[71/77] Use opt_scalar_mode for mode iterators
[gcc.git] / gcc / tree-vect-stmts.c
1 /* Statement Analysis and Transformation for Vectorization
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "ssa.h"
31 #include "optabs-tree.h"
32 #include "insn-config.h"
33 #include "recog.h" /* FIXME: for insn_data */
34 #include "cgraph.h"
35 #include "dumpfile.h"
36 #include "alias.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
39 #include "tree-eh.h"
40 #include "gimplify.h"
41 #include "gimple-iterator.h"
42 #include "gimplify-me.h"
43 #include "tree-cfg.h"
44 #include "tree-ssa-loop-manip.h"
45 #include "cfgloop.h"
46 #include "tree-ssa-loop.h"
47 #include "tree-scalar-evolution.h"
48 #include "tree-vectorizer.h"
49 #include "builtins.h"
50 #include "internal-fn.h"
51
52 /* For lang_hooks.types.type_for_mode. */
53 #include "langhooks.h"
54
55 /* Says whether a statement is a load, a store of a vectorized statement
56 result, or a store of an invariant value. */
57 enum vec_load_store_type {
58 VLS_LOAD,
59 VLS_STORE,
60 VLS_STORE_INVARIANT
61 };
62
63 /* Return the vectorized type for the given statement. */
64
65 tree
66 stmt_vectype (struct _stmt_vec_info *stmt_info)
67 {
68 return STMT_VINFO_VECTYPE (stmt_info);
69 }
70
71 /* Return TRUE iff the given statement is in an inner loop relative to
72 the loop being vectorized. */
73 bool
74 stmt_in_inner_loop_p (struct _stmt_vec_info *stmt_info)
75 {
76 gimple *stmt = STMT_VINFO_STMT (stmt_info);
77 basic_block bb = gimple_bb (stmt);
78 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
79 struct loop* loop;
80
81 if (!loop_vinfo)
82 return false;
83
84 loop = LOOP_VINFO_LOOP (loop_vinfo);
85
86 return (bb->loop_father == loop->inner);
87 }
88
89 /* Record the cost of a statement, either by directly informing the
90 target model or by saving it in a vector for later processing.
91 Return a preliminary estimate of the statement's cost. */
92
93 unsigned
94 record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count,
95 enum vect_cost_for_stmt kind, stmt_vec_info stmt_info,
96 int misalign, enum vect_cost_model_location where)
97 {
98 if (body_cost_vec)
99 {
100 tree vectype = stmt_info ? stmt_vectype (stmt_info) : NULL_TREE;
101 stmt_info_for_cost si = { count, kind,
102 stmt_info ? STMT_VINFO_STMT (stmt_info) : NULL,
103 misalign };
104 body_cost_vec->safe_push (si);
105 return (unsigned)
106 (builtin_vectorization_cost (kind, vectype, misalign) * count);
107 }
108 else
109 return add_stmt_cost (stmt_info->vinfo->target_cost_data,
110 count, kind, stmt_info, misalign, where);
111 }
112
113 /* Return a variable of type ELEM_TYPE[NELEMS]. */
114
115 static tree
116 create_vector_array (tree elem_type, unsigned HOST_WIDE_INT nelems)
117 {
118 return create_tmp_var (build_array_type_nelts (elem_type, nelems),
119 "vect_array");
120 }
121
122 /* ARRAY is an array of vectors created by create_vector_array.
123 Return an SSA_NAME for the vector in index N. The reference
124 is part of the vectorization of STMT and the vector is associated
125 with scalar destination SCALAR_DEST. */
126
127 static tree
128 read_vector_array (gimple *stmt, gimple_stmt_iterator *gsi, tree scalar_dest,
129 tree array, unsigned HOST_WIDE_INT n)
130 {
131 tree vect_type, vect, vect_name, array_ref;
132 gimple *new_stmt;
133
134 gcc_assert (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE);
135 vect_type = TREE_TYPE (TREE_TYPE (array));
136 vect = vect_create_destination_var (scalar_dest, vect_type);
137 array_ref = build4 (ARRAY_REF, vect_type, array,
138 build_int_cst (size_type_node, n),
139 NULL_TREE, NULL_TREE);
140
141 new_stmt = gimple_build_assign (vect, array_ref);
142 vect_name = make_ssa_name (vect, new_stmt);
143 gimple_assign_set_lhs (new_stmt, vect_name);
144 vect_finish_stmt_generation (stmt, new_stmt, gsi);
145
146 return vect_name;
147 }
148
149 /* ARRAY is an array of vectors created by create_vector_array.
150 Emit code to store SSA_NAME VECT in index N of the array.
151 The store is part of the vectorization of STMT. */
152
153 static void
154 write_vector_array (gimple *stmt, gimple_stmt_iterator *gsi, tree vect,
155 tree array, unsigned HOST_WIDE_INT n)
156 {
157 tree array_ref;
158 gimple *new_stmt;
159
160 array_ref = build4 (ARRAY_REF, TREE_TYPE (vect), array,
161 build_int_cst (size_type_node, n),
162 NULL_TREE, NULL_TREE);
163
164 new_stmt = gimple_build_assign (array_ref, vect);
165 vect_finish_stmt_generation (stmt, new_stmt, gsi);
166 }
167
168 /* PTR is a pointer to an array of type TYPE. Return a representation
169 of *PTR. The memory reference replaces those in FIRST_DR
170 (and its group). */
171
172 static tree
173 create_array_ref (tree type, tree ptr, tree alias_ptr_type)
174 {
175 tree mem_ref;
176
177 mem_ref = build2 (MEM_REF, type, ptr, build_int_cst (alias_ptr_type, 0));
178 /* Arrays have the same alignment as their type. */
179 set_ptr_info_alignment (get_ptr_info (ptr), TYPE_ALIGN_UNIT (type), 0);
180 return mem_ref;
181 }
182
183 /* Utility functions used by vect_mark_stmts_to_be_vectorized. */
184
185 /* Function vect_mark_relevant.
186
187 Mark STMT as "relevant for vectorization" and add it to WORKLIST. */
188
189 static void
190 vect_mark_relevant (vec<gimple *> *worklist, gimple *stmt,
191 enum vect_relevant relevant, bool live_p)
192 {
193 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
194 enum vect_relevant save_relevant = STMT_VINFO_RELEVANT (stmt_info);
195 bool save_live_p = STMT_VINFO_LIVE_P (stmt_info);
196 gimple *pattern_stmt;
197
198 if (dump_enabled_p ())
199 {
200 dump_printf_loc (MSG_NOTE, vect_location,
201 "mark relevant %d, live %d: ", relevant, live_p);
202 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
203 }
204
205 /* If this stmt is an original stmt in a pattern, we might need to mark its
206 related pattern stmt instead of the original stmt. However, such stmts
207 may have their own uses that are not in any pattern, in such cases the
208 stmt itself should be marked. */
209 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
210 {
211 /* This is the last stmt in a sequence that was detected as a
212 pattern that can potentially be vectorized. Don't mark the stmt
213 as relevant/live because it's not going to be vectorized.
214 Instead mark the pattern-stmt that replaces it. */
215
216 pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
217
218 if (dump_enabled_p ())
219 dump_printf_loc (MSG_NOTE, vect_location,
220 "last stmt in pattern. don't mark"
221 " relevant/live.\n");
222 stmt_info = vinfo_for_stmt (pattern_stmt);
223 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_info) == stmt);
224 save_relevant = STMT_VINFO_RELEVANT (stmt_info);
225 save_live_p = STMT_VINFO_LIVE_P (stmt_info);
226 stmt = pattern_stmt;
227 }
228
229 STMT_VINFO_LIVE_P (stmt_info) |= live_p;
230 if (relevant > STMT_VINFO_RELEVANT (stmt_info))
231 STMT_VINFO_RELEVANT (stmt_info) = relevant;
232
233 if (STMT_VINFO_RELEVANT (stmt_info) == save_relevant
234 && STMT_VINFO_LIVE_P (stmt_info) == save_live_p)
235 {
236 if (dump_enabled_p ())
237 dump_printf_loc (MSG_NOTE, vect_location,
238 "already marked relevant/live.\n");
239 return;
240 }
241
242 worklist->safe_push (stmt);
243 }
244
245
246 /* Function is_simple_and_all_uses_invariant
247
248 Return true if STMT is simple and all uses of it are invariant. */
249
250 bool
251 is_simple_and_all_uses_invariant (gimple *stmt, loop_vec_info loop_vinfo)
252 {
253 tree op;
254 gimple *def_stmt;
255 ssa_op_iter iter;
256
257 if (!is_gimple_assign (stmt))
258 return false;
259
260 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
261 {
262 enum vect_def_type dt = vect_uninitialized_def;
263
264 if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &dt))
265 {
266 if (dump_enabled_p ())
267 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
268 "use not simple.\n");
269 return false;
270 }
271
272 if (dt != vect_external_def && dt != vect_constant_def)
273 return false;
274 }
275 return true;
276 }
277
278 /* Function vect_stmt_relevant_p.
279
280 Return true if STMT in loop that is represented by LOOP_VINFO is
281 "relevant for vectorization".
282
283 A stmt is considered "relevant for vectorization" if:
284 - it has uses outside the loop.
285 - it has vdefs (it alters memory).
286 - control stmts in the loop (except for the exit condition).
287
288 CHECKME: what other side effects would the vectorizer allow? */
289
290 static bool
291 vect_stmt_relevant_p (gimple *stmt, loop_vec_info loop_vinfo,
292 enum vect_relevant *relevant, bool *live_p)
293 {
294 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
295 ssa_op_iter op_iter;
296 imm_use_iterator imm_iter;
297 use_operand_p use_p;
298 def_operand_p def_p;
299
300 *relevant = vect_unused_in_scope;
301 *live_p = false;
302
303 /* cond stmt other than loop exit cond. */
304 if (is_ctrl_stmt (stmt)
305 && STMT_VINFO_TYPE (vinfo_for_stmt (stmt))
306 != loop_exit_ctrl_vec_info_type)
307 *relevant = vect_used_in_scope;
308
309 /* changing memory. */
310 if (gimple_code (stmt) != GIMPLE_PHI)
311 if (gimple_vdef (stmt)
312 && !gimple_clobber_p (stmt))
313 {
314 if (dump_enabled_p ())
315 dump_printf_loc (MSG_NOTE, vect_location,
316 "vec_stmt_relevant_p: stmt has vdefs.\n");
317 *relevant = vect_used_in_scope;
318 }
319
320 /* uses outside the loop. */
321 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
322 {
323 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p))
324 {
325 basic_block bb = gimple_bb (USE_STMT (use_p));
326 if (!flow_bb_inside_loop_p (loop, bb))
327 {
328 if (dump_enabled_p ())
329 dump_printf_loc (MSG_NOTE, vect_location,
330 "vec_stmt_relevant_p: used out of loop.\n");
331
332 if (is_gimple_debug (USE_STMT (use_p)))
333 continue;
334
335 /* We expect all such uses to be in the loop exit phis
336 (because of loop closed form) */
337 gcc_assert (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI);
338 gcc_assert (bb == single_exit (loop)->dest);
339
340 *live_p = true;
341 }
342 }
343 }
344
345 if (*live_p && *relevant == vect_unused_in_scope
346 && !is_simple_and_all_uses_invariant (stmt, loop_vinfo))
347 {
348 if (dump_enabled_p ())
349 dump_printf_loc (MSG_NOTE, vect_location,
350 "vec_stmt_relevant_p: stmt live but not relevant.\n");
351 *relevant = vect_used_only_live;
352 }
353
354 return (*live_p || *relevant);
355 }
356
357
358 /* Function exist_non_indexing_operands_for_use_p
359
360 USE is one of the uses attached to STMT. Check if USE is
361 used in STMT for anything other than indexing an array. */
362
363 static bool
364 exist_non_indexing_operands_for_use_p (tree use, gimple *stmt)
365 {
366 tree operand;
367 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
368
369 /* USE corresponds to some operand in STMT. If there is no data
370 reference in STMT, then any operand that corresponds to USE
371 is not indexing an array. */
372 if (!STMT_VINFO_DATA_REF (stmt_info))
373 return true;
374
375 /* STMT has a data_ref. FORNOW this means that its of one of
376 the following forms:
377 -1- ARRAY_REF = var
378 -2- var = ARRAY_REF
379 (This should have been verified in analyze_data_refs).
380
381 'var' in the second case corresponds to a def, not a use,
382 so USE cannot correspond to any operands that are not used
383 for array indexing.
384
385 Therefore, all we need to check is if STMT falls into the
386 first case, and whether var corresponds to USE. */
387
388 if (!gimple_assign_copy_p (stmt))
389 {
390 if (is_gimple_call (stmt)
391 && gimple_call_internal_p (stmt))
392 switch (gimple_call_internal_fn (stmt))
393 {
394 case IFN_MASK_STORE:
395 operand = gimple_call_arg (stmt, 3);
396 if (operand == use)
397 return true;
398 /* FALLTHRU */
399 case IFN_MASK_LOAD:
400 operand = gimple_call_arg (stmt, 2);
401 if (operand == use)
402 return true;
403 break;
404 default:
405 break;
406 }
407 return false;
408 }
409
410 if (TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
411 return false;
412 operand = gimple_assign_rhs1 (stmt);
413 if (TREE_CODE (operand) != SSA_NAME)
414 return false;
415
416 if (operand == use)
417 return true;
418
419 return false;
420 }
421
422
423 /*
424 Function process_use.
425
426 Inputs:
427 - a USE in STMT in a loop represented by LOOP_VINFO
428 - RELEVANT - enum value to be set in the STMT_VINFO of the stmt
429 that defined USE. This is done by calling mark_relevant and passing it
430 the WORKLIST (to add DEF_STMT to the WORKLIST in case it is relevant).
431 - FORCE is true if exist_non_indexing_operands_for_use_p check shouldn't
432 be performed.
433
434 Outputs:
435 Generally, LIVE_P and RELEVANT are used to define the liveness and
436 relevance info of the DEF_STMT of this USE:
437 STMT_VINFO_LIVE_P (DEF_STMT_info) <-- live_p
438 STMT_VINFO_RELEVANT (DEF_STMT_info) <-- relevant
439 Exceptions:
440 - case 1: If USE is used only for address computations (e.g. array indexing),
441 which does not need to be directly vectorized, then the liveness/relevance
442 of the respective DEF_STMT is left unchanged.
443 - case 2: If STMT is a reduction phi and DEF_STMT is a reduction stmt, we
444 skip DEF_STMT cause it had already been processed.
445 - case 3: If DEF_STMT and STMT are in different nests, then "relevant" will
446 be modified accordingly.
447
448 Return true if everything is as expected. Return false otherwise. */
449
450 static bool
451 process_use (gimple *stmt, tree use, loop_vec_info loop_vinfo,
452 enum vect_relevant relevant, vec<gimple *> *worklist,
453 bool force)
454 {
455 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
456 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
457 stmt_vec_info dstmt_vinfo;
458 basic_block bb, def_bb;
459 gimple *def_stmt;
460 enum vect_def_type dt;
461
462 /* case 1: we are only interested in uses that need to be vectorized. Uses
463 that are used for address computation are not considered relevant. */
464 if (!force && !exist_non_indexing_operands_for_use_p (use, stmt))
465 return true;
466
467 if (!vect_is_simple_use (use, loop_vinfo, &def_stmt, &dt))
468 {
469 if (dump_enabled_p ())
470 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
471 "not vectorized: unsupported use in stmt.\n");
472 return false;
473 }
474
475 if (!def_stmt || gimple_nop_p (def_stmt))
476 return true;
477
478 def_bb = gimple_bb (def_stmt);
479 if (!flow_bb_inside_loop_p (loop, def_bb))
480 {
481 if (dump_enabled_p ())
482 dump_printf_loc (MSG_NOTE, vect_location, "def_stmt is out of loop.\n");
483 return true;
484 }
485
486 /* case 2: A reduction phi (STMT) defined by a reduction stmt (DEF_STMT).
487 DEF_STMT must have already been processed, because this should be the
488 only way that STMT, which is a reduction-phi, was put in the worklist,
489 as there should be no other uses for DEF_STMT in the loop. So we just
490 check that everything is as expected, and we are done. */
491 dstmt_vinfo = vinfo_for_stmt (def_stmt);
492 bb = gimple_bb (stmt);
493 if (gimple_code (stmt) == GIMPLE_PHI
494 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
495 && gimple_code (def_stmt) != GIMPLE_PHI
496 && STMT_VINFO_DEF_TYPE (dstmt_vinfo) == vect_reduction_def
497 && bb->loop_father == def_bb->loop_father)
498 {
499 if (dump_enabled_p ())
500 dump_printf_loc (MSG_NOTE, vect_location,
501 "reduc-stmt defining reduc-phi in the same nest.\n");
502 if (STMT_VINFO_IN_PATTERN_P (dstmt_vinfo))
503 dstmt_vinfo = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (dstmt_vinfo));
504 gcc_assert (STMT_VINFO_RELEVANT (dstmt_vinfo) < vect_used_by_reduction);
505 gcc_assert (STMT_VINFO_LIVE_P (dstmt_vinfo)
506 || STMT_VINFO_RELEVANT (dstmt_vinfo) > vect_unused_in_scope);
507 return true;
508 }
509
510 /* case 3a: outer-loop stmt defining an inner-loop stmt:
511 outer-loop-header-bb:
512 d = def_stmt
513 inner-loop:
514 stmt # use (d)
515 outer-loop-tail-bb:
516 ... */
517 if (flow_loop_nested_p (def_bb->loop_father, bb->loop_father))
518 {
519 if (dump_enabled_p ())
520 dump_printf_loc (MSG_NOTE, vect_location,
521 "outer-loop def-stmt defining inner-loop stmt.\n");
522
523 switch (relevant)
524 {
525 case vect_unused_in_scope:
526 relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_nested_cycle) ?
527 vect_used_in_scope : vect_unused_in_scope;
528 break;
529
530 case vect_used_in_outer_by_reduction:
531 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def);
532 relevant = vect_used_by_reduction;
533 break;
534
535 case vect_used_in_outer:
536 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def);
537 relevant = vect_used_in_scope;
538 break;
539
540 case vect_used_in_scope:
541 break;
542
543 default:
544 gcc_unreachable ();
545 }
546 }
547
548 /* case 3b: inner-loop stmt defining an outer-loop stmt:
549 outer-loop-header-bb:
550 ...
551 inner-loop:
552 d = def_stmt
553 outer-loop-tail-bb (or outer-loop-exit-bb in double reduction):
554 stmt # use (d) */
555 else if (flow_loop_nested_p (bb->loop_father, def_bb->loop_father))
556 {
557 if (dump_enabled_p ())
558 dump_printf_loc (MSG_NOTE, vect_location,
559 "inner-loop def-stmt defining outer-loop stmt.\n");
560
561 switch (relevant)
562 {
563 case vect_unused_in_scope:
564 relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
565 || STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_double_reduction_def) ?
566 vect_used_in_outer_by_reduction : vect_unused_in_scope;
567 break;
568
569 case vect_used_by_reduction:
570 case vect_used_only_live:
571 relevant = vect_used_in_outer_by_reduction;
572 break;
573
574 case vect_used_in_scope:
575 relevant = vect_used_in_outer;
576 break;
577
578 default:
579 gcc_unreachable ();
580 }
581 }
582 /* We are also not interested in uses on loop PHI backedges that are
583 inductions. Otherwise we'll needlessly vectorize the IV increment
584 and cause hybrid SLP for SLP inductions. Unless the PHI is live
585 of course. */
586 else if (gimple_code (stmt) == GIMPLE_PHI
587 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_induction_def
588 && ! STMT_VINFO_LIVE_P (stmt_vinfo)
589 && (PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (bb->loop_father))
590 == use))
591 {
592 if (dump_enabled_p ())
593 dump_printf_loc (MSG_NOTE, vect_location,
594 "induction value on backedge.\n");
595 return true;
596 }
597
598
599 vect_mark_relevant (worklist, def_stmt, relevant, false);
600 return true;
601 }
602
603
604 /* Function vect_mark_stmts_to_be_vectorized.
605
606 Not all stmts in the loop need to be vectorized. For example:
607
608 for i...
609 for j...
610 1. T0 = i + j
611 2. T1 = a[T0]
612
613 3. j = j + 1
614
615 Stmt 1 and 3 do not need to be vectorized, because loop control and
616 addressing of vectorized data-refs are handled differently.
617
618 This pass detects such stmts. */
619
620 bool
621 vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo)
622 {
623 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
624 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
625 unsigned int nbbs = loop->num_nodes;
626 gimple_stmt_iterator si;
627 gimple *stmt;
628 unsigned int i;
629 stmt_vec_info stmt_vinfo;
630 basic_block bb;
631 gimple *phi;
632 bool live_p;
633 enum vect_relevant relevant;
634
635 if (dump_enabled_p ())
636 dump_printf_loc (MSG_NOTE, vect_location,
637 "=== vect_mark_stmts_to_be_vectorized ===\n");
638
639 auto_vec<gimple *, 64> worklist;
640
641 /* 1. Init worklist. */
642 for (i = 0; i < nbbs; i++)
643 {
644 bb = bbs[i];
645 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
646 {
647 phi = gsi_stmt (si);
648 if (dump_enabled_p ())
649 {
650 dump_printf_loc (MSG_NOTE, vect_location, "init: phi relevant? ");
651 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
652 }
653
654 if (vect_stmt_relevant_p (phi, loop_vinfo, &relevant, &live_p))
655 vect_mark_relevant (&worklist, phi, relevant, live_p);
656 }
657 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
658 {
659 stmt = gsi_stmt (si);
660 if (dump_enabled_p ())
661 {
662 dump_printf_loc (MSG_NOTE, vect_location, "init: stmt relevant? ");
663 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
664 }
665
666 if (vect_stmt_relevant_p (stmt, loop_vinfo, &relevant, &live_p))
667 vect_mark_relevant (&worklist, stmt, relevant, live_p);
668 }
669 }
670
671 /* 2. Process_worklist */
672 while (worklist.length () > 0)
673 {
674 use_operand_p use_p;
675 ssa_op_iter iter;
676
677 stmt = worklist.pop ();
678 if (dump_enabled_p ())
679 {
680 dump_printf_loc (MSG_NOTE, vect_location, "worklist: examine stmt: ");
681 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
682 }
683
684 /* Examine the USEs of STMT. For each USE, mark the stmt that defines it
685 (DEF_STMT) as relevant/irrelevant according to the relevance property
686 of STMT. */
687 stmt_vinfo = vinfo_for_stmt (stmt);
688 relevant = STMT_VINFO_RELEVANT (stmt_vinfo);
689
690 /* Generally, the relevance property of STMT (in STMT_VINFO_RELEVANT) is
691 propagated as is to the DEF_STMTs of its USEs.
692
693 One exception is when STMT has been identified as defining a reduction
694 variable; in this case we set the relevance to vect_used_by_reduction.
695 This is because we distinguish between two kinds of relevant stmts -
696 those that are used by a reduction computation, and those that are
697 (also) used by a regular computation. This allows us later on to
698 identify stmts that are used solely by a reduction, and therefore the
699 order of the results that they produce does not have to be kept. */
700
701 switch (STMT_VINFO_DEF_TYPE (stmt_vinfo))
702 {
703 case vect_reduction_def:
704 gcc_assert (relevant != vect_unused_in_scope);
705 if (relevant != vect_unused_in_scope
706 && relevant != vect_used_in_scope
707 && relevant != vect_used_by_reduction
708 && relevant != vect_used_only_live)
709 {
710 if (dump_enabled_p ())
711 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
712 "unsupported use of reduction.\n");
713 return false;
714 }
715 break;
716
717 case vect_nested_cycle:
718 if (relevant != vect_unused_in_scope
719 && relevant != vect_used_in_outer_by_reduction
720 && relevant != vect_used_in_outer)
721 {
722 if (dump_enabled_p ())
723 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
724 "unsupported use of nested cycle.\n");
725
726 return false;
727 }
728 break;
729
730 case vect_double_reduction_def:
731 if (relevant != vect_unused_in_scope
732 && relevant != vect_used_by_reduction
733 && relevant != vect_used_only_live)
734 {
735 if (dump_enabled_p ())
736 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
737 "unsupported use of double reduction.\n");
738
739 return false;
740 }
741 break;
742
743 default:
744 break;
745 }
746
747 if (is_pattern_stmt_p (stmt_vinfo))
748 {
749 /* Pattern statements are not inserted into the code, so
750 FOR_EACH_PHI_OR_STMT_USE optimizes their operands out, and we
751 have to scan the RHS or function arguments instead. */
752 if (is_gimple_assign (stmt))
753 {
754 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
755 tree op = gimple_assign_rhs1 (stmt);
756
757 i = 1;
758 if (rhs_code == COND_EXPR && COMPARISON_CLASS_P (op))
759 {
760 if (!process_use (stmt, TREE_OPERAND (op, 0), loop_vinfo,
761 relevant, &worklist, false)
762 || !process_use (stmt, TREE_OPERAND (op, 1), loop_vinfo,
763 relevant, &worklist, false))
764 return false;
765 i = 2;
766 }
767 for (; i < gimple_num_ops (stmt); i++)
768 {
769 op = gimple_op (stmt, i);
770 if (TREE_CODE (op) == SSA_NAME
771 && !process_use (stmt, op, loop_vinfo, relevant,
772 &worklist, false))
773 return false;
774 }
775 }
776 else if (is_gimple_call (stmt))
777 {
778 for (i = 0; i < gimple_call_num_args (stmt); i++)
779 {
780 tree arg = gimple_call_arg (stmt, i);
781 if (!process_use (stmt, arg, loop_vinfo, relevant,
782 &worklist, false))
783 return false;
784 }
785 }
786 }
787 else
788 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
789 {
790 tree op = USE_FROM_PTR (use_p);
791 if (!process_use (stmt, op, loop_vinfo, relevant,
792 &worklist, false))
793 return false;
794 }
795
796 if (STMT_VINFO_GATHER_SCATTER_P (stmt_vinfo))
797 {
798 gather_scatter_info gs_info;
799 if (!vect_check_gather_scatter (stmt, loop_vinfo, &gs_info))
800 gcc_unreachable ();
801 if (!process_use (stmt, gs_info.offset, loop_vinfo, relevant,
802 &worklist, true))
803 return false;
804 }
805 } /* while worklist */
806
807 return true;
808 }
809
810
811 /* Function vect_model_simple_cost.
812
813 Models cost for simple operations, i.e. those that only emit ncopies of a
814 single op. Right now, this does not account for multiple insns that could
815 be generated for the single vector op. We will handle that shortly. */
816
817 void
818 vect_model_simple_cost (stmt_vec_info stmt_info, int ncopies,
819 enum vect_def_type *dt,
820 int ndts,
821 stmt_vector_for_cost *prologue_cost_vec,
822 stmt_vector_for_cost *body_cost_vec)
823 {
824 int i;
825 int inside_cost = 0, prologue_cost = 0;
826
827 /* The SLP costs were already calculated during SLP tree build. */
828 if (PURE_SLP_STMT (stmt_info))
829 return;
830
831 /* Cost the "broadcast" of a scalar operand in to a vector operand.
832 Use scalar_to_vec to cost the broadcast, as elsewhere in the vector
833 cost model. */
834 for (i = 0; i < ndts; i++)
835 if (dt[i] == vect_constant_def || dt[i] == vect_external_def)
836 prologue_cost += record_stmt_cost (prologue_cost_vec, 1, scalar_to_vec,
837 stmt_info, 0, vect_prologue);
838
839 /* Pass the inside-of-loop statements to the target-specific cost model. */
840 inside_cost = record_stmt_cost (body_cost_vec, ncopies, vector_stmt,
841 stmt_info, 0, vect_body);
842
843 if (dump_enabled_p ())
844 dump_printf_loc (MSG_NOTE, vect_location,
845 "vect_model_simple_cost: inside_cost = %d, "
846 "prologue_cost = %d .\n", inside_cost, prologue_cost);
847 }
848
849
850 /* Model cost for type demotion and promotion operations. PWR is normally
851 zero for single-step promotions and demotions. It will be one if
852 two-step promotion/demotion is required, and so on. Each additional
853 step doubles the number of instructions required. */
854
855 static void
856 vect_model_promotion_demotion_cost (stmt_vec_info stmt_info,
857 enum vect_def_type *dt, int pwr)
858 {
859 int i, tmp;
860 int inside_cost = 0, prologue_cost = 0;
861 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
862 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
863 void *target_cost_data;
864
865 /* The SLP costs were already calculated during SLP tree build. */
866 if (PURE_SLP_STMT (stmt_info))
867 return;
868
869 if (loop_vinfo)
870 target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
871 else
872 target_cost_data = BB_VINFO_TARGET_COST_DATA (bb_vinfo);
873
874 for (i = 0; i < pwr + 1; i++)
875 {
876 tmp = (STMT_VINFO_TYPE (stmt_info) == type_promotion_vec_info_type) ?
