re PR target/44942 (Bug in argument passing of long double)
[gcc.git] / gcc / tree-vect-stmts.c
1 /* Statement Analysis and Transformation for Vectorization
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 and Ira Rosen <irar@il.ibm.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "tm.h"
27 #include "ggc.h"
28 #include "tree.h"
29 #include "target.h"
30 #include "basic-block.h"
31 #include "tree-pretty-print.h"
32 #include "gimple-pretty-print.h"
33 #include "tree-flow.h"
34 #include "tree-dump.h"
35 #include "cfgloop.h"
36 #include "cfglayout.h"
37 #include "expr.h"
38 #include "recog.h"
39 #include "optabs.h"
40 #include "diagnostic-core.h"
41 #include "toplev.h"
42 #include "tree-vectorizer.h"
43 #include "langhooks.h"
44
45
46 /* Utility functions used by vect_mark_stmts_to_be_vectorized. */
47
48 /* Function vect_mark_relevant.
49
50 Mark STMT as "relevant for vectorization" and add it to WORKLIST. */
51
52 static void
53 vect_mark_relevant (VEC(gimple,heap) **worklist, gimple stmt,
54 enum vect_relevant relevant, bool live_p)
55 {
56 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
57 enum vect_relevant save_relevant = STMT_VINFO_RELEVANT (stmt_info);
58 bool save_live_p = STMT_VINFO_LIVE_P (stmt_info);
59
60 if (vect_print_dump_info (REPORT_DETAILS))
61 fprintf (vect_dump, "mark relevant %d, live %d.", relevant, live_p);
62
63 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
64 {
65 gimple pattern_stmt;
66
67 /* This is the last stmt in a sequence that was detected as a
68 pattern that can potentially be vectorized. Don't mark the stmt
69 as relevant/live because it's not going to be vectorized.
70 Instead mark the pattern-stmt that replaces it. */
71
72 pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
73
74 if (vect_print_dump_info (REPORT_DETAILS))
75 fprintf (vect_dump, "last stmt in pattern. don't mark relevant/live.");
76 stmt_info = vinfo_for_stmt (pattern_stmt);
77 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_info) == stmt);
78 save_relevant = STMT_VINFO_RELEVANT (stmt_info);
79 save_live_p = STMT_VINFO_LIVE_P (stmt_info);
80 stmt = pattern_stmt;
81 }
82
83 STMT_VINFO_LIVE_P (stmt_info) |= live_p;
84 if (relevant > STMT_VINFO_RELEVANT (stmt_info))
85 STMT_VINFO_RELEVANT (stmt_info) = relevant;
86
87 if (STMT_VINFO_RELEVANT (stmt_info) == save_relevant
88 && STMT_VINFO_LIVE_P (stmt_info) == save_live_p)
89 {
90 if (vect_print_dump_info (REPORT_DETAILS))
91 fprintf (vect_dump, "already marked relevant/live.");
92 return;
93 }
94
95 VEC_safe_push (gimple, heap, *worklist, stmt);
96 }
97
98
99 /* Function vect_stmt_relevant_p.
100
101 Return true if STMT in loop that is represented by LOOP_VINFO is
102 "relevant for vectorization".
103
104 A stmt is considered "relevant for vectorization" if:
105 - it has uses outside the loop.
106 - it has vdefs (it alters memory).
107 - control stmts in the loop (except for the exit condition).
108
109 CHECKME: what other side effects would the vectorizer allow? */
110
111 static bool
112 vect_stmt_relevant_p (gimple stmt, loop_vec_info loop_vinfo,
113 enum vect_relevant *relevant, bool *live_p)
114 {
115 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
116 ssa_op_iter op_iter;
117 imm_use_iterator imm_iter;
118 use_operand_p use_p;
119 def_operand_p def_p;
120
121 *relevant = vect_unused_in_scope;
122 *live_p = false;
123
124 /* cond stmt other than loop exit cond. */
125 if (is_ctrl_stmt (stmt)
126 && STMT_VINFO_TYPE (vinfo_for_stmt (stmt))
127 != loop_exit_ctrl_vec_info_type)
128 *relevant = vect_used_in_scope;
129
130 /* changing memory. */
131 if (gimple_code (stmt) != GIMPLE_PHI)
132 if (gimple_vdef (stmt))
133 {
134 if (vect_print_dump_info (REPORT_DETAILS))
135 fprintf (vect_dump, "vec_stmt_relevant_p: stmt has vdefs.");
136 *relevant = vect_used_in_scope;
137 }
138
139 /* uses outside the loop. */
140 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
141 {
142 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p))
143 {
144 basic_block bb = gimple_bb (USE_STMT (use_p));
145 if (!flow_bb_inside_loop_p (loop, bb))
146 {
147 if (vect_print_dump_info (REPORT_DETAILS))
148 fprintf (vect_dump, "vec_stmt_relevant_p: used out of loop.");
149
150 if (is_gimple_debug (USE_STMT (use_p)))
151 continue;
152
153 /* We expect all such uses to be in the loop exit phis
154 (because of loop closed form) */
155 gcc_assert (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI);
156 gcc_assert (bb == single_exit (loop)->dest);
157
158 *live_p = true;
159 }
160 }
161 }
162
163 return (*live_p || *relevant);
164 }
165
166
167 /* Function exist_non_indexing_operands_for_use_p
168
169 USE is one of the uses attached to STMT. Check if USE is
170 used in STMT for anything other than indexing an array. */
171
172 static bool
173 exist_non_indexing_operands_for_use_p (tree use, gimple stmt)
174 {
175 tree operand;
176 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
177
178 /* USE corresponds to some operand in STMT. If there is no data
179 reference in STMT, then any operand that corresponds to USE
180 is not indexing an array. */
181 if (!STMT_VINFO_DATA_REF (stmt_info))
182 return true;
183
184 /* STMT has a data_ref. FORNOW this means that its of one of
185 the following forms:
186 -1- ARRAY_REF = var
187 -2- var = ARRAY_REF
188 (This should have been verified in analyze_data_refs).
189
190 'var' in the second case corresponds to a def, not a use,
191 so USE cannot correspond to any operands that are not used
192 for array indexing.
193
194 Therefore, all we need to check is if STMT falls into the
195 first case, and whether var corresponds to USE. */
196
197 if (!gimple_assign_copy_p (stmt))
198 return false;
199 if (TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
200 return false;
201 operand = gimple_assign_rhs1 (stmt);
202 if (TREE_CODE (operand) != SSA_NAME)
203 return false;
204
205 if (operand == use)
206 return true;
207
208 return false;
209 }
210
211
212 /*
213 Function process_use.
214
215 Inputs:
216 - a USE in STMT in a loop represented by LOOP_VINFO
217 - LIVE_P, RELEVANT - enum values to be set in the STMT_VINFO of the stmt
218 that defined USE. This is done by calling mark_relevant and passing it
219 the WORKLIST (to add DEF_STMT to the WORKLIST in case it is relevant).
220
221 Outputs:
222 Generally, LIVE_P and RELEVANT are used to define the liveness and
223 relevance info of the DEF_STMT of this USE:
224 STMT_VINFO_LIVE_P (DEF_STMT_info) <-- live_p
225 STMT_VINFO_RELEVANT (DEF_STMT_info) <-- relevant
226 Exceptions:
227 - case 1: If USE is used only for address computations (e.g. array indexing),
228 which does not need to be directly vectorized, then the liveness/relevance
229 of the respective DEF_STMT is left unchanged.
230 - case 2: If STMT is a reduction phi and DEF_STMT is a reduction stmt, we
231 skip DEF_STMT cause it had already been processed.
232 - case 3: If DEF_STMT and STMT are in different nests, then "relevant" will
233 be modified accordingly.
234
235 Return true if everything is as expected. Return false otherwise. */
236
237 static bool
238 process_use (gimple stmt, tree use, loop_vec_info loop_vinfo, bool live_p,
239 enum vect_relevant relevant, VEC(gimple,heap) **worklist)
240 {
241 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
242 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
243 stmt_vec_info dstmt_vinfo;
244 basic_block bb, def_bb;
245 tree def;
246 gimple def_stmt;
247 enum vect_def_type dt;
248
249 /* case 1: we are only interested in uses that need to be vectorized. Uses
250 that are used for address computation are not considered relevant. */
251 if (!exist_non_indexing_operands_for_use_p (use, stmt))
252 return true;
253
254 if (!vect_is_simple_use (use, loop_vinfo, NULL, &def_stmt, &def, &dt))
255 {
256 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
257 fprintf (vect_dump, "not vectorized: unsupported use in stmt.");
258 return false;
259 }
260
261 if (!def_stmt || gimple_nop_p (def_stmt))
262 return true;
263
264 def_bb = gimple_bb (def_stmt);
265 if (!flow_bb_inside_loop_p (loop, def_bb))
266 {
267 if (vect_print_dump_info (REPORT_DETAILS))
268 fprintf (vect_dump, "def_stmt is out of loop.");
269 return true;
270 }
271
272 /* case 2: A reduction phi (STMT) defined by a reduction stmt (DEF_STMT).
273 DEF_STMT must have already been processed, because this should be the
274 only way that STMT, which is a reduction-phi, was put in the worklist,
275 as there should be no other uses for DEF_STMT in the loop. So we just
276 check that everything is as expected, and we are done. */
277 dstmt_vinfo = vinfo_for_stmt (def_stmt);
278 bb = gimple_bb (stmt);
279 if (gimple_code (stmt) == GIMPLE_PHI
280 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
281 && gimple_code (def_stmt) != GIMPLE_PHI
282 && STMT_VINFO_DEF_TYPE (dstmt_vinfo) == vect_reduction_def
283 && bb->loop_father == def_bb->loop_father)
284 {
285 if (vect_print_dump_info (REPORT_DETAILS))
286 fprintf (vect_dump, "reduc-stmt defining reduc-phi in the same nest.");
287 if (STMT_VINFO_IN_PATTERN_P (dstmt_vinfo))
288 dstmt_vinfo = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (dstmt_vinfo));
289 gcc_assert (STMT_VINFO_RELEVANT (dstmt_vinfo) < vect_used_by_reduction);
290 gcc_assert (STMT_VINFO_LIVE_P (dstmt_vinfo)
291 || STMT_VINFO_RELEVANT (dstmt_vinfo) > vect_unused_in_scope);
292 return true;
293 }
294
295 /* case 3a: outer-loop stmt defining an inner-loop stmt:
296 outer-loop-header-bb:
297 d = def_stmt
298 inner-loop:
299 stmt # use (d)
300 outer-loop-tail-bb:
301 ... */
302 if (flow_loop_nested_p (def_bb->loop_father, bb->loop_father))
303 {
304 if (vect_print_dump_info (REPORT_DETAILS))
305 fprintf (vect_dump, "outer-loop def-stmt defining inner-loop stmt.");
306
307 switch (relevant)
308 {
309 case vect_unused_in_scope:
310 relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_nested_cycle) ?
311 vect_used_in_scope : vect_unused_in_scope;
312 break;
313
314 case vect_used_in_outer_by_reduction:
315 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def);
316 relevant = vect_used_by_reduction;
317 break;
318
319 case vect_used_in_outer:
320 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def);
321 relevant = vect_used_in_scope;
322 break;
323
324 case vect_used_in_scope:
325 break;
326
327 default:
328 gcc_unreachable ();
329 }
330 }
331
332 /* case 3b: inner-loop stmt defining an outer-loop stmt:
333 outer-loop-header-bb:
334 ...
335 inner-loop:
336 d = def_stmt
337 outer-loop-tail-bb (or outer-loop-exit-bb in double reduction):
338 stmt # use (d) */
339 else if (flow_loop_nested_p (bb->loop_father, def_bb->loop_father))
340 {
341 if (vect_print_dump_info (REPORT_DETAILS))
342 fprintf (vect_dump, "inner-loop def-stmt defining outer-loop stmt.");
343
344 switch (relevant)
345 {
346 case vect_unused_in_scope:
347 relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
348 || STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_double_reduction_def) ?
349 vect_used_in_outer_by_reduction : vect_unused_in_scope;
350 break;
351
352 case vect_used_by_reduction:
353 relevant = vect_used_in_outer_by_reduction;
354 break;
355
356 case vect_used_in_scope:
357 relevant = vect_used_in_outer;
358 break;
359
360 default:
361 gcc_unreachable ();
362 }
363 }
364
365 vect_mark_relevant (worklist, def_stmt, relevant, live_p);
366 return true;
367 }
368
369
370 /* Function vect_mark_stmts_to_be_vectorized.
371
372 Not all stmts in the loop need to be vectorized. For example:
373
374 for i...
375 for j...
376 1. T0 = i + j
377 2. T1 = a[T0]
378
379 3. j = j + 1
380
381 Stmt 1 and 3 do not need to be vectorized, because loop control and
382 addressing of vectorized data-refs are handled differently.
383
384 This pass detects such stmts. */
385
386 bool
387 vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo)
388 {
389 VEC(gimple,heap) *worklist;
390 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
391 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
392 unsigned int nbbs = loop->num_nodes;
393 gimple_stmt_iterator si;
394 gimple stmt;
395 unsigned int i;
396 stmt_vec_info stmt_vinfo;
397 basic_block bb;
398 gimple phi;
399 bool live_p;
400 enum vect_relevant relevant, tmp_relevant;
401 enum vect_def_type def_type;
402
403 if (vect_print_dump_info (REPORT_DETAILS))
404 fprintf (vect_dump, "=== vect_mark_stmts_to_be_vectorized ===");
405
406 worklist = VEC_alloc (gimple, heap, 64);
407
408 /* 1. Init worklist. */
409 for (i = 0; i < nbbs; i++)
410 {
411 bb = bbs[i];
412 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
413 {
414 phi = gsi_stmt (si);
415 if (vect_print_dump_info (REPORT_DETAILS))
416 {
417 fprintf (vect_dump, "init: phi relevant? ");
418 print_gimple_stmt (vect_dump, phi, 0, TDF_SLIM);
419 }
420
421 if (vect_stmt_relevant_p (phi, loop_vinfo, &relevant, &live_p))
422 vect_mark_relevant (&worklist, phi, relevant, live_p);
423 }
424 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
425 {
426 stmt = gsi_stmt (si);
427 if (vect_print_dump_info (REPORT_DETAILS))
428 {
429 fprintf (vect_dump, "init: stmt relevant? ");
430 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
431 }
432
433 if (vect_stmt_relevant_p (stmt, loop_vinfo, &relevant, &live_p))
434 vect_mark_relevant (&worklist, stmt, relevant, live_p);
435 }
436 }
437
438 /* 2. Process_worklist */
439 while (VEC_length (gimple, worklist) > 0)
440 {
441 use_operand_p use_p;
442 ssa_op_iter iter;
443
444 stmt = VEC_pop (gimple, worklist);
445 if (vect_print_dump_info (REPORT_DETAILS))
446 {
447 fprintf (vect_dump, "worklist: examine stmt: ");
448 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
449 }
450
451 /* Examine the USEs of STMT. For each USE, mark the stmt that defines it
452 (DEF_STMT) as relevant/irrelevant and live/dead according to the
453 liveness and relevance properties of STMT. */
454 stmt_vinfo = vinfo_for_stmt (stmt);
455 relevant = STMT_VINFO_RELEVANT (stmt_vinfo);
456 live_p = STMT_VINFO_LIVE_P (stmt_vinfo);
457
458 /* Generally, the liveness and relevance properties of STMT are
459 propagated as is to the DEF_STMTs of its USEs:
460 live_p <-- STMT_VINFO_LIVE_P (STMT_VINFO)
461 relevant <-- STMT_VINFO_RELEVANT (STMT_VINFO)
462
463 One exception is when STMT has been identified as defining a reduction
464 variable; in this case we set the liveness/relevance as follows:
465 live_p = false
466 relevant = vect_used_by_reduction
467 This is because we distinguish between two kinds of relevant stmts -
468 those that are used by a reduction computation, and those that are
469 (also) used by a regular computation. This allows us later on to
470 identify stmts that are used solely by a reduction, and therefore the
471 order of the results that they produce does not have to be kept. */
472
473 def_type = STMT_VINFO_DEF_TYPE (stmt_vinfo);
474 tmp_relevant = relevant;
475 switch (def_type)
476 {
477 case vect_reduction_def:
478 switch (tmp_relevant)
479 {
480 case vect_unused_in_scope:
481 relevant = vect_used_by_reduction;
482 break;
483
484 case vect_used_by_reduction:
485 if (gimple_code (stmt) == GIMPLE_PHI)
486 break;
487 /* fall through */
488
489 default:
490 if (vect_print_dump_info (REPORT_DETAILS))
491 fprintf (vect_dump, "unsupported use of reduction.");
492
493 VEC_free (gimple, heap, worklist);
494 return false;
495 }
496
497 live_p = false;
498 break;
499
500 case vect_nested_cycle:
501 if (tmp_relevant != vect_unused_in_scope
502 && tmp_relevant != vect_used_in_outer_by_reduction
503 && tmp_relevant != vect_used_in_outer)
504 {
505 if (vect_print_dump_info (REPORT_DETAILS))
506 fprintf (vect_dump, "unsupported use of nested cycle.");
507
508 VEC_free (gimple, heap, worklist);
509 return false;
510 }
511
512 live_p = false;
513 break;
514
515 case vect_double_reduction_def:
516 if (tmp_relevant != vect_unused_in_scope
517 && tmp_relevant != vect_used_by_reduction)
518 {
519 if (vect_print_dump_info (REPORT_DETAILS))
520 fprintf (vect_dump, "unsupported use of double reduction.");
521
522 VEC_free (gimple, heap, worklist);
523 return false;
524 }
525
526 live_p = false;
527 break;
528
529 default:
530 break;
531 }
532
533 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
534 {
535 tree op = USE_FROM_PTR (use_p);
536 if (!process_use (stmt, op, loop_vinfo, live_p, relevant, &worklist))
537 {
538 VEC_free (gimple, heap, worklist);
539 return false;
540 }
541 }
542 } /* while worklist */
543
544 VEC_free (gimple, heap, worklist);
545 return true;
546 }
547
548
549 /* Get cost by calling cost target builtin. */
550
551 static inline
552 int vect_get_stmt_cost (enum vect_cost_for_stmt type_of_cost)
553 {
554 tree dummy_type = NULL;
555 int dummy = 0;
556
557 return targetm.vectorize.builtin_vectorization_cost (type_of_cost,
558 dummy_type, dummy);
559 }
560
561 int
562 cost_for_stmt (gimple stmt)
563 {
564 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
565
566 switch (STMT_VINFO_TYPE (stmt_info))
567 {
568 case load_vec_info_type:
569 return vect_get_stmt_cost (scalar_load);
570 case store_vec_info_type:
571 return vect_get_stmt_cost (scalar_store);
572 case op_vec_info_type:
573 case condition_vec_info_type:
574 case assignment_vec_info_type:
575 case reduc_vec_info_type:
576 case induc_vec_info_type:
577 case type_promotion_vec_info_type:
578 case type_demotion_vec_info_type:
579 case type_conversion_vec_info_type:
580 case call_vec_info_type:
581 return vect_get_stmt_cost (scalar_stmt);
582 case undef_vec_info_type:
583 default:
584 gcc_unreachable ();
585 }
586 }
587
588 /* Function vect_model_simple_cost.
589
590 Models cost for simple operations, i.e. those that only emit ncopies of a
591 single op. Right now, this does not account for multiple insns that could
592 be generated for the single vector op. We will handle that shortly. */
593
594 void
595 vect_model_simple_cost (stmt_vec_info stmt_info, int ncopies,
596 enum vect_def_type *dt, slp_tree slp_node)
597 {
598 int i;
599 int inside_cost = 0, outside_cost = 0;
600
601 /* The SLP costs were already calculated during SLP tree build. */
602 if (PURE_SLP_STMT (stmt_info))
603 return;
604
605 inside_cost = ncopies * vect_get_stmt_cost (vector_stmt);
606
607 /* FORNOW: Assuming maximum 2 args per stmts. */
608 for (i = 0; i < 2; i++)
609 {
610 if (dt[i] == vect_constant_def || dt[i] == vect_external_def)
611 outside_cost += vect_get_stmt_cost (vector_stmt);
612 }
613
614 if (vect_print_dump_info (REPORT_COST))
615 fprintf (vect_dump, "vect_model_simple_cost: inside_cost = %d, "
616 "outside_cost = %d .", inside_cost, outside_cost);
617
618 /* Set the costs either in STMT_INFO or SLP_NODE (if exists). */
619 stmt_vinfo_set_inside_of_loop_cost (stmt_info, slp_node, inside_cost);
620 stmt_vinfo_set_outside_of_loop_cost (stmt_info, slp_node, outside_cost);
621 }
622
623
624 /* Function vect_cost_strided_group_size
625
626 For strided load or store, return the group_size only if it is the first
627 load or store of a group, else return 1. This ensures that group size is
628 only returned once per group. */
629
630 static int
631 vect_cost_strided_group_size (stmt_vec_info stmt_info)
632 {
633 gimple first_stmt = DR_GROUP_FIRST_DR (stmt_info);
634
635 if (first_stmt == STMT_VINFO_STMT (stmt_info))
636 return DR_GROUP_SIZE (stmt_info);
637
638 return 1;
639 }
640
641
642 /* Function vect_model_store_cost
643
644 Models cost for stores. In the case of strided accesses, one access
645 has the overhead of the strided access attributed to it. */
646
647 void
648 vect_model_store_cost (stmt_vec_info stmt_info, int ncopies,
649 enum vect_def_type dt, slp_tree slp_node)
650 {
651 int group_size;
652 unsigned int inside_cost = 0, outside_cost = 0;
653 struct data_reference *first_dr;
654 gimple first_stmt;
655
656 /* The SLP costs were already calculated during SLP tree build. */
657 if (PURE_SLP_STMT (stmt_info))
658 return;
659
660 if (dt == vect_constant_def || dt == vect_external_def)
661 outside_cost = vect_get_stmt_cost (scalar_to_vec);
662
663 /* Strided access? */
664 if (DR_GROUP_FIRST_DR (stmt_info))
665 {
666 if (slp_node)
667 {
668 first_stmt = VEC_index (gimple, SLP_TREE_SCALAR_STMTS (slp_node), 0);
669 group_size = 1;
670 }
671 else
672 {
673 first_stmt = DR_GROUP_FIRST_DR (stmt_info);
674 group_size = vect_cost_strided_group_size (stmt_info);
675 }
676
677 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
678 }
679 /* Not a strided access. */
680 else
681 {
682 group_size = 1;
683 first_dr = STMT_VINFO_DATA_REF (stmt_info);
684 }
685
686 /* Is this an access in a group of stores, which provide strided access?
