coretypes.h: Include hash-table.h and hash-set.h for host files.
[gcc.git] / gcc / tree-vect-stmts.c
1 /* Statement Analysis and Transformation for Vectorization
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "dumpfile.h"
26 #include "tm.h"
27 #include "input.h"
28 #include "alias.h"
29 #include "symtab.h"
30 #include "tree.h"
31 #include "fold-const.h"
32 #include "stor-layout.h"
33 #include "target.h"
34 #include "predict.h"
35 #include "hard-reg-set.h"
36 #include "function.h"
37 #include "dominance.h"
38 #include "cfg.h"
39 #include "basic-block.h"
40 #include "gimple-pretty-print.h"
41 #include "tree-ssa-alias.h"
42 #include "internal-fn.h"
43 #include "tree-eh.h"
44 #include "gimple-expr.h"
45 #include "is-a.h"
46 #include "gimple.h"
47 #include "gimplify.h"
48 #include "gimple-iterator.h"
49 #include "gimplify-me.h"
50 #include "gimple-ssa.h"
51 #include "tree-cfg.h"
52 #include "tree-phinodes.h"
53 #include "ssa-iterators.h"
54 #include "stringpool.h"
55 #include "tree-ssanames.h"
56 #include "tree-ssa-loop-manip.h"
57 #include "cfgloop.h"
58 #include "tree-ssa-loop.h"
59 #include "tree-scalar-evolution.h"
60 #include "rtl.h"
61 #include "flags.h"
62 #include "insn-config.h"
63 #include "expmed.h"
64 #include "dojump.h"
65 #include "explow.h"
66 #include "calls.h"
67 #include "emit-rtl.h"
68 #include "varasm.h"
69 #include "stmt.h"
70 #include "expr.h"
71 #include "recog.h" /* FIXME: for insn_data */
72 #include "insn-codes.h"
73 #include "optabs.h"
74 #include "diagnostic-core.h"
75 #include "tree-vectorizer.h"
76 #include "plugin-api.h"
77 #include "ipa-ref.h"
78 #include "cgraph.h"
79 #include "builtins.h"
80
81 /* For lang_hooks.types.type_for_mode. */
82 #include "langhooks.h"
83
84 /* Return the vectorized type for the given statement. */
85
86 tree
87 stmt_vectype (struct _stmt_vec_info *stmt_info)
88 {
89 return STMT_VINFO_VECTYPE (stmt_info);
90 }
91
92 /* Return TRUE iff the given statement is in an inner loop relative to
93 the loop being vectorized. */
94 bool
95 stmt_in_inner_loop_p (struct _stmt_vec_info *stmt_info)
96 {
97 gimple stmt = STMT_VINFO_STMT (stmt_info);
98 basic_block bb = gimple_bb (stmt);
99 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
100 struct loop* loop;
101
102 if (!loop_vinfo)
103 return false;
104
105 loop = LOOP_VINFO_LOOP (loop_vinfo);
106
107 return (bb->loop_father == loop->inner);
108 }
109
110 /* Record the cost of a statement, either by directly informing the
111 target model or by saving it in a vector for later processing.
112 Return a preliminary estimate of the statement's cost. */
113
114 unsigned
115 record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count,
116 enum vect_cost_for_stmt kind, stmt_vec_info stmt_info,
117 int misalign, enum vect_cost_model_location where)
118 {
119 if (body_cost_vec)
120 {
121 tree vectype = stmt_info ? stmt_vectype (stmt_info) : NULL_TREE;
122 add_stmt_info_to_vec (body_cost_vec, count, kind,
123 stmt_info ? STMT_VINFO_STMT (stmt_info) : NULL,
124 misalign);
125 return (unsigned)
126 (builtin_vectorization_cost (kind, vectype, misalign) * count);
127
128 }
129 else
130 {
131 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
132 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
133 void *target_cost_data;
134
135 if (loop_vinfo)
136 target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
137 else
138 target_cost_data = BB_VINFO_TARGET_COST_DATA (bb_vinfo);
139
140 return add_stmt_cost (target_cost_data, count, kind, stmt_info,
141 misalign, where);
142 }
143 }
144
145 /* Return a variable of type ELEM_TYPE[NELEMS]. */
146
147 static tree
148 create_vector_array (tree elem_type, unsigned HOST_WIDE_INT nelems)
149 {
150 return create_tmp_var (build_array_type_nelts (elem_type, nelems),
151 "vect_array");
152 }
153
154 /* ARRAY is an array of vectors created by create_vector_array.
155 Return an SSA_NAME for the vector in index N. The reference
156 is part of the vectorization of STMT and the vector is associated
157 with scalar destination SCALAR_DEST. */
158
159 static tree
160 read_vector_array (gimple stmt, gimple_stmt_iterator *gsi, tree scalar_dest,
161 tree array, unsigned HOST_WIDE_INT n)
162 {
163 tree vect_type, vect, vect_name, array_ref;
164 gimple new_stmt;
165
166 gcc_assert (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE);
167 vect_type = TREE_TYPE (TREE_TYPE (array));
168 vect = vect_create_destination_var (scalar_dest, vect_type);
169 array_ref = build4 (ARRAY_REF, vect_type, array,
170 build_int_cst (size_type_node, n),
171 NULL_TREE, NULL_TREE);
172
173 new_stmt = gimple_build_assign (vect, array_ref);
174 vect_name = make_ssa_name (vect, new_stmt);
175 gimple_assign_set_lhs (new_stmt, vect_name);
176 vect_finish_stmt_generation (stmt, new_stmt, gsi);
177
178 return vect_name;
179 }
180
181 /* ARRAY is an array of vectors created by create_vector_array.
182 Emit code to store SSA_NAME VECT in index N of the array.
183 The store is part of the vectorization of STMT. */
184
185 static void
186 write_vector_array (gimple stmt, gimple_stmt_iterator *gsi, tree vect,
187 tree array, unsigned HOST_WIDE_INT n)
188 {
189 tree array_ref;
190 gimple new_stmt;
191
192 array_ref = build4 (ARRAY_REF, TREE_TYPE (vect), array,
193 build_int_cst (size_type_node, n),
194 NULL_TREE, NULL_TREE);
195
196 new_stmt = gimple_build_assign (array_ref, vect);
197 vect_finish_stmt_generation (stmt, new_stmt, gsi);
198 }
199
200 /* PTR is a pointer to an array of type TYPE. Return a representation
201 of *PTR. The memory reference replaces those in FIRST_DR
202 (and its group). */
203
204 static tree
205 create_array_ref (tree type, tree ptr, struct data_reference *first_dr)
206 {
207 tree mem_ref, alias_ptr_type;
208
209 alias_ptr_type = reference_alias_ptr_type (DR_REF (first_dr));
210 mem_ref = build2 (MEM_REF, type, ptr, build_int_cst (alias_ptr_type, 0));
211 /* Arrays have the same alignment as their type. */
212 set_ptr_info_alignment (get_ptr_info (ptr), TYPE_ALIGN_UNIT (type), 0);
213 return mem_ref;
214 }
215
216 /* Utility functions used by vect_mark_stmts_to_be_vectorized. */
217
218 /* Function vect_mark_relevant.
219
220 Mark STMT as "relevant for vectorization" and add it to WORKLIST. */
221
222 static void
223 vect_mark_relevant (vec<gimple> *worklist, gimple stmt,
224 enum vect_relevant relevant, bool live_p,
225 bool used_in_pattern)
226 {
227 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
228 enum vect_relevant save_relevant = STMT_VINFO_RELEVANT (stmt_info);
229 bool save_live_p = STMT_VINFO_LIVE_P (stmt_info);
230 gimple pattern_stmt;
231
232 if (dump_enabled_p ())
233 dump_printf_loc (MSG_NOTE, vect_location,
234 "mark relevant %d, live %d.\n", relevant, live_p);
235
236 /* If this stmt is an original stmt in a pattern, we might need to mark its
237 related pattern stmt instead of the original stmt. However, such stmts
238 may have their own uses that are not in any pattern, in such cases the
239 stmt itself should be marked. */
240 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
241 {
242 bool found = false;
243 if (!used_in_pattern)
244 {
245 imm_use_iterator imm_iter;
246 use_operand_p use_p;
247 gimple use_stmt;
248 tree lhs;
249 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
250 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
251
252 if (is_gimple_assign (stmt))
253 lhs = gimple_assign_lhs (stmt);
254 else
255 lhs = gimple_call_lhs (stmt);
256
257 /* This use is out of pattern use, if LHS has other uses that are
258 pattern uses, we should mark the stmt itself, and not the pattern
259 stmt. */
260 if (lhs && TREE_CODE (lhs) == SSA_NAME)
261 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
262 {
263 if (is_gimple_debug (USE_STMT (use_p)))
264 continue;
265 use_stmt = USE_STMT (use_p);
266
267 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
268 continue;
269
270 if (vinfo_for_stmt (use_stmt)
271 && STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
272 {
273 found = true;
274 break;
275 }
276 }
277 }
278
279 if (!found)
280 {
281 /* This is the last stmt in a sequence that was detected as a
282 pattern that can potentially be vectorized. Don't mark the stmt
283 as relevant/live because it's not going to be vectorized.
284 Instead mark the pattern-stmt that replaces it. */
285
286 pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
287
288 if (dump_enabled_p ())
289 dump_printf_loc (MSG_NOTE, vect_location,
290 "last stmt in pattern. don't mark"
291 " relevant/live.\n");
292 stmt_info = vinfo_for_stmt (pattern_stmt);
293 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_info) == stmt);
294 save_relevant = STMT_VINFO_RELEVANT (stmt_info);
295 save_live_p = STMT_VINFO_LIVE_P (stmt_info);
296 stmt = pattern_stmt;
297 }
298 }
299
300 STMT_VINFO_LIVE_P (stmt_info) |= live_p;
301 if (relevant > STMT_VINFO_RELEVANT (stmt_info))
302 STMT_VINFO_RELEVANT (stmt_info) = relevant;
303
304 if (STMT_VINFO_RELEVANT (stmt_info) == save_relevant
305 && STMT_VINFO_LIVE_P (stmt_info) == save_live_p)
306 {
307 if (dump_enabled_p ())
308 dump_printf_loc (MSG_NOTE, vect_location,
309 "already marked relevant/live.\n");
310 return;
311 }
312
313 worklist->safe_push (stmt);
314 }
315
316
317 /* Function vect_stmt_relevant_p.
318
319 Return true if STMT in loop that is represented by LOOP_VINFO is
320 "relevant for vectorization".
321
322 A stmt is considered "relevant for vectorization" if:
323 - it has uses outside the loop.
324 - it has vdefs (it alters memory).
325 - control stmts in the loop (except for the exit condition).
326
327 CHECKME: what other side effects would the vectorizer allow? */
328
329 static bool
330 vect_stmt_relevant_p (gimple stmt, loop_vec_info loop_vinfo,
331 enum vect_relevant *relevant, bool *live_p)
332 {
333 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
334 ssa_op_iter op_iter;
335 imm_use_iterator imm_iter;
336 use_operand_p use_p;
337 def_operand_p def_p;
338
339 *relevant = vect_unused_in_scope;
340 *live_p = false;
341
342 /* cond stmt other than loop exit cond. */
343 if (is_ctrl_stmt (stmt)
344 && STMT_VINFO_TYPE (vinfo_for_stmt (stmt))
345 != loop_exit_ctrl_vec_info_type)
346 *relevant = vect_used_in_scope;
347
348 /* changing memory. */
349 if (gimple_code (stmt) != GIMPLE_PHI)
350 if (gimple_vdef (stmt)
351 && !gimple_clobber_p (stmt))
352 {
353 if (dump_enabled_p ())
354 dump_printf_loc (MSG_NOTE, vect_location,
355 "vec_stmt_relevant_p: stmt has vdefs.\n");
356 *relevant = vect_used_in_scope;
357 }
358
359 /* uses outside the loop. */
360 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
361 {
362 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p))
363 {
364 basic_block bb = gimple_bb (USE_STMT (use_p));
365 if (!flow_bb_inside_loop_p (loop, bb))
366 {
367 if (dump_enabled_p ())
368 dump_printf_loc (MSG_NOTE, vect_location,
369 "vec_stmt_relevant_p: used out of loop.\n");
370
371 if (is_gimple_debug (USE_STMT (use_p)))
372 continue;
373
374 /* We expect all such uses to be in the loop exit phis
375 (because of loop closed form) */
376 gcc_assert (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI);
377 gcc_assert (bb == single_exit (loop)->dest);
378
379 *live_p = true;
380 }
381 }
382 }
383
384 return (*live_p || *relevant);
385 }
386
387
388 /* Function exist_non_indexing_operands_for_use_p
389
390 USE is one of the uses attached to STMT. Check if USE is
391 used in STMT for anything other than indexing an array. */
392
393 static bool
394 exist_non_indexing_operands_for_use_p (tree use, gimple stmt)
395 {
396 tree operand;
397 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
398
399 /* USE corresponds to some operand in STMT. If there is no data
400 reference in STMT, then any operand that corresponds to USE
401 is not indexing an array. */
402 if (!STMT_VINFO_DATA_REF (stmt_info))
403 return true;
404
405 /* STMT has a data_ref. FORNOW this means that its of one of
406 the following forms:
407 -1- ARRAY_REF = var
408 -2- var = ARRAY_REF
409 (This should have been verified in analyze_data_refs).
410
411 'var' in the second case corresponds to a def, not a use,
412 so USE cannot correspond to any operands that are not used
413 for array indexing.
414
415 Therefore, all we need to check is if STMT falls into the
416 first case, and whether var corresponds to USE. */
417
418 if (!gimple_assign_copy_p (stmt))
419 {
420 if (is_gimple_call (stmt)
421 && gimple_call_internal_p (stmt))
422 switch (gimple_call_internal_fn (stmt))
423 {
424 case IFN_MASK_STORE:
425 operand = gimple_call_arg (stmt, 3);
426 if (operand == use)
427 return true;
428 /* FALLTHRU */
429 case IFN_MASK_LOAD:
430 operand = gimple_call_arg (stmt, 2);
431 if (operand == use)
432 return true;
433 break;
434 default:
435 break;
436 }
437 return false;
438 }
439
440 if (TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
441 return false;
442 operand = gimple_assign_rhs1 (stmt);
443 if (TREE_CODE (operand) != SSA_NAME)
444 return false;
445
446 if (operand == use)
447 return true;
448
449 return false;
450 }
451
452
453 /*
454 Function process_use.
455
456 Inputs:
457 - a USE in STMT in a loop represented by LOOP_VINFO
458 - LIVE_P, RELEVANT - enum values to be set in the STMT_VINFO of the stmt
459 that defined USE. This is done by calling mark_relevant and passing it
460 the WORKLIST (to add DEF_STMT to the WORKLIST in case it is relevant).
461 - FORCE is true if exist_non_indexing_operands_for_use_p check shouldn't
462 be performed.
463
464 Outputs:
465 Generally, LIVE_P and RELEVANT are used to define the liveness and
466 relevance info of the DEF_STMT of this USE:
467 STMT_VINFO_LIVE_P (DEF_STMT_info) <-- live_p
468 STMT_VINFO_RELEVANT (DEF_STMT_info) <-- relevant
469 Exceptions:
470 - case 1: If USE is used only for address computations (e.g. array indexing),
471 which does not need to be directly vectorized, then the liveness/relevance
472 of the respective DEF_STMT is left unchanged.
473 - case 2: If STMT is a reduction phi and DEF_STMT is a reduction stmt, we
474 skip DEF_STMT cause it had already been processed.
475 - case 3: If DEF_STMT and STMT are in different nests, then "relevant" will
476 be modified accordingly.
477
478 Return true if everything is as expected. Return false otherwise. */
479
480 static bool
481 process_use (gimple stmt, tree use, loop_vec_info loop_vinfo, bool live_p,
482 enum vect_relevant relevant, vec<gimple> *worklist,
483 bool force)
484 {
485 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
486 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
487 stmt_vec_info dstmt_vinfo;
488 basic_block bb, def_bb;
489 tree def;
490 gimple def_stmt;
491 enum vect_def_type dt;
492
493 /* case 1: we are only interested in uses that need to be vectorized. Uses
494 that are used for address computation are not considered relevant. */
495 if (!force && !exist_non_indexing_operands_for_use_p (use, stmt))
496 return true;
497
498 if (!vect_is_simple_use (use, stmt, loop_vinfo, NULL, &def_stmt, &def, &dt))
499 {
500 if (dump_enabled_p ())
501 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
502 "not vectorized: unsupported use in stmt.\n");
503 return false;
504 }
505
506 if (!def_stmt || gimple_nop_p (def_stmt))
507 return true;
508
509 def_bb = gimple_bb (def_stmt);
510 if (!flow_bb_inside_loop_p (loop, def_bb))
511 {
512 if (dump_enabled_p ())
513 dump_printf_loc (MSG_NOTE, vect_location, "def_stmt is out of loop.\n");
514 return true;
515 }
516
517 /* case 2: A reduction phi (STMT) defined by a reduction stmt (DEF_STMT).
518 DEF_STMT must have already been processed, because this should be the
519 only way that STMT, which is a reduction-phi, was put in the worklist,
520 as there should be no other uses for DEF_STMT in the loop. So we just
521 check that everything is as expected, and we are done. */
522 dstmt_vinfo = vinfo_for_stmt (def_stmt);
523 bb = gimple_bb (stmt);
524 if (gimple_code (stmt) == GIMPLE_PHI
525 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
526 && gimple_code (def_stmt) != GIMPLE_PHI
527 && STMT_VINFO_DEF_TYPE (dstmt_vinfo) == vect_reduction_def
528 && bb->loop_father == def_bb->loop_father)
529 {
530 if (dump_enabled_p ())
531 dump_printf_loc (MSG_NOTE, vect_location,
532 "reduc-stmt defining reduc-phi in the same nest.\n");
533 if (STMT_VINFO_IN_PATTERN_P (dstmt_vinfo))
534 dstmt_vinfo = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (dstmt_vinfo));
535 gcc_assert (STMT_VINFO_RELEVANT (dstmt_vinfo) < vect_used_by_reduction);
536 gcc_assert (STMT_VINFO_LIVE_P (dstmt_vinfo)
537 || STMT_VINFO_RELEVANT (dstmt_vinfo) > vect_unused_in_scope);
538 return true;
539 }
540
541 /* case 3a: outer-loop stmt defining an inner-loop stmt:
542 outer-loop-header-bb:
543 d = def_stmt
544 inner-loop:
545 stmt # use (d)
546 outer-loop-tail-bb:
547 ... */
548 if (flow_loop_nested_p (def_bb->loop_father, bb->loop_father))
549 {
550 if (dump_enabled_p ())
551 dump_printf_loc (MSG_NOTE, vect_location,
552 "outer-loop def-stmt defining inner-loop stmt.\n");
553
554 switch (relevant)
555 {
556 case vect_unused_in_scope:
557 relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_nested_cycle) ?
558 vect_used_in_scope : vect_unused_in_scope;
559 break;
560
561 case vect_used_in_outer_by_reduction:
562 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def);
563 relevant = vect_used_by_reduction;
564 break;
565
566 case vect_used_in_outer:
567 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def);
568 relevant = vect_used_in_scope;
569 break;
570
571 case vect_used_in_scope:
572 break;
573
574 default:
575 gcc_unreachable ();
576 }
577 }
578
579 /* case 3b: inner-loop stmt defining an outer-loop stmt:
580 outer-loop-header-bb:
581 ...
582 inner-loop:
583 d = def_stmt
584 outer-loop-tail-bb (or outer-loop-exit-bb in double reduction):
585 stmt # use (d) */
586 else if (flow_loop_nested_p (bb->loop_father, def_bb->loop_father))
587 {
588 if (dump_enabled_p ())
589 dump_printf_loc (MSG_NOTE, vect_location,
590 "inner-loop def-stmt defining outer-loop stmt.\n");
591
592 switch (relevant)
593 {
594 case vect_unused_in_scope:
595 relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
596 || STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_double_reduction_def) ?
597 vect_used_in_outer_by_reduction : vect_unused_in_scope;
598 break;
599
600 case vect_used_by_reduction:
601 relevant = vect_used_in_outer_by_reduction;
602 break;
603
604 case vect_used_in_scope:
605 relevant = vect_used_in_outer;
606 break;
607
608 default:
609 gcc_unreachable ();
610 }
611 }
612
613 vect_mark_relevant (worklist, def_stmt, relevant, live_p,
614 is_pattern_stmt_p (stmt_vinfo));
615 return true;
616 }
617
618
619 /* Function vect_mark_stmts_to_be_vectorized.
620
621 Not all stmts in the loop need to be vectorized. For example:
622
623 for i...
624 for j...
625 1. T0 = i + j
626 2. T1 = a[T0]
627
628 3. j = j + 1
629
630 Stmt 1 and 3 do not need to be vectorized, because loop control and
631 addressing of vectorized data-refs are handled differently.
632
633 This pass detects such stmts. */
634
635 bool
636 vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo)
637 {
638 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
639 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
640 unsigned int nbbs = loop->num_nodes;
641 gimple_stmt_iterator si;
642 gimple stmt;
643 unsigned int i;
644 stmt_vec_info stmt_vinfo;
645 basic_block bb;
646 gimple phi;
647 bool live_p;
648 enum vect_relevant relevant, tmp_relevant;
649 enum vect_def_type def_type;
650
651 if (dump_enabled_p ())
652 dump_printf_loc (MSG_NOTE, vect_location,
653 "=== vect_mark_stmts_to_be_vectorized ===\n");
654
655 auto_vec<gimple, 64> worklist;
656
657 /* 1. Init worklist. */
658 for (i = 0; i < nbbs; i++)
659 {
660 bb = bbs[i];
661 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
662 {
663 phi = gsi_stmt (si);
664 if (dump_enabled_p ())
665 {
666 dump_printf_loc (MSG_NOTE, vect_location, "init: phi relevant? ");
667 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
668 }
669
670 if (vect_stmt_relevant_p (phi, loop_vinfo, &relevant, &live_p))
671 vect_mark_relevant (&worklist, phi, relevant, live_p, false);
672 }
673 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
674 {
675 stmt = gsi_stmt (si);
676 if (dump_enabled_p ())
677 {
678 dump_printf_loc (MSG_NOTE, vect_location, "init: stmt relevant? ");
679 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
680 }
681
682 if (vect_stmt_relevant_p (stmt, loop_vinfo, &relevant, &live_p))
683 vect_mark_relevant (&worklist, stmt, relevant, live_p, false);
684 }
685 }
686
687 /* 2. Process_worklist */
688 while (worklist.length () > 0)
689 {
690 use_operand_p use_p;
691 ssa_op_iter iter;
692
693 stmt = worklist.pop ();
694 if (dump_enabled_p ())
695 {
696 dump_printf_loc (MSG_NOTE, vect_location, "worklist: examine stmt: ");
697 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
698 }
699
700 /* Examine the USEs of STMT. For each USE, mark the stmt that defines it
701 (DEF_STMT) as relevant/irrelevant and live/dead according to the
702 liveness and relevance properties of STMT. */
703 stmt_vinfo = vinfo_for_stmt (stmt);
704 relevant = STMT_VINFO_RELEVANT (stmt_vinfo);
705 live_p = STMT_VINFO_LIVE_P (stmt_vinfo);
706
707 /* Generally, the liveness and relevance properties of STMT are
708 propagated as is to the DEF_STMTs of its USEs:
709 live_p <-- STMT_VINFO_LIVE_P (STMT_VINFO)
710 relevant <-- STMT_VINFO_RELEVANT (STMT_VINFO)
711
712 One exception is when STMT has been identified as defining a reduction
713 variable; in this case we set the liveness/relevance as follows:
714 live_p = false
715 relevant = vect_used_by_reduction
716 This is because we distinguish between two kinds of relevant stmts -
717 those that are used by a reduction computation, and those that are
718 (also) used by a regular computation. This allows us later on to
719 identify stmts that are used solely by a reduction, and therefore the
720 order of the results that they produce does not have to be kept. */
721
722 def_type = STMT_VINFO_DEF_TYPE (stmt_vinfo);
723 tmp_relevant = relevant;
724 switch (def_type)
725 {
726 case vect_reduction_def:
727 switch (tmp_relevant)
728 {
729 case vect_unused_in_scope:
730 relevant = vect_used_by_reduction;
731 break;
732
733 case vect_used_by_reduction:
734 if (gimple_code (stmt) == GIMPLE_PHI)
735 break;
736 /* fall through */
737
738 default:
739 if (dump_enabled_p ())
740 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
741 "unsupported use of reduction.\n");
742 return false;
743 }
744
745 live_p = false;
746 break;
747
748 case vect_nested_cycle:
749 if (tmp_relevant != vect_unused_in_scope
750 && tmp_relevant != vect_used_in_outer_by_reduction
751 && tmp_relevant != vect_used_in_outer)
752 {
753 if (dump_enabled_p ())
754 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
755 "unsupported use of nested cycle.\n");
756
757 return false;
758 }
759
760 live_p = false;
761 break;
762
763 case vect_double_reduction_def:
764 if (tmp_relevant != vect_unused_in_scope
765 && tmp_relevant != vect_used_by_reduction)
766 {
767 if (dump_enabled_p ())
768 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
769 "unsupported use of double reduction.\n");
770
771 return false;
772 }
773
774 live_p = false;
775 break;
776
777 default:
778 break;
779 }
780
781 if (is_pattern_stmt_p (stmt_vinfo))
782 {
783 /* Pattern statements are not inserted into the code, so
784 FOR_EACH_PHI_OR_STMT_USE optimizes their operands out, and we
785 have to scan the RHS or function arguments instead. */
786 if (is_gimple_assign (stmt))
787 {
788 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
789 tree op = gimple_assign_rhs1 (stmt);
790
791 i = 1;
792 if (rhs_code == COND_EXPR && COMPARISON_CLASS_P (op))
793 {
794 if (!process_use (stmt, TREE_OPERAND (op, 0), loop_vinfo,
795 live_p, relevant, &worklist, false)
796 || !process_use (stmt, TREE_OPERAND (op, 1), loop_vinfo,
797 live_p, relevant, &worklist, false))
798 return false;
799 i = 2;
800 }
801 for (; i < gimple_num_ops (stmt); i++)
802 {
803 op = gimple_op (stmt, i);
804 if (TREE_CODE (op) == SSA_NAME
805 && !process_use (stmt, op, loop_vinfo, live_p, relevant,
806 &worklist, false))
807 return false;
808 }
809 }
810 else if (is_gimple_call (stmt))
811 {
812 for (i = 0; i < gimple_call_num_args (stmt); i++)
813 {
814 tree arg = gimple_call_arg (stmt, i);
815 if (!process_use (stmt, arg, loop_vinfo, live_p, relevant,
816 &worklist, false))
817 return false;
818 }
819 }
820 }
821 else
822 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
823 {
824 tree op = USE_FROM_PTR (use_p);
825 if (!process_use (stmt, op, loop_vinfo, live_p, relevant,
826 &worklist, false))
827 return false;
828 }
829
830 if (STMT_VINFO_GATHER_P (stmt_vinfo))
831 {
832 tree off;
833 tree decl = vect_check_gather (stmt, loop_vinfo, NULL, &off, NULL);
834 gcc_assert (decl);
835 if (!process_use (stmt, off, loop_vinfo, live_p, relevant,
836 &worklist, true))
837 return false;
838 }
839 } /* while worklist */
840
841 return true;
842 }
843
844
845 /* Function vect_model_simple_cost.
846
847 Models cost for simple operations, i.e. those that only emit ncopies of a
848 single op. Right now, this does not account for multiple insns that could
849 be generated for the single vector op. We will handle that shortly. */
850
851 void
852 vect_model_simple_cost (stmt_vec_info stmt_info, int ncopies,
853 enum vect_def_type *dt,
854 stmt_vector_for_cost *prologue_cost_vec,
855 stmt_vector_for_cost *body_cost_vec)
856 {
857 int i;
858 int inside_cost = 0, prologue_cost = 0;
859
860 /* The SLP costs were already calculated during SLP tree build. */
861 if (PURE_SLP_STMT (stmt_info))
862 return;
863
864 /* FORNOW: Assuming maximum 2 args per stmts. */
865 for (i = 0; i < 2; i++)
866 if (dt[i] == vect_constant_def || dt[i] == vect_external_def)
867 prologue_cost += record_stmt_cost (prologue_cost_vec, 1, vector_stmt,
868 stmt_info, 0, vect_prologue);
869
870 /* Pass the inside-of-loop statements to the target-specific cost model. */
871 inside_cost = record_stmt_cost (body_cost_vec, ncopies, vector_stmt,
872 stmt_info, 0, vect_body);
873
874 if (dump_enabled_p ())
875 dump_printf_loc (MSG_NOTE, vect_location,
876 "vect_model_simple_cost: inside_cost = %d, "
877 "prologue_cost = %d .\n", inside_cost, prologue_cost);
878 }
879
880
881 /* Model cost for type demotion and promotion operations. PWR is normally
882 zero for single-step promotions and demotions. It will be one if
883 two-step promotion/demotion is required, and so on. Each additional
884 step doubles the number of instructions required. */
885
886 static void
887 vect_model_promotion_demotion_cost (stmt_vec_info stmt_info,
888 enum vect_def_type *dt, int pwr)
889 {
890 int i, tmp;
891 int inside_cost = 0, prologue_cost = 0;
892 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
893 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
894 void *target_cost_data;
895
896 /* The SLP costs were already calculated during SLP tree build. */
897 if (PURE_SLP_STMT (stmt_info))
898 return;
899
900 if (loop_vinfo)
901 target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
902 else
903 target_cost_data = BB_VINFO_TARGET_COST_DATA (bb_vinfo);
904
905 for (i = 0; i < pwr + 1; i++)
906 {
907 tmp = (STMT_VINFO_TYPE (stmt_info) == type_promotion_vec_info_type) ?
908 (i + 1) : i;
909 inside_cost += add_stmt_cost (target_cost_data, vect_pow2 (tmp),
910 vec_promote_demote, stmt_info, 0,
911 vect_body);
912 }
913
914 /* FORNOW: Assuming maximum 2 args per stmts. */
915 for (i = 0; i < 2; i++)
916 if (dt[i] == vect_constant_def || dt[i] == vect_external_def)
917 prologue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
918 stmt_info, 0, vect_prologue);
919
920 if (dump_enabled_p ())
921 dump_printf_loc (MSG_NOTE, vect_location,
922 "vect_model_promotion_demotion_cost: inside_cost = %d, "
923 "prologue_cost = %d .\n", inside_cost, prologue_cost);
924 }
925
926 /* Function vect_cost_group_size
927
928 For grouped load or store, return the group_size only if it is the first
929 load or store of a group, else return 1. This ensures that group size is
930 only returned once per group. */
931
932 static int
933 vect_cost_group_size (stmt_vec_info stmt_info)
934 {
935 gimple first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
936
937 if (first_stmt == STMT_VINFO_STMT (stmt_info))
938 return GROUP_SIZE (stmt_info);
939
940 return 1;
941 }
942
943
944 /* Function vect_model_store_cost
945
946 Models cost for stores. In the case of grouped accesses, one access
947 has the overhead of the grouped access attributed to it. */
948
949 void
950 vect_model_store_cost (stmt_vec_info stmt_info, int ncopies,
951 bool store_lanes_p, enum vect_def_type dt,
952 slp_tree slp_node,
953 stmt_vector_for_cost *prologue_cost_vec,
954 stmt_vector_for_cost *body_cost_vec)
955 {
956 int group_size;
957 unsigned int inside_cost = 0, prologue_cost = 0;
958 struct data_reference *first_dr;
959 gimple first_stmt;
960
961 if (dt == vect_constant_def || dt == vect_external_def)
962 prologue_cost += record_stmt_cost (prologue_cost_vec, 1, scalar_to_vec,
963 stmt_info, 0, vect_prologue);
964
965 /* Grouped access? */
966 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
967 {
968 if (slp_node)
969 {
970 first_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[0];
971 group_size = 1;
972 }
973 else
974 {
975 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
976 group_size = vect_cost_group_size (stmt_info);
977 }
978
979 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
980 }
981 /* Not a grouped access. */
982 else
983 {
984 group_size = 1;
985 first_dr = STMT_VINFO_DATA_REF (stmt_info);
986 }
987
988 /* We assume that the cost of a single store-lanes instruction is
989 equivalent to the cost of GROUP_SIZE separate stores. If a grouped
990 access is instead being provided by a permute-and-store operation,
991 include the cost of the permutes. */
992 if (!store_lanes_p && group_size > 1
993 && !STMT_VINFO_STRIDED_P (stmt_info))
994 {
995 /* Uses a high and low interleave or shuffle operations for each
996 needed permute. */
997 int nstmts = ncopies * ceil_log2 (group_size) * group_size;
998 inside_cost = record_stmt_cost (body_cost_vec, nstmts, vec_perm,
999 stmt_info, 0, vect_body);
1000
1001 if (dump_enabled_p ())
1002 dump_printf_loc (MSG_NOTE, vect_location,
1003 "vect_model_store_cost: strided group_size = %d .\n",
1004 group_size);
1005 }
1006
1007 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1008 /* Costs of the stores. */
1009 if (STMT_VINFO_STRIDED_P (stmt_info)
1010 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1011 {
1012 /* N scalar stores plus extracting the elements. */
1013 inside_cost += record_stmt_cost (body_cost_vec,
1014 ncopies * TYPE_VECTOR_SUBPARTS (vectype),
1015 scalar_store, stmt_info, 0, vect_body);
1016 }
1017 else
1018 vect_get_store_cost (first_dr, ncopies, &inside_cost, body_cost_vec);
1019
1020 if (STMT_VINFO_STRIDED_P (stmt_info))
1021 inside_cost += record_stmt_cost (body_cost_vec,
1022 ncopies * TYPE_VECTOR_SUBPARTS (vectype),
1023 vec_to_scalar, stmt_info, 0, vect_body);
1024
1025 if (dump_enabled_p ())
1026 dump_printf_loc (MSG_NOTE, vect_location,
1027 "vect_model_store_cost: inside_cost = %d, "
1028 "prologue_cost = %d .\n", inside_cost, prologue_cost);
1029 }
1030
1031
1032 /* Calculate cost of DR's memory access. */
1033 void
1034 vect_get_store_cost (struct data_reference *dr, int ncopies,
1035 unsigned int *inside_cost,
1036 stmt_vector_for_cost *body_cost_vec)
1037 {
1038 int alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
1039 gimple stmt = DR_STMT (dr);
1040 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1041
1042 switch (alignment_support_scheme)
1043 {
1044 case dr_aligned:
1045 {
1046 *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
1047 vector_store, stmt_info, 0,
1048 vect_body);
1049
1050 if (dump_enabled_p ())
1051 dump_printf_loc (MSG_NOTE, vect_location,
1052 "vect_model_store_cost: aligned.\n");
1053 break;
1054 }
1055
1056 case dr_unaligned_supported:
1057 {
1058 /* Here, we assign an additional cost for the unaligned store. */
1059 *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
1060 unaligned_store, stmt_info,
1061 DR_MISALIGNMENT (dr), vect_body);
1062 if (dump_enabled_p ())
1063 dump_printf_loc (MSG_NOTE, vect_location,
1064 "vect_model_store_cost: unaligned supported by "
1065 "hardware.\n");
1066 break;
1067 }
1068
1069 case dr_unaligned_unsupported:
1070 {
1071 *inside_cost = VECT_MAX_COST;
1072
1073 if (dump_enabled_p ())
1074 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1075 "vect_model_store_cost: unsupported access.\n");
1076 break;
1077 }
1078
1079 default:
1080 gcc_unreachable ();
1081 }
1082 }
1083
1084
1085 /* Function vect_model_load_cost
1086
1087 Models cost for loads. In the case of grouped accesses, the last access
1088 has the overhead of the grouped access attributed to it. Since unaligned
1089 accesses are supported for loads, we also account for the costs of the
1090 access scheme chosen. */
1091
1092 void
1093 vect_model_load_cost (stmt_vec_info stmt_info, int ncopies,
1094 bool load_lanes_p, slp_tree slp_node,
1095 stmt_vector_for_cost *prologue_cost_vec,
1096 stmt_vector_for_cost *body_cost_vec)
1097 {
1098 int group_size;
1099 gimple first_stmt;
1100 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr;
1101 unsigned int inside_cost = 0, prologue_cost = 0;
1102
1103 /* Grouped accesses? */
1104 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
1105 if (STMT_VINFO_GROUPED_ACCESS (stmt_info) && first_stmt && !slp_node)
1106 {
1107 group_size = vect_cost_group_size (stmt_info);
1108 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
1109 }
1110 /* Not a grouped access. */
1111 else
1112 {
1113 group_size = 1;
1114 first_dr = dr;
1115 }
1116
1117 /* We assume that the cost of a single load-lanes instruction is
1118 equivalent to the cost of GROUP_SIZE separate loads. If a grouped
1119 access is instead being provided by a load-and-permute operation,
1120 include the cost of the permutes. */
1121 if (!load_lanes_p && group_size > 1
1122 && !STMT_VINFO_STRIDED_P (stmt_info))
1123 {
1124 /* Uses an even and odd extract operations or shuffle operations
1125 for each needed permute. */
1126 int nstmts = ncopies * ceil_log2 (group_size) * group_size;
1127 inside_cost = record_stmt_cost (body_cost_vec, nstmts, vec_perm,
1128 stmt_info, 0, vect_body);
1129
1130 if (dump_enabled_p ())
1131 dump_printf_loc (MSG_NOTE, vect_location,
1132 "vect_model_load_cost: strided group_size = %d .\n",
1133 group_size);
1134 }
1135
1136 /* The loads themselves. */
1137 if (STMT_VINFO_STRIDED_P (stmt_info)
1138 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1139 {
1140 /* N scalar loads plus gathering them into a vector. */
1141 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1142 inside_cost += record_stmt_cost (body_cost_vec,
1143 ncopies * TYPE_VECTOR_SUBPARTS (vectype),
1144 scalar_load, stmt_info, 0, vect_body);
1145 }
1146 else
1147 vect_get_load_cost (first_dr, ncopies,
1148 ((!STMT_VINFO_GROUPED_ACCESS (stmt_info))
1149 || group_size > 1 || slp_node),
1150 &inside_cost, &prologue_cost,
1151 prologue_cost_vec, body_cost_vec, true);
1152 if (STMT_VINFO_STRIDED_P (stmt_info))
1153 inside_cost += record_stmt_cost (body_cost_vec, ncopies, vec_construct,
1154 stmt_info, 0, vect_body);
1155
1156 if (dump_enabled_p ())
1157 dump_printf_loc (MSG_NOTE, vect_location,
1158 "vect_model_load_cost: inside_cost = %d, "
1159 "prologue_cost = %d .\n", inside_cost, prologue_cost);
1160 }
1161
1162
1163 /* Calculate cost of DR's memory access. */
1164 void
1165 vect_get_load_cost (struct data_reference *dr, int ncopies,
1166 bool add_realign_cost, unsigned int *inside_cost,
1167 unsigned int *prologue_cost,
1168 stmt_vector_for_cost *prologue_cost_vec,
1169 stmt_vector_for_cost *body_cost_vec,
1170 bool record_prologue_costs)
1171 {
1172 int alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
1173 gimple stmt = DR_STMT (dr);
1174 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1175
1176 switch (alignment_support_scheme)
1177 {
1178 case dr_aligned:
1179 {
1180 *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vector_load,
1181 stmt_info, 0, vect_body);
1182
1183 if (dump_enabled_p ())
1184 dump_printf_loc (MSG_NOTE, vect_location,
1185 "vect_model_load_cost: aligned.\n");
1186
1187 break;
1188 }
1189 case dr_unaligned_supported:
1190 {
1191 /* Here, we assign an additional cost for the unaligned load. */
1192 *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
1193 unaligned_load, stmt_info,
1194 DR_MISALIGNMENT (dr), vect_body);
1195
1196 if (dump_enabled_p ())
1197 dump_printf_loc (MSG_NOTE, vect_location,
1198 "vect_model_load_cost: unaligned supported by "
1199 "hardware.\n");
1200
1201 break;
1202 }
1203 case dr_explicit_realign:
1204 {
1205 *inside_cost += record_stmt_cost (body_cost_vec, ncopies * 2,
1206 vector_load, stmt_info, 0, vect_body);
1207 *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
1208 vec_perm, stmt_info, 0, vect_body);
1209
1210 /* FIXME: If the misalignment remains fixed across the iterations of
1211 the containing loop, the following cost should be added to the
1212 prologue costs. */
1213 if (targetm.vectorize.builtin_mask_for_load)
1214 *inside_cost += record_stmt_cost (body_cost_vec, 1, vector_stmt,
1215 stmt_info, 0, vect_body);
1216
1217 if (dump_enabled_p ())
1218 dump_printf_loc (MSG_NOTE, vect_location,
1219 "vect_model_load_cost: explicit realign\n");
1220
1221 break;
1222 }
1223 case dr_explicit_realign_optimized:
1224 {
1225 if (dump_enabled_p ())
1226 dump_printf_loc (MSG_NOTE, vect_location,
1227 "vect_model_load_cost: unaligned software "
1228 "pipelined.\n");
1229
1230 /* Unaligned software pipeline has a load of an address, an initial
1231 load, and possibly a mask operation to "prime" the loop. However,
1232 if this is an access in a group of loads, which provide grouped
1233 access, then the above cost should only be considered for one
1234 access in the group. Inside the loop, there is a load op
1235 and a realignment op. */
1236
1237 if (add_realign_cost && record_prologue_costs)
1238 {
1239 *prologue_cost += record_stmt_cost (prologue_cost_vec, 2,
1240 vector_stmt, stmt_info,
1241 0, vect_prologue);
1242 if (targetm.vectorize.builtin_mask_for_load)
1243 *prologue_cost += record_stmt_cost (prologue_cost_vec, 1,
1244 vector_stmt, stmt_info,
1245 0, vect_prologue);
1246 }
1247
1248 *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vector_load,
1249 stmt_info, 0, vect_body);
1250 *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vec_perm,
1251 stmt_info, 0, vect_body);
1252
1253 if (dump_enabled_p ())
1254 dump_printf_loc (MSG_NOTE, vect_location,
1255 "vect_model_load_cost: explicit realign optimized"
1256 "\n");
1257
1258 break;
1259 }
1260
1261 case dr_unaligned_unsupported:
1262 {
1263 *inside_cost = VECT_MAX_COST;
1264
1265 if (dump_enabled_p ())
1266 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1267 "vect_model_load_cost: unsupported access.\n");
1268 break;
1269 }
1270
1271 default:
1272 gcc_unreachable ();
1273 }
1274 }
1275
1276 /* Insert the new stmt NEW_STMT at *GSI or at the appropriate place in
1277 the loop preheader for the vectorized stmt STMT. */
1278
1279 static void
1280 vect_init_vector_1 (gimple stmt, gimple new_stmt, gimple_stmt_iterator *gsi)
1281 {
1282 if (gsi)
1283 vect_finish_stmt_generation (stmt, new_stmt, gsi);
1284 else
1285 {
1286 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
1287 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
1288
1289 if (loop_vinfo)
1290 {
1291 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1292 basic_block new_bb;
1293 edge pe;
1294
1295 if (nested_in_vect_loop_p (loop, stmt))
1296 loop = loop->inner;
1297
1298 pe = loop_preheader_edge (loop);
1299 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
1300 gcc_assert (!new_bb);
1301 }
1302 else
1303 {
1304 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo);
1305 basic_block bb;
1306 gimple_stmt_iterator gsi_bb_start;
1307
1308 gcc_assert (bb_vinfo);
1309 bb = BB_VINFO_BB (bb_vinfo);
1310 gsi_bb_start = gsi_after_labels (bb);
1311 gsi_insert_before (&gsi_bb_start, new_stmt, GSI_SAME_STMT);
1312 }
1313 }
1314
1315 if (dump_enabled_p ())
1316 {
1317 dump_printf_loc (MSG_NOTE, vect_location,
1318 "created new init_stmt: ");
1319 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
1320 }
1321 }
1322
1323 /* Function vect_init_vector.