877 (i + 1) : i;
878 inside_cost += add_stmt_cost (target_cost_data, vect_pow2 (tmp),
879 vec_promote_demote, stmt_info, 0,
880 vect_body);
881 }
882
883 /* FORNOW: Assuming maximum 2 args per stmts. */
884 for (i = 0; i < 2; i++)
885 if (dt[i] == vect_constant_def || dt[i] == vect_external_def)
886 prologue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
887 stmt_info, 0, vect_prologue);
888
889 if (dump_enabled_p ())
890 dump_printf_loc (MSG_NOTE, vect_location,
891 "vect_model_promotion_demotion_cost: inside_cost = %d, "
892 "prologue_cost = %d .\n", inside_cost, prologue_cost);
893 }
894
895 /* Function vect_model_store_cost
896
897 Models cost for stores. In the case of grouped accesses, one access
898 has the overhead of the grouped access attributed to it. */
899
900 void
901 vect_model_store_cost (stmt_vec_info stmt_info, int ncopies,
902 vect_memory_access_type memory_access_type,
903 enum vect_def_type dt, slp_tree slp_node,
904 stmt_vector_for_cost *prologue_cost_vec,
905 stmt_vector_for_cost *body_cost_vec)
906 {
907 unsigned int inside_cost = 0, prologue_cost = 0;
908 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
909 gimple *first_stmt = STMT_VINFO_STMT (stmt_info);
910 bool grouped_access_p = STMT_VINFO_GROUPED_ACCESS (stmt_info);
911
912 if (dt == vect_constant_def || dt == vect_external_def)
913 prologue_cost += record_stmt_cost (prologue_cost_vec, 1, scalar_to_vec,
914 stmt_info, 0, vect_prologue);
915
916 /* Grouped stores update all elements in the group at once,
917 so we want the DR for the first statement. */
918 if (!slp_node && grouped_access_p)
919 {
920 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
921 dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
922 }
923
924 /* True if we should include any once-per-group costs as well as
925 the cost of the statement itself. For SLP we only get called
926 once per group anyhow. */
927 bool first_stmt_p = (first_stmt == STMT_VINFO_STMT (stmt_info));
928
929 /* We assume that the cost of a single store-lanes instruction is
930 equivalent to the cost of GROUP_SIZE separate stores. If a grouped
931 access is instead being provided by a permute-and-store operation,
932 include the cost of the permutes. */
933 if (first_stmt_p
934 && memory_access_type == VMAT_CONTIGUOUS_PERMUTE)
935 {
936 /* Uses a high and low interleave or shuffle operations for each
937 needed permute. */
938 int group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
939 int nstmts = ncopies * ceil_log2 (group_size) * group_size;
940 inside_cost = record_stmt_cost (body_cost_vec, nstmts, vec_perm,
941 stmt_info, 0, vect_body);
942
943 if (dump_enabled_p ())
944 dump_printf_loc (MSG_NOTE, vect_location,
945 "vect_model_store_cost: strided group_size = %d .\n",
946 group_size);
947 }
948
949 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
950 /* Costs of the stores. */
951 if (memory_access_type == VMAT_ELEMENTWISE
952 || memory_access_type == VMAT_GATHER_SCATTER)
953 /* N scalar stores plus extracting the elements. */
954 inside_cost += record_stmt_cost (body_cost_vec,
955 ncopies * TYPE_VECTOR_SUBPARTS (vectype),
956 scalar_store, stmt_info, 0, vect_body);
957 else
958 vect_get_store_cost (dr, ncopies, &inside_cost, body_cost_vec);
959
960 if (memory_access_type == VMAT_ELEMENTWISE
961 || memory_access_type == VMAT_STRIDED_SLP)
962 inside_cost += record_stmt_cost (body_cost_vec,
963 ncopies * TYPE_VECTOR_SUBPARTS (vectype),
964 vec_to_scalar, stmt_info, 0, vect_body);
965
966 if (dump_enabled_p ())
967 dump_printf_loc (MSG_NOTE, vect_location,
968 "vect_model_store_cost: inside_cost = %d, "
969 "prologue_cost = %d .\n", inside_cost, prologue_cost);
970 }
971
972
973 /* Calculate cost of DR's memory access. */
974 void
975 vect_get_store_cost (struct data_reference *dr, int ncopies,
976 unsigned int *inside_cost,
977 stmt_vector_for_cost *body_cost_vec)
978 {
979 int alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
980 gimple *stmt = DR_STMT (dr);
981 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
982
983 switch (alignment_support_scheme)
984 {
985 case dr_aligned:
986 {
987 *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
988 vector_store, stmt_info, 0,
989 vect_body);
990
991 if (dump_enabled_p ())
992 dump_printf_loc (MSG_NOTE, vect_location,
993 "vect_model_store_cost: aligned.\n");
994 break;
995 }
996
997 case dr_unaligned_supported:
998 {
999 /* Here, we assign an additional cost for the unaligned store. */
1000 *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
1001 unaligned_store, stmt_info,
1002 DR_MISALIGNMENT (dr), vect_body);
1003 if (dump_enabled_p ())
1004 dump_printf_loc (MSG_NOTE, vect_location,
1005 "vect_model_store_cost: unaligned supported by "
1006 "hardware.\n");
1007 break;
1008 }
1009
1010 case dr_unaligned_unsupported:
1011 {
1012 *inside_cost = VECT_MAX_COST;
1013
1014 if (dump_enabled_p ())
1015 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1016 "vect_model_store_cost: unsupported access.\n");
1017 break;
1018 }
1019
1020 default:
1021 gcc_unreachable ();
1022 }
1023 }
1024
1025
1026 /* Function vect_model_load_cost
1027
1028 Models cost for loads. In the case of grouped accesses, one access has
1029 the overhead of the grouped access attributed to it. Since unaligned
1030 accesses are supported for loads, we also account for the costs of the
1031 access scheme chosen. */
1032
1033 void
1034 vect_model_load_cost (stmt_vec_info stmt_info, int ncopies,
1035 vect_memory_access_type memory_access_type,
1036 slp_tree slp_node,
1037 stmt_vector_for_cost *prologue_cost_vec,
1038 stmt_vector_for_cost *body_cost_vec)
1039 {
1040 gimple *first_stmt = STMT_VINFO_STMT (stmt_info);
1041 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
1042 unsigned int inside_cost = 0, prologue_cost = 0;
1043 bool grouped_access_p = STMT_VINFO_GROUPED_ACCESS (stmt_info);
1044
1045 /* Grouped loads read all elements in the group at once,
1046 so we want the DR for the first statement. */
1047 if (!slp_node && grouped_access_p)
1048 {
1049 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
1050 dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
1051 }
1052
1053 /* True if we should include any once-per-group costs as well as
1054 the cost of the statement itself. For SLP we only get called
1055 once per group anyhow. */
1056 bool first_stmt_p = (first_stmt == STMT_VINFO_STMT (stmt_info));
1057
1058 /* We assume that the cost of a single load-lanes instruction is
1059 equivalent to the cost of GROUP_SIZE separate loads. If a grouped
1060 access is instead being provided by a load-and-permute operation,
1061 include the cost of the permutes. */
1062 if (first_stmt_p
1063 && memory_access_type == VMAT_CONTIGUOUS_PERMUTE)
1064 {
1065 /* Uses an even and odd extract operations or shuffle operations
1066 for each needed permute. */
1067 int group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
1068 int nstmts = ncopies * ceil_log2 (group_size) * group_size;
1069 inside_cost = record_stmt_cost (body_cost_vec, nstmts, vec_perm,
1070 stmt_info, 0, vect_body);
1071
1072 if (dump_enabled_p ())
1073 dump_printf_loc (MSG_NOTE, vect_location,
1074 "vect_model_load_cost: strided group_size = %d .\n",
1075 group_size);
1076 }
1077
1078 /* The loads themselves. */
1079 if (memory_access_type == VMAT_ELEMENTWISE
1080 || memory_access_type == VMAT_GATHER_SCATTER)
1081 {
1082 /* N scalar loads plus gathering them into a vector. */
1083 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1084 inside_cost += record_stmt_cost (body_cost_vec,
1085 ncopies * TYPE_VECTOR_SUBPARTS (vectype),
1086 scalar_load, stmt_info, 0, vect_body);
1087 }
1088 else
1089 vect_get_load_cost (dr, ncopies, first_stmt_p,
1090 &inside_cost, &prologue_cost,
1091 prologue_cost_vec, body_cost_vec, true);
1092 if (memory_access_type == VMAT_ELEMENTWISE
1093 || memory_access_type == VMAT_STRIDED_SLP)
1094 inside_cost += record_stmt_cost (body_cost_vec, ncopies, vec_construct,
1095 stmt_info, 0, vect_body);
1096
1097 if (dump_enabled_p ())
1098 dump_printf_loc (MSG_NOTE, vect_location,
1099 "vect_model_load_cost: inside_cost = %d, "
1100 "prologue_cost = %d .\n", inside_cost, prologue_cost);
1101 }
1102
1103
1104 /* Calculate cost of DR's memory access. */
1105 void
1106 vect_get_load_cost (struct data_reference *dr, int ncopies,
1107 bool add_realign_cost, unsigned int *inside_cost,
1108 unsigned int *prologue_cost,
1109 stmt_vector_for_cost *prologue_cost_vec,
1110 stmt_vector_for_cost *body_cost_vec,
1111 bool record_prologue_costs)
1112 {
1113 int alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
1114 gimple *stmt = DR_STMT (dr);
1115 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1116
1117 switch (alignment_support_scheme)
1118 {
1119 case dr_aligned:
1120 {
1121 *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vector_load,
1122 stmt_info, 0, vect_body);
1123
1124 if (dump_enabled_p ())
1125 dump_printf_loc (MSG_NOTE, vect_location,
1126 "vect_model_load_cost: aligned.\n");
1127
1128 break;
1129 }
1130 case dr_unaligned_supported:
1131 {
1132 /* Here, we assign an additional cost for the unaligned load. */
1133 *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
1134 unaligned_load, stmt_info,
1135 DR_MISALIGNMENT (dr), vect_body);
1136
1137 if (dump_enabled_p ())
1138 dump_printf_loc (MSG_NOTE, vect_location,
1139 "vect_model_load_cost: unaligned supported by "
1140 "hardware.\n");
1141
1142 break;
1143 }
1144 case dr_explicit_realign:
1145 {
1146 *inside_cost += record_stmt_cost (body_cost_vec, ncopies * 2,
1147 vector_load, stmt_info, 0, vect_body);
1148 *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
1149 vec_perm, stmt_info, 0, vect_body);
1150
1151 /* FIXME: If the misalignment remains fixed across the iterations of
1152 the containing loop, the following cost should be added to the
1153 prologue costs. */
1154 if (targetm.vectorize.builtin_mask_for_load)
1155 *inside_cost += record_stmt_cost (body_cost_vec, 1, vector_stmt,
1156 stmt_info, 0, vect_body);
1157
1158 if (dump_enabled_p ())
1159 dump_printf_loc (MSG_NOTE, vect_location,
1160 "vect_model_load_cost: explicit realign\n");
1161
1162 break;
1163 }
1164 case dr_explicit_realign_optimized:
1165 {
1166 if (dump_enabled_p ())
1167 dump_printf_loc (MSG_NOTE, vect_location,
1168 "vect_model_load_cost: unaligned software "
1169 "pipelined.\n");
1170
1171 /* Unaligned software pipeline has a load of an address, an initial
1172 load, and possibly a mask operation to "prime" the loop. However,
1173 if this is an access in a group of loads, which provide grouped
1174 access, then the above cost should only be considered for one
1175 access in the group. Inside the loop, there is a load op
1176 and a realignment op. */
1177
1178 if (add_realign_cost && record_prologue_costs)
1179 {
1180 *prologue_cost += record_stmt_cost (prologue_cost_vec, 2,
1181 vector_stmt, stmt_info,
1182 0, vect_prologue);
1183 if (targetm.vectorize.builtin_mask_for_load)
1184 *prologue_cost += record_stmt_cost (prologue_cost_vec, 1,
1185 vector_stmt, stmt_info,
1186 0, vect_prologue);
1187 }
1188
1189 *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vector_load,
1190 stmt_info, 0, vect_body);
1191 *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vec_perm,
1192 stmt_info, 0, vect_body);
1193
1194 if (dump_enabled_p ())
1195 dump_printf_loc (MSG_NOTE, vect_location,
1196 "vect_model_load_cost: explicit realign optimized"
1197 "\n");
1198
1199 break;
1200 }
1201
1202 case dr_unaligned_unsupported:
1203 {
1204 *inside_cost = VECT_MAX_COST;
1205
1206 if (dump_enabled_p ())
1207 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1208 "vect_model_load_cost: unsupported access.\n");
1209 break;
1210 }
1211
1212 default:
1213 gcc_unreachable ();
1214 }
1215 }
1216
1217 /* Insert the new stmt NEW_STMT at *GSI or at the appropriate place in
1218 the loop preheader for the vectorized stmt STMT. */
1219
1220 static void
1221 vect_init_vector_1 (gimple *stmt, gimple *new_stmt, gimple_stmt_iterator *gsi)
1222 {
1223 if (gsi)
1224 vect_finish_stmt_generation (stmt, new_stmt, gsi);
1225 else
1226 {
1227 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
1228 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
1229
1230 if (loop_vinfo)
1231 {
1232 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1233 basic_block new_bb;
1234 edge pe;
1235
1236 if (nested_in_vect_loop_p (loop, stmt))
1237 loop = loop->inner;
1238
1239 pe = loop_preheader_edge (loop);
1240 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
1241 gcc_assert (!new_bb);
1242 }
1243 else
1244 {
1245 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo);
1246 basic_block bb;
1247 gimple_stmt_iterator gsi_bb_start;
1248
1249 gcc_assert (bb_vinfo);
1250 bb = BB_VINFO_BB (bb_vinfo);
1251 gsi_bb_start = gsi_after_labels (bb);
1252 gsi_insert_before (&gsi_bb_start, new_stmt, GSI_SAME_STMT);
1253 }
1254 }
1255
1256 if (dump_enabled_p ())
1257 {
1258 dump_printf_loc (MSG_NOTE, vect_location,
1259 "created new init_stmt: ");
1260 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
1261 }
1262 }
1263
1264 /* Function vect_init_vector.
1265
1266 Insert a new stmt (INIT_STMT) that initializes a new variable of type
1267 TYPE with the value VAL. If TYPE is a vector type and VAL does not have
1268 vector type a vector with all elements equal to VAL is created first.
1269 Place the initialization at BSI if it is not NULL. Otherwise, place the
1270 initialization at the loop preheader.
1271 Return the DEF of INIT_STMT.
1272 It will be used in the vectorization of STMT. */
1273
1274 tree
1275 vect_init_vector (gimple *stmt, tree val, tree type, gimple_stmt_iterator *gsi)
1276 {
1277 gimple *init_stmt;
1278 tree new_temp;
1279
1280 /* We abuse this function to push sth to a SSA name with initial 'val'. */
1281 if (! useless_type_conversion_p (type, TREE_TYPE (val)))
1282 {
1283 gcc_assert (TREE_CODE (type) == VECTOR_TYPE);
1284 if (! types_compatible_p (TREE_TYPE (type), TREE_TYPE (val)))
1285 {
1286 /* Scalar boolean value should be transformed into
1287 all zeros or all ones value before building a vector. */
1288 if (VECTOR_BOOLEAN_TYPE_P (type))
1289 {
1290 tree true_val = build_all_ones_cst (TREE_TYPE (type));
1291 tree false_val = build_zero_cst (TREE_TYPE (type));
1292
1293 if (CONSTANT_CLASS_P (val))
1294 val = integer_zerop (val) ? false_val : true_val;
1295 else
1296 {
1297 new_temp = make_ssa_name (TREE_TYPE (type));
1298 init_stmt = gimple_build_assign (new_temp, COND_EXPR,
1299 val, true_val, false_val);
1300 vect_init_vector_1 (stmt, init_stmt, gsi);
1301 val = new_temp;
1302 }
1303 }
1304 else if (CONSTANT_CLASS_P (val))
1305 val = fold_convert (TREE_TYPE (type), val);
1306 else
1307 {
1308 new_temp = make_ssa_name (TREE_TYPE (type));
1309 if (! INTEGRAL_TYPE_P (TREE_TYPE (val)))
1310 init_stmt = gimple_build_assign (new_temp,
1311 fold_build1 (VIEW_CONVERT_EXPR,
1312 TREE_TYPE (type),
1313 val));
1314 else
1315 init_stmt = gimple_build_assign (new_temp, NOP_EXPR, val);
1316 vect_init_vector_1 (stmt, init_stmt, gsi);
1317 val = new_temp;
1318 }
1319 }
1320 val = build_vector_from_val (type, val);
1321 }
1322
1323 new_temp = vect_get_new_ssa_name (type, vect_simple_var, "cst_");
1324 init_stmt = gimple_build_assign (new_temp, val);
1325 vect_init_vector_1 (stmt, init_stmt, gsi);
1326 return new_temp;
1327 }
1328
1329 /* Function vect_get_vec_def_for_operand_1.
1330
1331 For a defining stmt DEF_STMT of a scalar stmt, return a vector def with type
1332 DT that will be used in the vectorized stmt. */
1333
1334 tree
1335 vect_get_vec_def_for_operand_1 (gimple *def_stmt, enum vect_def_type dt)
1336 {
1337 tree vec_oprnd;
1338 gimple *vec_stmt;
1339 stmt_vec_info def_stmt_info = NULL;
1340
1341 switch (dt)
1342 {
1343 /* operand is a constant or a loop invariant. */
1344 case vect_constant_def:
1345 case vect_external_def:
1346 /* Code should use vect_get_vec_def_for_operand. */
1347 gcc_unreachable ();
1348
1349 /* operand is defined inside the loop. */
1350 case vect_internal_def:
1351 {
1352 /* Get the def from the vectorized stmt. */
1353 def_stmt_info = vinfo_for_stmt (def_stmt);
1354
1355 vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
1356 /* Get vectorized pattern statement. */
1357 if (!vec_stmt
1358 && STMT_VINFO_IN_PATTERN_P (def_stmt_info)
1359 && !STMT_VINFO_RELEVANT (def_stmt_info))
1360 vec_stmt = STMT_VINFO_VEC_STMT (vinfo_for_stmt (
1361 STMT_VINFO_RELATED_STMT (def_stmt_info)));
1362 gcc_assert (vec_stmt);
1363 if (gimple_code (vec_stmt) == GIMPLE_PHI)
1364 vec_oprnd = PHI_RESULT (vec_stmt);
1365 else if (is_gimple_call (vec_stmt))
1366 vec_oprnd = gimple_call_lhs (vec_stmt);
1367 else
1368 vec_oprnd = gimple_assign_lhs (vec_stmt);
1369 return vec_oprnd;
1370 }
1371
1372 /* operand is defined by a loop header phi. */
1373 case vect_reduction_def:
1374 case vect_double_reduction_def:
1375 case vect_nested_cycle:
1376 case vect_induction_def:
1377 {
1378 gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
1379
1380 /* Get the def from the vectorized stmt. */
1381 def_stmt_info = vinfo_for_stmt (def_stmt);
1382 vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
1383 if (gimple_code (vec_stmt) == GIMPLE_PHI)
1384 vec_oprnd = PHI_RESULT (vec_stmt);
1385 else
1386 vec_oprnd = gimple_get_lhs (vec_stmt);
1387 return vec_oprnd;
1388 }
1389
1390 default:
1391 gcc_unreachable ();
1392 }
1393 }
1394
1395
1396 /* Function vect_get_vec_def_for_operand.
1397
1398 OP is an operand in STMT. This function returns a (vector) def that will be
1399 used in the vectorized stmt for STMT.
1400
1401 In the case that OP is an SSA_NAME which is defined in the loop, then
1402 STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.
1403
1404 In case OP is an invariant or constant, a new stmt that creates a vector def
1405 needs to be introduced. VECTYPE may be used to specify a required type for
1406 vector invariant. */
1407
1408 tree
1409 vect_get_vec_def_for_operand (tree op, gimple *stmt, tree vectype)
1410 {
1411 gimple *def_stmt;
1412 enum vect_def_type dt;
1413 bool is_simple_use;
1414 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
1415 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
1416
1417 if (dump_enabled_p ())
1418 {
1419 dump_printf_loc (MSG_NOTE, vect_location,
1420 "vect_get_vec_def_for_operand: ");
1421 dump_generic_expr (MSG_NOTE, TDF_SLIM, op);
1422 dump_printf (MSG_NOTE, "\n");
1423 }
1424
1425 is_simple_use = vect_is_simple_use (op, loop_vinfo, &def_stmt, &dt);
1426 gcc_assert (is_simple_use);
1427 if (def_stmt && dump_enabled_p ())
1428 {
1429 dump_printf_loc (MSG_NOTE, vect_location, " def_stmt = ");
1430 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
1431 }
1432
1433 if (dt == vect_constant_def || dt == vect_external_def)
1434 {
1435 tree stmt_vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
1436 tree vector_type;
1437
1438 if (vectype)
1439 vector_type = vectype;
1440 else if (VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (op))
1441 && VECTOR_BOOLEAN_TYPE_P (stmt_vectype))
1442 vector_type = build_same_sized_truth_vector_type (stmt_vectype);
1443 else
1444 vector_type = get_vectype_for_scalar_type (TREE_TYPE (op));
1445
1446 gcc_assert (vector_type);
1447 return vect_init_vector (stmt, op, vector_type, NULL);
1448 }
1449 else
1450 return vect_get_vec_def_for_operand_1 (def_stmt, dt);
1451 }
1452
1453
1454 /* Function vect_get_vec_def_for_stmt_copy
1455
1456 Return a vector-def for an operand. This function is used when the
1457 vectorized stmt to be created (by the caller to this function) is a "copy"
1458 created in case the vectorized result cannot fit in one vector, and several
1459 copies of the vector-stmt are required. In this case the vector-def is
1460 retrieved from the vector stmt recorded in the STMT_VINFO_RELATED_STMT field
1461 of the stmt that defines VEC_OPRND.
1462 DT is the type of the vector def VEC_OPRND.
1463
1464 Context:
1465 In case the vectorization factor (VF) is bigger than the number
1466 of elements that can fit in a vectype (nunits), we have to generate
1467 more than one vector stmt to vectorize the scalar stmt. This situation
1468 arises when there are multiple data-types operated upon in the loop; the
1469 smallest data-type determines the VF, and as a result, when vectorizing
1470 stmts operating on wider types we need to create 'VF/nunits' "copies" of the
1471 vector stmt (each computing a vector of 'nunits' results, and together
1472 computing 'VF' results in each iteration). This function is called when
1473 vectorizing such a stmt (e.g. vectorizing S2 in the illustration below, in
1474 which VF=16 and nunits=4, so the number of copies required is 4):
1475
1476 scalar stmt: vectorized into: STMT_VINFO_RELATED_STMT
1477
1478 S1: x = load VS1.0: vx.0 = memref0 VS1.1
1479 VS1.1: vx.1 = memref1 VS1.2
1480 VS1.2: vx.2 = memref2 VS1.3
1481 VS1.3: vx.3 = memref3
1482
1483 S2: z = x + ... VSnew.0: vz0 = vx.0 + ... VSnew.1
1484 VSnew.1: vz1 = vx.1 + ... VSnew.2
1485 VSnew.2: vz2 = vx.2 + ... VSnew.3
1486 VSnew.3: vz3 = vx.3 + ...
1487
1488 The vectorization of S1 is explained in vectorizable_load.
1489 The vectorization of S2:
1490 To create the first vector-stmt out of the 4 copies - VSnew.0 -
1491 the function 'vect_get_vec_def_for_operand' is called to
1492 get the relevant vector-def for each operand of S2. For operand x it
1493 returns the vector-def 'vx.0'.
1494
1495 To create the remaining copies of the vector-stmt (VSnew.j), this
1496 function is called to get the relevant vector-def for each operand. It is
1497 obtained from the respective VS1.j stmt, which is recorded in the
1498 STMT_VINFO_RELATED_STMT field of the stmt that defines VEC_OPRND.
1499
1500 For example, to obtain the vector-def 'vx.1' in order to create the
1501 vector stmt 'VSnew.1', this function is called with VEC_OPRND='vx.0'.
1502 Given 'vx0' we obtain the stmt that defines it ('VS1.0'); from the
1503 STMT_VINFO_RELATED_STMT field of 'VS1.0' we obtain the next copy - 'VS1.1',
1504 and return its def ('vx.1').
1505 Overall, to create the above sequence this function will be called 3 times:
1506 vx.1 = vect_get_vec_def_for_stmt_copy (dt, vx.0);
1507 vx.2 = vect_get_vec_def_for_stmt_copy (dt, vx.1);
1508 vx.3 = vect_get_vec_def_for_stmt_copy (dt, vx.2); */
1509
1510 tree
1511 vect_get_vec_def_for_stmt_copy (enum vect_def_type dt, tree vec_oprnd)
1512 {
1513 gimple *vec_stmt_for_operand;
1514 stmt_vec_info def_stmt_info;
1515
1516 /* Do nothing; can reuse same def. */
1517 if (dt == vect_external_def || dt == vect_constant_def )
1518 return vec_oprnd;
1519
1520 vec_stmt_for_operand = SSA_NAME_DEF_STMT (vec_oprnd);
1521 def_stmt_info = vinfo_for_stmt (vec_stmt_for_operand);
1522 gcc_assert (def_stmt_info);
1523 vec_stmt_for_operand = STMT_VINFO_RELATED_STMT (def_stmt_info);
1524 gcc_assert (vec_stmt_for_operand);
1525 if (gimple_code (vec_stmt_for_operand) == GIMPLE_PHI)
1526 vec_oprnd = PHI_RESULT (vec_stmt_for_operand);
1527 else
1528 vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
1529 return vec_oprnd;
1530 }
1531
1532
1533 /* Get vectorized definitions for the operands to create a copy of an original
1534 stmt. See vect_get_vec_def_for_stmt_copy () for details. */
1535
1536 void
1537 vect_get_vec_defs_for_stmt_copy (enum vect_def_type *dt,
1538 vec<tree> *vec_oprnds0,
1539 vec<tree> *vec_oprnds1)
1540 {
1541 tree vec_oprnd = vec_oprnds0->pop ();
1542
1543 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd);
1544 vec_oprnds0->quick_push (vec_oprnd);
1545
1546 if (vec_oprnds1 && vec_oprnds1->length ())
1547 {
1548 vec_oprnd = vec_oprnds1->pop ();
1549 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd);
1550 vec_oprnds1->quick_push (vec_oprnd);
1551 }
1552 }
1553
1554
1555 /* Get vectorized definitions for OP0 and OP1. */
1556
1557 void
1558 vect_get_vec_defs (tree op0, tree op1, gimple *stmt,
1559 vec<tree> *vec_oprnds0,
1560 vec<tree> *vec_oprnds1,
1561 slp_tree slp_node)
1562 {
1563 if (slp_node)
1564 {
1565 int nops = (op1 == NULL_TREE) ? 1 : 2;
1566 auto_vec<tree> ops (nops);
1567 auto_vec<vec<tree> > vec_defs (nops);
1568
1569 ops.quick_push (op0);
1570 if (op1)
1571 ops.quick_push (op1);
1572
1573 vect_get_slp_defs (ops, slp_node, &vec_defs);
1574
1575 *vec_oprnds0 = vec_defs[0];
1576 if (op1)
1577 *vec_oprnds1 = vec_defs[1];
1578 }
1579 else
1580 {
1581 tree vec_oprnd;
1582
1583 vec_oprnds0->create (1);
1584 vec_oprnd = vect_get_vec_def_for_operand (op0, stmt);
1585 vec_oprnds0->quick_push (vec_oprnd);
1586
1587 if (op1)
1588 {
1589 vec_oprnds1->create (1);
1590 vec_oprnd = vect_get_vec_def_for_operand (op1, stmt);
1591 vec_oprnds1->quick_push (vec_oprnd);
1592 }
1593 }
1594 }
1595
1596
1597 /* Function vect_finish_stmt_generation.
1598
1599 Insert a new stmt. */
1600
1601 void
1602 vect_finish_stmt_generation (gimple *stmt, gimple *vec_stmt,
1603 gimple_stmt_iterator *gsi)
1604 {
1605 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1606 vec_info *vinfo = stmt_info->vinfo;
1607
1608 gcc_assert (gimple_code (stmt) != GIMPLE_LABEL);
1609
1610 if (!gsi_end_p (*gsi)
1611 && gimple_has_mem_ops (vec_stmt))
1612 {
1613 gimple *at_stmt = gsi_stmt (*gsi);
1614 tree vuse = gimple_vuse (at_stmt);
1615 if (vuse && TREE_CODE (vuse) == SSA_NAME)
1616 {
1617 tree vdef = gimple_vdef (at_stmt);
1618 gimple_set_vuse (vec_stmt, gimple_vuse (at_stmt));
1619 /* If we have an SSA vuse and insert a store, update virtual
1620 SSA form to avoid triggering the renamer. Do so only
1621 if we can easily see all uses - which is what almost always
1622 happens with the way vectorized stmts are inserted. */
1623 if ((vdef && TREE_CODE (vdef) == SSA_NAME)
1624 && ((is_gimple_assign (vec_stmt)
1625 && !is_gimple_reg (gimple_assign_lhs (vec_stmt)))
1626 || (is_gimple_call (vec_stmt)
1627 && !(gimple_call_flags (vec_stmt)
1628 & (ECF_CONST|ECF_PURE|ECF_NOVOPS)))))
1629 {
1630 tree new_vdef = copy_ssa_name (vuse, vec_stmt);
1631 gimple_set_vdef (vec_stmt, new_vdef);
1632 SET_USE (gimple_vuse_op (at_stmt), new_vdef);
1633 }
1634 }
1635 }
1636 gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
1637
1638 set_vinfo_for_stmt (vec_stmt, new_stmt_vec_info (vec_stmt, vinfo));
1639
1640 if (dump_enabled_p ())
1641 {
1642 dump_printf_loc (MSG_NOTE, vect_location, "add new stmt: ");
1643 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vec_stmt, 0);
1644 }
1645
1646 gimple_set_location (vec_stmt, gimple_location (stmt));
1647
1648 /* While EH edges will generally prevent vectorization, stmt might
1649 e.g. be in a must-not-throw region. Ensure newly created stmts
1650 that could throw are part of the same region. */
1651 int lp_nr = lookup_stmt_eh_lp (stmt);
1652 if (lp_nr != 0 && stmt_could_throw_p (vec_stmt))
1653 add_stmt_to_eh_lp (vec_stmt, lp_nr);
1654 }
1655
1656 /* We want to vectorize a call to combined function CFN with function
1657 decl FNDECL, using VECTYPE_OUT as the type of the output and VECTYPE_IN
1658 as the types of all inputs. Check whether this is possible using
1659 an internal function, returning its code if so or IFN_LAST if not. */
1660
1661 static internal_fn
1662 vectorizable_internal_function (combined_fn cfn, tree fndecl,
1663 tree vectype_out, tree vectype_in)
1664 {
1665 internal_fn ifn;
1666 if (internal_fn_p (cfn))
1667 ifn = as_internal_fn (cfn);
1668 else
1669 ifn = associated_internal_fn (fndecl);
1670 if (ifn != IFN_LAST && direct_internal_fn_p (ifn))
1671 {
1672 const direct_internal_fn_info &info = direct_internal_fn (ifn);
1673 if (info.vectorizable)
1674 {
1675 tree type0 = (info.type0 < 0 ? vectype_out : vectype_in);
1676 tree type1 = (info.type1 < 0 ? vectype_out : vectype_in);
1677 if (direct_internal_fn_supported_p (ifn, tree_pair (type0, type1),
1678 OPTIMIZE_FOR_SPEED))
1679 return ifn;
1680 }
1681 }
1682 return IFN_LAST;
1683 }
1684
1685
1686 static tree permute_vec_elements (tree, tree, tree, gimple *,
1687 gimple_stmt_iterator *);
1688
1689 /* STMT is a non-strided load or store, meaning that it accesses
1690 elements with a known constant step. Return -1 if that step
1691 is negative, 0 if it is zero, and 1 if it is greater than zero. */
1692
1693 static int
1694 compare_step_with_zero (gimple *stmt)
1695 {
1696 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1697 data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
1698 return tree_int_cst_compare (vect_dr_behavior (dr)->step,
1699 size_zero_node);
1700 }
1701
1702 /* If the target supports a permute mask that reverses the elements in
1703 a vector of type VECTYPE, return that mask, otherwise return null. */
1704
1705 static tree
1706 perm_mask_for_reverse (tree vectype)
1707 {
1708 int i, nunits;
1709 unsigned char *sel;
1710
1711 nunits = TYPE_VECTOR_SUBPARTS (vectype);
1712 sel = XALLOCAVEC (unsigned char, nunits);
1713
1714 for (i = 0; i < nunits; ++i)
1715 sel[i] = nunits - 1 - i;
1716
1717 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
1718 return NULL_TREE;
1719 return vect_gen_perm_mask_checked (vectype, sel);
1720 }
1721
1722 /* A subroutine of get_load_store_type, with a subset of the same
1723 arguments. Handle the case where STMT is part of a grouped load
1724 or store.
1725
1726 For stores, the statements in the group are all consecutive
1727 and there is no gap at the end. For loads, the statements in the
1728 group might not be consecutive; there can be gaps between statements
1729 as well as at the end. */
1730
1731 static bool
1732 get_group_load_store_type (gimple *stmt, tree vectype, bool slp,
1733 vec_load_store_type vls_type,
1734 vect_memory_access_type *memory_access_type)
1735 {
1736 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1737 vec_info *vinfo = stmt_info->vinfo;
1738 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1739 struct loop *loop = loop_vinfo ? LOOP_VINFO_LOOP (loop_vinfo) : NULL;
1740 gimple *first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
1741 unsigned int group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
1742 bool single_element_p = (stmt == first_stmt
1743 && !GROUP_NEXT_ELEMENT (stmt_info));
1744 unsigned HOST_WIDE_INT gap = GROUP_GAP (vinfo_for_stmt (first_stmt));
1745 unsigned nunits = TYPE_VECTOR_SUBPARTS (vectype);
1746
1747 /* True if the vectorized statements would access beyond the last
1748 statement in the group. */
1749 bool overrun_p = false;
1750
1751 /* True if we can cope with such overrun by peeling for gaps, so that
1752 there is at least one final scalar iteration after the vector loop. */
1753 bool can_overrun_p = (vls_type == VLS_LOAD && loop_vinfo && !loop->inner);
1754
1755 /* There can only be a gap at the end of the group if the stride is
1756 known at compile time. */
1757 gcc_assert (!STMT_VINFO_STRIDED_P (stmt_info) || gap == 0);
1758
1759 /* Stores can't yet have gaps. */
1760 gcc_assert (slp || vls_type == VLS_LOAD || gap == 0);
1761
1762 if (slp)
1763 {
1764 if (STMT_VINFO_STRIDED_P (stmt_info))
1765 {
1766 /* Try to use consecutive accesses of GROUP_SIZE elements,
1767 separated by the stride, until we have a complete vector.
1768 Fall back to scalar accesses if that isn't possible. */
1769 if (nunits % group_size == 0)
1770 *memory_access_type = VMAT_STRIDED_SLP;
1771 else
1772 *memory_access_type = VMAT_ELEMENTWISE;
1773 }
1774 else
1775 {
1776 overrun_p = loop_vinfo && gap != 0;
1777 if (overrun_p && vls_type != VLS_LOAD)
1778 {
1779 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1780 "Grouped store with gaps requires"
1781 " non-consecutive accesses\n");
1782 return false;
1783 }
1784 /* If the access is aligned an overrun is fine. */
1785 if (overrun_p
1786 && aligned_access_p
1787 (STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt))))
1788 overrun_p = false;
1789 if (overrun_p && !can_overrun_p)
1790 {
1791 if (dump_enabled_p ())
1792 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1793 "Peeling for outer loop is not supported\n");
1794 return false;
1795 }
1796 *memory_access_type = VMAT_CONTIGUOUS;
1797 }
1798 }
1799 else
1800 {
1801 /* We can always handle this case using elementwise accesses,
1802 but see if something more efficient is available. */
1803 *memory_access_type = VMAT_ELEMENTWISE;
1804
1805 /* If there is a gap at the end of the group then these optimizations
1806 would access excess elements in the last iteration. */
1807 bool would_overrun_p = (gap != 0);
1808 /* If the access is aligned an overrun is fine, but only if the
1809 overrun is not inside an unused vector (if the gap is as large
1810 or larger than a vector). */
1811 if (would_overrun_p
1812 && gap < nunits
1813 && aligned_access_p
1814 (STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt))))
1815 would_overrun_p = false;
1816 if (!STMT_VINFO_STRIDED_P (stmt_info)
1817 && (can_overrun_p || !would_overrun_p)
1818 && compare_step_with_zero (stmt) > 0)
1819 {
1820 /* First try using LOAD/STORE_LANES. */
1821 if (vls_type == VLS_LOAD
1822 ? vect_load_lanes_supported (vectype, group_size)
1823 : vect_store_lanes_supported (vectype, group_size))
1824 {
1825 *memory_access_type = VMAT_LOAD_STORE_LANES;
1826 overrun_p = would_overrun_p;
1827 }
1828
1829 /* If that fails, try using permuting loads. */
1830 if (*memory_access_type == VMAT_ELEMENTWISE
1831 && (vls_type == VLS_LOAD
1832 ? vect_grouped_load_supported (vectype, single_element_p,
1833 group_size)
1834 : vect_grouped_store_supported (vectype, group_size)))
1835 {
1836 *memory_access_type = VMAT_CONTIGUOUS_PERMUTE;
1837 overrun_p = would_overrun_p;
1838 }
1839 }
1840 }
1841
1842 if (vls_type != VLS_LOAD && first_stmt == stmt)
1843 {
1844 /* STMT is the leader of the group. Check the operands of all the
1845 stmts of the group. */
1846 gimple *next_stmt = GROUP_NEXT_ELEMENT (stmt_info);
1847 while (next_stmt)
1848 {
1849 gcc_assert (gimple_assign_single_p (next_stmt));
1850 tree op = gimple_assign_rhs1 (next_stmt);
1851 gimple *def_stmt;
1852 enum vect_def_type dt;
1853 if (!vect_is_simple_use (op, vinfo, &def_stmt, &dt))
1854 {
1855 if (dump_enabled_p ())
1856 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1857 "use not simple.\n");
1858 return false;
1859 }
1860 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
1861 }
1862 }
1863
1864 if (overrun_p)
1865 {
1866 gcc_assert (can_overrun_p);
1867 if (dump_enabled_p ())
1868 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1869 "Data access with gaps requires scalar "
1870 "epilogue loop\n");
1871 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
1872 }
1873
1874 return true;
1875 }
1876
1877 /* A subroutine of get_load_store_type, with a subset of the same
1878 arguments. Handle the case where STMT is a load or store that
1879 accesses consecutive elements with a negative step. */
1880
1881 static vect_memory_access_type
1882 get_negative_load_store_type (gimple *stmt, tree vectype,
1883 vec_load_store_type vls_type,
1884 unsigned int ncopies)
1885 {
1886 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1887 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
1888 dr_alignment_support alignment_support_scheme;
1889
1890 if (ncopies > 1)
1891 {
1892 if (dump_enabled_p ())
1893 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1894 "multiple types with negative step.\n");
1895 return VMAT_ELEMENTWISE;
1896 }
1897
1898 alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
1899 if (alignment_support_scheme != dr_aligned
1900 && alignment_support_scheme != dr_unaligned_supported)
1901 {
1902 if (dump_enabled_p ())
1903 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1904 "negative step but alignment required.\n");
1905 return VMAT_ELEMENTWISE;
1906 }
1907
1908 if (vls_type == VLS_STORE_INVARIANT)
1909 {
1910 if (dump_enabled_p ())
1911 dump_printf_loc (MSG_NOTE, vect_location,
1912 "negative step with invariant source;"
1913 " no permute needed.\n");
1914 return VMAT_CONTIGUOUS_DOWN;
1915 }
1916
1917 if (!perm_mask_for_reverse (vectype))
1918 {
1919 if (dump_enabled_p ())
1920 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1921 "negative step and reversing not supported.\n");
1922 return VMAT_ELEMENTWISE;
1923 }
1924
1925 return VMAT_CONTIGUOUS_REVERSE;
1926 }
1927
1928 /* Analyze load or store statement STMT of type VLS_TYPE. Return true
1929 if there is a memory access type that the vectorized form can use,
1930 storing it in *MEMORY_ACCESS_TYPE if so. If we decide to use gathers
1931 or scatters, fill in GS_INFO accordingly.