687 If so, add in the cost of the permutes. */
688 if (group_size > 1)
689 {
690 /* Uses a high and low interleave operation for each needed permute. */
691 inside_cost = ncopies * exact_log2(group_size) * group_size
692 * vect_get_stmt_cost (vector_stmt);
693
694 if (vect_print_dump_info (REPORT_COST))
695 fprintf (vect_dump, "vect_model_store_cost: strided group_size = %d .",
696 group_size);
697
698 }
699
700 /* Costs of the stores. */
701 vect_get_store_cost (first_dr, ncopies, &inside_cost);
702
703 if (vect_print_dump_info (REPORT_COST))
704 fprintf (vect_dump, "vect_model_store_cost: inside_cost = %d, "
705 "outside_cost = %d .", inside_cost, outside_cost);
706
707 /* Set the costs either in STMT_INFO or SLP_NODE (if exists). */
708 stmt_vinfo_set_inside_of_loop_cost (stmt_info, slp_node, inside_cost);
709 stmt_vinfo_set_outside_of_loop_cost (stmt_info, slp_node, outside_cost);
710 }
711
712
713 /* Calculate cost of DR's memory access. */
714 void
715 vect_get_store_cost (struct data_reference *dr, int ncopies,
716 unsigned int *inside_cost)
717 {
718 int alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
719
720 switch (alignment_support_scheme)
721 {
722 case dr_aligned:
723 {
724 *inside_cost += ncopies * vect_get_stmt_cost (vector_store);
725
726 if (vect_print_dump_info (REPORT_COST))
727 fprintf (vect_dump, "vect_model_store_cost: aligned.");
728
729 break;
730 }
731
732 case dr_unaligned_supported:
733 {
734 gimple stmt = DR_STMT (dr);
735 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
736 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
737
738 /* Here, we assign an additional cost for the unaligned store. */
739 *inside_cost += ncopies
740 * targetm.vectorize.builtin_vectorization_cost (unaligned_store,
741 vectype, DR_MISALIGNMENT (dr));
742
743 if (vect_print_dump_info (REPORT_COST))
744 fprintf (vect_dump, "vect_model_store_cost: unaligned supported by "
745 "hardware.");
746
747 break;
748 }
749
750 default:
751 gcc_unreachable ();
752 }
753 }
754
755
756 /* Function vect_model_load_cost
757
758 Models cost for loads. In the case of strided accesses, the last access
759 has the overhead of the strided access attributed to it. Since unaligned
760 accesses are supported for loads, we also account for the costs of the
761 access scheme chosen. */
762
763 void
764 vect_model_load_cost (stmt_vec_info stmt_info, int ncopies, slp_tree slp_node)
765
766 {
767 int group_size;
768 gimple first_stmt;
769 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr;
770 unsigned int inside_cost = 0, outside_cost = 0;
771
772 /* The SLP costs were already calculated during SLP tree build. */
773 if (PURE_SLP_STMT (stmt_info))
774 return;
775
776 /* Strided accesses? */
777 first_stmt = DR_GROUP_FIRST_DR (stmt_info);
778 if (first_stmt && !slp_node)
779 {
780 group_size = vect_cost_strided_group_size (stmt_info);
781 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
782 }
783 /* Not a strided access. */
784 else
785 {
786 group_size = 1;
787 first_dr = dr;
788 }
789
790 /* Is this an access in a group of loads providing strided access?
791 If so, add in the cost of the permutes. */
792 if (group_size > 1)
793 {
794 /* Uses an even and odd extract operations for each needed permute. */
795 inside_cost = ncopies * exact_log2(group_size) * group_size
796 * vect_get_stmt_cost (vector_stmt);
797
798 if (vect_print_dump_info (REPORT_COST))
799 fprintf (vect_dump, "vect_model_load_cost: strided group_size = %d .",
800 group_size);
801 }
802
803 /* The loads themselves. */
804 vect_get_load_cost (first_dr, ncopies,
805 ((!DR_GROUP_FIRST_DR (stmt_info)) || group_size > 1 || slp_node),
806 &inside_cost, &outside_cost);
807
808 if (vect_print_dump_info (REPORT_COST))
809 fprintf (vect_dump, "vect_model_load_cost: inside_cost = %d, "
810 "outside_cost = %d .", inside_cost, outside_cost);
811
812 /* Set the costs either in STMT_INFO or SLP_NODE (if exists). */
813 stmt_vinfo_set_inside_of_loop_cost (stmt_info, slp_node, inside_cost);
814 stmt_vinfo_set_outside_of_loop_cost (stmt_info, slp_node, outside_cost);
815 }
816
817
818 /* Calculate cost of DR's memory access. */
819 void
820 vect_get_load_cost (struct data_reference *dr, int ncopies,
821 bool add_realign_cost, unsigned int *inside_cost,
822 unsigned int *outside_cost)
823 {
824 int alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
825
826 switch (alignment_support_scheme)
827 {
828 case dr_aligned:
829 {
830 *inside_cost += ncopies * vect_get_stmt_cost (vector_load);
831
832 if (vect_print_dump_info (REPORT_COST))
833 fprintf (vect_dump, "vect_model_load_cost: aligned.");
834
835 break;
836 }
837 case dr_unaligned_supported:
838 {
839 gimple stmt = DR_STMT (dr);
840 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
841 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
842
843 /* Here, we assign an additional cost for the unaligned load. */
844 *inside_cost += ncopies
845 * targetm.vectorize.builtin_vectorization_cost (unaligned_load,
846 vectype, DR_MISALIGNMENT (dr));
847 if (vect_print_dump_info (REPORT_COST))
848 fprintf (vect_dump, "vect_model_load_cost: unaligned supported by "
849 "hardware.");
850
851 break;
852 }
853 case dr_explicit_realign:
854 {
855 *inside_cost += ncopies * (2 * vect_get_stmt_cost (vector_load)
856 + vect_get_stmt_cost (vector_stmt));
857
858 /* FIXME: If the misalignment remains fixed across the iterations of
859 the containing loop, the following cost should be added to the
860 outside costs. */
861 if (targetm.vectorize.builtin_mask_for_load)
862 *inside_cost += vect_get_stmt_cost (vector_stmt);
863
864 break;
865 }
866 case dr_explicit_realign_optimized:
867 {
868 if (vect_print_dump_info (REPORT_COST))
869 fprintf (vect_dump, "vect_model_load_cost: unaligned software "
870 "pipelined.");
871
872 /* Unaligned software pipeline has a load of an address, an initial
873 load, and possibly a mask operation to "prime" the loop. However,
874 if this is an access in a group of loads, which provide strided
875 access, then the above cost should only be considered for one
876 access in the group. Inside the loop, there is a load op
877 and a realignment op. */
878
879 if (add_realign_cost)
880 {
881 *outside_cost = 2 * vect_get_stmt_cost (vector_stmt);
882 if (targetm.vectorize.builtin_mask_for_load)
883 *outside_cost += vect_get_stmt_cost (vector_stmt);
884 }
885
886 *inside_cost += ncopies * (vect_get_stmt_cost (vector_load)
887 + vect_get_stmt_cost (vector_stmt));
888 break;
889 }
890
891 default:
892 gcc_unreachable ();
893 }
894 }
895
896
897 /* Function vect_init_vector.
898
899 Insert a new stmt (INIT_STMT) that initializes a new vector variable with
900 the vector elements of VECTOR_VAR. Place the initialization at BSI if it
901 is not NULL. Otherwise, place the initialization at the loop preheader.
902 Return the DEF of INIT_STMT.
903 It will be used in the vectorization of STMT. */
904
905 tree
906 vect_init_vector (gimple stmt, tree vector_var, tree vector_type,
907 gimple_stmt_iterator *gsi)
908 {
909 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
910 tree new_var;
911 gimple init_stmt;
912 tree vec_oprnd;
913 edge pe;
914 tree new_temp;
915 basic_block new_bb;
916
917 new_var = vect_get_new_vect_var (vector_type, vect_simple_var, "cst_");
918 add_referenced_var (new_var);
919 init_stmt = gimple_build_assign (new_var, vector_var);
920 new_temp = make_ssa_name (new_var, init_stmt);
921 gimple_assign_set_lhs (init_stmt, new_temp);
922
923 if (gsi)
924 vect_finish_stmt_generation (stmt, init_stmt, gsi);
925 else
926 {
927 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
928
929 if (loop_vinfo)
930 {
931 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
932
933 if (nested_in_vect_loop_p (loop, stmt))
934 loop = loop->inner;
935
936 pe = loop_preheader_edge (loop);
937 new_bb = gsi_insert_on_edge_immediate (pe, init_stmt);
938 gcc_assert (!new_bb);
939 }
940 else
941 {
942 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo);
943 basic_block bb;
944 gimple_stmt_iterator gsi_bb_start;
945
946 gcc_assert (bb_vinfo);
947 bb = BB_VINFO_BB (bb_vinfo);
948 gsi_bb_start = gsi_after_labels (bb);
949 gsi_insert_before (&gsi_bb_start, init_stmt, GSI_SAME_STMT);
950 }
951 }
952
953 if (vect_print_dump_info (REPORT_DETAILS))
954 {
955 fprintf (vect_dump, "created new init_stmt: ");
956 print_gimple_stmt (vect_dump, init_stmt, 0, TDF_SLIM);
957 }
958
959 vec_oprnd = gimple_assign_lhs (init_stmt);
960 return vec_oprnd;
961 }
962
963
964 /* Function vect_get_vec_def_for_operand.
965
966 OP is an operand in STMT. This function returns a (vector) def that will be
967 used in the vectorized stmt for STMT.
968
969 In the case that OP is an SSA_NAME which is defined in the loop, then
970 STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.
971
972 In case OP is an invariant or constant, a new stmt that creates a vector def
973 needs to be introduced. */
974
975 tree
976 vect_get_vec_def_for_operand (tree op, gimple stmt, tree *scalar_def)
977 {
978 tree vec_oprnd;
979 gimple vec_stmt;
980 gimple def_stmt;
981 stmt_vec_info def_stmt_info = NULL;
982 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
983 tree vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
984 unsigned int nunits = TYPE_VECTOR_SUBPARTS (vectype);
985 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
986 tree vec_inv;
987 tree vec_cst;
988 tree t = NULL_TREE;
989 tree def;
990 int i;
991 enum vect_def_type dt;
992 bool is_simple_use;
993 tree vector_type;
994
995 if (vect_print_dump_info (REPORT_DETAILS))
996 {
997 fprintf (vect_dump, "vect_get_vec_def_for_operand: ");
998 print_generic_expr (vect_dump, op, TDF_SLIM);
999 }
1000
1001 is_simple_use = vect_is_simple_use (op, loop_vinfo, NULL, &def_stmt, &def,
1002 &dt);
1003 gcc_assert (is_simple_use);
1004 if (vect_print_dump_info (REPORT_DETAILS))
1005 {
1006 if (def)
1007 {
1008 fprintf (vect_dump, "def = ");
1009 print_generic_expr (vect_dump, def, TDF_SLIM);
1010 }
1011 if (def_stmt)
1012 {
1013 fprintf (vect_dump, " def_stmt = ");
1014 print_gimple_stmt (vect_dump, def_stmt, 0, TDF_SLIM);
1015 }
1016 }
1017
1018 switch (dt)
1019 {
1020 /* Case 1: operand is a constant. */
1021 case vect_constant_def:
1022 {
1023 vector_type = get_vectype_for_scalar_type (TREE_TYPE (op));
1024 gcc_assert (vector_type);
1025
1026 if (scalar_def)
1027 *scalar_def = op;
1028
1029 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1030 if (vect_print_dump_info (REPORT_DETAILS))
1031 fprintf (vect_dump, "Create vector_cst. nunits = %d", nunits);
1032
1033 for (i = nunits - 1; i >= 0; --i)
1034 {
1035 t = tree_cons (NULL_TREE, op, t);
1036 }
1037 vec_cst = build_vector (vector_type, t);
1038 return vect_init_vector (stmt, vec_cst, vector_type, NULL);
1039 }
1040
1041 /* Case 2: operand is defined outside the loop - loop invariant. */
1042 case vect_external_def:
1043 {
1044 vector_type = get_vectype_for_scalar_type (TREE_TYPE (def));
1045 gcc_assert (vector_type);
1046 nunits = TYPE_VECTOR_SUBPARTS (vector_type);
1047
1048 if (scalar_def)
1049 *scalar_def = def;
1050
1051 /* Create 'vec_inv = {inv,inv,..,inv}' */
1052 if (vect_print_dump_info (REPORT_DETAILS))
1053 fprintf (vect_dump, "Create vector_inv.");
1054
1055 for (i = nunits - 1; i >= 0; --i)
1056 {
1057 t = tree_cons (NULL_TREE, def, t);
1058 }
1059
1060 /* FIXME: use build_constructor directly. */
1061 vec_inv = build_constructor_from_list (vector_type, t);
1062 return vect_init_vector (stmt, vec_inv, vector_type, NULL);
1063 }
1064
1065 /* Case 3: operand is defined inside the loop. */
1066 case vect_internal_def:
1067 {
1068 if (scalar_def)
1069 *scalar_def = NULL/* FIXME tuples: def_stmt*/;
1070
1071 /* Get the def from the vectorized stmt. */
1072 def_stmt_info = vinfo_for_stmt (def_stmt);
1073 vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
1074 gcc_assert (vec_stmt);
1075 if (gimple_code (vec_stmt) == GIMPLE_PHI)
1076 vec_oprnd = PHI_RESULT (vec_stmt);
1077 else if (is_gimple_call (vec_stmt))
1078 vec_oprnd = gimple_call_lhs (vec_stmt);
1079 else
1080 vec_oprnd = gimple_assign_lhs (vec_stmt);
1081 return vec_oprnd;
1082 }
1083
1084 /* Case 4: operand is defined by a loop header phi - reduction */
1085 case vect_reduction_def:
1086 case vect_double_reduction_def:
1087 case vect_nested_cycle:
1088 {
1089 struct loop *loop;
1090
1091 gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
1092 loop = (gimple_bb (def_stmt))->loop_father;
1093
1094 /* Get the def before the loop */
1095 op = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
1096 return get_initial_def_for_reduction (stmt, op, scalar_def);
1097 }
1098
1099 /* Case 5: operand is defined by loop-header phi - induction. */
1100 case vect_induction_def:
1101 {
1102 gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
1103
1104 /* Get the def from the vectorized stmt. */
1105 def_stmt_info = vinfo_for_stmt (def_stmt);
1106 vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
1107 gcc_assert (vec_stmt && gimple_code (vec_stmt) == GIMPLE_PHI);
1108 vec_oprnd = PHI_RESULT (vec_stmt);
1109 return vec_oprnd;
1110 }
1111
1112 default:
1113 gcc_unreachable ();
1114 }
1115 }
1116
1117
1118 /* Function vect_get_vec_def_for_stmt_copy
1119
1120 Return a vector-def for an operand. This function is used when the
1121 vectorized stmt to be created (by the caller to this function) is a "copy"
1122 created in case the vectorized result cannot fit in one vector, and several
1123 copies of the vector-stmt are required. In this case the vector-def is
1124 retrieved from the vector stmt recorded in the STMT_VINFO_RELATED_STMT field
1125 of the stmt that defines VEC_OPRND.
1126 DT is the type of the vector def VEC_OPRND.
1127
1128 Context:
1129 In case the vectorization factor (VF) is bigger than the number
1130 of elements that can fit in a vectype (nunits), we have to generate
1131 more than one vector stmt to vectorize the scalar stmt. This situation
1132 arises when there are multiple data-types operated upon in the loop; the
1133 smallest data-type determines the VF, and as a result, when vectorizing
1134 stmts operating on wider types we need to create 'VF/nunits' "copies" of the
1135 vector stmt (each computing a vector of 'nunits' results, and together
1136 computing 'VF' results in each iteration). This function is called when
1137 vectorizing such a stmt (e.g. vectorizing S2 in the illustration below, in
1138 which VF=16 and nunits=4, so the number of copies required is 4):
1139
1140 scalar stmt: vectorized into: STMT_VINFO_RELATED_STMT
1141
1142 S1: x = load VS1.0: vx.0 = memref0 VS1.1
1143 VS1.1: vx.1 = memref1 VS1.2
1144 VS1.2: vx.2 = memref2 VS1.3
1145 VS1.3: vx.3 = memref3
1146
1147 S2: z = x + ... VSnew.0: vz0 = vx.0 + ... VSnew.1
1148 VSnew.1: vz1 = vx.1 + ... VSnew.2
1149 VSnew.2: vz2 = vx.2 + ... VSnew.3
1150 VSnew.3: vz3 = vx.3 + ...
1151
1152 The vectorization of S1 is explained in vectorizable_load.
1153 The vectorization of S2:
1154 To create the first vector-stmt out of the 4 copies - VSnew.0 -
1155 the function 'vect_get_vec_def_for_operand' is called to
1156 get the relevant vector-def for each operand of S2. For operand x it
1157 returns the vector-def 'vx.0'.
1158
1159 To create the remaining copies of the vector-stmt (VSnew.j), this
1160 function is called to get the relevant vector-def for each operand. It is
1161 obtained from the respective VS1.j stmt, which is recorded in the
1162 STMT_VINFO_RELATED_STMT field of the stmt that defines VEC_OPRND.
1163
1164 For example, to obtain the vector-def 'vx.1' in order to create the
1165 vector stmt 'VSnew.1', this function is called with VEC_OPRND='vx.0'.
1166 Given 'vx0' we obtain the stmt that defines it ('VS1.0'); from the
1167 STMT_VINFO_RELATED_STMT field of 'VS1.0' we obtain the next copy - 'VS1.1',
1168 and return its def ('vx.1').
1169 Overall, to create the above sequence this function will be called 3 times:
1170 vx.1 = vect_get_vec_def_for_stmt_copy (dt, vx.0);
1171 vx.2 = vect_get_vec_def_for_stmt_copy (dt, vx.1);
1172 vx.3 = vect_get_vec_def_for_stmt_copy (dt, vx.2); */
1173
1174 tree
1175 vect_get_vec_def_for_stmt_copy (enum vect_def_type dt, tree vec_oprnd)
1176 {
1177 gimple vec_stmt_for_operand;
1178 stmt_vec_info def_stmt_info;
1179
1180 /* Do nothing; can reuse same def. */
1181 if (dt == vect_external_def || dt == vect_constant_def )
1182 return vec_oprnd;
1183
1184 vec_stmt_for_operand = SSA_NAME_DEF_STMT (vec_oprnd);
1185 def_stmt_info = vinfo_for_stmt (vec_stmt_for_operand);
1186 gcc_assert (def_stmt_info);
1187 vec_stmt_for_operand = STMT_VINFO_RELATED_STMT (def_stmt_info);
1188 gcc_assert (vec_stmt_for_operand);
1189 vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
1190 if (gimple_code (vec_stmt_for_operand) == GIMPLE_PHI)
1191 vec_oprnd = PHI_RESULT (vec_stmt_for_operand);
1192 else
1193 vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
1194 return vec_oprnd;
1195 }
1196
1197
1198 /* Get vectorized definitions for the operands to create a copy of an original
1199 stmt. See vect_get_vec_def_for_stmt_copy() for details. */
1200
1201 static void
1202 vect_get_vec_defs_for_stmt_copy (enum vect_def_type *dt,
1203 VEC(tree,heap) **vec_oprnds0,
1204 VEC(tree,heap) **vec_oprnds1)
1205 {
1206 tree vec_oprnd = VEC_pop (tree, *vec_oprnds0);
1207
1208 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd);
1209 VEC_quick_push (tree, *vec_oprnds0, vec_oprnd);
1210
1211 if (vec_oprnds1 && *vec_oprnds1)
1212 {
1213 vec_oprnd = VEC_pop (tree, *vec_oprnds1);
1214 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd);
1215 VEC_quick_push (tree, *vec_oprnds1, vec_oprnd);
1216 }
1217 }
1218
1219
1220 /* Get vectorized definitions for OP0 and OP1, or SLP_NODE if it is not NULL. */
1221
1222 static void
1223 vect_get_vec_defs (tree op0, tree op1, gimple stmt,
1224 VEC(tree,heap) **vec_oprnds0, VEC(tree,heap) **vec_oprnds1,
1225 slp_tree slp_node)
1226 {
1227 if (slp_node)
1228 vect_get_slp_defs (slp_node, vec_oprnds0, vec_oprnds1, -1);
1229 else
1230 {
1231 tree vec_oprnd;
1232
1233 *vec_oprnds0 = VEC_alloc (tree, heap, 1);
1234 vec_oprnd = vect_get_vec_def_for_operand (op0, stmt, NULL);
1235 VEC_quick_push (tree, *vec_oprnds0, vec_oprnd);
1236
1237 if (op1)
1238 {
1239 *vec_oprnds1 = VEC_alloc (tree, heap, 1);
1240 vec_oprnd = vect_get_vec_def_for_operand (op1, stmt, NULL);
1241 VEC_quick_push (tree, *vec_oprnds1, vec_oprnd);
1242 }
1243 }
1244 }
1245
1246
1247 /* Function vect_finish_stmt_generation.
1248
1249 Insert a new stmt. */
1250
1251 void
1252 vect_finish_stmt_generation (gimple stmt, gimple vec_stmt,
1253 gimple_stmt_iterator *gsi)
1254 {
1255 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1256 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1257 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
1258
1259 gcc_assert (gimple_code (stmt) != GIMPLE_LABEL);
1260
1261 gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
1262
1263 set_vinfo_for_stmt (vec_stmt, new_stmt_vec_info (vec_stmt, loop_vinfo,
1264 bb_vinfo));
1265
1266 if (vect_print_dump_info (REPORT_DETAILS))
1267 {
1268 fprintf (vect_dump, "add new stmt: ");
1269 print_gimple_stmt (vect_dump, vec_stmt, 0, TDF_SLIM);
1270 }
1271
1272 gimple_set_location (vec_stmt, gimple_location (gsi_stmt (*gsi)));
1273 }
1274
1275 /* Checks if CALL can be vectorized in type VECTYPE. Returns
1276 a function declaration if the target has a vectorized version
1277 of the function, or NULL_TREE if the function cannot be vectorized. */
1278
1279 tree
1280 vectorizable_function (gimple call, tree vectype_out, tree vectype_in)
1281 {
1282 tree fndecl = gimple_call_fndecl (call);
1283
1284 /* We only handle functions that do not read or clobber memory -- i.e.
1285 const or novops ones. */
1286 if (!(gimple_call_flags (call) & (ECF_CONST | ECF_NOVOPS)))
1287 return NULL_TREE;
1288
1289 if (!fndecl
1290 || TREE_CODE (fndecl) != FUNCTION_DECL
1291 || !DECL_BUILT_IN (fndecl))
1292 return NULL_TREE;
1293
1294 return targetm.vectorize.builtin_vectorized_function (fndecl, vectype_out,
1295 vectype_in);
1296 }
1297
1298 /* Function vectorizable_call.