1324
1325 Insert a new stmt (INIT_STMT) that initializes a new variable of type
1326 TYPE with the value VAL. If TYPE is a vector type and VAL does not have
1327 vector type a vector with all elements equal to VAL is created first.
1328 Place the initialization at BSI if it is not NULL. Otherwise, place the
1329 initialization at the loop preheader.
1330 Return the DEF of INIT_STMT.
1331 It will be used in the vectorization of STMT. */
1332
1333 tree
1334 vect_init_vector (gimple stmt, tree val, tree type, gimple_stmt_iterator *gsi)
1335 {
1336 tree new_var;
1337 gimple init_stmt;
1338 tree vec_oprnd;
1339 tree new_temp;
1340
1341 if (TREE_CODE (type) == VECTOR_TYPE
1342 && TREE_CODE (TREE_TYPE (val)) != VECTOR_TYPE)
1343 {
1344 if (!types_compatible_p (TREE_TYPE (type), TREE_TYPE (val)))
1345 {
1346 if (CONSTANT_CLASS_P (val))
1347 val = fold_unary (VIEW_CONVERT_EXPR, TREE_TYPE (type), val);
1348 else
1349 {
1350 new_temp = make_ssa_name (TREE_TYPE (type));
1351 init_stmt = gimple_build_assign (new_temp, NOP_EXPR, val);
1352 vect_init_vector_1 (stmt, init_stmt, gsi);
1353 val = new_temp;
1354 }
1355 }
1356 val = build_vector_from_val (type, val);
1357 }
1358
1359 new_var = vect_get_new_vect_var (type, vect_simple_var, "cst_");
1360 init_stmt = gimple_build_assign (new_var, val);
1361 new_temp = make_ssa_name (new_var, init_stmt);
1362 gimple_assign_set_lhs (init_stmt, new_temp);
1363 vect_init_vector_1 (stmt, init_stmt, gsi);
1364 vec_oprnd = gimple_assign_lhs (init_stmt);
1365 return vec_oprnd;
1366 }
1367
1368
1369 /* Function vect_get_vec_def_for_operand.
1370
1371 OP is an operand in STMT. This function returns a (vector) def that will be
1372 used in the vectorized stmt for STMT.
1373
1374 In the case that OP is an SSA_NAME which is defined in the loop, then
1375 STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.
1376
1377 In case OP is an invariant or constant, a new stmt that creates a vector def
1378 needs to be introduced. */
1379
1380 tree
1381 vect_get_vec_def_for_operand (tree op, gimple stmt, tree *scalar_def)
1382 {
1383 tree vec_oprnd;
1384 gimple vec_stmt;
1385 gimple def_stmt;
1386 stmt_vec_info def_stmt_info = NULL;
1387 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
1388 unsigned int nunits;
1389 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
1390 tree def;
1391 enum vect_def_type dt;
1392 bool is_simple_use;
1393 tree vector_type;
1394
1395 if (dump_enabled_p ())
1396 {
1397 dump_printf_loc (MSG_NOTE, vect_location,
1398 "vect_get_vec_def_for_operand: ");
1399 dump_generic_expr (MSG_NOTE, TDF_SLIM, op);
1400 dump_printf (MSG_NOTE, "\n");
1401 }
1402
1403 is_simple_use = vect_is_simple_use (op, stmt, loop_vinfo, NULL,
1404 &def_stmt, &def, &dt);
1405 gcc_assert (is_simple_use);
1406 if (dump_enabled_p ())
1407 {
1408 int loc_printed = 0;
1409 if (def)
1410 {
1411 dump_printf_loc (MSG_NOTE, vect_location, "def = ");
1412 loc_printed = 1;
1413 dump_generic_expr (MSG_NOTE, TDF_SLIM, def);
1414 dump_printf (MSG_NOTE, "\n");
1415 }
1416 if (def_stmt)
1417 {
1418 if (loc_printed)
1419 dump_printf (MSG_NOTE, " def_stmt = ");
1420 else
1421 dump_printf_loc (MSG_NOTE, vect_location, " def_stmt = ");
1422 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
1423 }
1424 }
1425
1426 switch (dt)
1427 {
1428 /* Case 1: operand is a constant. */
1429 case vect_constant_def:
1430 {
1431 vector_type = get_vectype_for_scalar_type (TREE_TYPE (op));
1432 gcc_assert (vector_type);
1433 nunits = TYPE_VECTOR_SUBPARTS (vector_type);
1434
1435 if (scalar_def)
1436 *scalar_def = op;
1437
1438 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1439 if (dump_enabled_p ())
1440 dump_printf_loc (MSG_NOTE, vect_location,
1441 "Create vector_cst. nunits = %d\n", nunits);
1442
1443 return vect_init_vector (stmt, op, vector_type, NULL);
1444 }
1445
1446 /* Case 2: operand is defined outside the loop - loop invariant. */
1447 case vect_external_def:
1448 {
1449 vector_type = get_vectype_for_scalar_type (TREE_TYPE (def));
1450 gcc_assert (vector_type);
1451
1452 if (scalar_def)
1453 *scalar_def = def;
1454
1455 /* Create 'vec_inv = {inv,inv,..,inv}' */
1456 if (dump_enabled_p ())
1457 dump_printf_loc (MSG_NOTE, vect_location, "Create vector_inv.\n");
1458
1459 return vect_init_vector (stmt, def, vector_type, NULL);
1460 }
1461
1462 /* Case 3: operand is defined inside the loop. */
1463 case vect_internal_def:
1464 {
1465 if (scalar_def)
1466 *scalar_def = NULL/* FIXME tuples: def_stmt*/;
1467
1468 /* Get the def from the vectorized stmt. */
1469 def_stmt_info = vinfo_for_stmt (def_stmt);
1470
1471 vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
1472 /* Get vectorized pattern statement. */
1473 if (!vec_stmt
1474 && STMT_VINFO_IN_PATTERN_P (def_stmt_info)
1475 && !STMT_VINFO_RELEVANT (def_stmt_info))
1476 vec_stmt = STMT_VINFO_VEC_STMT (vinfo_for_stmt (
1477 STMT_VINFO_RELATED_STMT (def_stmt_info)));
1478 gcc_assert (vec_stmt);
1479 if (gimple_code (vec_stmt) == GIMPLE_PHI)
1480 vec_oprnd = PHI_RESULT (vec_stmt);
1481 else if (is_gimple_call (vec_stmt))
1482 vec_oprnd = gimple_call_lhs (vec_stmt);
1483 else
1484 vec_oprnd = gimple_assign_lhs (vec_stmt);
1485 return vec_oprnd;
1486 }
1487
1488 /* Case 4: operand is defined by a loop header phi - reduction */
1489 case vect_reduction_def:
1490 case vect_double_reduction_def:
1491 case vect_nested_cycle:
1492 {
1493 struct loop *loop;
1494
1495 gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
1496 loop = (gimple_bb (def_stmt))->loop_father;
1497
1498 /* Get the def before the loop */
1499 op = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
1500 return get_initial_def_for_reduction (stmt, op, scalar_def);
1501 }
1502
1503 /* Case 5: operand is defined by loop-header phi - induction. */
1504 case vect_induction_def:
1505 {
1506 gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
1507
1508 /* Get the def from the vectorized stmt. */
1509 def_stmt_info = vinfo_for_stmt (def_stmt);
1510 vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
1511 if (gimple_code (vec_stmt) == GIMPLE_PHI)
1512 vec_oprnd = PHI_RESULT (vec_stmt);
1513 else
1514 vec_oprnd = gimple_get_lhs (vec_stmt);
1515 return vec_oprnd;
1516 }
1517
1518 default:
1519 gcc_unreachable ();
1520 }
1521 }
1522
1523
1524 /* Function vect_get_vec_def_for_stmt_copy
1525
1526 Return a vector-def for an operand. This function is used when the
1527 vectorized stmt to be created (by the caller to this function) is a "copy"
1528 created in case the vectorized result cannot fit in one vector, and several
1529 copies of the vector-stmt are required. In this case the vector-def is
1530 retrieved from the vector stmt recorded in the STMT_VINFO_RELATED_STMT field
1531 of the stmt that defines VEC_OPRND.
1532 DT is the type of the vector def VEC_OPRND.
1533
1534 Context:
1535 In case the vectorization factor (VF) is bigger than the number
1536 of elements that can fit in a vectype (nunits), we have to generate
1537 more than one vector stmt to vectorize the scalar stmt. This situation
1538 arises when there are multiple data-types operated upon in the loop; the
1539 smallest data-type determines the VF, and as a result, when vectorizing
1540 stmts operating on wider types we need to create 'VF/nunits' "copies" of the
1541 vector stmt (each computing a vector of 'nunits' results, and together
1542 computing 'VF' results in each iteration). This function is called when
1543 vectorizing such a stmt (e.g. vectorizing S2 in the illustration below, in
1544 which VF=16 and nunits=4, so the number of copies required is 4):
1545
1546 scalar stmt: vectorized into: STMT_VINFO_RELATED_STMT
1547
1548 S1: x = load VS1.0: vx.0 = memref0 VS1.1
1549 VS1.1: vx.1 = memref1 VS1.2
1550 VS1.2: vx.2 = memref2 VS1.3
1551 VS1.3: vx.3 = memref3
1552
1553 S2: z = x + ... VSnew.0: vz0 = vx.0 + ... VSnew.1
1554 VSnew.1: vz1 = vx.1 + ... VSnew.2
1555 VSnew.2: vz2 = vx.2 + ... VSnew.3
1556 VSnew.3: vz3 = vx.3 + ...
1557
1558 The vectorization of S1 is explained in vectorizable_load.
1559 The vectorization of S2:
1560 To create the first vector-stmt out of the 4 copies - VSnew.0 -
1561 the function 'vect_get_vec_def_for_operand' is called to
1562 get the relevant vector-def for each operand of S2. For operand x it
1563 returns the vector-def 'vx.0'.
1564
1565 To create the remaining copies of the vector-stmt (VSnew.j), this
1566 function is called to get the relevant vector-def for each operand. It is
1567 obtained from the respective VS1.j stmt, which is recorded in the
1568 STMT_VINFO_RELATED_STMT field of the stmt that defines VEC_OPRND.
1569
1570 For example, to obtain the vector-def 'vx.1' in order to create the
1571 vector stmt 'VSnew.1', this function is called with VEC_OPRND='vx.0'.
1572 Given 'vx0' we obtain the stmt that defines it ('VS1.0'); from the
1573 STMT_VINFO_RELATED_STMT field of 'VS1.0' we obtain the next copy - 'VS1.1',
1574 and return its def ('vx.1').
1575 Overall, to create the above sequence this function will be called 3 times:
1576 vx.1 = vect_get_vec_def_for_stmt_copy (dt, vx.0);
1577 vx.2 = vect_get_vec_def_for_stmt_copy (dt, vx.1);
1578 vx.3 = vect_get_vec_def_for_stmt_copy (dt, vx.2); */
1579
1580 tree
1581 vect_get_vec_def_for_stmt_copy (enum vect_def_type dt, tree vec_oprnd)
1582 {
1583 gimple vec_stmt_for_operand;
1584 stmt_vec_info def_stmt_info;
1585
1586 /* Do nothing; can reuse same def. */
1587 if (dt == vect_external_def || dt == vect_constant_def )
1588 return vec_oprnd;
1589
1590 vec_stmt_for_operand = SSA_NAME_DEF_STMT (vec_oprnd);
1591 def_stmt_info = vinfo_for_stmt (vec_stmt_for_operand);
1592 gcc_assert (def_stmt_info);
1593 vec_stmt_for_operand = STMT_VINFO_RELATED_STMT (def_stmt_info);
1594 gcc_assert (vec_stmt_for_operand);
1595 vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
1596 if (gimple_code (vec_stmt_for_operand) == GIMPLE_PHI)
1597 vec_oprnd = PHI_RESULT (vec_stmt_for_operand);
1598 else
1599 vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
1600 return vec_oprnd;
1601 }
1602
1603
1604 /* Get vectorized definitions for the operands to create a copy of an original
1605 stmt. See vect_get_vec_def_for_stmt_copy () for details. */
1606
1607 static void
1608 vect_get_vec_defs_for_stmt_copy (enum vect_def_type *dt,
1609 vec<tree> *vec_oprnds0,
1610 vec<tree> *vec_oprnds1)
1611 {
1612 tree vec_oprnd = vec_oprnds0->pop ();
1613
1614 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd);
1615 vec_oprnds0->quick_push (vec_oprnd);
1616
1617 if (vec_oprnds1 && vec_oprnds1->length ())
1618 {
1619 vec_oprnd = vec_oprnds1->pop ();
1620 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd);
1621 vec_oprnds1->quick_push (vec_oprnd);
1622 }
1623 }
1624
1625
1626 /* Get vectorized definitions for OP0 and OP1.
1627 REDUC_INDEX is the index of reduction operand in case of reduction,
1628 and -1 otherwise. */
1629
1630 void
1631 vect_get_vec_defs (tree op0, tree op1, gimple stmt,
1632 vec<tree> *vec_oprnds0,
1633 vec<tree> *vec_oprnds1,
1634 slp_tree slp_node, int reduc_index)
1635 {
1636 if (slp_node)
1637 {
1638 int nops = (op1 == NULL_TREE) ? 1 : 2;
1639 auto_vec<tree> ops (nops);
1640 auto_vec<vec<tree> > vec_defs (nops);
1641
1642 ops.quick_push (op0);
1643 if (op1)
1644 ops.quick_push (op1);
1645
1646 vect_get_slp_defs (ops, slp_node, &vec_defs, reduc_index);
1647
1648 *vec_oprnds0 = vec_defs[0];
1649 if (op1)
1650 *vec_oprnds1 = vec_defs[1];
1651 }
1652 else
1653 {
1654 tree vec_oprnd;
1655
1656 vec_oprnds0->create (1);
1657 vec_oprnd = vect_get_vec_def_for_operand (op0, stmt, NULL);
1658 vec_oprnds0->quick_push (vec_oprnd);
1659
1660 if (op1)
1661 {
1662 vec_oprnds1->create (1);
1663 vec_oprnd = vect_get_vec_def_for_operand (op1, stmt, NULL);
1664 vec_oprnds1->quick_push (vec_oprnd);
1665 }
1666 }
1667 }
1668
1669
1670 /* Function vect_finish_stmt_generation.
1671
1672 Insert a new stmt. */
1673
1674 void
1675 vect_finish_stmt_generation (gimple stmt, gimple vec_stmt,
1676 gimple_stmt_iterator *gsi)
1677 {
1678 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1679 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1680 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
1681
1682 gcc_assert (gimple_code (stmt) != GIMPLE_LABEL);
1683
1684 if (!gsi_end_p (*gsi)
1685 && gimple_has_mem_ops (vec_stmt))
1686 {
1687 gimple at_stmt = gsi_stmt (*gsi);
1688 tree vuse = gimple_vuse (at_stmt);
1689 if (vuse && TREE_CODE (vuse) == SSA_NAME)
1690 {
1691 tree vdef = gimple_vdef (at_stmt);
1692 gimple_set_vuse (vec_stmt, gimple_vuse (at_stmt));
1693 /* If we have an SSA vuse and insert a store, update virtual
1694 SSA form to avoid triggering the renamer. Do so only
1695 if we can easily see all uses - which is what almost always
1696 happens with the way vectorized stmts are inserted. */
1697 if ((vdef && TREE_CODE (vdef) == SSA_NAME)
1698 && ((is_gimple_assign (vec_stmt)
1699 && !is_gimple_reg (gimple_assign_lhs (vec_stmt)))
1700 || (is_gimple_call (vec_stmt)
1701 && !(gimple_call_flags (vec_stmt)
1702 & (ECF_CONST|ECF_PURE|ECF_NOVOPS)))))
1703 {
1704 tree new_vdef = copy_ssa_name (vuse, vec_stmt);
1705 gimple_set_vdef (vec_stmt, new_vdef);
1706 SET_USE (gimple_vuse_op (at_stmt), new_vdef);
1707 }
1708 }
1709 }
1710 gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
1711
1712 set_vinfo_for_stmt (vec_stmt, new_stmt_vec_info (vec_stmt, loop_vinfo,
1713 bb_vinfo));
1714
1715 if (dump_enabled_p ())
1716 {
1717 dump_printf_loc (MSG_NOTE, vect_location, "add new stmt: ");
1718 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vec_stmt, 0);
1719 }
1720
1721 gimple_set_location (vec_stmt, gimple_location (stmt));
1722
1723 /* While EH edges will generally prevent vectorization, stmt might
1724 e.g. be in a must-not-throw region. Ensure newly created stmts
1725 that could throw are part of the same region. */
1726 int lp_nr = lookup_stmt_eh_lp (stmt);
1727 if (lp_nr != 0 && stmt_could_throw_p (vec_stmt))
1728 add_stmt_to_eh_lp (vec_stmt, lp_nr);
1729 }
1730
1731 /* Checks if CALL can be vectorized in type VECTYPE. Returns
1732 a function declaration if the target has a vectorized version
1733 of the function, or NULL_TREE if the function cannot be vectorized. */
1734
1735 tree
1736 vectorizable_function (gcall *call, tree vectype_out, tree vectype_in)
1737 {
1738 tree fndecl = gimple_call_fndecl (call);
1739
1740 /* We only handle functions that do not read or clobber memory -- i.e.
1741 const or novops ones. */
1742 if (!(gimple_call_flags (call) & (ECF_CONST | ECF_NOVOPS)))
1743 return NULL_TREE;
1744
1745 if (!fndecl
1746 || TREE_CODE (fndecl) != FUNCTION_DECL
1747 || !DECL_BUILT_IN (fndecl))
1748 return NULL_TREE;
1749
1750 return targetm.vectorize.builtin_vectorized_function (fndecl, vectype_out,
1751 vectype_in);
1752 }
1753
1754
1755 static tree permute_vec_elements (tree, tree, tree, gimple,
1756 gimple_stmt_iterator *);
1757
1758
1759 /* Function vectorizable_mask_load_store.
1760
1761 Check if STMT performs a conditional load or store that can be vectorized.
1762 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
1763 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
1764 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
1765
1766 static bool
1767 vectorizable_mask_load_store (gimple stmt, gimple_stmt_iterator *gsi,
1768 gimple *vec_stmt, slp_tree slp_node)
1769 {
1770 tree vec_dest = NULL;
1771 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1772 stmt_vec_info prev_stmt_info;
1773 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1774 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1775 bool nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
1776 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
1777 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1778 tree elem_type;
1779 gimple new_stmt;
1780 tree dummy;
1781 tree dataref_ptr = NULL_TREE;
1782 gimple ptr_incr;
1783 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
1784 int ncopies;
1785 int i, j;
1786 bool inv_p;
1787 tree gather_base = NULL_TREE, gather_off = NULL_TREE;
1788 tree gather_off_vectype = NULL_TREE, gather_decl = NULL_TREE;
1789 int gather_scale = 1;
1790 enum vect_def_type gather_dt = vect_unknown_def_type;
1791 bool is_store;
1792 tree mask;
1793 gimple def_stmt;
1794 tree def;
1795 enum vect_def_type dt;
1796
1797 if (slp_node != NULL)
1798 return false;
1799
1800 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
1801 gcc_assert (ncopies >= 1);
1802
1803 is_store = gimple_call_internal_fn (stmt) == IFN_MASK_STORE;
1804 mask = gimple_call_arg (stmt, 2);
1805 if (TYPE_PRECISION (TREE_TYPE (mask))
1806 != GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (vectype))))
1807 return false;
1808
1809 /* FORNOW. This restriction should be relaxed. */
1810 if (nested_in_vect_loop && ncopies > 1)
1811 {
1812 if (dump_enabled_p ())
1813 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1814 "multiple types in nested loop.");
1815 return false;
1816 }
1817
1818 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1819 return false;
1820
1821 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
1822 return false;
1823
1824 if (!STMT_VINFO_DATA_REF (stmt_info))
1825 return false;
1826
1827 elem_type = TREE_TYPE (vectype);
1828
1829 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1830 return false;
1831
1832 if (STMT_VINFO_STRIDED_P (stmt_info))
1833 return false;
1834
1835 if (STMT_VINFO_GATHER_P (stmt_info))
1836 {
1837 gimple def_stmt;
1838 tree def;
1839 gather_decl = vect_check_gather (stmt, loop_vinfo, &gather_base,
1840 &gather_off, &gather_scale);
1841 gcc_assert (gather_decl);
1842 if (!vect_is_simple_use_1 (gather_off, NULL, loop_vinfo, NULL,
1843 &def_stmt, &def, &gather_dt,
1844 &gather_off_vectype))
1845 {
1846 if (dump_enabled_p ())
1847 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1848 "gather index use not simple.");
1849 return false;
1850 }
1851
1852 tree arglist = TYPE_ARG_TYPES (TREE_TYPE (gather_decl));
1853 tree masktype
1854 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arglist))));
1855 if (TREE_CODE (masktype) == INTEGER_TYPE)
1856 {
1857 if (dump_enabled_p ())
1858 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1859 "masked gather with integer mask not supported.");
1860 return false;
1861 }
1862 }
1863 else if (tree_int_cst_compare (nested_in_vect_loop
1864 ? STMT_VINFO_DR_STEP (stmt_info)
1865 : DR_STEP (dr), size_zero_node) <= 0)
1866 return false;
1867 else if (!VECTOR_MODE_P (TYPE_MODE (vectype))
1868 || !can_vec_mask_load_store_p (TYPE_MODE (vectype), !is_store))
1869 return false;
1870
1871 if (TREE_CODE (mask) != SSA_NAME)
1872 return false;
1873
1874 if (!vect_is_simple_use (mask, stmt, loop_vinfo, NULL,
1875 &def_stmt, &def, &dt))
1876 return false;
1877
1878 if (is_store)
1879 {
1880 tree rhs = gimple_call_arg (stmt, 3);
1881 if (!vect_is_simple_use (rhs, stmt, loop_vinfo, NULL,
1882 &def_stmt, &def, &dt))
1883 return false;
1884 }
1885
1886 if (!vec_stmt) /* transformation not required. */
1887 {
1888 STMT_VINFO_TYPE (stmt_info) = call_vec_info_type;
1889 if (is_store)
1890 vect_model_store_cost (stmt_info, ncopies, false, dt,
1891 NULL, NULL, NULL);
1892 else
1893 vect_model_load_cost (stmt_info, ncopies, false, NULL, NULL, NULL);
1894 return true;
1895 }
1896
1897 /** Transform. **/
1898
1899 if (STMT_VINFO_GATHER_P (stmt_info))
1900 {
1901 tree vec_oprnd0 = NULL_TREE, op;
1902 tree arglist = TYPE_ARG_TYPES (TREE_TYPE (gather_decl));
1903 tree rettype, srctype, ptrtype, idxtype, masktype, scaletype;
1904 tree ptr, vec_mask = NULL_TREE, mask_op = NULL_TREE, var, scale;
1905 tree perm_mask = NULL_TREE, prev_res = NULL_TREE;
1906 tree mask_perm_mask = NULL_TREE;
1907 edge pe = loop_preheader_edge (loop);
1908 gimple_seq seq;
1909 basic_block new_bb;
1910 enum { NARROW, NONE, WIDEN } modifier;
1911 int gather_off_nunits = TYPE_VECTOR_SUBPARTS (gather_off_vectype);
1912
1913 rettype = TREE_TYPE (TREE_TYPE (gather_decl));
1914 srctype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
1915 ptrtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
1916 idxtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
1917 masktype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
1918 scaletype = TREE_VALUE (arglist);
1919 gcc_checking_assert (types_compatible_p (srctype, rettype)
1920 && types_compatible_p (srctype, masktype));
1921
1922 if (nunits == gather_off_nunits)
1923 modifier = NONE;
1924 else if (nunits == gather_off_nunits / 2)
1925 {
1926 unsigned char *sel = XALLOCAVEC (unsigned char, gather_off_nunits);
1927 modifier = WIDEN;
1928
1929 for (i = 0; i < gather_off_nunits; ++i)
1930 sel[i] = i | nunits;
1931
1932 perm_mask = vect_gen_perm_mask_checked (gather_off_vectype, sel);
1933 }
1934 else if (nunits == gather_off_nunits * 2)
1935 {
1936 unsigned char *sel = XALLOCAVEC (unsigned char, nunits);
1937 modifier = NARROW;
1938
1939 for (i = 0; i < nunits; ++i)
1940 sel[i] = i < gather_off_nunits
1941 ? i : i + nunits - gather_off_nunits;
1942
1943 perm_mask = vect_gen_perm_mask_checked (vectype, sel);
1944 ncopies *= 2;
1945 for (i = 0; i < nunits; ++i)
1946 sel[i] = i | gather_off_nunits;
1947 mask_perm_mask = vect_gen_perm_mask_checked (masktype, sel);
1948 }
1949 else
1950 gcc_unreachable ();
1951
1952 vec_dest = vect_create_destination_var (gimple_call_lhs (stmt), vectype);
1953
1954 ptr = fold_convert (ptrtype, gather_base);
1955 if (!is_gimple_min_invariant (ptr))
1956 {
1957 ptr = force_gimple_operand (ptr, &seq, true, NULL_TREE);
1958 new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
1959 gcc_assert (!new_bb);
1960 }
1961
1962 scale = build_int_cst (scaletype, gather_scale);
1963
1964 prev_stmt_info = NULL;
1965 for (j = 0; j < ncopies; ++j)
1966 {
1967 if (modifier == WIDEN && (j & 1))
1968 op = permute_vec_elements (vec_oprnd0, vec_oprnd0,
1969 perm_mask, stmt, gsi);
1970 else if (j == 0)
1971 op = vec_oprnd0
1972 = vect_get_vec_def_for_operand (gather_off, stmt, NULL);
1973 else
1974 op = vec_oprnd0
1975 = vect_get_vec_def_for_stmt_copy (gather_dt, vec_oprnd0);
1976
1977 if (!useless_type_conversion_p (idxtype, TREE_TYPE (op)))
1978 {
1979 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (op))
1980 == TYPE_VECTOR_SUBPARTS (idxtype));
1981 var = vect_get_new_vect_var (idxtype, vect_simple_var, NULL);
1982 var = make_ssa_name (var);
1983 op = build1 (VIEW_CONVERT_EXPR, idxtype, op);
1984 new_stmt
1985 = gimple_build_assign (var, VIEW_CONVERT_EXPR, op);
1986 vect_finish_stmt_generation (stmt, new_stmt, gsi);
1987 op = var;
1988 }
1989
1990 if (mask_perm_mask && (j & 1))
1991 mask_op = permute_vec_elements (mask_op, mask_op,
1992 mask_perm_mask, stmt, gsi);
1993 else
1994 {
1995 if (j == 0)
1996 vec_mask = vect_get_vec_def_for_operand (mask, stmt, NULL);
1997 else
1998 {
1999 vect_is_simple_use (vec_mask, NULL, loop_vinfo, NULL,
2000 &def_stmt, &def, &dt);
2001 vec_mask = vect_get_vec_def_for_stmt_copy (dt, vec_mask);
2002 }
2003
2004 mask_op = vec_mask;
2005 if (!useless_type_conversion_p (masktype, TREE_TYPE (vec_mask)))
2006 {
2007 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (mask_op))
2008 == TYPE_VECTOR_SUBPARTS (masktype));
2009 var = vect_get_new_vect_var (masktype, vect_simple_var,
2010 NULL);
2011 var = make_ssa_name (var);
2012 mask_op = build1 (VIEW_CONVERT_EXPR, masktype, mask_op);
2013 new_stmt
2014 = gimple_build_assign (var, VIEW_CONVERT_EXPR, mask_op);
2015 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2016 mask_op = var;
2017 }
2018 }
2019
2020 new_stmt
2021 = gimple_build_call (gather_decl, 5, mask_op, ptr, op, mask_op,
2022 scale);
2023
2024 if (!useless_type_conversion_p (vectype, rettype))
2025 {
2026 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype)
2027 == TYPE_VECTOR_SUBPARTS (rettype));
2028 var = vect_get_new_vect_var (rettype, vect_simple_var, NULL);
2029 op = make_ssa_name (var, new_stmt);
2030 gimple_call_set_lhs (new_stmt, op);
2031 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2032 var = make_ssa_name (vec_dest);
2033 op = build1 (VIEW_CONVERT_EXPR, vectype, op);
2034 new_stmt = gimple_build_assign (var, VIEW_CONVERT_EXPR, op);
2035 }
2036 else
2037 {
2038 var = make_ssa_name (vec_dest, new_stmt);
2039 gimple_call_set_lhs (new_stmt, var);
2040 }
2041
2042 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2043
2044 if (modifier == NARROW)
2045 {
2046 if ((j & 1) == 0)
2047 {
2048 prev_res = var;
2049 continue;
2050 }
2051 var = permute_vec_elements (prev_res, var,
2052 perm_mask, stmt, gsi);
2053 new_stmt = SSA_NAME_DEF_STMT (var);
2054 }
2055
2056 if (prev_stmt_info == NULL)
2057 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
2058 else
2059 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2060 prev_stmt_info = vinfo_for_stmt (new_stmt);
2061 }
2062
2063 /* Ensure that even with -fno-tree-dce the scalar MASK_LOAD is removed
2064 from the IL. */
2065 tree lhs = gimple_call_lhs (stmt);
2066 new_stmt = gimple_build_assign (lhs, build_zero_cst (TREE_TYPE (lhs)));
2067 set_vinfo_for_stmt (new_stmt, stmt_info);
2068 set_vinfo_for_stmt (stmt, NULL);
2069 STMT_VINFO_STMT (stmt_info) = new_stmt;
2070 gsi_replace (gsi, new_stmt, true);
2071 return true;
2072 }
2073 else if (is_store)
2074 {
2075 tree vec_rhs = NULL_TREE, vec_mask = NULL_TREE;
2076 prev_stmt_info = NULL;
2077 for (i = 0; i < ncopies; i++)
2078 {
2079 unsigned align, misalign;
2080
2081 if (i == 0)
2082 {
2083 tree rhs = gimple_call_arg (stmt, 3);
2084 vec_rhs = vect_get_vec_def_for_operand (rhs, stmt, NULL);
2085 vec_mask = vect_get_vec_def_for_operand (mask, stmt, NULL);
2086 /* We should have catched mismatched types earlier. */
2087 gcc_assert (useless_type_conversion_p (vectype,
2088 TREE_TYPE (vec_rhs)));
2089 dataref_ptr = vect_create_data_ref_ptr (stmt, vectype, NULL,
2090 NULL_TREE, &dummy, gsi,
2091 &ptr_incr, false, &inv_p);
2092 gcc_assert (!inv_p);
2093 }
2094 else
2095 {
2096 vect_is_simple_use (vec_rhs, NULL, loop_vinfo, NULL, &def_stmt,
2097 &def, &dt);
2098 vec_rhs = vect_get_vec_def_for_stmt_copy (dt, vec_rhs);
2099 vect_is_simple_use (vec_mask, NULL, loop_vinfo, NULL, &def_stmt,
2100 &def, &dt);
2101 vec_mask = vect_get_vec_def_for_stmt_copy (dt, vec_mask);
2102 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
2103 TYPE_SIZE_UNIT (vectype));
2104 }
2105
2106 align = TYPE_ALIGN_UNIT (vectype);
2107 if (aligned_access_p (dr))
2108 misalign = 0;
2109 else if (DR_MISALIGNMENT (dr) == -1)
2110 {
2111 align = TYPE_ALIGN_UNIT (elem_type);
2112 misalign = 0;
2113 }
2114 else
2115 misalign = DR_MISALIGNMENT (dr);
2116 set_ptr_info_alignment (get_ptr_info (dataref_ptr), align,
2117 misalign);
2118 new_stmt
2119 = gimple_build_call_internal (IFN_MASK_STORE, 4, dataref_ptr,
2120 gimple_call_arg (stmt, 1),
2121 vec_mask, vec_rhs);
2122 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2123 if (i == 0)
2124 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
2125 else
2126 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2127 prev_stmt_info = vinfo_for_stmt (new_stmt);
2128 }
2129 }
2130 else
2131 {
2132 tree vec_mask = NULL_TREE;
2133 prev_stmt_info = NULL;
2134 vec_dest = vect_create_destination_var (gimple_call_lhs (stmt), vectype);
2135 for (i = 0; i < ncopies; i++)
2136 {
2137 unsigned align, misalign;
2138
2139 if (i == 0)
2140 {
2141 vec_mask = vect_get_vec_def_for_operand (mask, stmt, NULL);
2142 dataref_ptr = vect_create_data_ref_ptr (stmt, vectype, NULL,
2143 NULL_TREE, &dummy, gsi,
2144 &ptr_incr, false, &inv_p);
2145 gcc_assert (!inv_p);
2146 }
2147 else
2148 {
2149 vect_is_simple_use (vec_mask, NULL, loop_vinfo, NULL, &def_stmt,
2150 &def, &dt);
2151 vec_mask = vect_get_vec_def_for_stmt_copy (dt, vec_mask);
2152 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
2153 TYPE_SIZE_UNIT (vectype));
2154 }
2155
2156 align = TYPE_ALIGN_UNIT (vectype);
2157 if (aligned_access_p (dr))
2158 misalign = 0;
2159 else if (DR_MISALIGNMENT (dr) == -1)
2160 {
2161 align = TYPE_ALIGN_UNIT (elem_type);
2162 misalign = 0;
2163 }
2164 else
2165 misalign = DR_MISALIGNMENT (dr);
2166 set_ptr_info_alignment (get_ptr_info (dataref_ptr), align,
2167 misalign);
2168 new_stmt
2169 = gimple_build_call_internal (IFN_MASK_LOAD, 3, dataref_ptr,
2170 gimple_call_arg (stmt, 1),
2171 vec_mask);
2172 gimple_call_set_lhs (new_stmt, make_ssa_name (vec_dest));
2173 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2174 if (i == 0)
2175 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
2176 else
2177 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2178 prev_stmt_info = vinfo_for_stmt (new_stmt);
2179 }
2180 }
2181
2182 if (!is_store)
2183 {
2184 /* Ensure that even with -fno-tree-dce the scalar MASK_LOAD is removed
2185 from the IL. */
2186 tree lhs = gimple_call_lhs (stmt);
2187 new_stmt = gimple_build_assign (lhs, build_zero_cst (TREE_TYPE (lhs)));
2188 set_vinfo_for_stmt (new_stmt, stmt_info);
2189 set_vinfo_for_stmt (stmt, NULL);
2190 STMT_VINFO_STMT (stmt_info) = new_stmt;
2191 gsi_replace (gsi, new_stmt, true);
2192 }
2193
2194 return true;
2195 }
2196
2197
2198 /* Function vectorizable_call.