1932
1933 SLP says whether we're performing SLP rather than loop vectorization.
1934 VECTYPE is the vector type that the vectorized statements will use.
1935 NCOPIES is the number of vector statements that will be needed. */
1936
1937 static bool
1938 get_load_store_type (gimple *stmt, tree vectype, bool slp,
1939 vec_load_store_type vls_type, unsigned int ncopies,
1940 vect_memory_access_type *memory_access_type,
1941 gather_scatter_info *gs_info)
1942 {
1943 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1944 vec_info *vinfo = stmt_info->vinfo;
1945 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1946 if (STMT_VINFO_GATHER_SCATTER_P (stmt_info))
1947 {
1948 *memory_access_type = VMAT_GATHER_SCATTER;
1949 gimple *def_stmt;
1950 if (!vect_check_gather_scatter (stmt, loop_vinfo, gs_info))
1951 gcc_unreachable ();
1952 else if (!vect_is_simple_use (gs_info->offset, vinfo, &def_stmt,
1953 &gs_info->offset_dt,
1954 &gs_info->offset_vectype))
1955 {
1956 if (dump_enabled_p ())
1957 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1958 "%s index use not simple.\n",
1959 vls_type == VLS_LOAD ? "gather" : "scatter");
1960 return false;
1961 }
1962 }
1963 else if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1964 {
1965 if (!get_group_load_store_type (stmt, vectype, slp, vls_type,
1966 memory_access_type))
1967 return false;
1968 }
1969 else if (STMT_VINFO_STRIDED_P (stmt_info))
1970 {
1971 gcc_assert (!slp);
1972 *memory_access_type = VMAT_ELEMENTWISE;
1973 }
1974 else
1975 {
1976 int cmp = compare_step_with_zero (stmt);
1977 if (cmp < 0)
1978 *memory_access_type = get_negative_load_store_type
1979 (stmt, vectype, vls_type, ncopies);
1980 else if (cmp == 0)
1981 {
1982 gcc_assert (vls_type == VLS_LOAD);
1983 *memory_access_type = VMAT_INVARIANT;
1984 }
1985 else
1986 *memory_access_type = VMAT_CONTIGUOUS;
1987 }
1988
1989 /* FIXME: At the moment the cost model seems to underestimate the
1990 cost of using elementwise accesses. This check preserves the
1991 traditional behavior until that can be fixed. */
1992 if (*memory_access_type == VMAT_ELEMENTWISE
1993 && !STMT_VINFO_STRIDED_P (stmt_info))
1994 {
1995 if (dump_enabled_p ())
1996 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1997 "not falling back to elementwise accesses\n");
1998 return false;
1999 }
2000 return true;
2001 }
2002
2003 /* Function vectorizable_mask_load_store.
2004
2005 Check if STMT performs a conditional load or store that can be vectorized.
2006 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
2007 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
2008 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
2009
2010 static bool
2011 vectorizable_mask_load_store (gimple *stmt, gimple_stmt_iterator *gsi,
2012 gimple **vec_stmt, slp_tree slp_node)
2013 {
2014 tree vec_dest = NULL;
2015 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2016 stmt_vec_info prev_stmt_info;
2017 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2018 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2019 bool nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
2020 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
2021 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2022 tree rhs_vectype = NULL_TREE;
2023 tree mask_vectype;
2024 tree elem_type;
2025 gimple *new_stmt;
2026 tree dummy;
2027 tree dataref_ptr = NULL_TREE;
2028 gimple *ptr_incr;
2029 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
2030 int ncopies;
2031 int i, j;
2032 bool inv_p;
2033 gather_scatter_info gs_info;
2034 vec_load_store_type vls_type;
2035 tree mask;
2036 gimple *def_stmt;
2037 enum vect_def_type dt;
2038
2039 if (slp_node != NULL)
2040 return false;
2041
2042 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
2043 gcc_assert (ncopies >= 1);
2044
2045 mask = gimple_call_arg (stmt, 2);
2046
2047 if (!VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (mask)))
2048 return false;
2049
2050 /* FORNOW. This restriction should be relaxed. */
2051 if (nested_in_vect_loop && ncopies > 1)
2052 {
2053 if (dump_enabled_p ())
2054 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2055 "multiple types in nested loop.");
2056 return false;
2057 }
2058
2059 if (!STMT_VINFO_RELEVANT_P (stmt_info))
2060 return false;
2061
2062 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
2063 && ! vec_stmt)
2064 return false;
2065
2066 if (!STMT_VINFO_DATA_REF (stmt_info))
2067 return false;
2068
2069 elem_type = TREE_TYPE (vectype);
2070
2071 if (TREE_CODE (mask) != SSA_NAME)
2072 return false;
2073
2074 if (!vect_is_simple_use (mask, loop_vinfo, &def_stmt, &dt, &mask_vectype))
2075 return false;
2076
2077 if (!mask_vectype)
2078 mask_vectype = get_mask_type_for_scalar_type (TREE_TYPE (vectype));
2079
2080 if (!mask_vectype || !VECTOR_BOOLEAN_TYPE_P (mask_vectype)
2081 || TYPE_VECTOR_SUBPARTS (mask_vectype) != TYPE_VECTOR_SUBPARTS (vectype))
2082 return false;
2083
2084 if (gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
2085 {
2086 tree rhs = gimple_call_arg (stmt, 3);
2087 if (!vect_is_simple_use (rhs, loop_vinfo, &def_stmt, &dt, &rhs_vectype))
2088 return false;
2089 if (dt == vect_constant_def || dt == vect_external_def)
2090 vls_type = VLS_STORE_INVARIANT;
2091 else
2092 vls_type = VLS_STORE;
2093 }
2094 else
2095 vls_type = VLS_LOAD;
2096
2097 vect_memory_access_type memory_access_type;
2098 if (!get_load_store_type (stmt, vectype, false, vls_type, ncopies,
2099 &memory_access_type, &gs_info))
2100 return false;
2101
2102 if (memory_access_type == VMAT_GATHER_SCATTER)
2103 {
2104 tree arglist = TYPE_ARG_TYPES (TREE_TYPE (gs_info.decl));
2105 tree masktype
2106 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arglist))));
2107 if (TREE_CODE (masktype) == INTEGER_TYPE)
2108 {
2109 if (dump_enabled_p ())
2110 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2111 "masked gather with integer mask not supported.");
2112 return false;
2113 }
2114 }
2115 else if (memory_access_type != VMAT_CONTIGUOUS)
2116 {
2117 if (dump_enabled_p ())
2118 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2119 "unsupported access type for masked %s.\n",
2120 vls_type == VLS_LOAD ? "load" : "store");
2121 return false;
2122 }
2123 else if (!VECTOR_MODE_P (TYPE_MODE (vectype))
2124 || !can_vec_mask_load_store_p (TYPE_MODE (vectype),
2125 TYPE_MODE (mask_vectype),
2126 vls_type == VLS_LOAD)
2127 || (rhs_vectype
2128 && !useless_type_conversion_p (vectype, rhs_vectype)))
2129 return false;
2130
2131 if (!vec_stmt) /* transformation not required. */
2132 {
2133 STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info) = memory_access_type;
2134 STMT_VINFO_TYPE (stmt_info) = call_vec_info_type;
2135 if (vls_type == VLS_LOAD)
2136 vect_model_load_cost (stmt_info, ncopies, memory_access_type,
2137 NULL, NULL, NULL);
2138 else
2139 vect_model_store_cost (stmt_info, ncopies, memory_access_type,
2140 dt, NULL, NULL, NULL);
2141 return true;
2142 }
2143 gcc_assert (memory_access_type == STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info));
2144
2145 /* Transform. */
2146
2147 if (memory_access_type == VMAT_GATHER_SCATTER)
2148 {
2149 tree vec_oprnd0 = NULL_TREE, op;
2150 tree arglist = TYPE_ARG_TYPES (TREE_TYPE (gs_info.decl));
2151 tree rettype, srctype, ptrtype, idxtype, masktype, scaletype;
2152 tree ptr, vec_mask = NULL_TREE, mask_op = NULL_TREE, var, scale;
2153 tree perm_mask = NULL_TREE, prev_res = NULL_TREE;
2154 tree mask_perm_mask = NULL_TREE;
2155 edge pe = loop_preheader_edge (loop);
2156 gimple_seq seq;
2157 basic_block new_bb;
2158 enum { NARROW, NONE, WIDEN } modifier;
2159 int gather_off_nunits = TYPE_VECTOR_SUBPARTS (gs_info.offset_vectype);
2160
2161 rettype = TREE_TYPE (TREE_TYPE (gs_info.decl));
2162 srctype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
2163 ptrtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
2164 idxtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
2165 masktype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
2166 scaletype = TREE_VALUE (arglist);
2167 gcc_checking_assert (types_compatible_p (srctype, rettype)
2168 && types_compatible_p (srctype, masktype));
2169
2170 if (nunits == gather_off_nunits)
2171 modifier = NONE;
2172 else if (nunits == gather_off_nunits / 2)
2173 {
2174 unsigned char *sel = XALLOCAVEC (unsigned char, gather_off_nunits);
2175 modifier = WIDEN;
2176
2177 for (i = 0; i < gather_off_nunits; ++i)
2178 sel[i] = i | nunits;
2179
2180 perm_mask = vect_gen_perm_mask_checked (gs_info.offset_vectype, sel);
2181 }
2182 else if (nunits == gather_off_nunits * 2)
2183 {
2184 unsigned char *sel = XALLOCAVEC (unsigned char, nunits);
2185 modifier = NARROW;
2186
2187 for (i = 0; i < nunits; ++i)
2188 sel[i] = i < gather_off_nunits
2189 ? i : i + nunits - gather_off_nunits;
2190
2191 perm_mask = vect_gen_perm_mask_checked (vectype, sel);
2192 ncopies *= 2;
2193 for (i = 0; i < nunits; ++i)
2194 sel[i] = i | gather_off_nunits;
2195 mask_perm_mask = vect_gen_perm_mask_checked (masktype, sel);
2196 }
2197 else
2198 gcc_unreachable ();
2199
2200 vec_dest = vect_create_destination_var (gimple_call_lhs (stmt), vectype);
2201
2202 ptr = fold_convert (ptrtype, gs_info.base);
2203 if (!is_gimple_min_invariant (ptr))
2204 {
2205 ptr = force_gimple_operand (ptr, &seq, true, NULL_TREE);
2206 new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
2207 gcc_assert (!new_bb);
2208 }
2209
2210 scale = build_int_cst (scaletype, gs_info.scale);
2211
2212 prev_stmt_info = NULL;
2213 for (j = 0; j < ncopies; ++j)
2214 {
2215 if (modifier == WIDEN && (j & 1))
2216 op = permute_vec_elements (vec_oprnd0, vec_oprnd0,
2217 perm_mask, stmt, gsi);
2218 else if (j == 0)
2219 op = vec_oprnd0
2220 = vect_get_vec_def_for_operand (gs_info.offset, stmt);
2221 else
2222 op = vec_oprnd0
2223 = vect_get_vec_def_for_stmt_copy (gs_info.offset_dt, vec_oprnd0);
2224
2225 if (!useless_type_conversion_p (idxtype, TREE_TYPE (op)))
2226 {
2227 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (op))
2228 == TYPE_VECTOR_SUBPARTS (idxtype));
2229 var = vect_get_new_ssa_name (idxtype, vect_simple_var);
2230 op = build1 (VIEW_CONVERT_EXPR, idxtype, op);
2231 new_stmt
2232 = gimple_build_assign (var, VIEW_CONVERT_EXPR, op);
2233 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2234 op = var;
2235 }
2236
2237 if (mask_perm_mask && (j & 1))
2238 mask_op = permute_vec_elements (mask_op, mask_op,
2239 mask_perm_mask, stmt, gsi);
2240 else
2241 {
2242 if (j == 0)
2243 vec_mask = vect_get_vec_def_for_operand (mask, stmt);
2244 else
2245 {
2246 vect_is_simple_use (vec_mask, loop_vinfo, &def_stmt, &dt);
2247 vec_mask = vect_get_vec_def_for_stmt_copy (dt, vec_mask);
2248 }
2249
2250 mask_op = vec_mask;
2251 if (!useless_type_conversion_p (masktype, TREE_TYPE (vec_mask)))
2252 {
2253 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (mask_op))
2254 == TYPE_VECTOR_SUBPARTS (masktype));
2255 var = vect_get_new_ssa_name (masktype, vect_simple_var);
2256 mask_op = build1 (VIEW_CONVERT_EXPR, masktype, mask_op);
2257 new_stmt
2258 = gimple_build_assign (var, VIEW_CONVERT_EXPR, mask_op);
2259 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2260 mask_op = var;
2261 }
2262 }
2263
2264 new_stmt
2265 = gimple_build_call (gs_info.decl, 5, mask_op, ptr, op, mask_op,
2266 scale);
2267
2268 if (!useless_type_conversion_p (vectype, rettype))
2269 {
2270 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype)
2271 == TYPE_VECTOR_SUBPARTS (rettype));
2272 op = vect_get_new_ssa_name (rettype, vect_simple_var);
2273 gimple_call_set_lhs (new_stmt, op);
2274 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2275 var = make_ssa_name (vec_dest);
2276 op = build1 (VIEW_CONVERT_EXPR, vectype, op);
2277 new_stmt = gimple_build_assign (var, VIEW_CONVERT_EXPR, op);
2278 }
2279 else
2280 {
2281 var = make_ssa_name (vec_dest, new_stmt);
2282 gimple_call_set_lhs (new_stmt, var);
2283 }
2284
2285 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2286
2287 if (modifier == NARROW)
2288 {
2289 if ((j & 1) == 0)
2290 {
2291 prev_res = var;
2292 continue;
2293 }
2294 var = permute_vec_elements (prev_res, var,
2295 perm_mask, stmt, gsi);
2296 new_stmt = SSA_NAME_DEF_STMT (var);
2297 }
2298
2299 if (prev_stmt_info == NULL)
2300 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
2301 else
2302 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2303 prev_stmt_info = vinfo_for_stmt (new_stmt);
2304 }
2305
2306 /* Ensure that even with -fno-tree-dce the scalar MASK_LOAD is removed
2307 from the IL. */
2308 if (STMT_VINFO_RELATED_STMT (stmt_info))
2309 {
2310 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
2311 stmt_info = vinfo_for_stmt (stmt);
2312 }
2313 tree lhs = gimple_call_lhs (stmt);
2314 new_stmt = gimple_build_assign (lhs, build_zero_cst (TREE_TYPE (lhs)));
2315 set_vinfo_for_stmt (new_stmt, stmt_info);
2316 set_vinfo_for_stmt (stmt, NULL);
2317 STMT_VINFO_STMT (stmt_info) = new_stmt;
2318 gsi_replace (gsi, new_stmt, true);
2319 return true;
2320 }
2321 else if (vls_type != VLS_LOAD)
2322 {
2323 tree vec_rhs = NULL_TREE, vec_mask = NULL_TREE;
2324 prev_stmt_info = NULL;
2325 LOOP_VINFO_HAS_MASK_STORE (loop_vinfo) = true;
2326 for (i = 0; i < ncopies; i++)
2327 {
2328 unsigned align, misalign;
2329
2330 if (i == 0)
2331 {
2332 tree rhs = gimple_call_arg (stmt, 3);
2333 vec_rhs = vect_get_vec_def_for_operand (rhs, stmt);
2334 vec_mask = vect_get_vec_def_for_operand (mask, stmt);
2335 /* We should have catched mismatched types earlier. */
2336 gcc_assert (useless_type_conversion_p (vectype,
2337 TREE_TYPE (vec_rhs)));
2338 dataref_ptr = vect_create_data_ref_ptr (stmt, vectype, NULL,
2339 NULL_TREE, &dummy, gsi,
2340 &ptr_incr, false, &inv_p);
2341 gcc_assert (!inv_p);
2342 }
2343 else
2344 {
2345 vect_is_simple_use (vec_rhs, loop_vinfo, &def_stmt, &dt);
2346 vec_rhs = vect_get_vec_def_for_stmt_copy (dt, vec_rhs);
2347 vect_is_simple_use (vec_mask, loop_vinfo, &def_stmt, &dt);
2348 vec_mask = vect_get_vec_def_for_stmt_copy (dt, vec_mask);
2349 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
2350 TYPE_SIZE_UNIT (vectype));
2351 }
2352
2353 align = TYPE_ALIGN_UNIT (vectype);
2354 if (aligned_access_p (dr))
2355 misalign = 0;
2356 else if (DR_MISALIGNMENT (dr) == -1)
2357 {
2358 align = TYPE_ALIGN_UNIT (elem_type);
2359 misalign = 0;
2360 }
2361 else
2362 misalign = DR_MISALIGNMENT (dr);
2363 set_ptr_info_alignment (get_ptr_info (dataref_ptr), align,
2364 misalign);
2365 tree ptr = build_int_cst (TREE_TYPE (gimple_call_arg (stmt, 1)),
2366 misalign ? least_bit_hwi (misalign) : align);
2367 gcall *call
2368 = gimple_build_call_internal (IFN_MASK_STORE, 4, dataref_ptr,
2369 ptr, vec_mask, vec_rhs);
2370 gimple_call_set_nothrow (call, true);
2371 new_stmt = call;
2372 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2373 if (i == 0)
2374 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
2375 else
2376 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2377 prev_stmt_info = vinfo_for_stmt (new_stmt);
2378 }
2379 }
2380 else
2381 {
2382 tree vec_mask = NULL_TREE;
2383 prev_stmt_info = NULL;
2384 vec_dest = vect_create_destination_var (gimple_call_lhs (stmt), vectype);
2385 for (i = 0; i < ncopies; i++)
2386 {
2387 unsigned align, misalign;
2388
2389 if (i == 0)
2390 {
2391 vec_mask = vect_get_vec_def_for_operand (mask, stmt);
2392 dataref_ptr = vect_create_data_ref_ptr (stmt, vectype, NULL,
2393 NULL_TREE, &dummy, gsi,
2394 &ptr_incr, false, &inv_p);
2395 gcc_assert (!inv_p);
2396 }
2397 else
2398 {
2399 vect_is_simple_use (vec_mask, loop_vinfo, &def_stmt, &dt);
2400 vec_mask = vect_get_vec_def_for_stmt_copy (dt, vec_mask);
2401 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
2402 TYPE_SIZE_UNIT (vectype));
2403 }
2404
2405 align = TYPE_ALIGN_UNIT (vectype);
2406 if (aligned_access_p (dr))
2407 misalign = 0;
2408 else if (DR_MISALIGNMENT (dr) == -1)
2409 {
2410 align = TYPE_ALIGN_UNIT (elem_type);
2411 misalign = 0;
2412 }
2413 else
2414 misalign = DR_MISALIGNMENT (dr);
2415 set_ptr_info_alignment (get_ptr_info (dataref_ptr), align,
2416 misalign);
2417 tree ptr = build_int_cst (TREE_TYPE (gimple_call_arg (stmt, 1)),
2418 misalign ? least_bit_hwi (misalign) : align);
2419 gcall *call
2420 = gimple_build_call_internal (IFN_MASK_LOAD, 3, dataref_ptr,
2421 ptr, vec_mask);
2422 gimple_call_set_lhs (call, make_ssa_name (vec_dest));
2423 gimple_call_set_nothrow (call, true);
2424 vect_finish_stmt_generation (stmt, call, gsi);
2425 if (i == 0)
2426 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = call;
2427 else
2428 STMT_VINFO_RELATED_STMT (prev_stmt_info) = call;
2429 prev_stmt_info = vinfo_for_stmt (call);
2430 }
2431 }
2432
2433 if (vls_type == VLS_LOAD)
2434 {
2435 /* Ensure that even with -fno-tree-dce the scalar MASK_LOAD is removed
2436 from the IL. */
2437 if (STMT_VINFO_RELATED_STMT (stmt_info))
2438 {
2439 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
2440 stmt_info = vinfo_for_stmt (stmt);
2441 }
2442 tree lhs = gimple_call_lhs (stmt);
2443 new_stmt = gimple_build_assign (lhs, build_zero_cst (TREE_TYPE (lhs)));
2444 set_vinfo_for_stmt (new_stmt, stmt_info);
2445 set_vinfo_for_stmt (stmt, NULL);
2446 STMT_VINFO_STMT (stmt_info) = new_stmt;
2447 gsi_replace (gsi, new_stmt, true);
2448 }
2449
2450 return true;
2451 }
2452
2453 /* Check and perform vectorization of BUILT_IN_BSWAP{16,32,64}. */
2454
2455 static bool
2456 vectorizable_bswap (gimple *stmt, gimple_stmt_iterator *gsi,
2457 gimple **vec_stmt, slp_tree slp_node,
2458 tree vectype_in, enum vect_def_type *dt)
2459 {
2460 tree op, vectype;
2461 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2462 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2463 unsigned ncopies, nunits;
2464
2465 op = gimple_call_arg (stmt, 0);
2466 vectype = STMT_VINFO_VECTYPE (stmt_info);
2467 nunits = TYPE_VECTOR_SUBPARTS (vectype);
2468
2469 /* Multiple types in SLP are handled by creating the appropriate number of
2470 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
2471 case of SLP. */
2472 if (slp_node)
2473 ncopies = 1;
2474 else
2475 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
2476
2477 gcc_assert (ncopies >= 1);
2478
2479 tree char_vectype = get_same_sized_vectype (char_type_node, vectype_in);
2480 if (! char_vectype)
2481 return false;
2482
2483 unsigned char *elts
2484 = XALLOCAVEC (unsigned char, TYPE_VECTOR_SUBPARTS (char_vectype));
2485 unsigned char *elt = elts;
2486 unsigned word_bytes = TYPE_VECTOR_SUBPARTS (char_vectype) / nunits;
2487 for (unsigned i = 0; i < nunits; ++i)
2488 for (unsigned j = 0; j < word_bytes; ++j)
2489 *elt++ = (i + 1) * word_bytes - j - 1;
2490
2491 if (! can_vec_perm_p (TYPE_MODE (char_vectype), false, elts))
2492 return false;
2493
2494 if (! vec_stmt)
2495 {
2496 STMT_VINFO_TYPE (stmt_info) = call_vec_info_type;
2497 if (dump_enabled_p ())
2498 dump_printf_loc (MSG_NOTE, vect_location, "=== vectorizable_bswap ==="
2499 "\n");
2500 if (! PURE_SLP_STMT (stmt_info))
2501 {
2502 add_stmt_cost (stmt_info->vinfo->target_cost_data,
2503 1, vector_stmt, stmt_info, 0, vect_prologue);
2504 add_stmt_cost (stmt_info->vinfo->target_cost_data,
2505 ncopies, vec_perm, stmt_info, 0, vect_body);
2506 }
2507 return true;
2508 }
2509
2510 tree *telts = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (char_vectype));
2511 for (unsigned i = 0; i < TYPE_VECTOR_SUBPARTS (char_vectype); ++i)
2512 telts[i] = build_int_cst (char_type_node, elts[i]);
2513 tree bswap_vconst = build_vector (char_vectype, telts);
2514
2515 /* Transform. */
2516 vec<tree> vec_oprnds = vNULL;
2517 gimple *new_stmt = NULL;
2518 stmt_vec_info prev_stmt_info = NULL;
2519 for (unsigned j = 0; j < ncopies; j++)
2520 {
2521 /* Handle uses. */
2522 if (j == 0)
2523 vect_get_vec_defs (op, NULL, stmt, &vec_oprnds, NULL, slp_node);
2524 else
2525 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds, NULL);
2526
2527 /* Arguments are ready. create the new vector stmt. */
2528 unsigned i;
2529 tree vop;
2530 FOR_EACH_VEC_ELT (vec_oprnds, i, vop)
2531 {
2532 tree tem = make_ssa_name (char_vectype);
2533 new_stmt = gimple_build_assign (tem, build1 (VIEW_CONVERT_EXPR,
2534 char_vectype, vop));
2535 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2536 tree tem2 = make_ssa_name (char_vectype);
2537 new_stmt = gimple_build_assign (tem2, VEC_PERM_EXPR,
2538 tem, tem, bswap_vconst);
2539 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2540 tem = make_ssa_name (vectype);
2541 new_stmt = gimple_build_assign (tem, build1 (VIEW_CONVERT_EXPR,
2542 vectype, tem2));
2543 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2544 if (slp_node)
2545 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
2546 }
2547
2548 if (slp_node)
2549 continue;
2550
2551 if (j == 0)
2552 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
2553 else
2554 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2555
2556 prev_stmt_info = vinfo_for_stmt (new_stmt);
2557 }
2558
2559 vec_oprnds.release ();
2560 return true;
2561 }
2562
2563 /* Return true if vector types VECTYPE_IN and VECTYPE_OUT have
2564 integer elements and if we can narrow VECTYPE_IN to VECTYPE_OUT
2565 in a single step. On success, store the binary pack code in
2566 *CONVERT_CODE. */
2567
2568 static bool
2569 simple_integer_narrowing (tree vectype_out, tree vectype_in,
2570 tree_code *convert_code)
2571 {
2572 if (!INTEGRAL_TYPE_P (TREE_TYPE (vectype_out))
2573 || !INTEGRAL_TYPE_P (TREE_TYPE (vectype_in)))
2574 return false;
2575
2576 tree_code code;
2577 int multi_step_cvt = 0;
2578 auto_vec <tree, 8> interm_types;
2579 if (!supportable_narrowing_operation (NOP_EXPR, vectype_out, vectype_in,
2580 &code, &multi_step_cvt,
2581 &interm_types)
2582 || multi_step_cvt)
2583 return false;
2584
2585 *convert_code = code;
2586 return true;
2587 }
2588
2589 /* Function vectorizable_call.