1299
1300 Check if STMT performs a function call that can be vectorized.
1301 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
1302 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
1303 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
1304
1305 static bool
1306 vectorizable_call (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt)
1307 {
1308 tree vec_dest;
1309 tree scalar_dest;
1310 tree op, type;
1311 tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
1312 stmt_vec_info stmt_info = vinfo_for_stmt (stmt), prev_stmt_info;
1313 tree vectype_out, vectype_in;
1314 int nunits_in;
1315 int nunits_out;
1316 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1317 tree fndecl, new_temp, def, rhs_type;
1318 gimple def_stmt;
1319 enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
1320 gimple new_stmt = NULL;
1321 int ncopies, j;
1322 VEC(tree, heap) *vargs = NULL;
1323 enum { NARROW, NONE, WIDEN } modifier;
1324 size_t i, nargs;
1325
1326 /* FORNOW: unsupported in basic block SLP. */
1327 gcc_assert (loop_vinfo);
1328
1329 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1330 return false;
1331
1332 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
1333 return false;
1334
1335 /* FORNOW: SLP not supported. */
1336 if (STMT_SLP_TYPE (stmt_info))
1337 return false;
1338
1339 /* Is STMT a vectorizable call? */
1340 if (!is_gimple_call (stmt))
1341 return false;
1342
1343 if (TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME)
1344 return false;
1345
1346 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
1347
1348 /* Process function arguments. */
1349 rhs_type = NULL_TREE;
1350 vectype_in = NULL_TREE;
1351 nargs = gimple_call_num_args (stmt);
1352
1353 /* Bail out if the function has more than two arguments, we
1354 do not have interesting builtin functions to vectorize with
1355 more than two arguments. No arguments is also not good. */
1356 if (nargs == 0 || nargs > 2)
1357 return false;
1358
1359 for (i = 0; i < nargs; i++)
1360 {
1361 tree opvectype;
1362
1363 op = gimple_call_arg (stmt, i);
1364
1365 /* We can only handle calls with arguments of the same type. */
1366 if (rhs_type
1367 && !types_compatible_p (rhs_type, TREE_TYPE (op)))
1368 {
1369 if (vect_print_dump_info (REPORT_DETAILS))
1370 fprintf (vect_dump, "argument types differ.");
1371 return false;
1372 }
1373 if (!rhs_type)
1374 rhs_type = TREE_TYPE (op);
1375
1376 if (!vect_is_simple_use_1 (op, loop_vinfo, NULL,
1377 &def_stmt, &def, &dt[i], &opvectype))
1378 {
1379 if (vect_print_dump_info (REPORT_DETAILS))
1380 fprintf (vect_dump, "use not simple.");
1381 return false;
1382 }
1383
1384 if (!vectype_in)
1385 vectype_in = opvectype;
1386 else if (opvectype
1387 && opvectype != vectype_in)
1388 {
1389 if (vect_print_dump_info (REPORT_DETAILS))
1390 fprintf (vect_dump, "argument vector types differ.");
1391 return false;
1392 }
1393 }
1394 /* If all arguments are external or constant defs use a vector type with
1395 the same size as the output vector type. */
1396 if (!vectype_in)
1397 vectype_in = get_same_sized_vectype (rhs_type, vectype_out);
1398 if (vec_stmt)
1399 gcc_assert (vectype_in);
1400 if (!vectype_in)
1401 {
1402 if (vect_print_dump_info (REPORT_DETAILS))
1403 {
1404 fprintf (vect_dump, "no vectype for scalar type ");
1405 print_generic_expr (vect_dump, rhs_type, TDF_SLIM);
1406 }
1407
1408 return false;
1409 }
1410
1411 /* FORNOW */
1412 nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
1413 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
1414 if (nunits_in == nunits_out / 2)
1415 modifier = NARROW;
1416 else if (nunits_out == nunits_in)
1417 modifier = NONE;
1418 else if (nunits_out == nunits_in / 2)
1419 modifier = WIDEN;
1420 else
1421 return false;
1422
1423 /* For now, we only vectorize functions if a target specific builtin
1424 is available. TODO -- in some cases, it might be profitable to
1425 insert the calls for pieces of the vector, in order to be able
1426 to vectorize other operations in the loop. */
1427 fndecl = vectorizable_function (stmt, vectype_out, vectype_in);
1428 if (fndecl == NULL_TREE)
1429 {
1430 if (vect_print_dump_info (REPORT_DETAILS))
1431 fprintf (vect_dump, "function is not vectorizable.");
1432
1433 return false;
1434 }
1435
1436 gcc_assert (!gimple_vuse (stmt));
1437
1438 if (modifier == NARROW)
1439 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
1440 else
1441 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
1442
1443 /* Sanity check: make sure that at least one copy of the vectorized stmt
1444 needs to be generated. */
1445 gcc_assert (ncopies >= 1);
1446
1447 if (!vec_stmt) /* transformation not required. */
1448 {
1449 STMT_VINFO_TYPE (stmt_info) = call_vec_info_type;
1450 if (vect_print_dump_info (REPORT_DETAILS))
1451 fprintf (vect_dump, "=== vectorizable_call ===");
1452 vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
1453 return true;
1454 }
1455
1456 /** Transform. **/
1457
1458 if (vect_print_dump_info (REPORT_DETAILS))
1459 fprintf (vect_dump, "transform operation.");
1460
1461 /* Handle def. */
1462 scalar_dest = gimple_call_lhs (stmt);
1463 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
1464
1465 prev_stmt_info = NULL;
1466 switch (modifier)
1467 {
1468 case NONE:
1469 for (j = 0; j < ncopies; ++j)
1470 {
1471 /* Build argument list for the vectorized call. */
1472 if (j == 0)
1473 vargs = VEC_alloc (tree, heap, nargs);
1474 else
1475 VEC_truncate (tree, vargs, 0);
1476
1477 for (i = 0; i < nargs; i++)
1478 {
1479 op = gimple_call_arg (stmt, i);
1480 if (j == 0)
1481 vec_oprnd0
1482 = vect_get_vec_def_for_operand (op, stmt, NULL);
1483 else
1484 {
1485 vec_oprnd0 = gimple_call_arg (new_stmt, i);
1486 vec_oprnd0
1487 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
1488 }
1489
1490 VEC_quick_push (tree, vargs, vec_oprnd0);
1491 }
1492
1493 new_stmt = gimple_build_call_vec (fndecl, vargs);
1494 new_temp = make_ssa_name (vec_dest, new_stmt);
1495 gimple_call_set_lhs (new_stmt, new_temp);
1496
1497 vect_finish_stmt_generation (stmt, new_stmt, gsi);
1498 mark_symbols_for_renaming (new_stmt);
1499
1500 if (j == 0)
1501 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
1502 else
1503 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
1504
1505 prev_stmt_info = vinfo_for_stmt (new_stmt);
1506 }
1507
1508 break;
1509
1510 case NARROW:
1511 for (j = 0; j < ncopies; ++j)
1512 {
1513 /* Build argument list for the vectorized call. */
1514 if (j == 0)
1515 vargs = VEC_alloc (tree, heap, nargs * 2);
1516 else
1517 VEC_truncate (tree, vargs, 0);
1518
1519 for (i = 0; i < nargs; i++)
1520 {
1521 op = gimple_call_arg (stmt, i);
1522 if (j == 0)
1523 {
1524 vec_oprnd0
1525 = vect_get_vec_def_for_operand (op, stmt, NULL);
1526 vec_oprnd1
1527 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
1528 }
1529 else
1530 {
1531 vec_oprnd1 = gimple_call_arg (new_stmt, 2*i);
1532 vec_oprnd0
1533 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd1);
1534 vec_oprnd1
1535 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
1536 }
1537
1538 VEC_quick_push (tree, vargs, vec_oprnd0);
1539 VEC_quick_push (tree, vargs, vec_oprnd1);
1540 }
1541
1542 new_stmt = gimple_build_call_vec (fndecl, vargs);
1543 new_temp = make_ssa_name (vec_dest, new_stmt);
1544 gimple_call_set_lhs (new_stmt, new_temp);
1545
1546 vect_finish_stmt_generation (stmt, new_stmt, gsi);
1547 mark_symbols_for_renaming (new_stmt);
1548
1549 if (j == 0)
1550 STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
1551 else
1552 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
1553
1554 prev_stmt_info = vinfo_for_stmt (new_stmt);
1555 }
1556
1557 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
1558
1559 break;
1560
1561 case WIDEN:
1562 /* No current target implements this case. */
1563 return false;
1564 }
1565
1566 VEC_free (tree, heap, vargs);
1567
1568 /* Update the exception handling table with the vector stmt if necessary. */
1569 if (maybe_clean_or_replace_eh_stmt (stmt, *vec_stmt))
1570 gimple_purge_dead_eh_edges (gimple_bb (stmt));
1571
1572 /* The call in STMT might prevent it from being removed in dce.
1573 We however cannot remove it here, due to the way the ssa name
1574 it defines is mapped to the new definition. So just replace
1575 rhs of the statement with something harmless. */
1576
1577 type = TREE_TYPE (scalar_dest);
1578 new_stmt = gimple_build_assign (gimple_call_lhs (stmt),
1579 fold_convert (type, integer_zero_node));
1580 set_vinfo_for_stmt (new_stmt, stmt_info);
1581 set_vinfo_for_stmt (stmt, NULL);
1582 STMT_VINFO_STMT (stmt_info) = new_stmt;
1583 gsi_replace (gsi, new_stmt, false);
1584 SSA_NAME_DEF_STMT (gimple_assign_lhs (new_stmt)) = new_stmt;
1585
1586 return true;
1587 }
1588
1589
1590 /* Function vect_gen_widened_results_half
1591
1592 Create a vector stmt whose code, type, number of arguments, and result
1593 variable are CODE, OP_TYPE, and VEC_DEST, and its arguments are
1594 VEC_OPRND0 and VEC_OPRND1. The new vector stmt is to be inserted at BSI.
1595 In the case that CODE is a CALL_EXPR, this means that a call to DECL
1596 needs to be created (DECL is a function-decl of a target-builtin).
1597 STMT is the original scalar stmt that we are vectorizing. */
1598
1599 static gimple
1600 vect_gen_widened_results_half (enum tree_code code,
1601 tree decl,
1602 tree vec_oprnd0, tree vec_oprnd1, int op_type,
1603 tree vec_dest, gimple_stmt_iterator *gsi,
1604 gimple stmt)
1605 {
1606 gimple new_stmt;
1607 tree new_temp;
1608
1609 /* Generate half of the widened result: */
1610 if (code == CALL_EXPR)
1611 {
1612 /* Target specific support */
1613 if (op_type == binary_op)
1614 new_stmt = gimple_build_call (decl, 2, vec_oprnd0, vec_oprnd1);
1615 else
1616 new_stmt = gimple_build_call (decl, 1, vec_oprnd0);
1617 new_temp = make_ssa_name (vec_dest, new_stmt);
1618 gimple_call_set_lhs (new_stmt, new_temp);
1619 }
1620 else
1621 {
1622 /* Generic support */
1623 gcc_assert (op_type == TREE_CODE_LENGTH (code));
1624 if (op_type != binary_op)
1625 vec_oprnd1 = NULL;
1626 new_stmt = gimple_build_assign_with_ops (code, vec_dest, vec_oprnd0,
1627 vec_oprnd1);
1628 new_temp = make_ssa_name (vec_dest, new_stmt);
1629 gimple_assign_set_lhs (new_stmt, new_temp);
1630 }
1631 vect_finish_stmt_generation (stmt, new_stmt, gsi);
1632
1633 return new_stmt;
1634 }
1635
1636
1637 /* Check if STMT performs a conversion operation, that can be vectorized.
1638 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
1639 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
1640 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
1641
1642 static bool
1643 vectorizable_conversion (gimple stmt, gimple_stmt_iterator *gsi,
1644 gimple *vec_stmt, slp_tree slp_node)
1645 {
1646 tree vec_dest;
1647 tree scalar_dest;
1648 tree op0;
1649 tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
1650 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1651 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1652 enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK;
1653 tree decl1 = NULL_TREE, decl2 = NULL_TREE;
1654 tree new_temp;
1655 tree def;
1656 gimple def_stmt;
1657 enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
1658 gimple new_stmt = NULL;
1659 stmt_vec_info prev_stmt_info;
1660 int nunits_in;
1661 int nunits_out;
1662 tree vectype_out, vectype_in;
1663 int ncopies, j;
1664 tree rhs_type;
1665 tree builtin_decl;
1666 enum { NARROW, NONE, WIDEN } modifier;
1667 int i;
1668 VEC(tree,heap) *vec_oprnds0 = NULL;
1669 tree vop0;
1670 VEC(tree,heap) *dummy = NULL;
1671 int dummy_int;
1672
1673 /* Is STMT a vectorizable conversion? */
1674
1675 /* FORNOW: unsupported in basic block SLP. */
1676 gcc_assert (loop_vinfo);
1677
1678 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1679 return false;
1680
1681 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
1682 return false;
1683
1684 if (!is_gimple_assign (stmt))
1685 return false;
1686
1687 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
1688 return false;
1689
1690 code = gimple_assign_rhs_code (stmt);
1691 if (code != FIX_TRUNC_EXPR && code != FLOAT_EXPR)
1692 return false;
1693
1694 /* Check types of lhs and rhs. */
1695 scalar_dest = gimple_assign_lhs (stmt);
1696 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
1697
1698 op0 = gimple_assign_rhs1 (stmt);
1699 rhs_type = TREE_TYPE (op0);
1700 /* Check the operands of the operation. */
1701 if (!vect_is_simple_use_1 (op0, loop_vinfo, NULL,
1702 &def_stmt, &def, &dt[0], &vectype_in))
1703 {
1704 if (vect_print_dump_info (REPORT_DETAILS))
1705 fprintf (vect_dump, "use not simple.");
1706 return false;
1707 }
1708 /* If op0 is an external or constant defs use a vector type of
1709 the same size as the output vector type. */
1710 if (!vectype_in)
1711 vectype_in = get_same_sized_vectype (rhs_type, vectype_out);
1712 if (vec_stmt)
1713 gcc_assert (vectype_in);
1714 if (!vectype_in)
1715 {
1716 if (vect_print_dump_info (REPORT_DETAILS))
1717 {
1718 fprintf (vect_dump, "no vectype for scalar type ");
1719 print_generic_expr (vect_dump, rhs_type, TDF_SLIM);
1720 }
1721
1722 return false;
1723 }
1724
1725 /* FORNOW */
1726 nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
1727 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
1728 if (nunits_in == nunits_out / 2)
1729 modifier = NARROW;
1730 else if (nunits_out == nunits_in)
1731 modifier = NONE;
1732 else if (nunits_out == nunits_in / 2)
1733 modifier = WIDEN;
1734 else
1735 return false;
1736
1737 if (modifier == NARROW)
1738 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
1739 else
1740 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
1741
1742 /* FORNOW: SLP with multiple types is not supported. The SLP analysis verifies
1743 this, so we can safely override NCOPIES with 1 here. */
1744 if (slp_node)
1745 ncopies = 1;
1746
1747 /* Sanity check: make sure that at least one copy of the vectorized stmt
1748 needs to be generated. */
1749 gcc_assert (ncopies >= 1);
1750
1751 /* Supportable by target? */
1752 if ((modifier == NONE
1753 && !targetm.vectorize.builtin_conversion (code, vectype_out, vectype_in))
1754 || (modifier == WIDEN
1755 && !supportable_widening_operation (code, stmt,
1756 vectype_out, vectype_in,
1757 &decl1, &decl2,
1758 &code1, &code2,
1759 &dummy_int, &dummy))
1760 || (modifier == NARROW
1761 && !supportable_narrowing_operation (code, vectype_out, vectype_in,
1762 &code1, &dummy_int, &dummy)))
1763 {
1764 if (vect_print_dump_info (REPORT_DETAILS))
1765 fprintf (vect_dump, "conversion not supported by target.");
1766 return false;
1767 }
1768
1769 if (modifier != NONE)
1770 {
1771 /* FORNOW: SLP not supported. */
1772 if (STMT_SLP_TYPE (stmt_info))
1773 return false;
1774 }
1775
1776 if (!vec_stmt) /* transformation not required. */
1777 {
1778 STMT_VINFO_TYPE (stmt_info) = type_conversion_vec_info_type;
1779 return true;
1780 }
1781
1782 /** Transform. **/
1783 if (vect_print_dump_info (REPORT_DETAILS))
1784 fprintf (vect_dump, "transform conversion.");
1785
1786 /* Handle def. */
1787 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
1788
1789 if (modifier == NONE && !slp_node)
1790 vec_oprnds0 = VEC_alloc (tree, heap, 1);
1791
1792 prev_stmt_info = NULL;
1793 switch (modifier)
1794 {
1795 case NONE:
1796 for (j = 0; j < ncopies; j++)
1797 {
1798 if (j == 0)
1799 vect_get_vec_defs (op0, NULL, stmt, &vec_oprnds0, NULL, slp_node);
1800 else
1801 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, NULL);
1802
1803 builtin_decl =
1804 targetm.vectorize.builtin_conversion (code,
1805 vectype_out, vectype_in);
1806 for (i = 0; VEC_iterate (tree, vec_oprnds0, i, vop0); i++)
1807 {
1808 /* Arguments are ready. create the new vector stmt. */
1809 new_stmt = gimple_build_call (builtin_decl, 1, vop0);
1810 new_temp = make_ssa_name (vec_dest, new_stmt);
1811 gimple_call_set_lhs (new_stmt, new_temp);
1812 vect_finish_stmt_generation (stmt, new_stmt, gsi);
1813 if (slp_node)
1814 VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
1815 }
1816
1817 if (j == 0)
1818 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
1819 else
1820 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
1821 prev_stmt_info = vinfo_for_stmt (new_stmt);
1822 }
1823 break;
1824
1825 case WIDEN:
1826 /* In case the vectorization factor (VF) is bigger than the number
1827 of elements that we can fit in a vectype (nunits), we have to
1828 generate more than one vector stmt - i.e - we need to "unroll"
1829 the vector stmt by a factor VF/nunits. */
1830 for (j = 0; j < ncopies; j++)
1831 {
1832 if (j == 0)
1833 vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
1834 else
1835 vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
1836
1837 /* Generate first half of the widened result: */
1838 new_stmt
1839 = vect_gen_widened_results_half (code1, decl1,
1840 vec_oprnd0, vec_oprnd1,
1841 unary_op, vec_dest, gsi, stmt);
1842 if (j == 0)
1843 STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
1844 else
1845 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
1846 prev_stmt_info = vinfo_for_stmt (new_stmt);
1847
1848 /* Generate second half of the widened result: */
1849 new_stmt
1850 = vect_gen_widened_results_half (code2, decl2,
1851 vec_oprnd0, vec_oprnd1,
1852 unary_op, vec_dest, gsi, stmt);
1853 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
1854 prev_stmt_info = vinfo_for_stmt (new_stmt);
1855 }
1856 break;
1857
1858 case NARROW:
1859 /* In case the vectorization factor (VF) is bigger than the number
1860 of elements that we can fit in a vectype (nunits), we have to
1861 generate more than one vector stmt - i.e - we need to "unroll"
1862 the vector stmt by a factor VF/nunits. */
1863 for (j = 0; j < ncopies; j++)
1864 {
1865 /* Handle uses. */
1866 if (j == 0)
1867 {
1868 vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
1869 vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
1870 }
1871 else
1872 {
1873 vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd1);
1874 vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
1875 }
1876
1877 /* Arguments are ready. Create the new vector stmt. */
1878 new_stmt = gimple_build_assign_with_ops (code1, vec_dest, vec_oprnd0,
1879 vec_oprnd1);
1880 new_temp = make_ssa_name (vec_dest, new_stmt);
1881 gimple_assign_set_lhs (new_stmt, new_temp);
1882 vect_finish_stmt_generation (stmt, new_stmt, gsi);
1883
1884 if (j == 0)
1885 STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
1886 else
1887 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
1888
1889 prev_stmt_info = vinfo_for_stmt (new_stmt);
1890 }
1891
1892 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
1893 }
1894
1895 if (vec_oprnds0)
1896 VEC_free (tree, heap, vec_oprnds0);
1897
1898 return true;
1899 }
1900 /* Function vectorizable_assignment.
1901
1902 Check if STMT performs an assignment (copy) that can be vectorized.
1903 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
1904 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
1905 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
1906
1907 static bool
1908 vectorizable_assignment (gimple stmt, gimple_stmt_iterator *gsi,
1909 gimple *vec_stmt, slp_tree slp_node)
1910 {
1911 tree vec_dest;
1912 tree scalar_dest;
1913 tree op;
1914 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1915 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1916 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1917 tree new_temp;
1918 tree def;
1919 gimple def_stmt;
1920 enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
1921 unsigned int nunits = TYPE_VECTOR_SUBPARTS (vectype);
1922 int ncopies;
1923 int i, j;
1924 VEC(tree,heap) *vec_oprnds = NULL;
1925 tree vop;
1926 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
1927 gimple new_stmt = NULL;
1928 stmt_vec_info prev_stmt_info = NULL;
1929 enum tree_code code;
1930 tree vectype_in;
1931
1932 /* Multiple types in SLP are handled by creating the appropriate number of
1933 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
1934 case of SLP. */
1935 if (slp_node)
1936 ncopies = 1;
1937 else
1938 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
1939
1940 gcc_assert (ncopies >= 1);
1941
1942 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
1943 return false;
1944
1945 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
1946 return false;
1947
1948 /* Is vectorizable assignment? */
1949 if (!is_gimple_assign (stmt))
1950 return false;
1951
1952 scalar_dest = gimple_assign_lhs (stmt);
1953 if (TREE_CODE (scalar_dest) != SSA_NAME)
1954 return false;
1955
1956 code = gimple_assign_rhs_code (stmt);
1957 if (gimple_assign_single_p (stmt)
1958 || code == PAREN_EXPR
1959 || CONVERT_EXPR_CODE_P (code))
1960 op = gimple_assign_rhs1 (stmt);
1961 else
1962 return false;
1963
1964 if (!vect_is_simple_use_1 (op, loop_vinfo, bb_vinfo,
1965 &def_stmt, &def, &dt[0], &vectype_in))
1966 {
1967 if (vect_print_dump_info (REPORT_DETAILS))
1968 fprintf (vect_dump, "use not simple.");
1969 return false;
1970 }
1971
1972 /* We can handle NOP_EXPR conversions that do not change the number
1973 of elements or the vector size. */
1974 if (CONVERT_EXPR_CODE_P (code)
1975 && (!vectype_in
1976 || TYPE_VECTOR_SUBPARTS (vectype_in) != nunits
1977 || (GET_MODE_SIZE (TYPE_MODE (vectype))
1978 != GET_MODE_SIZE (TYPE_MODE (vectype_in)))))
1979 return false;
1980
1981 if (!vec_stmt) /* transformation not required. */
1982 {
1983 STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
1984 if (vect_print_dump_info (REPORT_DETAILS))
1985 fprintf (vect_dump, "=== vectorizable_assignment ===");
1986 vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
1987 return true;
1988 }
1989
1990 /** Transform. **/
1991 if (vect_print_dump_info (REPORT_DETAILS))
1992 fprintf (vect_dump, "transform assignment.");
1993
1994 /* Handle def. */
1995 vec_dest = vect_create_destination_var (scalar_dest, vectype);
1996
1997 /* Handle use. */
1998 for (j = 0; j < ncopies; j++)
1999 {
2000 /* Handle uses. */
2001 if (j == 0)
2002 vect_get_vec_defs (op, NULL, stmt, &vec_oprnds, NULL, slp_node);
2003 else
2004 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds, NULL);
2005
2006 /* Arguments are ready. create the new vector stmt. */
2007 for (i = 0; VEC_iterate (tree, vec_oprnds, i, vop); i++)
2008 {
2009 if (CONVERT_EXPR_CODE_P (code))
2010 vop = build1 (VIEW_CONVERT_EXPR, vectype, vop);
2011 new_stmt = gimple_build_assign (vec_dest, vop);
2012 new_temp = make_ssa_name (vec_dest, new_stmt);
2013 gimple_assign_set_lhs (new_stmt, new_temp);
2014 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2015 if (slp_node)
2016 VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
2017 }
2018
2019 if (slp_node)
2020 continue;
2021
2022 if (j == 0)
2023 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
2024 else
2025 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2026
2027 prev_stmt_info = vinfo_for_stmt (new_stmt);
2028 }
2029
2030 VEC_free (tree, heap, vec_oprnds);
2031 return true;
2032 }
2033
2034 /* Function vectorizable_operation.