2199
2200 Check if GS performs a function call that can be vectorized.
2201 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
2202 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
2203 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
2204
2205 static bool
2206 vectorizable_call (gimple gs, gimple_stmt_iterator *gsi, gimple *vec_stmt,
2207 slp_tree slp_node)
2208 {
2209 gcall *stmt;
2210 tree vec_dest;
2211 tree scalar_dest;
2212 tree op, type;
2213 tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
2214 stmt_vec_info stmt_info = vinfo_for_stmt (gs), prev_stmt_info;
2215 tree vectype_out, vectype_in;
2216 int nunits_in;
2217 int nunits_out;
2218 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2219 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2220 tree fndecl, new_temp, def, rhs_type;
2221 gimple def_stmt;
2222 enum vect_def_type dt[3]
2223 = {vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type};
2224 gimple new_stmt = NULL;
2225 int ncopies, j;
2226 vec<tree> vargs = vNULL;
2227 enum { NARROW, NONE, WIDEN } modifier;
2228 size_t i, nargs;
2229 tree lhs;
2230
2231 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
2232 return false;
2233
2234 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
2235 return false;
2236
2237 /* Is GS a vectorizable call? */
2238 stmt = dyn_cast <gcall *> (gs);
2239 if (!stmt)
2240 return false;
2241
2242 if (gimple_call_internal_p (stmt)
2243 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
2244 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE))
2245 return vectorizable_mask_load_store (stmt, gsi, vec_stmt,
2246 slp_node);
2247
2248 if (gimple_call_lhs (stmt) == NULL_TREE
2249 || TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME)
2250 return false;
2251
2252 gcc_checking_assert (!stmt_can_throw_internal (stmt));
2253
2254 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
2255
2256 /* Process function arguments. */
2257 rhs_type = NULL_TREE;
2258 vectype_in = NULL_TREE;
2259 nargs = gimple_call_num_args (stmt);
2260
2261 /* Bail out if the function has more than three arguments, we do not have
2262 interesting builtin functions to vectorize with more than two arguments
2263 except for fma. No arguments is also not good. */
2264 if (nargs == 0 || nargs > 3)
2265 return false;
2266
2267 /* Ignore the argument of IFN_GOMP_SIMD_LANE, it is magic. */
2268 if (gimple_call_internal_p (stmt)
2269 && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE)
2270 {
2271 nargs = 0;
2272 rhs_type = unsigned_type_node;
2273 }
2274
2275 for (i = 0; i < nargs; i++)
2276 {
2277 tree opvectype;
2278
2279 op = gimple_call_arg (stmt, i);
2280
2281 /* We can only handle calls with arguments of the same type. */
2282 if (rhs_type
2283 && !types_compatible_p (rhs_type, TREE_TYPE (op)))
2284 {
2285 if (dump_enabled_p ())
2286 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2287 "argument types differ.\n");
2288 return false;
2289 }
2290 if (!rhs_type)
2291 rhs_type = TREE_TYPE (op);
2292
2293 if (!vect_is_simple_use_1 (op, stmt, loop_vinfo, bb_vinfo,
2294 &def_stmt, &def, &dt[i], &opvectype))
2295 {
2296 if (dump_enabled_p ())
2297 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2298 "use not simple.\n");
2299 return false;
2300 }
2301
2302 if (!vectype_in)
2303 vectype_in = opvectype;
2304 else if (opvectype
2305 && opvectype != vectype_in)
2306 {
2307 if (dump_enabled_p ())
2308 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2309 "argument vector types differ.\n");
2310 return false;
2311 }
2312 }
2313 /* If all arguments are external or constant defs use a vector type with
2314 the same size as the output vector type. */
2315 if (!vectype_in)
2316 vectype_in = get_same_sized_vectype (rhs_type, vectype_out);
2317 if (vec_stmt)
2318 gcc_assert (vectype_in);
2319 if (!vectype_in)
2320 {
2321 if (dump_enabled_p ())
2322 {
2323 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2324 "no vectype for scalar type ");
2325 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, rhs_type);
2326 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2327 }
2328
2329 return false;
2330 }
2331
2332 /* FORNOW */
2333 nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
2334 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
2335 if (nunits_in == nunits_out / 2)
2336 modifier = NARROW;
2337 else if (nunits_out == nunits_in)
2338 modifier = NONE;
2339 else if (nunits_out == nunits_in / 2)
2340 modifier = WIDEN;
2341 else
2342 return false;
2343
2344 /* For now, we only vectorize functions if a target specific builtin
2345 is available. TODO -- in some cases, it might be profitable to
2346 insert the calls for pieces of the vector, in order to be able
2347 to vectorize other operations in the loop. */
2348 fndecl = vectorizable_function (stmt, vectype_out, vectype_in);
2349 if (fndecl == NULL_TREE)
2350 {
2351 if (gimple_call_internal_p (stmt)
2352 && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE
2353 && !slp_node
2354 && loop_vinfo
2355 && LOOP_VINFO_LOOP (loop_vinfo)->simduid
2356 && TREE_CODE (gimple_call_arg (stmt, 0)) == SSA_NAME
2357 && LOOP_VINFO_LOOP (loop_vinfo)->simduid
2358 == SSA_NAME_VAR (gimple_call_arg (stmt, 0)))
2359 {
2360 /* We can handle IFN_GOMP_SIMD_LANE by returning a
2361 { 0, 1, 2, ... vf - 1 } vector. */
2362 gcc_assert (nargs == 0);
2363 }
2364 else
2365 {
2366 if (dump_enabled_p ())
2367 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2368 "function is not vectorizable.\n");
2369 return false;
2370 }
2371 }
2372
2373 gcc_assert (!gimple_vuse (stmt));
2374
2375 if (slp_node || PURE_SLP_STMT (stmt_info))
2376 ncopies = 1;
2377 else if (modifier == NARROW)
2378 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
2379 else
2380 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
2381
2382 /* Sanity check: make sure that at least one copy of the vectorized stmt
2383 needs to be generated. */
2384 gcc_assert (ncopies >= 1);
2385
2386 if (!vec_stmt) /* transformation not required. */
2387 {
2388 STMT_VINFO_TYPE (stmt_info) = call_vec_info_type;
2389 if (dump_enabled_p ())
2390 dump_printf_loc (MSG_NOTE, vect_location, "=== vectorizable_call ==="
2391 "\n");
2392 vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
2393 return true;
2394 }
2395
2396 /** Transform. **/
2397
2398 if (dump_enabled_p ())
2399 dump_printf_loc (MSG_NOTE, vect_location, "transform call.\n");
2400
2401 /* Handle def. */
2402 scalar_dest = gimple_call_lhs (stmt);
2403 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
2404
2405 prev_stmt_info = NULL;
2406 switch (modifier)
2407 {
2408 case NONE:
2409 for (j = 0; j < ncopies; ++j)
2410 {
2411 /* Build argument list for the vectorized call. */
2412 if (j == 0)
2413 vargs.create (nargs);
2414 else
2415 vargs.truncate (0);
2416
2417 if (slp_node)
2418 {
2419 auto_vec<vec<tree> > vec_defs (nargs);
2420 vec<tree> vec_oprnds0;
2421
2422 for (i = 0; i < nargs; i++)
2423 vargs.quick_push (gimple_call_arg (stmt, i));
2424 vect_get_slp_defs (vargs, slp_node, &vec_defs, -1);
2425 vec_oprnds0 = vec_defs[0];
2426
2427 /* Arguments are ready. Create the new vector stmt. */
2428 FOR_EACH_VEC_ELT (vec_oprnds0, i, vec_oprnd0)
2429 {
2430 size_t k;
2431 for (k = 0; k < nargs; k++)
2432 {
2433 vec<tree> vec_oprndsk = vec_defs[k];
2434 vargs[k] = vec_oprndsk[i];
2435 }
2436 new_stmt = gimple_build_call_vec (fndecl, vargs);
2437 new_temp = make_ssa_name (vec_dest, new_stmt);
2438 gimple_call_set_lhs (new_stmt, new_temp);
2439 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2440 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
2441 }
2442
2443 for (i = 0; i < nargs; i++)
2444 {
2445 vec<tree> vec_oprndsi = vec_defs[i];
2446 vec_oprndsi.release ();
2447 }
2448 continue;
2449 }
2450
2451 for (i = 0; i < nargs; i++)
2452 {
2453 op = gimple_call_arg (stmt, i);
2454 if (j == 0)
2455 vec_oprnd0
2456 = vect_get_vec_def_for_operand (op, stmt, NULL);
2457 else
2458 {
2459 vec_oprnd0 = gimple_call_arg (new_stmt, i);
2460 vec_oprnd0
2461 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
2462 }
2463
2464 vargs.quick_push (vec_oprnd0);
2465 }
2466
2467 if (gimple_call_internal_p (stmt)
2468 && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE)
2469 {
2470 tree *v = XALLOCAVEC (tree, nunits_out);
2471 int k;
2472 for (k = 0; k < nunits_out; ++k)
2473 v[k] = build_int_cst (unsigned_type_node, j * nunits_out + k);
2474 tree cst = build_vector (vectype_out, v);
2475 tree new_var
2476 = vect_get_new_vect_var (vectype_out, vect_simple_var, "cst_");
2477 gimple init_stmt = gimple_build_assign (new_var, cst);
2478 new_temp = make_ssa_name (new_var, init_stmt);
2479 gimple_assign_set_lhs (init_stmt, new_temp);
2480 vect_init_vector_1 (stmt, init_stmt, NULL);
2481 new_temp = make_ssa_name (vec_dest);
2482 new_stmt = gimple_build_assign (new_temp,
2483 gimple_assign_lhs (init_stmt));
2484 }
2485 else
2486 {
2487 new_stmt = gimple_build_call_vec (fndecl, vargs);
2488 new_temp = make_ssa_name (vec_dest, new_stmt);
2489 gimple_call_set_lhs (new_stmt, new_temp);
2490 }
2491 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2492
2493 if (j == 0)
2494 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
2495 else
2496 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2497
2498 prev_stmt_info = vinfo_for_stmt (new_stmt);
2499 }
2500
2501 break;
2502
2503 case NARROW:
2504 for (j = 0; j < ncopies; ++j)
2505 {
2506 /* Build argument list for the vectorized call. */
2507 if (j == 0)
2508 vargs.create (nargs * 2);
2509 else
2510 vargs.truncate (0);
2511
2512 if (slp_node)
2513 {
2514 auto_vec<vec<tree> > vec_defs (nargs);
2515 vec<tree> vec_oprnds0;
2516
2517 for (i = 0; i < nargs; i++)
2518 vargs.quick_push (gimple_call_arg (stmt, i));
2519 vect_get_slp_defs (vargs, slp_node, &vec_defs, -1);
2520 vec_oprnds0 = vec_defs[0];
2521
2522 /* Arguments are ready. Create the new vector stmt. */
2523 for (i = 0; vec_oprnds0.iterate (i, &vec_oprnd0); i += 2)
2524 {
2525 size_t k;
2526 vargs.truncate (0);
2527 for (k = 0; k < nargs; k++)
2528 {
2529 vec<tree> vec_oprndsk = vec_defs[k];
2530 vargs.quick_push (vec_oprndsk[i]);
2531 vargs.quick_push (vec_oprndsk[i + 1]);
2532 }
2533 new_stmt = gimple_build_call_vec (fndecl, vargs);
2534 new_temp = make_ssa_name (vec_dest, new_stmt);
2535 gimple_call_set_lhs (new_stmt, new_temp);
2536 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2537 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
2538 }
2539
2540 for (i = 0; i < nargs; i++)
2541 {
2542 vec<tree> vec_oprndsi = vec_defs[i];
2543 vec_oprndsi.release ();
2544 }
2545 continue;
2546 }
2547
2548 for (i = 0; i < nargs; i++)
2549 {
2550 op = gimple_call_arg (stmt, i);
2551 if (j == 0)
2552 {
2553 vec_oprnd0
2554 = vect_get_vec_def_for_operand (op, stmt, NULL);
2555 vec_oprnd1
2556 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
2557 }
2558 else
2559 {
2560 vec_oprnd1 = gimple_call_arg (new_stmt, 2*i + 1);
2561 vec_oprnd0
2562 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd1);
2563 vec_oprnd1
2564 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
2565 }
2566
2567 vargs.quick_push (vec_oprnd0);
2568 vargs.quick_push (vec_oprnd1);
2569 }
2570
2571 new_stmt = gimple_build_call_vec (fndecl, vargs);
2572 new_temp = make_ssa_name (vec_dest, new_stmt);
2573 gimple_call_set_lhs (new_stmt, new_temp);
2574 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2575
2576 if (j == 0)
2577 STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
2578 else
2579 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2580
2581 prev_stmt_info = vinfo_for_stmt (new_stmt);
2582 }
2583
2584 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
2585
2586 break;
2587
2588 case WIDEN:
2589 /* No current target implements this case. */
2590 return false;
2591 }
2592
2593 vargs.release ();
2594
2595 /* The call in STMT might prevent it from being removed in dce.
2596 We however cannot remove it here, due to the way the ssa name
2597 it defines is mapped to the new definition. So just replace
2598 rhs of the statement with something harmless. */
2599
2600 if (slp_node)
2601 return true;
2602
2603 type = TREE_TYPE (scalar_dest);
2604 if (is_pattern_stmt_p (stmt_info))
2605 lhs = gimple_call_lhs (STMT_VINFO_RELATED_STMT (stmt_info));
2606 else
2607 lhs = gimple_call_lhs (stmt);
2608 new_stmt = gimple_build_assign (lhs, build_zero_cst (type));
2609 set_vinfo_for_stmt (new_stmt, stmt_info);
2610 set_vinfo_for_stmt (stmt, NULL);
2611 STMT_VINFO_STMT (stmt_info) = new_stmt;
2612 gsi_replace (gsi, new_stmt, false);
2613
2614 return true;
2615 }
2616
2617
2618 struct simd_call_arg_info
2619 {
2620 tree vectype;
2621 tree op;
2622 enum vect_def_type dt;
2623 HOST_WIDE_INT linear_step;
2624 unsigned int align;
2625 };
2626
2627 /* Function vectorizable_simd_clone_call.
2628
2629 Check if STMT performs a function call that can be vectorized
2630 by calling a simd clone of the function.
2631 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
2632 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
2633 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
2634
2635 static bool
2636 vectorizable_simd_clone_call (gimple stmt, gimple_stmt_iterator *gsi,
2637 gimple *vec_stmt, slp_tree slp_node)
2638 {
2639 tree vec_dest;
2640 tree scalar_dest;
2641 tree op, type;
2642 tree vec_oprnd0 = NULL_TREE;
2643 stmt_vec_info stmt_info = vinfo_for_stmt (stmt), prev_stmt_info;
2644 tree vectype;
2645 unsigned int nunits;
2646 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2647 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2648 struct loop *loop = loop_vinfo ? LOOP_VINFO_LOOP (loop_vinfo) : NULL;
2649 tree fndecl, new_temp, def;
2650 gimple def_stmt;
2651 gimple new_stmt = NULL;
2652 int ncopies, j;
2653 vec<simd_call_arg_info> arginfo = vNULL;
2654 vec<tree> vargs = vNULL;
2655 size_t i, nargs;
2656 tree lhs, rtype, ratype;
2657 vec<constructor_elt, va_gc> *ret_ctor_elts;
2658
2659 /* Is STMT a vectorizable call? */
2660 if (!is_gimple_call (stmt))
2661 return false;
2662
2663 fndecl = gimple_call_fndecl (stmt);
2664 if (fndecl == NULL_TREE)
2665 return false;
2666
2667 struct cgraph_node *node = cgraph_node::get (fndecl);
2668 if (node == NULL || node->simd_clones == NULL)
2669 return false;
2670
2671 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
2672 return false;
2673
2674 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
2675 return false;
2676
2677 if (gimple_call_lhs (stmt)
2678 && TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME)
2679 return false;
2680
2681 gcc_checking_assert (!stmt_can_throw_internal (stmt));
2682
2683 vectype = STMT_VINFO_VECTYPE (stmt_info);
2684
2685 if (loop_vinfo && nested_in_vect_loop_p (loop, stmt))
2686 return false;
2687
2688 /* FORNOW */
2689 if (slp_node || PURE_SLP_STMT (stmt_info))
2690 return false;
2691
2692 /* Process function arguments. */
2693 nargs = gimple_call_num_args (stmt);
2694
2695 /* Bail out if the function has zero arguments. */
2696 if (nargs == 0)
2697 return false;
2698
2699 arginfo.create (nargs);
2700
2701 for (i = 0; i < nargs; i++)
2702 {
2703 simd_call_arg_info thisarginfo;
2704 affine_iv iv;
2705
2706 thisarginfo.linear_step = 0;
2707 thisarginfo.align = 0;
2708 thisarginfo.op = NULL_TREE;
2709
2710 op = gimple_call_arg (stmt, i);
2711 if (!vect_is_simple_use_1 (op, stmt, loop_vinfo, bb_vinfo,
2712 &def_stmt, &def, &thisarginfo.dt,
2713 &thisarginfo.vectype)
2714 || thisarginfo.dt == vect_uninitialized_def)
2715 {
2716 if (dump_enabled_p ())
2717 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2718 "use not simple.\n");
2719 arginfo.release ();
2720 return false;
2721 }
2722
2723 if (thisarginfo.dt == vect_constant_def
2724 || thisarginfo.dt == vect_external_def)
2725 gcc_assert (thisarginfo.vectype == NULL_TREE);
2726 else
2727 gcc_assert (thisarginfo.vectype != NULL_TREE);
2728
2729 /* For linear arguments, the analyze phase should have saved
2730 the base and step in STMT_VINFO_SIMD_CLONE_INFO. */
2731 if (i * 2 + 3 <= STMT_VINFO_SIMD_CLONE_INFO (stmt_info).length ()
2732 && STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[i * 2 + 2])
2733 {
2734 gcc_assert (vec_stmt);
2735 thisarginfo.linear_step
2736 = tree_to_shwi (STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[i * 2 + 2]);
2737 thisarginfo.op
2738 = STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[i * 2 + 1];
2739 /* If loop has been peeled for alignment, we need to adjust it. */
2740 tree n1 = LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo);
2741 tree n2 = LOOP_VINFO_NITERS (loop_vinfo);
2742 if (n1 != n2)
2743 {
2744 tree bias = fold_build2 (MINUS_EXPR, TREE_TYPE (n1), n1, n2);
2745 tree step = STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[i * 2 + 2];
2746 tree opt = TREE_TYPE (thisarginfo.op);
2747 bias = fold_convert (TREE_TYPE (step), bias);
2748 bias = fold_build2 (MULT_EXPR, TREE_TYPE (step), bias, step);
2749 thisarginfo.op
2750 = fold_build2 (POINTER_TYPE_P (opt)
2751 ? POINTER_PLUS_EXPR : PLUS_EXPR, opt,
2752 thisarginfo.op, bias);
2753 }
2754 }
2755 else if (!vec_stmt
2756 && thisarginfo.dt != vect_constant_def
2757 && thisarginfo.dt != vect_external_def
2758 && loop_vinfo
2759 && TREE_CODE (op) == SSA_NAME
2760 && simple_iv (loop, loop_containing_stmt (stmt), op,
2761 &iv, false)
2762 && tree_fits_shwi_p (iv.step))
2763 {
2764 thisarginfo.linear_step = tree_to_shwi (iv.step);
2765 thisarginfo.op = iv.base;
2766 }
2767 else if ((thisarginfo.dt == vect_constant_def
2768 || thisarginfo.dt == vect_external_def)
2769 && POINTER_TYPE_P (TREE_TYPE (op)))
2770 thisarginfo.align = get_pointer_alignment (op) / BITS_PER_UNIT;
2771
2772 arginfo.quick_push (thisarginfo);
2773 }
2774
2775 unsigned int badness = 0;
2776 struct cgraph_node *bestn = NULL;
2777 if (STMT_VINFO_SIMD_CLONE_INFO (stmt_info).exists ())
2778 bestn = cgraph_node::get (STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[0]);
2779 else
2780 for (struct cgraph_node *n = node->simd_clones; n != NULL;
2781 n = n->simdclone->next_clone)
2782 {
2783 unsigned int this_badness = 0;
2784 if (n->simdclone->simdlen
2785 > (unsigned) LOOP_VINFO_VECT_FACTOR (loop_vinfo)
2786 || n->simdclone->nargs != nargs)
2787 continue;
2788 if (n->simdclone->simdlen
2789 < (unsigned) LOOP_VINFO_VECT_FACTOR (loop_vinfo))
2790 this_badness += (exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo))
2791 - exact_log2 (n->simdclone->simdlen)) * 1024;
2792 if (n->simdclone->inbranch)
2793 this_badness += 2048;
2794 int target_badness = targetm.simd_clone.usable (n);
2795 if (target_badness < 0)
2796 continue;
2797 this_badness += target_badness * 512;
2798 /* FORNOW: Have to add code to add the mask argument. */
2799 if (n->simdclone->inbranch)
2800 continue;
2801 for (i = 0; i < nargs; i++)
2802 {
2803 switch (n->simdclone->args[i].arg_type)
2804 {
2805 case SIMD_CLONE_ARG_TYPE_VECTOR:
2806 if (!useless_type_conversion_p
2807 (n->simdclone->args[i].orig_type,
2808 TREE_TYPE (gimple_call_arg (stmt, i))))
2809 i = -1;
2810 else if (arginfo[i].dt == vect_constant_def
2811 || arginfo[i].dt == vect_external_def
2812 || arginfo[i].linear_step)
2813 this_badness += 64;
2814 break;
2815 case SIMD_CLONE_ARG_TYPE_UNIFORM:
2816 if (arginfo[i].dt != vect_constant_def
2817 && arginfo[i].dt != vect_external_def)
2818 i = -1;
2819 break;
2820 case SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP:
2821 if (arginfo[i].dt == vect_constant_def
2822 || arginfo[i].dt == vect_external_def
2823 || (arginfo[i].linear_step
2824 != n->simdclone->args[i].linear_step))
2825 i = -1;
2826 break;
2827 case SIMD_CLONE_ARG_TYPE_LINEAR_VARIABLE_STEP:
2828 /* FORNOW */
2829 i = -1;
2830 break;
2831 case SIMD_CLONE_ARG_TYPE_MASK:
2832 gcc_unreachable ();
2833 }
2834 if (i == (size_t) -1)
2835 break;
2836 if (n->simdclone->args[i].alignment > arginfo[i].align)
2837 {
2838 i = -1;
2839 break;
2840 }
2841 if (arginfo[i].align)
2842 this_badness += (exact_log2 (arginfo[i].align)
2843 - exact_log2 (n->simdclone->args[i].alignment));
2844 }
2845 if (i == (size_t) -1)
2846 continue;
2847 if (bestn == NULL || this_badness < badness)
2848 {
2849 bestn = n;
2850 badness = this_badness;
2851 }
2852 }
2853
2854 if (bestn == NULL)
2855 {
2856 arginfo.release ();
2857 return false;
2858 }
2859
2860 for (i = 0; i < nargs; i++)
2861 if ((arginfo[i].dt == vect_constant_def
2862 || arginfo[i].dt == vect_external_def)
2863 && bestn->simdclone->args[i].arg_type == SIMD_CLONE_ARG_TYPE_VECTOR)
2864 {
2865 arginfo[i].vectype
2866 = get_vectype_for_scalar_type (TREE_TYPE (gimple_call_arg (stmt,
2867 i)));
2868 if (arginfo[i].vectype == NULL
2869 || (TYPE_VECTOR_SUBPARTS (arginfo[i].vectype)
2870 > bestn->simdclone->simdlen))
2871 {
2872 arginfo.release ();
2873 return false;
2874 }
2875 }
2876
2877 fndecl = bestn->decl;
2878 nunits = bestn->simdclone->simdlen;
2879 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
2880
2881 /* If the function isn't const, only allow it in simd loops where user
2882 has asserted that at least nunits consecutive iterations can be
2883 performed using SIMD instructions. */
2884 if ((loop == NULL || (unsigned) loop->safelen < nunits)
2885 && gimple_vuse (stmt))
2886 {
2887 arginfo.release ();
2888 return false;
2889 }
2890
2891 /* Sanity check: make sure that at least one copy of the vectorized stmt
2892 needs to be generated. */
2893 gcc_assert (ncopies >= 1);
2894
2895 if (!vec_stmt) /* transformation not required. */
2896 {
2897 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_push (bestn->decl);
2898 for (i = 0; i < nargs; i++)
2899 if (bestn->simdclone->args[i].arg_type
2900 == SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP)
2901 {
2902 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_grow_cleared (i * 2
2903 + 1);
2904 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_push (arginfo[i].op);
2905 tree lst = POINTER_TYPE_P (TREE_TYPE (arginfo[i].op))
2906 ? size_type_node : TREE_TYPE (arginfo[i].op);
2907 tree ls = build_int_cst (lst, arginfo[i].linear_step);
2908 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_push (ls);
2909 }
2910 STMT_VINFO_TYPE (stmt_info) = call_simd_clone_vec_info_type;
2911 if (dump_enabled_p ())
2912 dump_printf_loc (MSG_NOTE, vect_location,
2913 "=== vectorizable_simd_clone_call ===\n");
2914 /* vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL); */
2915 arginfo.release ();
2916 return true;
2917 }
2918
2919 /** Transform. **/
2920
2921 if (dump_enabled_p ())
2922 dump_printf_loc (MSG_NOTE, vect_location, "transform call.\n");
2923
2924 /* Handle def. */
2925 scalar_dest = gimple_call_lhs (stmt);
2926 vec_dest = NULL_TREE;
2927 rtype = NULL_TREE;
2928 ratype = NULL_TREE;
2929 if (scalar_dest)
2930 {
2931 vec_dest = vect_create_destination_var (scalar_dest, vectype);
2932 rtype = TREE_TYPE (TREE_TYPE (fndecl));
2933 if (TREE_CODE (rtype) == ARRAY_TYPE)
2934 {
2935 ratype = rtype;
2936 rtype = TREE_TYPE (ratype);
2937 }
2938 }
2939
2940 prev_stmt_info = NULL;
2941 for (j = 0; j < ncopies; ++j)
2942 {
2943 /* Build argument list for the vectorized call. */
2944 if (j == 0)
2945 vargs.create (nargs);
2946 else
2947 vargs.truncate (0);
2948
2949 for (i = 0; i < nargs; i++)
2950 {
2951 unsigned int k, l, m, o;
2952 tree atype;
2953 op = gimple_call_arg (stmt, i);
2954 switch (bestn->simdclone->args[i].arg_type)
2955 {
2956 case SIMD_CLONE_ARG_TYPE_VECTOR:
2957 atype = bestn->simdclone->args[i].vector_type;
2958 o = nunits / TYPE_VECTOR_SUBPARTS (atype);
2959 for (m = j * o; m < (j + 1) * o; m++)
2960 {
2961 if (TYPE_VECTOR_SUBPARTS (atype)
2962 < TYPE_VECTOR_SUBPARTS (arginfo[i].vectype))
2963 {
2964 unsigned int prec = GET_MODE_BITSIZE (TYPE_MODE (atype));
2965 k = (TYPE_VECTOR_SUBPARTS (arginfo[i].vectype)
2966 / TYPE_VECTOR_SUBPARTS (atype));
2967 gcc_assert ((k & (k - 1)) == 0);
2968 if (m == 0)
2969 vec_oprnd0
2970 = vect_get_vec_def_for_operand (op, stmt, NULL);
2971 else
2972 {
2973 vec_oprnd0 = arginfo[i].op;
2974 if ((m & (k - 1)) == 0)
2975 vec_oprnd0
2976 = vect_get_vec_def_for_stmt_copy (arginfo[i].dt,
2977 vec_oprnd0);
2978 }
2979 arginfo[i].op = vec_oprnd0;
2980 vec_oprnd0
2981 = build3 (BIT_FIELD_REF, atype, vec_oprnd0,
2982 size_int (prec),
2983 bitsize_int ((m & (k - 1)) * prec));
2984 new_stmt
2985 = gimple_build_assign (make_ssa_name (atype),
2986 vec_oprnd0);
2987 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2988 vargs.safe_push (gimple_assign_lhs (new_stmt));
2989 }
2990 else
2991 {
2992 k = (TYPE_VECTOR_SUBPARTS (atype)
2993 / TYPE_VECTOR_SUBPARTS (arginfo[i].vectype));
2994 gcc_assert ((k & (k - 1)) == 0);
2995 vec<constructor_elt, va_gc> *ctor_elts;
2996 if (k != 1)
2997 vec_alloc (ctor_elts, k);
2998 else
2999 ctor_elts = NULL;
3000 for (l = 0; l < k; l++)
3001 {
3002 if (m == 0 && l == 0)
3003 vec_oprnd0
3004 = vect_get_vec_def_for_operand (op, stmt, NULL);
3005 else
3006 vec_oprnd0
3007 = vect_get_vec_def_for_stmt_copy (arginfo[i].dt,
3008 arginfo[i].op);
3009 arginfo[i].op = vec_oprnd0;
3010 if (k == 1)
3011 break;
3012 CONSTRUCTOR_APPEND_ELT (ctor_elts, NULL_TREE,
3013 vec_oprnd0);
3014 }
3015 if (k == 1)
3016 vargs.safe_push (vec_oprnd0);
3017 else
3018 {
3019 vec_oprnd0 = build_constructor (atype, ctor_elts);
3020 new_stmt
3021 = gimple_build_assign (make_ssa_name (atype),
3022 vec_oprnd0);
3023 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3024 vargs.safe_push (gimple_assign_lhs (new_stmt));
3025 }
3026 }
3027 }
3028 break;
3029 case SIMD_CLONE_ARG_TYPE_UNIFORM:
3030 vargs.safe_push (op);
3031 break;
3032 case SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP:
3033 if (j == 0)
3034 {
3035 gimple_seq stmts;
3036 arginfo[i].op
3037 = force_gimple_operand (arginfo[i].op, &stmts, true,
3038 NULL_TREE);
3039 if (stmts != NULL)
3040 {
3041 basic_block new_bb;
3042 edge pe = loop_preheader_edge (loop);
3043 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3044 gcc_assert (!new_bb);
3045 }
3046 tree phi_res = copy_ssa_name (op);
3047 gphi *new_phi = create_phi_node (phi_res, loop->header);
3048 set_vinfo_for_stmt (new_phi,
3049 new_stmt_vec_info (new_phi, loop_vinfo,
3050 NULL));
3051 add_phi_arg (new_phi, arginfo[i].op,
3052 loop_preheader_edge (loop), UNKNOWN_LOCATION);
3053 enum tree_code code
3054 = POINTER_TYPE_P (TREE_TYPE (op))
3055 ? POINTER_PLUS_EXPR : PLUS_EXPR;
3056 tree type = POINTER_TYPE_P (TREE_TYPE (op))
3057 ? sizetype : TREE_TYPE (op);
3058 widest_int cst
3059 = wi::mul (bestn->simdclone->args[i].linear_step,
3060 ncopies * nunits);
3061 tree tcst = wide_int_to_tree (type, cst);
3062 tree phi_arg = copy_ssa_name (op);
3063 new_stmt
3064 = gimple_build_assign (phi_arg, code, phi_res, tcst);
3065 gimple_stmt_iterator si = gsi_after_labels (loop->header);
3066 gsi_insert_after (&si, new_stmt, GSI_NEW_STMT);
3067 set_vinfo_for_stmt (new_stmt,
3068 new_stmt_vec_info (new_stmt, loop_vinfo,
3069 NULL));
3070 add_phi_arg (new_phi, phi_arg, loop_latch_edge (loop),
3071 UNKNOWN_LOCATION);
3072 arginfo[i].op = phi_res;
3073 vargs.safe_push (phi_res);
3074 }
3075 else
3076 {
3077 enum tree_code code
3078 = POINTER_TYPE_P (TREE_TYPE (op))
3079 ? POINTER_PLUS_EXPR : PLUS_EXPR;
3080 tree type = POINTER_TYPE_P (TREE_TYPE (op))
3081 ? sizetype : TREE_TYPE (op);
3082 widest_int cst
3083 = wi::mul (bestn->simdclone->args[i].linear_step,
3084 j * nunits);
3085 tree tcst = wide_int_to_tree (type, cst);
3086 new_temp = make_ssa_name (TREE_TYPE (op));
3087 new_stmt = gimple_build_assign (new_temp, code,
3088 arginfo[i].op, tcst);
3089 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3090 vargs.safe_push (new_temp);
3091 }
3092 break;
3093 case SIMD_CLONE_ARG_TYPE_LINEAR_VARIABLE_STEP:
3094 default:
3095 gcc_unreachable ();
3096 }
3097 }
3098
3099 new_stmt = gimple_build_call_vec (fndecl, vargs);
3100 if (vec_dest)
3101 {
3102 gcc_assert (ratype || TYPE_VECTOR_SUBPARTS (rtype) == nunits);
3103 if (ratype)
3104 new_temp = create_tmp_var (ratype);
3105 else if (TYPE_VECTOR_SUBPARTS (vectype)
3106 == TYPE_VECTOR_SUBPARTS (rtype))
3107 new_temp = make_ssa_name (vec_dest, new_stmt);
3108 else
3109 new_temp = make_ssa_name (rtype, new_stmt);
3110 gimple_call_set_lhs (new_stmt, new_temp);
3111 }
3112 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3113
3114 if (vec_dest)
3115 {
3116 if (TYPE_VECTOR_SUBPARTS (vectype) < nunits)
3117 {
3118 unsigned int k, l;
3119 unsigned int prec = GET_MODE_BITSIZE (TYPE_MODE (vectype));
3120 k = nunits / TYPE_VECTOR_SUBPARTS (vectype);
3121 gcc_assert ((k & (k - 1)) == 0);
3122 for (l = 0; l < k; l++)
3123 {
3124 tree t;
3125 if (ratype)
3126 {
3127 t = build_fold_addr_expr (new_temp);
3128 t = build2 (MEM_REF, vectype, t,
3129 build_int_cst (TREE_TYPE (t),
3130 l * prec / BITS_PER_UNIT));
3131 }
3132 else
3133 t = build3 (BIT_FIELD_REF, vectype, new_temp,
3134 size_int (prec), bitsize_int (l * prec));
3135 new_stmt
3136 = gimple_build_assign (make_ssa_name (vectype), t);
3137 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3138 if (j == 0 && l == 0)
3139 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
3140 else
3141 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3142
3143 prev_stmt_info = vinfo_for_stmt (new_stmt);
3144 }
3145
3146 if (ratype)
3147 {
3148 tree clobber = build_constructor (ratype, NULL);
3149 TREE_THIS_VOLATILE (clobber) = 1;
3150 new_stmt = gimple_build_assign (new_temp, clobber);
3151 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3152 }
3153 continue;
3154 }
3155 else if (TYPE_VECTOR_SUBPARTS (vectype) > nunits)
3156 {
3157 unsigned int k = (TYPE_VECTOR_SUBPARTS (vectype)
3158 / TYPE_VECTOR_SUBPARTS (rtype));
3159 gcc_assert ((k & (k - 1)) == 0);
3160 if ((j & (k - 1)) == 0)
3161 vec_alloc (ret_ctor_elts, k);
3162 if (ratype)
3163 {
3164 unsigned int m, o = nunits / TYPE_VECTOR_SUBPARTS (rtype);
3165 for (m = 0; m < o; m++)
3166 {
3167 tree tem = build4 (ARRAY_REF, rtype, new_temp,
3168 size_int (m), NULL_TREE, NULL_TREE);
3169 new_stmt
3170 = gimple_build_assign (make_ssa_name (rtype), tem);
3171 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3172 CONSTRUCTOR_APPEND_ELT (ret_ctor_elts, NULL_TREE,
3173 gimple_assign_lhs (new_stmt));
3174 }
3175 tree clobber = build_constructor (ratype, NULL);
3176 TREE_THIS_VOLATILE (clobber) = 1;
3177 new_stmt = gimple_build_assign (new_temp, clobber);
3178 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3179 }
3180 else
3181 CONSTRUCTOR_APPEND_ELT (ret_ctor_elts, NULL_TREE, new_temp);
3182 if ((j & (k - 1)) != k - 1)
3183 continue;
3184 vec_oprnd0 = build_constructor (vectype, ret_ctor_elts);
3185 new_stmt
3186 = gimple_build_assign (make_ssa_name (vec_dest), vec_oprnd0);
3187 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3188
3189 if ((unsigned) j == k - 1)
3190 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
3191 else
3192 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3193
3194 prev_stmt_info = vinfo_for_stmt (new_stmt);
3195 continue;
3196 }
3197 else if (ratype)
3198 {
3199 tree t = build_fold_addr_expr (new_temp);
3200 t = build2 (MEM_REF, vectype, t,
3201 build_int_cst (TREE_TYPE (t), 0));
3202 new_stmt
3203 = gimple_build_assign (make_ssa_name (vec_dest), t);
3204 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3205 tree clobber = build_constructor (ratype, NULL);
3206 TREE_THIS_VOLATILE (clobber) = 1;
3207 vect_finish_stmt_generation (stmt,
3208 gimple_build_assign (new_temp,
3209 clobber), gsi);
3210 }
3211 }
3212
3213 if (j == 0)
3214 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
3215 else
3216 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3217
3218 prev_stmt_info = vinfo_for_stmt (new_stmt);
3219 }
3220
3221 vargs.release ();
3222
3223 /* The call in STMT might prevent it from being removed in dce.
