_info and remove the stmt. */
3616 gsi = gsi_for_stmt (store);
3617 unlink_stmt_vdef (store);
3618 gsi_remove (&gsi, true);
3619 release_defs (store);
3620 free_stmt_vec_info (store);
3621 }
3622 }
3623
3624 return is_store;
3625 }
3626
3627
3628 /* Vectorize the basic block. */
3629
3630 void
3631 vect_slp_transform_bb (basic_block bb)
3632 {
3633 bb_vec_info bb_vinfo = vec_info_for_bb (bb);
3634 gimple_stmt_iterator si;
3635
3636 gcc_assert (bb_vinfo);
3637
3638 if (dump_enabled_p ())
3639 dump_printf_loc (MSG_NOTE, vect_location, "SLPing BB\n");
3640
3641 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
3642 {
3643 gimple stmt = gsi_stmt (si);
3644 stmt_vec_info stmt_info;
3645
3646 if (dump_enabled_p ())
3647 {
3648 dump_printf_loc (MSG_NOTE, vect_location,
3649 "------>SLPing statement: ");
3650 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
3651 dump_printf (MSG_NOTE, "\n");
3652 }
3653
3654 stmt_info = vinfo_for_stmt (stmt);
3655 gcc_assert (stmt_info);
3656
3657 /* Schedule all the SLP instances when the first SLP stmt is reached. */
3658 if (STMT_SLP_TYPE (stmt_info))
3659 {
3660 vect_schedule_slp (NULL, bb_vinfo);
3661 break;
3662 }
3663 }
3664
3665 if (dump_enabled_p ())
3666 dump_printf_loc (MSG_NOTE, vect_location,
3667 "BASIC BLOCK VECTORIZED\n");
3668
3669 destroy_bb_vec_info (bb_vinfo);
3670 }