2035
2036 Check if STMT performs a binary or unary operation that can be vectorized.
2037 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
2038 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
2039 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
2040
2041 static bool
2042 vectorizable_operation (gimple stmt, gimple_stmt_iterator *gsi,
2043 gimple *vec_stmt, slp_tree slp_node)
2044 {
2045 tree vec_dest;
2046 tree scalar_dest;
2047 tree op0, op1 = NULL;
2048 tree vec_oprnd1 = NULL_TREE;
2049 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2050 tree vectype;
2051 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2052 enum tree_code code;
2053 enum machine_mode vec_mode;
2054 tree new_temp;
2055 int op_type;
2056 optab optab;
2057 int icode;
2058 enum machine_mode optab_op2_mode;
2059 tree def;
2060 gimple def_stmt;
2061 enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
2062 gimple new_stmt = NULL;
2063 stmt_vec_info prev_stmt_info;
2064 int nunits_in;
2065 int nunits_out;
2066 tree vectype_out;
2067 int ncopies;
2068 int j, i;
2069 VEC(tree,heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL;
2070 tree vop0, vop1;
2071 unsigned int k;
2072 bool scalar_shift_arg = false;
2073 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2074 int vf;
2075
2076 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
2077 return false;
2078
2079 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
2080 return false;
2081
2082 /* Is STMT a vectorizable binary/unary operation? */
2083 if (!is_gimple_assign (stmt))
2084 return false;
2085
2086 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
2087 return false;
2088
2089 code = gimple_assign_rhs_code (stmt);
2090
2091 /* For pointer addition, we should use the normal plus for
2092 the vector addition. */
2093 if (code == POINTER_PLUS_EXPR)
2094 code = PLUS_EXPR;
2095
2096 /* Support only unary or binary operations. */
2097 op_type = TREE_CODE_LENGTH (code);
2098 if (op_type != unary_op && op_type != binary_op)
2099 {
2100 if (vect_print_dump_info (REPORT_DETAILS))
2101 fprintf (vect_dump, "num. args = %d (not unary/binary op).", op_type);
2102 return false;
2103 }
2104
2105 scalar_dest = gimple_assign_lhs (stmt);
2106 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
2107
2108 op0 = gimple_assign_rhs1 (stmt);
2109 if (!vect_is_simple_use_1 (op0, loop_vinfo, bb_vinfo,
2110 &def_stmt, &def, &dt[0], &vectype))
2111 {
2112 if (vect_print_dump_info (REPORT_DETAILS))
2113 fprintf (vect_dump, "use not simple.");
2114 return false;
2115 }
2116 /* If op0 is an external or constant def use a vector type with
2117 the same size as the output vector type. */
2118 if (!vectype)
2119 vectype = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
2120 if (vec_stmt)
2121 gcc_assert (vectype);
2122 if (!vectype)
2123 {
2124 if (vect_print_dump_info (REPORT_DETAILS))
2125 {
2126 fprintf (vect_dump, "no vectype for scalar type ");
2127 print_generic_expr (vect_dump, TREE_TYPE (op0), TDF_SLIM);
2128 }
2129
2130 return false;
2131 }
2132
2133 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
2134 nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
2135 if (nunits_out != nunits_in)
2136 return false;
2137
2138 if (op_type == binary_op)
2139 {
2140 op1 = gimple_assign_rhs2 (stmt);
2141 if (!vect_is_simple_use (op1, loop_vinfo, bb_vinfo, &def_stmt, &def,
2142 &dt[1]))
2143 {
2144 if (vect_print_dump_info (REPORT_DETAILS))
2145 fprintf (vect_dump, "use not simple.");
2146 return false;
2147 }
2148 }
2149
2150 if (loop_vinfo)
2151 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
2152 else
2153 vf = 1;
2154
2155 /* Multiple types in SLP are handled by creating the appropriate number of
2156 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
2157 case of SLP. */
2158 if (slp_node)
2159 ncopies = 1;
2160 else
2161 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
2162
2163 gcc_assert (ncopies >= 1);
2164
2165 /* If this is a shift/rotate, determine whether the shift amount is a vector,
2166 or scalar. If the shift/rotate amount is a vector, use the vector/vector
2167 shift optabs. */
2168 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR
2169 || code == RROTATE_EXPR)
2170 {
2171 /* vector shifted by vector */
2172 if (dt[1] == vect_internal_def)
2173 {
2174 optab = optab_for_tree_code (code, vectype, optab_vector);
2175 if (vect_print_dump_info (REPORT_DETAILS))
2176 fprintf (vect_dump, "vector/vector shift/rotate found.");
2177 }
2178
2179 /* See if the machine has a vector shifted by scalar insn and if not
2180 then see if it has a vector shifted by vector insn */
2181 else if (dt[1] == vect_constant_def || dt[1] == vect_external_def)
2182 {
2183 optab = optab_for_tree_code (code, vectype, optab_scalar);
2184 if (optab
2185 && optab_handler (optab, TYPE_MODE (vectype)) != CODE_FOR_nothing)
2186 {
2187 scalar_shift_arg = true;
2188 if (vect_print_dump_info (REPORT_DETAILS))
2189 fprintf (vect_dump, "vector/scalar shift/rotate found.");
2190 }
2191 else
2192 {
2193 optab = optab_for_tree_code (code, vectype, optab_vector);
2194 if (optab
2195 && (optab_handler (optab, TYPE_MODE (vectype))
2196 != CODE_FOR_nothing))
2197 {
2198 if (vect_print_dump_info (REPORT_DETAILS))
2199 fprintf (vect_dump, "vector/vector shift/rotate found.");
2200
2201 /* Unlike the other binary operators, shifts/rotates have
2202 the rhs being int, instead of the same type as the lhs,
2203 so make sure the scalar is the right type if we are
2204 dealing with vectors of short/char. */
2205 if (dt[1] == vect_constant_def)
2206 op1 = fold_convert (TREE_TYPE (vectype), op1);
2207 }
2208 }
2209 }
2210
2211 else
2212 {
2213 if (vect_print_dump_info (REPORT_DETAILS))
2214 fprintf (vect_dump, "operand mode requires invariant argument.");
2215 return false;
2216 }
2217 }
2218 else
2219 optab = optab_for_tree_code (code, vectype, optab_default);
2220
2221 /* Supportable by target? */
2222 if (!optab)
2223 {
2224 if (vect_print_dump_info (REPORT_DETAILS))
2225 fprintf (vect_dump, "no optab.");
2226 return false;
2227 }
2228 vec_mode = TYPE_MODE (vectype);
2229 icode = (int) optab_handler (optab, vec_mode);
2230 if (icode == CODE_FOR_nothing)
2231 {
2232 if (vect_print_dump_info (REPORT_DETAILS))
2233 fprintf (vect_dump, "op not supported by target.");
2234 /* Check only during analysis. */
2235 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
2236 || (vf < vect_min_worthwhile_factor (code)
2237 && !vec_stmt))
2238 return false;
2239 if (vect_print_dump_info (REPORT_DETAILS))
2240 fprintf (vect_dump, "proceeding using word mode.");
2241 }
2242
2243 /* Worthwhile without SIMD support? Check only during analysis. */
2244 if (!VECTOR_MODE_P (TYPE_MODE (vectype))
2245 && vf < vect_min_worthwhile_factor (code)
2246 && !vec_stmt)
2247 {
2248 if (vect_print_dump_info (REPORT_DETAILS))
2249 fprintf (vect_dump, "not worthwhile without SIMD support.");
2250 return false;
2251 }
2252
2253 if (!vec_stmt) /* transformation not required. */
2254 {
2255 STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
2256 if (vect_print_dump_info (REPORT_DETAILS))
2257 fprintf (vect_dump, "=== vectorizable_operation ===");
2258 vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
2259 return true;
2260 }
2261
2262 /** Transform. **/
2263
2264 if (vect_print_dump_info (REPORT_DETAILS))
2265 fprintf (vect_dump, "transform binary/unary operation.");
2266
2267 /* Handle def. */
2268 vec_dest = vect_create_destination_var (scalar_dest, vectype);
2269
2270 /* Allocate VECs for vector operands. In case of SLP, vector operands are
2271 created in the previous stages of the recursion, so no allocation is
2272 needed, except for the case of shift with scalar shift argument. In that
2273 case we store the scalar operand in VEC_OPRNDS1 for every vector stmt to
2274 be created to vectorize the SLP group, i.e., SLP_NODE->VEC_STMTS_SIZE.
2275 In case of loop-based vectorization we allocate VECs of size 1. We
2276 allocate VEC_OPRNDS1 only in case of binary operation. */
2277 if (!slp_node)
2278 {
2279 vec_oprnds0 = VEC_alloc (tree, heap, 1);
2280 if (op_type == binary_op)
2281 vec_oprnds1 = VEC_alloc (tree, heap, 1);
2282 }
2283 else if (scalar_shift_arg)
2284 vec_oprnds1 = VEC_alloc (tree, heap, slp_node->vec_stmts_size);
2285
2286 /* In case the vectorization factor (VF) is bigger than the number
2287 of elements that we can fit in a vectype (nunits), we have to generate
2288 more than one vector stmt - i.e - we need to "unroll" the
2289 vector stmt by a factor VF/nunits. In doing so, we record a pointer
2290 from one copy of the vector stmt to the next, in the field
2291 STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
2292 stages to find the correct vector defs to be used when vectorizing
2293 stmts that use the defs of the current stmt. The example below illustrates
2294 the vectorization process when VF=16 and nunits=4 (i.e - we need to create
2295 4 vectorized stmts):
2296
2297 before vectorization:
2298 RELATED_STMT VEC_STMT
2299 S1: x = memref - -
2300 S2: z = x + 1 - -
2301
2302 step 1: vectorize stmt S1 (done in vectorizable_load. See more details
2303 there):
2304 RELATED_STMT VEC_STMT
2305 VS1_0: vx0 = memref0 VS1_1 -
2306 VS1_1: vx1 = memref1 VS1_2 -
2307 VS1_2: vx2 = memref2 VS1_3 -
2308 VS1_3: vx3 = memref3 - -
2309 S1: x = load - VS1_0
2310 S2: z = x + 1 - -
2311
2312 step2: vectorize stmt S2 (done here):
2313 To vectorize stmt S2 we first need to find the relevant vector
2314 def for the first operand 'x'. This is, as usual, obtained from
2315 the vector stmt recorded in the STMT_VINFO_VEC_STMT of the stmt
2316 that defines 'x' (S1). This way we find the stmt VS1_0, and the
2317 relevant vector def 'vx0'. Having found 'vx0' we can generate
2318 the vector stmt VS2_0, and as usual, record it in the
2319 STMT_VINFO_VEC_STMT of stmt S2.
2320 When creating the second copy (VS2_1), we obtain the relevant vector
2321 def from the vector stmt recorded in the STMT_VINFO_RELATED_STMT of
2322 stmt VS1_0. This way we find the stmt VS1_1 and the relevant
2323 vector def 'vx1'. Using 'vx1' we create stmt VS2_1 and record a
2324 pointer to it in the STMT_VINFO_RELATED_STMT of the vector stmt VS2_0.
2325 Similarly when creating stmts VS2_2 and VS2_3. This is the resulting
2326 chain of stmts and pointers:
2327 RELATED_STMT VEC_STMT
2328 VS1_0: vx0 = memref0 VS1_1 -
2329 VS1_1: vx1 = memref1 VS1_2 -
2330 VS1_2: vx2 = memref2 VS1_3 -
2331 VS1_3: vx3 = memref3 - -
2332 S1: x = load - VS1_0
2333 VS2_0: vz0 = vx0 + v1 VS2_1 -
2334 VS2_1: vz1 = vx1 + v1 VS2_2 -
2335 VS2_2: vz2 = vx2 + v1 VS2_3 -
2336 VS2_3: vz3 = vx3 + v1 - -
2337 S2: z = x + 1 - VS2_0 */
2338
2339 prev_stmt_info = NULL;
2340 for (j = 0; j < ncopies; j++)
2341 {
2342 /* Handle uses. */
2343 if (j == 0)
2344 {
2345 if (op_type == binary_op && scalar_shift_arg)
2346 {
2347 /* Vector shl and shr insn patterns can be defined with scalar
2348 operand 2 (shift operand). In this case, use constant or loop
2349 invariant op1 directly, without extending it to vector mode
2350 first. */
2351 optab_op2_mode = insn_data[icode].operand[2].mode;
2352 if (!VECTOR_MODE_P (optab_op2_mode))
2353 {
2354 if (vect_print_dump_info (REPORT_DETAILS))
2355 fprintf (vect_dump, "operand 1 using scalar mode.");
2356 vec_oprnd1 = op1;
2357 VEC_quick_push (tree, vec_oprnds1, vec_oprnd1);
2358 if (slp_node)
2359 {
2360 /* Store vec_oprnd1 for every vector stmt to be created
2361 for SLP_NODE. We check during the analysis that all the
2362 shift arguments are the same.
2363 TODO: Allow different constants for different vector
2364 stmts generated for an SLP instance. */
2365 for (k = 0; k < slp_node->vec_stmts_size - 1; k++)
2366 VEC_quick_push (tree, vec_oprnds1, vec_oprnd1);
2367 }
2368 }
2369 }
2370
2371 /* vec_oprnd1 is available if operand 1 should be of a scalar-type
2372 (a special case for certain kind of vector shifts); otherwise,
2373 operand 1 should be of a vector type (the usual case). */
2374 if (op_type == binary_op && !vec_oprnd1)
2375 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
2376 slp_node);
2377 else
2378 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
2379 slp_node);
2380 }
2381 else
2382 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1);
2383
2384 /* Arguments are ready. Create the new vector stmt. */
2385 for (i = 0; VEC_iterate (tree, vec_oprnds0, i, vop0); i++)
2386 {
2387 vop1 = ((op_type == binary_op)
2388 ? VEC_index (tree, vec_oprnds1, i) : NULL);
2389 new_stmt = gimple_build_assign_with_ops (code, vec_dest, vop0, vop1);
2390 new_temp = make_ssa_name (vec_dest, new_stmt);
2391 gimple_assign_set_lhs (new_stmt, new_temp);
2392 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2393 if (slp_node)
2394 VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
2395 }
2396
2397 if (slp_node)
2398 continue;
2399
2400 if (j == 0)
2401 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
2402 else
2403 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2404 prev_stmt_info = vinfo_for_stmt (new_stmt);
2405 }
2406
2407 VEC_free (tree, heap, vec_oprnds0);
2408 if (vec_oprnds1)
2409 VEC_free (tree, heap, vec_oprnds1);
2410
2411 return true;
2412 }
2413
2414
2415 /* Get vectorized definitions for loop-based vectorization. For the first
2416 operand we call vect_get_vec_def_for_operand() (with OPRND containing
2417 scalar operand), and for the rest we get a copy with
2418 vect_get_vec_def_for_stmt_copy() using the previous vector definition
2419 (stored in OPRND). See vect_get_vec_def_for_stmt_copy() for details.
2420 The vectors are collected into VEC_OPRNDS. */
2421
2422 static void
2423 vect_get_loop_based_defs (tree *oprnd, gimple stmt, enum vect_def_type dt,
2424 VEC (tree, heap) **vec_oprnds, int multi_step_cvt)
2425 {
2426 tree vec_oprnd;
2427
2428 /* Get first vector operand. */
2429 /* All the vector operands except the very first one (that is scalar oprnd)
2430 are stmt copies. */
2431 if (TREE_CODE (TREE_TYPE (*oprnd)) != VECTOR_TYPE)
2432 vec_oprnd = vect_get_vec_def_for_operand (*oprnd, stmt, NULL);
2433 else
2434 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, *oprnd);
2435
2436 VEC_quick_push (tree, *vec_oprnds, vec_oprnd);
2437
2438 /* Get second vector operand. */
2439 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, vec_oprnd);
2440 VEC_quick_push (tree, *vec_oprnds, vec_oprnd);
2441
2442 *oprnd = vec_oprnd;
2443
2444 /* For conversion in multiple steps, continue to get operands
2445 recursively. */
2446 if (multi_step_cvt)
2447 vect_get_loop_based_defs (oprnd, stmt, dt, vec_oprnds, multi_step_cvt - 1);
2448 }
2449
2450
2451 /* Create vectorized demotion statements for vector operands from VEC_OPRNDS.
2452 For multi-step conversions store the resulting vectors and call the function
2453 recursively. */
2454
2455 static void
2456 vect_create_vectorized_demotion_stmts (VEC (tree, heap) **vec_oprnds,
2457 int multi_step_cvt, gimple stmt,
2458 VEC (tree, heap) *vec_dsts,
2459 gimple_stmt_iterator *gsi,
2460 slp_tree slp_node, enum tree_code code,
2461 stmt_vec_info *prev_stmt_info)
2462 {
2463 unsigned int i;
2464 tree vop0, vop1, new_tmp, vec_dest;
2465 gimple new_stmt;
2466 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2467
2468 vec_dest = VEC_pop (tree, vec_dsts);
2469
2470 for (i = 0; i < VEC_length (tree, *vec_oprnds); i += 2)
2471 {
2472 /* Create demotion operation. */
2473 vop0 = VEC_index (tree, *vec_oprnds, i);
2474 vop1 = VEC_index (tree, *vec_oprnds, i + 1);
2475 new_stmt = gimple_build_assign_with_ops (code, vec_dest, vop0, vop1);
2476 new_tmp = make_ssa_name (vec_dest, new_stmt);
2477 gimple_assign_set_lhs (new_stmt, new_tmp);
2478 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2479
2480 if (multi_step_cvt)
2481 /* Store the resulting vector for next recursive call. */
2482 VEC_replace (tree, *vec_oprnds, i/2, new_tmp);
2483 else
2484 {
2485 /* This is the last step of the conversion sequence. Store the
2486 vectors in SLP_NODE or in vector info of the scalar statement
2487 (or in STMT_VINFO_RELATED_STMT chain). */
2488 if (slp_node)
2489 VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
2490 else
2491 {
2492 if (!*prev_stmt_info)
2493 STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
2494 else
2495 STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt;
2496
2497 *prev_stmt_info = vinfo_for_stmt (new_stmt);
2498 }
2499 }
2500 }
2501
2502 /* For multi-step demotion operations we first generate demotion operations
2503 from the source type to the intermediate types, and then combine the
2504 results (stored in VEC_OPRNDS) in demotion operation to the destination
2505 type. */
2506 if (multi_step_cvt)
2507 {
2508 /* At each level of recursion we have have of the operands we had at the
2509 previous level. */
2510 VEC_truncate (tree, *vec_oprnds, (i+1)/2);
2511 vect_create_vectorized_demotion_stmts (vec_oprnds, multi_step_cvt - 1,
2512 stmt, vec_dsts, gsi, slp_node,
2513 code, prev_stmt_info);
2514 }
2515 }
2516
2517
2518 /* Function vectorizable_type_demotion
2519
2520 Check if STMT performs a binary or unary operation that involves
2521 type demotion, and if it can be vectorized.
2522 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
2523 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
2524 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
2525
2526 static bool
2527 vectorizable_type_demotion (gimple stmt, gimple_stmt_iterator *gsi,
2528 gimple *vec_stmt, slp_tree slp_node)
2529 {
2530 tree vec_dest;
2531 tree scalar_dest;
2532 tree op0;
2533 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2534 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2535 enum tree_code code, code1 = ERROR_MARK;
2536 tree def;
2537 gimple def_stmt;
2538 enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
2539 stmt_vec_info prev_stmt_info;
2540 int nunits_in;
2541 int nunits_out;
2542 tree vectype_out;
2543 int ncopies;
2544 int j, i;
2545 tree vectype_in;
2546 int multi_step_cvt = 0;
2547 VEC (tree, heap) *vec_oprnds0 = NULL;
2548 VEC (tree, heap) *vec_dsts = NULL, *interm_types = NULL, *tmp_vec_dsts = NULL;
2549 tree last_oprnd, intermediate_type;
2550
2551 /* FORNOW: not supported by basic block SLP vectorization. */
2552 gcc_assert (loop_vinfo);
2553
2554 if (!STMT_VINFO_RELEVANT_P (stmt_info))
2555 return false;
2556
2557 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
2558 return false;
2559
2560 /* Is STMT a vectorizable type-demotion operation? */
2561 if (!is_gimple_assign (stmt))
2562 return false;
2563
2564 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
2565 return false;
2566
2567 code = gimple_assign_rhs_code (stmt);
2568 if (!CONVERT_EXPR_CODE_P (code))
2569 return false;
2570
2571 scalar_dest = gimple_assign_lhs (stmt);
2572 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
2573
2574 /* Check the operands of the operation. */
2575 op0 = gimple_assign_rhs1 (stmt);
2576 if (! ((INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
2577 && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
2578 || (SCALAR_FLOAT_TYPE_P (TREE_TYPE (scalar_dest))
2579 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (op0))
2580 && CONVERT_EXPR_CODE_P (code))))
2581 return false;
2582 if (!vect_is_simple_use_1 (op0, loop_vinfo, NULL,
2583 &def_stmt, &def, &dt[0], &vectype_in))
2584 {
2585 if (vect_print_dump_info (REPORT_DETAILS))
2586 fprintf (vect_dump, "use not simple.");
2587 return false;
2588 }
2589 /* If op0 is an external def use a vector type with the
2590 same size as the output vector type if possible. */
2591 if (!vectype_in)
2592 vectype_in = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
2593 if (vec_stmt)
2594 gcc_assert (vectype_in);
2595 if (!vectype_in)
2596 {
2597 if (vect_print_dump_info (REPORT_DETAILS))
2598 {
2599 fprintf (vect_dump, "no vectype for scalar type ");
2600 print_generic_expr (vect_dump, TREE_TYPE (op0), TDF_SLIM);
2601 }
2602
2603 return false;
2604 }
2605
2606 nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
2607 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
2608 if (nunits_in >= nunits_out)
2609 return false;
2610
2611 /* Multiple types in SLP are handled by creating the appropriate number of
2612 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
2613 case of SLP. */
2614 if (slp_node)
2615 ncopies = 1;
2616 else
2617 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
2618 gcc_assert (ncopies >= 1);
2619
2620 /* Supportable by target? */
2621 if (!supportable_narrowing_operation (code, vectype_out, vectype_in,
2622 &code1, &multi_step_cvt, &interm_types))
2623 return false;
2624
2625 if (!vec_stmt) /* transformation not required. */
2626 {
2627 STMT_VINFO_TYPE (stmt_info) = type_demotion_vec_info_type;
2628 if (vect_print_dump_info (REPORT_DETAILS))
2629 fprintf (vect_dump, "=== vectorizable_demotion ===");
2630 vect_model_simple_cost (stmt_info, ncopies, dt, NULL);
2631 return true;
2632 }
2633
2634 /** Transform. **/
2635 if (vect_print_dump_info (REPORT_DETAILS))
2636 fprintf (vect_dump, "transform type demotion operation. ncopies = %d.",
2637 ncopies);
2638
2639 /* In case of multi-step demotion, we first generate demotion operations to
2640 the intermediate types, and then from that types to the final one.