2590
2591 Check if GS performs a function call that can be vectorized.
2592 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
2593 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
2594 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
2595
2596 static bool
2597 vectorizable_call (gimple *gs, gimple_stmt_iterator *gsi, gimple **vec_stmt,
2598 slp_tree slp_node)
2599 {
2600 gcall *stmt;
2601 tree vec_dest;
2602 tree scalar_dest;
2603 tree op, type;
2604 tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
2605 stmt_vec_info stmt_info = vinfo_for_stmt (gs), prev_stmt_info;
2606 tree vectype_out, vectype_in;
2607 int nunits_in;
2608 int nunits_out;
2609 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2610 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2611 vec_info *vinfo = stmt_info->vinfo;
2612 tree fndecl, new_temp, rhs_type;
2613 gimple *def_stmt;
2614 enum vect_def_type dt[3]
2615 = {vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type};
2616 int ndts = 3;
2617 gimple *new_stmt = NULL;
2618 int ncopies, j;
2619 vec<tree> vargs = vNULL;
2620 enum { NARROW, NONE, WIDEN } modifier;
2621 size_t i, nargs;
2622 tree lhs;
2623
2624 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
2625 return false;
2626
2627 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
2628 && ! vec_stmt)
2629 return false;
2630
2631 /* Is GS a vectorizable call? */
2632 stmt = dyn_cast <gcall *> (gs);
2633 if (!stmt)
2634 return false;
2635
2636 if (gimple_call_internal_p (stmt)
2637 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
2638 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE))
2639 return vectorizable_mask_load_store (stmt, gsi, vec_stmt,
2640 slp_node);
2641
2642 if (gimple_call_lhs (stmt) == NULL_TREE
2643 || TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME)
2644 return false;
2645
2646 gcc_checking_assert (!stmt_can_throw_internal (stmt));
2647
2648 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
2649
2650 /* Process function arguments. */
2651 rhs_type = NULL_TREE;
2652 vectype_in = NULL_TREE;
2653 nargs = gimple_call_num_args (stmt);
2654
2655 /* Bail out if the function has more than three arguments, we do not have
2656 interesting builtin functions to vectorize with more than two arguments
2657 except for fma. No arguments is also not good. */
2658 if (nargs == 0 || nargs > 3)
2659 return false;
2660
2661 /* Ignore the argument of IFN_GOMP_SIMD_LANE, it is magic. */
2662 if (gimple_call_internal_p (stmt)
2663 && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE)
2664 {
2665 nargs = 0;
2666 rhs_type = unsigned_type_node;
2667 }
2668
2669 for (i = 0; i < nargs; i++)
2670 {
2671 tree opvectype;
2672
2673 op = gimple_call_arg (stmt, i);
2674
2675 /* We can only handle calls with arguments of the same type. */
2676 if (rhs_type
2677 && !types_compatible_p (rhs_type, TREE_TYPE (op)))
2678 {
2679 if (dump_enabled_p ())
2680 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2681 "argument types differ.\n");
2682 return false;
2683 }
2684 if (!rhs_type)
2685 rhs_type = TREE_TYPE (op);
2686
2687 if (!vect_is_simple_use (op, vinfo, &def_stmt, &dt[i], &opvectype))
2688 {
2689 if (dump_enabled_p ())
2690 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2691 "use not simple.\n");
2692 return false;
2693 }
2694
2695 if (!vectype_in)
2696 vectype_in = opvectype;
2697 else if (opvectype
2698 && opvectype != vectype_in)
2699 {
2700 if (dump_enabled_p ())
2701 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2702 "argument vector types differ.\n");
2703 return false;
2704 }
2705 }
2706 /* If all arguments are external or constant defs use a vector type with
2707 the same size as the output vector type. */
2708 if (!vectype_in)
2709 vectype_in = get_same_sized_vectype (rhs_type, vectype_out);
2710 if (vec_stmt)
2711 gcc_assert (vectype_in);
2712 if (!vectype_in)
2713 {
2714 if (dump_enabled_p ())
2715 {
2716 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2717 "no vectype for scalar type ");
2718 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, rhs_type);
2719 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2720 }
2721
2722 return false;
2723 }
2724
2725 /* FORNOW */
2726 nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
2727 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
2728 if (nunits_in == nunits_out / 2)
2729 modifier = NARROW;
2730 else if (nunits_out == nunits_in)
2731 modifier = NONE;
2732 else if (nunits_out == nunits_in / 2)
2733 modifier = WIDEN;
2734 else
2735 return false;
2736
2737 /* We only handle functions that do not read or clobber memory. */
2738 if (gimple_vuse (stmt))
2739 {
2740 if (dump_enabled_p ())
2741 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2742 "function reads from or writes to memory.\n");
2743 return false;
2744 }
2745
2746 /* For now, we only vectorize functions if a target specific builtin
2747 is available. TODO -- in some cases, it might be profitable to
2748 insert the calls for pieces of the vector, in order to be able
2749 to vectorize other operations in the loop. */
2750 fndecl = NULL_TREE;
2751 internal_fn ifn = IFN_LAST;
2752 combined_fn cfn = gimple_call_combined_fn (stmt);
2753 tree callee = gimple_call_fndecl (stmt);
2754
2755 /* First try using an internal function. */
2756 tree_code convert_code = ERROR_MARK;
2757 if (cfn != CFN_LAST
2758 && (modifier == NONE
2759 || (modifier == NARROW
2760 && simple_integer_narrowing (vectype_out, vectype_in,
2761 &convert_code))))
2762 ifn = vectorizable_internal_function (cfn, callee, vectype_out,
2763 vectype_in);
2764
2765 /* If that fails, try asking for a target-specific built-in function. */
2766 if (ifn == IFN_LAST)
2767 {
2768 if (cfn != CFN_LAST)
2769 fndecl = targetm.vectorize.builtin_vectorized_function
2770 (cfn, vectype_out, vectype_in);
2771 else
2772 fndecl = targetm.vectorize.builtin_md_vectorized_function
2773 (callee, vectype_out, vectype_in);
2774 }
2775
2776 if (ifn == IFN_LAST && !fndecl)
2777 {
2778 if (cfn == CFN_GOMP_SIMD_LANE
2779 && !slp_node
2780 && loop_vinfo
2781 && LOOP_VINFO_LOOP (loop_vinfo)->simduid
2782 && TREE_CODE (gimple_call_arg (stmt, 0)) == SSA_NAME
2783 && LOOP_VINFO_LOOP (loop_vinfo)->simduid
2784 == SSA_NAME_VAR (gimple_call_arg (stmt, 0)))
2785 {
2786 /* We can handle IFN_GOMP_SIMD_LANE by returning a
2787 { 0, 1, 2, ... vf - 1 } vector. */
2788 gcc_assert (nargs == 0);
2789 }
2790 else if (modifier == NONE
2791 && (gimple_call_builtin_p (stmt, BUILT_IN_BSWAP16)
2792 || gimple_call_builtin_p (stmt, BUILT_IN_BSWAP32)
2793 || gimple_call_builtin_p (stmt, BUILT_IN_BSWAP64)))
2794 return vectorizable_bswap (stmt, gsi, vec_stmt, slp_node,
2795 vectype_in, dt);
2796 else
2797 {
2798 if (dump_enabled_p ())
2799 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2800 "function is not vectorizable.\n");
2801 return false;
2802 }
2803 }
2804
2805 if (slp_node)
2806 ncopies = 1;
2807 else if (modifier == NARROW && ifn == IFN_LAST)
2808 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
2809 else
2810 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
2811
2812 /* Sanity check: make sure that at least one copy of the vectorized stmt
2813 needs to be generated. */
2814 gcc_assert (ncopies >= 1);
2815
2816 if (!vec_stmt) /* transformation not required. */
2817 {
2818 STMT_VINFO_TYPE (stmt_info) = call_vec_info_type;
2819 if (dump_enabled_p ())
2820 dump_printf_loc (MSG_NOTE, vect_location, "=== vectorizable_call ==="
2821 "\n");
2822 vect_model_simple_cost (stmt_info, ncopies, dt, ndts, NULL, NULL);
2823 if (ifn != IFN_LAST && modifier == NARROW && !slp_node)
2824 add_stmt_cost (stmt_info->vinfo->target_cost_data, ncopies / 2,
2825 vec_promote_demote, stmt_info, 0, vect_body);
2826
2827 return true;
2828 }
2829
2830 /* Transform. */
2831
2832 if (dump_enabled_p ())
2833 dump_printf_loc (MSG_NOTE, vect_location, "transform call.\n");
2834
2835 /* Handle def. */
2836 scalar_dest = gimple_call_lhs (stmt);
2837 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
2838
2839 prev_stmt_info = NULL;
2840 if (modifier == NONE || ifn != IFN_LAST)
2841 {
2842 tree prev_res = NULL_TREE;
2843 for (j = 0; j < ncopies; ++j)
2844 {
2845 /* Build argument list for the vectorized call. */
2846 if (j == 0)
2847 vargs.create (nargs);
2848 else
2849 vargs.truncate (0);
2850
2851 if (slp_node)
2852 {
2853 auto_vec<vec<tree> > vec_defs (nargs);
2854 vec<tree> vec_oprnds0;
2855
2856 for (i = 0; i < nargs; i++)
2857 vargs.quick_push (gimple_call_arg (stmt, i));
2858 vect_get_slp_defs (vargs, slp_node, &vec_defs);
2859 vec_oprnds0 = vec_defs[0];
2860
2861 /* Arguments are ready. Create the new vector stmt. */
2862 FOR_EACH_VEC_ELT (vec_oprnds0, i, vec_oprnd0)
2863 {
2864 size_t k;
2865 for (k = 0; k < nargs; k++)
2866 {
2867 vec<tree> vec_oprndsk = vec_defs[k];
2868 vargs[k] = vec_oprndsk[i];
2869 }
2870 if (modifier == NARROW)
2871 {
2872 tree half_res = make_ssa_name (vectype_in);
2873 gcall *call
2874 = gimple_build_call_internal_vec (ifn, vargs);
2875 gimple_call_set_lhs (call, half_res);
2876 gimple_call_set_nothrow (call, true);
2877 new_stmt = call;
2878 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2879 if ((i & 1) == 0)
2880 {
2881 prev_res = half_res;
2882 continue;
2883 }
2884 new_temp = make_ssa_name (vec_dest);
2885 new_stmt = gimple_build_assign (new_temp, convert_code,
2886 prev_res, half_res);
2887 }
2888 else
2889 {
2890 gcall *call;
2891 if (ifn != IFN_LAST)
2892 call = gimple_build_call_internal_vec (ifn, vargs);
2893 else
2894 call = gimple_build_call_vec (fndecl, vargs);
2895 new_temp = make_ssa_name (vec_dest, call);
2896 gimple_call_set_lhs (call, new_temp);
2897 gimple_call_set_nothrow (call, true);
2898 new_stmt = call;
2899 }
2900 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2901 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
2902 }
2903
2904 for (i = 0; i < nargs; i++)
2905 {
2906 vec<tree> vec_oprndsi = vec_defs[i];
2907 vec_oprndsi.release ();
2908 }
2909 continue;
2910 }
2911
2912 for (i = 0; i < nargs; i++)
2913 {
2914 op = gimple_call_arg (stmt, i);
2915 if (j == 0)
2916 vec_oprnd0
2917 = vect_get_vec_def_for_operand (op, stmt);
2918 else
2919 {
2920 vec_oprnd0 = gimple_call_arg (new_stmt, i);
2921 vec_oprnd0
2922 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
2923 }
2924
2925 vargs.quick_push (vec_oprnd0);
2926 }
2927
2928 if (gimple_call_internal_p (stmt)
2929 && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE)
2930 {
2931 tree *v = XALLOCAVEC (tree, nunits_out);
2932 int k;
2933 for (k = 0; k < nunits_out; ++k)
2934 v[k] = build_int_cst (unsigned_type_node, j * nunits_out + k);
2935 tree cst = build_vector (vectype_out, v);
2936 tree new_var
2937 = vect_get_new_ssa_name (vectype_out, vect_simple_var, "cst_");
2938 gimple *init_stmt = gimple_build_assign (new_var, cst);
2939 vect_init_vector_1 (stmt, init_stmt, NULL);
2940 new_temp = make_ssa_name (vec_dest);
2941 new_stmt = gimple_build_assign (new_temp, new_var);
2942 }
2943 else if (modifier == NARROW)
2944 {
2945 tree half_res = make_ssa_name (vectype_in);
2946 gcall *call = gimple_build_call_internal_vec (ifn, vargs);
2947 gimple_call_set_lhs (call, half_res);
2948 gimple_call_set_nothrow (call, true);
2949 new_stmt = call;
2950 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2951 if ((j & 1) == 0)
2952 {
2953 prev_res = half_res;
2954 continue;
2955 }
2956 new_temp = make_ssa_name (vec_dest);
2957 new_stmt = gimple_build_assign (new_temp, convert_code,
2958 prev_res, half_res);
2959 }
2960 else
2961 {
2962 gcall *call;
2963 if (ifn != IFN_LAST)
2964 call = gimple_build_call_internal_vec (ifn, vargs);
2965 else
2966 call = gimple_build_call_vec (fndecl, vargs);
2967 new_temp = make_ssa_name (vec_dest, new_stmt);
2968 gimple_call_set_lhs (call, new_temp);
2969 gimple_call_set_nothrow (call, true);
2970 new_stmt = call;
2971 }
2972 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2973
2974 if (j == (modifier == NARROW ? 1 : 0))
2975 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
2976 else
2977 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2978
2979 prev_stmt_info = vinfo_for_stmt (new_stmt);
2980 }
2981 }
2982 else if (modifier == NARROW)
2983 {
2984 for (j = 0; j < ncopies; ++j)
2985 {
2986 /* Build argument list for the vectorized call. */
2987 if (j == 0)
2988 vargs.create (nargs * 2);
2989 else
2990 vargs.truncate (0);
2991
2992 if (slp_node)
2993 {
2994 auto_vec<vec<tree> > vec_defs (nargs);
2995 vec<tree> vec_oprnds0;
2996
2997 for (i = 0; i < nargs; i++)
2998 vargs.quick_push (gimple_call_arg (stmt, i));
2999 vect_get_slp_defs (vargs, slp_node, &vec_defs);
3000 vec_oprnds0 = vec_defs[0];
3001
3002 /* Arguments are ready. Create the new vector stmt. */
3003 for (i = 0; vec_oprnds0.iterate (i, &vec_oprnd0); i += 2)
3004 {
3005 size_t k;
3006 vargs.truncate (0);
3007 for (k = 0; k < nargs; k++)
3008 {
3009 vec<tree> vec_oprndsk = vec_defs[k];
3010 vargs.quick_push (vec_oprndsk[i]);
3011 vargs.quick_push (vec_oprndsk[i + 1]);
3012 }
3013 gcall *call;
3014 if (ifn != IFN_LAST)
3015 call = gimple_build_call_internal_vec (ifn, vargs);
3016 else
3017 call = gimple_build_call_vec (fndecl, vargs);
3018 new_temp = make_ssa_name (vec_dest, call);
3019 gimple_call_set_lhs (call, new_temp);
3020 gimple_call_set_nothrow (call, true);
3021 new_stmt = call;
3022 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3023 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
3024 }
3025
3026 for (i = 0; i < nargs; i++)
3027 {
3028 vec<tree> vec_oprndsi = vec_defs[i];
3029 vec_oprndsi.release ();
3030 }
3031 continue;
3032 }
3033
3034 for (i = 0; i < nargs; i++)
3035 {
3036 op = gimple_call_arg (stmt, i);
3037 if (j == 0)
3038 {
3039 vec_oprnd0
3040 = vect_get_vec_def_for_operand (op, stmt);
3041 vec_oprnd1
3042 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
3043 }
3044 else
3045 {
3046 vec_oprnd1 = gimple_call_arg (new_stmt, 2*i + 1);
3047 vec_oprnd0
3048 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd1);
3049 vec_oprnd1
3050 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
3051 }
3052
3053 vargs.quick_push (vec_oprnd0);
3054 vargs.quick_push (vec_oprnd1);
3055 }
3056
3057 new_stmt = gimple_build_call_vec (fndecl, vargs);
3058 new_temp = make_ssa_name (vec_dest, new_stmt);
3059 gimple_call_set_lhs (new_stmt, new_temp);
3060 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3061
3062 if (j == 0)
3063 STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
3064 else
3065 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3066
3067 prev_stmt_info = vinfo_for_stmt (new_stmt);
3068 }
3069
3070 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
3071 }
3072 else
3073 /* No current target implements this case. */
3074 return false;
3075
3076 vargs.release ();
3077
3078 /* The call in STMT might prevent it from being removed in dce.
3079 We however cannot remove it here, due to the way the ssa name
3080 it defines is mapped to the new definition. So just replace
3081 rhs of the statement with something harmless. */
3082
3083 if (slp_node)
3084 return true;
3085
3086 type = TREE_TYPE (scalar_dest);
3087 if (is_pattern_stmt_p (stmt_info))
3088 lhs = gimple_call_lhs (STMT_VINFO_RELATED_STMT (stmt_info));
3089 else
3090 lhs = gimple_call_lhs (stmt);
3091
3092 new_stmt = gimple_build_assign (lhs, build_zero_cst (type));
3093 set_vinfo_for_stmt (new_stmt, stmt_info);
3094 set_vinfo_for_stmt (stmt, NULL);
3095 STMT_VINFO_STMT (stmt_info) = new_stmt;
3096 gsi_replace (gsi, new_stmt, false);
3097
3098 return true;
3099 }
3100
3101
3102 struct simd_call_arg_info
3103 {
3104 tree vectype;
3105 tree op;
3106 HOST_WIDE_INT linear_step;
3107 enum vect_def_type dt;
3108 unsigned int align;
3109 bool simd_lane_linear;
3110 };
3111
3112 /* Helper function of vectorizable_simd_clone_call. If OP, an SSA_NAME,
3113 is linear within simd lane (but not within whole loop), note it in
3114 *ARGINFO. */
3115
3116 static void
3117 vect_simd_lane_linear (tree op, struct loop *loop,
3118 struct simd_call_arg_info *arginfo)
3119 {
3120 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
3121
3122 if (!is_gimple_assign (def_stmt)
3123 || gimple_assign_rhs_code (def_stmt) != POINTER_PLUS_EXPR
3124 || !is_gimple_min_invariant (gimple_assign_rhs1 (def_stmt)))
3125 return;
3126
3127 tree base = gimple_assign_rhs1 (def_stmt);
3128 HOST_WIDE_INT linear_step = 0;
3129 tree v = gimple_assign_rhs2 (def_stmt);
3130 while (TREE_CODE (v) == SSA_NAME)
3131 {
3132 tree t;
3133 def_stmt = SSA_NAME_DEF_STMT (v);
3134 if (is_gimple_assign (def_stmt))
3135 switch (gimple_assign_rhs_code (def_stmt))
3136 {
3137 case PLUS_EXPR:
3138 t = gimple_assign_rhs2 (def_stmt);
3139 if (linear_step || TREE_CODE (t) != INTEGER_CST)
3140 return;
3141 base = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (base), base, t);
3142 v = gimple_assign_rhs1 (def_stmt);
3143 continue;
3144 case MULT_EXPR:
3145 t = gimple_assign_rhs2 (def_stmt);
3146 if (linear_step || !tree_fits_shwi_p (t) || integer_zerop (t))
3147 return;
3148 linear_step = tree_to_shwi (t);
3149 v = gimple_assign_rhs1 (def_stmt);
3150 continue;
3151 CASE_CONVERT:
3152 t = gimple_assign_rhs1 (def_stmt);
3153 if (TREE_CODE (TREE_TYPE (t)) != INTEGER_TYPE
3154 || (TYPE_PRECISION (TREE_TYPE (v))
3155 < TYPE_PRECISION (TREE_TYPE (t))))
3156 return;
3157 if (!linear_step)
3158 linear_step = 1;
3159 v = t;
3160 continue;
3161 default:
3162 return;
3163 }
3164 else if (gimple_call_internal_p (def_stmt, IFN_GOMP_SIMD_LANE)
3165 && loop->simduid
3166 && TREE_CODE (gimple_call_arg (def_stmt, 0)) == SSA_NAME
3167 && (SSA_NAME_VAR (gimple_call_arg (def_stmt, 0))
3168 == loop->simduid))
3169 {
3170 if (!linear_step)
3171 linear_step = 1;
3172 arginfo->linear_step = linear_step;
3173 arginfo->op = base;
3174 arginfo->simd_lane_linear = true;
3175 return;
3176 }
3177 }
3178 }
3179
3180 /* Function vectorizable_simd_clone_call.
3181
3182 Check if STMT performs a function call that can be vectorized
3183 by calling a simd clone of the function.
3184 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
3185 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
3186 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
3187
3188 static bool
3189 vectorizable_simd_clone_call (gimple *stmt, gimple_stmt_iterator *gsi,
3190 gimple **vec_stmt, slp_tree slp_node)
3191 {
3192 tree vec_dest;
3193 tree scalar_dest;
3194 tree op, type;
3195 tree vec_oprnd0 = NULL_TREE;
3196 stmt_vec_info stmt_info = vinfo_for_stmt (stmt), prev_stmt_info;
3197 tree vectype;
3198 unsigned int nunits;
3199 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3200 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
3201 vec_info *vinfo = stmt_info->vinfo;
3202 struct loop *loop = loop_vinfo ? LOOP_VINFO_LOOP (loop_vinfo) : NULL;
3203 tree fndecl, new_temp;
3204 gimple *def_stmt;
3205 gimple *new_stmt = NULL;
3206 int ncopies, j;
3207 auto_vec<simd_call_arg_info> arginfo;
3208 vec<tree> vargs = vNULL;
3209 size_t i, nargs;
3210 tree lhs, rtype, ratype;
3211 vec<constructor_elt, va_gc> *ret_ctor_elts;
3212
3213 /* Is STMT a vectorizable call? */
3214 if (!is_gimple_call (stmt))
3215 return false;
3216
3217 fndecl = gimple_call_fndecl (stmt);
3218 if (fndecl == NULL_TREE)
3219 return false;
3220
3221 struct cgraph_node *node = cgraph_node::get (fndecl);
3222 if (node == NULL || node->simd_clones == NULL)
3223 return false;
3224
3225 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
3226 return false;
3227
3228 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
3229 && ! vec_stmt)
3230 return false;
3231
3232 if (gimple_call_lhs (stmt)
3233 && TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME)
3234 return false;
3235
3236 gcc_checking_assert (!stmt_can_throw_internal (stmt));
3237
3238 vectype = STMT_VINFO_VECTYPE (stmt_info);
3239
3240 if (loop_vinfo && nested_in_vect_loop_p (loop, stmt))
3241 return false;
3242
3243 /* FORNOW */
3244 if (slp_node)
3245 return false;
3246
3247 /* Process function arguments. */
3248 nargs = gimple_call_num_args (stmt);
3249
3250 /* Bail out if the function has zero arguments. */
3251 if (nargs == 0)
3252 return false;
3253
3254 arginfo.reserve (nargs, true);
3255
3256 for (i = 0; i < nargs; i++)
3257 {
3258 simd_call_arg_info thisarginfo;
3259 affine_iv iv;
3260
3261 thisarginfo.linear_step = 0;
3262 thisarginfo.align = 0;
3263 thisarginfo.op = NULL_TREE;
3264 thisarginfo.simd_lane_linear = false;
3265
3266 op = gimple_call_arg (stmt, i);
3267 if (!vect_is_simple_use (op, vinfo, &def_stmt, &thisarginfo.dt,
3268 &thisarginfo.vectype)
3269 || thisarginfo.dt == vect_uninitialized_def)
3270 {
3271 if (dump_enabled_p ())
3272 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3273 "use not simple.\n");
3274 return false;
3275 }
3276
3277 if (thisarginfo.dt == vect_constant_def
3278 || thisarginfo.dt == vect_external_def)
3279 gcc_assert (thisarginfo.vectype == NULL_TREE);
3280 else
3281 gcc_assert (thisarginfo.vectype != NULL_TREE);
3282
3283 /* For linear arguments, the analyze phase should have saved
3284 the base and step in STMT_VINFO_SIMD_CLONE_INFO. */
3285 if (i * 3 + 4 <= STMT_VINFO_SIMD_CLONE_INFO (stmt_info).length ()
3286 && STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[i * 3 + 2])
3287 {
3288 gcc_assert (vec_stmt);
3289 thisarginfo.linear_step
3290 = tree_to_shwi (STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[i * 3 + 2]);
3291 thisarginfo.op
3292 = STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[i * 3 + 1];
3293 thisarginfo.simd_lane_linear
3294 = (STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[i * 3 + 3]
3295 == boolean_true_node);
3296 /* If loop has been peeled for alignment, we need to adjust it. */
3297 tree n1 = LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo);
3298 tree n2 = LOOP_VINFO_NITERS (loop_vinfo);
3299 if (n1 != n2 && !thisarginfo.simd_lane_linear)
3300 {
3301 tree bias = fold_build2 (MINUS_EXPR, TREE_TYPE (n1), n1, n2);
3302 tree step = STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[i * 3 + 2];
3303 tree opt = TREE_TYPE (thisarginfo.op);
3304 bias = fold_convert (TREE_TYPE (step), bias);
3305 bias = fold_build2 (MULT_EXPR, TREE_TYPE (step), bias, step);
3306 thisarginfo.op
3307 = fold_build2 (POINTER_TYPE_P (opt)
3308 ? POINTER_PLUS_EXPR : PLUS_EXPR, opt,
3309 thisarginfo.op, bias);
3310 }
3311 }
3312 else if (!vec_stmt
3313 && thisarginfo.dt != vect_constant_def
3314 && thisarginfo.dt != vect_external_def
3315 && loop_vinfo
3316 && TREE_CODE (op) == SSA_NAME
3317 && simple_iv (loop, loop_containing_stmt (stmt), op,
3318 &iv, false)
3319 && tree_fits_shwi_p (iv.step))
3320 {
3321 thisarginfo.linear_step = tree_to_shwi (iv.step);
3322 thisarginfo.op = iv.base;
3323 }
3324 else if ((thisarginfo.dt == vect_constant_def
3325 || thisarginfo.dt == vect_external_def)
3326 && POINTER_TYPE_P (TREE_TYPE (op)))
3327 thisarginfo.align = get_pointer_alignment (op) / BITS_PER_UNIT;
3328 /* Addresses of array elements indexed by GOMP_SIMD_LANE are
3329 linear too. */
3330 if (POINTER_TYPE_P (TREE_TYPE (op))
3331 && !thisarginfo.linear_step
3332 && !vec_stmt
3333 && thisarginfo.dt != vect_constant_def
3334 && thisarginfo.dt != vect_external_def
3335 && loop_vinfo
3336 && !slp_node
3337 && TREE_CODE (op) == SSA_NAME)
3338 vect_simd_lane_linear (op, loop, &thisarginfo);
3339
3340 arginfo.quick_push (thisarginfo);
3341 }
3342
3343 unsigned int badness = 0;
3344 struct cgraph_node *bestn = NULL;
3345 if (STMT_VINFO_SIMD_CLONE_INFO (stmt_info).exists ())
3346 bestn = cgraph_node::get (STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[0]);
3347 else
3348 for (struct cgraph_node *n = node->simd_clones; n != NULL;
3349 n = n->simdclone->next_clone)
3350 {
3351 unsigned int this_badness = 0;
3352 if (n->simdclone->simdlen
3353 > (unsigned) LOOP_VINFO_VECT_FACTOR (loop_vinfo)
3354 || n->simdclone->nargs != nargs)
3355 continue;
3356 if (n->simdclone->simdlen
3357 < (unsigned) LOOP_VINFO_VECT_FACTOR (loop_vinfo))
3358 this_badness += (exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo))
3359 - exact_log2 (n->simdclone->simdlen)) * 1024;
3360 if (n->simdclone->inbranch)
3361 this_badness += 2048;
3362 int target_badness = targetm.simd_clone.usable (n);
3363 if (target_badness < 0)
3364 continue;
3365 this_badness += target_badness * 512;
3366 /* FORNOW: Have to add code to add the mask argument. */
3367 if (n->simdclone->inbranch)
3368 continue;
3369 for (i = 0; i < nargs; i++)
3370 {
3371 switch (n->simdclone->args[i].arg_type)
3372 {
3373 case SIMD_CLONE_ARG_TYPE_VECTOR:
3374 if (!useless_type_conversion_p
3375 (n->simdclone->args[i].orig_type,
3376 TREE_TYPE (gimple_call_arg (stmt, i))))
3377 i = -1;
3378 else if (arginfo[i].dt == vect_constant_def
3379 || arginfo[i].dt == vect_external_def
3380 || arginfo[i].linear_step)
3381 this_badness += 64;
3382 break;
3383 case SIMD_CLONE_ARG_TYPE_UNIFORM:
3384 if (arginfo[i].dt != vect_constant_def
3385 && arginfo[i].dt != vect_external_def)
3386 i = -1;
3387 break;
3388 case SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP:
3389 case SIMD_CLONE_ARG_TYPE_LINEAR_REF_CONSTANT_STEP:
3390 if (arginfo[i].dt == vect_constant_def
3391 || arginfo[i].dt == vect_external_def
3392 || (arginfo[i].linear_step
3393 != n->simdclone->args[i].linear_step))
3394 i = -1;
3395 break;
3396 case SIMD_CLONE_ARG_TYPE_LINEAR_VARIABLE_STEP:
3397 case SIMD_CLONE_ARG_TYPE_LINEAR_VAL_CONSTANT_STEP:
3398 case SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_CONSTANT_STEP:
3399 case SIMD_CLONE_ARG_TYPE_LINEAR_REF_VARIABLE_STEP:
3400 case SIMD_CLONE_ARG_TYPE_LINEAR_VAL_VARIABLE_STEP:
3401 case SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_VARIABLE_STEP:
3402 /* FORNOW */
3403 i = -1;
3404 break;
3405 case SIMD_CLONE_ARG_TYPE_MASK:
3406 gcc_unreachable ();
3407 }
3408 if (i == (size_t) -1)
3409 break;
3410 if (n->simdclone->args[i].alignment > arginfo[i].align)
3411 {
3412 i = -1;
3413 break;
3414 }
3415 if (arginfo[i].align)
3416 this_badness += (exact_log2 (arginfo[i].align)
3417 - exact_log2 (n->simdclone->args[i].alignment));
3418 }
3419 if (i == (size_t) -1)
3420 continue;
3421 if (bestn == NULL || this_badness < badness)
3422 {
3423 bestn = n;
3424 badness = this_badness;
3425 }
3426 }
3427
3428 if (bestn == NULL)
3429 return false;
3430
3431 for (i = 0; i < nargs; i++)
3432 if ((arginfo[i].dt == vect_constant_def
3433 || arginfo[i].dt == vect_external_def)
3434 && bestn->simdclone->args[i].arg_type == SIMD_CLONE_ARG_TYPE_VECTOR)
3435 {
3436 arginfo[i].vectype
3437 = get_vectype_for_scalar_type (TREE_TYPE (gimple_call_arg (stmt,
3438 i)));
3439 if (arginfo[i].vectype == NULL
3440 || (TYPE_VECTOR_SUBPARTS (arginfo[i].vectype)
3441 > bestn->simdclone->simdlen))
3442 return false;
3443 }
3444
3445 fndecl = bestn->decl;
3446 nunits = bestn->simdclone->simdlen;
3447 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
3448
3449 /* If the function isn't const, only allow it in simd loops where user
3450 has asserted that at least nunits consecutive iterations can be
3451 performed using SIMD instructions. */
3452 if ((loop == NULL || (unsigned) loop->safelen < nunits)
3453 && gimple_vuse (stmt))
3454 return false;
3455
3456 /* Sanity check: make sure that at least one copy of the vectorized stmt
3457 needs to be generated. */
3458 gcc_assert (ncopies >= 1);
3459
3460 if (!vec_stmt) /* transformation not required. */
3461 {
3462 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_push (bestn->decl);
3463 for (i = 0; i < nargs; i++)
3464 if ((bestn->simdclone->args[i].arg_type
3465 == SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP)
3466 || (bestn->simdclone->args[i].arg_type
3467 == SIMD_CLONE_ARG_TYPE_LINEAR_REF_CONSTANT_STEP))
3468 {
3469 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_grow_cleared (i * 3
3470 + 1);
3471 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_push (arginfo[i].op);
3472 tree lst = POINTER_TYPE_P (TREE_TYPE (arginfo[i].op))
3473 ? size_type_node : TREE_TYPE (arginfo[i].op);
3474 tree ls = build_int_cst (lst, arginfo[i].linear_step);
3475 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_push (ls);
3476 tree sll = arginfo[i].simd_lane_linear
3477 ? boolean_true_node : boolean_false_node;
3478 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_push (sll);
3479 }
3480 STMT_VINFO_TYPE (stmt_info) = call_simd_clone_vec_info_type;
3481 if (dump_enabled_p ())
3482 dump_printf_loc (MSG_NOTE, vect_location,
3483 "=== vectorizable_simd_clone_call ===\n");
3484 /* vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL); */
3485 return true;
3486 }
3487
3488 /* Transform. */
3489
3490 if (dump_enabled_p ())
3491 dump_printf_loc (MSG_NOTE, vect_location, "transform call.\n");
3492
3493 /* Handle def. */
3494 scalar_dest = gimple_call_lhs (stmt);
3495 vec_dest = NULL_TREE;
3496 rtype = NULL_TREE;
3497 ratype = NULL_TREE;
3498 if (scalar_dest)
3499 {
3500 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3501 rtype = TREE_TYPE (TREE_TYPE (fndecl));
3502 if (TREE_CODE (rtype) == ARRAY_TYPE)
3503 {
3504 ratype = rtype;
3505 rtype = TREE_TYPE (ratype);
3506 }
3507 }
3508
3509 prev_stmt_info = NULL;
3510 for (j = 0; j < ncopies; ++j)
3511 {
3512 /* Build argument list for the vectorized call. */
3513 if (j == 0)
3514 vargs.create (nargs);
3515 else
3516 vargs.truncate (0);
3517
3518 for (i = 0; i < nargs; i++)
3519 {
3520 unsigned int k, l, m, o;
3521 tree atype;
3522 op = gimple_call_arg (stmt, i);
3523 switch (bestn->simdclone->args[i].arg_type)
3524 {
3525 case SIMD_CLONE_ARG_TYPE_VECTOR:
3526 atype = bestn->simdclone->args[i].vector_type;
3527 o = nunits / TYPE_VECTOR_SUBPARTS (atype);
3528 for (m = j * o; m < (j + 1) * o; m++)
3529 {
3530 if (TYPE_VECTOR_SUBPARTS (atype)
3531 < TYPE_VECTOR_SUBPARTS (arginfo[i].vectype))
3532 {
3533 unsigned int prec = GET_MODE_BITSIZE (TYPE_MODE (atype));
3534 k = (TYPE_VECTOR_SUBPARTS (arginfo[i].vectype)
3535 / TYPE_VECTOR_SUBPARTS (atype));
3536 gcc_assert ((k & (k - 1)) == 0);
3537 if (m == 0)
3538 vec_oprnd0
3539 = vect_get_vec_def_for_operand (op, stmt);
3540 else
3541 {
3542 vec_oprnd0 = arginfo[i].op;
3543 if ((m & (k - 1)) == 0)
3544 vec_oprnd0
3545 = vect_get_vec_def_for_stmt_copy (arginfo[i].dt,
3546 vec_oprnd0);
3547 }
3548 arginfo[i].op = vec_oprnd0;
3549 vec_oprnd0
3550 = build3 (BIT_FIELD_REF, atype, vec_oprnd0,
3551 bitsize_int (prec),
3552 bitsize_int ((m & (k - 1)) * prec));
3553 new_stmt
3554 = gimple_build_assign (make_ssa_name (atype),
3555 vec_oprnd0);
3556 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3557 vargs.safe_push (gimple_assign_lhs (new_stmt));
3558 }
3559 else
3560 {
3561 k = (TYPE_VECTOR_SUBPARTS (atype)
3562 / TYPE_VECTOR_SUBPARTS (arginfo[i].vectype));
3563 gcc_assert ((k & (k - 1)) == 0);
3564 vec<constructor_elt, va_gc> *ctor_elts;
3565 if (k != 1)
3566 vec_alloc (ctor_elts, k);
3567 else
3568 ctor_elts = NULL;
3569 for (l = 0; l < k; l++)
3570 {
3571 if (m == 0 && l == 0)
3572 vec_oprnd0
3573 = vect_get_vec_def_for_operand (op, stmt);
3574 else
3575 vec_oprnd0
3576 = vect_get_vec_def_for_stmt_copy (arginfo[i].dt,
3577 arginfo[i].op);
3578 arginfo[i].op = vec_oprnd0;
3579 if (k == 1)
3580 break;
3581 CONSTRUCTOR_APPEND_ELT (ctor_elts, NULL_TREE,
3582 vec_oprnd0);
3583 }
3584 if (k == 1)
3585 vargs.safe_push (vec_oprnd0);
3586 else
3587 {
3588 vec_oprnd0 = build_constructor (atype, ctor_elts);
3589 new_stmt
3590 = gimple_build_assign (make_ssa_name (atype),
3591 vec_oprnd0);
3592 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3593 vargs.safe_push (gimple_assign_lhs (new_stmt));
3594 }
3595 }
3596 }
3597 break;
3598 case SIMD_CLONE_ARG_TYPE_UNIFORM:
3599 vargs.safe_push (op);
3600 break;
3601 case SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP:
3602 case SIMD_CLONE_ARG_TYPE_LINEAR_REF_CONSTANT_STEP:
3603 if (j == 0)
3604 {
3605 gimple_seq stmts;
3606 arginfo[i].op
3607 = force_gimple_operand (arginfo[i].op, &stmts, true,
3608 NULL_TREE);
3609 if (stmts != NULL)
3610 {
3611 basic_block new_bb;
3612 edge pe = loop_preheader_edge (loop);
3613 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3614 gcc_assert (!new_bb);
3615 }
3616 if (arginfo[i].simd_lane_linear)
3617 {
3618 vargs.safe_push (arginfo[i].op);
3619 break;
3620 }
3621 tree phi_res = copy_ssa_name (op);
3622 gphi *new_phi = create_phi_node (phi_res, loop->header);
3623 set_vinfo_for_stmt (new_phi,
3624 new_stmt_vec_info (new_phi, loop_vinfo));
3625 add_phi_arg (new_phi, arginfo[i].op,
3626 loop_preheader_edge (loop), UNKNOWN_LOCATION);
3627 enum tree_code code
3628 = POINTER_TYPE_P (TREE_TYPE (op))
3629 ? POINTER_PLUS_EXPR : PLUS_EXPR;
3630 tree type = POINTER_TYPE_P (TREE_TYPE (op))
3631 ? sizetype : TREE_TYPE (op);
3632 widest_int cst
3633 = wi::mul (bestn->simdclone->args[i].linear_step,
3634 ncopies * nunits);
3635 tree tcst = wide_int_to_tree (type, cst);
3636 tree phi_arg = copy_ssa_name (op);
3637 new_stmt
3638 = gimple_build_assign (phi_arg, code, phi_res, tcst);
3639 gimple_stmt_iterator si = gsi_after_labels (loop->header);
3640 gsi_insert_after (&si, new_stmt, GSI_NEW_STMT);
3641 set_vinfo_for_stmt (new_stmt,
3642 new_stmt_vec_info (new_stmt, loop_vinfo));
3643 add_phi_arg (new_phi, phi_arg, loop_latch_edge (loop),
3644 UNKNOWN_LOCATION);
3645 arginfo[i].op = phi_res;
3646 vargs.safe_push (phi_res);
3647 }
3648 else
3649 {
3650 enum tree_code code
3651 = POINTER_TYPE_P (TREE_TYPE (op))
3652 ? POINTER_PLUS_EXPR : PLUS_EXPR;
3653 tree type = POINTER_TYPE_P (TREE_TYPE (op))
3654 ? sizetype : TREE_TYPE (op);
3655 widest_int cst
3656 = wi::mul (bestn->simdclone->args[i].linear_step,
3657 j * nunits);
3658 tree tcst = wide_int_to_tree (type, cst);
3659 new_temp = make_ssa_name (TREE_TYPE (op));
3660 new_stmt = gimple_build_assign (new_temp, code,
3661 arginfo[i].op, tcst);
3662 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3663 vargs.safe_push (new_temp);
3664 }
3665 break;
3666 case SIMD_CLONE_ARG_TYPE_LINEAR_VAL_CONSTANT_STEP:
3667 case SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_CONSTANT_STEP:
3668 case SIMD_CLONE_ARG_TYPE_LINEAR_VARIABLE_STEP:
3669 case SIMD_CLONE_ARG_TYPE_LINEAR_REF_VARIABLE_STEP:
3670 case SIMD_CLONE_ARG_TYPE_LINEAR_VAL_VARIABLE_STEP:
3671 case SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_VARIABLE_STEP:
3672 default:
3673 gcc_unreachable ();
3674 }
3675 }
3676
3677 new_stmt = gimple_build_call_vec (fndecl, vargs);
3678 if (vec_dest)
3679 {
3680 gcc_assert (ratype || TYPE_VECTOR_SUBPARTS (rtype) == nunits);
3681 if (ratype)
3682 new_temp = create_tmp_var (ratype);
3683 else if (TYPE_VECTOR_SUBPARTS (vectype)
3684 == TYPE_VECTOR_SUBPARTS (rtype))
3685 new_temp = make_ssa_name (vec_dest, new_stmt);
3686 else
3687 new_temp = make_ssa_name (rtype, new_stmt);
3688 gimple_call_set_lhs (new_stmt, new_temp);
3689 }
3690 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3691
3692 if (vec_dest)
3693 {
3694 if (TYPE_VECTOR_SUBPARTS (vectype) < nunits)
3695 {
3696 unsigned int k, l;
3697 unsigned int prec = GET_MODE_BITSIZE (TYPE_MODE (vectype));
3698 k = nunits / TYPE_VECTOR_SUBPARTS (vectype);
3699 gcc_assert ((k & (k - 1)) == 0);
3700 for (l = 0; l < k; l++)
3701 {
3702 tree t;
3703 if (ratype)
3704 {
3705 t = build_fold_addr_expr (new_temp);
3706 t = build2 (MEM_REF, vectype, t,
3707 build_int_cst (TREE_TYPE (t),
3708 l * prec / BITS_PER_UNIT));
3709 }
3710 else
3711 t = build3 (BIT_FIELD_REF, vectype, new_temp,
3712 bitsize_int (prec), bitsize_int (l * prec));
3713 new_stmt
3714 = gimple_build_assign (make_ssa_name (vectype), t);
3715 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3716 if (j == 0 && l == 0)
3717 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
3718 else
3719 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3720
3721 prev_stmt_info = vinfo_for_stmt (new_stmt);
3722 }
3723
3724 if (ratype)
3725 {
3726 tree clobber = build_constructor (ratype, NULL);
3727 TREE_THIS_VOLATILE (clobber) = 1;
3728 new_stmt = gimple_build_assign (new_temp, clobber);
3729 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3730 }
3731 continue;
3732 }
3733 else if (TYPE_VECTOR_SUBPARTS (vectype) > nunits)
3734 {
3735 unsigned int k = (TYPE_VECTOR_SUBPARTS (vectype)
3736 / TYPE_VECTOR_SUBPARTS (rtype));
3737 gcc_assert ((k & (k - 1)) == 0);
3738 if ((j & (k - 1)) == 0)
3739 vec_alloc (ret_ctor_elts, k);
3740 if (ratype)
3741 {
3742 unsigned int m, o = nunits / TYPE_VECTOR_SUBPARTS (rtype);
3743 for (m = 0; m < o; m++)
3744 {
3745 tree tem = build4 (ARRAY_REF, rtype, new_temp,
3746 size_int (m), NULL_TREE, NULL_TREE);
3747 new_stmt
3748 = gimple_build_assign (make_ssa_name (rtype), tem);
3749 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3750 CONSTRUCTOR_APPEND_ELT (ret_ctor_elts, NULL_TREE,
3751 gimple_assign_lhs (new_stmt));
3752 }
3753 tree clobber = build_constructor (ratype, NULL);
3754 TREE_THIS_VOLATILE (clobber) = 1;
3755 new_stmt = gimple_build_assign (new_temp, clobber);
3756 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3757 }
3758 else
3759 CONSTRUCTOR_APPEND_ELT (ret_ctor_elts, NULL_TREE, new_temp);
3760 if ((j & (k - 1)) != k - 1)
3761 continue;
3762 vec_oprnd0 = build_constructor (vectype, ret_ctor_elts);
3763 new_stmt
3764 = gimple_build_assign (make_ssa_name (vec_dest), vec_oprnd0);
3765 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3766
3767 if ((unsigned) j == k - 1)
3768 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
3769 else
3770 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3771
3772 prev_stmt_info = vinfo_for_stmt (new_stmt);
3773 continue;
3774 }
3775 else if (ratype)
3776 {
3777 tree t = build_fold_addr_expr (new_temp);
3778 t = build2 (MEM_REF, vectype, t,
3779 build_int_cst (TREE_TYPE (t), 0));
3780 new_stmt
3781 = gimple_build_assign (make_ssa_name (vec_dest), t);
3782 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3783 tree clobber = build_constructor (ratype, NULL);
3784 TREE_THIS_VOLATILE (clobber) = 1;
3785 vect_finish_stmt_generation (stmt,
3786 gimple_build_assign (new_temp,
3787 clobber), gsi);
3788 }
3789 }
3790
3791 if (j == 0)
3792 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
3793 else
3794 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3795
3796 prev_stmt_info = vinfo_for_stmt (new_stmt);
3797 }
3798
3799 vargs.release ();
3800
3801 /* The call in STMT might prevent it from being removed in dce.