3224 We however cannot remove it here, due to the way the ssa name
3225 it defines is mapped to the new definition. So just replace
3226 rhs of the statement with something harmless. */
3227
3228 if (slp_node)
3229 return true;
3230
3231 if (scalar_dest)
3232 {
3233 type = TREE_TYPE (scalar_dest);
3234 if (is_pattern_stmt_p (stmt_info))
3235 lhs = gimple_call_lhs (STMT_VINFO_RELATED_STMT (stmt_info));
3236 else
3237 lhs = gimple_call_lhs (stmt);
3238 new_stmt = gimple_build_assign (lhs, build_zero_cst (type));
3239 }
3240 else
3241 new_stmt = gimple_build_nop ();
3242 set_vinfo_for_stmt (new_stmt, stmt_info);
3243 set_vinfo_for_stmt (stmt, NULL);
3244 STMT_VINFO_STMT (stmt_info) = new_stmt;
3245 gsi_replace (gsi, new_stmt, true);
3246 unlink_stmt_vdef (stmt);
3247
3248 return true;
3249 }
3250
3251
3252 /* Function vect_gen_widened_results_half
3253
3254 Create a vector stmt whose code, type, number of arguments, and result
3255 variable are CODE, OP_TYPE, and VEC_DEST, and its arguments are
3256 VEC_OPRND0 and VEC_OPRND1. The new vector stmt is to be inserted at BSI.
3257 In the case that CODE is a CALL_EXPR, this means that a call to DECL
3258 needs to be created (DECL is a function-decl of a target-builtin).
3259 STMT is the original scalar stmt that we are vectorizing. */
3260
3261 static gimple
3262 vect_gen_widened_results_half (enum tree_code code,
3263 tree decl,
3264 tree vec_oprnd0, tree vec_oprnd1, int op_type,
3265 tree vec_dest, gimple_stmt_iterator *gsi,
3266 gimple stmt)
3267 {
3268 gimple new_stmt;
3269 tree new_temp;
3270
3271 /* Generate half of the widened result: */
3272 if (code == CALL_EXPR)
3273 {
3274 /* Target specific support */
3275 if (op_type == binary_op)
3276 new_stmt = gimple_build_call (decl, 2, vec_oprnd0, vec_oprnd1);
3277 else
3278 new_stmt = gimple_build_call (decl, 1, vec_oprnd0);
3279 new_temp = make_ssa_name (vec_dest, new_stmt);
3280 gimple_call_set_lhs (new_stmt, new_temp);
3281 }
3282 else
3283 {
3284 /* Generic support */
3285 gcc_assert (op_type == TREE_CODE_LENGTH (code));
3286 if (op_type != binary_op)
3287 vec_oprnd1 = NULL;
3288 new_stmt = gimple_build_assign (vec_dest, code, vec_oprnd0, vec_oprnd1);
3289 new_temp = make_ssa_name (vec_dest, new_stmt);
3290 gimple_assign_set_lhs (new_stmt, new_temp);
3291 }
3292 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3293
3294 return new_stmt;
3295 }
3296
3297
3298 /* Get vectorized definitions for loop-based vectorization. For the first
3299 operand we call vect_get_vec_def_for_operand() (with OPRND containing
3300 scalar operand), and for the rest we get a copy with
3301 vect_get_vec_def_for_stmt_copy() using the previous vector definition
3302 (stored in OPRND). See vect_get_vec_def_for_stmt_copy() for details.
3303 The vectors are collected into VEC_OPRNDS. */
3304
3305 static void
3306 vect_get_loop_based_defs (tree *oprnd, gimple stmt, enum vect_def_type dt,
3307 vec<tree> *vec_oprnds, int multi_step_cvt)
3308 {
3309 tree vec_oprnd;
3310
3311 /* Get first vector operand. */
3312 /* All the vector operands except the very first one (that is scalar oprnd)
3313 are stmt copies. */
3314 if (TREE_CODE (TREE_TYPE (*oprnd)) != VECTOR_TYPE)
3315 vec_oprnd = vect_get_vec_def_for_operand (*oprnd, stmt, NULL);
3316 else
3317 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, *oprnd);
3318
3319 vec_oprnds->quick_push (vec_oprnd);
3320
3321 /* Get second vector operand. */
3322 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, vec_oprnd);
3323 vec_oprnds->quick_push (vec_oprnd);
3324
3325 *oprnd = vec_oprnd;
3326
3327 /* For conversion in multiple steps, continue to get operands
3328 recursively. */
3329 if (multi_step_cvt)
3330 vect_get_loop_based_defs (oprnd, stmt, dt, vec_oprnds, multi_step_cvt - 1);
3331 }
3332
3333
3334 /* Create vectorized demotion statements for vector operands from VEC_OPRNDS.
3335 For multi-step conversions store the resulting vectors and call the function
3336 recursively. */
3337
3338 static void
3339 vect_create_vectorized_demotion_stmts (vec<tree> *vec_oprnds,
3340 int multi_step_cvt, gimple stmt,
3341 vec<tree> vec_dsts,
3342 gimple_stmt_iterator *gsi,
3343 slp_tree slp_node, enum tree_code code,
3344 stmt_vec_info *prev_stmt_info)
3345 {
3346 unsigned int i;
3347 tree vop0, vop1, new_tmp, vec_dest;
3348 gimple new_stmt;
3349 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3350
3351 vec_dest = vec_dsts.pop ();
3352
3353 for (i = 0; i < vec_oprnds->length (); i += 2)
3354 {
3355 /* Create demotion operation. */
3356 vop0 = (*vec_oprnds)[i];
3357 vop1 = (*vec_oprnds)[i + 1];
3358 new_stmt = gimple_build_assign (vec_dest, code, vop0, vop1);
3359 new_tmp = make_ssa_name (vec_dest, new_stmt);
3360 gimple_assign_set_lhs (new_stmt, new_tmp);
3361 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3362
3363 if (multi_step_cvt)
3364 /* Store the resulting vector for next recursive call. */
3365 (*vec_oprnds)[i/2] = new_tmp;
3366 else
3367 {
3368 /* This is the last step of the conversion sequence. Store the
3369 vectors in SLP_NODE or in vector info of the scalar statement
3370 (or in STMT_VINFO_RELATED_STMT chain). */
3371 if (slp_node)
3372 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
3373
3374 if (!*prev_stmt_info)
3375 STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
3376 else
3377 STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt;
3378
3379 *prev_stmt_info = vinfo_for_stmt (new_stmt);
3380 }
3381 }
3382
3383 /* For multi-step demotion operations we first generate demotion operations
3384 from the source type to the intermediate types, and then combine the
3385 results (stored in VEC_OPRNDS) in demotion operation to the destination
3386 type. */
3387 if (multi_step_cvt)
3388 {
3389 /* At each level of recursion we have half of the operands we had at the
3390 previous level. */
3391 vec_oprnds->truncate ((i+1)/2);
3392 vect_create_vectorized_demotion_stmts (vec_oprnds, multi_step_cvt - 1,
3393 stmt, vec_dsts, gsi, slp_node,
3394 VEC_PACK_TRUNC_EXPR,
3395 prev_stmt_info);
3396 }
3397
3398 vec_dsts.quick_push (vec_dest);
3399 }
3400
3401
3402 /* Create vectorized promotion statements for vector operands from VEC_OPRNDS0
3403 and VEC_OPRNDS1 (for binary operations). For multi-step conversions store
3404 the resulting vectors and call the function recursively. */
3405
3406 static void
3407 vect_create_vectorized_promotion_stmts (vec<tree> *vec_oprnds0,
3408 vec<tree> *vec_oprnds1,
3409 gimple stmt, tree vec_dest,
3410 gimple_stmt_iterator *gsi,
3411 enum tree_code code1,
3412 enum tree_code code2, tree decl1,
3413 tree decl2, int op_type)
3414 {
3415 int i;
3416 tree vop0, vop1, new_tmp1, new_tmp2;
3417 gimple new_stmt1, new_stmt2;
3418 vec<tree> vec_tmp = vNULL;
3419
3420 vec_tmp.create (vec_oprnds0->length () * 2);
3421 FOR_EACH_VEC_ELT (*vec_oprnds0, i, vop0)
3422 {
3423 if (op_type == binary_op)
3424 vop1 = (*vec_oprnds1)[i];
3425 else
3426 vop1 = NULL_TREE;
3427
3428 /* Generate the two halves of promotion operation. */
3429 new_stmt1 = vect_gen_widened_results_half (code1, decl1, vop0, vop1,
3430 op_type, vec_dest, gsi, stmt);
3431 new_stmt2 = vect_gen_widened_results_half (code2, decl2, vop0, vop1,
3432 op_type, vec_dest, gsi, stmt);
3433 if (is_gimple_call (new_stmt1))
3434 {
3435 new_tmp1 = gimple_call_lhs (new_stmt1);
3436 new_tmp2 = gimple_call_lhs (new_stmt2);
3437 }
3438 else
3439 {
3440 new_tmp1 = gimple_assign_lhs (new_stmt1);
3441 new_tmp2 = gimple_assign_lhs (new_stmt2);
3442 }
3443
3444 /* Store the results for the next step. */
3445 vec_tmp.quick_push (new_tmp1);
3446 vec_tmp.quick_push (new_tmp2);
3447 }
3448
3449 vec_oprnds0->release ();
3450 *vec_oprnds0 = vec_tmp;
3451 }
3452
3453
3454 /* Check if STMT performs a conversion operation, that can be vectorized.
3455 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
3456 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
3457 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
3458
3459 static bool
3460 vectorizable_conversion (gimple stmt, gimple_stmt_iterator *gsi,
3461 gimple *vec_stmt, slp_tree slp_node)
3462 {
3463 tree vec_dest;
3464 tree scalar_dest;
3465 tree op0, op1 = NULL_TREE;
3466 tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
3467 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3468 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3469 enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK;
3470 enum tree_code codecvt1 = ERROR_MARK, codecvt2 = ERROR_MARK;
3471 tree decl1 = NULL_TREE, decl2 = NULL_TREE;
3472 tree new_temp;
3473 tree def;
3474 gimple def_stmt;
3475 enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
3476 gimple new_stmt = NULL;
3477 stmt_vec_info prev_stmt_info;
3478 int nunits_in;
3479 int nunits_out;
3480 tree vectype_out, vectype_in;
3481 int ncopies, i, j;
3482 tree lhs_type, rhs_type;
3483 enum { NARROW, NONE, WIDEN } modifier;
3484 vec<tree> vec_oprnds0 = vNULL;
3485 vec<tree> vec_oprnds1 = vNULL;
3486 tree vop0;
3487 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
3488 int multi_step_cvt = 0;
3489 vec<tree> vec_dsts = vNULL;
3490 vec<tree> interm_types = vNULL;
3491 tree last_oprnd, intermediate_type, cvt_type = NULL_TREE;
3492 int op_type;
3493 machine_mode rhs_mode;
3494 unsigned short fltsz;
3495
3496 /* Is STMT a vectorizable conversion? */
3497
3498 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
3499 return false;
3500
3501 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
3502 return false;
3503
3504 if (!is_gimple_assign (stmt))
3505 return false;
3506
3507 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
3508 return false;
3509
3510 code = gimple_assign_rhs_code (stmt);
3511 if (!CONVERT_EXPR_CODE_P (code)
3512 && code != FIX_TRUNC_EXPR
3513 && code != FLOAT_EXPR
3514 && code != WIDEN_MULT_EXPR
3515 && code != WIDEN_LSHIFT_EXPR)
3516 return false;
3517
3518 op_type = TREE_CODE_LENGTH (code);
3519
3520 /* Check types of lhs and rhs. */
3521 scalar_dest = gimple_assign_lhs (stmt);
3522 lhs_type = TREE_TYPE (scalar_dest);
3523 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
3524
3525 op0 = gimple_assign_rhs1 (stmt);
3526 rhs_type = TREE_TYPE (op0);
3527
3528 if ((code != FIX_TRUNC_EXPR && code != FLOAT_EXPR)
3529 && !((INTEGRAL_TYPE_P (lhs_type)
3530 && INTEGRAL_TYPE_P (rhs_type))
3531 || (SCALAR_FLOAT_TYPE_P (lhs_type)
3532 && SCALAR_FLOAT_TYPE_P (rhs_type))))
3533 return false;
3534
3535 if ((INTEGRAL_TYPE_P (lhs_type)
3536 && (TYPE_PRECISION (lhs_type)
3537 != GET_MODE_PRECISION (TYPE_MODE (lhs_type))))
3538 || (INTEGRAL_TYPE_P (rhs_type)
3539 && (TYPE_PRECISION (rhs_type)
3540 != GET_MODE_PRECISION (TYPE_MODE (rhs_type)))))
3541 {
3542 if (dump_enabled_p ())
3543 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3544 "type conversion to/from bit-precision unsupported."
3545 "\n");
3546 return false;
3547 }
3548
3549 /* Check the operands of the operation. */
3550 if (!vect_is_simple_use_1 (op0, stmt, loop_vinfo, bb_vinfo,
3551 &def_stmt, &def, &dt[0], &vectype_in))
3552 {
3553 if (dump_enabled_p ())
3554 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3555 "use not simple.\n");
3556 return false;
3557 }
3558 if (op_type == binary_op)
3559 {
3560 bool ok;
3561
3562 op1 = gimple_assign_rhs2 (stmt);
3563 gcc_assert (code == WIDEN_MULT_EXPR || code == WIDEN_LSHIFT_EXPR);
3564 /* For WIDEN_MULT_EXPR, if OP0 is a constant, use the type of
3565 OP1. */
3566 if (CONSTANT_CLASS_P (op0))
3567 ok = vect_is_simple_use_1 (op1, stmt, loop_vinfo, bb_vinfo,
3568 &def_stmt, &def, &dt[1], &vectype_in);
3569 else
3570 ok = vect_is_simple_use (op1, stmt, loop_vinfo, bb_vinfo, &def_stmt,
3571 &def, &dt[1]);
3572
3573 if (!ok)
3574 {
3575 if (dump_enabled_p ())
3576 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3577 "use not simple.\n");
3578 return false;
3579 }
3580 }
3581
3582 /* If op0 is an external or constant defs use a vector type of
3583 the same size as the output vector type. */
3584 if (!vectype_in)
3585 vectype_in = get_same_sized_vectype (rhs_type, vectype_out);
3586 if (vec_stmt)
3587 gcc_assert (vectype_in);
3588 if (!vectype_in)
3589 {
3590 if (dump_enabled_p ())
3591 {
3592 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3593 "no vectype for scalar type ");
3594 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, rhs_type);
3595 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3596 }
3597
3598 return false;
3599 }
3600
3601 nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
3602 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
3603 if (nunits_in < nunits_out)
3604 modifier = NARROW;
3605 else if (nunits_out == nunits_in)
3606 modifier = NONE;
3607 else
3608 modifier = WIDEN;
3609
3610 /* Multiple types in SLP are handled by creating the appropriate number of
3611 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
3612 case of SLP. */
3613 if (slp_node || PURE_SLP_STMT (stmt_info))
3614 ncopies = 1;
3615 else if (modifier == NARROW)
3616 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
3617 else
3618 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
3619
3620 /* Sanity check: make sure that at least one copy of the vectorized stmt
3621 needs to be generated. */
3622 gcc_assert (ncopies >= 1);
3623
3624 /* Supportable by target? */
3625 switch (modifier)
3626 {
3627 case NONE:
3628 if (code != FIX_TRUNC_EXPR && code != FLOAT_EXPR)
3629 return false;
3630 if (supportable_convert_operation (code, vectype_out, vectype_in,
3631 &decl1, &code1))
3632 break;
3633 /* FALLTHRU */
3634 unsupported:
3635 if (dump_enabled_p ())
3636 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3637 "conversion not supported by target.\n");
3638 return false;
3639
3640 case WIDEN:
3641 if (supportable_widening_operation (code, stmt, vectype_out, vectype_in,
3642 &code1, &code2, &multi_step_cvt,
3643 &interm_types))
3644 {
3645 /* Binary widening operation can only be supported directly by the
3646 architecture. */
3647 gcc_assert (!(multi_step_cvt && op_type == binary_op));
3648 break;
3649 }
3650
3651 if (code != FLOAT_EXPR
3652 || (GET_MODE_SIZE (TYPE_MODE (lhs_type))
3653 <= GET_MODE_SIZE (TYPE_MODE (rhs_type))))
3654 goto unsupported;
3655
3656 rhs_mode = TYPE_MODE (rhs_type);
3657 fltsz = GET_MODE_SIZE (TYPE_MODE (lhs_type));
3658 for (rhs_mode = GET_MODE_2XWIDER_MODE (TYPE_MODE (rhs_type));
3659 rhs_mode != VOIDmode && GET_MODE_SIZE (rhs_mode) <= fltsz;
3660 rhs_mode = GET_MODE_2XWIDER_MODE (rhs_mode))
3661 {
3662 cvt_type
3663 = build_nonstandard_integer_type (GET_MODE_BITSIZE (rhs_mode), 0);
3664 cvt_type = get_same_sized_vectype (cvt_type, vectype_in);
3665 if (cvt_type == NULL_TREE)
3666 goto unsupported;
3667
3668 if (GET_MODE_SIZE (rhs_mode) == fltsz)
3669 {
3670 if (!supportable_convert_operation (code, vectype_out,
3671 cvt_type, &decl1, &codecvt1))
3672 goto unsupported;
3673 }
3674 else if (!supportable_widening_operation (code, stmt, vectype_out,
3675 cvt_type, &codecvt1,
3676 &codecvt2, &multi_step_cvt,
3677 &interm_types))
3678 continue;
3679 else
3680 gcc_assert (multi_step_cvt == 0);
3681
3682 if (supportable_widening_operation (NOP_EXPR, stmt, cvt_type,
3683 vectype_in, &code1, &code2,
3684 &multi_step_cvt, &interm_types))
3685 break;
3686 }
3687
3688 if (rhs_mode == VOIDmode || GET_MODE_SIZE (rhs_mode) > fltsz)
3689 goto unsupported;
3690
3691 if (GET_MODE_SIZE (rhs_mode) == fltsz)
3692 codecvt2 = ERROR_MARK;
3693 else
3694 {
3695 multi_step_cvt++;
3696 interm_types.safe_push (cvt_type);
3697 cvt_type = NULL_TREE;
3698 }
3699 break;
3700
3701 case NARROW:
3702 gcc_assert (op_type == unary_op);
3703 if (supportable_narrowing_operation (code, vectype_out, vectype_in,
3704 &code1, &multi_step_cvt,
3705 &interm_types))
3706 break;
3707
3708 if (code != FIX_TRUNC_EXPR
3709 || (GET_MODE_SIZE (TYPE_MODE (lhs_type))
3710 >= GET_MODE_SIZE (TYPE_MODE (rhs_type))))
3711 goto unsupported;
3712
3713 rhs_mode = TYPE_MODE (rhs_type);
3714 cvt_type
3715 = build_nonstandard_integer_type (GET_MODE_BITSIZE (rhs_mode), 0);
3716 cvt_type = get_same_sized_vectype (cvt_type, vectype_in);
3717 if (cvt_type == NULL_TREE)
3718 goto unsupported;
3719 if (!supportable_convert_operation (code, cvt_type, vectype_in,
3720 &decl1, &codecvt1))
3721 goto unsupported;
3722 if (supportable_narrowing_operation (NOP_EXPR, vectype_out, cvt_type,
3723 &code1, &multi_step_cvt,
3724 &interm_types))
3725 break;
3726 goto unsupported;
3727
3728 default:
3729 gcc_unreachable ();
3730 }
3731
3732 if (!vec_stmt) /* transformation not required. */
3733 {
3734 if (dump_enabled_p ())
3735 dump_printf_loc (MSG_NOTE, vect_location,
3736 "=== vectorizable_conversion ===\n");
3737 if (code == FIX_TRUNC_EXPR || code == FLOAT_EXPR)
3738 {
3739 STMT_VINFO_TYPE (stmt_info) = type_conversion_vec_info_type;
3740 vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
3741 }
3742 else if (modifier == NARROW)
3743 {
3744 STMT_VINFO_TYPE (stmt_info) = type_demotion_vec_info_type;
3745 vect_model_promotion_demotion_cost (stmt_info, dt, multi_step_cvt);
3746 }
3747 else
3748 {
3749 STMT_VINFO_TYPE (stmt_info) = type_promotion_vec_info_type;
3750 vect_model_promotion_demotion_cost (stmt_info, dt, multi_step_cvt);
3751 }
3752 interm_types.release ();
3753 return true;
3754 }
3755
3756 /** Transform. **/
3757 if (dump_enabled_p ())
3758 dump_printf_loc (MSG_NOTE, vect_location,
3759 "transform conversion. ncopies = %d.\n", ncopies);
3760
3761 if (op_type == binary_op)
3762 {
3763 if (CONSTANT_CLASS_P (op0))
3764 op0 = fold_convert (TREE_TYPE (op1), op0);
3765 else if (CONSTANT_CLASS_P (op1))
3766 op1 = fold_convert (TREE_TYPE (op0), op1);
3767 }
3768
3769 /* In case of multi-step conversion, we first generate conversion operations
3770 to the intermediate types, and then from that types to the final one.
3771 We create vector destinations for the intermediate type (TYPES) received
3772 from supportable_*_operation, and store them in the correct order
3773 for future use in vect_create_vectorized_*_stmts (). */
3774 vec_dsts.create (multi_step_cvt + 1);
3775 vec_dest = vect_create_destination_var (scalar_dest,
3776 (cvt_type && modifier == WIDEN)
3777 ? cvt_type : vectype_out);
3778 vec_dsts.quick_push (vec_dest);
3779
3780 if (multi_step_cvt)
3781 {
3782 for (i = interm_types.length () - 1;
3783 interm_types.iterate (i, &intermediate_type); i--)
3784 {
3785 vec_dest = vect_create_destination_var (scalar_dest,
3786 intermediate_type);
3787 vec_dsts.quick_push (vec_dest);
3788 }
3789 }
3790
3791 if (cvt_type)
3792 vec_dest = vect_create_destination_var (scalar_dest,
3793 modifier == WIDEN
3794 ? vectype_out : cvt_type);
3795
3796 if (!slp_node)
3797 {
3798 if (modifier == WIDEN)
3799 {
3800 vec_oprnds0.create (multi_step_cvt ? vect_pow2 (multi_step_cvt) : 1);
3801 if (op_type == binary_op)
3802 vec_oprnds1.create (1);
3803 }
3804 else if (modifier == NARROW)
3805 vec_oprnds0.create (
3806 2 * (multi_step_cvt ? vect_pow2 (multi_step_cvt) : 1));
3807 }
3808 else if (code == WIDEN_LSHIFT_EXPR)
3809 vec_oprnds1.create (slp_node->vec_stmts_size);
3810
3811 last_oprnd = op0;
3812 prev_stmt_info = NULL;
3813 switch (modifier)
3814 {
3815 case NONE:
3816 for (j = 0; j < ncopies; j++)
3817 {
3818 if (j == 0)
3819 vect_get_vec_defs (op0, NULL, stmt, &vec_oprnds0, NULL, slp_node,
3820 -1);
3821 else
3822 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, NULL);
3823
3824 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
3825 {
3826 /* Arguments are ready, create the new vector stmt. */
3827 if (code1 == CALL_EXPR)
3828 {
3829 new_stmt = gimple_build_call (decl1, 1, vop0);
3830 new_temp = make_ssa_name (vec_dest, new_stmt);
3831 gimple_call_set_lhs (new_stmt, new_temp);
3832 }
3833 else
3834 {
3835 gcc_assert (TREE_CODE_LENGTH (code1) == unary_op);
3836 new_stmt = gimple_build_assign (vec_dest, code1, vop0);
3837 new_temp = make_ssa_name (vec_dest, new_stmt);
3838 gimple_assign_set_lhs (new_stmt, new_temp);
3839 }
3840
3841 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3842 if (slp_node)
3843 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
3844 }
3845
3846 if (j == 0)
3847 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
3848 else
3849 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3850 prev_stmt_info = vinfo_for_stmt (new_stmt);
3851 }
3852 break;
3853
3854 case WIDEN:
3855 /* In case the vectorization factor (VF) is bigger than the number
3856 of elements that we can fit in a vectype (nunits), we have to
3857 generate more than one vector stmt - i.e - we need to "unroll"
3858 the vector stmt by a factor VF/nunits. */
3859 for (j = 0; j < ncopies; j++)
3860 {
3861 /* Handle uses. */
3862 if (j == 0)
3863 {
3864 if (slp_node)
3865 {
3866 if (code == WIDEN_LSHIFT_EXPR)
3867 {
3868 unsigned int k;
3869
3870 vec_oprnd1 = op1;
3871 /* Store vec_oprnd1 for every vector stmt to be created
3872 for SLP_NODE. We check during the analysis that all
3873 the shift arguments are the same. */
3874 for (k = 0; k < slp_node->vec_stmts_size - 1; k++)
3875 vec_oprnds1.quick_push (vec_oprnd1);
3876
3877 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
3878 slp_node, -1);
3879 }
3880 else
3881 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0,
3882 &vec_oprnds1, slp_node, -1);
3883 }
3884 else
3885 {
3886 vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
3887 vec_oprnds0.quick_push (vec_oprnd0);
3888 if (op_type == binary_op)
3889 {
3890 if (code == WIDEN_LSHIFT_EXPR)
3891 vec_oprnd1 = op1;
3892 else
3893 vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt,
3894 NULL);
3895 vec_oprnds1.quick_push (vec_oprnd1);
3896 }
3897 }
3898 }
3899 else
3900 {
3901 vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
3902 vec_oprnds0.truncate (0);
3903 vec_oprnds0.quick_push (vec_oprnd0);
3904 if (op_type == binary_op)
3905 {
3906 if (code == WIDEN_LSHIFT_EXPR)
3907 vec_oprnd1 = op1;
3908 else
3909 vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[1],
3910 vec_oprnd1);
3911 vec_oprnds1.truncate (0);
3912 vec_oprnds1.quick_push (vec_oprnd1);
3913 }
3914 }
3915
3916 /* Arguments are ready. Create the new vector stmts. */
3917 for (i = multi_step_cvt; i >= 0; i--)
3918 {
3919 tree this_dest = vec_dsts[i];
3920 enum tree_code c1 = code1, c2 = code2;
3921 if (i == 0 && codecvt2 != ERROR_MARK)
3922 {
3923 c1 = codecvt1;
3924 c2 = codecvt2;
3925 }
3926 vect_create_vectorized_promotion_stmts (&vec_oprnds0,
3927 &vec_oprnds1,
3928 stmt, this_dest, gsi,
3929 c1, c2, decl1, decl2,
3930 op_type);
3931 }
3932
3933 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
3934 {
3935 if (cvt_type)
3936 {
3937 if (codecvt1 == CALL_EXPR)
3938 {
3939 new_stmt = gimple_build_call (decl1, 1, vop0);
3940 new_temp = make_ssa_name (vec_dest, new_stmt);
3941 gimple_call_set_lhs (new_stmt, new_temp);
3942 }
3943 else
3944 {
3945 gcc_assert (TREE_CODE_LENGTH (codecvt1) == unary_op);
3946 new_temp = make_ssa_name (vec_dest);
3947 new_stmt = gimple_build_assign (new_temp, codecvt1,
3948 vop0);
3949 }
3950
3951 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3952 }
3953 else
3954 new_stmt = SSA_NAME_DEF_STMT (vop0);
3955
3956 if (slp_node)
3957 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
3958
3959 if (!prev_stmt_info)
3960 STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
3961 else
3962 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3963 prev_stmt_info = vinfo_for_stmt (new_stmt);
3964 }
3965 }
3966
3967 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
3968 break;
3969
3970 case NARROW:
3971 /* In case the vectorization factor (VF) is bigger than the number
3972 of elements that we can fit in a vectype (nunits), we have to
3973 generate more than one vector stmt - i.e - we need to "unroll"
3974 the vector stmt by a factor VF/nunits. */
3975 for (j = 0; j < ncopies; j++)
3976 {
3977 /* Handle uses. */
3978 if (slp_node)
3979 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
3980 slp_node, -1);
3981 else
3982 {
3983 vec_oprnds0.truncate (0);
3984 vect_get_loop_based_defs (&last_oprnd, stmt, dt[0], &vec_oprnds0,
3985 vect_pow2 (multi_step_cvt) - 1);
3986 }
3987
3988 /* Arguments are ready. Create the new vector stmts. */
3989 if (cvt_type)
3990 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
3991 {
3992 if (codecvt1 == CALL_EXPR)
3993 {
3994 new_stmt = gimple_build_call (decl1, 1, vop0);
3995 new_temp = make_ssa_name (vec_dest, new_stmt);
3996 gimple_call_set_lhs (new_stmt, new_temp);
3997 }
3998 else
3999 {
4000 gcc_assert (TREE_CODE_LENGTH (codecvt1) == unary_op);
4001 new_temp = make_ssa_name (vec_dest);
4002 new_stmt = gimple_build_assign (new_temp, codecvt1,
4003 vop0);
4004 }
4005
4006 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4007 vec_oprnds0[i] = new_temp;
4008 }
4009
4010 vect_create_vectorized_demotion_stmts (&vec_oprnds0, multi_step_cvt,
4011 stmt, vec_dsts, gsi,
4012 slp_node, code1,
4013 &prev_stmt_info);
4014 }
4015
4016 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
4017 break;
4018 }
4019
4020 vec_oprnds0.release ();
4021 vec_oprnds1.release ();
4022 vec_dsts.release ();
4023 interm_types.release ();
4024
4025 return true;
4026 }
4027
4028
4029 /* Function vectorizable_assignment.
4030
4031 Check if STMT performs an assignment (copy) that can be vectorized.
4032 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4033 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
4034 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
4035
4036 static bool
4037 vectorizable_assignment (gimple stmt, gimple_stmt_iterator *gsi,
4038 gimple *vec_stmt, slp_tree slp_node)
4039 {
4040 tree vec_dest;
4041 tree scalar_dest;
4042 tree op;
4043 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4044 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4045 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4046 tree new_temp;
4047 tree def;
4048 gimple def_stmt;
4049 enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
4050 unsigned int nunits = TYPE_VECTOR_SUBPARTS (vectype);
4051 int ncopies;
4052 int i, j;
4053 vec<tree> vec_oprnds = vNULL;
4054 tree vop;
4055 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4056 gimple new_stmt = NULL;
4057 stmt_vec_info prev_stmt_info = NULL;
4058 enum tree_code code;
4059 tree vectype_in;
4060
4061 /* Multiple types in SLP are handled by creating the appropriate number of
4062 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
4063 case of SLP. */
4064 if (slp_node || PURE_SLP_STMT (stmt_info))
4065 ncopies = 1;
4066 else
4067 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
4068
4069 gcc_assert (ncopies >= 1);
4070
4071 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
4072 return false;
4073
4074 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
4075 return false;
4076
4077 /* Is vectorizable assignment? */
4078 if (!is_gimple_assign (stmt))
4079 return false;
4080
4081 scalar_dest = gimple_assign_lhs (stmt);
4082 if (TREE_CODE (scalar_dest) != SSA_NAME)
4083 return false;
4084
4085 code = gimple_assign_rhs_code (stmt);
4086 if (gimple_assign_single_p (stmt)
4087 || code == PAREN_EXPR
4088 || CONVERT_EXPR_CODE_P (code))
4089 op = gimple_assign_rhs1 (stmt);
4090 else
4091 return false;
4092
4093 if (code == VIEW_CONVERT_EXPR)
4094 op = TREE_OPERAND (op, 0);
4095
4096 if (!vect_is_simple_use_1 (op, stmt, loop_vinfo, bb_vinfo,
4097 &def_stmt, &def, &dt[0], &vectype_in))
4098 {
4099 if (dump_enabled_p ())
4100 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4101 "use not simple.\n");
4102 return false;
4103 }
4104
4105 /* We can handle NOP_EXPR conversions that do not change the number
4106 of elements or the vector size. */
4107 if ((CONVERT_EXPR_CODE_P (code)
4108 || code == VIEW_CONVERT_EXPR)
4109 && (!vectype_in
4110 || TYPE_VECTOR_SUBPARTS (vectype_in) != nunits
4111 || (GET_MODE_SIZE (TYPE_MODE (vectype))
4112 != GET_MODE_SIZE (TYPE_MODE (vectype_in)))))
4113 return false;
4114
4115 /* We do not handle bit-precision changes. */
4116 if ((CONVERT_EXPR_CODE_P (code)
4117 || code == VIEW_CONVERT_EXPR)
4118 && INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
4119 && ((TYPE_PRECISION (TREE_TYPE (scalar_dest))
4120 != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest))))
4121 || ((TYPE_PRECISION (TREE_TYPE (op))
4122 != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (op))))))
4123 /* But a conversion that does not change the bit-pattern is ok. */
4124 && !((TYPE_PRECISION (TREE_TYPE (scalar_dest))
4125 > TYPE_PRECISION (TREE_TYPE (op)))
4126 && TYPE_UNSIGNED (TREE_TYPE (op))))
4127 {
4128 if (dump_enabled_p ())
4129 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4130 "type conversion to/from bit-precision "
4131 "unsupported.\n");
4132 return false;
4133 }
4134
4135 if (!vec_stmt) /* transformation not required. */
4136 {
4137 STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
4138 if (dump_enabled_p ())
4139 dump_printf_loc (MSG_NOTE, vect_location,
4140 "=== vectorizable_assignment ===\n");
4141 vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
4142 return true;
4143 }
4144
4145 /** Transform. **/
4146 if (dump_enabled_p ())
4147 dump_printf_loc (MSG_NOTE, vect_location, "transform assignment.\n");
4148
4149 /* Handle def. */
4150 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4151
4152 /* Handle use. */
4153 for (j = 0; j < ncopies; j++)
4154 {
4155 /* Handle uses. */
4156 if (j == 0)
4157 vect_get_vec_defs (op, NULL, stmt, &vec_oprnds, NULL, slp_node, -1);
4158 else
4159 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds, NULL);
4160
4161 /* Arguments are ready. create the new vector stmt. */
4162 FOR_EACH_VEC_ELT (vec_oprnds, i, vop)
4163 {
4164 if (CONVERT_EXPR_CODE_P (code)
4165 || code == VIEW_CONVERT_EXPR)
4166 vop = build1 (VIEW_CONVERT_EXPR, vectype, vop);
4167 new_stmt = gimple_build_assign (vec_dest, vop);
4168 new_temp = make_ssa_name (vec_dest, new_stmt);
4169 gimple_assign_set_lhs (new_stmt, new_temp);
4170 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4171 if (slp_node)
4172 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
4173 }
4174
4175 if (slp_node)
4176 continue;
4177
4178 if (j == 0)
4179 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
4180 else
4181 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
4182
4183 prev_stmt_info = vinfo_for_stmt (new_stmt);
4184 }
4185
4186 vec_oprnds.release ();
4187 return true;
4188 }
4189
4190
4191 /* Return TRUE if CODE (a shift operation) is supported for SCALAR_TYPE
4192 either as shift by a scalar or by a vector. */
4193
4194 bool
4195 vect_supportable_shift (enum tree_code code, tree scalar_type)
4196 {
4197
4198 machine_mode vec_mode;
4199 optab optab;
4200 int icode;
4201 tree vectype;
4202
4203 vectype = get_vectype_for_scalar_type (scalar_type);
4204 if (!vectype)
4205 return false;
4206
4207 optab = optab_for_tree_code (code, vectype, optab_scalar);
4208 if (!optab
4209 || optab_handler (optab, TYPE_MODE (vectype)) == CODE_FOR_nothing)
4210 {
4211 optab = optab_for_tree_code (code, vectype, optab_vector);
4212 if (!optab
4213 || (optab_handler (optab, TYPE_MODE (vectype))
4214 == CODE_FOR_nothing))
4215 return false;
4216 }
4217
4218 vec_mode = TYPE_MODE (vectype);
4219 icode = (int) optab_handler (optab, vec_mode);
4220 if (icode == CODE_FOR_nothing)
4221 return false;
4222
4223 return true;
4224 }
4225
4226
4227 /* Function vectorizable_shift.