2641 We create vector destinations for the intermediate type (TYPES) received
2642 from supportable_narrowing_operation, and store them in the correct order
2643 for future use in vect_create_vectorized_demotion_stmts(). */
2644 if (multi_step_cvt)
2645 vec_dsts = VEC_alloc (tree, heap, multi_step_cvt + 1);
2646 else
2647 vec_dsts = VEC_alloc (tree, heap, 1);
2648
2649 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
2650 VEC_quick_push (tree, vec_dsts, vec_dest);
2651
2652 if (multi_step_cvt)
2653 {
2654 for (i = VEC_length (tree, interm_types) - 1;
2655 VEC_iterate (tree, interm_types, i, intermediate_type); i--)
2656 {
2657 vec_dest = vect_create_destination_var (scalar_dest,
2658 intermediate_type);
2659 VEC_quick_push (tree, vec_dsts, vec_dest);
2660 }
2661 }
2662
2663 /* In case the vectorization factor (VF) is bigger than the number
2664 of elements that we can fit in a vectype (nunits), we have to generate
2665 more than one vector stmt - i.e - we need to "unroll" the
2666 vector stmt by a factor VF/nunits. */
2667 last_oprnd = op0;
2668 prev_stmt_info = NULL;
2669 for (j = 0; j < ncopies; j++)
2670 {
2671 /* Handle uses. */
2672 if (slp_node)
2673 vect_get_slp_defs (slp_node, &vec_oprnds0, NULL, -1);
2674 else
2675 {
2676 VEC_free (tree, heap, vec_oprnds0);
2677 vec_oprnds0 = VEC_alloc (tree, heap,
2678 (multi_step_cvt ? vect_pow2 (multi_step_cvt) * 2 : 2));
2679 vect_get_loop_based_defs (&last_oprnd, stmt, dt[0], &vec_oprnds0,
2680 vect_pow2 (multi_step_cvt) - 1);
2681 }
2682
2683 /* Arguments are ready. Create the new vector stmts. */
2684 tmp_vec_dsts = VEC_copy (tree, heap, vec_dsts);
2685 vect_create_vectorized_demotion_stmts (&vec_oprnds0,
2686 multi_step_cvt, stmt, tmp_vec_dsts,
2687 gsi, slp_node, code1,
2688 &prev_stmt_info);
2689 }
2690
2691 VEC_free (tree, heap, vec_oprnds0);
2692 VEC_free (tree, heap, vec_dsts);
2693 VEC_free (tree, heap, tmp_vec_dsts);
2694 VEC_free (tree, heap, interm_types);
2695
2696 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
2697 return true;
2698 }
2699
2700
2701 /* Create vectorized promotion statements for vector operands from VEC_OPRNDS0
2702 and VEC_OPRNDS1 (for binary operations). For multi-step conversions store
2703 the resulting vectors and call the function recursively. */
2704
2705 static void
2706 vect_create_vectorized_promotion_stmts (VEC (tree, heap) **vec_oprnds0,
2707 VEC (tree, heap) **vec_oprnds1,
2708 int multi_step_cvt, gimple stmt,
2709 VEC (tree, heap) *vec_dsts,
2710 gimple_stmt_iterator *gsi,
2711 slp_tree slp_node, enum tree_code code1,
2712 enum tree_code code2, tree decl1,
2713 tree decl2, int op_type,
2714 stmt_vec_info *prev_stmt_info)
2715 {
2716 int i;
2717 tree vop0, vop1, new_tmp1, new_tmp2, vec_dest;
2718 gimple new_stmt1, new_stmt2;
2719 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2720 VEC (tree, heap) *vec_tmp;
2721
2722 vec_dest = VEC_pop (tree, vec_dsts);
2723 vec_tmp = VEC_alloc (tree, heap, VEC_length (tree, *vec_oprnds0) * 2);
2724
2725 for (i = 0; VEC_iterate (tree, *vec_oprnds0, i, vop0); i++)
2726 {
2727 if (op_type == binary_op)
2728 vop1 = VEC_index (tree, *vec_oprnds1, i);
2729 else
2730 vop1 = NULL_TREE;
2731
2732 /* Generate the two halves of promotion operation. */
2733 new_stmt1 = vect_gen_widened_results_half (code1, decl1, vop0, vop1,
2734 op_type, vec_dest, gsi, stmt);
2735 new_stmt2 = vect_gen_widened_results_half (code2, decl2, vop0, vop1,
2736 op_type, vec_dest, gsi, stmt);
2737 if (is_gimple_call (new_stmt1))
2738 {
2739 new_tmp1 = gimple_call_lhs (new_stmt1);
2740 new_tmp2 = gimple_call_lhs (new_stmt2);
2741 }
2742 else
2743 {
2744 new_tmp1 = gimple_assign_lhs (new_stmt1);
2745 new_tmp2 = gimple_assign_lhs (new_stmt2);
2746 }
2747
2748 if (multi_step_cvt)
2749 {
2750 /* Store the results for the recursive call. */
2751 VEC_quick_push (tree, vec_tmp, new_tmp1);
2752 VEC_quick_push (tree, vec_tmp, new_tmp2);
2753 }
2754 else
2755 {
2756 /* Last step of promotion sequience - store the results. */
2757 if (slp_node)
2758 {
2759 VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt1);
2760 VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt2);
2761 }
2762 else
2763 {
2764 if (!*prev_stmt_info)
2765 STMT_VINFO_VEC_STMT (stmt_info) = new_stmt1;
2766 else
2767 STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt1;
2768
2769 *prev_stmt_info = vinfo_for_stmt (new_stmt1);
2770 STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt2;
2771 *prev_stmt_info = vinfo_for_stmt (new_stmt2);
2772 }
2773 }
2774 }
2775
2776 if (multi_step_cvt)
2777 {
2778 /* For multi-step promotion operation we first generate we call the
2779 function recurcively for every stage. We start from the input type,
2780 create promotion operations to the intermediate types, and then
2781 create promotions to the output type. */
2782 *vec_oprnds0 = VEC_copy (tree, heap, vec_tmp);
2783 VEC_free (tree, heap, vec_tmp);
2784 vect_create_vectorized_promotion_stmts (vec_oprnds0, vec_oprnds1,
2785 multi_step_cvt - 1, stmt,
2786 vec_dsts, gsi, slp_node, code1,
2787 code2, decl2, decl2, op_type,
2788 prev_stmt_info);
2789 }
2790 }
2791
2792
2793 /* Function vectorizable_type_promotion
2794
2795 Check if STMT performs a binary or unary operation that involves
2796 type promotion, and if it can be vectorized.
2797 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
2798 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
2799 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
2800
2801 static bool
2802 vectorizable_type_promotion (gimple stmt, gimple_stmt_iterator *gsi,
2803 gimple *vec_stmt, slp_tree slp_node)
2804 {
2805 tree vec_dest;
2806 tree scalar_dest;
2807 tree op0, op1 = NULL;
2808 tree vec_oprnd0=NULL, vec_oprnd1=NULL;
2809 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2810 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2811 enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK;
2812 tree decl1 = NULL_TREE, decl2 = NULL_TREE;
2813 int op_type;
2814 tree def;
2815 gimple def_stmt;
2816 enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
2817 stmt_vec_info prev_stmt_info;
2818 int nunits_in;
2819 int nunits_out;
2820 tree vectype_out;
2821 int ncopies;
2822 int j, i;
2823 tree vectype_in;
2824 tree intermediate_type = NULL_TREE;
2825 int multi_step_cvt = 0;
2826 VEC (tree, heap) *vec_oprnds0 = NULL, *vec_oprnds1 = NULL;
2827 VEC (tree, heap) *vec_dsts = NULL, *interm_types = NULL, *tmp_vec_dsts = NULL;
2828
2829 /* FORNOW: not supported by basic block SLP vectorization. */
2830 gcc_assert (loop_vinfo);
2831
2832 if (!STMT_VINFO_RELEVANT_P (stmt_info))
2833 return false;
2834
2835 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
2836 return false;
2837
2838 /* Is STMT a vectorizable type-promotion operation? */
2839 if (!is_gimple_assign (stmt))
2840 return false;
2841
2842 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
2843 return false;
2844
2845 code = gimple_assign_rhs_code (stmt);
2846 if (!CONVERT_EXPR_CODE_P (code)
2847 && code != WIDEN_MULT_EXPR)
2848 return false;
2849
2850 scalar_dest = gimple_assign_lhs (stmt);
2851 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
2852
2853 /* Check the operands of the operation. */
2854 op0 = gimple_assign_rhs1 (stmt);
2855 if (! ((INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
2856 && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
2857 || (SCALAR_FLOAT_TYPE_P (TREE_TYPE (scalar_dest))
2858 && SCALAR_FLOAT_TYPE_P (TREE_TYPE (op0))
2859 && CONVERT_EXPR_CODE_P (code))))
2860 return false;
2861 if (!vect_is_simple_use_1 (op0, loop_vinfo, NULL,
2862 &def_stmt, &def, &dt[0], &vectype_in))
2863 {
2864 if (vect_print_dump_info (REPORT_DETAILS))
2865 fprintf (vect_dump, "use not simple.");
2866 return false;
2867 }
2868 /* If op0 is an external or constant def use a vector type with
2869 the same size as the output vector type. */
2870 if (!vectype_in)
2871 vectype_in = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
2872 if (vec_stmt)
2873 gcc_assert (vectype_in);
2874 if (!vectype_in)
2875 {
2876 if (vect_print_dump_info (REPORT_DETAILS))
2877 {
2878 fprintf (vect_dump, "no vectype for scalar type ");
2879 print_generic_expr (vect_dump, TREE_TYPE (op0), TDF_SLIM);
2880 }
2881
2882 return false;
2883 }
2884
2885 nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
2886 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
2887 if (nunits_in <= nunits_out)
2888 return false;
2889
2890 /* Multiple types in SLP are handled by creating the appropriate number of
2891 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
2892 case of SLP. */
2893 if (slp_node)
2894 ncopies = 1;
2895 else
2896 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
2897
2898 gcc_assert (ncopies >= 1);
2899
2900 op_type = TREE_CODE_LENGTH (code);
2901 if (op_type == binary_op)
2902 {
2903 op1 = gimple_assign_rhs2 (stmt);
2904 if (!vect_is_simple_use (op1, loop_vinfo, NULL, &def_stmt, &def, &dt[1]))
2905 {
2906 if (vect_print_dump_info (REPORT_DETAILS))
2907 fprintf (vect_dump, "use not simple.");
2908 return false;
2909 }
2910 }
2911
2912 /* Supportable by target? */
2913 if (!supportable_widening_operation (code, stmt, vectype_out, vectype_in,
2914 &decl1, &decl2, &code1, &code2,
2915 &multi_step_cvt, &interm_types))
2916 return false;
2917
2918 /* Binary widening operation can only be supported directly by the
2919 architecture. */
2920 gcc_assert (!(multi_step_cvt && op_type == binary_op));
2921
2922 if (!vec_stmt) /* transformation not required. */
2923 {
2924 STMT_VINFO_TYPE (stmt_info) = type_promotion_vec_info_type;
2925 if (vect_print_dump_info (REPORT_DETAILS))
2926 fprintf (vect_dump, "=== vectorizable_promotion ===");
2927 vect_model_simple_cost (stmt_info, 2*ncopies, dt, NULL);
2928 return true;
2929 }
2930
2931 /** Transform. **/
2932
2933 if (vect_print_dump_info (REPORT_DETAILS))
2934 fprintf (vect_dump, "transform type promotion operation. ncopies = %d.",
2935 ncopies);
2936
2937 /* Handle def. */
2938 /* In case of multi-step promotion, we first generate promotion operations
2939 to the intermediate types, and then from that types to the final one.
2940 We store vector destination in VEC_DSTS in the correct order for
2941 recursive creation of promotion operations in
2942 vect_create_vectorized_promotion_stmts(). Vector destinations are created
2943 according to TYPES recieved from supportable_widening_operation(). */
2944 if (multi_step_cvt)
2945 vec_dsts = VEC_alloc (tree, heap, multi_step_cvt + 1);
2946 else
2947 vec_dsts = VEC_alloc (tree, heap, 1);
2948
2949 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
2950 VEC_quick_push (tree, vec_dsts, vec_dest);
2951
2952 if (multi_step_cvt)
2953 {
2954 for (i = VEC_length (tree, interm_types) - 1;
2955 VEC_iterate (tree, interm_types, i, intermediate_type); i--)
2956 {
2957 vec_dest = vect_create_destination_var (scalar_dest,
2958 intermediate_type);
2959 VEC_quick_push (tree, vec_dsts, vec_dest);
2960 }
2961 }
2962
2963 if (!slp_node)
2964 {
2965 vec_oprnds0 = VEC_alloc (tree, heap,
2966 (multi_step_cvt ? vect_pow2 (multi_step_cvt) : 1));
2967 if (op_type == binary_op)
2968 vec_oprnds1 = VEC_alloc (tree, heap, 1);
2969 }
2970
2971 /* In case the vectorization factor (VF) is bigger than the number
2972 of elements that we can fit in a vectype (nunits), we have to generate
2973 more than one vector stmt - i.e - we need to "unroll" the
2974 vector stmt by a factor VF/nunits. */
2975
2976 prev_stmt_info = NULL;
2977 for (j = 0; j < ncopies; j++)
2978 {
2979 /* Handle uses. */
2980 if (j == 0)
2981 {
2982 if (slp_node)
2983 vect_get_slp_defs (slp_node, &vec_oprnds0, &vec_oprnds1, -1);
2984 else
2985 {
2986 vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
2987 VEC_quick_push (tree, vec_oprnds0, vec_oprnd0);
2988 if (op_type == binary_op)
2989 {
2990 vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt, NULL);
2991 VEC_quick_push (tree, vec_oprnds1, vec_oprnd1);
2992 }
2993 }
2994 }
2995 else
2996 {
2997 vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
2998 VEC_replace (tree, vec_oprnds0, 0, vec_oprnd0);
2999 if (op_type == binary_op)
3000 {
3001 vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd1);
3002 VEC_replace (tree, vec_oprnds1, 0, vec_oprnd1);
3003 }
3004 }
3005
3006 /* Arguments are ready. Create the new vector stmts. */
3007 tmp_vec_dsts = VEC_copy (tree, heap, vec_dsts);
3008 vect_create_vectorized_promotion_stmts (&vec_oprnds0, &vec_oprnds1,
3009 multi_step_cvt, stmt,
3010 tmp_vec_dsts,
3011 gsi, slp_node, code1, code2,
3012 decl1, decl2, op_type,
3013 &prev_stmt_info);
3014 }
3015
3016 VEC_free (tree, heap, vec_dsts);
3017 VEC_free (tree, heap, tmp_vec_dsts);
3018 VEC_free (tree, heap, interm_types);
3019 VEC_free (tree, heap, vec_oprnds0);
3020 VEC_free (tree, heap, vec_oprnds1);
3021
3022 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
3023 return true;
3024 }
3025
3026
3027 /* Function vectorizable_store.
3028
3029 Check if STMT defines a non scalar data-ref (array/pointer/structure) that
3030 can be vectorized.
3031 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
3032 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
3033 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
3034
3035 static bool
3036 vectorizable_store (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
3037 slp_tree slp_node)
3038 {
3039 tree scalar_dest;
3040 tree data_ref;
3041 tree op;
3042 tree vec_oprnd = NULL_TREE;
3043 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3044 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr = NULL;
3045 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3046 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3047 struct loop *loop = NULL;
3048 enum machine_mode vec_mode;
3049 tree dummy;
3050 enum dr_alignment_support alignment_support_scheme;
3051 tree def;
3052 gimple def_stmt;
3053 enum vect_def_type dt;
3054 stmt_vec_info prev_stmt_info = NULL;
3055 tree dataref_ptr = NULL_TREE;
3056 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
3057 int ncopies;
3058 int j;
3059 gimple next_stmt, first_stmt = NULL;
3060 bool strided_store = false;
3061 unsigned int group_size, i;
3062 VEC(tree,heap) *dr_chain = NULL, *oprnds = NULL, *result_chain = NULL;
3063 bool inv_p;
3064 VEC(tree,heap) *vec_oprnds = NULL;
3065 bool slp = (slp_node != NULL);
3066 unsigned int vec_num;
3067 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
3068
3069 if (loop_vinfo)
3070 loop = LOOP_VINFO_LOOP (loop_vinfo);
3071
3072 /* Multiple types in SLP are handled by creating the appropriate number of
3073 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
3074 case of SLP. */
3075 if (slp)
3076 ncopies = 1;
3077 else
3078 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
3079
3080 gcc_assert (ncopies >= 1);
3081
3082 /* FORNOW. This restriction should be relaxed. */
3083 if (loop && nested_in_vect_loop_p (loop, stmt) && ncopies > 1)
3084 {
3085 if (vect_print_dump_info (REPORT_DETAILS))
3086 fprintf (vect_dump, "multiple types in nested loop.");
3087 return false;
3088 }
3089
3090 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
3091 return false;
3092
3093 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
3094 return false;
3095
3096 /* Is vectorizable store? */
3097
3098 if (!is_gimple_assign (stmt))
3099 return false;
3100
3101 scalar_dest = gimple_assign_lhs (stmt);
3102 if (TREE_CODE (scalar_dest) != ARRAY_REF
3103 && TREE_CODE (scalar_dest) != INDIRECT_REF
3104 && TREE_CODE (scalar_dest) != COMPONENT_REF
3105 && TREE_CODE (scalar_dest) != IMAGPART_EXPR
3106 && TREE_CODE (scalar_dest) != REALPART_EXPR
3107 && TREE_CODE (scalar_dest) != MEM_REF)
3108 return false;
3109
3110 gcc_assert (gimple_assign_single_p (stmt));
3111 op = gimple_assign_rhs1 (stmt);
3112 if (!vect_is_simple_use (op, loop_vinfo, bb_vinfo, &def_stmt, &def, &dt))
3113 {
3114 if (vect_print_dump_info (REPORT_DETAILS))
3115 fprintf (vect_dump, "use not simple.");
3116 return false;
3117 }
3118
3119 /* The scalar rhs type needs to be trivially convertible to the vector
3120 component type. This should always be the case. */
3121 if (!useless_type_conversion_p (TREE_TYPE (vectype), TREE_TYPE (op)))
3122 {
3123 if (vect_print_dump_info (REPORT_DETAILS))
3124 fprintf (vect_dump, "??? operands of different types");
3125 return false;
3126 }
3127
3128 vec_mode = TYPE_MODE (vectype);
3129 /* FORNOW. In some cases can vectorize even if data-type not supported
3130 (e.g. - array initialization with 0). */
3131 if (optab_handler (mov_optab, vec_mode) == CODE_FOR_nothing)
3132 return false;
3133
3134 if (!STMT_VINFO_DATA_REF (stmt_info))
3135 return false;
3136
3137 if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
3138 {
3139 strided_store = true;
3140 first_stmt = DR_GROUP_FIRST_DR (stmt_info);
3141 if (!vect_strided_store_supported (vectype)
3142 && !PURE_SLP_STMT (stmt_info) && !slp)
3143 return false;
3144
3145 if (first_stmt == stmt)
3146 {
3147 /* STMT is the leader of the group. Check the operands of all the
3148 stmts of the group. */
3149 next_stmt = DR_GROUP_NEXT_DR (stmt_info);
3150 while (next_stmt)
3151 {
3152 gcc_assert (gimple_assign_single_p (next_stmt));
3153 op = gimple_assign_rhs1 (next_stmt);
3154 if (!vect_is_simple_use (op, loop_vinfo, bb_vinfo, &def_stmt,
3155 &def, &dt))
3156 {
3157 if (vect_print_dump_info (REPORT_DETAILS))
3158 fprintf (vect_dump, "use not simple.");
3159 return false;
3160 }
3161 next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt));
3162 }
3163 }
3164 }
3165
3166 if (!vec_stmt) /* transformation not required. */
3167 {
3168 STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
3169 vect_model_store_cost (stmt_info, ncopies, dt, NULL);
3170 return true;
3171 }
3172
3173 /** Transform. **/
3174
3175 if (strided_store)
3176 {
3177 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
3178 group_size = DR_GROUP_SIZE (vinfo_for_stmt (first_stmt));
3179
3180 DR_GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))++;
3181
3182 /* FORNOW */
3183 gcc_assert (!loop || !nested_in_vect_loop_p (loop, stmt));
3184
3185 /* We vectorize all the stmts of the interleaving group when we
3186 reach the last stmt in the group. */
3187 if (DR_GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))
3188 < DR_GROUP_SIZE (vinfo_for_stmt (first_stmt))
3189 && !slp)
3190 {
3191 *vec_stmt = NULL;
3192 return true;
3193 }
3194
3195 if (slp)
3196 {
3197 strided_store = false;
3198 /* VEC_NUM is the number of vect stmts to be created for this
3199 group. */
3200 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
3201 first_stmt = VEC_index (gimple, SLP_TREE_SCALAR_STMTS (slp_node), 0);
3202 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
3203 }
3204 else
3205 /* VEC_NUM is the number of vect stmts to be created for this
3206 group. */
3207 vec_num = group_size;
3208 }
3209 else
3210 {
3211 first_stmt = stmt;
3212 first_dr = dr;
3213 group_size = vec_num = 1;
3214 }
3215
3216 if (vect_print_dump_info (REPORT_DETAILS))
3217 fprintf (vect_dump, "transform store. ncopies = %d",ncopies);
3218
3219 dr_chain = VEC_alloc (tree, heap, group_size);
3220 oprnds = VEC_alloc (tree, heap, group_size);
3221
3222 alignment_support_scheme = vect_supportable_dr_alignment (first_dr, false);
3223 gcc_assert (alignment_support_scheme);
3224
3225 /* In case the vectorization factor (VF) is bigger than the number
3226 of elements that we can fit in a vectype (nunits), we have to generate
3227 more than one vector stmt - i.e - we need to "unroll" the
3228 vector stmt by a factor VF/nunits. For more details see documentation in
3229 vect_get_vec_def_for_copy_stmt. */
3230
3231 /* In case of interleaving (non-unit strided access):
3232
3233 S1: &base + 2 = x2
3234 S2: &base = x0
3235 S3: &base + 1 = x1
3236 S4: &base + 3 = x3
3237
3238 We create vectorized stores starting from base address (the access of the
3239 first stmt in the chain (S2 in the above example), when the last store stmt
3240 of the chain (S4) is reached:
3241
3242 VS1: &base = vx2
3243 VS2: &base + vec_size*1 = vx0
3244 VS3: &base + vec_size*2 = vx1
3245 VS4: &base + vec_size*3 = vx3
3246
3247 Then permutation statements are generated:
3248
3249 VS5: vx5 = VEC_INTERLEAVE_HIGH_EXPR < vx0, vx3 >
3250 VS6: vx6 = VEC_INTERLEAVE_LOW_EXPR < vx0, vx3 >
3251 ...
3252
3253 And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
3254 (the order of the data-refs in the output of vect_permute_store_chain
3255 corresponds to the order of scalar stmts in the interleaving chain - see
3256 the documentation of vect_permute_store_chain()).
3257
3258 In case of both multiple types and interleaving, above vector stores and
3259 permutation stmts are created for every copy. The result vector stmts are
3260 put in STMT_VINFO_VEC_STMT for the first copy and in the corresponding
3261 STMT_VINFO_RELATED_STMT for the next copies.
3262 */
3263
3264 prev_stmt_info = NULL;
3265 for (j = 0; j < ncopies; j++)
3266 {
3267 gimple new_stmt;
3268 gimple ptr_incr;
3269
3270 if (j == 0)
3271 {
3272 if (slp)
3273 {
3274 /* Get vectorized arguments for SLP_NODE. */
3275 vect_get_slp_defs (slp_node, &vec_oprnds, NULL, -1);
3276
3277 vec_oprnd = VEC_index (tree, vec_oprnds, 0);
3278 }
3279 else
3280 {
3281 /* For interleaved stores we collect vectorized defs for all the
3282 stores in the group in DR_CHAIN and OPRNDS. DR_CHAIN is then
3283 used as an input to vect_permute_store_chain(), and OPRNDS as
3284 an input to vect_get_vec_def_for_stmt_copy() for the next copy.
3285
3286 If the store is not strided, GROUP_SIZE is 1, and DR_CHAIN and
3287 OPRNDS are of size 1. */
3288 next_stmt = first_stmt;
3289 for (i = 0; i < group_size; i++)
3290 {
3291 /* Since gaps are not supported for interleaved stores,
3292 GROUP_SIZE is the exact number of stmts in the chain.
3293 Therefore, NEXT_STMT can't be NULL_TREE. In case that
3294 there is no interleaving, GROUP_SIZE is 1, and only one
3295 iteration of the loop will be executed. */
3296 gcc_assert (next_stmt
3297 && gimple_assign_single_p (next_stmt));
3298 op = gimple_assign_rhs1 (next_stmt);
3299
3300 vec_oprnd = vect_get_vec_def_for_operand (op, next_stmt,
3301 NULL);
3302 VEC_quick_push(tree, dr_chain, vec_oprnd);
3303 VEC_quick_push(tree, oprnds, vec_oprnd);
3304 next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt));
3305 }
3306 }
3307
3308 /* We should have catched mismatched types earlier. */
3309 gcc_assert (useless_type_conversion_p (vectype,
3310 TREE_TYPE (vec_oprnd)));
3311 dataref_ptr = vect_create_data_ref_ptr (first_stmt, NULL, NULL_TREE,
3312 &dummy, &ptr_incr, false,
3313 &inv_p);
3314 gcc_assert (bb_vinfo || !inv_p);
3315 }
3316 else
3317 {
3318 /* For interleaved stores we created vectorized defs for all the
3319 defs stored in OPRNDS in the previous iteration (previous copy).