3802 We however cannot remove it here, due to the way the ssa name
3803 it defines is mapped to the new definition. So just replace
3804 rhs of the statement with something harmless. */
3805
3806 if (slp_node)
3807 return true;
3808
3809 if (scalar_dest)
3810 {
3811 type = TREE_TYPE (scalar_dest);
3812 if (is_pattern_stmt_p (stmt_info))
3813 lhs = gimple_call_lhs (STMT_VINFO_RELATED_STMT (stmt_info));
3814 else
3815 lhs = gimple_call_lhs (stmt);
3816 new_stmt = gimple_build_assign (lhs, build_zero_cst (type));
3817 }
3818 else
3819 new_stmt = gimple_build_nop ();
3820 set_vinfo_for_stmt (new_stmt, stmt_info);
3821 set_vinfo_for_stmt (stmt, NULL);
3822 STMT_VINFO_STMT (stmt_info) = new_stmt;
3823 gsi_replace (gsi, new_stmt, true);
3824 unlink_stmt_vdef (stmt);
3825
3826 return true;
3827 }
3828
3829
3830 /* Function vect_gen_widened_results_half
3831
3832 Create a vector stmt whose code, type, number of arguments, and result
3833 variable are CODE, OP_TYPE, and VEC_DEST, and its arguments are
3834 VEC_OPRND0 and VEC_OPRND1. The new vector stmt is to be inserted at BSI.
3835 In the case that CODE is a CALL_EXPR, this means that a call to DECL
3836 needs to be created (DECL is a function-decl of a target-builtin).
3837 STMT is the original scalar stmt that we are vectorizing. */
3838
3839 static gimple *
3840 vect_gen_widened_results_half (enum tree_code code,
3841 tree decl,
3842 tree vec_oprnd0, tree vec_oprnd1, int op_type,
3843 tree vec_dest, gimple_stmt_iterator *gsi,
3844 gimple *stmt)
3845 {
3846 gimple *new_stmt;
3847 tree new_temp;
3848
3849 /* Generate half of the widened result: */
3850 if (code == CALL_EXPR)
3851 {
3852 /* Target specific support */
3853 if (op_type == binary_op)
3854 new_stmt = gimple_build_call (decl, 2, vec_oprnd0, vec_oprnd1);
3855 else
3856 new_stmt = gimple_build_call (decl, 1, vec_oprnd0);
3857 new_temp = make_ssa_name (vec_dest, new_stmt);
3858 gimple_call_set_lhs (new_stmt, new_temp);
3859 }
3860 else
3861 {
3862 /* Generic support */
3863 gcc_assert (op_type == TREE_CODE_LENGTH (code));
3864 if (op_type != binary_op)
3865 vec_oprnd1 = NULL;
3866 new_stmt = gimple_build_assign (vec_dest, code, vec_oprnd0, vec_oprnd1);
3867 new_temp = make_ssa_name (vec_dest, new_stmt);
3868 gimple_assign_set_lhs (new_stmt, new_temp);
3869 }
3870 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3871
3872 return new_stmt;
3873 }
3874
3875
3876 /* Get vectorized definitions for loop-based vectorization. For the first
3877 operand we call vect_get_vec_def_for_operand() (with OPRND containing
3878 scalar operand), and for the rest we get a copy with
3879 vect_get_vec_def_for_stmt_copy() using the previous vector definition
3880 (stored in OPRND). See vect_get_vec_def_for_stmt_copy() for details.
3881 The vectors are collected into VEC_OPRNDS. */
3882
3883 static void
3884 vect_get_loop_based_defs (tree *oprnd, gimple *stmt, enum vect_def_type dt,
3885 vec<tree> *vec_oprnds, int multi_step_cvt)
3886 {
3887 tree vec_oprnd;
3888
3889 /* Get first vector operand. */
3890 /* All the vector operands except the very first one (that is scalar oprnd)
3891 are stmt copies. */
3892 if (TREE_CODE (TREE_TYPE (*oprnd)) != VECTOR_TYPE)
3893 vec_oprnd = vect_get_vec_def_for_operand (*oprnd, stmt);
3894 else
3895 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, *oprnd);
3896
3897 vec_oprnds->quick_push (vec_oprnd);
3898
3899 /* Get second vector operand. */
3900 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, vec_oprnd);
3901 vec_oprnds->quick_push (vec_oprnd);
3902
3903 *oprnd = vec_oprnd;
3904
3905 /* For conversion in multiple steps, continue to get operands
3906 recursively. */
3907 if (multi_step_cvt)
3908 vect_get_loop_based_defs (oprnd, stmt, dt, vec_oprnds, multi_step_cvt - 1);
3909 }
3910
3911
3912 /* Create vectorized demotion statements for vector operands from VEC_OPRNDS.
3913 For multi-step conversions store the resulting vectors and call the function
3914 recursively. */
3915
3916 static void
3917 vect_create_vectorized_demotion_stmts (vec<tree> *vec_oprnds,
3918 int multi_step_cvt, gimple *stmt,
3919 vec<tree> vec_dsts,
3920 gimple_stmt_iterator *gsi,
3921 slp_tree slp_node, enum tree_code code,
3922 stmt_vec_info *prev_stmt_info)
3923 {
3924 unsigned int i;
3925 tree vop0, vop1, new_tmp, vec_dest;
3926 gimple *new_stmt;
3927 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3928
3929 vec_dest = vec_dsts.pop ();
3930
3931 for (i = 0; i < vec_oprnds->length (); i += 2)
3932 {
3933 /* Create demotion operation. */
3934 vop0 = (*vec_oprnds)[i];
3935 vop1 = (*vec_oprnds)[i + 1];
3936 new_stmt = gimple_build_assign (vec_dest, code, vop0, vop1);
3937 new_tmp = make_ssa_name (vec_dest, new_stmt);
3938 gimple_assign_set_lhs (new_stmt, new_tmp);
3939 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3940
3941 if (multi_step_cvt)
3942 /* Store the resulting vector for next recursive call. */
3943 (*vec_oprnds)[i/2] = new_tmp;
3944 else
3945 {
3946 /* This is the last step of the conversion sequence. Store the
3947 vectors in SLP_NODE or in vector info of the scalar statement
3948 (or in STMT_VINFO_RELATED_STMT chain). */
3949 if (slp_node)
3950 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
3951 else
3952 {
3953 if (!*prev_stmt_info)
3954 STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
3955 else
3956 STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt;
3957
3958 *prev_stmt_info = vinfo_for_stmt (new_stmt);
3959 }
3960 }
3961 }
3962
3963 /* For multi-step demotion operations we first generate demotion operations
3964 from the source type to the intermediate types, and then combine the
3965 results (stored in VEC_OPRNDS) in demotion operation to the destination
3966 type. */
3967 if (multi_step_cvt)
3968 {
3969 /* At each level of recursion we have half of the operands we had at the
3970 previous level. */
3971 vec_oprnds->truncate ((i+1)/2);
3972 vect_create_vectorized_demotion_stmts (vec_oprnds, multi_step_cvt - 1,
3973 stmt, vec_dsts, gsi, slp_node,
3974 VEC_PACK_TRUNC_EXPR,
3975 prev_stmt_info);
3976 }
3977
3978 vec_dsts.quick_push (vec_dest);
3979 }
3980
3981
3982 /* Create vectorized promotion statements for vector operands from VEC_OPRNDS0
3983 and VEC_OPRNDS1 (for binary operations). For multi-step conversions store
3984 the resulting vectors and call the function recursively. */
3985
3986 static void
3987 vect_create_vectorized_promotion_stmts (vec<tree> *vec_oprnds0,
3988 vec<tree> *vec_oprnds1,
3989 gimple *stmt, tree vec_dest,
3990 gimple_stmt_iterator *gsi,
3991 enum tree_code code1,
3992 enum tree_code code2, tree decl1,
3993 tree decl2, int op_type)
3994 {
3995 int i;
3996 tree vop0, vop1, new_tmp1, new_tmp2;
3997 gimple *new_stmt1, *new_stmt2;
3998 vec<tree> vec_tmp = vNULL;
3999
4000 vec_tmp.create (vec_oprnds0->length () * 2);
4001 FOR_EACH_VEC_ELT (*vec_oprnds0, i, vop0)
4002 {
4003 if (op_type == binary_op)
4004 vop1 = (*vec_oprnds1)[i];
4005 else
4006 vop1 = NULL_TREE;
4007
4008 /* Generate the two halves of promotion operation. */
4009 new_stmt1 = vect_gen_widened_results_half (code1, decl1, vop0, vop1,
4010 op_type, vec_dest, gsi, stmt);
4011 new_stmt2 = vect_gen_widened_results_half (code2, decl2, vop0, vop1,
4012 op_type, vec_dest, gsi, stmt);
4013 if (is_gimple_call (new_stmt1))
4014 {
4015 new_tmp1 = gimple_call_lhs (new_stmt1);
4016 new_tmp2 = gimple_call_lhs (new_stmt2);
4017 }
4018 else
4019 {
4020 new_tmp1 = gimple_assign_lhs (new_stmt1);
4021 new_tmp2 = gimple_assign_lhs (new_stmt2);
4022 }
4023
4024 /* Store the results for the next step. */
4025 vec_tmp.quick_push (new_tmp1);
4026 vec_tmp.quick_push (new_tmp2);
4027 }
4028
4029 vec_oprnds0->release ();
4030 *vec_oprnds0 = vec_tmp;
4031 }
4032
4033
4034 /* Check if STMT performs a conversion operation, that can be vectorized.
4035 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4036 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
4037 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
4038
4039 static bool
4040 vectorizable_conversion (gimple *stmt, gimple_stmt_iterator *gsi,
4041 gimple **vec_stmt, slp_tree slp_node)
4042 {
4043 tree vec_dest;
4044 tree scalar_dest;
4045 tree op0, op1 = NULL_TREE;
4046 tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
4047 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4048 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4049 enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK;
4050 enum tree_code codecvt1 = ERROR_MARK, codecvt2 = ERROR_MARK;
4051 tree decl1 = NULL_TREE, decl2 = NULL_TREE;
4052 tree new_temp;
4053 gimple *def_stmt;
4054 enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
4055 int ndts = 2;
4056 gimple *new_stmt = NULL;
4057 stmt_vec_info prev_stmt_info;
4058 int nunits_in;
4059 int nunits_out;
4060 tree vectype_out, vectype_in;
4061 int ncopies, i, j;
4062 tree lhs_type, rhs_type;
4063 enum { NARROW, NONE, WIDEN } modifier;
4064 vec<tree> vec_oprnds0 = vNULL;
4065 vec<tree> vec_oprnds1 = vNULL;
4066 tree vop0;
4067 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4068 vec_info *vinfo = stmt_info->vinfo;
4069 int multi_step_cvt = 0;
4070 vec<tree> interm_types = vNULL;
4071 tree last_oprnd, intermediate_type, cvt_type = NULL_TREE;
4072 int op_type;
4073 unsigned short fltsz;
4074
4075 /* Is STMT a vectorizable conversion? */
4076
4077 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
4078 return false;
4079
4080 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
4081 && ! vec_stmt)
4082 return false;
4083
4084 if (!is_gimple_assign (stmt))
4085 return false;
4086
4087 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
4088 return false;
4089
4090 code = gimple_assign_rhs_code (stmt);
4091 if (!CONVERT_EXPR_CODE_P (code)
4092 && code != FIX_TRUNC_EXPR
4093 && code != FLOAT_EXPR
4094 && code != WIDEN_MULT_EXPR
4095 && code != WIDEN_LSHIFT_EXPR)
4096 return false;
4097
4098 op_type = TREE_CODE_LENGTH (code);
4099
4100 /* Check types of lhs and rhs. */
4101 scalar_dest = gimple_assign_lhs (stmt);
4102 lhs_type = TREE_TYPE (scalar_dest);
4103 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
4104
4105 op0 = gimple_assign_rhs1 (stmt);
4106 rhs_type = TREE_TYPE (op0);
4107
4108 if ((code != FIX_TRUNC_EXPR && code != FLOAT_EXPR)
4109 && !((INTEGRAL_TYPE_P (lhs_type)
4110 && INTEGRAL_TYPE_P (rhs_type))
4111 || (SCALAR_FLOAT_TYPE_P (lhs_type)
4112 && SCALAR_FLOAT_TYPE_P (rhs_type))))
4113 return false;
4114
4115 if (!VECTOR_BOOLEAN_TYPE_P (vectype_out)
4116 && ((INTEGRAL_TYPE_P (lhs_type)
4117 && !type_has_mode_precision_p (lhs_type))
4118 || (INTEGRAL_TYPE_P (rhs_type)
4119 && !type_has_mode_precision_p (rhs_type))))
4120 {
4121 if (dump_enabled_p ())
4122 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4123 "type conversion to/from bit-precision unsupported."
4124 "\n");
4125 return false;
4126 }
4127
4128 /* Check the operands of the operation. */
4129 if (!vect_is_simple_use (op0, vinfo, &def_stmt, &dt[0], &vectype_in))
4130 {
4131 if (dump_enabled_p ())
4132 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4133 "use not simple.\n");
4134 return false;
4135 }
4136 if (op_type == binary_op)
4137 {
4138 bool ok;
4139
4140 op1 = gimple_assign_rhs2 (stmt);
4141 gcc_assert (code == WIDEN_MULT_EXPR || code == WIDEN_LSHIFT_EXPR);
4142 /* For WIDEN_MULT_EXPR, if OP0 is a constant, use the type of
4143 OP1. */
4144 if (CONSTANT_CLASS_P (op0))
4145 ok = vect_is_simple_use (op1, vinfo, &def_stmt, &dt[1], &vectype_in);
4146 else
4147 ok = vect_is_simple_use (op1, vinfo, &def_stmt, &dt[1]);
4148
4149 if (!ok)
4150 {
4151 if (dump_enabled_p ())
4152 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4153 "use not simple.\n");
4154 return false;
4155 }
4156 }
4157
4158 /* If op0 is an external or constant defs use a vector type of
4159 the same size as the output vector type. */
4160 if (!vectype_in)
4161 vectype_in = get_same_sized_vectype (rhs_type, vectype_out);
4162 if (vec_stmt)
4163 gcc_assert (vectype_in);
4164 if (!vectype_in)
4165 {
4166 if (dump_enabled_p ())
4167 {
4168 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4169 "no vectype for scalar type ");
4170 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, rhs_type);
4171 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
4172 }
4173
4174 return false;
4175 }
4176
4177 if (VECTOR_BOOLEAN_TYPE_P (vectype_out)
4178 && !VECTOR_BOOLEAN_TYPE_P (vectype_in))
4179 {
4180 if (dump_enabled_p ())
4181 {
4182 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4183 "can't convert between boolean and non "
4184 "boolean vectors");
4185 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, rhs_type);
4186 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
4187 }
4188
4189 return false;
4190 }
4191
4192 nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
4193 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
4194 if (nunits_in < nunits_out)
4195 modifier = NARROW;
4196 else if (nunits_out == nunits_in)
4197 modifier = NONE;
4198 else
4199 modifier = WIDEN;
4200
4201 /* Multiple types in SLP are handled by creating the appropriate number of
4202 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
4203 case of SLP. */
4204 if (slp_node)
4205 ncopies = 1;
4206 else if (modifier == NARROW)
4207 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
4208 else
4209 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
4210
4211 /* Sanity check: make sure that at least one copy of the vectorized stmt
4212 needs to be generated. */
4213 gcc_assert (ncopies >= 1);
4214
4215 bool found_mode = false;
4216 scalar_mode lhs_mode = SCALAR_TYPE_MODE (lhs_type);
4217 scalar_mode rhs_mode = SCALAR_TYPE_MODE (rhs_type);
4218 opt_scalar_mode rhs_mode_iter;
4219
4220 /* Supportable by target? */
4221 switch (modifier)
4222 {
4223 case NONE:
4224 if (code != FIX_TRUNC_EXPR && code != FLOAT_EXPR)
4225 return false;
4226 if (supportable_convert_operation (code, vectype_out, vectype_in,
4227 &decl1, &code1))
4228 break;
4229 /* FALLTHRU */
4230 unsupported:
4231 if (dump_enabled_p ())
4232 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4233 "conversion not supported by target.\n");
4234 return false;
4235
4236 case WIDEN:
4237 if (supportable_widening_operation (code, stmt, vectype_out, vectype_in,
4238 &code1, &code2, &multi_step_cvt,
4239 &interm_types))
4240 {
4241 /* Binary widening operation can only be supported directly by the
4242 architecture. */
4243 gcc_assert (!(multi_step_cvt && op_type == binary_op));
4244 break;
4245 }
4246
4247 if (code != FLOAT_EXPR
4248 || GET_MODE_SIZE (lhs_mode) <= GET_MODE_SIZE (rhs_mode))
4249 goto unsupported;
4250
4251 fltsz = GET_MODE_SIZE (lhs_mode);
4252 FOR_EACH_2XWIDER_MODE (rhs_mode_iter, rhs_mode)
4253 {
4254 rhs_mode = rhs_mode_iter.require ();
4255 if (GET_MODE_SIZE (rhs_mode) > fltsz)
4256 break;
4257
4258 cvt_type
4259 = build_nonstandard_integer_type (GET_MODE_BITSIZE (rhs_mode), 0);
4260 cvt_type = get_same_sized_vectype (cvt_type, vectype_in);
4261 if (cvt_type == NULL_TREE)
4262 goto unsupported;
4263
4264 if (GET_MODE_SIZE (rhs_mode) == fltsz)
4265 {
4266 if (!supportable_convert_operation (code, vectype_out,
4267 cvt_type, &decl1, &codecvt1))
4268 goto unsupported;
4269 }
4270 else if (!supportable_widening_operation (code, stmt, vectype_out,
4271 cvt_type, &codecvt1,
4272 &codecvt2, &multi_step_cvt,
4273 &interm_types))
4274 continue;
4275 else
4276 gcc_assert (multi_step_cvt == 0);
4277
4278 if (supportable_widening_operation (NOP_EXPR, stmt, cvt_type,
4279 vectype_in, &code1, &code2,
4280 &multi_step_cvt, &interm_types))
4281 {
4282 found_mode = true;
4283 break;
4284 }
4285 }
4286
4287 if (!found_mode)
4288 goto unsupported;
4289
4290 if (GET_MODE_SIZE (rhs_mode) == fltsz)
4291 codecvt2 = ERROR_MARK;
4292 else
4293 {
4294 multi_step_cvt++;
4295 interm_types.safe_push (cvt_type);
4296 cvt_type = NULL_TREE;
4297 }
4298 break;
4299
4300 case NARROW:
4301 gcc_assert (op_type == unary_op);
4302 if (supportable_narrowing_operation (code, vectype_out, vectype_in,
4303 &code1, &multi_step_cvt,
4304 &interm_types))
4305 break;
4306
4307 if (code != FIX_TRUNC_EXPR
4308 || GET_MODE_SIZE (lhs_mode) >= GET_MODE_SIZE (rhs_mode))
4309 goto unsupported;
4310
4311 cvt_type
4312 = build_nonstandard_integer_type (GET_MODE_BITSIZE (rhs_mode), 0);
4313 cvt_type = get_same_sized_vectype (cvt_type, vectype_in);
4314 if (cvt_type == NULL_TREE)
4315 goto unsupported;
4316 if (!supportable_convert_operation (code, cvt_type, vectype_in,
4317 &decl1, &codecvt1))
4318 goto unsupported;
4319 if (supportable_narrowing_operation (NOP_EXPR, vectype_out, cvt_type,
4320 &code1, &multi_step_cvt,
4321 &interm_types))
4322 break;
4323 goto unsupported;
4324
4325 default:
4326 gcc_unreachable ();
4327 }
4328
4329 if (!vec_stmt) /* transformation not required. */
4330 {
4331 if (dump_enabled_p ())
4332 dump_printf_loc (MSG_NOTE, vect_location,
4333 "=== vectorizable_conversion ===\n");
4334 if (code == FIX_TRUNC_EXPR || code == FLOAT_EXPR)
4335 {
4336 STMT_VINFO_TYPE (stmt_info) = type_conversion_vec_info_type;
4337 vect_model_simple_cost (stmt_info, ncopies, dt, ndts, NULL, NULL);
4338 }
4339 else if (modifier == NARROW)
4340 {
4341 STMT_VINFO_TYPE (stmt_info) = type_demotion_vec_info_type;
4342 vect_model_promotion_demotion_cost (stmt_info, dt, multi_step_cvt);
4343 }
4344 else
4345 {
4346 STMT_VINFO_TYPE (stmt_info) = type_promotion_vec_info_type;
4347 vect_model_promotion_demotion_cost (stmt_info, dt, multi_step_cvt);
4348 }
4349 interm_types.release ();
4350 return true;
4351 }
4352
4353 /* Transform. */
4354 if (dump_enabled_p ())
4355 dump_printf_loc (MSG_NOTE, vect_location,
4356 "transform conversion. ncopies = %d.\n", ncopies);
4357
4358 if (op_type == binary_op)
4359 {
4360 if (CONSTANT_CLASS_P (op0))
4361 op0 = fold_convert (TREE_TYPE (op1), op0);
4362 else if (CONSTANT_CLASS_P (op1))
4363 op1 = fold_convert (TREE_TYPE (op0), op1);
4364 }
4365
4366 /* In case of multi-step conversion, we first generate conversion operations
4367 to the intermediate types, and then from that types to the final one.
4368 We create vector destinations for the intermediate type (TYPES) received
4369 from supportable_*_operation, and store them in the correct order
4370 for future use in vect_create_vectorized_*_stmts (). */
4371 auto_vec<tree> vec_dsts (multi_step_cvt + 1);
4372 vec_dest = vect_create_destination_var (scalar_dest,
4373 (cvt_type && modifier == WIDEN)
4374 ? cvt_type : vectype_out);
4375 vec_dsts.quick_push (vec_dest);
4376
4377 if (multi_step_cvt)
4378 {
4379 for (i = interm_types.length () - 1;
4380 interm_types.iterate (i, &intermediate_type); i--)
4381 {
4382 vec_dest = vect_create_destination_var (scalar_dest,
4383 intermediate_type);
4384 vec_dsts.quick_push (vec_dest);
4385 }
4386 }
4387
4388 if (cvt_type)
4389 vec_dest = vect_create_destination_var (scalar_dest,
4390 modifier == WIDEN
4391 ? vectype_out : cvt_type);
4392
4393 if (!slp_node)
4394 {
4395 if (modifier == WIDEN)
4396 {
4397 vec_oprnds0.create (multi_step_cvt ? vect_pow2 (multi_step_cvt) : 1);
4398 if (op_type == binary_op)
4399 vec_oprnds1.create (1);
4400 }
4401 else if (modifier == NARROW)
4402 vec_oprnds0.create (
4403 2 * (multi_step_cvt ? vect_pow2 (multi_step_cvt) : 1));
4404 }
4405 else if (code == WIDEN_LSHIFT_EXPR)
4406 vec_oprnds1.create (slp_node->vec_stmts_size);
4407
4408 last_oprnd = op0;
4409 prev_stmt_info = NULL;
4410 switch (modifier)
4411 {
4412 case NONE:
4413 for (j = 0; j < ncopies; j++)
4414 {
4415 if (j == 0)
4416 vect_get_vec_defs (op0, NULL, stmt, &vec_oprnds0, NULL, slp_node);
4417 else
4418 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, NULL);
4419
4420 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
4421 {
4422 /* Arguments are ready, create the new vector stmt. */
4423 if (code1 == CALL_EXPR)
4424 {
4425 new_stmt = gimple_build_call (decl1, 1, vop0);
4426 new_temp = make_ssa_name (vec_dest, new_stmt);
4427 gimple_call_set_lhs (new_stmt, new_temp);
4428 }
4429 else
4430 {
4431 gcc_assert (TREE_CODE_LENGTH (code1) == unary_op);
4432 new_stmt = gimple_build_assign (vec_dest, code1, vop0);
4433 new_temp = make_ssa_name (vec_dest, new_stmt);
4434 gimple_assign_set_lhs (new_stmt, new_temp);
4435 }
4436
4437 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4438 if (slp_node)
4439 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
4440 else
4441 {
4442 if (!prev_stmt_info)
4443 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
4444 else
4445 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
4446 prev_stmt_info = vinfo_for_stmt (new_stmt);
4447 }
4448 }
4449 }
4450 break;
4451
4452 case WIDEN:
4453 /* In case the vectorization factor (VF) is bigger than the number
4454 of elements that we can fit in a vectype (nunits), we have to
4455 generate more than one vector stmt - i.e - we need to "unroll"
4456 the vector stmt by a factor VF/nunits. */
4457 for (j = 0; j < ncopies; j++)
4458 {
4459 /* Handle uses. */
4460 if (j == 0)
4461 {
4462 if (slp_node)
4463 {
4464 if (code == WIDEN_LSHIFT_EXPR)
4465 {
4466 unsigned int k;
4467
4468 vec_oprnd1 = op1;
4469 /* Store vec_oprnd1 for every vector stmt to be created
4470 for SLP_NODE. We check during the analysis that all
4471 the shift arguments are the same. */
4472 for (k = 0; k < slp_node->vec_stmts_size - 1; k++)
4473 vec_oprnds1.quick_push (vec_oprnd1);
4474
4475 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
4476 slp_node);
4477 }
4478 else
4479 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0,
4480 &vec_oprnds1, slp_node);
4481 }
4482 else
4483 {
4484 vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt);
4485 vec_oprnds0.quick_push (vec_oprnd0);
4486 if (op_type == binary_op)
4487 {
4488 if (code == WIDEN_LSHIFT_EXPR)
4489 vec_oprnd1 = op1;
4490 else
4491 vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt);
4492 vec_oprnds1.quick_push (vec_oprnd1);
4493 }
4494 }
4495 }
4496 else
4497 {
4498 vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
4499 vec_oprnds0.truncate (0);
4500 vec_oprnds0.quick_push (vec_oprnd0);
4501 if (op_type == binary_op)
4502 {
4503 if (code == WIDEN_LSHIFT_EXPR)
4504 vec_oprnd1 = op1;
4505 else
4506 vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[1],
4507 vec_oprnd1);
4508 vec_oprnds1.truncate (0);
4509 vec_oprnds1.quick_push (vec_oprnd1);
4510 }
4511 }
4512
4513 /* Arguments are ready. Create the new vector stmts. */
4514 for (i = multi_step_cvt; i >= 0; i--)
4515 {
4516 tree this_dest = vec_dsts[i];
4517 enum tree_code c1 = code1, c2 = code2;
4518 if (i == 0 && codecvt2 != ERROR_MARK)
4519 {
4520 c1 = codecvt1;
4521 c2 = codecvt2;
4522 }
4523 vect_create_vectorized_promotion_stmts (&vec_oprnds0,
4524 &vec_oprnds1,
4525 stmt, this_dest, gsi,
4526 c1, c2, decl1, decl2,
4527 op_type);
4528 }
4529
4530 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
4531 {
4532 if (cvt_type)
4533 {
4534 if (codecvt1 == CALL_EXPR)
4535 {
4536 new_stmt = gimple_build_call (decl1, 1, vop0);
4537 new_temp = make_ssa_name (vec_dest, new_stmt);
4538 gimple_call_set_lhs (new_stmt, new_temp);
4539 }
4540 else
4541 {
4542 gcc_assert (TREE_CODE_LENGTH (codecvt1) == unary_op);
4543 new_temp = make_ssa_name (vec_dest);
4544 new_stmt = gimple_build_assign (new_temp, codecvt1,
4545 vop0);
4546 }
4547
4548 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4549 }
4550 else
4551 new_stmt = SSA_NAME_DEF_STMT (vop0);
4552
4553 if (slp_node)
4554 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
4555 else
4556 {
4557 if (!prev_stmt_info)
4558 STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
4559 else
4560 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
4561 prev_stmt_info = vinfo_for_stmt (new_stmt);
4562 }
4563 }
4564 }
4565
4566 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
4567 break;
4568
4569 case NARROW:
4570 /* In case the vectorization factor (VF) is bigger than the number
4571 of elements that we can fit in a vectype (nunits), we have to
4572 generate more than one vector stmt - i.e - we need to "unroll"
4573 the vector stmt by a factor VF/nunits. */
4574 for (j = 0; j < ncopies; j++)
4575 {
4576 /* Handle uses. */
4577 if (slp_node)
4578 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
4579 slp_node);
4580 else
4581 {
4582 vec_oprnds0.truncate (0);
4583 vect_get_loop_based_defs (&last_oprnd, stmt, dt[0], &vec_oprnds0,
4584 vect_pow2 (multi_step_cvt) - 1);
4585 }
4586
4587 /* Arguments are ready. Create the new vector stmts. */
4588 if (cvt_type)
4589 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
4590 {
4591 if (codecvt1 == CALL_EXPR)
4592 {
4593 new_stmt = gimple_build_call (decl1, 1, vop0);
4594 new_temp = make_ssa_name (vec_dest, new_stmt);
4595 gimple_call_set_lhs (new_stmt, new_temp);
4596 }
4597 else
4598 {
4599 gcc_assert (TREE_CODE_LENGTH (codecvt1) == unary_op);
4600 new_temp = make_ssa_name (vec_dest);
4601 new_stmt = gimple_build_assign (new_temp, codecvt1,
4602 vop0);
4603 }
4604
4605 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4606 vec_oprnds0[i] = new_temp;
4607 }
4608
4609 vect_create_vectorized_demotion_stmts (&vec_oprnds0, multi_step_cvt,
4610 stmt, vec_dsts, gsi,
4611 slp_node, code1,
4612 &prev_stmt_info);
4613 }
4614
4615 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
4616 break;
4617 }
4618
4619 vec_oprnds0.release ();
4620 vec_oprnds1.release ();
4621 interm_types.release ();
4622
4623 return true;
4624 }
4625
4626
4627 /* Function vectorizable_assignment.