4228
4229 Check if STMT performs a shift operation that can be vectorized.
4230 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4231 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
4232 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
4233
4234 static bool
4235 vectorizable_shift (gimple stmt, gimple_stmt_iterator *gsi,
4236 gimple *vec_stmt, slp_tree slp_node)
4237 {
4238 tree vec_dest;
4239 tree scalar_dest;
4240 tree op0, op1 = NULL;
4241 tree vec_oprnd1 = NULL_TREE;
4242 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4243 tree vectype;
4244 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4245 enum tree_code code;
4246 machine_mode vec_mode;
4247 tree new_temp;
4248 optab optab;
4249 int icode;
4250 machine_mode optab_op2_mode;
4251 tree def;
4252 gimple def_stmt;
4253 enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
4254 gimple new_stmt = NULL;
4255 stmt_vec_info prev_stmt_info;
4256 int nunits_in;
4257 int nunits_out;
4258 tree vectype_out;
4259 tree op1_vectype;
4260 int ncopies;
4261 int j, i;
4262 vec<tree> vec_oprnds0 = vNULL;
4263 vec<tree> vec_oprnds1 = vNULL;
4264 tree vop0, vop1;
4265 unsigned int k;
4266 bool scalar_shift_arg = true;
4267 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4268 int vf;
4269
4270 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
4271 return false;
4272
4273 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
4274 return false;
4275
4276 /* Is STMT a vectorizable binary/unary operation? */
4277 if (!is_gimple_assign (stmt))
4278 return false;
4279
4280 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
4281 return false;
4282
4283 code = gimple_assign_rhs_code (stmt);
4284
4285 if (!(code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR
4286 || code == RROTATE_EXPR))
4287 return false;
4288
4289 scalar_dest = gimple_assign_lhs (stmt);
4290 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
4291 if (TYPE_PRECISION (TREE_TYPE (scalar_dest))
4292 != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest))))
4293 {
4294 if (dump_enabled_p ())
4295 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4296 "bit-precision shifts not supported.\n");
4297 return false;
4298 }
4299
4300 op0 = gimple_assign_rhs1 (stmt);
4301 if (!vect_is_simple_use_1 (op0, stmt, loop_vinfo, bb_vinfo,
4302 &def_stmt, &def, &dt[0], &vectype))
4303 {
4304 if (dump_enabled_p ())
4305 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4306 "use not simple.\n");
4307 return false;
4308 }
4309 /* If op0 is an external or constant def use a vector type with
4310 the same size as the output vector type. */
4311 if (!vectype)
4312 vectype = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
4313 if (vec_stmt)
4314 gcc_assert (vectype);
4315 if (!vectype)
4316 {
4317 if (dump_enabled_p ())
4318 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4319 "no vectype for scalar type\n");
4320 return false;
4321 }
4322
4323 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
4324 nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
4325 if (nunits_out != nunits_in)
4326 return false;
4327
4328 op1 = gimple_assign_rhs2 (stmt);
4329 if (!vect_is_simple_use_1 (op1, stmt, loop_vinfo, bb_vinfo, &def_stmt,
4330 &def, &dt[1], &op1_vectype))
4331 {
4332 if (dump_enabled_p ())
4333 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4334 "use not simple.\n");
4335 return false;
4336 }
4337
4338 if (loop_vinfo)
4339 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
4340 else
4341 vf = 1;
4342
4343 /* Multiple types in SLP are handled by creating the appropriate number of
4344 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
4345 case of SLP. */
4346 if (slp_node || PURE_SLP_STMT (stmt_info))
4347 ncopies = 1;
4348 else
4349 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
4350
4351 gcc_assert (ncopies >= 1);
4352
4353 /* Determine whether the shift amount is a vector, or scalar. If the
4354 shift/rotate amount is a vector, use the vector/vector shift optabs. */
4355
4356 if (dt[1] == vect_internal_def && !slp_node)
4357 scalar_shift_arg = false;
4358 else if (dt[1] == vect_constant_def
4359 || dt[1] == vect_external_def
4360 || dt[1] == vect_internal_def)
4361 {
4362 /* In SLP, need to check whether the shift count is the same,
4363 in loops if it is a constant or invariant, it is always
4364 a scalar shift. */
4365 if (slp_node)
4366 {
4367 vec<gimple> stmts = SLP_TREE_SCALAR_STMTS (slp_node);
4368 gimple slpstmt;
4369
4370 FOR_EACH_VEC_ELT (stmts, k, slpstmt)
4371 if (!operand_equal_p (gimple_assign_rhs2 (slpstmt), op1, 0))
4372 scalar_shift_arg = false;
4373 }
4374 }
4375 else
4376 {
4377 if (dump_enabled_p ())
4378 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4379 "operand mode requires invariant argument.\n");
4380 return false;
4381 }
4382
4383 /* Vector shifted by vector. */
4384 if (!scalar_shift_arg)
4385 {
4386 optab = optab_for_tree_code (code, vectype, optab_vector);
4387 if (dump_enabled_p ())
4388 dump_printf_loc (MSG_NOTE, vect_location,
4389 "vector/vector shift/rotate found.\n");
4390
4391 if (!op1_vectype)
4392 op1_vectype = get_same_sized_vectype (TREE_TYPE (op1), vectype_out);
4393 if (op1_vectype == NULL_TREE
4394 || TYPE_MODE (op1_vectype) != TYPE_MODE (vectype))
4395 {
4396 if (dump_enabled_p ())
4397 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4398 "unusable type for last operand in"
4399 " vector/vector shift/rotate.\n");
4400 return false;
4401 }
4402 }
4403 /* See if the machine has a vector shifted by scalar insn and if not
4404 then see if it has a vector shifted by vector insn. */
4405 else
4406 {
4407 optab = optab_for_tree_code (code, vectype, optab_scalar);
4408 if (optab
4409 && optab_handler (optab, TYPE_MODE (vectype)) != CODE_FOR_nothing)
4410 {
4411 if (dump_enabled_p ())
4412 dump_printf_loc (MSG_NOTE, vect_location,
4413 "vector/scalar shift/rotate found.\n");
4414 }
4415 else
4416 {
4417 optab = optab_for_tree_code (code, vectype, optab_vector);
4418 if (optab
4419 && (optab_handler (optab, TYPE_MODE (vectype))
4420 != CODE_FOR_nothing))
4421 {
4422 scalar_shift_arg = false;
4423
4424 if (dump_enabled_p ())
4425 dump_printf_loc (MSG_NOTE, vect_location,
4426 "vector/vector shift/rotate found.\n");
4427
4428 /* Unlike the other binary operators, shifts/rotates have
4429 the rhs being int, instead of the same type as the lhs,
4430 so make sure the scalar is the right type if we are
4431 dealing with vectors of long long/long/short/char. */
4432 if (dt[1] == vect_constant_def)
4433 op1 = fold_convert (TREE_TYPE (vectype), op1);
4434 else if (!useless_type_conversion_p (TREE_TYPE (vectype),
4435 TREE_TYPE (op1)))
4436 {
4437 if (slp_node
4438 && TYPE_MODE (TREE_TYPE (vectype))
4439 != TYPE_MODE (TREE_TYPE (op1)))
4440 {
4441 if (dump_enabled_p ())
4442 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4443 "unusable type for last operand in"
4444 " vector/vector shift/rotate.\n");
4445 return false;
4446 }
4447 if (vec_stmt && !slp_node)
4448 {
4449 op1 = fold_convert (TREE_TYPE (vectype), op1);
4450 op1 = vect_init_vector (stmt, op1,
4451 TREE_TYPE (vectype), NULL);
4452 }
4453 }
4454 }
4455 }
4456 }
4457
4458 /* Supportable by target? */
4459 if (!optab)
4460 {
4461 if (dump_enabled_p ())
4462 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4463 "no optab.\n");
4464 return false;
4465 }
4466 vec_mode = TYPE_MODE (vectype);
4467 icode = (int) optab_handler (optab, vec_mode);
4468 if (icode == CODE_FOR_nothing)
4469 {
4470 if (dump_enabled_p ())
4471 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4472 "op not supported by target.\n");
4473 /* Check only during analysis. */
4474 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
4475 || (vf < vect_min_worthwhile_factor (code)
4476 && !vec_stmt))
4477 return false;
4478 if (dump_enabled_p ())
4479 dump_printf_loc (MSG_NOTE, vect_location,
4480 "proceeding using word mode.\n");
4481 }
4482
4483 /* Worthwhile without SIMD support? Check only during analysis. */
4484 if (!VECTOR_MODE_P (TYPE_MODE (vectype))
4485 && vf < vect_min_worthwhile_factor (code)
4486 && !vec_stmt)
4487 {
4488 if (dump_enabled_p ())
4489 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4490 "not worthwhile without SIMD support.\n");
4491 return false;
4492 }
4493
4494 if (!vec_stmt) /* transformation not required. */
4495 {
4496 STMT_VINFO_TYPE (stmt_info) = shift_vec_info_type;
4497 if (dump_enabled_p ())
4498 dump_printf_loc (MSG_NOTE, vect_location,
4499 "=== vectorizable_shift ===\n");
4500 vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
4501 return true;
4502 }
4503
4504 /** Transform. **/
4505
4506 if (dump_enabled_p ())
4507 dump_printf_loc (MSG_NOTE, vect_location,
4508 "transform binary/unary operation.\n");
4509
4510 /* Handle def. */
4511 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4512
4513 prev_stmt_info = NULL;
4514 for (j = 0; j < ncopies; j++)
4515 {
4516 /* Handle uses. */
4517 if (j == 0)
4518 {
4519 if (scalar_shift_arg)
4520 {
4521 /* Vector shl and shr insn patterns can be defined with scalar
4522 operand 2 (shift operand). In this case, use constant or loop
4523 invariant op1 directly, without extending it to vector mode
4524 first. */
4525 optab_op2_mode = insn_data[icode].operand[2].mode;
4526 if (!VECTOR_MODE_P (optab_op2_mode))
4527 {
4528 if (dump_enabled_p ())
4529 dump_printf_loc (MSG_NOTE, vect_location,
4530 "operand 1 using scalar mode.\n");
4531 vec_oprnd1 = op1;
4532 vec_oprnds1.create (slp_node ? slp_node->vec_stmts_size : 1);
4533 vec_oprnds1.quick_push (vec_oprnd1);
4534 if (slp_node)
4535 {
4536 /* Store vec_oprnd1 for every vector stmt to be created
4537 for SLP_NODE. We check during the analysis that all
4538 the shift arguments are the same.
4539 TODO: Allow different constants for different vector
4540 stmts generated for an SLP instance. */
4541 for (k = 0; k < slp_node->vec_stmts_size - 1; k++)
4542 vec_oprnds1.quick_push (vec_oprnd1);
4543 }
4544 }
4545 }
4546
4547 /* vec_oprnd1 is available if operand 1 should be of a scalar-type
4548 (a special case for certain kind of vector shifts); otherwise,
4549 operand 1 should be of a vector type (the usual case). */
4550 if (vec_oprnd1)
4551 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
4552 slp_node, -1);
4553 else
4554 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
4555 slp_node, -1);
4556 }
4557 else
4558 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1);
4559
4560 /* Arguments are ready. Create the new vector stmt. */
4561 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
4562 {
4563 vop1 = vec_oprnds1[i];
4564 new_stmt = gimple_build_assign (vec_dest, code, vop0, vop1);
4565 new_temp = make_ssa_name (vec_dest, new_stmt);
4566 gimple_assign_set_lhs (new_stmt, new_temp);
4567 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4568 if (slp_node)
4569 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
4570 }
4571
4572 if (slp_node)
4573 continue;
4574
4575 if (j == 0)
4576 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
4577 else
4578 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
4579 prev_stmt_info = vinfo_for_stmt (new_stmt);
4580 }
4581
4582 vec_oprnds0.release ();
4583 vec_oprnds1.release ();
4584
4585 return true;
4586 }
4587
4588
4589 /* Function vectorizable_operation.
4590
4591 Check if STMT performs a binary, unary or ternary operation that can
4592 be vectorized.
4593 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4594 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
4595 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
4596
4597 static bool
4598 vectorizable_operation (gimple stmt, gimple_stmt_iterator *gsi,
4599 gimple *vec_stmt, slp_tree slp_node)
4600 {
4601 tree vec_dest;
4602 tree scalar_dest;
4603 tree op0, op1 = NULL_TREE, op2 = NULL_TREE;
4604 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4605 tree vectype;
4606 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4607 enum tree_code code;
4608 machine_mode vec_mode;
4609 tree new_temp;
4610 int op_type;
4611 optab optab;
4612 int icode;
4613 tree def;
4614 gimple def_stmt;
4615 enum vect_def_type dt[3]
4616 = {vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type};
4617 gimple new_stmt = NULL;
4618 stmt_vec_info prev_stmt_info;
4619 int nunits_in;
4620 int nunits_out;
4621 tree vectype_out;
4622 int ncopies;
4623 int j, i;
4624 vec<tree> vec_oprnds0 = vNULL;
4625 vec<tree> vec_oprnds1 = vNULL;
4626 vec<tree> vec_oprnds2 = vNULL;
4627 tree vop0, vop1, vop2;
4628 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4629 int vf;
4630
4631 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
4632 return false;
4633
4634 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
4635 return false;
4636
4637 /* Is STMT a vectorizable binary/unary operation? */
4638 if (!is_gimple_assign (stmt))
4639 return false;
4640
4641 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
4642 return false;
4643
4644 code = gimple_assign_rhs_code (stmt);
4645
4646 /* For pointer addition, we should use the normal plus for
4647 the vector addition. */
4648 if (code == POINTER_PLUS_EXPR)
4649 code = PLUS_EXPR;
4650
4651 /* Support only unary or binary operations. */
4652 op_type = TREE_CODE_LENGTH (code);
4653 if (op_type != unary_op && op_type != binary_op && op_type != ternary_op)
4654 {
4655 if (dump_enabled_p ())
4656 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4657 "num. args = %d (not unary/binary/ternary op).\n",
4658 op_type);
4659 return false;
4660 }
4661
4662 scalar_dest = gimple_assign_lhs (stmt);
4663 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
4664
4665 /* Most operations cannot handle bit-precision types without extra
4666 truncations. */
4667 if ((TYPE_PRECISION (TREE_TYPE (scalar_dest))
4668 != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest))))
4669 /* Exception are bitwise binary operations. */
4670 && code != BIT_IOR_EXPR
4671 && code != BIT_XOR_EXPR
4672 && code != BIT_AND_EXPR)
4673 {
4674 if (dump_enabled_p ())
4675 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4676 "bit-precision arithmetic not supported.\n");
4677 return false;
4678 }
4679
4680 op0 = gimple_assign_rhs1 (stmt);
4681 if (!vect_is_simple_use_1 (op0, stmt, loop_vinfo, bb_vinfo,
4682 &def_stmt, &def, &dt[0], &vectype))
4683 {
4684 if (dump_enabled_p ())
4685 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4686 "use not simple.\n");
4687 return false;
4688 }
4689 /* If op0 is an external or constant def use a vector type with
4690 the same size as the output vector type. */
4691 if (!vectype)
4692 vectype = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
4693 if (vec_stmt)
4694 gcc_assert (vectype);
4695 if (!vectype)
4696 {
4697 if (dump_enabled_p ())
4698 {
4699 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4700 "no vectype for scalar type ");
4701 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
4702 TREE_TYPE (op0));
4703 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
4704 }
4705
4706 return false;
4707 }
4708
4709 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
4710 nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
4711 if (nunits_out != nunits_in)
4712 return false;
4713
4714 if (op_type == binary_op || op_type == ternary_op)
4715 {
4716 op1 = gimple_assign_rhs2 (stmt);
4717 if (!vect_is_simple_use (op1, stmt, loop_vinfo, bb_vinfo, &def_stmt,
4718 &def, &dt[1]))
4719 {
4720 if (dump_enabled_p ())
4721 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4722 "use not simple.\n");
4723 return false;
4724 }
4725 }
4726 if (op_type == ternary_op)
4727 {
4728 op2 = gimple_assign_rhs3 (stmt);
4729 if (!vect_is_simple_use (op2, stmt, loop_vinfo, bb_vinfo, &def_stmt,
4730 &def, &dt[2]))
4731 {
4732 if (dump_enabled_p ())
4733 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4734 "use not simple.\n");
4735 return false;
4736 }
4737 }
4738
4739 if (loop_vinfo)
4740 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
4741 else
4742 vf = 1;
4743
4744 /* Multiple types in SLP are handled by creating the appropriate number of
4745 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
4746 case of SLP. */
4747 if (slp_node || PURE_SLP_STMT (stmt_info))
4748 ncopies = 1;
4749 else
4750 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
4751
4752 gcc_assert (ncopies >= 1);
4753
4754 /* Shifts are handled in vectorizable_shift (). */
4755 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR
4756 || code == RROTATE_EXPR)
4757 return false;
4758
4759 /* Supportable by target? */
4760
4761 vec_mode = TYPE_MODE (vectype);
4762 if (code == MULT_HIGHPART_EXPR)
4763 {
4764 if (can_mult_highpart_p (vec_mode, TYPE_UNSIGNED (vectype)))
4765 icode = LAST_INSN_CODE;
4766 else
4767 icode = CODE_FOR_nothing;
4768 }
4769 else
4770 {
4771 optab = optab_for_tree_code (code, vectype, optab_default);
4772 if (!optab)
4773 {
4774 if (dump_enabled_p ())
4775 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4776 "no optab.\n");
4777 return false;
4778 }
4779 icode = (int) optab_handler (optab, vec_mode);
4780 }
4781
4782 if (icode == CODE_FOR_nothing)
4783 {
4784 if (dump_enabled_p ())
4785 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4786 "op not supported by target.\n");
4787 /* Check only during analysis. */
4788 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
4789 || (!vec_stmt && vf < vect_min_worthwhile_factor (code)))
4790 return false;
4791 if (dump_enabled_p ())
4792 dump_printf_loc (MSG_NOTE, vect_location,
4793 "proceeding using word mode.\n");
4794 }
4795
4796 /* Worthwhile without SIMD support? Check only during analysis. */
4797 if (!VECTOR_MODE_P (vec_mode)
4798 && !vec_stmt
4799 && vf < vect_min_worthwhile_factor (code))
4800 {
4801 if (dump_enabled_p ())
4802 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4803 "not worthwhile without SIMD support.\n");
4804 return false;
4805 }
4806
4807 if (!vec_stmt) /* transformation not required. */
4808 {
4809 STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
4810 if (dump_enabled_p ())
4811 dump_printf_loc (MSG_NOTE, vect_location,
4812 "=== vectorizable_operation ===\n");
4813 vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
4814 return true;
4815 }
4816
4817 /** Transform. **/
4818
4819 if (dump_enabled_p ())
4820 dump_printf_loc (MSG_NOTE, vect_location,
4821 "transform binary/unary operation.\n");
4822
4823 /* Handle def. */
4824 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4825
4826 /* In case the vectorization factor (VF) is bigger than the number
4827 of elements that we can fit in a vectype (nunits), we have to generate
4828 more than one vector stmt - i.e - we need to "unroll" the
4829 vector stmt by a factor VF/nunits. In doing so, we record a pointer
4830 from one copy of the vector stmt to the next, in the field
4831 STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
4832 stages to find the correct vector defs to be used when vectorizing
4833 stmts that use the defs of the current stmt. The example below
4834 illustrates the vectorization process when VF=16 and nunits=4 (i.e.,
4835 we need to create 4 vectorized stmts):
4836
4837 before vectorization:
4838 RELATED_STMT VEC_STMT
4839 S1: x = memref - -
4840 S2: z = x + 1 - -
4841
4842 step 1: vectorize stmt S1 (done in vectorizable_load. See more details
4843 there):
4844 RELATED_STMT VEC_STMT
4845 VS1_0: vx0 = memref0 VS1_1 -
4846 VS1_1: vx1 = memref1 VS1_2 -
4847 VS1_2: vx2 = memref2 VS1_3 -
4848 VS1_3: vx3 = memref3 - -
4849 S1: x = load - VS1_0
4850 S2: z = x + 1 - -
4851
4852 step2: vectorize stmt S2 (done here):
4853 To vectorize stmt S2 we first need to find the relevant vector
4854 def for the first operand 'x'. This is, as usual, obtained from
4855 the vector stmt recorded in the STMT_VINFO_VEC_STMT of the stmt
4856 that defines 'x' (S1). This way we find the stmt VS1_0, and the
4857 relevant vector def 'vx0'. Having found 'vx0' we can generate
4858 the vector stmt VS2_0, and as usual, record it in the
4859 STMT_VINFO_VEC_STMT of stmt S2.
4860 When creating the second copy (VS2_1), we obtain the relevant vector
4861 def from the vector stmt recorded in the STMT_VINFO_RELATED_STMT of
4862 stmt VS1_0. This way we find the stmt VS1_1 and the relevant
4863 vector def 'vx1'. Using 'vx1' we create stmt VS2_1 and record a
4864 pointer to it in the STMT_VINFO_RELATED_STMT of the vector stmt VS2_0.
4865 Similarly when creating stmts VS2_2 and VS2_3. This is the resulting
4866 chain of stmts and pointers:
4867 RELATED_STMT VEC_STMT
4868 VS1_0: vx0 = memref0 VS1_1 -
4869 VS1_1: vx1 = memref1 VS1_2 -
4870 VS1_2: vx2 = memref2 VS1_3 -
4871 VS1_3: vx3 = memref3 - -
4872 S1: x = load - VS1_0
4873 VS2_0: vz0 = vx0 + v1 VS2_1 -
4874 VS2_1: vz1 = vx1 + v1 VS2_2 -
4875 VS2_2: vz2 = vx2 + v1 VS2_3 -
4876 VS2_3: vz3 = vx3 + v1 - -
4877 S2: z = x + 1 - VS2_0 */
4878
4879 prev_stmt_info = NULL;
4880 for (j = 0; j < ncopies; j++)
4881 {
4882 /* Handle uses. */
4883 if (j == 0)
4884 {
4885 if (op_type == binary_op || op_type == ternary_op)
4886 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
4887 slp_node, -1);
4888 else
4889 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
4890 slp_node, -1);
4891 if (op_type == ternary_op)
4892 {
4893 vec_oprnds2.create (1);
4894 vec_oprnds2.quick_push (vect_get_vec_def_for_operand (op2,
4895 stmt,
4896 NULL));
4897 }
4898 }
4899 else
4900 {
4901 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1);
4902 if (op_type == ternary_op)
4903 {
4904 tree vec_oprnd = vec_oprnds2.pop ();
4905 vec_oprnds2.quick_push (vect_get_vec_def_for_stmt_copy (dt[2],
4906 vec_oprnd));
4907 }
4908 }
4909
4910 /* Arguments are ready. Create the new vector stmt. */
4911 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
4912 {
4913 vop1 = ((op_type == binary_op || op_type == ternary_op)
4914 ? vec_oprnds1[i] : NULL_TREE);
4915 vop2 = ((op_type == ternary_op)
4916 ? vec_oprnds2[i] : NULL_TREE);
4917 new_stmt = gimple_build_assign (vec_dest, code, vop0, vop1, vop2);
4918 new_temp = make_ssa_name (vec_dest, new_stmt);
4919 gimple_assign_set_lhs (new_stmt, new_temp);
4920 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4921 if (slp_node)
4922 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
4923 }
4924
4925 if (slp_node)
4926 continue;
4927
4928 if (j == 0)
4929 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
4930 else
4931 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
4932 prev_stmt_info = vinfo_for_stmt (new_stmt);
4933 }
4934
4935 vec_oprnds0.release ();
4936 vec_oprnds1.release ();
4937 vec_oprnds2.release ();
4938
4939 return true;
4940 }
4941
4942 /* A helper function to ensure data reference DR's base alignment
4943 for STMT_INFO. */
4944
4945 static void
4946 ensure_base_align (stmt_vec_info stmt_info, struct data_reference *dr)
4947 {
4948 if (!dr->aux)
4949 return;
4950
4951 if (((dataref_aux *)dr->aux)->base_misaligned)
4952 {
4953 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4954 tree base_decl = ((dataref_aux *)dr->aux)->base_decl;
4955
4956 if (decl_in_symtab_p (base_decl))
4957 symtab_node::get (base_decl)->increase_alignment (TYPE_ALIGN (vectype));
4958 else
4959 {
4960 DECL_ALIGN (base_decl) = TYPE_ALIGN (vectype);
4961 DECL_USER_ALIGN (base_decl) = 1;
4962 }
4963 ((dataref_aux *)dr->aux)->base_misaligned = false;
4964 }
4965 }
4966
4967
4968 /* Given a vector type VECTYPE returns the VECTOR_CST mask that implements
4969 reversal of the vector elements. If that is impossible to do,
4970 returns NULL. */
4971
4972 static tree
4973 perm_mask_for_reverse (tree vectype)
4974 {
4975 int i, nunits;
4976 unsigned char *sel;
4977
4978 nunits = TYPE_VECTOR_SUBPARTS (vectype);
4979 sel = XALLOCAVEC (unsigned char, nunits);
4980
4981 for (i = 0; i < nunits; ++i)
4982 sel[i] = nunits - 1 - i;
4983
4984 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
4985 return NULL_TREE;
4986 return vect_gen_perm_mask_checked (vectype, sel);
4987 }
4988
4989 /* Function vectorizable_store.
4990
4991 Check if STMT defines a non scalar data-ref (array/pointer/structure) that
4992 can be vectorized.
4993 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4994 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
4995 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
4996
4997 static bool
4998 vectorizable_store (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
4999 slp_tree slp_node)
5000 {
5001 tree scalar_dest;
5002 tree data_ref;
5003 tree op;
5004 tree vec_oprnd = NULL_TREE;
5005 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5006 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr = NULL;
5007 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5008 tree elem_type;
5009 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5010 struct loop *loop = NULL;
5011 machine_mode vec_mode;
5012 tree dummy;
5013 enum dr_alignment_support alignment_support_scheme;
5014 tree def;
5015 gimple def_stmt;
5016 enum vect_def_type dt;
5017 stmt_vec_info prev_stmt_info = NULL;
5018 tree dataref_ptr = NULL_TREE;
5019 tree dataref_offset = NULL_TREE;
5020 gimple ptr_incr = NULL;
5021 unsigned int nunits = TYPE_VECTOR_SUBPARTS (vectype);
5022 int ncopies;
5023 int j;
5024 gimple next_stmt, first_stmt = NULL;
5025 bool grouped_store = false;
5026 bool store_lanes_p = false;
5027 unsigned int group_size, i;
5028 vec<tree> dr_chain = vNULL;
5029 vec<tree> oprnds = vNULL;
5030 vec<tree> result_chain = vNULL;
5031 bool inv_p;
5032 bool negative = false;
5033 tree offset = NULL_TREE;
5034 vec<tree> vec_oprnds = vNULL;
5035 bool slp = (slp_node != NULL);
5036 unsigned int vec_num;
5037 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
5038 tree aggr_type;
5039
5040 if (loop_vinfo)
5041 loop = LOOP_VINFO_LOOP (loop_vinfo);
5042
5043 /* Multiple types in SLP are handled by creating the appropriate number of
5044 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
5045 case of SLP. */
5046 if (slp || PURE_SLP_STMT (stmt_info))
5047 ncopies = 1;
5048 else
5049 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
5050
5051 gcc_assert (ncopies >= 1);
5052
5053 /* FORNOW. This restriction should be relaxed. */
5054 if (loop && nested_in_vect_loop_p (loop, stmt) && ncopies > 1)
5055 {
5056 if (dump_enabled_p ())
5057 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5058 "multiple types in nested loop.\n");
5059 return false;
5060 }
5061
5062 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
5063 return false;
5064
5065 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
5066 return false;
5067
5068 /* Is vectorizable store? */
5069
5070 if (!is_gimple_assign (stmt))
5071 return false;
5072
5073 scalar_dest = gimple_assign_lhs (stmt);
5074 if (TREE_CODE (scalar_dest) == VIEW_CONVERT_EXPR
5075 && is_pattern_stmt_p (stmt_info))
5076 scalar_dest = TREE_OPERAND (scalar_dest, 0);
5077 if (TREE_CODE (scalar_dest) != ARRAY_REF
5078 && TREE_CODE (scalar_dest) != BIT_FIELD_REF
5079 && TREE_CODE (scalar_dest) != INDIRECT_REF
5080 && TREE_CODE (scalar_dest) != COMPONENT_REF
5081 && TREE_CODE (scalar_dest) != IMAGPART_EXPR
5082 && TREE_CODE (scalar_dest) != REALPART_EXPR
5083 && TREE_CODE (scalar_dest) != MEM_REF)
5084 return false;
5085
5086 gcc_assert (gimple_assign_single_p (stmt));
5087 op = gimple_assign_rhs1 (stmt);
5088 if (!vect_is_simple_use (op, stmt, loop_vinfo, bb_vinfo, &def_stmt,
5089 &def, &dt))
5090 {
5091 if (dump_enabled_p ())
5092 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5093 "use not simple.\n");
5094 return false;
5095 }
5096
5097 elem_type = TREE_TYPE (vectype);
5098 vec_mode = TYPE_MODE (vectype);
5099
5100 /* FORNOW. In some cases can vectorize even if data-type not supported
5101 (e.g. - array initialization with 0). */
5102 if (optab_handler (mov_optab, vec_mode) == CODE_FOR_nothing)
5103 return false;
5104
5105 if (!STMT_VINFO_DATA_REF (stmt_info))
5106 return false;
5107
5108 if (!STMT_VINFO_STRIDED_P (stmt_info))
5109 {
5110 negative =
5111 tree_int_cst_compare (loop && nested_in_vect_loop_p (loop, stmt)
5112 ? STMT_VINFO_DR_STEP (stmt_info) : DR_STEP (dr),
5113 size_zero_node) < 0;
5114 if (negative && ncopies > 1)
5115 {
5116 if (dump_enabled_p ())
5117 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5118 "multiple types with negative step.\n");
5119 return false;
5120 }
5121 if (negative)
5122 {
5123 gcc_assert (!grouped_store);
5124 alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
5125 if (alignment_support_scheme != dr_aligned
5126 && alignment_support_scheme != dr_unaligned_supported)
5127 {
5128 if (dump_enabled_p ())
5129 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5130 "negative step but alignment required.\n");
5131 return false;
5132 }
5133 if (dt != vect_constant_def
5134 && dt != vect_external_def
5135 && !perm_mask_for_reverse (vectype))
5136 {
5137 if (dump_enabled_p ())
5138 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5139 "negative step and reversing not supported.\n");
5140 return false;
5141 }
5142 }
5143 }
5144
5145 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
5146 {
5147 grouped_store = true;
5148 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
5149 group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
5150 if (!slp
5151 && !PURE_SLP_STMT (stmt_info)
5152 && !STMT_VINFO_STRIDED_P (stmt_info))
5153 {
5154 if (vect_store_lanes_supported (vectype, group_size))
5155 store_lanes_p = true;
5156 else if (!vect_grouped_store_supported (vectype, group_size))
5157 return false;
5158 }
5159
5160 if (STMT_VINFO_STRIDED_P (stmt_info)
5161 && (slp || PURE_SLP_STMT (stmt_info))
5162 && (group_size > nunits
5163 || nunits % group_size != 0))
5164 {
5165 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5166 "unhandled strided group store\n");
5167 return false;
5168 }
5169
5170 if (first_stmt == stmt)
5171 {
5172 /* STMT is the leader of the group. Check the operands of all the
5173 stmts of the group. */
5174 next_stmt = GROUP_NEXT_ELEMENT (stmt_info);
5175 while (next_stmt)
5176 {
5177 gcc_assert (gimple_assign_single_p (next_stmt));
5178 op = gimple_assign_rhs1 (next_stmt);
5179 if (!vect_is_simple_use (op, next_stmt, loop_vinfo, bb_vinfo,
5180 &def_stmt, &def, &dt))
5181 {
5182 if (dump_enabled_p ())
5183 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5184 "use not simple.\n");
5185 return false;
5186 }
5187 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
5188 }
5189 }
5190 }
5191
5192 if (!vec_stmt) /* transformation not required. */
5193 {
5194 STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
5195 /* The SLP costs are calculated during SLP analysis. */
5196 if (!PURE_SLP_STMT (stmt_info))
5197 vect_model_store_cost (stmt_info, ncopies, store_lanes_p, dt,
5198 NULL, NULL, NULL);
5199 return true;
5200 }
5201
5202 /** Transform. **/
5203
5204 ensure_base_align (stmt_info, dr);
5205
5206 if (grouped_store)
5207 {
5208 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
5209 group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
5210
5211 GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))++;
5212
5213 /* FORNOW */
5214 gcc_assert (!loop || !nested_in_vect_loop_p (loop, stmt));
5215
5216 /* We vectorize all the stmts of the interleaving group when we
5217 reach the last stmt in the group. */
5218 if (GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))
5219 < GROUP_SIZE (vinfo_for_stmt (first_stmt))
5220 && !slp)
5221 {
5222 *vec_stmt = NULL;
5223 return true;
5224 }
5225
5226 if (slp)
5227 {
5228 grouped_store = false;
5229 /* VEC_NUM is the number of vect stmts to be created for this
5230 group. */
5231 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
5232 first_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[0];
5233 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
5234 op = gimple_assign_rhs1 (first_stmt);
5235 }
5236 else
5237 /* VEC_NUM is the number of vect stmts to be created for this
5238 group. */
5239 vec_num = group_size;
5240 }
5241 else
5242 {
5243 first_stmt = stmt;
5244 first_dr = dr;
5245 group_size = vec_num = 1;
5246 }
5247
5248 if (dump_enabled_p ())
5249 dump_printf_loc (MSG_NOTE, vect_location,
5250 "transform store. ncopies = %d\n", ncopies);
5251
5252 if (STMT_VINFO_STRIDED_P (stmt_info))
5253 {
5254 gimple_stmt_iterator incr_gsi;
5255 bool insert_after;
5256 gimple incr;
5257 tree offvar;
5258 tree ivstep;
5259 tree running_off;
5260 gimple_seq stmts = NULL;
5261 tree stride_base, stride_step, alias_off;
5262 tree vec_oprnd;
5263
5264 gcc_assert (!nested_in_vect_loop_p (loop, stmt));
5265
5266 stride_base
5267 = fold_build_pointer_plus
5268 (unshare_expr (DR_BASE_ADDRESS (dr)),
5269 size_binop (PLUS_EXPR,
5270 convert_to_ptrofftype (unshare_expr (DR_OFFSET (dr))),
5271 convert_to_ptrofftype (DR_INIT(dr))));
5272 stride_step = fold_convert (sizetype, unshare_expr (DR_STEP (dr)));
5273
5274 /* For a store with loop-invariant (but other than power-of-2)
5275 stride (i.e. not a grouped access) like so:
5276
5277 for (i = 0; i < n; i += stride)
5278 array[i] = ...;
5279
5280 we generate a new induction variable and new stores from
5281 the components of the (vectorized) rhs:
5282
5283 for (j = 0; ; j += VF*stride)
5284 vectemp = ...;
5285 tmp1 = vectemp[0];
5286 array[j] = tmp1;
5287 tmp2 = vectemp[1];
5288 array[j + stride] = tmp2;
5289 ...
5290 */
5291
5292 unsigned nstores = nunits;
5293 tree ltype = elem_type;
5294 if (slp)
5295 {
5296 nstores = nunits / group_size;
5297 if (group_size < nunits)
5298 ltype = build_vector_type (elem_type, group_size);
5299 else
5300 ltype = vectype;
5301 ltype = build_aligned_type (ltype, TYPE_ALIGN (elem_type));
5302 ncopies = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
5303 }
5304
5305 ivstep = stride_step;
5306 ivstep = fold_build2 (MULT_EXPR, TREE_TYPE (ivstep), ivstep,
5307 build_int_cst (TREE_TYPE (ivstep),
5308 ncopies * nstores));
5309
5310 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
5311
5312 create_iv (stride_base, ivstep, NULL,
5313 loop, &incr_gsi, insert_after,
5314 &offvar, NULL);
5315 incr = gsi_stmt (incr_gsi);
5316 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
5317
5318 stride_step = force_gimple_operand (stride_step, &stmts, true, NULL_TREE);
5319 if (stmts)
5320 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
5321
5322 prev_stmt_info = NULL;
5323 running_off = offvar;
5324 alias_off = build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0);
5325 for (j = 0; j < ncopies; j++)
5326 {
5327 /* We've set op and dt above, from gimple_assign_rhs1(stmt),
5328 and first_stmt == stmt. */
5329 if (j == 0)
5330 vec_oprnd = vect_get_vec_def_for_operand (op, first_stmt, NULL);
5331 else
5332 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, vec_oprnd);
5333
5334 for (i = 0; i < nstores; i++)
5335 {
5336 tree newref, newoff;
5337 gimple incr, assign;
5338 tree size = TYPE_SIZE (ltype);
5339 /* Extract the i'th component. */
5340 tree pos = fold_build2 (MULT_EXPR, bitsizetype, bitsize_int (i),
5341 size);
5342 tree elem = fold_build3 (BIT_FIELD_REF, ltype, vec_oprnd,
5343 size, pos);
5344
5345 elem = force_gimple_operand_gsi (gsi, elem, true,
5346 NULL_TREE, true,
5347 GSI_SAME_STMT);
5348
5349 newref = build2 (MEM_REF, ltype,
5350 running_off, alias_off);
5351
5352 /* And store it to *running_off. */
5353 assign = gimple_build_assign (newref, elem);
5354 vect_finish_stmt_generation (stmt, assign, gsi);
5355
5356 newoff = copy_ssa_name (running_off, NULL);
5357 incr = gimple_build_assign (newoff, POINTER_PLUS_EXPR,
5358 running_off, stride_step);
5359 vect_finish_stmt_generation (stmt, incr, gsi);
5360
5361 running_off = newoff;
5362 if (j == 0 && i == i)
5363 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = assign;
5364 else
5365 STMT_VINFO_RELATED_STMT (prev_stmt_info) = assign;
5366 prev_stmt_info = vinfo_for_stmt (assign);
5367 }
5368 }
5369 return true;
5370 }
5371
5372 dr_chain.create (group_size);
5373 oprnds.create (group_size);
5374
5375 alignment_support_scheme = vect_supportable_dr_alignment (first_dr, false);
5376 gcc_assert (alignment_support_scheme);
5377 /* Targets with store-lane instructions must not require explicit
5378 realignment. */
5379 gcc_assert (!store_lanes_p
5380 || alignment_support_scheme == dr_aligned
5381 || alignment_support_scheme == dr_unaligned_supported);
5382
5383 if (negative)
5384 offset = size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1);
5385
5386 if (store_lanes_p)
5387 aggr_type = build_array_type_nelts (elem_type, vec_num * nunits);
5388 else
5389 aggr_type = vectype;
5390
5391 /* In case the vectorization factor (VF) is bigger than the number
5392 of elements that we can fit in a vectype (nunits), we have to generate
5393 more than one vector stmt - i.e - we need to "unroll" the
5394 vector stmt by a factor VF/nunits. For more details see documentation in
5395 vect_get_vec_def_for_copy_stmt. */
5396
5397 /* In case of interleaving (non-unit grouped access):
5398
5399 S1: &base + 2 = x2
5400 S2: &base = x0
5401 S3: &base + 1 = x1
5402 S4: &base + 3 = x3
5403
5404 We create vectorized stores starting from base address (the access of the
5405 first stmt in the chain (S2 in the above example), when the last store stmt
5406 of the chain (S4) is reached:
5407
5408 VS1: &base = vx2
5409 VS2: &base + vec_size*1 = vx0
5410 VS3: &base + vec_size*2 = vx1
5411 VS4: &base + vec_size*3 = vx3
5412
5413 Then permutation statements are generated:
5414
5415 VS5: vx5 = VEC_PERM_EXPR < vx0, vx3, {0, 8, 1, 9, 2, 10, 3, 11} >
5416 VS6: vx6 = VEC_PERM_EXPR < vx0, vx3, {4, 12, 5, 13, 6, 14, 7, 15} >
5417 ...