3320 DR_CHAIN is then used as an input to vect_permute_store_chain(),
3321 and OPRNDS as an input to vect_get_vec_def_for_stmt_copy() for the
3322 next copy.
3323 If the store is not strided, GROUP_SIZE is 1, and DR_CHAIN and
3324 OPRNDS are of size 1. */
3325 for (i = 0; i < group_size; i++)
3326 {
3327 op = VEC_index (tree, oprnds, i);
3328 vect_is_simple_use (op, loop_vinfo, bb_vinfo, &def_stmt, &def,
3329 &dt);
3330 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, op);
3331 VEC_replace(tree, dr_chain, i, vec_oprnd);
3332 VEC_replace(tree, oprnds, i, vec_oprnd);
3333 }
3334 dataref_ptr =
3335 bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt, NULL_TREE);
3336 }
3337
3338 if (strided_store)
3339 {
3340 result_chain = VEC_alloc (tree, heap, group_size);
3341 /* Permute. */
3342 if (!vect_permute_store_chain (dr_chain, group_size, stmt, gsi,
3343 &result_chain))
3344 return false;
3345 }
3346
3347 next_stmt = first_stmt;
3348 for (i = 0; i < vec_num; i++)
3349 {
3350 if (i > 0)
3351 /* Bump the vector pointer. */
3352 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
3353 NULL_TREE);
3354
3355 if (slp)
3356 vec_oprnd = VEC_index (tree, vec_oprnds, i);
3357 else if (strided_store)
3358 /* For strided stores vectorized defs are interleaved in
3359 vect_permute_store_chain(). */
3360 vec_oprnd = VEC_index (tree, result_chain, i);
3361
3362 if (aligned_access_p (first_dr))
3363 data_ref
3364 = build2 (MEM_REF, TREE_TYPE (vec_oprnd), dataref_ptr,
3365 build_int_cst (reference_alias_ptr_type
3366 (DR_REF (first_dr)), 0));
3367 else
3368 {
3369 int mis = DR_MISALIGNMENT (first_dr);
3370 tree tmis = (mis == -1 ? size_zero_node : size_int (mis));
3371 tmis = size_binop (MULT_EXPR, tmis, size_int (BITS_PER_UNIT));
3372 data_ref = build2 (MISALIGNED_INDIRECT_REF, vectype, dataref_ptr, tmis);
3373 }
3374
3375 /* Arguments are ready. Create the new vector stmt. */
3376 new_stmt = gimple_build_assign (data_ref, vec_oprnd);
3377 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3378 mark_symbols_for_renaming (new_stmt);
3379
3380 if (slp)
3381 continue;
3382
3383 if (j == 0)
3384 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
3385 else
3386 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3387
3388 prev_stmt_info = vinfo_for_stmt (new_stmt);
3389 next_stmt = DR_GROUP_NEXT_DR (vinfo_for_stmt (next_stmt));
3390 if (!next_stmt)
3391 break;
3392 }
3393 }
3394
3395 VEC_free (tree, heap, dr_chain);
3396 VEC_free (tree, heap, oprnds);
3397 if (result_chain)
3398 VEC_free (tree, heap, result_chain);
3399
3400 return true;
3401 }
3402
3403 /* vectorizable_load.
3404
3405 Check if STMT reads a non scalar data-ref (array/pointer/structure) that
3406 can be vectorized.
3407 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
3408 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
3409 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
3410
3411 static bool
3412 vectorizable_load (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
3413 slp_tree slp_node, slp_instance slp_node_instance)
3414 {
3415 tree scalar_dest;
3416 tree vec_dest = NULL;
3417 tree data_ref = NULL;
3418 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3419 stmt_vec_info prev_stmt_info;
3420 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3421 struct loop *loop = NULL;
3422 struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
3423 bool nested_in_vect_loop = false;
3424 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr;
3425 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3426 tree new_temp;
3427 enum machine_mode mode;
3428 gimple new_stmt = NULL;
3429 tree dummy;
3430 enum dr_alignment_support alignment_support_scheme;
3431 tree dataref_ptr = NULL_TREE;
3432 gimple ptr_incr;
3433 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
3434 int ncopies;
3435 int i, j, group_size;
3436 tree msq = NULL_TREE, lsq;
3437 tree offset = NULL_TREE;
3438 tree realignment_token = NULL_TREE;
3439 gimple phi = NULL;
3440 VEC(tree,heap) *dr_chain = NULL;
3441 bool strided_load = false;
3442 gimple first_stmt;
3443 tree scalar_type;
3444 bool inv_p;
3445 bool compute_in_loop = false;
3446 struct loop *at_loop;
3447 int vec_num;
3448 bool slp = (slp_node != NULL);
3449 bool slp_perm = false;
3450 enum tree_code code;
3451 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
3452 int vf;
3453
3454 if (loop_vinfo)
3455 {
3456 loop = LOOP_VINFO_LOOP (loop_vinfo);
3457 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
3458 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3459 }
3460 else
3461 vf = 1;
3462
3463 /* Multiple types in SLP are handled by creating the appropriate number of
3464 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
3465 case of SLP. */
3466 if (slp)
3467 ncopies = 1;
3468 else
3469 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
3470
3471 gcc_assert (ncopies >= 1);
3472
3473 /* FORNOW. This restriction should be relaxed. */
3474 if (nested_in_vect_loop && ncopies > 1)
3475 {
3476 if (vect_print_dump_info (REPORT_DETAILS))
3477 fprintf (vect_dump, "multiple types in nested loop.");
3478 return false;
3479 }
3480
3481 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
3482 return false;
3483
3484 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
3485 return false;
3486
3487 /* Is vectorizable load? */
3488 if (!is_gimple_assign (stmt))
3489 return false;
3490
3491 scalar_dest = gimple_assign_lhs (stmt);
3492 if (TREE_CODE (scalar_dest) != SSA_NAME)
3493 return false;
3494
3495 code = gimple_assign_rhs_code (stmt);
3496 if (code != ARRAY_REF
3497 && code != INDIRECT_REF
3498 && code != COMPONENT_REF
3499 && code != IMAGPART_EXPR
3500 && code != REALPART_EXPR
3501 && code != MEM_REF)
3502 return false;
3503
3504 if (!STMT_VINFO_DATA_REF (stmt_info))
3505 return false;
3506
3507 scalar_type = TREE_TYPE (DR_REF (dr));
3508 mode = TYPE_MODE (vectype);
3509
3510 /* FORNOW. In some cases can vectorize even if data-type not supported
3511 (e.g. - data copies). */
3512 if (optab_handler (mov_optab, mode) == CODE_FOR_nothing)
3513 {
3514 if (vect_print_dump_info (REPORT_DETAILS))
3515 fprintf (vect_dump, "Aligned load, but unsupported type.");
3516 return false;
3517 }
3518
3519 /* The vector component type needs to be trivially convertible to the
3520 scalar lhs. This should always be the case. */
3521 if (!useless_type_conversion_p (TREE_TYPE (scalar_dest), TREE_TYPE (vectype)))
3522 {
3523 if (vect_print_dump_info (REPORT_DETAILS))
3524 fprintf (vect_dump, "??? operands of different types");
3525 return false;
3526 }
3527
3528 /* Check if the load is a part of an interleaving chain. */
3529 if (STMT_VINFO_STRIDED_ACCESS (stmt_info))
3530 {
3531 strided_load = true;
3532 /* FORNOW */
3533 gcc_assert (! nested_in_vect_loop);
3534
3535 /* Check if interleaving is supported. */
3536 if (!vect_strided_load_supported (vectype)
3537 && !PURE_SLP_STMT (stmt_info) && !slp)
3538 return false;
3539 }
3540
3541 if (!vec_stmt) /* transformation not required. */
3542 {
3543 STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
3544 vect_model_load_cost (stmt_info, ncopies, NULL);
3545 return true;
3546 }
3547
3548 if (vect_print_dump_info (REPORT_DETAILS))
3549 fprintf (vect_dump, "transform load.");
3550
3551 /** Transform. **/
3552
3553 if (strided_load)
3554 {
3555 first_stmt = DR_GROUP_FIRST_DR (stmt_info);
3556 /* Check if the chain of loads is already vectorized. */
3557 if (STMT_VINFO_VEC_STMT (vinfo_for_stmt (first_stmt)))
3558 {
3559 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
3560 return true;
3561 }
3562 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
3563 group_size = DR_GROUP_SIZE (vinfo_for_stmt (first_stmt));
3564
3565 /* VEC_NUM is the number of vect stmts to be created for this group. */
3566 if (slp)
3567 {
3568 strided_load = false;
3569 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
3570 if (SLP_INSTANCE_LOAD_PERMUTATION (slp_node_instance))
3571 slp_perm = true;
3572 }
3573 else
3574 vec_num = group_size;
3575
3576 dr_chain = VEC_alloc (tree, heap, vec_num);
3577 }
3578 else
3579 {
3580 first_stmt = stmt;
3581 first_dr = dr;
3582 group_size = vec_num = 1;
3583 }
3584
3585 alignment_support_scheme = vect_supportable_dr_alignment (first_dr, false);
3586 gcc_assert (alignment_support_scheme);
3587
3588 /* In case the vectorization factor (VF) is bigger than the number
3589 of elements that we can fit in a vectype (nunits), we have to generate
3590 more than one vector stmt - i.e - we need to "unroll" the
3591 vector stmt by a factor VF/nunits. In doing so, we record a pointer
3592 from one copy of the vector stmt to the next, in the field
3593 STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
3594 stages to find the correct vector defs to be used when vectorizing
3595 stmts that use the defs of the current stmt. The example below illustrates
3596 the vectorization process when VF=16 and nunits=4 (i.e - we need to create
3597 4 vectorized stmts):
3598
3599 before vectorization:
3600 RELATED_STMT VEC_STMT
3601 S1: x = memref - -
3602 S2: z = x + 1 - -
3603
3604 step 1: vectorize stmt S1:
3605 We first create the vector stmt VS1_0, and, as usual, record a
3606 pointer to it in the STMT_VINFO_VEC_STMT of the scalar stmt S1.
3607 Next, we create the vector stmt VS1_1, and record a pointer to
3608 it in the STMT_VINFO_RELATED_STMT of the vector stmt VS1_0.
3609 Similarly, for VS1_2 and VS1_3. This is the resulting chain of
3610 stmts and pointers:
3611 RELATED_STMT VEC_STMT
3612 VS1_0: vx0 = memref0 VS1_1 -
3613 VS1_1: vx1 = memref1 VS1_2 -
3614 VS1_2: vx2 = memref2 VS1_3 -
3615 VS1_3: vx3 = memref3 - -
3616 S1: x = load - VS1_0
3617 S2: z = x + 1 - -
3618
3619 See in documentation in vect_get_vec_def_for_stmt_copy for how the
3620 information we recorded in RELATED_STMT field is used to vectorize
3621 stmt S2. */
3622
3623 /* In case of interleaving (non-unit strided access):
3624
3625 S1: x2 = &base + 2
3626 S2: x0 = &base
3627 S3: x1 = &base + 1
3628 S4: x3 = &base + 3
3629
3630 Vectorized loads are created in the order of memory accesses
3631 starting from the access of the first stmt of the chain:
3632
3633 VS1: vx0 = &base
3634 VS2: vx1 = &base + vec_size*1
3635 VS3: vx3 = &base + vec_size*2
3636 VS4: vx4 = &base + vec_size*3
3637
3638 Then permutation statements are generated:
3639
3640 VS5: vx5 = VEC_EXTRACT_EVEN_EXPR < vx0, vx1 >
3641 VS6: vx6 = VEC_EXTRACT_ODD_EXPR < vx0, vx1 >
3642 ...
3643
3644 And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
3645 (the order of the data-refs in the output of vect_permute_load_chain
3646 corresponds to the order of scalar stmts in the interleaving chain - see
3647 the documentation of vect_permute_load_chain()).
3648 The generation of permutation stmts and recording them in
3649 STMT_VINFO_VEC_STMT is done in vect_transform_strided_load().
3650
3651 In case of both multiple types and interleaving, the vector loads and
3652 permutation stmts above are created for every copy. The result vector stmts
3653 are put in STMT_VINFO_VEC_STMT for the first copy and in the corresponding
3654 STMT_VINFO_RELATED_STMT for the next copies. */
3655
3656 /* If the data reference is aligned (dr_aligned) or potentially unaligned
3657 on a target that supports unaligned accesses (dr_unaligned_supported)
3658 we generate the following code:
3659 p = initial_addr;
3660 indx = 0;
3661 loop {
3662 p = p + indx * vectype_size;
3663 vec_dest = *(p);
3664 indx = indx + 1;
3665 }
3666
3667 Otherwise, the data reference is potentially unaligned on a target that
3668 does not support unaligned accesses (dr_explicit_realign_optimized) -
3669 then generate the following code, in which the data in each iteration is
3670 obtained by two vector loads, one from the previous iteration, and one
3671 from the current iteration:
3672 p1 = initial_addr;
3673 msq_init = *(floor(p1))
3674 p2 = initial_addr + VS - 1;
3675 realignment_token = call target_builtin;
3676 indx = 0;
3677 loop {
3678 p2 = p2 + indx * vectype_size
3679 lsq = *(floor(p2))
3680 vec_dest = realign_load (msq, lsq, realignment_token)
3681 indx = indx + 1;
3682 msq = lsq;
3683 } */
3684
3685 /* If the misalignment remains the same throughout the execution of the
3686 loop, we can create the init_addr and permutation mask at the loop
3687 preheader. Otherwise, it needs to be created inside the loop.
3688 This can only occur when vectorizing memory accesses in the inner-loop
3689 nested within an outer-loop that is being vectorized. */
3690
3691 if (loop && nested_in_vect_loop_p (loop, stmt)
3692 && (TREE_INT_CST_LOW (DR_STEP (dr))
3693 % GET_MODE_SIZE (TYPE_MODE (vectype)) != 0))
3694 {
3695 gcc_assert (alignment_support_scheme != dr_explicit_realign_optimized);
3696 compute_in_loop = true;
3697 }
3698
3699 if ((alignment_support_scheme == dr_explicit_realign_optimized
3700 || alignment_support_scheme == dr_explicit_realign)
3701 && !compute_in_loop)
3702 {
3703 msq = vect_setup_realignment (first_stmt, gsi, &realignment_token,
3704 alignment_support_scheme, NULL_TREE,
3705 &at_loop);
3706 if (alignment_support_scheme == dr_explicit_realign_optimized)
3707 {
3708 phi = SSA_NAME_DEF_STMT (msq);
3709 offset = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
3710 }
3711 }
3712 else
3713 at_loop = loop;
3714
3715 prev_stmt_info = NULL;
3716 for (j = 0; j < ncopies; j++)
3717 {
3718 /* 1. Create the vector pointer update chain. */
3719 if (j == 0)
3720 dataref_ptr = vect_create_data_ref_ptr (first_stmt,
3721 at_loop, offset,
3722 &dummy, &ptr_incr, false,
3723 &inv_p);
3724 else
3725 dataref_ptr =
3726 bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt, NULL_TREE);
3727
3728 for (i = 0; i < vec_num; i++)
3729 {
3730 if (i > 0)
3731 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
3732 NULL_TREE);
3733
3734 /* 2. Create the vector-load in the loop. */
3735 switch (alignment_support_scheme)
3736 {
3737 case dr_aligned:
3738 gcc_assert (aligned_access_p (first_dr));
3739 data_ref
3740 = build2 (MEM_REF, vectype, dataref_ptr,
3741 build_int_cst (reference_alias_ptr_type
3742 (DR_REF (first_dr)), 0));
3743 break;
3744 case dr_unaligned_supported:
3745 {
3746 int mis = DR_MISALIGNMENT (first_dr);
3747 tree tmis = (mis == -1 ? size_zero_node : size_int (mis));
3748
3749 tmis = size_binop (MULT_EXPR, tmis, size_int(BITS_PER_UNIT));
3750 data_ref =
3751 build2 (MISALIGNED_INDIRECT_REF, vectype, dataref_ptr, tmis);
3752 break;
3753 }
3754 case dr_explicit_realign:
3755 {
3756 tree ptr, bump;
3757 tree vs_minus_1 = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
3758
3759 if (compute_in_loop)
3760 msq = vect_setup_realignment (first_stmt, gsi,
3761 &realignment_token,
3762 dr_explicit_realign,
3763 dataref_ptr, NULL);
3764
3765 new_stmt = gimple_build_assign_with_ops
3766 (BIT_AND_EXPR, NULL_TREE, dataref_ptr,
3767 build_int_cst
3768 (TREE_TYPE (dataref_ptr),
3769 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
3770 ptr = make_ssa_name (SSA_NAME_VAR (dataref_ptr), new_stmt);
3771 gimple_assign_set_lhs (new_stmt, ptr);
3772 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3773 data_ref
3774 = build2 (MEM_REF, vectype, ptr,
3775 build_int_cst (reference_alias_ptr_type
3776 (DR_REF (first_dr)), 0));
3777 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3778 new_stmt = gimple_build_assign (vec_dest, data_ref);
3779 new_temp = make_ssa_name (vec_dest, new_stmt);
3780 gimple_assign_set_lhs (new_stmt, new_temp);
3781 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
3782 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
3783 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3784 msq = new_temp;
3785
3786 bump = size_binop (MULT_EXPR, vs_minus_1,
3787 TYPE_SIZE_UNIT (scalar_type));
3788 ptr = bump_vector_ptr (dataref_ptr, NULL, gsi, stmt, bump);
3789 new_stmt = gimple_build_assign_with_ops
3790 (BIT_AND_EXPR, NULL_TREE, ptr,
3791 build_int_cst
3792 (TREE_TYPE (ptr),
3793 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
3794 ptr = make_ssa_name (SSA_NAME_VAR (dataref_ptr), new_stmt);
3795 gimple_assign_set_lhs (new_stmt, ptr);
3796 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3797 data_ref
3798 = build2 (MEM_REF, vectype, ptr,
3799 build_int_cst (reference_alias_ptr_type
3800 (DR_REF (first_dr)), 0));
3801 break;
3802 }
3803 case dr_explicit_realign_optimized:
3804 new_stmt = gimple_build_assign_with_ops
3805 (BIT_AND_EXPR, NULL_TREE, dataref_ptr,
3806 build_int_cst
3807 (TREE_TYPE (dataref_ptr),
3808 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
3809 new_temp = make_ssa_name (SSA_NAME_VAR (dataref_ptr), new_stmt);
3810 gimple_assign_set_lhs (new_stmt, new_temp);
3811 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3812 data_ref
3813 = build2 (MEM_REF, vectype, new_temp,
3814 build_int_cst (reference_alias_ptr_type
3815 (DR_REF (first_dr)), 0));
3816 break;
3817 default:
3818 gcc_unreachable ();
3819 }
3820 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3821 new_stmt = gimple_build_assign (vec_dest, data_ref);
3822 new_temp = make_ssa_name (vec_dest, new_stmt);
3823 gimple_assign_set_lhs (new_stmt, new_temp);
3824 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3825 mark_symbols_for_renaming (new_stmt);
3826
3827 /* 3. Handle explicit realignment if necessary/supported. Create in
3828 loop: vec_dest = realign_load (msq, lsq, realignment_token) */
3829 if (alignment_support_scheme == dr_explicit_realign_optimized
3830 || alignment_support_scheme == dr_explicit_realign)
3831 {
3832 tree tmp;
3833
3834 lsq = gimple_assign_lhs (new_stmt);
3835 if (!realignment_token)
3836 realignment_token = dataref_ptr;
3837 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3838 tmp = build3 (REALIGN_LOAD_EXPR, vectype, msq, lsq,
3839 realignment_token);
3840 new_stmt = gimple_build_assign (vec_dest, tmp);
3841 new_temp = make_ssa_name (vec_dest, new_stmt);
3842 gimple_assign_set_lhs (new_stmt, new_temp);
3843 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3844
3845 if (alignment_support_scheme == dr_explicit_realign_optimized)
3846 {
3847 gcc_assert (phi);
3848 if (i == vec_num - 1 && j == ncopies - 1)
3849 add_phi_arg (phi, lsq, loop_latch_edge (containing_loop),
3850 UNKNOWN_LOCATION);
3851 msq = lsq;
3852 }
3853 }
3854
3855 /* 4. Handle invariant-load. */
3856 if (inv_p && !bb_vinfo)
3857 {
3858 gcc_assert (!strided_load);
3859 gcc_assert (nested_in_vect_loop_p (loop, stmt));
3860 if (j == 0)
3861 {
3862 int k;
3863 tree t = NULL_TREE;
3864 tree vec_inv, bitpos, bitsize = TYPE_SIZE (scalar_type);
3865
3866 /* CHECKME: bitpos depends on endianess? */
3867 bitpos = bitsize_zero_node;
3868 vec_inv = build3 (BIT_FIELD_REF, scalar_type, new_temp,
3869 bitsize, bitpos);
3870 vec_dest =
3871 vect_create_destination_var (scalar_dest, NULL_TREE);
3872 new_stmt = gimple_build_assign (vec_dest, vec_inv);
3873 new_temp = make_ssa_name (vec_dest, new_stmt);
3874 gimple_assign_set_lhs (new_stmt, new_temp);
3875 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3876
3877 for (k = nunits - 1; k >= 0; --k)
3878 t = tree_cons (NULL_TREE, new_temp, t);
3879 /* FIXME: use build_constructor directly. */
3880 vec_inv = build_constructor_from_list (vectype, t);
3881 new_temp = vect_init_vector (stmt, vec_inv, vectype, gsi);
3882 new_stmt = SSA_NAME_DEF_STMT (new_temp);
3883 }
3884 else
3885 gcc_unreachable (); /* FORNOW. */
3886 }
3887
3888 /* Collect vector loads and later create their permutation in
3889 vect_transform_strided_load (). */
3890 if (strided_load || slp_perm)
3891 VEC_quick_push (tree, dr_chain, new_temp);
3892
3893 /* Store vector loads in the corresponding SLP_NODE. */
3894 if (slp && !slp_perm)
3895 VEC_quick_push (gimple, SLP_TREE_VEC_STMTS (slp_node), new_stmt);
3896 }
3897
3898 if (slp && !slp_perm)
3899 continue;
3900
3901 if (slp_perm)
3902 {
3903 if (!vect_transform_slp_perm_load (stmt, dr_chain, gsi, vf,
3904 slp_node_instance, false))
3905 {
3906 VEC_free (tree, heap, dr_chain);
3907 return false;
3908 }
3909 }
3910 else
3911 {
3912 if (strided_load)
3913 {
3914 if (!vect_transform_strided_load (stmt, dr_chain, group_size, gsi))
3915 return false;
3916
3917 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
3918 VEC_free (tree, heap, dr_chain);
3919 dr_chain = VEC_alloc (tree, heap, group_size);
3920 }
3921 else
3922 {
3923 if (j == 0)
3924 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
3925 else
3926 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3927 prev_stmt_info = vinfo_for_stmt (new_stmt);
3928 }
3929 }
3930 }
3931
3932 if (dr_chain)
3933 VEC_free (tree, heap, dr_chain);
3934
3935 return true;
3936 }
3937
3938 /* Function vect_is_simple_cond.