4628
4629 Check if STMT performs an assignment (copy) that can be vectorized.
4630 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4631 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
4632 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
4633
4634 static bool
4635 vectorizable_assignment (gimple *stmt, gimple_stmt_iterator *gsi,
4636 gimple **vec_stmt, slp_tree slp_node)
4637 {
4638 tree vec_dest;
4639 tree scalar_dest;
4640 tree op;
4641 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4642 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4643 tree new_temp;
4644 gimple *def_stmt;
4645 enum vect_def_type dt[1] = {vect_unknown_def_type};
4646 int ndts = 1;
4647 int ncopies;
4648 int i, j;
4649 vec<tree> vec_oprnds = vNULL;
4650 tree vop;
4651 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4652 vec_info *vinfo = stmt_info->vinfo;
4653 gimple *new_stmt = NULL;
4654 stmt_vec_info prev_stmt_info = NULL;
4655 enum tree_code code;
4656 tree vectype_in;
4657
4658 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
4659 return false;
4660
4661 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
4662 && ! vec_stmt)
4663 return false;
4664
4665 /* Is vectorizable assignment? */
4666 if (!is_gimple_assign (stmt))
4667 return false;
4668
4669 scalar_dest = gimple_assign_lhs (stmt);
4670 if (TREE_CODE (scalar_dest) != SSA_NAME)
4671 return false;
4672
4673 code = gimple_assign_rhs_code (stmt);
4674 if (gimple_assign_single_p (stmt)
4675 || code == PAREN_EXPR
4676 || CONVERT_EXPR_CODE_P (code))
4677 op = gimple_assign_rhs1 (stmt);
4678 else
4679 return false;
4680
4681 if (code == VIEW_CONVERT_EXPR)
4682 op = TREE_OPERAND (op, 0);
4683
4684 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4685 unsigned int nunits = TYPE_VECTOR_SUBPARTS (vectype);
4686
4687 /* Multiple types in SLP are handled by creating the appropriate number of
4688 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
4689 case of SLP. */
4690 if (slp_node)
4691 ncopies = 1;
4692 else
4693 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
4694
4695 gcc_assert (ncopies >= 1);
4696
4697 if (!vect_is_simple_use (op, vinfo, &def_stmt, &dt[0], &vectype_in))
4698 {
4699 if (dump_enabled_p ())
4700 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4701 "use not simple.\n");
4702 return false;
4703 }
4704
4705 /* We can handle NOP_EXPR conversions that do not change the number
4706 of elements or the vector size. */
4707 if ((CONVERT_EXPR_CODE_P (code)
4708 || code == VIEW_CONVERT_EXPR)
4709 && (!vectype_in
4710 || TYPE_VECTOR_SUBPARTS (vectype_in) != nunits
4711 || (GET_MODE_SIZE (TYPE_MODE (vectype))
4712 != GET_MODE_SIZE (TYPE_MODE (vectype_in)))))
4713 return false;
4714
4715 /* We do not handle bit-precision changes. */
4716 if ((CONVERT_EXPR_CODE_P (code)
4717 || code == VIEW_CONVERT_EXPR)
4718 && INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
4719 && (!type_has_mode_precision_p (TREE_TYPE (scalar_dest))
4720 || !type_has_mode_precision_p (TREE_TYPE (op)))
4721 /* But a conversion that does not change the bit-pattern is ok. */
4722 && !((TYPE_PRECISION (TREE_TYPE (scalar_dest))
4723 > TYPE_PRECISION (TREE_TYPE (op)))
4724 && TYPE_UNSIGNED (TREE_TYPE (op)))
4725 /* Conversion between boolean types of different sizes is
4726 a simple assignment in case their vectypes are same
4727 boolean vectors. */
4728 && (!VECTOR_BOOLEAN_TYPE_P (vectype)
4729 || !VECTOR_BOOLEAN_TYPE_P (vectype_in)))
4730 {
4731 if (dump_enabled_p ())
4732 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4733 "type conversion to/from bit-precision "
4734 "unsupported.\n");
4735 return false;
4736 }
4737
4738 if (!vec_stmt) /* transformation not required. */
4739 {
4740 STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
4741 if (dump_enabled_p ())
4742 dump_printf_loc (MSG_NOTE, vect_location,
4743 "=== vectorizable_assignment ===\n");
4744 vect_model_simple_cost (stmt_info, ncopies, dt, ndts, NULL, NULL);
4745 return true;
4746 }
4747
4748 /* Transform. */
4749 if (dump_enabled_p ())
4750 dump_printf_loc (MSG_NOTE, vect_location, "transform assignment.\n");
4751
4752 /* Handle def. */
4753 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4754
4755 /* Handle use. */
4756 for (j = 0; j < ncopies; j++)
4757 {
4758 /* Handle uses. */
4759 if (j == 0)
4760 vect_get_vec_defs (op, NULL, stmt, &vec_oprnds, NULL, slp_node);
4761 else
4762 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds, NULL);
4763
4764 /* Arguments are ready. create the new vector stmt. */
4765 FOR_EACH_VEC_ELT (vec_oprnds, i, vop)
4766 {
4767 if (CONVERT_EXPR_CODE_P (code)
4768 || code == VIEW_CONVERT_EXPR)
4769 vop = build1 (VIEW_CONVERT_EXPR, vectype, vop);
4770 new_stmt = gimple_build_assign (vec_dest, vop);
4771 new_temp = make_ssa_name (vec_dest, new_stmt);
4772 gimple_assign_set_lhs (new_stmt, new_temp);
4773 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4774 if (slp_node)
4775 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
4776 }
4777
4778 if (slp_node)
4779 continue;
4780
4781 if (j == 0)
4782 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
4783 else
4784 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
4785
4786 prev_stmt_info = vinfo_for_stmt (new_stmt);
4787 }
4788
4789 vec_oprnds.release ();
4790 return true;
4791 }
4792
4793
4794 /* Return TRUE if CODE (a shift operation) is supported for SCALAR_TYPE
4795 either as shift by a scalar or by a vector. */
4796
4797 bool
4798 vect_supportable_shift (enum tree_code code, tree scalar_type)
4799 {
4800
4801 machine_mode vec_mode;
4802 optab optab;
4803 int icode;
4804 tree vectype;
4805
4806 vectype = get_vectype_for_scalar_type (scalar_type);
4807 if (!vectype)
4808 return false;
4809
4810 optab = optab_for_tree_code (code, vectype, optab_scalar);
4811 if (!optab
4812 || optab_handler (optab, TYPE_MODE (vectype)) == CODE_FOR_nothing)
4813 {
4814 optab = optab_for_tree_code (code, vectype, optab_vector);
4815 if (!optab
4816 || (optab_handler (optab, TYPE_MODE (vectype))
4817 == CODE_FOR_nothing))
4818 return false;
4819 }
4820
4821 vec_mode = TYPE_MODE (vectype);
4822 icode = (int) optab_handler (optab, vec_mode);
4823 if (icode == CODE_FOR_nothing)
4824 return false;
4825
4826 return true;
4827 }
4828
4829
4830 /* Function vectorizable_shift.
4831
4832 Check if STMT performs a shift operation that can be vectorized.
4833 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4834 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
4835 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
4836
4837 static bool
4838 vectorizable_shift (gimple *stmt, gimple_stmt_iterator *gsi,
4839 gimple **vec_stmt, slp_tree slp_node)
4840 {
4841 tree vec_dest;
4842 tree scalar_dest;
4843 tree op0, op1 = NULL;
4844 tree vec_oprnd1 = NULL_TREE;
4845 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4846 tree vectype;
4847 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4848 enum tree_code code;
4849 machine_mode vec_mode;
4850 tree new_temp;
4851 optab optab;
4852 int icode;
4853 machine_mode optab_op2_mode;
4854 gimple *def_stmt;
4855 enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
4856 int ndts = 2;
4857 gimple *new_stmt = NULL;
4858 stmt_vec_info prev_stmt_info;
4859 int nunits_in;
4860 int nunits_out;
4861 tree vectype_out;
4862 tree op1_vectype;
4863 int ncopies;
4864 int j, i;
4865 vec<tree> vec_oprnds0 = vNULL;
4866 vec<tree> vec_oprnds1 = vNULL;
4867 tree vop0, vop1;
4868 unsigned int k;
4869 bool scalar_shift_arg = true;
4870 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4871 vec_info *vinfo = stmt_info->vinfo;
4872 int vf;
4873
4874 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
4875 return false;
4876
4877 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
4878 && ! vec_stmt)
4879 return false;
4880
4881 /* Is STMT a vectorizable binary/unary operation? */
4882 if (!is_gimple_assign (stmt))
4883 return false;
4884
4885 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
4886 return false;
4887
4888 code = gimple_assign_rhs_code (stmt);
4889
4890 if (!(code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR
4891 || code == RROTATE_EXPR))
4892 return false;
4893
4894 scalar_dest = gimple_assign_lhs (stmt);
4895 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
4896 if (!type_has_mode_precision_p (TREE_TYPE (scalar_dest)))
4897 {
4898 if (dump_enabled_p ())
4899 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4900 "bit-precision shifts not supported.\n");
4901 return false;
4902 }
4903
4904 op0 = gimple_assign_rhs1 (stmt);
4905 if (!vect_is_simple_use (op0, vinfo, &def_stmt, &dt[0], &vectype))
4906 {
4907 if (dump_enabled_p ())
4908 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4909 "use not simple.\n");
4910 return false;
4911 }
4912 /* If op0 is an external or constant def use a vector type with
4913 the same size as the output vector type. */
4914 if (!vectype)
4915 vectype = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
4916 if (vec_stmt)
4917 gcc_assert (vectype);
4918 if (!vectype)
4919 {
4920 if (dump_enabled_p ())
4921 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4922 "no vectype for scalar type\n");
4923 return false;
4924 }
4925
4926 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
4927 nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
4928 if (nunits_out != nunits_in)
4929 return false;
4930
4931 op1 = gimple_assign_rhs2 (stmt);
4932 if (!vect_is_simple_use (op1, vinfo, &def_stmt, &dt[1], &op1_vectype))
4933 {
4934 if (dump_enabled_p ())
4935 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4936 "use not simple.\n");
4937 return false;
4938 }
4939
4940 if (loop_vinfo)
4941 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
4942 else
4943 vf = 1;
4944
4945 /* Multiple types in SLP are handled by creating the appropriate number of
4946 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
4947 case of SLP. */
4948 if (slp_node)
4949 ncopies = 1;
4950 else
4951 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
4952
4953 gcc_assert (ncopies >= 1);
4954
4955 /* Determine whether the shift amount is a vector, or scalar. If the
4956 shift/rotate amount is a vector, use the vector/vector shift optabs. */
4957
4958 if ((dt[1] == vect_internal_def
4959 || dt[1] == vect_induction_def)
4960 && !slp_node)
4961 scalar_shift_arg = false;
4962 else if (dt[1] == vect_constant_def
4963 || dt[1] == vect_external_def
4964 || dt[1] == vect_internal_def)
4965 {
4966 /* In SLP, need to check whether the shift count is the same,
4967 in loops if it is a constant or invariant, it is always
4968 a scalar shift. */
4969 if (slp_node)
4970 {
4971 vec<gimple *> stmts = SLP_TREE_SCALAR_STMTS (slp_node);
4972 gimple *slpstmt;
4973
4974 FOR_EACH_VEC_ELT (stmts, k, slpstmt)
4975 if (!operand_equal_p (gimple_assign_rhs2 (slpstmt), op1, 0))
4976 scalar_shift_arg = false;
4977 }
4978
4979 /* If the shift amount is computed by a pattern stmt we cannot
4980 use the scalar amount directly thus give up and use a vector
4981 shift. */
4982 if (dt[1] == vect_internal_def)
4983 {
4984 gimple *def = SSA_NAME_DEF_STMT (op1);
4985 if (is_pattern_stmt_p (vinfo_for_stmt (def)))
4986 scalar_shift_arg = false;
4987 }
4988 }
4989 else
4990 {
4991 if (dump_enabled_p ())
4992 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4993 "operand mode requires invariant argument.\n");
4994 return false;
4995 }
4996
4997 /* Vector shifted by vector. */
4998 if (!scalar_shift_arg)
4999 {
5000 optab = optab_for_tree_code (code, vectype, optab_vector);
5001 if (dump_enabled_p ())
5002 dump_printf_loc (MSG_NOTE, vect_location,
5003 "vector/vector shift/rotate found.\n");
5004
5005 if (!op1_vectype)
5006 op1_vectype = get_same_sized_vectype (TREE_TYPE (op1), vectype_out);
5007 if (op1_vectype == NULL_TREE
5008 || TYPE_MODE (op1_vectype) != TYPE_MODE (vectype))
5009 {
5010 if (dump_enabled_p ())
5011 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5012 "unusable type for last operand in"
5013 " vector/vector shift/rotate.\n");
5014 return false;
5015 }
5016 }
5017 /* See if the machine has a vector shifted by scalar insn and if not
5018 then see if it has a vector shifted by vector insn. */
5019 else
5020 {
5021 optab = optab_for_tree_code (code, vectype, optab_scalar);
5022 if (optab
5023 && optab_handler (optab, TYPE_MODE (vectype)) != CODE_FOR_nothing)
5024 {
5025 if (dump_enabled_p ())
5026 dump_printf_loc (MSG_NOTE, vect_location,
5027 "vector/scalar shift/rotate found.\n");
5028 }
5029 else
5030 {
5031 optab = optab_for_tree_code (code, vectype, optab_vector);
5032 if (optab
5033 && (optab_handler (optab, TYPE_MODE (vectype))
5034 != CODE_FOR_nothing))
5035 {
5036 scalar_shift_arg = false;
5037
5038 if (dump_enabled_p ())
5039 dump_printf_loc (MSG_NOTE, vect_location,
5040 "vector/vector shift/rotate found.\n");
5041
5042 /* Unlike the other binary operators, shifts/rotates have
5043 the rhs being int, instead of the same type as the lhs,
5044 so make sure the scalar is the right type if we are
5045 dealing with vectors of long long/long/short/char. */
5046 if (dt[1] == vect_constant_def)
5047 op1 = fold_convert (TREE_TYPE (vectype), op1);
5048 else if (!useless_type_conversion_p (TREE_TYPE (vectype),
5049 TREE_TYPE (op1)))
5050 {
5051 if (slp_node
5052 && TYPE_MODE (TREE_TYPE (vectype))
5053 != TYPE_MODE (TREE_TYPE (op1)))
5054 {
5055 if (dump_enabled_p ())
5056 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5057 "unusable type for last operand in"
5058 " vector/vector shift/rotate.\n");
5059 return false;
5060 }
5061 if (vec_stmt && !slp_node)
5062 {
5063 op1 = fold_convert (TREE_TYPE (vectype), op1);
5064 op1 = vect_init_vector (stmt, op1,
5065 TREE_TYPE (vectype), NULL);
5066 }
5067 }
5068 }
5069 }
5070 }
5071
5072 /* Supportable by target? */
5073 if (!optab)
5074 {
5075 if (dump_enabled_p ())
5076 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5077 "no optab.\n");
5078 return false;
5079 }
5080 vec_mode = TYPE_MODE (vectype);
5081 icode = (int) optab_handler (optab, vec_mode);
5082 if (icode == CODE_FOR_nothing)
5083 {
5084 if (dump_enabled_p ())
5085 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5086 "op not supported by target.\n");
5087 /* Check only during analysis. */
5088 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
5089 || (vf < vect_min_worthwhile_factor (code)
5090 && !vec_stmt))
5091 return false;
5092 if (dump_enabled_p ())
5093 dump_printf_loc (MSG_NOTE, vect_location,
5094 "proceeding using word mode.\n");
5095 }
5096
5097 /* Worthwhile without SIMD support? Check only during analysis. */
5098 if (!VECTOR_MODE_P (TYPE_MODE (vectype))
5099 && vf < vect_min_worthwhile_factor (code)
5100 && !vec_stmt)
5101 {
5102 if (dump_enabled_p ())
5103 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5104 "not worthwhile without SIMD support.\n");
5105 return false;
5106 }
5107
5108 if (!vec_stmt) /* transformation not required. */
5109 {
5110 STMT_VINFO_TYPE (stmt_info) = shift_vec_info_type;
5111 if (dump_enabled_p ())
5112 dump_printf_loc (MSG_NOTE, vect_location,
5113 "=== vectorizable_shift ===\n");
5114 vect_model_simple_cost (stmt_info, ncopies, dt, ndts, NULL, NULL);
5115 return true;
5116 }
5117
5118 /* Transform. */
5119
5120 if (dump_enabled_p ())
5121 dump_printf_loc (MSG_NOTE, vect_location,
5122 "transform binary/unary operation.\n");
5123
5124 /* Handle def. */
5125 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5126
5127 prev_stmt_info = NULL;
5128 for (j = 0; j < ncopies; j++)
5129 {
5130 /* Handle uses. */
5131 if (j == 0)
5132 {
5133 if (scalar_shift_arg)
5134 {
5135 /* Vector shl and shr insn patterns can be defined with scalar
5136 operand 2 (shift operand). In this case, use constant or loop
5137 invariant op1 directly, without extending it to vector mode
5138 first. */
5139 optab_op2_mode = insn_data[icode].operand[2].mode;
5140 if (!VECTOR_MODE_P (optab_op2_mode))
5141 {
5142 if (dump_enabled_p ())
5143 dump_printf_loc (MSG_NOTE, vect_location,
5144 "operand 1 using scalar mode.\n");
5145 vec_oprnd1 = op1;
5146 vec_oprnds1.create (slp_node ? slp_node->vec_stmts_size : 1);
5147 vec_oprnds1.quick_push (vec_oprnd1);
5148 if (slp_node)
5149 {
5150 /* Store vec_oprnd1 for every vector stmt to be created
5151 for SLP_NODE. We check during the analysis that all
5152 the shift arguments are the same.
5153 TODO: Allow different constants for different vector
5154 stmts generated for an SLP instance. */
5155 for (k = 0; k < slp_node->vec_stmts_size - 1; k++)
5156 vec_oprnds1.quick_push (vec_oprnd1);
5157 }
5158 }
5159 }
5160
5161 /* vec_oprnd1 is available if operand 1 should be of a scalar-type
5162 (a special case for certain kind of vector shifts); otherwise,
5163 operand 1 should be of a vector type (the usual case). */
5164 if (vec_oprnd1)
5165 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
5166 slp_node);
5167 else
5168 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
5169 slp_node);
5170 }
5171 else
5172 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1);
5173
5174 /* Arguments are ready. Create the new vector stmt. */
5175 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
5176 {
5177 vop1 = vec_oprnds1[i];
5178 new_stmt = gimple_build_assign (vec_dest, code, vop0, vop1);
5179 new_temp = make_ssa_name (vec_dest, new_stmt);
5180 gimple_assign_set_lhs (new_stmt, new_temp);
5181 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5182 if (slp_node)
5183 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
5184 }
5185
5186 if (slp_node)
5187 continue;
5188
5189 if (j == 0)
5190 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5191 else
5192 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5193 prev_stmt_info = vinfo_for_stmt (new_stmt);
5194 }
5195
5196 vec_oprnds0.release ();
5197 vec_oprnds1.release ();
5198
5199 return true;
5200 }
5201
5202
5203 /* Function vectorizable_operation.
5204
5205 Check if STMT performs a binary, unary or ternary operation that can
5206 be vectorized.
5207 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
5208 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
5209 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
5210
5211 static bool
5212 vectorizable_operation (gimple *stmt, gimple_stmt_iterator *gsi,
5213 gimple **vec_stmt, slp_tree slp_node)
5214 {
5215 tree vec_dest;
5216 tree scalar_dest;
5217 tree op0, op1 = NULL_TREE, op2 = NULL_TREE;
5218 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5219 tree vectype;
5220 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5221 enum tree_code code;
5222 machine_mode vec_mode;
5223 tree new_temp;
5224 int op_type;
5225 optab optab;
5226 bool target_support_p;
5227 gimple *def_stmt;
5228 enum vect_def_type dt[3]
5229 = {vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type};
5230 int ndts = 3;
5231 gimple *new_stmt = NULL;
5232 stmt_vec_info prev_stmt_info;
5233 int nunits_in;
5234 int nunits_out;
5235 tree vectype_out;
5236 int ncopies;
5237 int j, i;
5238 vec<tree> vec_oprnds0 = vNULL;
5239 vec<tree> vec_oprnds1 = vNULL;
5240 vec<tree> vec_oprnds2 = vNULL;
5241 tree vop0, vop1, vop2;
5242 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
5243 vec_info *vinfo = stmt_info->vinfo;
5244 int vf;
5245
5246 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
5247 return false;
5248
5249 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
5250 && ! vec_stmt)
5251 return false;
5252
5253 /* Is STMT a vectorizable binary/unary operation? */
5254 if (!is_gimple_assign (stmt))
5255 return false;
5256
5257 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
5258 return false;
5259
5260 code = gimple_assign_rhs_code (stmt);
5261
5262 /* For pointer addition, we should use the normal plus for
5263 the vector addition. */
5264 if (code == POINTER_PLUS_EXPR)
5265 code = PLUS_EXPR;
5266
5267 /* Support only unary or binary operations. */
5268 op_type = TREE_CODE_LENGTH (code);
5269 if (op_type != unary_op && op_type != binary_op && op_type != ternary_op)
5270 {
5271 if (dump_enabled_p ())
5272 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5273 "num. args = %d (not unary/binary/ternary op).\n",
5274 op_type);
5275 return false;
5276 }
5277
5278 scalar_dest = gimple_assign_lhs (stmt);
5279 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
5280
5281 /* Most operations cannot handle bit-precision types without extra
5282 truncations. */
5283 if (!VECTOR_BOOLEAN_TYPE_P (vectype_out)
5284 && !type_has_mode_precision_p (TREE_TYPE (scalar_dest))
5285 /* Exception are bitwise binary operations. */
5286 && code != BIT_IOR_EXPR
5287 && code != BIT_XOR_EXPR
5288 && code != BIT_AND_EXPR)
5289 {
5290 if (dump_enabled_p ())
5291 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5292 "bit-precision arithmetic not supported.\n");
5293 return false;
5294 }
5295
5296 op0 = gimple_assign_rhs1 (stmt);
5297 if (!vect_is_simple_use (op0, vinfo, &def_stmt, &dt[0], &vectype))
5298 {
5299 if (dump_enabled_p ())
5300 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5301 "use not simple.\n");
5302 return false;
5303 }
5304 /* If op0 is an external or constant def use a vector type with
5305 the same size as the output vector type. */
5306 if (!vectype)
5307 {
5308 /* For boolean type we cannot determine vectype by
5309 invariant value (don't know whether it is a vector
5310 of booleans or vector of integers). We use output
5311 vectype because operations on boolean don't change
5312 type. */
5313 if (VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (op0)))
5314 {
5315 if (!VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (scalar_dest)))
5316 {
5317 if (dump_enabled_p ())
5318 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5319 "not supported operation on bool value.\n");
5320 return false;
5321 }
5322 vectype = vectype_out;
5323 }
5324 else
5325 vectype = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
5326 }
5327 if (vec_stmt)
5328 gcc_assert (vectype);
5329 if (!vectype)
5330 {
5331 if (dump_enabled_p ())
5332 {
5333 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5334 "no vectype for scalar type ");
5335 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
5336 TREE_TYPE (op0));
5337 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
5338 }
5339
5340 return false;
5341 }
5342
5343 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
5344 nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
5345 if (nunits_out != nunits_in)
5346 return false;
5347
5348 if (op_type == binary_op || op_type == ternary_op)
5349 {
5350 op1 = gimple_assign_rhs2 (stmt);
5351 if (!vect_is_simple_use (op1, vinfo, &def_stmt, &dt[1]))
5352 {
5353 if (dump_enabled_p ())
5354 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5355 "use not simple.\n");
5356 return false;
5357 }
5358 }
5359 if (op_type == ternary_op)
5360 {
5361 op2 = gimple_assign_rhs3 (stmt);
5362 if (!vect_is_simple_use (op2, vinfo, &def_stmt, &dt[2]))
5363 {
5364 if (dump_enabled_p ())
5365 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5366 "use not simple.\n");
5367 return false;
5368 }
5369 }
5370
5371 if (loop_vinfo)
5372 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
5373 else
5374 vf = 1;
5375
5376 /* Multiple types in SLP are handled by creating the appropriate number of
5377 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
5378 case of SLP. */
5379 if (slp_node)
5380 ncopies = 1;
5381 else
5382 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
5383
5384 gcc_assert (ncopies >= 1);
5385
5386 /* Shifts are handled in vectorizable_shift (). */
5387 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR
5388 || code == RROTATE_EXPR)
5389 return false;
5390
5391 /* Supportable by target? */
5392
5393 vec_mode = TYPE_MODE (vectype);
5394 if (code == MULT_HIGHPART_EXPR)
5395 target_support_p = can_mult_highpart_p (vec_mode, TYPE_UNSIGNED (vectype));
5396 else
5397 {
5398 optab = optab_for_tree_code (code, vectype, optab_default);
5399 if (!optab)
5400 {
5401 if (dump_enabled_p ())
5402 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5403 "no optab.\n");
5404 return false;
5405 }
5406 target_support_p = (optab_handler (optab, vec_mode)
5407 != CODE_FOR_nothing);
5408 }
5409
5410 if (!target_support_p)
5411 {
5412 if (dump_enabled_p ())
5413 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5414 "op not supported by target.\n");
5415 /* Check only during analysis. */
5416 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
5417 || (!vec_stmt && vf < vect_min_worthwhile_factor (code)))
5418 return false;
5419 if (dump_enabled_p ())
5420 dump_printf_loc (MSG_NOTE, vect_location,
5421 "proceeding using word mode.\n");
5422 }
5423
5424 /* Worthwhile without SIMD support? Check only during analysis. */
5425 if (!VECTOR_MODE_P (vec_mode)
5426 && !vec_stmt
5427 && vf < vect_min_worthwhile_factor (code))
5428 {
5429 if (dump_enabled_p ())
5430 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5431 "not worthwhile without SIMD support.\n");
5432 return false;
5433 }
5434
5435 if (!vec_stmt) /* transformation not required. */
5436 {
5437 STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
5438 if (dump_enabled_p ())
5439 dump_printf_loc (MSG_NOTE, vect_location,
5440 "=== vectorizable_operation ===\n");
5441 vect_model_simple_cost (stmt_info, ncopies, dt, ndts, NULL, NULL);
5442 return true;
5443 }
5444
5445 /* Transform. */
5446
5447 if (dump_enabled_p ())
5448 dump_printf_loc (MSG_NOTE, vect_location,
5449 "transform binary/unary operation.\n");
5450
5451 /* Handle def. */
5452 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5453
5454 /* In case the vectorization factor (VF) is bigger than the number
5455 of elements that we can fit in a vectype (nunits), we have to generate
5456 more than one vector stmt - i.e - we need to "unroll" the
5457 vector stmt by a factor VF/nunits. In doing so, we record a pointer
5458 from one copy of the vector stmt to the next, in the field
5459 STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
5460 stages to find the correct vector defs to be used when vectorizing
5461 stmts that use the defs of the current stmt. The example below
5462 illustrates the vectorization process when VF=16 and nunits=4 (i.e.,
5463 we need to create 4 vectorized stmts):
5464
5465 before vectorization:
5466 RELATED_STMT VEC_STMT
5467 S1: x = memref - -
5468 S2: z = x + 1 - -
5469
5470 step 1: vectorize stmt S1 (done in vectorizable_load. See more details
5471 there):
5472 RELATED_STMT VEC_STMT
5473 VS1_0: vx0 = memref0 VS1_1 -
5474 VS1_1: vx1 = memref1 VS1_2 -
5475 VS1_2: vx2 = memref2 VS1_3 -
5476 VS1_3: vx3 = memref3 - -
5477 S1: x = load - VS1_0
5478 S2: z = x + 1 - -
5479
5480 step2: vectorize stmt S2 (done here):
5481 To vectorize stmt S2 we first need to find the relevant vector
5482 def for the first operand 'x'. This is, as usual, obtained from
5483 the vector stmt recorded in the STMT_VINFO_VEC_STMT of the stmt
5484 that defines 'x' (S1). This way we find the stmt VS1_0, and the
5485 relevant vector def 'vx0'. Having found 'vx0' we can generate
5486 the vector stmt VS2_0, and as usual, record it in the
5487 STMT_VINFO_VEC_STMT of stmt S2.
5488 When creating the second copy (VS2_1), we obtain the relevant vector
5489 def from the vector stmt recorded in the STMT_VINFO_RELATED_STMT of
5490 stmt VS1_0. This way we find the stmt VS1_1 and the relevant
5491 vector def 'vx1'. Using 'vx1' we create stmt VS2_1 and record a
5492 pointer to it in the STMT_VINFO_RELATED_STMT of the vector stmt VS2_0.
5493 Similarly when creating stmts VS2_2 and VS2_3. This is the resulting
5494 chain of stmts and pointers:
5495 RELATED_STMT VEC_STMT
5496 VS1_0: vx0 = memref0 VS1_1 -
5497 VS1_1: vx1 = memref1 VS1_2 -
5498 VS1_2: vx2 = memref2 VS1_3 -
5499 VS1_3: vx3 = memref3 - -
5500 S1: x = load - VS1_0
5501 VS2_0: vz0 = vx0 + v1 VS2_1 -
5502 VS2_1: vz1 = vx1 + v1 VS2_2 -
5503 VS2_2: vz2 = vx2 + v1 VS2_3 -
5504 VS2_3: vz3 = vx3 + v1 - -
5505 S2: z = x + 1 - VS2_0 */
5506
5507 prev_stmt_info = NULL;
5508 for (j = 0; j < ncopies; j++)
5509 {
5510 /* Handle uses. */
5511 if (j == 0)
5512 {
5513 if (op_type == binary_op || op_type == ternary_op)
5514 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
5515 slp_node);
5516 else
5517 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
5518 slp_node);
5519 if (op_type == ternary_op)
5520 vect_get_vec_defs (op2, NULL_TREE, stmt, &vec_oprnds2, NULL,
5521 slp_node);
5522 }
5523 else
5524 {
5525 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1);
5526 if (op_type == ternary_op)
5527 {
5528 tree vec_oprnd = vec_oprnds2.pop ();
5529 vec_oprnds2.quick_push (vect_get_vec_def_for_stmt_copy (dt[2],
5530 vec_oprnd));
5531 }
5532 }
5533
5534 /* Arguments are ready. Create the new vector stmt. */
5535 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
5536 {
5537 vop1 = ((op_type == binary_op || op_type == ternary_op)
5538 ? vec_oprnds1[i] : NULL_TREE);
5539 vop2 = ((op_type == ternary_op)
5540 ? vec_oprnds2[i] : NULL_TREE);
5541 new_stmt = gimple_build_assign (vec_dest, code, vop0, vop1, vop2);
5542 new_temp = make_ssa_name (vec_dest, new_stmt);
5543 gimple_assign_set_lhs (new_stmt, new_temp);
5544 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5545 if (slp_node)
5546 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
5547 }
5548
5549 if (slp_node)
5550 continue;
5551
5552 if (j == 0)
5553 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5554 else
5555 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5556 prev_stmt_info = vinfo_for_stmt (new_stmt);
5557 }
5558
5559 vec_oprnds0.release ();
5560 vec_oprnds1.release ();
5561 vec_oprnds2.release ();
5562
5563 return true;
5564 }
5565
5566 /* A helper function to ensure data reference DR's base alignment
5567 for STMT_INFO. */
5568
5569 static void
5570 ensure_base_align (stmt_vec_info stmt_info, struct data_reference *dr)
5571 {
5572 if (!dr->aux)
5573 return;
5574
5575 if (DR_VECT_AUX (dr)->base_misaligned)
5576 {
5577 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5578 tree base_decl = DR_VECT_AUX (dr)->base_decl;
5579
5580 if (decl_in_symtab_p (base_decl))
5581 symtab_node::get (base_decl)->increase_alignment (TYPE_ALIGN (vectype));
5582 else
5583 {
5584 SET_DECL_ALIGN (base_decl, TYPE_ALIGN (vectype));
5585 DECL_USER_ALIGN (base_decl) = 1;
5586 }
5587 DR_VECT_AUX (dr)->base_misaligned = false;
5588 }
5589 }
5590
5591
5592 /* Function get_group_alias_ptr_type.
5593
5594 Return the alias type for the group starting at FIRST_STMT. */
5595
5596 static tree
5597 get_group_alias_ptr_type (gimple *first_stmt)
5598 {
5599 struct data_reference *first_dr, *next_dr;
5600 gimple *next_stmt;
5601
5602 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
5603 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (first_stmt));
5604 while (next_stmt)
5605 {
5606 next_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (next_stmt));
5607 if (get_alias_set (DR_REF (first_dr))
5608 != get_alias_set (DR_REF (next_dr)))
5609 {
5610 if (dump_enabled_p ())
5611 dump_printf_loc (MSG_NOTE, vect_location,
5612 "conflicting alias set types.\n");
5613 return ptr_type_node;
5614 }
5615 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
5616 }
5617 return reference_alias_ptr_type (DR_REF (first_dr));
5618 }
5619
5620
5621 /* Function vectorizable_store.
5622
5623 Check if STMT defines a non scalar data-ref (array/pointer/structure) that
5624 can be vectorized.