5418
5419 And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
5420 (the order of the data-refs in the output of vect_permute_store_chain
5421 corresponds to the order of scalar stmts in the interleaving chain - see
5422 the documentation of vect_permute_store_chain()).
5423
5424 In case of both multiple types and interleaving, above vector stores and
5425 permutation stmts are created for every copy. The result vector stmts are
5426 put in STMT_VINFO_VEC_STMT for the first copy and in the corresponding
5427 STMT_VINFO_RELATED_STMT for the next copies.
5428 */
5429
5430 prev_stmt_info = NULL;
5431 for (j = 0; j < ncopies; j++)
5432 {
5433 gimple new_stmt;
5434
5435 if (j == 0)
5436 {
5437 if (slp)
5438 {
5439 /* Get vectorized arguments for SLP_NODE. */
5440 vect_get_vec_defs (op, NULL_TREE, stmt, &vec_oprnds,
5441 NULL, slp_node, -1);
5442
5443 vec_oprnd = vec_oprnds[0];
5444 }
5445 else
5446 {
5447 /* For interleaved stores we collect vectorized defs for all the
5448 stores in the group in DR_CHAIN and OPRNDS. DR_CHAIN is then
5449 used as an input to vect_permute_store_chain(), and OPRNDS as
5450 an input to vect_get_vec_def_for_stmt_copy() for the next copy.
5451
5452 If the store is not grouped, GROUP_SIZE is 1, and DR_CHAIN and
5453 OPRNDS are of size 1. */
5454 next_stmt = first_stmt;
5455 for (i = 0; i < group_size; i++)
5456 {
5457 /* Since gaps are not supported for interleaved stores,
5458 GROUP_SIZE is the exact number of stmts in the chain.
5459 Therefore, NEXT_STMT can't be NULL_TREE. In case that
5460 there is no interleaving, GROUP_SIZE is 1, and only one
5461 iteration of the loop will be executed. */
5462 gcc_assert (next_stmt
5463 && gimple_assign_single_p (next_stmt));
5464 op = gimple_assign_rhs1 (next_stmt);
5465
5466 vec_oprnd = vect_get_vec_def_for_operand (op, next_stmt,
5467 NULL);
5468 dr_chain.quick_push (vec_oprnd);
5469 oprnds.quick_push (vec_oprnd);
5470 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
5471 }
5472 }
5473
5474 /* We should have catched mismatched types earlier. */
5475 gcc_assert (useless_type_conversion_p (vectype,
5476 TREE_TYPE (vec_oprnd)));
5477 bool simd_lane_access_p
5478 = STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info);
5479 if (simd_lane_access_p
5480 && TREE_CODE (DR_BASE_ADDRESS (first_dr)) == ADDR_EXPR
5481 && VAR_P (TREE_OPERAND (DR_BASE_ADDRESS (first_dr), 0))
5482 && integer_zerop (DR_OFFSET (first_dr))
5483 && integer_zerop (DR_INIT (first_dr))
5484 && alias_sets_conflict_p (get_alias_set (aggr_type),
5485 get_alias_set (DR_REF (first_dr))))
5486 {
5487 dataref_ptr = unshare_expr (DR_BASE_ADDRESS (first_dr));
5488 dataref_offset = build_int_cst (reference_alias_ptr_type
5489 (DR_REF (first_dr)), 0);
5490 inv_p = false;
5491 }
5492 else
5493 dataref_ptr
5494 = vect_create_data_ref_ptr (first_stmt, aggr_type,
5495 simd_lane_access_p ? loop : NULL,
5496 offset, &dummy, gsi, &ptr_incr,
5497 simd_lane_access_p, &inv_p);
5498 gcc_assert (bb_vinfo || !inv_p);
5499 }
5500 else
5501 {
5502 /* For interleaved stores we created vectorized defs for all the
5503 defs stored in OPRNDS in the previous iteration (previous copy).
5504 DR_CHAIN is then used as an input to vect_permute_store_chain(),
5505 and OPRNDS as an input to vect_get_vec_def_for_stmt_copy() for the
5506 next copy.
5507 If the store is not grouped, GROUP_SIZE is 1, and DR_CHAIN and
5508 OPRNDS are of size 1. */
5509 for (i = 0; i < group_size; i++)
5510 {
5511 op = oprnds[i];
5512 vect_is_simple_use (op, NULL, loop_vinfo, bb_vinfo, &def_stmt,
5513 &def, &dt);
5514 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, op);
5515 dr_chain[i] = vec_oprnd;
5516 oprnds[i] = vec_oprnd;
5517 }
5518 if (dataref_offset)
5519 dataref_offset
5520 = int_const_binop (PLUS_EXPR, dataref_offset,
5521 TYPE_SIZE_UNIT (aggr_type));
5522 else
5523 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
5524 TYPE_SIZE_UNIT (aggr_type));
5525 }
5526
5527 if (store_lanes_p)
5528 {
5529 tree vec_array;
5530
5531 /* Combine all the vectors into an array. */
5532 vec_array = create_vector_array (vectype, vec_num);
5533 for (i = 0; i < vec_num; i++)
5534 {
5535 vec_oprnd = dr_chain[i];
5536 write_vector_array (stmt, gsi, vec_oprnd, vec_array, i);
5537 }
5538
5539 /* Emit:
5540 MEM_REF[...all elements...] = STORE_LANES (VEC_ARRAY). */
5541 data_ref = create_array_ref (aggr_type, dataref_ptr, first_dr);
5542 new_stmt = gimple_build_call_internal (IFN_STORE_LANES, 1, vec_array);
5543 gimple_call_set_lhs (new_stmt, data_ref);
5544 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5545 }
5546 else
5547 {
5548 new_stmt = NULL;
5549 if (grouped_store)
5550 {
5551 if (j == 0)
5552 result_chain.create (group_size);
5553 /* Permute. */
5554 vect_permute_store_chain (dr_chain, group_size, stmt, gsi,
5555 &result_chain);
5556 }
5557
5558 next_stmt = first_stmt;
5559 for (i = 0; i < vec_num; i++)
5560 {
5561 unsigned align, misalign;
5562
5563 if (i > 0)
5564 /* Bump the vector pointer. */
5565 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
5566 stmt, NULL_TREE);
5567
5568 if (slp)
5569 vec_oprnd = vec_oprnds[i];
5570 else if (grouped_store)
5571 /* For grouped stores vectorized defs are interleaved in
5572 vect_permute_store_chain(). */
5573 vec_oprnd = result_chain[i];
5574
5575 data_ref = build2 (MEM_REF, TREE_TYPE (vec_oprnd), dataref_ptr,
5576 dataref_offset
5577 ? dataref_offset
5578 : build_int_cst (reference_alias_ptr_type
5579 (DR_REF (first_dr)), 0));
5580 align = TYPE_ALIGN_UNIT (vectype);
5581 if (aligned_access_p (first_dr))
5582 misalign = 0;
5583 else if (DR_MISALIGNMENT (first_dr) == -1)
5584 {
5585 TREE_TYPE (data_ref)
5586 = build_aligned_type (TREE_TYPE (data_ref),
5587 TYPE_ALIGN (elem_type));
5588 align = TYPE_ALIGN_UNIT (elem_type);
5589 misalign = 0;
5590 }
5591 else
5592 {
5593 TREE_TYPE (data_ref)
5594 = build_aligned_type (TREE_TYPE (data_ref),
5595 TYPE_ALIGN (elem_type));
5596 misalign = DR_MISALIGNMENT (first_dr);
5597 }
5598 if (dataref_offset == NULL_TREE)
5599 set_ptr_info_alignment (get_ptr_info (dataref_ptr), align,
5600 misalign);
5601
5602 if (negative
5603 && dt != vect_constant_def
5604 && dt != vect_external_def)
5605 {
5606 tree perm_mask = perm_mask_for_reverse (vectype);
5607 tree perm_dest
5608 = vect_create_destination_var (gimple_assign_rhs1 (stmt),
5609 vectype);
5610 tree new_temp = make_ssa_name (perm_dest);
5611
5612 /* Generate the permute statement. */
5613 gimple perm_stmt
5614 = gimple_build_assign (new_temp, VEC_PERM_EXPR, vec_oprnd,
5615 vec_oprnd, perm_mask);
5616 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5617
5618 perm_stmt = SSA_NAME_DEF_STMT (new_temp);
5619 vec_oprnd = new_temp;
5620 }
5621
5622 /* Arguments are ready. Create the new vector stmt. */
5623 new_stmt = gimple_build_assign (data_ref, vec_oprnd);
5624 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5625
5626 if (slp)
5627 continue;
5628
5629 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
5630 if (!next_stmt)
5631 break;
5632 }
5633 }
5634 if (!slp)
5635 {
5636 if (j == 0)
5637 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5638 else
5639 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5640 prev_stmt_info = vinfo_for_stmt (new_stmt);
5641 }
5642 }
5643
5644 dr_chain.release ();
5645 oprnds.release ();
5646 result_chain.release ();
5647 vec_oprnds.release ();
5648
5649 return true;
5650 }
5651
5652 /* Given a vector type VECTYPE, turns permutation SEL into the equivalent
5653 VECTOR_CST mask. No checks are made that the target platform supports the
5654 mask, so callers may wish to test can_vec_perm_p separately, or use
5655 vect_gen_perm_mask_checked. */
5656
5657 tree
5658 vect_gen_perm_mask_any (tree vectype, const unsigned char *sel)
5659 {
5660 tree mask_elt_type, mask_type, mask_vec, *mask_elts;
5661 int i, nunits;
5662
5663 nunits = TYPE_VECTOR_SUBPARTS (vectype);
5664
5665 mask_elt_type = lang_hooks.types.type_for_mode
5666 (int_mode_for_mode (TYPE_MODE (TREE_TYPE (vectype))), 1);
5667 mask_type = get_vectype_for_scalar_type (mask_elt_type);
5668
5669 mask_elts = XALLOCAVEC (tree, nunits);
5670 for (i = nunits - 1; i >= 0; i--)
5671 mask_elts[i] = build_int_cst (mask_elt_type, sel[i]);
5672 mask_vec = build_vector (mask_type, mask_elts);
5673
5674 return mask_vec;
5675 }
5676
5677 /* Checked version of vect_gen_perm_mask_any. Asserts can_vec_perm_p,
5678 i.e. that the target supports the pattern _for arbitrary input vectors_. */
5679
5680 tree
5681 vect_gen_perm_mask_checked (tree vectype, const unsigned char *sel)
5682 {
5683 gcc_assert (can_vec_perm_p (TYPE_MODE (vectype), false, sel));
5684 return vect_gen_perm_mask_any (vectype, sel);
5685 }
5686
5687 /* Given a vector variable X and Y, that was generated for the scalar
5688 STMT, generate instructions to permute the vector elements of X and Y
5689 using permutation mask MASK_VEC, insert them at *GSI and return the
5690 permuted vector variable. */
5691
5692 static tree
5693 permute_vec_elements (tree x, tree y, tree mask_vec, gimple stmt,
5694 gimple_stmt_iterator *gsi)
5695 {
5696 tree vectype = TREE_TYPE (x);
5697 tree perm_dest, data_ref;
5698 gimple perm_stmt;
5699
5700 perm_dest = vect_create_destination_var (gimple_get_lhs (stmt), vectype);
5701 data_ref = make_ssa_name (perm_dest);
5702
5703 /* Generate the permute statement. */
5704 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, x, y, mask_vec);
5705 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5706
5707 return data_ref;
5708 }
5709
5710 /* Hoist the definitions of all SSA uses on STMT out of the loop LOOP,
5711 inserting them on the loops preheader edge. Returns true if we
5712 were successful in doing so (and thus STMT can be moved then),
5713 otherwise returns false. */
5714
5715 static bool
5716 hoist_defs_of_uses (gimple stmt, struct loop *loop)
5717 {
5718 ssa_op_iter i;
5719 tree op;
5720 bool any = false;
5721
5722 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
5723 {
5724 gimple def_stmt = SSA_NAME_DEF_STMT (op);
5725 if (!gimple_nop_p (def_stmt)
5726 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)))
5727 {
5728 /* Make sure we don't need to recurse. While we could do
5729 so in simple cases when there are more complex use webs
5730 we don't have an easy way to preserve stmt order to fulfil
5731 dependencies within them. */
5732 tree op2;
5733 ssa_op_iter i2;
5734 if (gimple_code (def_stmt) == GIMPLE_PHI)
5735 return false;
5736 FOR_EACH_SSA_TREE_OPERAND (op2, def_stmt, i2, SSA_OP_USE)
5737 {
5738 gimple def_stmt2 = SSA_NAME_DEF_STMT (op2);
5739 if (!gimple_nop_p (def_stmt2)
5740 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt2)))
5741 return false;
5742 }
5743 any = true;
5744 }
5745 }
5746
5747 if (!any)
5748 return true;
5749
5750 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
5751 {
5752 gimple def_stmt = SSA_NAME_DEF_STMT (op);
5753 if (!gimple_nop_p (def_stmt)
5754 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)))
5755 {
5756 gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
5757 gsi_remove (&gsi, false);
5758 gsi_insert_on_edge_immediate (loop_preheader_edge (loop), def_stmt);
5759 }
5760 }
5761
5762 return true;
5763 }
5764
5765 /* vectorizable_load.
5766
5767 Check if STMT reads a non scalar data-ref (array/pointer/structure) that
5768 can be vectorized.
5769 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
5770 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
5771 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
5772
5773 static bool
5774 vectorizable_load (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
5775 slp_tree slp_node, slp_instance slp_node_instance)
5776 {
5777 tree scalar_dest;
5778 tree vec_dest = NULL;
5779 tree data_ref = NULL;
5780 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5781 stmt_vec_info prev_stmt_info;
5782 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5783 struct loop *loop = NULL;
5784 struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
5785 bool nested_in_vect_loop = false;
5786 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr = NULL;
5787 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5788 tree elem_type;
5789 tree new_temp;
5790 machine_mode mode;
5791 gimple new_stmt = NULL;
5792 tree dummy;
5793 enum dr_alignment_support alignment_support_scheme;
5794 tree dataref_ptr = NULL_TREE;
5795 tree dataref_offset = NULL_TREE;
5796 gimple ptr_incr = NULL;
5797 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
5798 int ncopies;
5799 int i, j, group_size = -1, group_gap_adj;
5800 tree msq = NULL_TREE, lsq;
5801 tree offset = NULL_TREE;
5802 tree byte_offset = NULL_TREE;
5803 tree realignment_token = NULL_TREE;
5804 gphi *phi = NULL;
5805 vec<tree> dr_chain = vNULL;
5806 bool grouped_load = false;
5807 bool load_lanes_p = false;
5808 gimple first_stmt;
5809 bool inv_p;
5810 bool negative = false;
5811 bool compute_in_loop = false;
5812 struct loop *at_loop;
5813 int vec_num;
5814 bool slp = (slp_node != NULL);
5815 bool slp_perm = false;
5816 enum tree_code code;
5817 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
5818 int vf;
5819 tree aggr_type;
5820 tree gather_base = NULL_TREE, gather_off = NULL_TREE;
5821 tree gather_off_vectype = NULL_TREE, gather_decl = NULL_TREE;
5822 int gather_scale = 1;
5823 enum vect_def_type gather_dt = vect_unknown_def_type;
5824
5825 if (loop_vinfo)
5826 {
5827 loop = LOOP_VINFO_LOOP (loop_vinfo);
5828 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
5829 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
5830 }
5831 else
5832 vf = 1;
5833
5834 /* Multiple types in SLP are handled by creating the appropriate number of
5835 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
5836 case of SLP. */
5837 if (slp || PURE_SLP_STMT (stmt_info))
5838 ncopies = 1;
5839 else
5840 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
5841
5842 gcc_assert (ncopies >= 1);
5843
5844 /* FORNOW. This restriction should be relaxed. */
5845 if (nested_in_vect_loop && ncopies > 1)
5846 {
5847 if (dump_enabled_p ())
5848 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5849 "multiple types in nested loop.\n");
5850 return false;
5851 }
5852
5853 /* Invalidate assumptions made by dependence analysis when vectorization
5854 on the unrolled body effectively re-orders stmts. */
5855 if (ncopies > 1
5856 && STMT_VINFO_MIN_NEG_DIST (stmt_info) != 0
5857 && ((unsigned)LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5858 > STMT_VINFO_MIN_NEG_DIST (stmt_info)))
5859 {
5860 if (dump_enabled_p ())
5861 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5862 "cannot perform implicit CSE when unrolling "
5863 "with negative dependence distance\n");
5864 return false;
5865 }
5866
5867 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
5868 return false;
5869
5870 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
5871 return false;
5872
5873 /* Is vectorizable load? */
5874 if (!is_gimple_assign (stmt))
5875 return false;
5876
5877 scalar_dest = gimple_assign_lhs (stmt);
5878 if (TREE_CODE (scalar_dest) != SSA_NAME)
5879 return false;
5880
5881 code = gimple_assign_rhs_code (stmt);
5882 if (code != ARRAY_REF
5883 && code != BIT_FIELD_REF
5884 && code != INDIRECT_REF
5885 && code != COMPONENT_REF
5886 && code != IMAGPART_EXPR
5887 && code != REALPART_EXPR
5888 && code != MEM_REF
5889 && TREE_CODE_CLASS (code) != tcc_declaration)
5890 return false;
5891
5892 if (!STMT_VINFO_DATA_REF (stmt_info))
5893 return false;
5894
5895 elem_type = TREE_TYPE (vectype);
5896 mode = TYPE_MODE (vectype);
5897
5898 /* FORNOW. In some cases can vectorize even if data-type not supported
5899 (e.g. - data copies). */
5900 if (optab_handler (mov_optab, mode) == CODE_FOR_nothing)
5901 {
5902 if (dump_enabled_p ())
5903 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5904 "Aligned load, but unsupported type.\n");
5905 return false;
5906 }
5907
5908 /* Check if the load is a part of an interleaving chain. */
5909 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
5910 {
5911 grouped_load = true;
5912 /* FORNOW */
5913 gcc_assert (! nested_in_vect_loop && !STMT_VINFO_GATHER_P (stmt_info));
5914
5915 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
5916
5917 /* If this is single-element interleaving with an element distance
5918 that leaves unused vector loads around punt - we at least create
5919 very sub-optimal code in that case (and blow up memory,
5920 see PR65518). */
5921 if (first_stmt == stmt
5922 && !GROUP_NEXT_ELEMENT (stmt_info)
5923 && GROUP_SIZE (stmt_info) > TYPE_VECTOR_SUBPARTS (vectype))
5924 {
5925 if (dump_enabled_p ())
5926 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5927 "single-element interleaving not supported "
5928 "for not adjacent vector loads\n");
5929 return false;
5930 }
5931
5932 if (slp && SLP_TREE_LOAD_PERMUTATION (slp_node).exists ())
5933 slp_perm = true;
5934
5935 group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
5936 if (!slp
5937 && !PURE_SLP_STMT (stmt_info)
5938 && !STMT_VINFO_STRIDED_P (stmt_info))
5939 {
5940 if (vect_load_lanes_supported (vectype, group_size))
5941 load_lanes_p = true;
5942 else if (!vect_grouped_load_supported (vectype, group_size))
5943 return false;
5944 }
5945
5946 /* Invalidate assumptions made by dependence analysis when vectorization
5947 on the unrolled body effectively re-orders stmts. */
5948 if (!PURE_SLP_STMT (stmt_info)
5949 && STMT_VINFO_MIN_NEG_DIST (stmt_info) != 0
5950 && ((unsigned)LOOP_VINFO_VECT_FACTOR (loop_vinfo)
5951 > STMT_VINFO_MIN_NEG_DIST (stmt_info)))
5952 {
5953 if (dump_enabled_p ())
5954 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5955 "cannot perform implicit CSE when performing "
5956 "group loads with negative dependence distance\n");
5957 return false;
5958 }
5959
5960 /* Similarly when the stmt is a load that is both part of a SLP
5961 instance and a loop vectorized stmt via the same-dr mechanism
5962 we have to give up. */
5963 if (STMT_VINFO_GROUP_SAME_DR_STMT (stmt_info)
5964 && (STMT_SLP_TYPE (stmt_info)
5965 != STMT_SLP_TYPE (vinfo_for_stmt
5966 (STMT_VINFO_GROUP_SAME_DR_STMT (stmt_info)))))
5967 {
5968 if (dump_enabled_p ())
5969 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5970 "conflicting SLP types for CSEd load\n");
5971 return false;
5972 }
5973 }
5974
5975
5976 if (STMT_VINFO_GATHER_P (stmt_info))
5977 {
5978 gimple def_stmt;
5979 tree def;
5980 gather_decl = vect_check_gather (stmt, loop_vinfo, &gather_base,
5981 &gather_off, &gather_scale);
5982 gcc_assert (gather_decl);
5983 if (!vect_is_simple_use_1 (gather_off, NULL, loop_vinfo, bb_vinfo,
5984 &def_stmt, &def, &gather_dt,
5985 &gather_off_vectype))
5986 {
5987 if (dump_enabled_p ())
5988 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5989 "gather index use not simple.\n");
5990 return false;
5991 }
5992 }
5993 else if (STMT_VINFO_STRIDED_P (stmt_info))
5994 {
5995 if ((grouped_load
5996 && (slp || PURE_SLP_STMT (stmt_info)))
5997 && (group_size > nunits
5998 || nunits % group_size != 0
5999 /* We don't support load permutations. */
6000 || slp_perm))
6001 {
6002 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6003 "unhandled strided group load\n");
6004 return false;
6005 }
6006 }
6007 else
6008 {
6009 negative = tree_int_cst_compare (nested_in_vect_loop
6010 ? STMT_VINFO_DR_STEP (stmt_info)
6011 : DR_STEP (dr),
6012 size_zero_node) < 0;
6013 if (negative && ncopies > 1)
6014 {
6015 if (dump_enabled_p ())
6016 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6017 "multiple types with negative step.\n");
6018 return false;
6019 }
6020
6021 if (negative)
6022 {
6023 if (grouped_load)
6024 {
6025 if (dump_enabled_p ())
6026 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6027 "negative step for group load not supported"
6028 "\n");
6029 return false;
6030 }
6031 alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
6032 if (alignment_support_scheme != dr_aligned
6033 && alignment_support_scheme != dr_unaligned_supported)
6034 {
6035 if (dump_enabled_p ())
6036 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6037 "negative step but alignment required.\n");
6038 return false;
6039 }
6040 if (!perm_mask_for_reverse (vectype))
6041 {
6042 if (dump_enabled_p ())
6043 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6044 "negative step and reversing not supported."
6045 "\n");
6046 return false;
6047 }
6048 }
6049 }
6050
6051 if (!vec_stmt) /* transformation not required. */
6052 {
6053 STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
6054 /* The SLP costs are calculated during SLP analysis. */
6055 if (!PURE_SLP_STMT (stmt_info))
6056 vect_model_load_cost (stmt_info, ncopies, load_lanes_p,
6057 NULL, NULL, NULL);
6058 return true;
6059 }
6060
6061 if (dump_enabled_p ())
6062 dump_printf_loc (MSG_NOTE, vect_location,
6063 "transform load. ncopies = %d\n", ncopies);
6064
6065 /** Transform. **/
6066
6067 ensure_base_align (stmt_info, dr);
6068
6069 if (STMT_VINFO_GATHER_P (stmt_info))
6070 {
6071 tree vec_oprnd0 = NULL_TREE, op;
6072 tree arglist = TYPE_ARG_TYPES (TREE_TYPE (gather_decl));
6073 tree rettype, srctype, ptrtype, idxtype, masktype, scaletype;
6074 tree ptr, mask, var, scale, merge, perm_mask = NULL_TREE, prev_res = NULL_TREE;
6075 edge pe = loop_preheader_edge (loop);
6076 gimple_seq seq;
6077 basic_block new_bb;
6078 enum { NARROW, NONE, WIDEN } modifier;
6079 int gather_off_nunits = TYPE_VECTOR_SUBPARTS (gather_off_vectype);
6080
6081 if (nunits == gather_off_nunits)
6082 modifier = NONE;
6083 else if (nunits == gather_off_nunits / 2)
6084 {
6085 unsigned char *sel = XALLOCAVEC (unsigned char, gather_off_nunits);
6086 modifier = WIDEN;
6087
6088 for (i = 0; i < gather_off_nunits; ++i)
6089 sel[i] = i | nunits;
6090
6091 perm_mask = vect_gen_perm_mask_checked (gather_off_vectype, sel);
6092 }
6093 else if (nunits == gather_off_nunits * 2)
6094 {
6095 unsigned char *sel = XALLOCAVEC (unsigned char, nunits);
6096 modifier = NARROW;
6097
6098 for (i = 0; i < nunits; ++i)
6099 sel[i] = i < gather_off_nunits
6100 ? i : i + nunits - gather_off_nunits;
6101
6102 perm_mask = vect_gen_perm_mask_checked (vectype, sel);
6103 ncopies *= 2;
6104 }
6105 else
6106 gcc_unreachable ();
6107
6108 rettype = TREE_TYPE (TREE_TYPE (gather_decl));
6109 srctype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
6110 ptrtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
6111 idxtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
6112 masktype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
6113 scaletype = TREE_VALUE (arglist);
6114 gcc_checking_assert (types_compatible_p (srctype, rettype));
6115
6116 vec_dest = vect_create_destination_var (scalar_dest, vectype);
6117
6118 ptr = fold_convert (ptrtype, gather_base);
6119 if (!is_gimple_min_invariant (ptr))
6120 {
6121 ptr = force_gimple_operand (ptr, &seq, true, NULL_TREE);
6122 new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
6123 gcc_assert (!new_bb);
6124 }
6125
6126 /* Currently we support only unconditional gather loads,
6127 so mask should be all ones. */
6128 if (TREE_CODE (masktype) == INTEGER_TYPE)
6129 mask = build_int_cst (masktype, -1);
6130 else if (TREE_CODE (TREE_TYPE (masktype)) == INTEGER_TYPE)
6131 {
6132 mask = build_int_cst (TREE_TYPE (masktype), -1);
6133 mask = build_vector_from_val (masktype, mask);
6134 mask = vect_init_vector (stmt, mask, masktype, NULL);
6135 }
6136 else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (masktype)))
6137 {
6138 REAL_VALUE_TYPE r;
6139 long tmp[6];
6140 for (j = 0; j < 6; ++j)
6141 tmp[j] = -1;
6142 real_from_target (&r, tmp, TYPE_MODE (TREE_TYPE (masktype)));
6143 mask = build_real (TREE_TYPE (masktype), r);
6144 mask = build_vector_from_val (masktype, mask);
6145 mask = vect_init_vector (stmt, mask, masktype, NULL);
6146 }
6147 else
6148 gcc_unreachable ();
6149
6150 scale = build_int_cst (scaletype, gather_scale);
6151
6152 if (TREE_CODE (TREE_TYPE (rettype)) == INTEGER_TYPE)
6153 merge = build_int_cst (TREE_TYPE (rettype), 0);
6154 else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (rettype)))
6155 {
6156 REAL_VALUE_TYPE r;
6157 long tmp[6];
6158 for (j = 0; j < 6; ++j)
6159 tmp[j] = 0;
6160 real_from_target (&r, tmp, TYPE_MODE (TREE_TYPE (rettype)));
6161 merge = build_real (TREE_TYPE (rettype), r);
6162 }
6163 else
6164 gcc_unreachable ();
6165 merge = build_vector_from_val (rettype, merge);
6166 merge = vect_init_vector (stmt, merge, rettype, NULL);
6167
6168 prev_stmt_info = NULL;
6169 for (j = 0; j < ncopies; ++j)
6170 {
6171 if (modifier == WIDEN && (j & 1))
6172 op = permute_vec_elements (vec_oprnd0, vec_oprnd0,
6173 perm_mask, stmt, gsi);
6174 else if (j == 0)
6175 op = vec_oprnd0
6176 = vect_get_vec_def_for_operand (gather_off, stmt, NULL);
6177 else
6178 op = vec_oprnd0
6179 = vect_get_vec_def_for_stmt_copy (gather_dt, vec_oprnd0);
6180
6181 if (!useless_type_conversion_p (idxtype, TREE_TYPE (op)))
6182 {
6183 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (op))
6184 == TYPE_VECTOR_SUBPARTS (idxtype));
6185 var = vect_get_new_vect_var (idxtype, vect_simple_var, NULL);
6186 var = make_ssa_name (var);
6187 op = build1 (VIEW_CONVERT_EXPR, idxtype, op);
6188 new_stmt
6189 = gimple_build_assign (var, VIEW_CONVERT_EXPR, op);
6190 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6191 op = var;
6192 }
6193
6194 new_stmt
6195 = gimple_build_call (gather_decl, 5, merge, ptr, op, mask, scale);
6196
6197 if (!useless_type_conversion_p (vectype, rettype))
6198 {
6199 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype)
6200 == TYPE_VECTOR_SUBPARTS (rettype));
6201 var = vect_get_new_vect_var (rettype, vect_simple_var, NULL);
6202 op = make_ssa_name (var, new_stmt);
6203 gimple_call_set_lhs (new_stmt, op);
6204 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6205 var = make_ssa_name (vec_dest);
6206 op = build1 (VIEW_CONVERT_EXPR, vectype, op);
6207 new_stmt
6208 = gimple_build_assign (var, VIEW_CONVERT_EXPR, op);
6209 }
6210 else
6211 {
6212 var = make_ssa_name (vec_dest, new_stmt);
6213 gimple_call_set_lhs (new_stmt, var);
6214 }
6215
6216 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6217
6218 if (modifier == NARROW)
6219 {
6220 if ((j & 1) == 0)
6221 {
6222 prev_res = var;
6223 continue;
6224 }
6225 var = permute_vec_elements (prev_res, var,
6226 perm_mask, stmt, gsi);
6227 new_stmt = SSA_NAME_DEF_STMT (var);
6228 }
6229
6230 if (prev_stmt_info == NULL)
6231 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
6232 else
6233 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
6234 prev_stmt_info = vinfo_for_stmt (new_stmt);
6235 }
6236 return true;
6237 }
6238 else if (STMT_VINFO_STRIDED_P (stmt_info))
6239 {
6240 gimple_stmt_iterator incr_gsi;
6241 bool insert_after;
6242 gimple incr;
6243 tree offvar;
6244 tree ivstep;
6245 tree running_off;
6246 vec<constructor_elt, va_gc> *v = NULL;
6247 gimple_seq stmts = NULL;
6248 tree stride_base, stride_step, alias_off;
6249
6250 gcc_assert (!nested_in_vect_loop);
6251
6252 stride_base
6253 = fold_build_pointer_plus
6254 (unshare_expr (DR_BASE_ADDRESS (dr)),
6255 size_binop (PLUS_EXPR,
6256 convert_to_ptrofftype (unshare_expr (DR_OFFSET (dr))),
6257 convert_to_ptrofftype (DR_INIT (dr))));
6258 stride_step = fold_convert (sizetype, unshare_expr (DR_STEP (dr)));
6259
6260 /* For a load with loop-invariant (but other than power-of-2)
6261 stride (i.e. not a grouped access) like so:
6262
6263 for (i = 0; i < n; i += stride)
6264 ... = array[i];
6265
6266 we generate a new induction variable and new accesses to
6267 form a new vector (or vectors, depending on ncopies):
6268
6269 for (j = 0; ; j += VF*stride)
6270 tmp1 = array[j];
6271 tmp2 = array[j + stride];
6272 ...
6273 vectemp = {tmp1, tmp2, ...}
6274 */
6275
6276 ivstep = stride_step;
6277 ivstep = fold_build2 (MULT_EXPR, TREE_TYPE (ivstep), ivstep,
6278 build_int_cst (TREE_TYPE (ivstep), vf));
6279
6280 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
6281
6282 create_iv (stride_base, ivstep, NULL,
6283 loop, &incr_gsi, insert_after,
6284 &offvar, NULL);
6285 incr = gsi_stmt (incr_gsi);
6286 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
6287
6288 stride_step = force_gimple_operand (stride_step, &stmts, true, NULL_TREE);
6289 if (stmts)
6290 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
6291
6292 prev_stmt_info = NULL;
6293 running_off = offvar;
6294 alias_off = build_int_cst (reference_alias_ptr_type (DR_REF (dr)), 0);
6295 int nloads = nunits;
6296 tree ltype = TREE_TYPE (vectype);
6297 if (slp)
6298 {
6299 nloads = nunits / group_size;
6300 if (group_size < nunits)
6301 ltype = build_vector_type (TREE_TYPE (vectype), group_size);
6302 else
6303 ltype = vectype;
6304 ltype = build_aligned_type (ltype, TYPE_ALIGN (TREE_TYPE (vectype)));
6305 ncopies = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
6306 gcc_assert (!slp_perm);
6307 }
6308 for (j = 0; j < ncopies; j++)
6309 {
6310 tree vec_inv;
6311
6312 if (nloads > 1)
6313 {
6314 vec_alloc (v, nloads);
6315 for (i = 0; i < nloads; i++)
6316 {
6317 tree newref, newoff;
6318 gimple incr;
6319 newref = build2 (MEM_REF, ltype, running_off, alias_off);
6320
6321 newref = force_gimple_operand_gsi (gsi, newref, true,
6322 NULL_TREE, true,
6323 GSI_SAME_STMT);
6324 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, newref);
6325 newoff = copy_ssa_name (running_off);
6326 incr = gimple_build_assign (newoff, POINTER_PLUS_EXPR,
6327 running_off, stride_step);
6328 vect_finish_stmt_generation (stmt, incr, gsi);
6329
6330 running_off = newoff;
6331 }
6332
6333 vec_inv = build_constructor (vectype, v);
6334 new_temp = vect_init_vector (stmt, vec_inv, vectype, gsi);
6335 new_stmt = SSA_NAME_DEF_STMT (new_temp);
6336 }
6337 else
6338 {
6339 new_stmt = gimple_build_assign (make_ssa_name (ltype),
6340 build2 (MEM_REF, ltype,
6341 running_off, alias_off));
6342 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6343
6344 tree newoff = copy_ssa_name (running_off);
6345 gimple incr = gimple_build_assign (newoff, POINTER_PLUS_EXPR,
6346 running_off, stride_step);
6347 vect_finish_stmt_generation (stmt, incr, gsi);
6348
6349 running_off = newoff;
6350 }
6351
6352 if (slp)
6353 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
6354 if (j == 0)
6355 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
6356 else
6357 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
6358 prev_stmt_info = vinfo_for_stmt (new_stmt);
6359 }
6360 return true;
6361 }
6362
6363 if (grouped_load)
6364 {
6365 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
6366 if (slp
6367 && !SLP_TREE_LOAD_PERMUTATION (slp_node).exists ()
6368 && first_stmt != SLP_TREE_SCALAR_STMTS (slp_node)[0])
6369 first_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[0];
6370
6371 /* Check if the chain of loads is already vectorized. */
6372 if (STMT_VINFO_VEC_STMT (vinfo_for_stmt (first_stmt))
6373 /* For SLP we would need to copy over SLP_TREE_VEC_STMTS.
6374 ??? But we can only do so if there is exactly one
6375 as we have no way to get at the rest. Leave the CSE
6376 opportunity alone.