3939
3940 Input:
3941 LOOP - the loop that is being vectorized.
3942 COND - Condition that is checked for simple use.
3943
3944 Returns whether a COND can be vectorized. Checks whether
3945 condition operands are supportable using vec_is_simple_use. */
3946
3947 static bool
3948 vect_is_simple_cond (tree cond, loop_vec_info loop_vinfo)
3949 {
3950 tree lhs, rhs;
3951 tree def;
3952 enum vect_def_type dt;
3953
3954 if (!COMPARISON_CLASS_P (cond))
3955 return false;
3956
3957 lhs = TREE_OPERAND (cond, 0);
3958 rhs = TREE_OPERAND (cond, 1);
3959
3960 if (TREE_CODE (lhs) == SSA_NAME)
3961 {
3962 gimple lhs_def_stmt = SSA_NAME_DEF_STMT (lhs);
3963 if (!vect_is_simple_use (lhs, loop_vinfo, NULL, &lhs_def_stmt, &def,
3964 &dt))
3965 return false;
3966 }
3967 else if (TREE_CODE (lhs) != INTEGER_CST && TREE_CODE (lhs) != REAL_CST
3968 && TREE_CODE (lhs) != FIXED_CST)
3969 return false;
3970
3971 if (TREE_CODE (rhs) == SSA_NAME)
3972 {
3973 gimple rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
3974 if (!vect_is_simple_use (rhs, loop_vinfo, NULL, &rhs_def_stmt, &def,
3975 &dt))
3976 return false;
3977 }
3978 else if (TREE_CODE (rhs) != INTEGER_CST && TREE_CODE (rhs) != REAL_CST
3979 && TREE_CODE (rhs) != FIXED_CST)
3980 return false;
3981
3982 return true;
3983 }
3984
3985 /* vectorizable_condition.
3986
3987 Check if STMT is conditional modify expression that can be vectorized.
3988 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
3989 stmt using VEC_COND_EXPR to replace it, put it in VEC_STMT, and insert it
3990 at GSI.
3991
3992 When STMT is vectorized as nested cycle, REDUC_DEF is the vector variable
3993 to be used at REDUC_INDEX (in then clause if REDUC_INDEX is 1, and in
3994 else caluse if it is 2).
3995
3996 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
3997
3998 bool
3999 vectorizable_condition (gimple stmt, gimple_stmt_iterator *gsi,
4000 gimple *vec_stmt, tree reduc_def, int reduc_index)
4001 {
4002 tree scalar_dest = NULL_TREE;
4003 tree vec_dest = NULL_TREE;
4004 tree op = NULL_TREE;
4005 tree cond_expr, then_clause, else_clause;
4006 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4007 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4008 tree vec_cond_lhs, vec_cond_rhs, vec_then_clause, vec_else_clause;
4009 tree vec_compare, vec_cond_expr;
4010 tree new_temp;
4011 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4012 enum machine_mode vec_mode;
4013 tree def;
4014 enum vect_def_type dt;
4015 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
4016 int ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
4017 enum tree_code code;
4018
4019 /* FORNOW: unsupported in basic block SLP. */
4020 gcc_assert (loop_vinfo);
4021
4022 gcc_assert (ncopies >= 1);
4023 if (ncopies > 1)
4024 return false; /* FORNOW */
4025
4026 if (!STMT_VINFO_RELEVANT_P (stmt_info))
4027 return false;
4028
4029 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
4030 && !(STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle
4031 && reduc_def))
4032 return false;
4033
4034 /* FORNOW: SLP not supported. */
4035 if (STMT_SLP_TYPE (stmt_info))
4036 return false;
4037
4038 /* FORNOW: not yet supported. */
4039 if (STMT_VINFO_LIVE_P (stmt_info))
4040 {
4041 if (vect_print_dump_info (REPORT_DETAILS))
4042 fprintf (vect_dump, "value used after loop.");
4043 return false;
4044 }
4045
4046 /* Is vectorizable conditional operation? */
4047 if (!is_gimple_assign (stmt))
4048 return false;
4049
4050 code = gimple_assign_rhs_code (stmt);
4051
4052 if (code != COND_EXPR)
4053 return false;
4054
4055 gcc_assert (gimple_assign_single_p (stmt));
4056 op = gimple_assign_rhs1 (stmt);
4057 cond_expr = TREE_OPERAND (op, 0);
4058 then_clause = TREE_OPERAND (op, 1);
4059 else_clause = TREE_OPERAND (op, 2);
4060
4061 if (!vect_is_simple_cond (cond_expr, loop_vinfo))
4062 return false;
4063
4064 /* We do not handle two different vector types for the condition
4065 and the values. */
4066 if (!types_compatible_p (TREE_TYPE (TREE_OPERAND (cond_expr, 0)),
4067 TREE_TYPE (vectype)))
4068 return false;
4069
4070 if (TREE_CODE (then_clause) == SSA_NAME)
4071 {
4072 gimple then_def_stmt = SSA_NAME_DEF_STMT (then_clause);
4073 if (!vect_is_simple_use (then_clause, loop_vinfo, NULL,
4074 &then_def_stmt, &def, &dt))
4075 return false;
4076 }
4077 else if (TREE_CODE (then_clause) != INTEGER_CST
4078 && TREE_CODE (then_clause) != REAL_CST
4079 && TREE_CODE (then_clause) != FIXED_CST)
4080 return false;
4081
4082 if (TREE_CODE (else_clause) == SSA_NAME)
4083 {
4084 gimple else_def_stmt = SSA_NAME_DEF_STMT (else_clause);
4085 if (!vect_is_simple_use (else_clause, loop_vinfo, NULL,
4086 &else_def_stmt, &def, &dt))
4087 return false;
4088 }
4089 else if (TREE_CODE (else_clause) != INTEGER_CST
4090 && TREE_CODE (else_clause) != REAL_CST
4091 && TREE_CODE (else_clause) != FIXED_CST)
4092 return false;
4093
4094
4095 vec_mode = TYPE_MODE (vectype);
4096
4097 if (!vec_stmt)
4098 {
4099 STMT_VINFO_TYPE (stmt_info) = condition_vec_info_type;
4100 return expand_vec_cond_expr_p (TREE_TYPE (op), vec_mode);
4101 }
4102
4103 /* Transform */
4104
4105 /* Handle def. */
4106 scalar_dest = gimple_assign_lhs (stmt);
4107 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4108
4109 /* Handle cond expr. */
4110 vec_cond_lhs =
4111 vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 0), stmt, NULL);
4112 vec_cond_rhs =
4113 vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 1), stmt, NULL);
4114 if (reduc_index == 1)
4115 vec_then_clause = reduc_def;
4116 else
4117 vec_then_clause = vect_get_vec_def_for_operand (then_clause, stmt, NULL);
4118 if (reduc_index == 2)
4119 vec_else_clause = reduc_def;
4120 else
4121 vec_else_clause = vect_get_vec_def_for_operand (else_clause, stmt, NULL);
4122
4123 /* Arguments are ready. Create the new vector stmt. */
4124 vec_compare = build2 (TREE_CODE (cond_expr), vectype,
4125 vec_cond_lhs, vec_cond_rhs);
4126 vec_cond_expr = build3 (VEC_COND_EXPR, vectype,
4127 vec_compare, vec_then_clause, vec_else_clause);
4128
4129 *vec_stmt = gimple_build_assign (vec_dest, vec_cond_expr);
4130 new_temp = make_ssa_name (vec_dest, *vec_stmt);
4131 gimple_assign_set_lhs (*vec_stmt, new_temp);
4132 vect_finish_stmt_generation (stmt, *vec_stmt, gsi);
4133
4134 return true;
4135 }
4136
4137
4138 /* Make sure the statement is vectorizable. */
4139
4140 bool
4141 vect_analyze_stmt (gimple stmt, bool *need_to_vectorize, slp_tree node)
4142 {
4143 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4144 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4145 enum vect_relevant relevance = STMT_VINFO_RELEVANT (stmt_info);
4146 bool ok;
4147 tree scalar_type, vectype;
4148
4149 if (vect_print_dump_info (REPORT_DETAILS))
4150 {
4151 fprintf (vect_dump, "==> examining statement: ");
4152 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
4153 }
4154
4155 if (gimple_has_volatile_ops (stmt))
4156 {
4157 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
4158 fprintf (vect_dump, "not vectorized: stmt has volatile operands");
4159
4160 return false;
4161 }
4162
4163 /* Skip stmts that do not need to be vectorized. In loops this is expected
4164 to include:
4165 - the COND_EXPR which is the loop exit condition
4166 - any LABEL_EXPRs in the loop
4167 - computations that are used only for array indexing or loop control.
4168 In basic blocks we only analyze statements that are a part of some SLP
4169 instance, therefore, all the statements are relevant. */
4170
4171 if (!STMT_VINFO_RELEVANT_P (stmt_info)
4172 && !STMT_VINFO_LIVE_P (stmt_info))
4173 {
4174 if (vect_print_dump_info (REPORT_DETAILS))
4175 fprintf (vect_dump, "irrelevant.");
4176
4177 return true;
4178 }
4179
4180 switch (STMT_VINFO_DEF_TYPE (stmt_info))
4181 {
4182 case vect_internal_def:
4183 break;
4184
4185 case vect_reduction_def:
4186 case vect_nested_cycle:
4187 gcc_assert (!bb_vinfo && (relevance == vect_used_in_outer
4188 || relevance == vect_used_in_outer_by_reduction
4189 || relevance == vect_unused_in_scope));
4190 break;
4191
4192 case vect_induction_def:
4193 case vect_constant_def:
4194 case vect_external_def:
4195 case vect_unknown_def_type:
4196 default:
4197 gcc_unreachable ();
4198 }
4199
4200 if (bb_vinfo)
4201 {
4202 gcc_assert (PURE_SLP_STMT (stmt_info));
4203
4204 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
4205 if (vect_print_dump_info (REPORT_DETAILS))
4206 {
4207 fprintf (vect_dump, "get vectype for scalar type: ");
4208 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
4209 }
4210
4211 vectype = get_vectype_for_scalar_type (scalar_type);
4212 if (!vectype)
4213 {
4214 if (vect_print_dump_info (REPORT_DETAILS))
4215 {
4216 fprintf (vect_dump, "not SLPed: unsupported data-type ");
4217 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
4218 }
4219 return false;
4220 }
4221
4222 if (vect_print_dump_info (REPORT_DETAILS))
4223 {
4224 fprintf (vect_dump, "vectype: ");
4225 print_generic_expr (vect_dump, vectype, TDF_SLIM);
4226 }
4227
4228 STMT_VINFO_VECTYPE (stmt_info) = vectype;
4229 }
4230
4231 if (STMT_VINFO_RELEVANT_P (stmt_info))
4232 {
4233 gcc_assert (!VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))));
4234 gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
4235 *need_to_vectorize = true;
4236 }
4237
4238 ok = true;
4239 if (!bb_vinfo
4240 && (STMT_VINFO_RELEVANT_P (stmt_info)
4241 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def))
4242 ok = (vectorizable_type_promotion (stmt, NULL, NULL, NULL)
4243 || vectorizable_type_demotion (stmt, NULL, NULL, NULL)
4244 || vectorizable_conversion (stmt, NULL, NULL, NULL)
4245 || vectorizable_operation (stmt, NULL, NULL, NULL)
4246 || vectorizable_assignment (stmt, NULL, NULL, NULL)
4247 || vectorizable_load (stmt, NULL, NULL, NULL, NULL)
4248 || vectorizable_call (stmt, NULL, NULL)
4249 || vectorizable_store (stmt, NULL, NULL, NULL)
4250 || vectorizable_reduction (stmt, NULL, NULL, NULL)
4251 || vectorizable_condition (stmt, NULL, NULL, NULL, 0));
4252 else
4253 {
4254 if (bb_vinfo)
4255 ok = (vectorizable_operation (stmt, NULL, NULL, node)
4256 || vectorizable_assignment (stmt, NULL, NULL, node)
4257 || vectorizable_load (stmt, NULL, NULL, node, NULL)
4258 || vectorizable_store (stmt, NULL, NULL, node));
4259 }
4260
4261 if (!ok)
4262 {
4263 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
4264 {
4265 fprintf (vect_dump, "not vectorized: relevant stmt not ");
4266 fprintf (vect_dump, "supported: ");
4267 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
4268 }
4269
4270 return false;
4271 }
4272
4273 if (bb_vinfo)
4274 return true;
4275
4276 /* Stmts that are (also) "live" (i.e. - that are used out of the loop)
4277 need extra handling, except for vectorizable reductions. */
4278 if (STMT_VINFO_LIVE_P (stmt_info)
4279 && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
4280 ok = vectorizable_live_operation (stmt, NULL, NULL);
4281
4282 if (!ok)
4283 {
4284 if (vect_print_dump_info (REPORT_UNVECTORIZED_LOCATIONS))
4285 {
4286 fprintf (vect_dump, "not vectorized: live stmt not ");
4287 fprintf (vect_dump, "supported: ");
4288 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
4289 }
4290
4291 return false;
4292 }
4293
4294 if (!PURE_SLP_STMT (stmt_info))
4295 {
4296 /* Groups of strided accesses whose size is not a power of 2 are not
4297 vectorizable yet using loop-vectorization. Therefore, if this stmt
4298 feeds non-SLP-able stmts (i.e., this stmt has to be both SLPed and
4299 loop-based vectorized), the loop cannot be vectorized. */
4300 if (STMT_VINFO_STRIDED_ACCESS (stmt_info)
4301 && exact_log2 (DR_GROUP_SIZE (vinfo_for_stmt (
4302 DR_GROUP_FIRST_DR (stmt_info)))) == -1)
4303 {
4304 if (vect_print_dump_info (REPORT_DETAILS))
4305 {
4306 fprintf (vect_dump, "not vectorized: the size of group "
4307 "of strided accesses is not a power of 2");
4308 print_gimple_stmt (vect_dump, stmt, 0, TDF_SLIM);
4309 }
4310
4311 return false;
4312 }
4313 }
4314
4315 return true;
4316 }
4317
4318
4319 /* Function vect_transform_stmt.
4320
4321 Create a vectorized stmt to replace STMT, and insert it at BSI. */
4322
4323 bool
4324 vect_transform_stmt (gimple stmt, gimple_stmt_iterator *gsi,
4325 bool *strided_store, slp_tree slp_node,
4326 slp_instance slp_node_instance)
4327 {
4328 bool is_store = false;
4329 gimple vec_stmt = NULL;
4330 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4331 gimple orig_stmt_in_pattern;
4332 bool done;
4333
4334 switch (STMT_VINFO_TYPE (stmt_info))
4335 {
4336 case type_demotion_vec_info_type:
4337 done = vectorizable_type_demotion (stmt, gsi, &vec_stmt, slp_node);
4338 gcc_assert (done);
4339 break;
4340
4341 case type_promotion_vec_info_type:
4342 done = vectorizable_type_promotion (stmt, gsi, &vec_stmt, slp_node);
4343 gcc_assert (done);
4344 break;
4345
4346 case type_conversion_vec_info_type:
4347 done = vectorizable_conversion (stmt, gsi, &vec_stmt, slp_node);
4348 gcc_assert (done);
4349 break;
4350
4351 case induc_vec_info_type:
4352 gcc_assert (!slp_node);
4353 done = vectorizable_induction (stmt, gsi, &vec_stmt);
4354 gcc_assert (done);
4355 break;
4356
4357 case op_vec_info_type:
4358 done = vectorizable_operation (stmt, gsi, &vec_stmt, slp_node);
4359 gcc_assert (done);
4360 break;
4361
4362 case assignment_vec_info_type:
4363 done = vectorizable_assignment (stmt, gsi, &vec_stmt, slp_node);
4364 gcc_assert (done);
4365 break;
4366
4367 case load_vec_info_type:
4368 done = vectorizable_load (stmt, gsi, &vec_stmt, slp_node,
4369 slp_node_instance);
4370 gcc_assert (done);
4371 break;
4372
4373 case store_vec_info_type:
4374 done = vectorizable_store (stmt, gsi, &vec_stmt, slp_node);
4375 gcc_assert (done);
4376 if (STMT_VINFO_STRIDED_ACCESS (stmt_info) && !slp_node)
4377 {
4378 /* In case of interleaving, the whole chain is vectorized when the
4379 last store in the chain is reached. Store stmts before the last
4380 one are skipped, and there vec_stmt_info shouldn't be freed
4381 meanwhile. */
4382 *strided_store = true;
4383 if (STMT_VINFO_VEC_STMT (stmt_info))
4384 is_store = true;
4385 }
4386 else
4387 is_store = true;
4388 break;
4389
4390 case condition_vec_info_type:
4391 gcc_assert (!slp_node);
4392 done = vectorizable_condition (stmt, gsi, &vec_stmt, NULL, 0);
4393 gcc_assert (done);
4394 break;
4395
4396 case call_vec_info_type:
4397 gcc_assert (!slp_node);
4398 done = vectorizable_call (stmt, gsi, &vec_stmt);
4399 break;
4400
4401 case reduc_vec_info_type:
4402 done = vectorizable_reduction (stmt, gsi, &vec_stmt, slp_node);
4403 gcc_assert (done);
4404 break;
4405
4406 default:
4407 if (!STMT_VINFO_LIVE_P (stmt_info))
4408 {
4409 if (vect_print_dump_info (REPORT_DETAILS))
4410 fprintf (vect_dump, "stmt not supported.");
4411 gcc_unreachable ();
4412 }
4413 }
4414
4415 /* Handle inner-loop stmts whose DEF is used in the loop-nest that
4416 is being vectorized, but outside the immediately enclosing loop. */
4417 if (vec_stmt
4418 && STMT_VINFO_LOOP_VINFO (stmt_info)
4419 && nested_in_vect_loop_p (LOOP_VINFO_LOOP (
4420 STMT_VINFO_LOOP_VINFO (stmt_info)), stmt)
4421 && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type
4422 && (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_outer
4423 || STMT_VINFO_RELEVANT (stmt_info) ==
4424 vect_used_in_outer_by_reduction))
4425 {
4426 struct loop *innerloop = LOOP_VINFO_LOOP (
4427 STMT_VINFO_LOOP_VINFO (stmt_info))->inner;
4428 imm_use_iterator imm_iter;
4429 use_operand_p use_p;
4430 tree scalar_dest;
4431 gimple exit_phi;
4432
4433 if (vect_print_dump_info (REPORT_DETAILS))
4434 fprintf (vect_dump, "Record the vdef for outer-loop vectorization.");
4435
4436 /* Find the relevant loop-exit phi-node, and reord the vec_stmt there
4437 (to be used when vectorizing outer-loop stmts that use the DEF of
4438 STMT). */
4439 if (gimple_code (stmt) == GIMPLE_PHI)
4440 scalar_dest = PHI_RESULT (stmt);
4441 else
4442 scalar_dest = gimple_assign_lhs (stmt);
4443
4444 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
4445 {
4446 if (!flow_bb_inside_loop_p (innerloop, gimple_bb (USE_STMT (use_p))))
4447 {
4448 exit_phi = USE_STMT (use_p);
4449 STMT_VINFO_VEC_STMT (vinfo_for_stmt (exit_phi)) = vec_stmt;
4450 }
4451 }
4452 }
4453
4454 /* Handle stmts whose DEF is used outside the loop-nest that is
4455 being vectorized. */
4456 if (STMT_VINFO_LIVE_P (stmt_info)
4457 && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
4458 {
4459 done = vectorizable_live_operation (stmt, gsi, &vec_stmt);
4460 gcc_assert (done);
4461 }
4462
4463 if (vec_stmt)
4464 {
4465 STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
4466 orig_stmt_in_pattern = STMT_VINFO_RELATED_STMT (stmt_info);
4467 if (orig_stmt_in_pattern)
4468 {
4469 stmt_vec_info stmt_vinfo = vinfo_for_stmt (orig_stmt_in_pattern);
4470 /* STMT was inserted by the vectorizer to replace a computation idiom.
4471 ORIG_STMT_IN_PATTERN is a stmt in the original sequence that
4472 computed this idiom. We need to record a pointer to VEC_STMT in
4473 the stmt_info of ORIG_STMT_IN_PATTERN. See more details in the
4474 documentation of vect_pattern_recog. */
4475 if (STMT_VINFO_IN_PATTERN_P (stmt_vinfo))
4476 {
4477 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_vinfo) == stmt);
4478 STMT_VINFO_VEC_STMT (stmt_vinfo) = vec_stmt;
4479 }
4480 }
4481 }
4482
4483 return is_store;
4484 }
4485
4486
4487 /* Remove a group of stores (for SLP or interleaving), free their
4488 stmt_vec_info. */
4489
4490 void
4491 vect_remove_stores (gimple first_stmt)
4492 {
4493 gimple next = first_stmt;
4494 gimple tmp;
4495 gimple_stmt_iterator next_si;
4496
4497 while (next)
4498 {
4499 /* Free the attached stmt_vec_info and remove the stmt. */
4500 next_si = gsi_for_stmt (next);
4501 gsi_remove (&next_si, true);
4502 tmp = DR_GROUP_NEXT_DR (vinfo_for_stmt (next));
4503 free_stmt_vec_info (next);
4504 next = tmp;
4505 }
4506 }
4507
4508
4509 /* Function new_stmt_vec_info.
4510
4511 Create and initialize a new stmt_vec_info struct for STMT. */
4512
4513 stmt_vec_info
4514 new_stmt_vec_info (gimple stmt, loop_vec_info loop_vinfo,
4515 bb_vec_info bb_vinfo)
4516 {
4517 stmt_vec_info res;
4518 res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));
4519
4520 STMT_VINFO_TYPE (res) = undef_vec_info_type;
4521 STMT_VINFO_STMT (res) = stmt;
4522 STMT_VINFO_LOOP_VINFO (res) = loop_vinfo;
4523 STMT_VINFO_BB_VINFO (res) = bb_vinfo;
4524 STMT_VINFO_RELEVANT (res) = vect_unused_in_scope;
4525 STMT_VINFO_LIVE_P (res) = false;
4526 STMT_VINFO_VECTYPE (res) = NULL;
4527 STMT_VINFO_VEC_STMT (res) = NULL;
4528 STMT_VINFO_VECTORIZABLE (res) = true;
4529 STMT_VINFO_IN_PATTERN_P (res) = false;
4530 STMT_VINFO_RELATED_STMT (res) = NULL;
4531 STMT_VINFO_DATA_REF (res) = NULL;
4532
4533 STMT_VINFO_DR_BASE_ADDRESS (res) = NULL;
4534 STMT_VINFO_DR_OFFSET (res) = NULL;
4535 STMT_VINFO_DR_INIT (res) = NULL;
4536 STMT_VINFO_DR_STEP (res) = NULL;
4537 STMT_VINFO_DR_ALIGNED_TO (res) = NULL;
4538
4539 if (gimple_code (stmt) == GIMPLE_PHI
4540 && is_loop_header_bb_p (gimple_bb (stmt)))
4541 STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
4542 else
4543 STMT_VINFO_DEF_TYPE (res) = vect_internal_def;
4544
4545 STMT_VINFO_SAME_ALIGN_REFS (res) = VEC_alloc (dr_p, heap, 5);
4546 STMT_VINFO_INSIDE_OF_LOOP_COST (res) = 0;
4547 STMT_VINFO_OUTSIDE_OF_LOOP_COST (res) = 0;
4548 STMT_SLP_TYPE (res) = loop_vect;
4549 DR_GROUP_FIRST_DR (res) = NULL;
4550 DR_GROUP_NEXT_DR (res) = NULL;
4551 DR_GROUP_SIZE (res) = 0;
4552 DR_GROUP_STORE_COUNT (res) = 0;
4553 DR_GROUP_GAP (res) = 0;
4554 DR_GROUP_SAME_DR_STMT (res) = NULL;
4555 DR_GROUP_READ_WRITE_DEPENDENCE (res) = false;
4556
4557 return res;
4558 }
4559
4560
4561 /* Create a hash table for stmt_vec_info. */
4562
4563 void
4564 init_stmt_vec_info_vec (void)
4565 {
4566 gcc_assert (!stmt_vec_info_vec);
4567 stmt_vec_info_vec = VEC_alloc (vec_void_p, heap, 50);
4568 }
4569
4570
4571 /* Free hash table for stmt_vec_info. */
4572
4573 void
4574 free_stmt_vec_info_vec (void)
4575 {
4576 gcc_assert (stmt_vec_info_vec);
4577 VEC_free (vec_void_p, heap, stmt_vec_info_vec);
4578 }
4579
4580
4581 /* Free stmt vectorization related info. */
4582
4583 void
4584 free_stmt_vec_info (gimple stmt)
4585 {
4586 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4587
4588 if (!stmt_info)
4589 return;
4590
4591 VEC_free (dr_p, heap, STMT_VINFO_SAME_ALIGN_REFS (stmt_info));
4592 set_vinfo_for_stmt (stmt, NULL);
4593 free (stmt_info);
4594 }
4595
4596
4597 /* Function get_vectype_for_scalar_type.