5625 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
5626 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
5627 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
5628
5629 static bool
5630 vectorizable_store (gimple *stmt, gimple_stmt_iterator *gsi, gimple **vec_stmt,
5631 slp_tree slp_node)
5632 {
5633 tree scalar_dest;
5634 tree data_ref;
5635 tree op;
5636 tree vec_oprnd = NULL_TREE;
5637 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5638 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr = NULL;
5639 tree elem_type;
5640 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5641 struct loop *loop = NULL;
5642 machine_mode vec_mode;
5643 tree dummy;
5644 enum dr_alignment_support alignment_support_scheme;
5645 gimple *def_stmt;
5646 enum vect_def_type dt;
5647 stmt_vec_info prev_stmt_info = NULL;
5648 tree dataref_ptr = NULL_TREE;
5649 tree dataref_offset = NULL_TREE;
5650 gimple *ptr_incr = NULL;
5651 int ncopies;
5652 int j;
5653 gimple *next_stmt, *first_stmt;
5654 bool grouped_store;
5655 unsigned int group_size, i;
5656 vec<tree> oprnds = vNULL;
5657 vec<tree> result_chain = vNULL;
5658 bool inv_p;
5659 tree offset = NULL_TREE;
5660 vec<tree> vec_oprnds = vNULL;
5661 bool slp = (slp_node != NULL);
5662 unsigned int vec_num;
5663 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
5664 vec_info *vinfo = stmt_info->vinfo;
5665 tree aggr_type;
5666 gather_scatter_info gs_info;
5667 enum vect_def_type scatter_src_dt = vect_unknown_def_type;
5668 gimple *new_stmt;
5669 int vf;
5670 vec_load_store_type vls_type;
5671 tree ref_type;
5672
5673 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
5674 return false;
5675
5676 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
5677 && ! vec_stmt)
5678 return false;
5679
5680 /* Is vectorizable store? */
5681
5682 if (!is_gimple_assign (stmt))
5683 return false;
5684
5685 scalar_dest = gimple_assign_lhs (stmt);
5686 if (TREE_CODE (scalar_dest) == VIEW_CONVERT_EXPR
5687 && is_pattern_stmt_p (stmt_info))
5688 scalar_dest = TREE_OPERAND (scalar_dest, 0);
5689 if (TREE_CODE (scalar_dest) != ARRAY_REF
5690 && TREE_CODE (scalar_dest) != BIT_FIELD_REF
5691 && TREE_CODE (scalar_dest) != INDIRECT_REF
5692 && TREE_CODE (scalar_dest) != COMPONENT_REF
5693 && TREE_CODE (scalar_dest) != IMAGPART_EXPR
5694 && TREE_CODE (scalar_dest) != REALPART_EXPR
5695 && TREE_CODE (scalar_dest) != MEM_REF)
5696 return false;
5697
5698 /* Cannot have hybrid store SLP -- that would mean storing to the
5699 same location twice. */
5700 gcc_assert (slp == PURE_SLP_STMT (stmt_info));
5701
5702 gcc_assert (gimple_assign_single_p (stmt));
5703
5704 tree vectype = STMT_VINFO_VECTYPE (stmt_info), rhs_vectype = NULL_TREE;
5705 unsigned int nunits = TYPE_VECTOR_SUBPARTS (vectype);
5706
5707 if (loop_vinfo)
5708 {
5709 loop = LOOP_VINFO_LOOP (loop_vinfo);
5710 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
5711 }
5712 else
5713 vf = 1;
5714
5715 /* Multiple types in SLP are handled by creating the appropriate number of
5716 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
5717 case of SLP. */
5718 if (slp)
5719 ncopies = 1;
5720 else
5721 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
5722
5723 gcc_assert (ncopies >= 1);
5724
5725 /* FORNOW. This restriction should be relaxed. */
5726 if (loop && nested_in_vect_loop_p (loop, stmt) && ncopies > 1)
5727 {
5728 if (dump_enabled_p ())
5729 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5730 "multiple types in nested loop.\n");
5731 return false;
5732 }
5733
5734 op = gimple_assign_rhs1 (stmt);
5735
5736 if (!vect_is_simple_use (op, vinfo, &def_stmt, &dt, &rhs_vectype))
5737 {
5738 if (dump_enabled_p ())
5739 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5740 "use not simple.\n");
5741 return false;
5742 }
5743
5744 if (dt == vect_constant_def || dt == vect_external_def)
5745 vls_type = VLS_STORE_INVARIANT;
5746 else
5747 vls_type = VLS_STORE;
5748
5749 if (rhs_vectype && !useless_type_conversion_p (vectype, rhs_vectype))
5750 return false;
5751
5752 elem_type = TREE_TYPE (vectype);
5753 vec_mode = TYPE_MODE (vectype);
5754
5755 /* FORNOW. In some cases can vectorize even if data-type not supported
5756 (e.g. - array initialization with 0). */
5757 if (optab_handler (mov_optab, vec_mode) == CODE_FOR_nothing)
5758 return false;
5759
5760 if (!STMT_VINFO_DATA_REF (stmt_info))
5761 return false;
5762
5763 vect_memory_access_type memory_access_type;
5764 if (!get_load_store_type (stmt, vectype, slp, vls_type, ncopies,
5765 &memory_access_type, &gs_info))
5766 return false;
5767
5768 if (!vec_stmt) /* transformation not required. */
5769 {
5770 STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info) = memory_access_type;
5771 STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
5772 /* The SLP costs are calculated during SLP analysis. */
5773 if (!PURE_SLP_STMT (stmt_info))
5774 vect_model_store_cost (stmt_info, ncopies, memory_access_type, dt,
5775 NULL, NULL, NULL);
5776 return true;
5777 }
5778 gcc_assert (memory_access_type == STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info));
5779
5780 /* Transform. */
5781
5782 ensure_base_align (stmt_info, dr);
5783
5784 if (memory_access_type == VMAT_GATHER_SCATTER)
5785 {
5786 tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE, op, src;
5787 tree arglist = TYPE_ARG_TYPES (TREE_TYPE (gs_info.decl));
5788 tree rettype, srctype, ptrtype, idxtype, masktype, scaletype;
5789 tree ptr, mask, var, scale, perm_mask = NULL_TREE;
5790 edge pe = loop_preheader_edge (loop);
5791 gimple_seq seq;
5792 basic_block new_bb;
5793 enum { NARROW, NONE, WIDEN } modifier;
5794 int scatter_off_nunits = TYPE_VECTOR_SUBPARTS (gs_info.offset_vectype);
5795
5796 if (nunits == (unsigned int) scatter_off_nunits)
5797 modifier = NONE;
5798 else if (nunits == (unsigned int) scatter_off_nunits / 2)
5799 {
5800 unsigned char *sel = XALLOCAVEC (unsigned char, scatter_off_nunits);
5801 modifier = WIDEN;
5802
5803 for (i = 0; i < (unsigned int) scatter_off_nunits; ++i)
5804 sel[i] = i | nunits;
5805
5806 perm_mask = vect_gen_perm_mask_checked (gs_info.offset_vectype, sel);
5807 gcc_assert (perm_mask != NULL_TREE);
5808 }
5809 else if (nunits == (unsigned int) scatter_off_nunits * 2)
5810 {
5811 unsigned char *sel = XALLOCAVEC (unsigned char, nunits);
5812 modifier = NARROW;
5813
5814 for (i = 0; i < (unsigned int) nunits; ++i)
5815 sel[i] = i | scatter_off_nunits;
5816
5817 perm_mask = vect_gen_perm_mask_checked (vectype, sel);
5818 gcc_assert (perm_mask != NULL_TREE);
5819 ncopies *= 2;
5820 }
5821 else
5822 gcc_unreachable ();
5823
5824 rettype = TREE_TYPE (TREE_TYPE (gs_info.decl));
5825 ptrtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
5826 masktype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
5827 idxtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
5828 srctype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
5829 scaletype = TREE_VALUE (arglist);
5830
5831 gcc_checking_assert (TREE_CODE (masktype) == INTEGER_TYPE
5832 && TREE_CODE (rettype) == VOID_TYPE);
5833
5834 ptr = fold_convert (ptrtype, gs_info.base);
5835 if (!is_gimple_min_invariant (ptr))
5836 {
5837 ptr = force_gimple_operand (ptr, &seq, true, NULL_TREE);
5838 new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
5839 gcc_assert (!new_bb);
5840 }
5841
5842 /* Currently we support only unconditional scatter stores,
5843 so mask should be all ones. */
5844 mask = build_int_cst (masktype, -1);
5845 mask = vect_init_vector (stmt, mask, masktype, NULL);
5846
5847 scale = build_int_cst (scaletype, gs_info.scale);
5848
5849 prev_stmt_info = NULL;
5850 for (j = 0; j < ncopies; ++j)
5851 {
5852 if (j == 0)
5853 {
5854 src = vec_oprnd1
5855 = vect_get_vec_def_for_operand (gimple_assign_rhs1 (stmt), stmt);
5856 op = vec_oprnd0
5857 = vect_get_vec_def_for_operand (gs_info.offset, stmt);
5858 }
5859 else if (modifier != NONE && (j & 1))
5860 {
5861 if (modifier == WIDEN)
5862 {
5863 src = vec_oprnd1
5864 = vect_get_vec_def_for_stmt_copy (scatter_src_dt, vec_oprnd1);
5865 op = permute_vec_elements (vec_oprnd0, vec_oprnd0, perm_mask,
5866 stmt, gsi);
5867 }
5868 else if (modifier == NARROW)
5869 {
5870 src = permute_vec_elements (vec_oprnd1, vec_oprnd1, perm_mask,
5871 stmt, gsi);
5872 op = vec_oprnd0
5873 = vect_get_vec_def_for_stmt_copy (gs_info.offset_dt,
5874 vec_oprnd0);
5875 }
5876 else
5877 gcc_unreachable ();
5878 }
5879 else
5880 {
5881 src = vec_oprnd1
5882 = vect_get_vec_def_for_stmt_copy (scatter_src_dt, vec_oprnd1);
5883 op = vec_oprnd0
5884 = vect_get_vec_def_for_stmt_copy (gs_info.offset_dt,
5885 vec_oprnd0);
5886 }
5887
5888 if (!useless_type_conversion_p (srctype, TREE_TYPE (src)))
5889 {
5890 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (src))
5891 == TYPE_VECTOR_SUBPARTS (srctype));
5892 var = vect_get_new_ssa_name (srctype, vect_simple_var);
5893 src = build1 (VIEW_CONVERT_EXPR, srctype, src);
5894 new_stmt = gimple_build_assign (var, VIEW_CONVERT_EXPR, src);
5895 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5896 src = var;
5897 }
5898
5899 if (!useless_type_conversion_p (idxtype, TREE_TYPE (op)))
5900 {
5901 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (op))
5902 == TYPE_VECTOR_SUBPARTS (idxtype));
5903 var = vect_get_new_ssa_name (idxtype, vect_simple_var);
5904 op = build1 (VIEW_CONVERT_EXPR, idxtype, op);
5905 new_stmt = gimple_build_assign (var, VIEW_CONVERT_EXPR, op);
5906 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5907 op = var;
5908 }
5909
5910 new_stmt
5911 = gimple_build_call (gs_info.decl, 5, ptr, mask, op, src, scale);
5912
5913 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5914
5915 if (prev_stmt_info == NULL)
5916 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5917 else
5918 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5919 prev_stmt_info = vinfo_for_stmt (new_stmt);
5920 }
5921 return true;
5922 }
5923
5924 grouped_store = STMT_VINFO_GROUPED_ACCESS (stmt_info);
5925 if (grouped_store)
5926 {
5927 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
5928 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
5929 group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
5930
5931 GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))++;
5932
5933 /* FORNOW */
5934 gcc_assert (!loop || !nested_in_vect_loop_p (loop, stmt));
5935
5936 /* We vectorize all the stmts of the interleaving group when we
5937 reach the last stmt in the group. */
5938 if (GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))
5939 < GROUP_SIZE (vinfo_for_stmt (first_stmt))
5940 && !slp)
5941 {
5942 *vec_stmt = NULL;
5943 return true;
5944 }
5945
5946 if (slp)
5947 {
5948 grouped_store = false;
5949 /* VEC_NUM is the number of vect stmts to be created for this
5950 group. */
5951 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
5952 first_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[0];
5953 gcc_assert (GROUP_FIRST_ELEMENT (vinfo_for_stmt (first_stmt)) == first_stmt);
5954 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
5955 op = gimple_assign_rhs1 (first_stmt);
5956 }
5957 else
5958 /* VEC_NUM is the number of vect stmts to be created for this
5959 group. */
5960 vec_num = group_size;
5961
5962 ref_type = get_group_alias_ptr_type (first_stmt);
5963 }
5964 else
5965 {
5966 first_stmt = stmt;
5967 first_dr = dr;
5968 group_size = vec_num = 1;
5969 ref_type = reference_alias_ptr_type (DR_REF (first_dr));
5970 }
5971
5972 if (dump_enabled_p ())
5973 dump_printf_loc (MSG_NOTE, vect_location,
5974 "transform store. ncopies = %d\n", ncopies);
5975
5976 if (memory_access_type == VMAT_ELEMENTWISE
5977 || memory_access_type == VMAT_STRIDED_SLP)
5978 {
5979 gimple_stmt_iterator incr_gsi;
5980 bool insert_after;
5981 gimple *incr;
5982 tree offvar;
5983 tree ivstep;
5984 tree running_off;
5985 gimple_seq stmts = NULL;
5986 tree stride_base, stride_step, alias_off;
5987 tree vec_oprnd;
5988 unsigned int g;
5989
5990 gcc_assert (!nested_in_vect_loop_p (loop, stmt));
5991
5992 stride_base
5993 = fold_build_pointer_plus
5994 (unshare_expr (DR_BASE_ADDRESS (first_dr)),
5995 size_binop (PLUS_EXPR,
5996 convert_to_ptrofftype (unshare_expr (DR_OFFSET (first_dr))),
5997 convert_to_ptrofftype (DR_INIT (first_dr))));
5998 stride_step = fold_convert (sizetype, unshare_expr (DR_STEP (first_dr)));
5999
6000 /* For a store with loop-invariant (but other than power-of-2)
6001 stride (i.e. not a grouped access) like so:
6002
6003 for (i = 0; i < n; i += stride)
6004 array[i] = ...;
6005
6006 we generate a new induction variable and new stores from
6007 the components of the (vectorized) rhs:
6008
6009 for (j = 0; ; j += VF*stride)
6010 vectemp = ...;
6011 tmp1 = vectemp[0];
6012 array[j] = tmp1;
6013 tmp2 = vectemp[1];
6014 array[j + stride] = tmp2;
6015 ...
6016 */
6017
6018 unsigned nstores = nunits;
6019 unsigned lnel = 1;
6020 tree ltype = elem_type;
6021 tree lvectype = vectype;
6022 if (slp)
6023 {
6024 if (group_size < nunits
6025 && nunits % group_size == 0)
6026 {
6027 nstores = nunits / group_size;
6028 lnel = group_size;
6029 ltype = build_vector_type (elem_type, group_size);
6030 lvectype = vectype;
6031
6032 /* First check if vec_extract optab doesn't support extraction
6033 of vector elts directly. */
6034 scalar_mode elmode = SCALAR_TYPE_MODE (elem_type);
6035 machine_mode vmode = mode_for_vector (elmode, group_size);
6036 if (! VECTOR_MODE_P (vmode)
6037 || (convert_optab_handler (vec_extract_optab,
6038 TYPE_MODE (vectype), vmode)
6039 == CODE_FOR_nothing))
6040 {
6041 /* Try to avoid emitting an extract of vector elements
6042 by performing the extracts using an integer type of the
6043 same size, extracting from a vector of those and then
6044 re-interpreting it as the original vector type if
6045 supported. */
6046 unsigned lsize
6047 = group_size * GET_MODE_BITSIZE (elmode);
6048 elmode = int_mode_for_size (lsize, 0).require ();
6049 vmode = mode_for_vector (elmode, nunits / group_size);
6050 /* If we can't construct such a vector fall back to
6051 element extracts from the original vector type and
6052 element size stores. */
6053 if (VECTOR_MODE_P (vmode)
6054 && (convert_optab_handler (vec_extract_optab,
6055 vmode, elmode)
6056 != CODE_FOR_nothing))
6057 {
6058 nstores = nunits / group_size;
6059 lnel = group_size;
6060 ltype = build_nonstandard_integer_type (lsize, 1);
6061 lvectype = build_vector_type (ltype, nstores);
6062 }
6063 /* Else fall back to vector extraction anyway.
6064 Fewer stores are more important than avoiding spilling
6065 of the vector we extract from. Compared to the
6066 construction case in vectorizable_load no store-forwarding
6067 issue exists here for reasonable archs. */
6068 }
6069 }
6070 else if (group_size >= nunits
6071 && group_size % nunits == 0)
6072 {
6073 nstores = 1;
6074 lnel = nunits;
6075 ltype = vectype;
6076 lvectype = vectype;
6077 }
6078 ltype = build_aligned_type (ltype, TYPE_ALIGN (elem_type));
6079 ncopies = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
6080 }
6081
6082 ivstep = stride_step;
6083 ivstep = fold_build2 (MULT_EXPR, TREE_TYPE (ivstep), ivstep,
6084 build_int_cst (TREE_TYPE (ivstep), vf));
6085
6086 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
6087
6088 create_iv (stride_base, ivstep, NULL,
6089 loop, &incr_gsi, insert_after,
6090 &offvar, NULL);
6091 incr = gsi_stmt (incr_gsi);
6092 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo));
6093
6094 stride_step = force_gimple_operand (stride_step, &stmts, true, NULL_TREE);
6095 if (stmts)
6096 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
6097
6098 prev_stmt_info = NULL;
6099 alias_off = build_int_cst (ref_type, 0);
6100 next_stmt = first_stmt;
6101 for (g = 0; g < group_size; g++)
6102 {
6103 running_off = offvar;
6104 if (g)
6105 {
6106 tree size = TYPE_SIZE_UNIT (ltype);
6107 tree pos = fold_build2 (MULT_EXPR, sizetype, size_int (g),
6108 size);
6109 tree newoff = copy_ssa_name (running_off, NULL);
6110 incr = gimple_build_assign (newoff, POINTER_PLUS_EXPR,
6111 running_off, pos);
6112 vect_finish_stmt_generation (stmt, incr, gsi);
6113 running_off = newoff;
6114 }
6115 unsigned int group_el = 0;
6116 unsigned HOST_WIDE_INT
6117 elsz = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
6118 for (j = 0; j < ncopies; j++)
6119 {
6120 /* We've set op and dt above, from gimple_assign_rhs1(stmt),
6121 and first_stmt == stmt. */
6122 if (j == 0)
6123 {
6124 if (slp)
6125 {
6126 vect_get_vec_defs (op, NULL_TREE, stmt, &vec_oprnds, NULL,
6127 slp_node);
6128 vec_oprnd = vec_oprnds[0];
6129 }
6130 else
6131 {
6132 gcc_assert (gimple_assign_single_p (next_stmt));
6133 op = gimple_assign_rhs1 (next_stmt);
6134 vec_oprnd = vect_get_vec_def_for_operand (op, next_stmt);
6135 }
6136 }
6137 else
6138 {
6139 if (slp)
6140 vec_oprnd = vec_oprnds[j];
6141 else
6142 {
6143 vect_is_simple_use (vec_oprnd, vinfo, &def_stmt, &dt);
6144 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, vec_oprnd);
6145 }
6146 }
6147 /* Pun the vector to extract from if necessary. */
6148 if (lvectype != vectype)
6149 {
6150 tree tem = make_ssa_name (lvectype);
6151 gimple *pun
6152 = gimple_build_assign (tem, build1 (VIEW_CONVERT_EXPR,
6153 lvectype, vec_oprnd));
6154 vect_finish_stmt_generation (stmt, pun, gsi);
6155 vec_oprnd = tem;
6156 }
6157 for (i = 0; i < nstores; i++)
6158 {
6159 tree newref, newoff;
6160 gimple *incr, *assign;
6161 tree size = TYPE_SIZE (ltype);
6162 /* Extract the i'th component. */
6163 tree pos = fold_build2 (MULT_EXPR, bitsizetype,
6164 bitsize_int (i), size);
6165 tree elem = fold_build3 (BIT_FIELD_REF, ltype, vec_oprnd,
6166 size, pos);
6167
6168 elem = force_gimple_operand_gsi (gsi, elem, true,
6169 NULL_TREE, true,
6170 GSI_SAME_STMT);
6171
6172 tree this_off = build_int_cst (TREE_TYPE (alias_off),
6173 group_el * elsz);
6174 newref = build2 (MEM_REF, ltype,
6175 running_off, this_off);
6176
6177 /* And store it to *running_off. */
6178 assign = gimple_build_assign (newref, elem);
6179 vect_finish_stmt_generation (stmt, assign, gsi);
6180
6181 group_el += lnel;
6182 if (! slp
6183 || group_el == group_size)
6184 {
6185 newoff = copy_ssa_name (running_off, NULL);
6186 incr = gimple_build_assign (newoff, POINTER_PLUS_EXPR,
6187 running_off, stride_step);
6188 vect_finish_stmt_generation (stmt, incr, gsi);
6189
6190 running_off = newoff;
6191 group_el = 0;
6192 }
6193 if (g == group_size - 1
6194 && !slp)
6195 {
6196 if (j == 0 && i == 0)
6197 STMT_VINFO_VEC_STMT (stmt_info)
6198 = *vec_stmt = assign;
6199 else
6200 STMT_VINFO_RELATED_STMT (prev_stmt_info) = assign;
6201 prev_stmt_info = vinfo_for_stmt (assign);
6202 }
6203 }
6204 }
6205 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
6206 if (slp)
6207 break;
6208 }
6209
6210 vec_oprnds.release ();
6211 return true;
6212 }
6213
6214 auto_vec<tree> dr_chain (group_size);
6215 oprnds.create (group_size);
6216
6217 alignment_support_scheme = vect_supportable_dr_alignment (first_dr, false);
6218 gcc_assert (alignment_support_scheme);
6219 /* Targets with store-lane instructions must not require explicit
6220 realignment. */
6221 gcc_assert (memory_access_type != VMAT_LOAD_STORE_LANES
6222 || alignment_support_scheme == dr_aligned
6223 || alignment_support_scheme == dr_unaligned_supported);
6224
6225 if (memory_access_type == VMAT_CONTIGUOUS_DOWN
6226 || memory_access_type == VMAT_CONTIGUOUS_REVERSE)
6227 offset = size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1);
6228
6229 if (memory_access_type == VMAT_LOAD_STORE_LANES)
6230 aggr_type = build_array_type_nelts (elem_type, vec_num * nunits);
6231 else
6232 aggr_type = vectype;
6233
6234 /* In case the vectorization factor (VF) is bigger than the number
6235 of elements that we can fit in a vectype (nunits), we have to generate
6236 more than one vector stmt - i.e - we need to "unroll" the
6237 vector stmt by a factor VF/nunits. For more details see documentation in
6238 vect_get_vec_def_for_copy_stmt. */
6239
6240 /* In case of interleaving (non-unit grouped access):
6241
6242 S1: &base + 2 = x2
6243 S2: &base = x0
6244 S3: &base + 1 = x1
6245 S4: &base + 3 = x3
6246
6247 We create vectorized stores starting from base address (the access of the
6248 first stmt in the chain (S2 in the above example), when the last store stmt
6249 of the chain (S4) is reached:
6250
6251 VS1: &base = vx2
6252 VS2: &base + vec_size*1 = vx0
6253 VS3: &base + vec_size*2 = vx1
6254 VS4: &base + vec_size*3 = vx3
6255
6256 Then permutation statements are generated:
6257
6258 VS5: vx5 = VEC_PERM_EXPR < vx0, vx3, {0, 8, 1, 9, 2, 10, 3, 11} >
6259 VS6: vx6 = VEC_PERM_EXPR < vx0, vx3, {4, 12, 5, 13, 6, 14, 7, 15} >
6260 ...
6261
6262 And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
6263 (the order of the data-refs in the output of vect_permute_store_chain
6264 corresponds to the order of scalar stmts in the interleaving chain - see
6265 the documentation of vect_permute_store_chain()).
6266
6267 In case of both multiple types and interleaving, above vector stores and
6268 permutation stmts are created for every copy. The result vector stmts are
6269 put in STMT_VINFO_VEC_STMT for the first copy and in the corresponding
6270 STMT_VINFO_RELATED_STMT for the next copies.
6271 */
6272
6273 prev_stmt_info = NULL;
6274 for (j = 0; j < ncopies; j++)
6275 {
6276
6277 if (j == 0)
6278 {
6279 if (slp)
6280 {
6281 /* Get vectorized arguments for SLP_NODE. */
6282 vect_get_vec_defs (op, NULL_TREE, stmt, &vec_oprnds,
6283 NULL, slp_node);
6284
6285 vec_oprnd = vec_oprnds[0];
6286 }
6287 else
6288 {
6289 /* For interleaved stores we collect vectorized defs for all the
6290 stores in the group in DR_CHAIN and OPRNDS. DR_CHAIN is then
6291 used as an input to vect_permute_store_chain(), and OPRNDS as
6292 an input to vect_get_vec_def_for_stmt_copy() for the next copy.
6293
6294 If the store is not grouped, GROUP_SIZE is 1, and DR_CHAIN and
6295 OPRNDS are of size 1. */
6296 next_stmt = first_stmt;
6297 for (i = 0; i < group_size; i++)
6298 {
6299 /* Since gaps are not supported for interleaved stores,
6300 GROUP_SIZE is the exact number of stmts in the chain.
6301 Therefore, NEXT_STMT can't be NULL_TREE. In case that
6302 there is no interleaving, GROUP_SIZE is 1, and only one
6303 iteration of the loop will be executed. */
6304 gcc_assert (next_stmt
6305 && gimple_assign_single_p (next_stmt));
6306 op = gimple_assign_rhs1 (next_stmt);
6307
6308 vec_oprnd = vect_get_vec_def_for_operand (op, next_stmt);
6309 dr_chain.quick_push (vec_oprnd);
6310 oprnds.quick_push (vec_oprnd);
6311 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
6312 }
6313 }
6314
6315 /* We should have catched mismatched types earlier. */
6316 gcc_assert (useless_type_conversion_p (vectype,
6317 TREE_TYPE (vec_oprnd)));
6318 bool simd_lane_access_p
6319 = STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info);
6320 if (simd_lane_access_p
6321 && TREE_CODE (DR_BASE_ADDRESS (first_dr)) == ADDR_EXPR
6322 && VAR_P (TREE_OPERAND (DR_BASE_ADDRESS (first_dr), 0))
6323 && integer_zerop (DR_OFFSET (first_dr))
6324 && integer_zerop (DR_INIT (first_dr))
6325 && alias_sets_conflict_p (get_alias_set (aggr_type),
6326 get_alias_set (TREE_TYPE (ref_type))))
6327 {
6328 dataref_ptr = unshare_expr (DR_BASE_ADDRESS (first_dr));
6329 dataref_offset = build_int_cst (ref_type, 0);
6330 inv_p = false;
6331 }
6332 else
6333 dataref_ptr
6334 = vect_create_data_ref_ptr (first_stmt, aggr_type,
6335 simd_lane_access_p ? loop : NULL,
6336 offset, &dummy, gsi, &ptr_incr,
6337 simd_lane_access_p, &inv_p);
6338 gcc_assert (bb_vinfo || !inv_p);
6339 }
6340 else
6341 {
6342 /* For interleaved stores we created vectorized defs for all the
6343 defs stored in OPRNDS in the previous iteration (previous copy).
6344 DR_CHAIN is then used as an input to vect_permute_store_chain(),
6345 and OPRNDS as an input to vect_get_vec_def_for_stmt_copy() for the
6346 next copy.
6347 If the store is not grouped, GROUP_SIZE is 1, and DR_CHAIN and
6348 OPRNDS are of size 1. */
6349 for (i = 0; i < group_size; i++)
6350 {
6351 op = oprnds[i];
6352 vect_is_simple_use (op, vinfo, &def_stmt, &dt);
6353 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, op);
6354 dr_chain[i] = vec_oprnd;
6355 oprnds[i] = vec_oprnd;
6356 }
6357 if (dataref_offset)
6358 dataref_offset
6359 = int_const_binop (PLUS_EXPR, dataref_offset,
6360 TYPE_SIZE_UNIT (aggr_type));
6361 else
6362 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
6363 TYPE_SIZE_UNIT (aggr_type));
6364 }
6365
6366 if (memory_access_type == VMAT_LOAD_STORE_LANES)
6367 {
6368 tree vec_array;
6369
6370 /* Combine all the vectors into an array. */
6371 vec_array = create_vector_array (vectype, vec_num);
6372 for (i = 0; i < vec_num; i++)
6373 {
6374 vec_oprnd = dr_chain[i];
6375 write_vector_array (stmt, gsi, vec_oprnd, vec_array, i);
6376 }
6377
6378 /* Emit:
6379 MEM_REF[...all elements...] = STORE_LANES (VEC_ARRAY). */
6380 data_ref = create_array_ref (aggr_type, dataref_ptr, ref_type);
6381 gcall *call = gimple_build_call_internal (IFN_STORE_LANES, 1,
6382 vec_array);
6383 gimple_call_set_lhs (call, data_ref);
6384 gimple_call_set_nothrow (call, true);
6385 new_stmt = call;
6386 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6387 }
6388 else
6389 {
6390 new_stmt = NULL;
6391 if (grouped_store)
6392 {
6393 if (j == 0)
6394 result_chain.create (group_size);
6395 /* Permute. */
6396 vect_permute_store_chain (dr_chain, group_size, stmt, gsi,
6397 &result_chain);
6398 }
6399
6400 next_stmt = first_stmt;
6401 for (i = 0; i < vec_num; i++)
6402 {
6403 unsigned align, misalign;
6404
6405 if (i > 0)
6406 /* Bump the vector pointer. */
6407 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
6408 stmt, NULL_TREE);
6409
6410 if (slp)
6411 vec_oprnd = vec_oprnds[i];
6412 else if (grouped_store)
6413 /* For grouped stores vectorized defs are interleaved in
6414 vect_permute_store_chain(). */
6415 vec_oprnd = result_chain[i];
6416
6417 data_ref = fold_build2 (MEM_REF, vectype,
6418 dataref_ptr,
6419 dataref_offset
6420 ? dataref_offset
6421 : build_int_cst (ref_type, 0));
6422 align = TYPE_ALIGN_UNIT (vectype);
6423 if (aligned_access_p (first_dr))
6424 misalign = 0;
6425 else if (DR_MISALIGNMENT (first_dr) == -1)
6426 {
6427 align = dr_alignment (vect_dr_behavior (first_dr));
6428 misalign = 0;
6429 TREE_TYPE (data_ref)
6430 = build_aligned_type (TREE_TYPE (data_ref),
6431 align * BITS_PER_UNIT);
6432 }
6433 else
6434 {
6435 TREE_TYPE (data_ref)
6436 = build_aligned_type (TREE_TYPE (data_ref),
6437 TYPE_ALIGN (elem_type));
6438 misalign = DR_MISALIGNMENT (first_dr);
6439 }
6440 if (dataref_offset == NULL_TREE
6441 && TREE_CODE (dataref_ptr) == SSA_NAME)
6442 set_ptr_info_alignment (get_ptr_info (dataref_ptr), align,
6443 misalign);
6444
6445 if (memory_access_type == VMAT_CONTIGUOUS_REVERSE)
6446 {
6447 tree perm_mask = perm_mask_for_reverse (vectype);
6448 tree perm_dest
6449 = vect_create_destination_var (gimple_assign_rhs1 (stmt),
6450 vectype);
6451 tree new_temp = make_ssa_name (perm_dest);
6452
6453 /* Generate the permute statement. */
6454 gimple *perm_stmt
6455 = gimple_build_assign (new_temp, VEC_PERM_EXPR, vec_oprnd,
6456 vec_oprnd, perm_mask);
6457 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
6458
6459 perm_stmt = SSA_NAME_DEF_STMT (new_temp);
6460 vec_oprnd = new_temp;
6461 }
6462
6463 /* Arguments are ready. Create the new vector stmt. */
6464 new_stmt = gimple_build_assign (data_ref, vec_oprnd);
6465 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6466
6467 if (slp)
6468 continue;
6469
6470 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
6471 if (!next_stmt)
6472 break;
6473 }
6474 }
6475 if (!slp)
6476 {
6477 if (j == 0)
6478 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
6479 else
6480 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
6481 prev_stmt_info = vinfo_for_stmt (new_stmt);
6482 }
6483 }
6484
6485 oprnds.release ();
6486 result_chain.release ();
6487 vec_oprnds.release ();
6488
6489 return true;
6490 }
6491
6492 /* Given a vector type VECTYPE, turns permutation SEL into the equivalent
6493 VECTOR_CST mask. No checks are made that the target platform supports the
6494 mask, so callers may wish to test can_vec_perm_p separately, or use
6495 vect_gen_perm_mask_checked. */
6496
6497 tree
6498 vect_gen_perm_mask_any (tree vectype, const unsigned char *sel)
6499 {
6500 tree mask_elt_type, mask_type, mask_vec, *mask_elts;
6501 int i, nunits;
6502
6503 nunits = TYPE_VECTOR_SUBPARTS (vectype);
6504
6505 mask_elt_type = lang_hooks.types.type_for_mode
6506 (int_mode_for_mode (TYPE_MODE (TREE_TYPE (vectype))).require (), 1);
6507 mask_type = get_vectype_for_scalar_type (mask_elt_type);
6508
6509 mask_elts = XALLOCAVEC (tree, nunits);
6510 for (i = nunits - 1; i >= 0; i--)
6511 mask_elts[i] = build_int_cst (mask_elt_type, sel[i]);
6512 mask_vec = build_vector (mask_type, mask_elts);
6513
6514 return mask_vec;
6515 }
6516
6517 /* Checked version of vect_gen_perm_mask_any. Asserts can_vec_perm_p,
6518 i.e. that the target supports the pattern _for arbitrary input vectors_. */
6519
6520 tree
6521 vect_gen_perm_mask_checked (tree vectype, const unsigned char *sel)
6522 {
6523 gcc_assert (can_vec_perm_p (TYPE_MODE (vectype), false, sel));
6524 return vect_gen_perm_mask_any (vectype, sel);
6525 }
6526
6527 /* Given a vector variable X and Y, that was generated for the scalar
6528 STMT, generate instructions to permute the vector elements of X and Y
6529 using permutation mask MASK_VEC, insert them at *GSI and return the
6530 permuted vector variable. */
6531
6532 static tree
6533 permute_vec_elements (tree x, tree y, tree mask_vec, gimple *stmt,
6534 gimple_stmt_iterator *gsi)
6535 {
6536 tree vectype = TREE_TYPE (x);
6537 tree perm_dest, data_ref;
6538 gimple *perm_stmt;
6539
6540 perm_dest = vect_create_destination_var (gimple_get_lhs (stmt), vectype);
6541 data_ref = make_ssa_name (perm_dest);
6542
6543 /* Generate the permute statement. */
6544 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, x, y, mask_vec);
6545 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
6546
6547 return data_ref;
6548 }
6549
6550 /* Hoist the definitions of all SSA uses on STMT out of the loop LOOP,
6551 inserting them on the loops preheader edge. Returns true if we
6552 were successful in doing so (and thus STMT can be moved then),
6553 otherwise returns false. */
6554
6555 static bool
6556 hoist_defs_of_uses (gimple *stmt, struct loop *loop)
6557 {
6558 ssa_op_iter i;
6559 tree op;
6560 bool any = false;
6561
6562 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6563 {
6564 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
6565 if (!gimple_nop_p (def_stmt)
6566 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)))
6567 {
6568 /* Make sure we don't need to recurse. While we could do
6569 so in simple cases when there are more complex use webs
6570 we don't have an easy way to preserve stmt order to fulfil
6571 dependencies within them. */
6572 tree op2;
6573 ssa_op_iter i2;
6574 if (gimple_code (def_stmt) == GIMPLE_PHI)
6575 return false;
6576 FOR_EACH_SSA_TREE_OPERAND (op2, def_stmt, i2, SSA_OP_USE)
6577 {
6578 gimple *def_stmt2 = SSA_NAME_DEF_STMT (op2);
6579 if (!gimple_nop_p (def_stmt2)
6580 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt2)))
6581 return false;
6582 }
6583 any = true;
6584 }
6585 }
6586
6587 if (!any)
6588 return true;
6589
6590 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6591 {
6592 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
6593 if (!gimple_nop_p (def_stmt)
6594 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)))
6595 {
6596 gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
6597 gsi_remove (&gsi, false);
6598 gsi_insert_on_edge_immediate (loop_preheader_edge (loop), def_stmt);
6599 }
6600 }
6601
6602 return true;
6603 }
6604
6605 /* vectorizable_load.