6377 ??? With the group load eventually participating
6378 in multiple different permutations (having multiple
6379 slp nodes which refer to the same group) the CSE
6380 is even wrong code. See PR56270. */
6381 && !slp)
6382 {
6383 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
6384 return true;
6385 }
6386 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
6387 group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
6388 group_gap_adj = 0;
6389
6390 /* VEC_NUM is the number of vect stmts to be created for this group. */
6391 if (slp)
6392 {
6393 grouped_load = false;
6394 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
6395 group_gap_adj = vf * group_size - nunits * vec_num;
6396 }
6397 else
6398 vec_num = group_size;
6399 }
6400 else
6401 {
6402 first_stmt = stmt;
6403 first_dr = dr;
6404 group_size = vec_num = 1;
6405 group_gap_adj = 0;
6406 }
6407
6408 alignment_support_scheme = vect_supportable_dr_alignment (first_dr, false);
6409 gcc_assert (alignment_support_scheme);
6410 /* Targets with load-lane instructions must not require explicit
6411 realignment. */
6412 gcc_assert (!load_lanes_p
6413 || alignment_support_scheme == dr_aligned
6414 || alignment_support_scheme == dr_unaligned_supported);
6415
6416 /* In case the vectorization factor (VF) is bigger than the number
6417 of elements that we can fit in a vectype (nunits), we have to generate
6418 more than one vector stmt - i.e - we need to "unroll" the
6419 vector stmt by a factor VF/nunits. In doing so, we record a pointer
6420 from one copy of the vector stmt to the next, in the field
6421 STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
6422 stages to find the correct vector defs to be used when vectorizing
6423 stmts that use the defs of the current stmt. The example below
6424 illustrates the vectorization process when VF=16 and nunits=4 (i.e., we
6425 need to create 4 vectorized stmts):
6426
6427 before vectorization:
6428 RELATED_STMT VEC_STMT
6429 S1: x = memref - -
6430 S2: z = x + 1 - -
6431
6432 step 1: vectorize stmt S1:
6433 We first create the vector stmt VS1_0, and, as usual, record a
6434 pointer to it in the STMT_VINFO_VEC_STMT of the scalar stmt S1.
6435 Next, we create the vector stmt VS1_1, and record a pointer to
6436 it in the STMT_VINFO_RELATED_STMT of the vector stmt VS1_0.
6437 Similarly, for VS1_2 and VS1_3. This is the resulting chain of
6438 stmts and pointers:
6439 RELATED_STMT VEC_STMT
6440 VS1_0: vx0 = memref0 VS1_1 -
6441 VS1_1: vx1 = memref1 VS1_2 -
6442 VS1_2: vx2 = memref2 VS1_3 -
6443 VS1_3: vx3 = memref3 - -
6444 S1: x = load - VS1_0
6445 S2: z = x + 1 - -
6446
6447 See in documentation in vect_get_vec_def_for_stmt_copy for how the
6448 information we recorded in RELATED_STMT field is used to vectorize
6449 stmt S2. */
6450
6451 /* In case of interleaving (non-unit grouped access):
6452
6453 S1: x2 = &base + 2
6454 S2: x0 = &base
6455 S3: x1 = &base + 1
6456 S4: x3 = &base + 3
6457
6458 Vectorized loads are created in the order of memory accesses
6459 starting from the access of the first stmt of the chain:
6460
6461 VS1: vx0 = &base
6462 VS2: vx1 = &base + vec_size*1
6463 VS3: vx3 = &base + vec_size*2
6464 VS4: vx4 = &base + vec_size*3
6465
6466 Then permutation statements are generated:
6467
6468 VS5: vx5 = VEC_PERM_EXPR < vx0, vx1, { 0, 2, ..., i*2 } >
6469 VS6: vx6 = VEC_PERM_EXPR < vx0, vx1, { 1, 3, ..., i*2+1 } >
6470 ...
6471
6472 And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
6473 (the order of the data-refs in the output of vect_permute_load_chain
6474 corresponds to the order of scalar stmts in the interleaving chain - see
6475 the documentation of vect_permute_load_chain()).
6476 The generation of permutation stmts and recording them in
6477 STMT_VINFO_VEC_STMT is done in vect_transform_grouped_load().
6478
6479 In case of both multiple types and interleaving, the vector loads and
6480 permutation stmts above are created for every copy. The result vector
6481 stmts are put in STMT_VINFO_VEC_STMT for the first copy and in the
6482 corresponding STMT_VINFO_RELATED_STMT for the next copies. */
6483
6484 /* If the data reference is aligned (dr_aligned) or potentially unaligned
6485 on a target that supports unaligned accesses (dr_unaligned_supported)
6486 we generate the following code:
6487 p = initial_addr;
6488 indx = 0;
6489 loop {
6490 p = p + indx * vectype_size;
6491 vec_dest = *(p);
6492 indx = indx + 1;
6493 }
6494
6495 Otherwise, the data reference is potentially unaligned on a target that
6496 does not support unaligned accesses (dr_explicit_realign_optimized) -
6497 then generate the following code, in which the data in each iteration is
6498 obtained by two vector loads, one from the previous iteration, and one
6499 from the current iteration:
6500 p1 = initial_addr;
6501 msq_init = *(floor(p1))
6502 p2 = initial_addr + VS - 1;
6503 realignment_token = call target_builtin;
6504 indx = 0;
6505 loop {
6506 p2 = p2 + indx * vectype_size
6507 lsq = *(floor(p2))
6508 vec_dest = realign_load (msq, lsq, realignment_token)
6509 indx = indx + 1;
6510 msq = lsq;
6511 } */
6512
6513 /* If the misalignment remains the same throughout the execution of the
6514 loop, we can create the init_addr and permutation mask at the loop
6515 preheader. Otherwise, it needs to be created inside the loop.
6516 This can only occur when vectorizing memory accesses in the inner-loop
6517 nested within an outer-loop that is being vectorized. */
6518
6519 if (nested_in_vect_loop
6520 && (TREE_INT_CST_LOW (DR_STEP (dr))
6521 % GET_MODE_SIZE (TYPE_MODE (vectype)) != 0))
6522 {
6523 gcc_assert (alignment_support_scheme != dr_explicit_realign_optimized);
6524 compute_in_loop = true;
6525 }
6526
6527 if ((alignment_support_scheme == dr_explicit_realign_optimized
6528 || alignment_support_scheme == dr_explicit_realign)
6529 && !compute_in_loop)
6530 {
6531 msq = vect_setup_realignment (first_stmt, gsi, &realignment_token,
6532 alignment_support_scheme, NULL_TREE,
6533 &at_loop);
6534 if (alignment_support_scheme == dr_explicit_realign_optimized)
6535 {
6536 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (msq));
6537 byte_offset = size_binop (MINUS_EXPR, TYPE_SIZE_UNIT (vectype),
6538 size_one_node);
6539 }
6540 }
6541 else
6542 at_loop = loop;
6543
6544 if (negative)
6545 offset = size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1);
6546
6547 if (load_lanes_p)
6548 aggr_type = build_array_type_nelts (elem_type, vec_num * nunits);
6549 else
6550 aggr_type = vectype;
6551
6552 prev_stmt_info = NULL;
6553 for (j = 0; j < ncopies; j++)
6554 {
6555 /* 1. Create the vector or array pointer update chain. */
6556 if (j == 0)
6557 {
6558 bool simd_lane_access_p
6559 = STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info);
6560 if (simd_lane_access_p
6561 && TREE_CODE (DR_BASE_ADDRESS (first_dr)) == ADDR_EXPR
6562 && VAR_P (TREE_OPERAND (DR_BASE_ADDRESS (first_dr), 0))
6563 && integer_zerop (DR_OFFSET (first_dr))
6564 && integer_zerop (DR_INIT (first_dr))
6565 && alias_sets_conflict_p (get_alias_set (aggr_type),
6566 get_alias_set (DR_REF (first_dr)))
6567 && (alignment_support_scheme == dr_aligned
6568 || alignment_support_scheme == dr_unaligned_supported))
6569 {
6570 dataref_ptr = unshare_expr (DR_BASE_ADDRESS (first_dr));
6571 dataref_offset = build_int_cst (reference_alias_ptr_type
6572 (DR_REF (first_dr)), 0);
6573 inv_p = false;
6574 }
6575 else
6576 dataref_ptr
6577 = vect_create_data_ref_ptr (first_stmt, aggr_type, at_loop,
6578 offset, &dummy, gsi, &ptr_incr,
6579 simd_lane_access_p, &inv_p,
6580 byte_offset);
6581 }
6582 else if (dataref_offset)
6583 dataref_offset = int_const_binop (PLUS_EXPR, dataref_offset,
6584 TYPE_SIZE_UNIT (aggr_type));
6585 else
6586 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
6587 TYPE_SIZE_UNIT (aggr_type));
6588
6589 if (grouped_load || slp_perm)
6590 dr_chain.create (vec_num);
6591
6592 if (load_lanes_p)
6593 {
6594 tree vec_array;
6595
6596 vec_array = create_vector_array (vectype, vec_num);
6597
6598 /* Emit:
6599 VEC_ARRAY = LOAD_LANES (MEM_REF[...all elements...]). */
6600 data_ref = create_array_ref (aggr_type, dataref_ptr, first_dr);
6601 new_stmt = gimple_build_call_internal (IFN_LOAD_LANES, 1, data_ref);
6602 gimple_call_set_lhs (new_stmt, vec_array);
6603 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6604
6605 /* Extract each vector into an SSA_NAME. */
6606 for (i = 0; i < vec_num; i++)
6607 {
6608 new_temp = read_vector_array (stmt, gsi, scalar_dest,
6609 vec_array, i);
6610 dr_chain.quick_push (new_temp);
6611 }
6612
6613 /* Record the mapping between SSA_NAMEs and statements. */
6614 vect_record_grouped_load_vectors (stmt, dr_chain);
6615 }
6616 else
6617 {
6618 for (i = 0; i < vec_num; i++)
6619 {
6620 if (i > 0)
6621 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
6622 stmt, NULL_TREE);
6623
6624 /* 2. Create the vector-load in the loop. */
6625 switch (alignment_support_scheme)
6626 {
6627 case dr_aligned:
6628 case dr_unaligned_supported:
6629 {
6630 unsigned int align, misalign;
6631
6632 data_ref
6633 = build2 (MEM_REF, vectype, dataref_ptr,
6634 dataref_offset
6635 ? dataref_offset
6636 : build_int_cst (reference_alias_ptr_type
6637 (DR_REF (first_dr)), 0));
6638 align = TYPE_ALIGN_UNIT (vectype);
6639 if (alignment_support_scheme == dr_aligned)
6640 {
6641 gcc_assert (aligned_access_p (first_dr));
6642 misalign = 0;
6643 }
6644 else if (DR_MISALIGNMENT (first_dr) == -1)
6645 {
6646 TREE_TYPE (data_ref)
6647 = build_aligned_type (TREE_TYPE (data_ref),
6648 TYPE_ALIGN (elem_type));
6649 align = TYPE_ALIGN_UNIT (elem_type);
6650 misalign = 0;
6651 }
6652 else
6653 {
6654 TREE_TYPE (data_ref)
6655 = build_aligned_type (TREE_TYPE (data_ref),
6656 TYPE_ALIGN (elem_type));
6657 misalign = DR_MISALIGNMENT (first_dr);
6658 }
6659 if (dataref_offset == NULL_TREE)
6660 set_ptr_info_alignment (get_ptr_info (dataref_ptr),
6661 align, misalign);
6662 break;
6663 }
6664 case dr_explicit_realign:
6665 {
6666 tree ptr, bump;
6667
6668 tree vs = size_int (TYPE_VECTOR_SUBPARTS (vectype));
6669
6670 if (compute_in_loop)
6671 msq = vect_setup_realignment (first_stmt, gsi,
6672 &realignment_token,
6673 dr_explicit_realign,
6674 dataref_ptr, NULL);
6675
6676 ptr = copy_ssa_name (dataref_ptr);
6677 new_stmt = gimple_build_assign
6678 (ptr, BIT_AND_EXPR, dataref_ptr,
6679 build_int_cst
6680 (TREE_TYPE (dataref_ptr),
6681 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
6682 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6683 data_ref
6684 = build2 (MEM_REF, vectype, ptr,
6685 build_int_cst (reference_alias_ptr_type
6686 (DR_REF (first_dr)), 0));
6687 vec_dest = vect_create_destination_var (scalar_dest,
6688 vectype);
6689 new_stmt = gimple_build_assign (vec_dest, data_ref);
6690 new_temp = make_ssa_name (vec_dest, new_stmt);
6691 gimple_assign_set_lhs (new_stmt, new_temp);
6692 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
6693 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
6694 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6695 msq = new_temp;
6696
6697 bump = size_binop (MULT_EXPR, vs,
6698 TYPE_SIZE_UNIT (elem_type));
6699 bump = size_binop (MINUS_EXPR, bump, size_one_node);
6700 ptr = bump_vector_ptr (dataref_ptr, NULL, gsi, stmt, bump);
6701 new_stmt = gimple_build_assign
6702 (NULL_TREE, BIT_AND_EXPR, ptr,
6703 build_int_cst
6704 (TREE_TYPE (ptr),
6705 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
6706 ptr = copy_ssa_name (dataref_ptr, new_stmt);
6707 gimple_assign_set_lhs (new_stmt, ptr);
6708 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6709 data_ref
6710 = build2 (MEM_REF, vectype, ptr,
6711 build_int_cst (reference_alias_ptr_type
6712 (DR_REF (first_dr)), 0));
6713 break;
6714 }
6715 case dr_explicit_realign_optimized:
6716 new_temp = copy_ssa_name (dataref_ptr);
6717 new_stmt = gimple_build_assign
6718 (new_temp, BIT_AND_EXPR, dataref_ptr,
6719 build_int_cst
6720 (TREE_TYPE (dataref_ptr),
6721 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
6722 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6723 data_ref
6724 = build2 (MEM_REF, vectype, new_temp,
6725 build_int_cst (reference_alias_ptr_type
6726 (DR_REF (first_dr)), 0));
6727 break;
6728 default:
6729 gcc_unreachable ();
6730 }
6731 vec_dest = vect_create_destination_var (scalar_dest, vectype);
6732 new_stmt = gimple_build_assign (vec_dest, data_ref);
6733 new_temp = make_ssa_name (vec_dest, new_stmt);
6734 gimple_assign_set_lhs (new_stmt, new_temp);
6735 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6736
6737 /* 3. Handle explicit realignment if necessary/supported.
6738 Create in loop:
6739 vec_dest = realign_load (msq, lsq, realignment_token) */
6740 if (alignment_support_scheme == dr_explicit_realign_optimized
6741 || alignment_support_scheme == dr_explicit_realign)
6742 {
6743 lsq = gimple_assign_lhs (new_stmt);
6744 if (!realignment_token)
6745 realignment_token = dataref_ptr;
6746 vec_dest = vect_create_destination_var (scalar_dest, vectype);
6747 new_stmt = gimple_build_assign (vec_dest, REALIGN_LOAD_EXPR,
6748 msq, lsq, realignment_token);
6749 new_temp = make_ssa_name (vec_dest, new_stmt);
6750 gimple_assign_set_lhs (new_stmt, new_temp);
6751 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6752
6753 if (alignment_support_scheme == dr_explicit_realign_optimized)
6754 {
6755 gcc_assert (phi);
6756 if (i == vec_num - 1 && j == ncopies - 1)
6757 add_phi_arg (phi, lsq,
6758 loop_latch_edge (containing_loop),
6759 UNKNOWN_LOCATION);
6760 msq = lsq;
6761 }
6762 }
6763
6764 /* 4. Handle invariant-load. */
6765 if (inv_p && !bb_vinfo)
6766 {
6767 gcc_assert (!grouped_load);
6768 /* If we have versioned for aliasing or the loop doesn't
6769 have any data dependencies that would preclude this,
6770 then we are sure this is a loop invariant load and
6771 thus we can insert it on the preheader edge. */
6772 if (LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo)
6773 && !nested_in_vect_loop
6774 && hoist_defs_of_uses (stmt, loop))
6775 {
6776 if (dump_enabled_p ())
6777 {
6778 dump_printf_loc (MSG_NOTE, vect_location,
6779 "hoisting out of the vectorized "
6780 "loop: ");
6781 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
6782 }
6783 tree tem = copy_ssa_name (scalar_dest);
6784 gsi_insert_on_edge_immediate
6785 (loop_preheader_edge (loop),
6786 gimple_build_assign (tem,
6787 unshare_expr
6788 (gimple_assign_rhs1 (stmt))));
6789 new_temp = vect_init_vector (stmt, tem, vectype, NULL);
6790 }
6791 else
6792 {
6793 gimple_stmt_iterator gsi2 = *gsi;
6794 gsi_next (&gsi2);
6795 new_temp = vect_init_vector (stmt, scalar_dest,
6796 vectype, &gsi2);
6797 }
6798 new_stmt = SSA_NAME_DEF_STMT (new_temp);
6799 set_vinfo_for_stmt (new_stmt,
6800 new_stmt_vec_info (new_stmt, loop_vinfo,
6801 bb_vinfo));
6802 }
6803
6804 if (negative)
6805 {
6806 tree perm_mask = perm_mask_for_reverse (vectype);
6807 new_temp = permute_vec_elements (new_temp, new_temp,
6808 perm_mask, stmt, gsi);
6809 new_stmt = SSA_NAME_DEF_STMT (new_temp);
6810 }
6811
6812 /* Collect vector loads and later create their permutation in
6813 vect_transform_grouped_load (). */
6814 if (grouped_load || slp_perm)
6815 dr_chain.quick_push (new_temp);
6816
6817 /* Store vector loads in the corresponding SLP_NODE. */
6818 if (slp && !slp_perm)
6819 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
6820 }
6821 /* Bump the vector pointer to account for a gap or for excess
6822 elements loaded for a permuted SLP load. */
6823 if (group_gap_adj != 0)
6824 {
6825 bool ovf;
6826 tree bump
6827 = wide_int_to_tree (sizetype,
6828 wi::smul (TYPE_SIZE_UNIT (elem_type),
6829 group_gap_adj, &ovf));
6830 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
6831 stmt, bump);
6832 }
6833 }
6834
6835 if (slp && !slp_perm)
6836 continue;
6837
6838 if (slp_perm)
6839 {
6840 if (!vect_transform_slp_perm_load (slp_node, dr_chain, gsi, vf,
6841 slp_node_instance, false))
6842 {
6843 dr_chain.release ();
6844 return false;
6845 }
6846 }
6847 else
6848 {
6849 if (grouped_load)
6850 {
6851 if (!load_lanes_p)
6852 vect_transform_grouped_load (stmt, dr_chain, group_size, gsi);
6853 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
6854 }
6855 else
6856 {
6857 if (j == 0)
6858 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
6859 else
6860 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
6861 prev_stmt_info = vinfo_for_stmt (new_stmt);
6862 }
6863 }
6864 dr_chain.release ();
6865 }
6866
6867 return true;
6868 }
6869
6870 /* Function vect_is_simple_cond.
6871
6872 Input:
6873 LOOP - the loop that is being vectorized.
6874 COND - Condition that is checked for simple use.
6875
6876 Output:
6877 *COMP_VECTYPE - the vector type for the comparison.
6878
6879 Returns whether a COND can be vectorized. Checks whether
6880 condition operands are supportable using vec_is_simple_use. */
6881
6882 static bool
6883 vect_is_simple_cond (tree cond, gimple stmt, loop_vec_info loop_vinfo,
6884 bb_vec_info bb_vinfo, tree *comp_vectype)
6885 {
6886 tree lhs, rhs;
6887 tree def;
6888 enum vect_def_type dt;
6889 tree vectype1 = NULL_TREE, vectype2 = NULL_TREE;
6890
6891 if (!COMPARISON_CLASS_P (cond))
6892 return false;
6893
6894 lhs = TREE_OPERAND (cond, 0);
6895 rhs = TREE_OPERAND (cond, 1);
6896
6897 if (TREE_CODE (lhs) == SSA_NAME)
6898 {
6899 gimple lhs_def_stmt = SSA_NAME_DEF_STMT (lhs);
6900 if (!vect_is_simple_use_1 (lhs, stmt, loop_vinfo, bb_vinfo,
6901 &lhs_def_stmt, &def, &dt, &vectype1))
6902 return false;
6903 }
6904 else if (TREE_CODE (lhs) != INTEGER_CST && TREE_CODE (lhs) != REAL_CST
6905 && TREE_CODE (lhs) != FIXED_CST)
6906 return false;
6907
6908 if (TREE_CODE (rhs) == SSA_NAME)
6909 {
6910 gimple rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
6911 if (!vect_is_simple_use_1 (rhs, stmt, loop_vinfo, bb_vinfo,
6912 &rhs_def_stmt, &def, &dt, &vectype2))
6913 return false;
6914 }
6915 else if (TREE_CODE (rhs) != INTEGER_CST && TREE_CODE (rhs) != REAL_CST
6916 && TREE_CODE (rhs) != FIXED_CST)
6917 return false;
6918
6919 *comp_vectype = vectype1 ? vectype1 : vectype2;
6920 return true;
6921 }
6922
6923 /* vectorizable_condition.
6924
6925 Check if STMT is conditional modify expression that can be vectorized.
6926 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
6927 stmt using VEC_COND_EXPR to replace it, put it in VEC_STMT, and insert it
6928 at GSI.
6929
6930 When STMT is vectorized as nested cycle, REDUC_DEF is the vector variable
6931 to be used at REDUC_INDEX (in then clause if REDUC_INDEX is 1, and in
6932 else caluse if it is 2).
6933
6934 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
6935
6936 bool
6937 vectorizable_condition (gimple stmt, gimple_stmt_iterator *gsi,
6938 gimple *vec_stmt, tree reduc_def, int reduc_index,
6939 slp_tree slp_node)
6940 {
6941 tree scalar_dest = NULL_TREE;
6942 tree vec_dest = NULL_TREE;
6943 tree cond_expr, then_clause, else_clause;
6944 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
6945 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6946 tree comp_vectype = NULL_TREE;
6947 tree vec_cond_lhs = NULL_TREE, vec_cond_rhs = NULL_TREE;
6948 tree vec_then_clause = NULL_TREE, vec_else_clause = NULL_TREE;
6949 tree vec_compare, vec_cond_expr;
6950 tree new_temp;
6951 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6952 tree def;
6953 enum vect_def_type dt, dts[4];
6954 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
6955 int ncopies;
6956 enum tree_code code;
6957 stmt_vec_info prev_stmt_info = NULL;
6958 int i, j;
6959 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
6960 vec<tree> vec_oprnds0 = vNULL;
6961 vec<tree> vec_oprnds1 = vNULL;
6962 vec<tree> vec_oprnds2 = vNULL;
6963 vec<tree> vec_oprnds3 = vNULL;
6964 tree vec_cmp_type;
6965
6966 if (slp_node || PURE_SLP_STMT (stmt_info))
6967 ncopies = 1;
6968 else
6969 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
6970
6971 gcc_assert (ncopies >= 1);
6972 if (reduc_index && ncopies > 1)
6973 return false; /* FORNOW */
6974
6975 if (reduc_index && STMT_SLP_TYPE (stmt_info))
6976 return false;
6977
6978 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
6979 return false;
6980
6981 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
6982 && !(STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle
6983 && reduc_def))
6984 return false;
6985
6986 /* FORNOW: not yet supported. */
6987 if (STMT_VINFO_LIVE_P (stmt_info))
6988 {
6989 if (dump_enabled_p ())
6990 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6991 "value used after loop.\n");
6992 return false;
6993 }
6994
6995 /* Is vectorizable conditional operation? */
6996 if (!is_gimple_assign (stmt))
6997 return false;
6998
6999 code = gimple_assign_rhs_code (stmt);
7000
7001 if (code != COND_EXPR)
7002 return false;
7003
7004 cond_expr = gimple_assign_rhs1 (stmt);
7005 then_clause = gimple_assign_rhs2 (stmt);
7006 else_clause = gimple_assign_rhs3 (stmt);
7007
7008 if (!vect_is_simple_cond (cond_expr, stmt, loop_vinfo, bb_vinfo,
7009 &comp_vectype)
7010 || !comp_vectype)
7011 return false;
7012
7013 if (TREE_CODE (then_clause) == SSA_NAME)
7014 {
7015 gimple then_def_stmt = SSA_NAME_DEF_STMT (then_clause);
7016 if (!vect_is_simple_use (then_clause, stmt, loop_vinfo, bb_vinfo,
7017 &then_def_stmt, &def, &dt))
7018 return false;
7019 }
7020 else if (TREE_CODE (then_clause) != INTEGER_CST
7021 && TREE_CODE (then_clause) != REAL_CST
7022 && TREE_CODE (then_clause) != FIXED_CST)
7023 return false;
7024
7025 if (TREE_CODE (else_clause) == SSA_NAME)
7026 {
7027 gimple else_def_stmt = SSA_NAME_DEF_STMT (else_clause);
7028 if (!vect_is_simple_use (else_clause, stmt, loop_vinfo, bb_vinfo,
7029 &else_def_stmt, &def, &dt))
7030 return false;
7031 }
7032 else if (TREE_CODE (else_clause) != INTEGER_CST
7033 && TREE_CODE (else_clause) != REAL_CST
7034 && TREE_CODE (else_clause) != FIXED_CST)
7035 return false;
7036
7037 unsigned int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (vectype)));
7038 /* The result of a vector comparison should be signed type. */
7039 tree cmp_type = build_nonstandard_integer_type (prec, 0);
7040 vec_cmp_type = get_same_sized_vectype (cmp_type, vectype);
7041 if (vec_cmp_type == NULL_TREE)
7042 return false;
7043
7044 if (!vec_stmt)
7045 {
7046 STMT_VINFO_TYPE (stmt_info) = condition_vec_info_type;
7047 return expand_vec_cond_expr_p (vectype, comp_vectype);
7048 }
7049
7050 /* Transform. */
7051
7052 if (!slp_node)
7053 {
7054 vec_oprnds0.create (1);
7055 vec_oprnds1.create (1);
7056 vec_oprnds2.create (1);
7057 vec_oprnds3.create (1);
7058 }
7059
7060 /* Handle def. */
7061 scalar_dest = gimple_assign_lhs (stmt);
7062 vec_dest = vect_create_destination_var (scalar_dest, vectype);
7063
7064 /* Handle cond expr. */
7065 for (j = 0; j < ncopies; j++)
7066 {
7067 gassign *new_stmt = NULL;
7068 if (j == 0)
7069 {
7070 if (slp_node)
7071 {
7072 auto_vec<tree, 4> ops;
7073 auto_vec<vec<tree>, 4> vec_defs;
7074
7075 ops.safe_push (TREE_OPERAND (cond_expr, 0));
7076 ops.safe_push (TREE_OPERAND (cond_expr, 1));
7077 ops.safe_push (then_clause);
7078 ops.safe_push (else_clause);
7079 vect_get_slp_defs (ops, slp_node, &vec_defs, -1);
7080 vec_oprnds3 = vec_defs.pop ();
7081 vec_oprnds2 = vec_defs.pop ();
7082 vec_oprnds1 = vec_defs.pop ();
7083 vec_oprnds0 = vec_defs.pop ();
7084
7085 ops.release ();
7086 vec_defs.release ();
7087 }
7088 else
7089 {
7090 gimple gtemp;
7091 vec_cond_lhs =
7092 vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 0),
7093 stmt, NULL);
7094 vect_is_simple_use (TREE_OPERAND (cond_expr, 0), stmt,
7095 loop_vinfo, NULL, &gtemp, &def, &dts[0]);
7096
7097 vec_cond_rhs =
7098 vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 1),
7099 stmt, NULL);
7100 vect_is_simple_use (TREE_OPERAND (cond_expr, 1), stmt,
7101 loop_vinfo, NULL, &gtemp, &def, &dts[1]);
7102 if (reduc_index == 1)
7103 vec_then_clause = reduc_def;
7104 else
7105 {
7106 vec_then_clause = vect_get_vec_def_for_operand (then_clause,
7107 stmt, NULL);
7108 vect_is_simple_use (then_clause, stmt, loop_vinfo,
7109 NULL, &gtemp, &def, &dts[2]);
7110 }
7111 if (reduc_index == 2)
7112 vec_else_clause = reduc_def;
7113 else
7114 {
7115 vec_else_clause = vect_get_vec_def_for_operand (else_clause,
7116 stmt, NULL);
7117 vect_is_simple_use (else_clause, stmt, loop_vinfo,
7118 NULL, &gtemp, &def, &dts[3]);
7119 }
7120 }
7121 }
7122 else
7123 {
7124 vec_cond_lhs = vect_get_vec_def_for_stmt_copy (dts[0],
7125 vec_oprnds0.pop ());
7126 vec_cond_rhs = vect_get_vec_def_for_stmt_copy (dts[1],
7127 vec_oprnds1.pop ());
7128 vec_then_clause = vect_get_vec_def_for_stmt_copy (dts[2],
7129 vec_oprnds2.pop ());
7130 vec_else_clause = vect_get_vec_def_for_stmt_copy (dts[3],
7131 vec_oprnds3.pop ());
7132 }
7133
7134 if (!slp_node)
7135 {
7136 vec_oprnds0.quick_push (vec_cond_lhs);
7137 vec_oprnds1.quick_push (vec_cond_rhs);
7138 vec_oprnds2.quick_push (vec_then_clause);
7139 vec_oprnds3.quick_push (vec_else_clause);
7140 }
7141
7142 /* Arguments are ready. Create the new vector stmt. */
7143 FOR_EACH_VEC_ELT (vec_oprnds0, i, vec_cond_lhs)
7144 {
7145 vec_cond_rhs = vec_oprnds1[i];
7146 vec_then_clause = vec_oprnds2[i];
7147 vec_else_clause = vec_oprnds3[i];
7148
7149 vec_compare = build2 (TREE_CODE (cond_expr), vec_cmp_type,
7150 vec_cond_lhs, vec_cond_rhs);
7151 vec_cond_expr = build3 (VEC_COND_EXPR, vectype,
7152 vec_compare, vec_then_clause, vec_else_clause);
7153
7154 new_stmt = gimple_build_assign (vec_dest, vec_cond_expr);
7155 new_temp = make_ssa_name (vec_dest, new_stmt);
7156 gimple_assign_set_lhs (new_stmt, new_temp);
7157 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7158 if (slp_node)
7159 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
7160 }
7161
7162 if (slp_node)
7163 continue;
7164
7165 if (j == 0)
7166 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
7167 else
7168 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
7169
7170 prev_stmt_info = vinfo_for_stmt (new_stmt);
7171 }
7172
7173 vec_oprnds0.release ();
7174 vec_oprnds1.release ();
7175 vec_oprnds2.release ();
7176 vec_oprnds3.release ();
7177
7178 return true;
7179 }
7180
7181
7182 /* Make sure the statement is vectorizable. */
7183
7184 bool
7185 vect_analyze_stmt (gimple stmt, bool *need_to_vectorize, slp_tree node)
7186 {
7187 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
7188 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
7189 enum vect_relevant relevance = STMT_VINFO_RELEVANT (stmt_info);
7190 bool ok;
7191 tree scalar_type, vectype;
7192 gimple pattern_stmt;
7193 gimple_seq pattern_def_seq;
7194
7195 if (dump_enabled_p ())
7196 {
7197 dump_printf_loc (MSG_NOTE, vect_location, "==> examining statement: ");
7198 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
7199 }
7200
7201 if (gimple_has_volatile_ops (stmt))
7202 {
7203 if (dump_enabled_p ())
7204 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7205 "not vectorized: stmt has volatile operands\n");
7206
7207 return false;
7208 }
7209
7210 /* Skip stmts that do not need to be vectorized. In loops this is expected
7211 to include:
7212 - the COND_EXPR which is the loop exit condition
7213 - any LABEL_EXPRs in the loop
7214 - computations that are used only for array indexing or loop control.
7215 In basic blocks we only analyze statements that are a part of some SLP
7216 instance, therefore, all the statements are relevant.
7217
7218 Pattern statement needs to be analyzed instead of the original statement
7219 if the original statement is not relevant. Otherwise, we analyze both
7220 statements. In basic blocks we are called from some SLP instance
7221 traversal, don't analyze pattern stmts instead, the pattern stmts
7222 already will be part of SLP instance. */
7223
7224 pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
7225 if (!STMT_VINFO_RELEVANT_P (stmt_info)
7226 && !STMT_VINFO_LIVE_P (stmt_info))
7227 {
7228 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
7229 && pattern_stmt
7230 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
7231 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
7232 {
7233 /* Analyze PATTERN_STMT instead of the original stmt. */
7234 stmt = pattern_stmt;
7235 stmt_info = vinfo_for_stmt (pattern_stmt);
7236 if (dump_enabled_p ())
7237 {
7238 dump_printf_loc (MSG_NOTE, vect_location,
7239 "==> examining pattern statement: ");
7240 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
7241 }
7242 }
7243 else
7244 {
7245 if (dump_enabled_p ())
7246 dump_printf_loc (MSG_NOTE, vect_location, "irrelevant.\n");
7247
7248 return true;
7249 }
7250 }
7251 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
7252 && node == NULL
7253 && pattern_stmt
7254 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
7255 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
7256 {
7257 /* Analyze PATTERN_STMT too. */
7258 if (dump_enabled_p ())
7259 {
7260 dump_printf_loc (MSG_NOTE, vect_location,
7261 "==> examining pattern statement: ");
7262 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
7263 }
7264
7265 if (!vect_analyze_stmt (pattern_stmt, need_to_vectorize, node))
7266 return false;
7267 }
7268
7269 if (is_pattern_stmt_p (stmt_info)
7270 && node == NULL
7271 && (pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info)))
7272 {
7273 gimple_stmt_iterator si;
7274
7275 for (si = gsi_start (pattern_def_seq); !gsi_end_p (si); gsi_next (&si))
7276 {
7277 gimple pattern_def_stmt = gsi_stmt (si);
7278 if (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_def_stmt))
7279 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_def_stmt)))
7280 {
7281 /* Analyze def stmt of STMT if it's a pattern stmt. */
7282 if (dump_enabled_p ())
7283 {
7284 dump_printf_loc (MSG_NOTE, vect_location,
7285 "==> examining pattern def statement: ");
7286 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_def_stmt, 0);
7287 }
7288
7289 if (!vect_analyze_stmt (pattern_def_stmt,
7290 need_to_vectorize, node))
7291 return false;
7292 }
7293 }
7294 }
7295
7296 switch (STMT_VINFO_DEF_TYPE (stmt_info))
7297 {
7298 case vect_internal_def:
7299 break;
7300
7301 case vect_reduction_def:
7302 case vect_nested_cycle:
7303 gcc_assert (!bb_vinfo
7304 && (relevance == vect_used_in_outer
7305 || relevance == vect_used_in_outer_by_reduction
7306 || relevance == vect_used_by_reduction
7307 || relevance == vect_unused_in_scope));
7308 break;
7309
7310 case vect_induction_def:
7311 case vect_constant_def:
7312 case vect_external_def:
7313 case vect_unknown_def_type:
7314 default:
7315 gcc_unreachable ();
7316 }
7317
7318 if (bb_vinfo)
7319 {
7320 gcc_assert (PURE_SLP_STMT (stmt_info));
7321
7322 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
7323 if (dump_enabled_p ())
7324 {
7325 dump_printf_loc (MSG_NOTE, vect_location,
7326 "get vectype for scalar type: ");
7327 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
7328 dump_printf (MSG_NOTE, "\n");
7329 }
7330
7331 vectype = get_vectype_for_scalar_type (scalar_type);
7332 if (!vectype)
7333 {
7334 if (dump_enabled_p ())
7335 {
7336 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7337 "not SLPed: unsupported data-type ");
7338 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
7339 scalar_type);
7340 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
7341 }
7342 return false;
7343 }
7344
7345 if (dump_enabled_p ())
7346 {
7347 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
7348 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
7349 dump_printf (MSG_NOTE, "\n");
7350 }
7351
7352 STMT_VINFO_VECTYPE (stmt_info) = vectype;
7353 }
7354
7355 if (STMT_VINFO_RELEVANT_P (stmt_info))
7356 {
7357 gcc_assert (!VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))));
7358 gcc_assert (STMT_VINFO_VECTYPE (stmt_info)
7359 || (is_gimple_call (stmt)
7360 && gimple_call_lhs (stmt) == NULL_TREE));
7361 *need_to_vectorize = true;
7362 }
7363
7364 if (PURE_SLP_STMT (stmt_info) && !node)
7365 {
7366 dump_printf_loc (MSG_NOTE, vect_location,
7367 "handled only by SLP analysis\n");
7368 return true;
7369 }
7370
7371 ok = true;
7372 if (!bb_vinfo
7373 && (STMT_VINFO_RELEVANT_P (stmt_info)
7374 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def))
7375 ok = (vectorizable_simd_clone_call (stmt, NULL, NULL, node)
7376 || vectorizable_conversion (stmt, NULL, NULL, node)
7377 || vectorizable_shift (stmt, NULL, NULL, node)
7378 || vectorizable_operation (stmt, NULL, NULL, node)
7379 || vectorizable_assignment (stmt, NULL, NULL, node)
7380 || vectorizable_load (stmt, NULL, NULL, node, NULL)
7381 || vectorizable_call (stmt, NULL, NULL, node)
7382 || vectorizable_store (stmt, NULL, NULL, node)
7383 || vectorizable_reduction (stmt, NULL, NULL, node)
7384 || vectorizable_condition (stmt, NULL, NULL, NULL, 0, node));
7385 else
7386 {
7387 if (bb_vinfo)
7388 ok = (vectorizable_simd_clone_call (stmt, NULL, NULL, node)
7389 || vectorizable_conversion (stmt, NULL, NULL, node)
7390 || vectorizable_shift (stmt, NULL, NULL, node)
7391 || vectorizable_operation (stmt, NULL, NULL, node)
7392 || vectorizable_assignment (stmt, NULL, NULL, node)
7393 || vectorizable_load (stmt, NULL, NULL, node, NULL)
7394 || vectorizable_call (stmt, NULL, NULL, node)
7395 || vectorizable_store (stmt, NULL, NULL, node)
7396 || vectorizable_condition (stmt, NULL, NULL, NULL, 0, node));
7397 }
7398
7399 if (!ok)
7400 {
7401 if (dump_enabled_p ())
7402 {
7403 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7404 "not vectorized: relevant stmt not ");
7405 dump_printf (MSG_MISSED_OPTIMIZATION, "supported: ");
7406 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
7407 }
7408
7409 return false;
7410 }
7411
7412 if (bb_vinfo)
7413 return true;
7414
7415 /* Stmts that are (also) "live" (i.e. - that are used out of the loop)
7416 need extra handling, except for vectorizable reductions. */
7417 if (STMT_VINFO_LIVE_P (stmt_info)
7418 && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
7419 ok = vectorizable_live_operation (stmt, NULL, NULL);
7420
7421 if (!ok)
7422 {
7423 if (dump_enabled_p ())
7424 {
7425 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7426 "not vectorized: live stmt not ");
7427 dump_printf (MSG_MISSED_OPTIMIZATION, "supported: ");
7428 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
7429 }
7430
7431 return false;
7432 }
7433
7434 return true;
7435 }
7436
7437
7438 /* Function vect_transform_stmt.