4598
4599 Returns the vector type corresponding to SCALAR_TYPE as supported
4600 by the target. */
4601
4602 tree
4603 get_vectype_for_scalar_type (tree scalar_type)
4604 {
4605 enum machine_mode inner_mode = TYPE_MODE (scalar_type);
4606 unsigned int nbytes = GET_MODE_SIZE (inner_mode);
4607 int nunits;
4608 tree vectype;
4609
4610 if (nbytes == 0 || nbytes >= UNITS_PER_SIMD_WORD (inner_mode))
4611 return NULL_TREE;
4612
4613 /* We can't build a vector type of elements with alignment bigger than
4614 their size. */
4615 if (nbytes < TYPE_ALIGN_UNIT (scalar_type))
4616 return NULL_TREE;
4617
4618 /* If we'd build a vector type of elements whose mode precision doesn't
4619 match their types precision we'll get mismatched types on vector
4620 extracts via BIT_FIELD_REFs. This effectively means we disable
4621 vectorization of bool and/or enum types in some languages. */
4622 if (INTEGRAL_TYPE_P (scalar_type)
4623 && GET_MODE_BITSIZE (inner_mode) != TYPE_PRECISION (scalar_type))
4624 return NULL_TREE;
4625
4626 /* FORNOW: Only a single vector size per mode (UNITS_PER_SIMD_WORD)
4627 is expected. */
4628 nunits = UNITS_PER_SIMD_WORD (inner_mode) / nbytes;
4629
4630 vectype = build_vector_type (scalar_type, nunits);
4631 if (vect_print_dump_info (REPORT_DETAILS))
4632 {
4633 fprintf (vect_dump, "get vectype with %d units of type ", nunits);
4634 print_generic_expr (vect_dump, scalar_type, TDF_SLIM);
4635 }
4636
4637 if (!vectype)
4638 return NULL_TREE;
4639
4640 if (vect_print_dump_info (REPORT_DETAILS))
4641 {
4642 fprintf (vect_dump, "vectype: ");
4643 print_generic_expr (vect_dump, vectype, TDF_SLIM);
4644 }
4645
4646 if (!VECTOR_MODE_P (TYPE_MODE (vectype))
4647 && !INTEGRAL_MODE_P (TYPE_MODE (vectype)))
4648 {
4649 if (vect_print_dump_info (REPORT_DETAILS))
4650 fprintf (vect_dump, "mode not supported by target.");
4651 return NULL_TREE;
4652 }
4653
4654 return vectype;
4655 }
4656
4657 /* Function get_same_sized_vectype
4658
4659 Returns a vector type corresponding to SCALAR_TYPE of size
4660 VECTOR_TYPE if supported by the target. */
4661
4662 tree
4663 get_same_sized_vectype (tree scalar_type, tree vector_type ATTRIBUTE_UNUSED)
4664 {
4665 return get_vectype_for_scalar_type (scalar_type);
4666 }
4667
4668 /* Function vect_is_simple_use.
4669
4670 Input:
4671 LOOP_VINFO - the vect info of the loop that is being vectorized.
4672 BB_VINFO - the vect info of the basic block that is being vectorized.
4673 OPERAND - operand of a stmt in the loop or bb.
4674 DEF - the defining stmt in case OPERAND is an SSA_NAME.
4675
4676 Returns whether a stmt with OPERAND can be vectorized.
4677 For loops, supportable operands are constants, loop invariants, and operands
4678 that are defined by the current iteration of the loop. Unsupportable
4679 operands are those that are defined by a previous iteration of the loop (as
4680 is the case in reduction/induction computations).
4681 For basic blocks, supportable operands are constants and bb invariants.
4682 For now, operands defined outside the basic block are not supported. */
4683
4684 bool
4685 vect_is_simple_use (tree operand, loop_vec_info loop_vinfo,
4686 bb_vec_info bb_vinfo, gimple *def_stmt,
4687 tree *def, enum vect_def_type *dt)
4688 {
4689 basic_block bb;
4690 stmt_vec_info stmt_vinfo;
4691 struct loop *loop = NULL;
4692
4693 if (loop_vinfo)
4694 loop = LOOP_VINFO_LOOP (loop_vinfo);
4695
4696 *def_stmt = NULL;
4697 *def = NULL_TREE;
4698
4699 if (vect_print_dump_info (REPORT_DETAILS))
4700 {
4701 fprintf (vect_dump, "vect_is_simple_use: operand ");
4702 print_generic_expr (vect_dump, operand, TDF_SLIM);
4703 }
4704
4705 if (TREE_CODE (operand) == INTEGER_CST || TREE_CODE (operand) == REAL_CST)
4706 {
4707 *dt = vect_constant_def;
4708 return true;
4709 }
4710
4711 if (is_gimple_min_invariant (operand))
4712 {
4713 *def = operand;
4714 *dt = vect_external_def;
4715 return true;
4716 }
4717
4718 if (TREE_CODE (operand) == PAREN_EXPR)
4719 {
4720 if (vect_print_dump_info (REPORT_DETAILS))
4721 fprintf (vect_dump, "non-associatable copy.");
4722 operand = TREE_OPERAND (operand, 0);
4723 }
4724
4725 if (TREE_CODE (operand) != SSA_NAME)
4726 {
4727 if (vect_print_dump_info (REPORT_DETAILS))
4728 fprintf (vect_dump, "not ssa-name.");
4729 return false;
4730 }
4731
4732 *def_stmt = SSA_NAME_DEF_STMT (operand);
4733 if (*def_stmt == NULL)
4734 {
4735 if (vect_print_dump_info (REPORT_DETAILS))
4736 fprintf (vect_dump, "no def_stmt.");
4737 return false;
4738 }
4739
4740 if (vect_print_dump_info (REPORT_DETAILS))
4741 {
4742 fprintf (vect_dump, "def_stmt: ");
4743 print_gimple_stmt (vect_dump, *def_stmt, 0, TDF_SLIM);
4744 }
4745
4746 /* Empty stmt is expected only in case of a function argument.
4747 (Otherwise - we expect a phi_node or a GIMPLE_ASSIGN). */
4748 if (gimple_nop_p (*def_stmt))
4749 {
4750 *def = operand;
4751 *dt = vect_external_def;
4752 return true;
4753 }
4754
4755 bb = gimple_bb (*def_stmt);
4756
4757 if ((loop && !flow_bb_inside_loop_p (loop, bb))
4758 || (!loop && bb != BB_VINFO_BB (bb_vinfo))
4759 || (!loop && gimple_code (*def_stmt) == GIMPLE_PHI))
4760 *dt = vect_external_def;
4761 else
4762 {
4763 stmt_vinfo = vinfo_for_stmt (*def_stmt);
4764 *dt = STMT_VINFO_DEF_TYPE (stmt_vinfo);
4765 }
4766
4767 if (*dt == vect_unknown_def_type)
4768 {
4769 if (vect_print_dump_info (REPORT_DETAILS))
4770 fprintf (vect_dump, "Unsupported pattern.");
4771 return false;
4772 }
4773
4774 if (vect_print_dump_info (REPORT_DETAILS))
4775 fprintf (vect_dump, "type of def: %d.",*dt);
4776
4777 switch (gimple_code (*def_stmt))
4778 {
4779 case GIMPLE_PHI:
4780 *def = gimple_phi_result (*def_stmt);
4781 break;
4782
4783 case GIMPLE_ASSIGN:
4784 *def = gimple_assign_lhs (*def_stmt);
4785 break;
4786
4787 case GIMPLE_CALL:
4788 *def = gimple_call_lhs (*def_stmt);
4789 if (*def != NULL)
4790 break;
4791 /* FALLTHRU */
4792 default:
4793 if (vect_print_dump_info (REPORT_DETAILS))
4794 fprintf (vect_dump, "unsupported defining stmt: ");
4795 return false;
4796 }
4797
4798 return true;
4799 }
4800
4801 /* Function vect_is_simple_use_1.
4802
4803 Same as vect_is_simple_use_1 but also determines the vector operand
4804 type of OPERAND and stores it to *VECTYPE. If the definition of
4805 OPERAND is vect_uninitialized_def, vect_constant_def or
4806 vect_external_def *VECTYPE will be set to NULL_TREE and the caller
4807 is responsible to compute the best suited vector type for the
4808 scalar operand. */
4809
4810 bool
4811 vect_is_simple_use_1 (tree operand, loop_vec_info loop_vinfo,
4812 bb_vec_info bb_vinfo, gimple *def_stmt,
4813 tree *def, enum vect_def_type *dt, tree *vectype)
4814 {
4815 if (!vect_is_simple_use (operand, loop_vinfo, bb_vinfo, def_stmt, def, dt))
4816 return false;
4817
4818 /* Now get a vector type if the def is internal, otherwise supply
4819 NULL_TREE and leave it up to the caller to figure out a proper
4820 type for the use stmt. */
4821 if (*dt == vect_internal_def
4822 || *dt == vect_induction_def
4823 || *dt == vect_reduction_def
4824 || *dt == vect_double_reduction_def
4825 || *dt == vect_nested_cycle)
4826 {
4827 stmt_vec_info stmt_info = vinfo_for_stmt (*def_stmt);
4828 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
4829 stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
4830 *vectype = STMT_VINFO_VECTYPE (stmt_info);
4831 gcc_assert (*vectype != NULL_TREE);
4832 }
4833 else if (*dt == vect_uninitialized_def
4834 || *dt == vect_constant_def
4835 || *dt == vect_external_def)
4836 *vectype = NULL_TREE;
4837 else
4838 gcc_unreachable ();
4839
4840 return true;
4841 }
4842
4843
4844 /* Function supportable_widening_operation
4845
4846 Check whether an operation represented by the code CODE is a
4847 widening operation that is supported by the target platform in
4848 vector form (i.e., when operating on arguments of type VECTYPE_IN
4849 producing a result of type VECTYPE_OUT).
4850
4851 Widening operations we currently support are NOP (CONVERT), FLOAT
4852 and WIDEN_MULT. This function checks if these operations are supported
4853 by the target platform either directly (via vector tree-codes), or via
4854 target builtins.
4855
4856 Output:
4857 - CODE1 and CODE2 are codes of vector operations to be used when
4858 vectorizing the operation, if available.
4859 - DECL1 and DECL2 are decls of target builtin functions to be used
4860 when vectorizing the operation, if available. In this case,
4861 CODE1 and CODE2 are CALL_EXPR.
4862 - MULTI_STEP_CVT determines the number of required intermediate steps in
4863 case of multi-step conversion (like char->short->int - in that case
4864 MULTI_STEP_CVT will be 1).
4865 - INTERM_TYPES contains the intermediate type required to perform the
4866 widening operation (short in the above example). */
4867
4868 bool
4869 supportable_widening_operation (enum tree_code code, gimple stmt,
4870 tree vectype_out, tree vectype_in,
4871 tree *decl1, tree *decl2,
4872 enum tree_code *code1, enum tree_code *code2,
4873 int *multi_step_cvt,
4874 VEC (tree, heap) **interm_types)
4875 {
4876 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4877 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_info);
4878 struct loop *vect_loop = LOOP_VINFO_LOOP (loop_info);
4879 bool ordered_p;
4880 enum machine_mode vec_mode;
4881 enum insn_code icode1, icode2;
4882 optab optab1, optab2;
4883 tree vectype = vectype_in;
4884 tree wide_vectype = vectype_out;
4885 enum tree_code c1, c2;
4886
4887 /* The result of a vectorized widening operation usually requires two vectors
4888 (because the widened results do not fit int one vector). The generated
4889 vector results would normally be expected to be generated in the same
4890 order as in the original scalar computation, i.e. if 8 results are
4891 generated in each vector iteration, they are to be organized as follows:
4892 vect1: [res1,res2,res3,res4], vect2: [res5,res6,res7,res8].
4893
4894 However, in the special case that the result of the widening operation is
4895 used in a reduction computation only, the order doesn't matter (because
4896 when vectorizing a reduction we change the order of the computation).
4897 Some targets can take advantage of this and generate more efficient code.
4898 For example, targets like Altivec, that support widen_mult using a sequence
4899 of {mult_even,mult_odd} generate the following vectors:
4900 vect1: [res1,res3,res5,res7], vect2: [res2,res4,res6,res8].
4901
4902 When vectorizing outer-loops, we execute the inner-loop sequentially
4903 (each vectorized inner-loop iteration contributes to VF outer-loop
4904 iterations in parallel). We therefore don't allow to change the order
4905 of the computation in the inner-loop during outer-loop vectorization. */
4906
4907 if (STMT_VINFO_RELEVANT (stmt_info) == vect_used_by_reduction
4908 && !nested_in_vect_loop_p (vect_loop, stmt))
4909 ordered_p = false;
4910 else
4911 ordered_p = true;
4912
4913 if (!ordered_p
4914 && code == WIDEN_MULT_EXPR
4915 && targetm.vectorize.builtin_mul_widen_even
4916 && targetm.vectorize.builtin_mul_widen_even (vectype)
4917 && targetm.vectorize.builtin_mul_widen_odd
4918 && targetm.vectorize.builtin_mul_widen_odd (vectype))
4919 {
4920 if (vect_print_dump_info (REPORT_DETAILS))
4921 fprintf (vect_dump, "Unordered widening operation detected.");
4922
4923 *code1 = *code2 = CALL_EXPR;
4924 *decl1 = targetm.vectorize.builtin_mul_widen_even (vectype);
4925 *decl2 = targetm.vectorize.builtin_mul_widen_odd (vectype);
4926 return true;
4927 }
4928
4929 switch (code)
4930 {
4931 case WIDEN_MULT_EXPR:
4932 if (BYTES_BIG_ENDIAN)
4933 {
4934 c1 = VEC_WIDEN_MULT_HI_EXPR;
4935 c2 = VEC_WIDEN_MULT_LO_EXPR;
4936 }
4937 else
4938 {
4939 c2 = VEC_WIDEN_MULT_HI_EXPR;
4940 c1 = VEC_WIDEN_MULT_LO_EXPR;
4941 }
4942 break;
4943
4944 CASE_CONVERT:
4945 if (BYTES_BIG_ENDIAN)
4946 {
4947 c1 = VEC_UNPACK_HI_EXPR;
4948 c2 = VEC_UNPACK_LO_EXPR;
4949 }
4950 else
4951 {
4952 c2 = VEC_UNPACK_HI_EXPR;
4953 c1 = VEC_UNPACK_LO_EXPR;
4954 }
4955 break;
4956
4957 case FLOAT_EXPR:
4958 if (BYTES_BIG_ENDIAN)
4959 {
4960 c1 = VEC_UNPACK_FLOAT_HI_EXPR;
4961 c2 = VEC_UNPACK_FLOAT_LO_EXPR;
4962 }
4963 else
4964 {
4965 c2 = VEC_UNPACK_FLOAT_HI_EXPR;
4966 c1 = VEC_UNPACK_FLOAT_LO_EXPR;
4967 }
4968 break;
4969
4970 case FIX_TRUNC_EXPR:
4971 /* ??? Not yet implemented due to missing VEC_UNPACK_FIX_TRUNC_HI_EXPR/
4972 VEC_UNPACK_FIX_TRUNC_LO_EXPR tree codes and optabs used for
4973 computing the operation. */
4974 return false;
4975
4976 default:
4977 gcc_unreachable ();
4978 }
4979
4980 if (code == FIX_TRUNC_EXPR)
4981 {
4982 /* The signedness is determined from output operand. */
4983 optab1 = optab_for_tree_code (c1, vectype_out, optab_default);
4984 optab2 = optab_for_tree_code (c2, vectype_out, optab_default);
4985 }
4986 else
4987 {
4988 optab1 = optab_for_tree_code (c1, vectype, optab_default);
4989 optab2 = optab_for_tree_code (c2, vectype, optab_default);
4990 }
4991
4992 if (!optab1 || !optab2)
4993 return false;
4994
4995 vec_mode = TYPE_MODE (vectype);
4996 if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing
4997 || (icode2 = optab_handler (optab2, vec_mode)) == CODE_FOR_nothing)
4998 return false;
4999
5000 /* Check if it's a multi-step conversion that can be done using intermediate
5001 types. */
5002 if (insn_data[icode1].operand[0].mode != TYPE_MODE (wide_vectype)
5003 || insn_data[icode2].operand[0].mode != TYPE_MODE (wide_vectype))
5004 {
5005 int i;
5006 tree prev_type = vectype, intermediate_type;
5007 enum machine_mode intermediate_mode, prev_mode = vec_mode;
5008 optab optab3, optab4;
5009
5010 if (!CONVERT_EXPR_CODE_P (code))
5011 return false;
5012
5013 *code1 = c1;
5014 *code2 = c2;
5015
5016 /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
5017 intermediate steps in promotion sequence. We try MAX_INTERM_CVT_STEPS
5018 to get to NARROW_VECTYPE, and fail if we do not. */
5019 *interm_types = VEC_alloc (tree, heap, MAX_INTERM_CVT_STEPS);
5020 for (i = 0; i < 3; i++)
5021 {
5022 intermediate_mode = insn_data[icode1].operand[0].mode;
5023 intermediate_type = lang_hooks.types.type_for_mode (intermediate_mode,
5024 TYPE_UNSIGNED (prev_type));
5025 optab3 = optab_for_tree_code (c1, intermediate_type, optab_default);
5026 optab4 = optab_for_tree_code (c2, intermediate_type, optab_default);
5027
5028 if (!optab3 || !optab4
5029 || ((icode1 = optab_handler (optab1, prev_mode))
5030 == CODE_FOR_nothing)
5031 || insn_data[icode1].operand[0].mode != intermediate_mode
5032 || ((icode2 = optab_handler (optab2, prev_mode))
5033 == CODE_FOR_nothing)
5034 || insn_data[icode2].operand[0].mode != intermediate_mode
5035 || ((icode1 = optab_handler (optab3, intermediate_mode))
5036 == CODE_FOR_nothing)
5037 || ((icode2 = optab_handler (optab4, intermediate_mode))
5038 == CODE_FOR_nothing))
5039 return false;
5040
5041 VEC_quick_push (tree, *interm_types, intermediate_type);
5042 (*multi_step_cvt)++;
5043
5044 if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
5045 && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
5046 return true;
5047
5048 prev_type = intermediate_type;
5049 prev_mode = intermediate_mode;
5050 }
5051
5052 return false;
5053 }
5054
5055 *code1 = c1;
5056 *code2 = c2;
5057 return true;
5058 }
5059
5060
5061 /* Function supportable_narrowing_operation
5062
5063 Check whether an operation represented by the code CODE is a
5064 narrowing operation that is supported by the target platform in
5065 vector form (i.e., when operating on arguments of type VECTYPE_IN
5066 and producing a result of type VECTYPE_OUT).
5067
5068 Narrowing operations we currently support are NOP (CONVERT) and
5069 FIX_TRUNC. This function checks if these operations are supported by
5070 the target platform directly via vector tree-codes.
5071
5072 Output:
5073 - CODE1 is the code of a vector operation to be used when
5074 vectorizing the operation, if available.
5075 - MULTI_STEP_CVT determines the number of required intermediate steps in
5076 case of multi-step conversion (like int->short->char - in that case
5077 MULTI_STEP_CVT will be 1).
5078 - INTERM_TYPES contains the intermediate type required to perform the
5079 narrowing operation (short in the above example). */
5080
5081 bool
5082 supportable_narrowing_operation (enum tree_code code,
5083 tree vectype_out, tree vectype_in,
5084 enum tree_code *code1, int *multi_step_cvt,
5085 VEC (tree, heap) **interm_types)
5086 {
5087 enum machine_mode vec_mode;
5088 enum insn_code icode1;
5089 optab optab1, interm_optab;
5090 tree vectype = vectype_in;
5091 tree narrow_vectype = vectype_out;
5092 enum tree_code c1;
5093 tree intermediate_type, prev_type;
5094 int i;
5095
5096 switch (code)
5097 {
5098 CASE_CONVERT:
5099 c1 = VEC_PACK_TRUNC_EXPR;
5100 break;
5101
5102 case FIX_TRUNC_EXPR:
5103 c1 = VEC_PACK_FIX_TRUNC_EXPR;
5104 break;
5105
5106 case FLOAT_EXPR:
5107 /* ??? Not yet implemented due to missing VEC_PACK_FLOAT_EXPR
5108 tree code and optabs used for computing the operation. */
5109 return false;
5110
5111 default:
5112 gcc_unreachable ();
5113 }
5114
5115 if (code == FIX_TRUNC_EXPR)
5116 /* The signedness is determined from output operand. */
5117 optab1 = optab_for_tree_code (c1, vectype_out, optab_default);
5118 else
5119 optab1 = optab_for_tree_code (c1, vectype, optab_default);
5120
5121 if (!optab1)
5122 return false;
5123
5124 vec_mode = TYPE_MODE (vectype);
5125 if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing)
5126 return false;
5127
5128 /* Check if it's a multi-step conversion that can be done using intermediate
5129 types. */
5130 if (insn_data[icode1].operand[0].mode != TYPE_MODE (narrow_vectype))
5131 {
5132 enum machine_mode intermediate_mode, prev_mode = vec_mode;
5133
5134 *code1 = c1;
5135 prev_type = vectype;
5136 /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
5137 intermediate steps in promotion sequence. We try MAX_INTERM_CVT_STEPS
5138 to get to NARROW_VECTYPE, and fail if we do not. */
5139 *interm_types = VEC_alloc (tree, heap, MAX_INTERM_CVT_STEPS);
5140 for (i = 0; i < 3; i++)
5141 {
5142 intermediate_mode = insn_data[icode1].operand[0].mode;
5143 intermediate_type = lang_hooks.types.type_for_mode (intermediate_mode,
5144 TYPE_UNSIGNED (prev_type));
5145 interm_optab = optab_for_tree_code (c1, intermediate_type,
5146 optab_default);
5147 if (!interm_optab
5148 || ((icode1 = optab_handler (optab1, prev_mode))
5149 == CODE_FOR_nothing)
5150 || insn_data[icode1].operand[0].mode != intermediate_mode
5151 || ((icode1 = optab_handler (interm_optab, intermediate_mode))
5152 == CODE_FOR_nothing))
5153 return false;
5154
5155 VEC_quick_push (tree, *interm_types, intermediate_type);
5156 (*multi_step_cvt)++;
5157
5158 if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
5159 return true;
5160
5161 prev_type = intermediate_type;
5162 prev_mode = intermediate_mode;
5163 }
5164
5165 return false;
5166 }
5167
5168 *code1 = c1;
5169 return true;
5170 }