7439
7440 Create a vectorized stmt to replace STMT, and insert it at BSI. */
7441
7442 bool
7443 vect_transform_stmt (gimple stmt, gimple_stmt_iterator *gsi,
7444 bool *grouped_store, slp_tree slp_node,
7445 slp_instance slp_node_instance)
7446 {
7447 bool is_store = false;
7448 gimple vec_stmt = NULL;
7449 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
7450 bool done;
7451
7452 switch (STMT_VINFO_TYPE (stmt_info))
7453 {
7454 case type_demotion_vec_info_type:
7455 case type_promotion_vec_info_type:
7456 case type_conversion_vec_info_type:
7457 done = vectorizable_conversion (stmt, gsi, &vec_stmt, slp_node);
7458 gcc_assert (done);
7459 break;
7460
7461 case induc_vec_info_type:
7462 gcc_assert (!slp_node);
7463 done = vectorizable_induction (stmt, gsi, &vec_stmt);
7464 gcc_assert (done);
7465 break;
7466
7467 case shift_vec_info_type:
7468 done = vectorizable_shift (stmt, gsi, &vec_stmt, slp_node);
7469 gcc_assert (done);
7470 break;
7471
7472 case op_vec_info_type:
7473 done = vectorizable_operation (stmt, gsi, &vec_stmt, slp_node);
7474 gcc_assert (done);
7475 break;
7476
7477 case assignment_vec_info_type:
7478 done = vectorizable_assignment (stmt, gsi, &vec_stmt, slp_node);
7479 gcc_assert (done);
7480 break;
7481
7482 case load_vec_info_type:
7483 done = vectorizable_load (stmt, gsi, &vec_stmt, slp_node,
7484 slp_node_instance);
7485 gcc_assert (done);
7486 break;
7487
7488 case store_vec_info_type:
7489 done = vectorizable_store (stmt, gsi, &vec_stmt, slp_node);
7490 gcc_assert (done);
7491 if (STMT_VINFO_GROUPED_ACCESS (stmt_info) && !slp_node)
7492 {
7493 /* In case of interleaving, the whole chain is vectorized when the
7494 last store in the chain is reached. Store stmts before the last
7495 one are skipped, and there vec_stmt_info shouldn't be freed
7496 meanwhile. */
7497 *grouped_store = true;
7498 if (STMT_VINFO_VEC_STMT (stmt_info))
7499 is_store = true;
7500 }
7501 else
7502 is_store = true;
7503 break;
7504
7505 case condition_vec_info_type:
7506 done = vectorizable_condition (stmt, gsi, &vec_stmt, NULL, 0, slp_node);
7507 gcc_assert (done);
7508 break;
7509
7510 case call_vec_info_type:
7511 done = vectorizable_call (stmt, gsi, &vec_stmt, slp_node);
7512 stmt = gsi_stmt (*gsi);
7513 if (is_gimple_call (stmt)
7514 && gimple_call_internal_p (stmt)
7515 && gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
7516 is_store = true;
7517 break;
7518
7519 case call_simd_clone_vec_info_type:
7520 done = vectorizable_simd_clone_call (stmt, gsi, &vec_stmt, slp_node);
7521 stmt = gsi_stmt (*gsi);
7522 break;
7523
7524 case reduc_vec_info_type:
7525 done = vectorizable_reduction (stmt, gsi, &vec_stmt, slp_node);
7526 gcc_assert (done);
7527 break;
7528
7529 default:
7530 if (!STMT_VINFO_LIVE_P (stmt_info))
7531 {
7532 if (dump_enabled_p ())
7533 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7534 "stmt not supported.\n");
7535 gcc_unreachable ();
7536 }
7537 }
7538
7539 /* Handle inner-loop stmts whose DEF is used in the loop-nest that
7540 is being vectorized, but outside the immediately enclosing loop. */
7541 if (vec_stmt
7542 && STMT_VINFO_LOOP_VINFO (stmt_info)
7543 && nested_in_vect_loop_p (LOOP_VINFO_LOOP (
7544 STMT_VINFO_LOOP_VINFO (stmt_info)), stmt)
7545 && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type
7546 && (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_outer
7547 || STMT_VINFO_RELEVANT (stmt_info) ==
7548 vect_used_in_outer_by_reduction))
7549 {
7550 struct loop *innerloop = LOOP_VINFO_LOOP (
7551 STMT_VINFO_LOOP_VINFO (stmt_info))->inner;
7552 imm_use_iterator imm_iter;
7553 use_operand_p use_p;
7554 tree scalar_dest;
7555 gimple exit_phi;
7556
7557 if (dump_enabled_p ())
7558 dump_printf_loc (MSG_NOTE, vect_location,
7559 "Record the vdef for outer-loop vectorization.\n");
7560
7561 /* Find the relevant loop-exit phi-node, and reord the vec_stmt there
7562 (to be used when vectorizing outer-loop stmts that use the DEF of
7563 STMT). */
7564 if (gimple_code (stmt) == GIMPLE_PHI)
7565 scalar_dest = PHI_RESULT (stmt);
7566 else
7567 scalar_dest = gimple_assign_lhs (stmt);
7568
7569 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
7570 {
7571 if (!flow_bb_inside_loop_p (innerloop, gimple_bb (USE_STMT (use_p))))
7572 {
7573 exit_phi = USE_STMT (use_p);
7574 STMT_VINFO_VEC_STMT (vinfo_for_stmt (exit_phi)) = vec_stmt;
7575 }
7576 }
7577 }
7578
7579 /* Handle stmts whose DEF is used outside the loop-nest that is
7580 being vectorized. */
7581 if (STMT_VINFO_LIVE_P (stmt_info)
7582 && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
7583 {
7584 done = vectorizable_live_operation (stmt, gsi, &vec_stmt);
7585 gcc_assert (done);
7586 }
7587
7588 if (vec_stmt)
7589 STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
7590
7591 return is_store;
7592 }
7593
7594
7595 /* Remove a group of stores (for SLP or interleaving), free their
7596 stmt_vec_info. */
7597
7598 void
7599 vect_remove_stores (gimple first_stmt)
7600 {
7601 gimple next = first_stmt;
7602 gimple tmp;
7603 gimple_stmt_iterator next_si;
7604
7605 while (next)
7606 {
7607 stmt_vec_info stmt_info = vinfo_for_stmt (next);
7608
7609 tmp = GROUP_NEXT_ELEMENT (stmt_info);
7610 if (is_pattern_stmt_p (stmt_info))
7611 next = STMT_VINFO_RELATED_STMT (stmt_info);
7612 /* Free the attached stmt_vec_info and remove the stmt. */
7613 next_si = gsi_for_stmt (next);
7614 unlink_stmt_vdef (next);
7615 gsi_remove (&next_si, true);
7616 release_defs (next);
7617 free_stmt_vec_info (next);
7618 next = tmp;
7619 }
7620 }
7621
7622
7623 /* Function new_stmt_vec_info.
7624
7625 Create and initialize a new stmt_vec_info struct for STMT. */
7626
7627 stmt_vec_info
7628 new_stmt_vec_info (gimple stmt, loop_vec_info loop_vinfo,
7629 bb_vec_info bb_vinfo)
7630 {
7631 stmt_vec_info res;
7632 res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));
7633
7634 STMT_VINFO_TYPE (res) = undef_vec_info_type;
7635 STMT_VINFO_STMT (res) = stmt;
7636 STMT_VINFO_LOOP_VINFO (res) = loop_vinfo;
7637 STMT_VINFO_BB_VINFO (res) = bb_vinfo;
7638 STMT_VINFO_RELEVANT (res) = vect_unused_in_scope;
7639 STMT_VINFO_LIVE_P (res) = false;
7640 STMT_VINFO_VECTYPE (res) = NULL;
7641 STMT_VINFO_VEC_STMT (res) = NULL;
7642 STMT_VINFO_VECTORIZABLE (res) = true;
7643 STMT_VINFO_IN_PATTERN_P (res) = false;
7644 STMT_VINFO_RELATED_STMT (res) = NULL;
7645 STMT_VINFO_PATTERN_DEF_SEQ (res) = NULL;
7646 STMT_VINFO_DATA_REF (res) = NULL;
7647
7648 STMT_VINFO_DR_BASE_ADDRESS (res) = NULL;
7649 STMT_VINFO_DR_OFFSET (res) = NULL;
7650 STMT_VINFO_DR_INIT (res) = NULL;
7651 STMT_VINFO_DR_STEP (res) = NULL;
7652 STMT_VINFO_DR_ALIGNED_TO (res) = NULL;
7653
7654 if (gimple_code (stmt) == GIMPLE_PHI
7655 && is_loop_header_bb_p (gimple_bb (stmt)))
7656 STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
7657 else
7658 STMT_VINFO_DEF_TYPE (res) = vect_internal_def;
7659
7660 STMT_VINFO_SAME_ALIGN_REFS (res).create (0);
7661 STMT_SLP_TYPE (res) = loop_vect;
7662 GROUP_FIRST_ELEMENT (res) = NULL;
7663 GROUP_NEXT_ELEMENT (res) = NULL;
7664 GROUP_SIZE (res) = 0;
7665 GROUP_STORE_COUNT (res) = 0;
7666 GROUP_GAP (res) = 0;
7667 GROUP_SAME_DR_STMT (res) = NULL;
7668
7669 return res;
7670 }
7671
7672
7673 /* Create a hash table for stmt_vec_info. */
7674
7675 void
7676 init_stmt_vec_info_vec (void)
7677 {
7678 gcc_assert (!stmt_vec_info_vec.exists ());
7679 stmt_vec_info_vec.create (50);
7680 }
7681
7682
7683 /* Free hash table for stmt_vec_info. */
7684
7685 void
7686 free_stmt_vec_info_vec (void)
7687 {
7688 unsigned int i;
7689 vec_void_p info;
7690 FOR_EACH_VEC_ELT (stmt_vec_info_vec, i, info)
7691 if (info != NULL)
7692 free_stmt_vec_info (STMT_VINFO_STMT ((stmt_vec_info) info));
7693 gcc_assert (stmt_vec_info_vec.exists ());
7694 stmt_vec_info_vec.release ();
7695 }
7696
7697
7698 /* Free stmt vectorization related info. */
7699
7700 void
7701 free_stmt_vec_info (gimple stmt)
7702 {
7703 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
7704
7705 if (!stmt_info)
7706 return;
7707
7708 /* Check if this statement has a related "pattern stmt"
7709 (introduced by the vectorizer during the pattern recognition
7710 pass). Free pattern's stmt_vec_info and def stmt's stmt_vec_info
7711 too. */
7712 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
7713 {
7714 stmt_vec_info patt_info
7715 = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
7716 if (patt_info)
7717 {
7718 gimple_seq seq = STMT_VINFO_PATTERN_DEF_SEQ (patt_info);
7719 gimple patt_stmt = STMT_VINFO_STMT (patt_info);
7720 gimple_set_bb (patt_stmt, NULL);
7721 tree lhs = gimple_get_lhs (patt_stmt);
7722 if (TREE_CODE (lhs) == SSA_NAME)
7723 release_ssa_name (lhs);
7724 if (seq)
7725 {
7726 gimple_stmt_iterator si;
7727 for (si = gsi_start (seq); !gsi_end_p (si); gsi_next (&si))
7728 {
7729 gimple seq_stmt = gsi_stmt (si);
7730 gimple_set_bb (seq_stmt, NULL);
7731 lhs = gimple_get_lhs (patt_stmt);
7732 if (TREE_CODE (lhs) == SSA_NAME)
7733 release_ssa_name (lhs);
7734 free_stmt_vec_info (seq_stmt);
7735 }
7736 }
7737 free_stmt_vec_info (patt_stmt);
7738 }
7739 }
7740
7741 STMT_VINFO_SAME_ALIGN_REFS (stmt_info).release ();
7742 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).release ();
7743 set_vinfo_for_stmt (stmt, NULL);
7744 free (stmt_info);
7745 }
7746
7747
7748 /* Function get_vectype_for_scalar_type_and_size.
7749
7750 Returns the vector type corresponding to SCALAR_TYPE and SIZE as supported
7751 by the target. */
7752
7753 static tree
7754 get_vectype_for_scalar_type_and_size (tree scalar_type, unsigned size)
7755 {
7756 machine_mode inner_mode = TYPE_MODE (scalar_type);
7757 machine_mode simd_mode;
7758 unsigned int nbytes = GET_MODE_SIZE (inner_mode);
7759 int nunits;
7760 tree vectype;
7761
7762 if (nbytes == 0)
7763 return NULL_TREE;
7764
7765 if (GET_MODE_CLASS (inner_mode) != MODE_INT
7766 && GET_MODE_CLASS (inner_mode) != MODE_FLOAT)
7767 return NULL_TREE;
7768
7769 /* For vector types of elements whose mode precision doesn't
7770 match their types precision we use a element type of mode
7771 precision. The vectorization routines will have to make sure
7772 they support the proper result truncation/extension.
7773 We also make sure to build vector types with INTEGER_TYPE
7774 component type only. */
7775 if (INTEGRAL_TYPE_P (scalar_type)
7776 && (GET_MODE_BITSIZE (inner_mode) != TYPE_PRECISION (scalar_type)
7777 || TREE_CODE (scalar_type) != INTEGER_TYPE))
7778 scalar_type = build_nonstandard_integer_type (GET_MODE_BITSIZE (inner_mode),
7779 TYPE_UNSIGNED (scalar_type));
7780
7781 /* We shouldn't end up building VECTOR_TYPEs of non-scalar components.
7782 When the component mode passes the above test simply use a type
7783 corresponding to that mode. The theory is that any use that
7784 would cause problems with this will disable vectorization anyway. */
7785 else if (!SCALAR_FLOAT_TYPE_P (scalar_type)
7786 && !INTEGRAL_TYPE_P (scalar_type))
7787 scalar_type = lang_hooks.types.type_for_mode (inner_mode, 1);
7788
7789 /* We can't build a vector type of elements with alignment bigger than
7790 their size. */
7791 else if (nbytes < TYPE_ALIGN_UNIT (scalar_type))
7792 scalar_type = lang_hooks.types.type_for_mode (inner_mode,
7793 TYPE_UNSIGNED (scalar_type));
7794
7795 /* If we felt back to using the mode fail if there was
7796 no scalar type for it. */
7797 if (scalar_type == NULL_TREE)
7798 return NULL_TREE;
7799
7800 /* If no size was supplied use the mode the target prefers. Otherwise
7801 lookup a vector mode of the specified size. */
7802 if (size == 0)
7803 simd_mode = targetm.vectorize.preferred_simd_mode (inner_mode);
7804 else
7805 simd_mode = mode_for_vector (inner_mode, size / nbytes);
7806 nunits = GET_MODE_SIZE (simd_mode) / nbytes;
7807 if (nunits <= 1)
7808 return NULL_TREE;
7809
7810 vectype = build_vector_type (scalar_type, nunits);
7811
7812 if (!VECTOR_MODE_P (TYPE_MODE (vectype))
7813 && !INTEGRAL_MODE_P (TYPE_MODE (vectype)))
7814 return NULL_TREE;
7815
7816 return vectype;
7817 }
7818
7819 unsigned int current_vector_size;
7820
7821 /* Function get_vectype_for_scalar_type.
7822
7823 Returns the vector type corresponding to SCALAR_TYPE as supported
7824 by the target. */
7825
7826 tree
7827 get_vectype_for_scalar_type (tree scalar_type)
7828 {
7829 tree vectype;
7830 vectype = get_vectype_for_scalar_type_and_size (scalar_type,
7831 current_vector_size);
7832 if (vectype
7833 && current_vector_size == 0)
7834 current_vector_size = GET_MODE_SIZE (TYPE_MODE (vectype));
7835 return vectype;
7836 }
7837
7838 /* Function get_same_sized_vectype
7839
7840 Returns a vector type corresponding to SCALAR_TYPE of size
7841 VECTOR_TYPE if supported by the target. */
7842
7843 tree
7844 get_same_sized_vectype (tree scalar_type, tree vector_type)
7845 {
7846 return get_vectype_for_scalar_type_and_size
7847 (scalar_type, GET_MODE_SIZE (TYPE_MODE (vector_type)));
7848 }
7849
7850 /* Function vect_is_simple_use.
7851
7852 Input:
7853 LOOP_VINFO - the vect info of the loop that is being vectorized.
7854 BB_VINFO - the vect info of the basic block that is being vectorized.
7855 OPERAND - operand of STMT in the loop or bb.
7856 DEF - the defining stmt in case OPERAND is an SSA_NAME.
7857
7858 Returns whether a stmt with OPERAND can be vectorized.
7859 For loops, supportable operands are constants, loop invariants, and operands
7860 that are defined by the current iteration of the loop. Unsupportable
7861 operands are those that are defined by a previous iteration of the loop (as
7862 is the case in reduction/induction computations).
7863 For basic blocks, supportable operands are constants and bb invariants.
7864 For now, operands defined outside the basic block are not supported. */
7865
7866 bool
7867 vect_is_simple_use (tree operand, gimple stmt, loop_vec_info loop_vinfo,
7868 bb_vec_info bb_vinfo, gimple *def_stmt,
7869 tree *def, enum vect_def_type *dt)
7870 {
7871 *def_stmt = NULL;
7872 *def = NULL_TREE;
7873 *dt = vect_unknown_def_type;
7874
7875 if (dump_enabled_p ())
7876 {
7877 dump_printf_loc (MSG_NOTE, vect_location,
7878 "vect_is_simple_use: operand ");
7879 dump_generic_expr (MSG_NOTE, TDF_SLIM, operand);
7880 dump_printf (MSG_NOTE, "\n");
7881 }
7882
7883 if (CONSTANT_CLASS_P (operand))
7884 {
7885 *dt = vect_constant_def;
7886 return true;
7887 }
7888
7889 if (is_gimple_min_invariant (operand))
7890 {
7891 *def = operand;
7892 *dt = vect_external_def;
7893 return true;
7894 }
7895
7896 if (TREE_CODE (operand) != SSA_NAME)
7897 {
7898 if (dump_enabled_p ())
7899 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7900 "not ssa-name.\n");
7901 return false;
7902 }
7903
7904 if (SSA_NAME_IS_DEFAULT_DEF (operand))
7905 {
7906 *def = operand;
7907 *dt = vect_external_def;
7908 return true;
7909 }
7910
7911 *def_stmt = SSA_NAME_DEF_STMT (operand);
7912 if (dump_enabled_p ())
7913 {
7914 dump_printf_loc (MSG_NOTE, vect_location, "def_stmt: ");
7915 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, *def_stmt, 0);
7916 }
7917
7918 basic_block bb = gimple_bb (*def_stmt);
7919 if ((loop_vinfo && !flow_bb_inside_loop_p (LOOP_VINFO_LOOP (loop_vinfo), bb))
7920 || (bb_vinfo
7921 && (bb != BB_VINFO_BB (bb_vinfo)
7922 || gimple_code (*def_stmt) == GIMPLE_PHI)))
7923 *dt = vect_external_def;
7924 else
7925 {
7926 stmt_vec_info stmt_vinfo = vinfo_for_stmt (*def_stmt);
7927 if (bb_vinfo && !STMT_VINFO_VECTORIZABLE (stmt_vinfo))
7928 *dt = vect_external_def;
7929 else
7930 *dt = STMT_VINFO_DEF_TYPE (stmt_vinfo);
7931 }
7932
7933 if (dump_enabled_p ())
7934 {
7935 dump_printf_loc (MSG_NOTE, vect_location, "type of def: ");
7936 switch (*dt)
7937 {
7938 case vect_uninitialized_def:
7939 dump_printf (MSG_NOTE, "uninitialized\n");
7940 break;
7941 case vect_constant_def:
7942 dump_printf (MSG_NOTE, "constant\n");
7943 break;
7944 case vect_external_def:
7945 dump_printf (MSG_NOTE, "external\n");
7946 break;
7947 case vect_internal_def:
7948 dump_printf (MSG_NOTE, "internal\n");
7949 break;
7950 case vect_induction_def:
7951 dump_printf (MSG_NOTE, "induction\n");
7952 break;
7953 case vect_reduction_def:
7954 dump_printf (MSG_NOTE, "reduction\n");
7955 break;
7956 case vect_double_reduction_def:
7957 dump_printf (MSG_NOTE, "double reduction\n");
7958 break;
7959 case vect_nested_cycle:
7960 dump_printf (MSG_NOTE, "nested cycle\n");
7961 break;
7962 case vect_unknown_def_type:
7963 dump_printf (MSG_NOTE, "unknown\n");
7964 break;
7965 }
7966 }
7967
7968 if (*dt == vect_unknown_def_type
7969 || (stmt
7970 && *dt == vect_double_reduction_def
7971 && gimple_code (stmt) != GIMPLE_PHI))
7972 {
7973 if (dump_enabled_p ())
7974 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7975 "Unsupported pattern.\n");
7976 return false;
7977 }
7978
7979 switch (gimple_code (*def_stmt))
7980 {
7981 case GIMPLE_PHI:
7982 *def = gimple_phi_result (*def_stmt);
7983 break;
7984
7985 case GIMPLE_ASSIGN:
7986 *def = gimple_assign_lhs (*def_stmt);
7987 break;
7988
7989 case GIMPLE_CALL:
7990 *def = gimple_call_lhs (*def_stmt);
7991 if (*def != NULL)
7992 break;
7993 /* FALLTHRU */
7994 default:
7995 if (dump_enabled_p ())
7996 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7997 "unsupported defining stmt:\n");
7998 return false;
7999 }
8000
8001 return true;
8002 }
8003
8004 /* Function vect_is_simple_use_1.
8005
8006 Same as vect_is_simple_use_1 but also determines the vector operand
8007 type of OPERAND and stores it to *VECTYPE. If the definition of
8008 OPERAND is vect_uninitialized_def, vect_constant_def or
8009 vect_external_def *VECTYPE will be set to NULL_TREE and the caller
8010 is responsible to compute the best suited vector type for the
8011 scalar operand. */
8012
8013 bool
8014 vect_is_simple_use_1 (tree operand, gimple stmt, loop_vec_info loop_vinfo,
8015 bb_vec_info bb_vinfo, gimple *def_stmt,
8016 tree *def, enum vect_def_type *dt, tree *vectype)
8017 {
8018 if (!vect_is_simple_use (operand, stmt, loop_vinfo, bb_vinfo, def_stmt,
8019 def, dt))
8020 return false;
8021
8022 /* Now get a vector type if the def is internal, otherwise supply
8023 NULL_TREE and leave it up to the caller to figure out a proper
8024 type for the use stmt. */
8025 if (*dt == vect_internal_def
8026 || *dt == vect_induction_def
8027 || *dt == vect_reduction_def
8028 || *dt == vect_double_reduction_def
8029 || *dt == vect_nested_cycle)
8030 {
8031 stmt_vec_info stmt_info = vinfo_for_stmt (*def_stmt);
8032
8033 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
8034 && !STMT_VINFO_RELEVANT (stmt_info)
8035 && !STMT_VINFO_LIVE_P (stmt_info))
8036 stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
8037
8038 *vectype = STMT_VINFO_VECTYPE (stmt_info);
8039 gcc_assert (*vectype != NULL_TREE);
8040 }
8041 else if (*dt == vect_uninitialized_def
8042 || *dt == vect_constant_def
8043 || *dt == vect_external_def)
8044 *vectype = NULL_TREE;
8045 else
8046 gcc_unreachable ();
8047
8048 return true;
8049 }
8050
8051
8052 /* Function supportable_widening_operation
8053
8054 Check whether an operation represented by the code CODE is a
8055 widening operation that is supported by the target platform in
8056 vector form (i.e., when operating on arguments of type VECTYPE_IN
8057 producing a result of type VECTYPE_OUT).
8058
8059 Widening operations we currently support are NOP (CONVERT), FLOAT
8060 and WIDEN_MULT. This function checks if these operations are supported
8061 by the target platform either directly (via vector tree-codes), or via
8062 target builtins.
8063
8064 Output:
8065 - CODE1 and CODE2 are codes of vector operations to be used when
8066 vectorizing the operation, if available.
8067 - MULTI_STEP_CVT determines the number of required intermediate steps in
8068 case of multi-step conversion (like char->short->int - in that case
8069 MULTI_STEP_CVT will be 1).
8070 - INTERM_TYPES contains the intermediate type required to perform the
8071 widening operation (short in the above example). */
8072
8073 bool
8074 supportable_widening_operation (enum tree_code code, gimple stmt,
8075 tree vectype_out, tree vectype_in,
8076 enum tree_code *code1, enum tree_code *code2,
8077 int *multi_step_cvt,
8078 vec<tree> *interm_types)
8079 {
8080 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
8081 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_info);
8082 struct loop *vect_loop = NULL;
8083 machine_mode vec_mode;
8084 enum insn_code icode1, icode2;
8085 optab optab1, optab2;
8086 tree vectype = vectype_in;
8087 tree wide_vectype = vectype_out;
8088 enum tree_code c1, c2;
8089 int i;
8090 tree prev_type, intermediate_type;
8091 machine_mode intermediate_mode, prev_mode;
8092 optab optab3, optab4;
8093
8094 *multi_step_cvt = 0;
8095 if (loop_info)
8096 vect_loop = LOOP_VINFO_LOOP (loop_info);
8097
8098 switch (code)
8099 {
8100 case WIDEN_MULT_EXPR:
8101 /* The result of a vectorized widening operation usually requires
8102 two vectors (because the widened results do not fit into one vector).
8103 The generated vector results would normally be expected to be
8104 generated in the same order as in the original scalar computation,
8105 i.e. if 8 results are generated in each vector iteration, they are
8106 to be organized as follows:
8107 vect1: [res1,res2,res3,res4],
8108 vect2: [res5,res6,res7,res8].
8109
8110 However, in the special case that the result of the widening
8111 operation is used in a reduction computation only, the order doesn't
8112 matter (because when vectorizing a reduction we change the order of
8113 the computation). Some targets can take advantage of this and
8114 generate more efficient code. For example, targets like Altivec,
8115 that support widen_mult using a sequence of {mult_even,mult_odd}
8116 generate the following vectors:
8117 vect1: [res1,res3,res5,res7],
8118 vect2: [res2,res4,res6,res8].
8119
8120 When vectorizing outer-loops, we execute the inner-loop sequentially
8121 (each vectorized inner-loop iteration contributes to VF outer-loop
8122 iterations in parallel). We therefore don't allow to change the
8123 order of the computation in the inner-loop during outer-loop
8124 vectorization. */
8125 /* TODO: Another case in which order doesn't *really* matter is when we
8126 widen and then contract again, e.g. (short)((int)x * y >> 8).
8127 Normally, pack_trunc performs an even/odd permute, whereas the
8128 repack from an even/odd expansion would be an interleave, which
8129 would be significantly simpler for e.g. AVX2. */
8130 /* In any case, in order to avoid duplicating the code below, recurse
8131 on VEC_WIDEN_MULT_EVEN_EXPR. If it succeeds, all the return values
8132 are properly set up for the caller. If we fail, we'll continue with
8133 a VEC_WIDEN_MULT_LO/HI_EXPR check. */
8134 if (vect_loop
8135 && STMT_VINFO_RELEVANT (stmt_info) == vect_used_by_reduction
8136 && !nested_in_vect_loop_p (vect_loop, stmt)
8137 && supportable_widening_operation (VEC_WIDEN_MULT_EVEN_EXPR,
8138 stmt, vectype_out, vectype_in,
8139 code1, code2, multi_step_cvt,
8140 interm_types))
8141 {
8142 /* Elements in a vector with vect_used_by_reduction property cannot
8143 be reordered if the use chain with this property does not have the
8144 same operation. One such an example is s += a * b, where elements
8145 in a and b cannot be reordered. Here we check if the vector defined
8146 by STMT is only directly used in the reduction statement. */
8147 tree lhs = gimple_assign_lhs (stmt);
8148 use_operand_p dummy;
8149 gimple use_stmt;
8150 stmt_vec_info use_stmt_info = NULL;
8151 if (single_imm_use (lhs, &dummy, &use_stmt)
8152 && (use_stmt_info = vinfo_for_stmt (use_stmt))
8153 && STMT_VINFO_DEF_TYPE (use_stmt_info) == vect_reduction_def)
8154 return true;
8155 }
8156 c1 = VEC_WIDEN_MULT_LO_EXPR;
8157 c2 = VEC_WIDEN_MULT_HI_EXPR;
8158 break;
8159
8160 case VEC_WIDEN_MULT_EVEN_EXPR:
8161 /* Support the recursion induced just above. */
8162 c1 = VEC_WIDEN_MULT_EVEN_EXPR;
8163 c2 = VEC_WIDEN_MULT_ODD_EXPR;
8164 break;
8165
8166 case WIDEN_LSHIFT_EXPR:
8167 c1 = VEC_WIDEN_LSHIFT_LO_EXPR;
8168 c2 = VEC_WIDEN_LSHIFT_HI_EXPR;
8169 break;
8170
8171 CASE_CONVERT:
8172 c1 = VEC_UNPACK_LO_EXPR;
8173 c2 = VEC_UNPACK_HI_EXPR;
8174 break;
8175
8176 case FLOAT_EXPR:
8177 c1 = VEC_UNPACK_FLOAT_LO_EXPR;
8178 c2 = VEC_UNPACK_FLOAT_HI_EXPR;
8179 break;
8180
8181 case FIX_TRUNC_EXPR:
8182 /* ??? Not yet implemented due to missing VEC_UNPACK_FIX_TRUNC_HI_EXPR/
8183 VEC_UNPACK_FIX_TRUNC_LO_EXPR tree codes and optabs used for
8184 computing the operation. */
8185 return false;
8186
8187 default:
8188 gcc_unreachable ();
8189 }
8190
8191 if (BYTES_BIG_ENDIAN && c1 != VEC_WIDEN_MULT_EVEN_EXPR)
8192 {
8193 enum tree_code ctmp = c1;
8194 c1 = c2;
8195 c2 = ctmp;
8196 }
8197
8198 if (code == FIX_TRUNC_EXPR)
8199 {
8200 /* The signedness is determined from output operand. */
8201 optab1 = optab_for_tree_code (c1, vectype_out, optab_default);
8202 optab2 = optab_for_tree_code (c2, vectype_out, optab_default);
8203 }
8204 else
8205 {
8206 optab1 = optab_for_tree_code (c1, vectype, optab_default);
8207 optab2 = optab_for_tree_code (c2, vectype, optab_default);
8208 }
8209
8210 if (!optab1 || !optab2)
8211 return false;
8212
8213 vec_mode = TYPE_MODE (vectype);
8214 if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing
8215 || (icode2 = optab_handler (optab2, vec_mode)) == CODE_FOR_nothing)
8216 return false;
8217
8218 *code1 = c1;
8219 *code2 = c2;
8220
8221 if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
8222 && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
8223 return true;
8224
8225 /* Check if it's a multi-step conversion that can be done using intermediate
8226 types. */
8227
8228 prev_type = vectype;
8229 prev_mode = vec_mode;
8230
8231 if (!CONVERT_EXPR_CODE_P (code))
8232 return false;
8233
8234 /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
8235 intermediate steps in promotion sequence. We try
8236 MAX_INTERM_CVT_STEPS to get to NARROW_VECTYPE, and fail if we do
8237 not. */
8238 interm_types->create (MAX_INTERM_CVT_STEPS);
8239 for (i = 0; i < MAX_INTERM_CVT_STEPS; i++)
8240 {
8241 intermediate_mode = insn_data[icode1].operand[0].mode;
8242 intermediate_type
8243 = lang_hooks.types.type_for_mode (intermediate_mode,
8244 TYPE_UNSIGNED (prev_type));
8245 optab3 = optab_for_tree_code (c1, intermediate_type, optab_default);
8246 optab4 = optab_for_tree_code (c2, intermediate_type, optab_default);
8247
8248 if (!optab3 || !optab4
8249 || (icode1 = optab_handler (optab1, prev_mode)) == CODE_FOR_nothing
8250 || insn_data[icode1].operand[0].mode != intermediate_mode
8251 || (icode2 = optab_handler (optab2, prev_mode)) == CODE_FOR_nothing
8252 || insn_data[icode2].operand[0].mode != intermediate_mode
8253 || ((icode1 = optab_handler (optab3, intermediate_mode))
8254 == CODE_FOR_nothing)
8255 || ((icode2 = optab_handler (optab4, intermediate_mode))
8256 == CODE_FOR_nothing))
8257 break;
8258
8259 interm_types->quick_push (intermediate_type);
8260 (*multi_step_cvt)++;
8261
8262 if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
8263 && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
8264 return true;
8265
8266 prev_type = intermediate_type;
8267 prev_mode = intermediate_mode;
8268 }
8269
8270 interm_types->release ();
8271 return false;
8272 }
8273
8274
8275 /* Function supportable_narrowing_operation
8276
8277 Check whether an operation represented by the code CODE is a
8278 narrowing operation that is supported by the target platform in
8279 vector form (i.e., when operating on arguments of type VECTYPE_IN
8280 and producing a result of type VECTYPE_OUT).
8281
8282 Narrowing operations we currently support are NOP (CONVERT) and
8283 FIX_TRUNC. This function checks if these operations are supported by
8284 the target platform directly via vector tree-codes.
8285
8286 Output:
8287 - CODE1 is the code of a vector operation to be used when
8288 vectorizing the operation, if available.
8289 - MULTI_STEP_CVT determines the number of required intermediate steps in
8290 case of multi-step conversion (like int->short->char - in that case
8291 MULTI_STEP_CVT will be 1).
8292 - INTERM_TYPES contains the intermediate type required to perform the
8293 narrowing operation (short in the above example). */
8294
8295 bool
8296 supportable_narrowing_operation (enum tree_code code,
8297 tree vectype_out, tree vectype_in,
8298 enum tree_code *code1, int *multi_step_cvt,
8299 vec<tree> *interm_types)
8300 {
8301 machine_mode vec_mode;
8302 enum insn_code icode1;
8303 optab optab1, interm_optab;
8304 tree vectype = vectype_in;
8305 tree narrow_vectype = vectype_out;
8306 enum tree_code c1;
8307 tree intermediate_type;
8308 machine_mode intermediate_mode, prev_mode;
8309 int i;
8310 bool uns;
8311
8312 *multi_step_cvt = 0;
8313 switch (code)
8314 {
8315 CASE_CONVERT:
8316 c1 = VEC_PACK_TRUNC_EXPR;
8317 break;
8318
8319 case FIX_TRUNC_EXPR:
8320 c1 = VEC_PACK_FIX_TRUNC_EXPR;
8321 break;
8322
8323 case FLOAT_EXPR:
8324 /* ??? Not yet implemented due to missing VEC_PACK_FLOAT_EXPR
8325 tree code and optabs used for computing the operation. */
8326 return false;
8327
8328 default:
8329 gcc_unreachable ();
8330 }
8331
8332 if (code == FIX_TRUNC_EXPR)
8333 /* The signedness is determined from output operand. */
8334 optab1 = optab_for_tree_code (c1, vectype_out, optab_default);
8335 else
8336 optab1 = optab_for_tree_code (c1, vectype, optab_default);
8337
8338 if (!optab1)
8339 return false;
8340
8341 vec_mode = TYPE_MODE (vectype);
8342 if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing)
8343 return false;
8344
8345 *code1 = c1;
8346
8347 if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
8348 return true;
8349
8350 /* Check if it's a multi-step conversion that can be done using intermediate
8351 types. */
8352 prev_mode = vec_mode;
8353 if (code == FIX_TRUNC_EXPR)
8354 uns = TYPE_UNSIGNED (vectype_out);
8355 else
8356 uns = TYPE_UNSIGNED (vectype);
8357
8358 /* For multi-step FIX_TRUNC_EXPR prefer signed floating to integer
8359 conversion over unsigned, as unsigned FIX_TRUNC_EXPR is often more
8360 costly than signed. */
8361 if (code == FIX_TRUNC_EXPR && uns)
8362 {
8363 enum insn_code icode2;
8364
8365 intermediate_type
8366 = lang_hooks.types.type_for_mode (TYPE_MODE (vectype_out), 0);
8367 interm_optab
8368 = optab_for_tree_code (c1, intermediate_type, optab_default);
8369 if (interm_optab != unknown_optab
8370 && (icode2 = optab_handler (optab1, vec_mode)) != CODE_FOR_nothing
8371 && insn_data[icode1].operand[0].mode
8372 == insn_data[icode2].operand[0].mode)
8373 {
8374 uns = false;
8375 optab1 = interm_optab;
8376 icode1 = icode2;
8377 }
8378 }
8379
8380 /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
8381 intermediate steps in promotion sequence. We try
8382 MAX_INTERM_CVT_STEPS to get to NARROW_VECTYPE, and fail if we do not. */
8383 interm_types->create (MAX_INTERM_CVT_STEPS);
8384 for (i = 0; i < MAX_INTERM_CVT_STEPS; i++)
8385 {
8386 intermediate_mode = insn_data[icode1].operand[0].mode;
8387 intermediate_type
8388 = lang_hooks.types.type_for_mode (intermediate_mode, uns);
8389 interm_optab
8390 = optab_for_tree_code (VEC_PACK_TRUNC_EXPR, intermediate_type,
8391 optab_default);
8392 if (!interm_optab
8393 || ((icode1 = optab_handler (optab1, prev_mode)) == CODE_FOR_nothing)
8394 || insn_data[icode1].operand[0].mode != intermediate_mode
8395 || ((icode1 = optab_handler (interm_optab, intermediate_mode))
8396 == CODE_FOR_nothing))
8397 break;
8398
8399 interm_types->quick_push (intermediate_type);
8400 (*multi_step_cvt)++;
8401
8402 if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
8403 return true;
8404
8405 prev_mode = intermediate_mode;
8406 optab1 = interm_optab;
8407 }
8408
8409 interm_types->release ();
8410 return false;
8411 }