6606
6607 Check if STMT reads a non scalar data-ref (array/pointer/structure) that
6608 can be vectorized.
6609 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
6610 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
6611 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
6612
6613 static bool
6614 vectorizable_load (gimple *stmt, gimple_stmt_iterator *gsi, gimple **vec_stmt,
6615 slp_tree slp_node, slp_instance slp_node_instance)
6616 {
6617 tree scalar_dest;
6618 tree vec_dest = NULL;
6619 tree data_ref = NULL;
6620 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
6621 stmt_vec_info prev_stmt_info;
6622 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6623 struct loop *loop = NULL;
6624 struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
6625 bool nested_in_vect_loop = false;
6626 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr = NULL;
6627 tree elem_type;
6628 tree new_temp;
6629 machine_mode mode;
6630 gimple *new_stmt = NULL;
6631 tree dummy;
6632 enum dr_alignment_support alignment_support_scheme;
6633 tree dataref_ptr = NULL_TREE;
6634 tree dataref_offset = NULL_TREE;
6635 gimple *ptr_incr = NULL;
6636 int ncopies;
6637 int i, j, group_size, group_gap_adj;
6638 tree msq = NULL_TREE, lsq;
6639 tree offset = NULL_TREE;
6640 tree byte_offset = NULL_TREE;
6641 tree realignment_token = NULL_TREE;
6642 gphi *phi = NULL;
6643 vec<tree> dr_chain = vNULL;
6644 bool grouped_load = false;
6645 gimple *first_stmt;
6646 gimple *first_stmt_for_drptr = NULL;
6647 bool inv_p;
6648 bool compute_in_loop = false;
6649 struct loop *at_loop;
6650 int vec_num;
6651 bool slp = (slp_node != NULL);
6652 bool slp_perm = false;
6653 enum tree_code code;
6654 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
6655 int vf;
6656 tree aggr_type;
6657 gather_scatter_info gs_info;
6658 vec_info *vinfo = stmt_info->vinfo;
6659 tree ref_type;
6660
6661 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
6662 return false;
6663
6664 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
6665 && ! vec_stmt)
6666 return false;
6667
6668 /* Is vectorizable load? */
6669 if (!is_gimple_assign (stmt))
6670 return false;
6671
6672 scalar_dest = gimple_assign_lhs (stmt);
6673 if (TREE_CODE (scalar_dest) != SSA_NAME)
6674 return false;
6675
6676 code = gimple_assign_rhs_code (stmt);
6677 if (code != ARRAY_REF
6678 && code != BIT_FIELD_REF
6679 && code != INDIRECT_REF
6680 && code != COMPONENT_REF
6681 && code != IMAGPART_EXPR
6682 && code != REALPART_EXPR
6683 && code != MEM_REF
6684 && TREE_CODE_CLASS (code) != tcc_declaration)
6685 return false;
6686
6687 if (!STMT_VINFO_DATA_REF (stmt_info))
6688 return false;
6689
6690 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6691 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
6692
6693 if (loop_vinfo)
6694 {
6695 loop = LOOP_VINFO_LOOP (loop_vinfo);
6696 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
6697 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
6698 }
6699 else
6700 vf = 1;
6701
6702 /* Multiple types in SLP are handled by creating the appropriate number of
6703 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
6704 case of SLP. */
6705 if (slp)
6706 ncopies = 1;
6707 else
6708 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
6709
6710 gcc_assert (ncopies >= 1);
6711
6712 /* FORNOW. This restriction should be relaxed. */
6713 if (nested_in_vect_loop && ncopies > 1)
6714 {
6715 if (dump_enabled_p ())
6716 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6717 "multiple types in nested loop.\n");
6718 return false;
6719 }
6720
6721 /* Invalidate assumptions made by dependence analysis when vectorization
6722 on the unrolled body effectively re-orders stmts. */
6723 if (ncopies > 1
6724 && STMT_VINFO_MIN_NEG_DIST (stmt_info) != 0
6725 && ((unsigned)LOOP_VINFO_VECT_FACTOR (loop_vinfo)
6726 > STMT_VINFO_MIN_NEG_DIST (stmt_info)))
6727 {
6728 if (dump_enabled_p ())
6729 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6730 "cannot perform implicit CSE when unrolling "
6731 "with negative dependence distance\n");
6732 return false;
6733 }
6734
6735 elem_type = TREE_TYPE (vectype);
6736 mode = TYPE_MODE (vectype);
6737
6738 /* FORNOW. In some cases can vectorize even if data-type not supported
6739 (e.g. - data copies). */
6740 if (optab_handler (mov_optab, mode) == CODE_FOR_nothing)
6741 {
6742 if (dump_enabled_p ())
6743 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6744 "Aligned load, but unsupported type.\n");
6745 return false;
6746 }
6747
6748 /* Check if the load is a part of an interleaving chain. */
6749 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
6750 {
6751 grouped_load = true;
6752 /* FORNOW */
6753 gcc_assert (!nested_in_vect_loop);
6754 gcc_assert (!STMT_VINFO_GATHER_SCATTER_P (stmt_info));
6755
6756 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
6757 group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
6758
6759 if (slp && SLP_TREE_LOAD_PERMUTATION (slp_node).exists ())
6760 slp_perm = true;
6761
6762 /* Invalidate assumptions made by dependence analysis when vectorization
6763 on the unrolled body effectively re-orders stmts. */
6764 if (!PURE_SLP_STMT (stmt_info)
6765 && STMT_VINFO_MIN_NEG_DIST (stmt_info) != 0
6766 && ((unsigned)LOOP_VINFO_VECT_FACTOR (loop_vinfo)
6767 > STMT_VINFO_MIN_NEG_DIST (stmt_info)))
6768 {
6769 if (dump_enabled_p ())
6770 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6771 "cannot perform implicit CSE when performing "
6772 "group loads with negative dependence distance\n");
6773 return false;
6774 }
6775
6776 /* Similarly when the stmt is a load that is both part of a SLP
6777 instance and a loop vectorized stmt via the same-dr mechanism
6778 we have to give up. */
6779 if (STMT_VINFO_GROUP_SAME_DR_STMT (stmt_info)
6780 && (STMT_SLP_TYPE (stmt_info)
6781 != STMT_SLP_TYPE (vinfo_for_stmt
6782 (STMT_VINFO_GROUP_SAME_DR_STMT (stmt_info)))))
6783 {
6784 if (dump_enabled_p ())
6785 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6786 "conflicting SLP types for CSEd load\n");
6787 return false;
6788 }
6789 }
6790
6791 vect_memory_access_type memory_access_type;
6792 if (!get_load_store_type (stmt, vectype, slp, VLS_LOAD, ncopies,
6793 &memory_access_type, &gs_info))
6794 return false;
6795
6796 if (!vec_stmt) /* transformation not required. */
6797 {
6798 if (!slp)
6799 STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info) = memory_access_type;
6800 STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
6801 /* The SLP costs are calculated during SLP analysis. */
6802 if (!PURE_SLP_STMT (stmt_info))
6803 vect_model_load_cost (stmt_info, ncopies, memory_access_type,
6804 NULL, NULL, NULL);
6805 return true;
6806 }
6807
6808 if (!slp)
6809 gcc_assert (memory_access_type
6810 == STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info));
6811
6812 if (dump_enabled_p ())
6813 dump_printf_loc (MSG_NOTE, vect_location,
6814 "transform load. ncopies = %d\n", ncopies);
6815
6816 /* Transform. */
6817
6818 ensure_base_align (stmt_info, dr);
6819
6820 if (memory_access_type == VMAT_GATHER_SCATTER)
6821 {
6822 tree vec_oprnd0 = NULL_TREE, op;
6823 tree arglist = TYPE_ARG_TYPES (TREE_TYPE (gs_info.decl));
6824 tree rettype, srctype, ptrtype, idxtype, masktype, scaletype;
6825 tree ptr, mask, var, scale, merge, perm_mask = NULL_TREE, prev_res = NULL_TREE;
6826 edge pe = loop_preheader_edge (loop);
6827 gimple_seq seq;
6828 basic_block new_bb;
6829 enum { NARROW, NONE, WIDEN } modifier;
6830 int gather_off_nunits = TYPE_VECTOR_SUBPARTS (gs_info.offset_vectype);
6831
6832 if (nunits == gather_off_nunits)
6833 modifier = NONE;
6834 else if (nunits == gather_off_nunits / 2)
6835 {
6836 unsigned char *sel = XALLOCAVEC (unsigned char, gather_off_nunits);
6837 modifier = WIDEN;
6838
6839 for (i = 0; i < gather_off_nunits; ++i)
6840 sel[i] = i | nunits;
6841
6842 perm_mask = vect_gen_perm_mask_checked (gs_info.offset_vectype, sel);
6843 }
6844 else if (nunits == gather_off_nunits * 2)
6845 {
6846 unsigned char *sel = XALLOCAVEC (unsigned char, nunits);
6847 modifier = NARROW;
6848
6849 for (i = 0; i < nunits; ++i)
6850 sel[i] = i < gather_off_nunits
6851 ? i : i + nunits - gather_off_nunits;
6852
6853 perm_mask = vect_gen_perm_mask_checked (vectype, sel);
6854 ncopies *= 2;
6855 }
6856 else
6857 gcc_unreachable ();
6858
6859 rettype = TREE_TYPE (TREE_TYPE (gs_info.decl));
6860 srctype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
6861 ptrtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
6862 idxtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
6863 masktype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
6864 scaletype = TREE_VALUE (arglist);
6865 gcc_checking_assert (types_compatible_p (srctype, rettype));
6866
6867 vec_dest = vect_create_destination_var (scalar_dest, vectype);
6868
6869 ptr = fold_convert (ptrtype, gs_info.base);
6870 if (!is_gimple_min_invariant (ptr))
6871 {
6872 ptr = force_gimple_operand (ptr, &seq, true, NULL_TREE);
6873 new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
6874 gcc_assert (!new_bb);
6875 }
6876
6877 /* Currently we support only unconditional gather loads,
6878 so mask should be all ones. */
6879 if (TREE_CODE (masktype) == INTEGER_TYPE)
6880 mask = build_int_cst (masktype, -1);
6881 else if (TREE_CODE (TREE_TYPE (masktype)) == INTEGER_TYPE)
6882 {
6883 mask = build_int_cst (TREE_TYPE (masktype), -1);
6884 mask = build_vector_from_val (masktype, mask);
6885 mask = vect_init_vector (stmt, mask, masktype, NULL);
6886 }
6887 else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (masktype)))
6888 {
6889 REAL_VALUE_TYPE r;
6890 long tmp[6];
6891 for (j = 0; j < 6; ++j)
6892 tmp[j] = -1;
6893 real_from_target (&r, tmp, TYPE_MODE (TREE_TYPE (masktype)));
6894 mask = build_real (TREE_TYPE (masktype), r);
6895 mask = build_vector_from_val (masktype, mask);
6896 mask = vect_init_vector (stmt, mask, masktype, NULL);
6897 }
6898 else
6899 gcc_unreachable ();
6900
6901 scale = build_int_cst (scaletype, gs_info.scale);
6902
6903 if (TREE_CODE (TREE_TYPE (rettype)) == INTEGER_TYPE)
6904 merge = build_int_cst (TREE_TYPE (rettype), 0);
6905 else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (rettype)))
6906 {
6907 REAL_VALUE_TYPE r;
6908 long tmp[6];
6909 for (j = 0; j < 6; ++j)
6910 tmp[j] = 0;
6911 real_from_target (&r, tmp, TYPE_MODE (TREE_TYPE (rettype)));
6912 merge = build_real (TREE_TYPE (rettype), r);
6913 }
6914 else
6915 gcc_unreachable ();
6916 merge = build_vector_from_val (rettype, merge);
6917 merge = vect_init_vector (stmt, merge, rettype, NULL);
6918
6919 prev_stmt_info = NULL;
6920 for (j = 0; j < ncopies; ++j)
6921 {
6922 if (modifier == WIDEN && (j & 1))
6923 op = permute_vec_elements (vec_oprnd0, vec_oprnd0,
6924 perm_mask, stmt, gsi);
6925 else if (j == 0)
6926 op = vec_oprnd0
6927 = vect_get_vec_def_for_operand (gs_info.offset, stmt);
6928 else
6929 op = vec_oprnd0
6930 = vect_get_vec_def_for_stmt_copy (gs_info.offset_dt, vec_oprnd0);
6931
6932 if (!useless_type_conversion_p (idxtype, TREE_TYPE (op)))
6933 {
6934 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (op))
6935 == TYPE_VECTOR_SUBPARTS (idxtype));
6936 var = vect_get_new_ssa_name (idxtype, vect_simple_var);
6937 op = build1 (VIEW_CONVERT_EXPR, idxtype, op);
6938 new_stmt
6939 = gimple_build_assign (var, VIEW_CONVERT_EXPR, op);
6940 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6941 op = var;
6942 }
6943
6944 new_stmt
6945 = gimple_build_call (gs_info.decl, 5, merge, ptr, op, mask, scale);
6946
6947 if (!useless_type_conversion_p (vectype, rettype))
6948 {
6949 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype)
6950 == TYPE_VECTOR_SUBPARTS (rettype));
6951 op = vect_get_new_ssa_name (rettype, vect_simple_var);
6952 gimple_call_set_lhs (new_stmt, op);
6953 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6954 var = make_ssa_name (vec_dest);
6955 op = build1 (VIEW_CONVERT_EXPR, vectype, op);
6956 new_stmt
6957 = gimple_build_assign (var, VIEW_CONVERT_EXPR, op);
6958 }
6959 else
6960 {
6961 var = make_ssa_name (vec_dest, new_stmt);
6962 gimple_call_set_lhs (new_stmt, var);
6963 }
6964
6965 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6966
6967 if (modifier == NARROW)
6968 {
6969 if ((j & 1) == 0)
6970 {
6971 prev_res = var;
6972 continue;
6973 }
6974 var = permute_vec_elements (prev_res, var,
6975 perm_mask, stmt, gsi);
6976 new_stmt = SSA_NAME_DEF_STMT (var);
6977 }
6978
6979 if (prev_stmt_info == NULL)
6980 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
6981 else
6982 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
6983 prev_stmt_info = vinfo_for_stmt (new_stmt);
6984 }
6985 return true;
6986 }
6987
6988 if (memory_access_type == VMAT_ELEMENTWISE
6989 || memory_access_type == VMAT_STRIDED_SLP)
6990 {
6991 gimple_stmt_iterator incr_gsi;
6992 bool insert_after;
6993 gimple *incr;
6994 tree offvar;
6995 tree ivstep;
6996 tree running_off;
6997 vec<constructor_elt, va_gc> *v = NULL;
6998 gimple_seq stmts = NULL;
6999 tree stride_base, stride_step, alias_off;
7000
7001 gcc_assert (!nested_in_vect_loop);
7002
7003 if (slp && grouped_load)
7004 {
7005 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
7006 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
7007 group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
7008 ref_type = get_group_alias_ptr_type (first_stmt);
7009 }
7010 else
7011 {
7012 first_stmt = stmt;
7013 first_dr = dr;
7014 group_size = 1;
7015 ref_type = reference_alias_ptr_type (DR_REF (first_dr));
7016 }
7017
7018 stride_base
7019 = fold_build_pointer_plus
7020 (DR_BASE_ADDRESS (first_dr),
7021 size_binop (PLUS_EXPR,
7022 convert_to_ptrofftype (DR_OFFSET (first_dr)),
7023 convert_to_ptrofftype (DR_INIT (first_dr))));
7024 stride_step = fold_convert (sizetype, DR_STEP (first_dr));
7025
7026 /* For a load with loop-invariant (but other than power-of-2)
7027 stride (i.e. not a grouped access) like so:
7028
7029 for (i = 0; i < n; i += stride)
7030 ... = array[i];
7031
7032 we generate a new induction variable and new accesses to
7033 form a new vector (or vectors, depending on ncopies):
7034
7035 for (j = 0; ; j += VF*stride)
7036 tmp1 = array[j];
7037 tmp2 = array[j + stride];
7038 ...
7039 vectemp = {tmp1, tmp2, ...}
7040 */
7041
7042 ivstep = fold_build2 (MULT_EXPR, TREE_TYPE (stride_step), stride_step,
7043 build_int_cst (TREE_TYPE (stride_step), vf));
7044
7045 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
7046
7047 create_iv (unshare_expr (stride_base), unshare_expr (ivstep), NULL,
7048 loop, &incr_gsi, insert_after,
7049 &offvar, NULL);
7050 incr = gsi_stmt (incr_gsi);
7051 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo));
7052
7053 stride_step = force_gimple_operand (unshare_expr (stride_step),
7054 &stmts, true, NULL_TREE);
7055 if (stmts)
7056 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
7057
7058 prev_stmt_info = NULL;
7059 running_off = offvar;
7060 alias_off = build_int_cst (ref_type, 0);
7061 int nloads = nunits;
7062 int lnel = 1;
7063 tree ltype = TREE_TYPE (vectype);
7064 tree lvectype = vectype;
7065 auto_vec<tree> dr_chain;
7066 if (memory_access_type == VMAT_STRIDED_SLP)
7067 {
7068 if (group_size < nunits)
7069 {
7070 /* First check if vec_init optab supports construction from
7071 vector elts directly. */
7072 scalar_mode elmode = SCALAR_TYPE_MODE (TREE_TYPE (vectype));
7073 machine_mode vmode = mode_for_vector (elmode, group_size);
7074 if (VECTOR_MODE_P (vmode)
7075 && (convert_optab_handler (vec_init_optab,
7076 TYPE_MODE (vectype), vmode)
7077 != CODE_FOR_nothing))
7078 {
7079 nloads = nunits / group_size;
7080 lnel = group_size;
7081 ltype = build_vector_type (TREE_TYPE (vectype), group_size);
7082 }
7083 else
7084 {
7085 /* Otherwise avoid emitting a constructor of vector elements
7086 by performing the loads using an integer type of the same
7087 size, constructing a vector of those and then
7088 re-interpreting it as the original vector type.
7089 This avoids a huge runtime penalty due to the general
7090 inability to perform store forwarding from smaller stores
7091 to a larger load. */
7092 unsigned lsize
7093 = group_size * TYPE_PRECISION (TREE_TYPE (vectype));
7094 elmode = int_mode_for_size (lsize, 0).require ();
7095 vmode = mode_for_vector (elmode, nunits / group_size);
7096 /* If we can't construct such a vector fall back to
7097 element loads of the original vector type. */
7098 if (VECTOR_MODE_P (vmode)
7099 && (convert_optab_handler (vec_init_optab, vmode, elmode)
7100 != CODE_FOR_nothing))
7101 {
7102 nloads = nunits / group_size;
7103 lnel = group_size;
7104 ltype = build_nonstandard_integer_type (lsize, 1);
7105 lvectype = build_vector_type (ltype, nloads);
7106 }
7107 }
7108 }
7109 else
7110 {
7111 nloads = 1;
7112 lnel = nunits;
7113 ltype = vectype;
7114 }
7115 ltype = build_aligned_type (ltype, TYPE_ALIGN (TREE_TYPE (vectype)));
7116 }
7117 if (slp)
7118 {
7119 /* For SLP permutation support we need to load the whole group,
7120 not only the number of vector stmts the permutation result
7121 fits in. */
7122 if (slp_perm)
7123 {
7124 ncopies = (group_size * vf + nunits - 1) / nunits;
7125 dr_chain.create (ncopies);
7126 }
7127 else
7128 ncopies = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
7129 }
7130 int group_el = 0;
7131 unsigned HOST_WIDE_INT
7132 elsz = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
7133 for (j = 0; j < ncopies; j++)
7134 {
7135 if (nloads > 1)
7136 vec_alloc (v, nloads);
7137 for (i = 0; i < nloads; i++)
7138 {
7139 tree this_off = build_int_cst (TREE_TYPE (alias_off),
7140 group_el * elsz);
7141 new_stmt = gimple_build_assign (make_ssa_name (ltype),
7142 build2 (MEM_REF, ltype,
7143 running_off, this_off));
7144 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7145 if (nloads > 1)
7146 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE,
7147 gimple_assign_lhs (new_stmt));
7148
7149 group_el += lnel;
7150 if (! slp
7151 || group_el == group_size)
7152 {
7153 tree newoff = copy_ssa_name (running_off);
7154 gimple *incr = gimple_build_assign (newoff, POINTER_PLUS_EXPR,
7155 running_off, stride_step);
7156 vect_finish_stmt_generation (stmt, incr, gsi);
7157
7158 running_off = newoff;
7159 group_el = 0;
7160 }
7161 }
7162 if (nloads > 1)
7163 {
7164 tree vec_inv = build_constructor (lvectype, v);
7165 new_temp = vect_init_vector (stmt, vec_inv, lvectype, gsi);
7166 new_stmt = SSA_NAME_DEF_STMT (new_temp);
7167 if (lvectype != vectype)
7168 {
7169 new_stmt = gimple_build_assign (make_ssa_name (vectype),
7170 VIEW_CONVERT_EXPR,
7171 build1 (VIEW_CONVERT_EXPR,
7172 vectype, new_temp));
7173 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7174 }
7175 }
7176
7177 if (slp)
7178 {
7179 if (slp_perm)
7180 dr_chain.quick_push (gimple_assign_lhs (new_stmt));
7181 else
7182 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
7183 }
7184 else
7185 {
7186 if (j == 0)
7187 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
7188 else
7189 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
7190 prev_stmt_info = vinfo_for_stmt (new_stmt);
7191 }
7192 }
7193 if (slp_perm)
7194 {
7195 unsigned n_perms;
7196 vect_transform_slp_perm_load (slp_node, dr_chain, gsi, vf,
7197 slp_node_instance, false, &n_perms);
7198 }
7199 return true;
7200 }
7201
7202 if (grouped_load)
7203 {
7204 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
7205 group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
7206 int group_gap = GROUP_GAP (vinfo_for_stmt (first_stmt));
7207 /* For SLP vectorization we directly vectorize a subchain
7208 without permutation. */
7209 if (slp && ! SLP_TREE_LOAD_PERMUTATION (slp_node).exists ())
7210 first_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[0];
7211 /* For BB vectorization always use the first stmt to base
7212 the data ref pointer on. */
7213 if (bb_vinfo)
7214 first_stmt_for_drptr = SLP_TREE_SCALAR_STMTS (slp_node)[0];
7215
7216 /* Check if the chain of loads is already vectorized. */
7217 if (STMT_VINFO_VEC_STMT (vinfo_for_stmt (first_stmt))
7218 /* For SLP we would need to copy over SLP_TREE_VEC_STMTS.
7219 ??? But we can only do so if there is exactly one
7220 as we have no way to get at the rest. Leave the CSE
7221 opportunity alone.
7222 ??? With the group load eventually participating
7223 in multiple different permutations (having multiple
7224 slp nodes which refer to the same group) the CSE
7225 is even wrong code. See PR56270. */
7226 && !slp)
7227 {
7228 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
7229 return true;
7230 }
7231 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
7232 group_gap_adj = 0;
7233
7234 /* VEC_NUM is the number of vect stmts to be created for this group. */
7235 if (slp)
7236 {
7237 grouped_load = false;
7238 /* For SLP permutation support we need to load the whole group,
7239 not only the number of vector stmts the permutation result
7240 fits in. */
7241 if (slp_perm)
7242 {
7243 vec_num = (group_size * vf + nunits - 1) / nunits;
7244 group_gap_adj = vf * group_size - nunits * vec_num;
7245 }
7246 else
7247 {
7248 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
7249 group_gap_adj = group_gap;
7250 }
7251 }
7252 else
7253 vec_num = group_size;
7254
7255 ref_type = get_group_alias_ptr_type (first_stmt);
7256 }
7257 else
7258 {
7259 first_stmt = stmt;
7260 first_dr = dr;
7261 group_size = vec_num = 1;
7262 group_gap_adj = 0;
7263 ref_type = reference_alias_ptr_type (DR_REF (first_dr));
7264 }
7265
7266 alignment_support_scheme = vect_supportable_dr_alignment (first_dr, false);
7267 gcc_assert (alignment_support_scheme);
7268 /* Targets with load-lane instructions must not require explicit
7269 realignment. */
7270 gcc_assert (memory_access_type != VMAT_LOAD_STORE_LANES
7271 || alignment_support_scheme == dr_aligned
7272 || alignment_support_scheme == dr_unaligned_supported);
7273
7274 /* In case the vectorization factor (VF) is bigger than the number
7275 of elements that we can fit in a vectype (nunits), we have to generate
7276 more than one vector stmt - i.e - we need to "unroll" the
7277 vector stmt by a factor VF/nunits. In doing so, we record a pointer
7278 from one copy of the vector stmt to the next, in the field
7279 STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
7280 stages to find the correct vector defs to be used when vectorizing
7281 stmts that use the defs of the current stmt. The example below
7282 illustrates the vectorization process when VF=16 and nunits=4 (i.e., we
7283 need to create 4 vectorized stmts):
7284
7285 before vectorization:
7286 RELATED_STMT VEC_STMT
7287 S1: x = memref - -
7288 S2: z = x + 1 - -
7289
7290 step 1: vectorize stmt S1:
7291 We first create the vector stmt VS1_0, and, as usual, record a
7292 pointer to it in the STMT_VINFO_VEC_STMT of the scalar stmt S1.
7293 Next, we create the vector stmt VS1_1, and record a pointer to
7294 it in the STMT_VINFO_RELATED_STMT of the vector stmt VS1_0.
7295 Similarly, for VS1_2 and VS1_3. This is the resulting chain of
7296 stmts and pointers:
7297 RELATED_STMT VEC_STMT
7298 VS1_0: vx0 = memref0 VS1_1 -
7299 VS1_1: vx1 = memref1 VS1_2 -
7300 VS1_2: vx2 = memref2 VS1_3 -
7301 VS1_3: vx3 = memref3 - -
7302 S1: x = load - VS1_0
7303 S2: z = x + 1 - -
7304
7305 See in documentation in vect_get_vec_def_for_stmt_copy for how the
7306 information we recorded in RELATED_STMT field is used to vectorize
7307 stmt S2. */
7308
7309 /* In case of interleaving (non-unit grouped access):
7310
7311 S1: x2 = &base + 2
7312 S2: x0 = &base
7313 S3: x1 = &base + 1
7314 S4: x3 = &base + 3
7315
7316 Vectorized loads are created in the order of memory accesses
7317 starting from the access of the first stmt of the chain:
7318
7319 VS1: vx0 = &base
7320 VS2: vx1 = &base + vec_size*1
7321 VS3: vx3 = &base + vec_size*2
7322 VS4: vx4 = &base + vec_size*3
7323
7324 Then permutation statements are generated:
7325
7326 VS5: vx5 = VEC_PERM_EXPR < vx0, vx1, { 0, 2, ..., i*2 } >
7327 VS6: vx6 = VEC_PERM_EXPR < vx0, vx1, { 1, 3, ..., i*2+1 } >
7328 ...
7329
7330 And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
7331 (the order of the data-refs in the output of vect_permute_load_chain
7332 corresponds to the order of scalar stmts in the interleaving chain - see
7333 the documentation of vect_permute_load_chain()).
7334 The generation of permutation stmts and recording them in
7335 STMT_VINFO_VEC_STMT is done in vect_transform_grouped_load().
7336
7337 In case of both multiple types and interleaving, the vector loads and
7338 permutation stmts above are created for every copy. The result vector
7339 stmts are put in STMT_VINFO_VEC_STMT for the first copy and in the
7340 corresponding STMT_VINFO_RELATED_STMT for the next copies. */
7341
7342 /* If the data reference is aligned (dr_aligned) or potentially unaligned
7343 on a target that supports unaligned accesses (dr_unaligned_supported)
7344 we generate the following code:
7345 p = initial_addr;
7346 indx = 0;
7347 loop {
7348 p = p + indx * vectype_size;
7349 vec_dest = *(p);
7350 indx = indx + 1;
7351 }
7352
7353 Otherwise, the data reference is potentially unaligned on a target that
7354 does not support unaligned accesses (dr_explicit_realign_optimized) -
7355 then generate the following code, in which the data in each iteration is
7356 obtained by two vector loads, one from the previous iteration, and one
7357 from the current iteration:
7358 p1 = initial_addr;
7359 msq_init = *(floor(p1))
7360 p2 = initial_addr + VS - 1;
7361 realignment_token = call target_builtin;
7362 indx = 0;
7363 loop {
7364 p2 = p2 + indx * vectype_size
7365 lsq = *(floor(p2))
7366 vec_dest = realign_load (msq, lsq, realignment_token)
7367 indx = indx + 1;
7368 msq = lsq;
7369 } */
7370
7371 /* If the misalignment remains the same throughout the execution of the
7372 loop, we can create the init_addr and permutation mask at the loop
7373 preheader. Otherwise, it needs to be created inside the loop.
7374 This can only occur when vectorizing memory accesses in the inner-loop
7375 nested within an outer-loop that is being vectorized. */
7376
7377 if (nested_in_vect_loop
7378 && (DR_STEP_ALIGNMENT (dr) % GET_MODE_SIZE (TYPE_MODE (vectype))) != 0)
7379 {
7380 gcc_assert (alignment_support_scheme != dr_explicit_realign_optimized);
7381 compute_in_loop = true;
7382 }
7383
7384 if ((alignment_support_scheme == dr_explicit_realign_optimized
7385 || alignment_support_scheme == dr_explicit_realign)
7386 && !compute_in_loop)
7387 {
7388 msq = vect_setup_realignment (first_stmt, gsi, &realignment_token,
7389 alignment_support_scheme, NULL_TREE,
7390 &at_loop);
7391 if (alignment_support_scheme == dr_explicit_realign_optimized)
7392 {
7393 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (msq));
7394 byte_offset = size_binop (MINUS_EXPR, TYPE_SIZE_UNIT (vectype),
7395 size_one_node);
7396 }
7397 }
7398 else
7399 at_loop = loop;
7400
7401 if (memory_access_type == VMAT_CONTIGUOUS_REVERSE)
7402 offset = size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1);
7403
7404 if (memory_access_type == VMAT_LOAD_STORE_LANES)
7405 aggr_type = build_array_type_nelts (elem_type, vec_num * nunits);
7406 else
7407 aggr_type = vectype;
7408
7409 prev_stmt_info = NULL;
7410 int group_elt = 0;
7411 for (j = 0; j < ncopies; j++)
7412 {
7413 /* 1. Create the vector or array pointer update chain. */
7414 if (j == 0)
7415 {
7416 bool simd_lane_access_p
7417 = STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info);
7418 if (simd_lane_access_p
7419 && TREE_CODE (DR_BASE_ADDRESS (first_dr)) == ADDR_EXPR
7420 && VAR_P (TREE_OPERAND (DR_BASE_ADDRESS (first_dr), 0))
7421 && integer_zerop (DR_OFFSET (first_dr))
7422 && integer_zerop (DR_INIT (first_dr))
7423 && alias_sets_conflict_p (get_alias_set (aggr_type),
7424 get_alias_set (TREE_TYPE (ref_type)))
7425 && (alignment_support_scheme == dr_aligned
7426 || alignment_support_scheme == dr_unaligned_supported))
7427 {
7428 dataref_ptr = unshare_expr (DR_BASE_ADDRESS (first_dr));
7429 dataref_offset = build_int_cst (ref_type, 0);
7430 inv_p = false;
7431 }
7432 else if (first_stmt_for_drptr
7433 && first_stmt != first_stmt_for_drptr)
7434 {
7435 dataref_ptr
7436 = vect_create_data_ref_ptr (first_stmt_for_drptr, aggr_type,
7437 at_loop, offset, &dummy, gsi,
7438 &ptr_incr, simd_lane_access_p,
7439 &inv_p, byte_offset);
7440 /* Adjust the pointer by the difference to first_stmt. */
7441 data_reference_p ptrdr
7442 = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt_for_drptr));
7443 tree diff = fold_convert (sizetype,
7444 size_binop (MINUS_EXPR,
7445 DR_INIT (first_dr),
7446 DR_INIT (ptrdr)));
7447 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
7448 stmt, diff);
7449 }
7450 else
7451 dataref_ptr
7452 = vect_create_data_ref_ptr (first_stmt, aggr_type, at_loop,
7453 offset, &dummy, gsi, &ptr_incr,
7454 simd_lane_access_p, &inv_p,
7455 byte_offset);
7456 }
7457 else if (dataref_offset)
7458 dataref_offset = int_const_binop (PLUS_EXPR, dataref_offset,
7459 TYPE_SIZE_UNIT (aggr_type));
7460 else
7461 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
7462 TYPE_SIZE_UNIT (aggr_type));
7463
7464 if (grouped_load || slp_perm)
7465 dr_chain.create (vec_num);
7466
7467 if (memory_access_type == VMAT_LOAD_STORE_LANES)
7468 {
7469 tree vec_array;
7470
7471 vec_array = create_vector_array (vectype, vec_num);
7472
7473 /* Emit:
7474 VEC_ARRAY = LOAD_LANES (MEM_REF[...all elements...]). */
7475 data_ref = create_array_ref (aggr_type, dataref_ptr, ref_type);
7476 gcall *call = gimple_build_call_internal (IFN_LOAD_LANES, 1,
7477 data_ref);
7478 gimple_call_set_lhs (call, vec_array);
7479 gimple_call_set_nothrow (call, true);
7480 new_stmt = call;
7481 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7482
7483 /* Extract each vector into an SSA_NAME. */
7484 for (i = 0; i < vec_num; i++)
7485 {
7486 new_temp = read_vector_array (stmt, gsi, scalar_dest,
7487 vec_array, i);
7488 dr_chain.quick_push (new_temp);
7489 }
7490
7491 /* Record the mapping between SSA_NAMEs and statements. */
7492 vect_record_grouped_load_vectors (stmt, dr_chain);
7493 }
7494 else
7495 {
7496 for (i = 0; i < vec_num; i++)
7497 {
7498 if (i > 0)
7499 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
7500 stmt, NULL_TREE);
7501
7502 /* 2. Create the vector-load in the loop. */
7503 switch (alignment_support_scheme)
7504 {
7505 case dr_aligned:
7506 case dr_unaligned_supported:
7507 {
7508 unsigned int align, misalign;
7509
7510 data_ref
7511 = fold_build2 (MEM_REF, vectype, dataref_ptr,
7512 dataref_offset
7513 ? dataref_offset
7514 : build_int_cst (ref_type, 0));
7515 align = TYPE_ALIGN_UNIT (vectype);
7516 if (alignment_support_scheme == dr_aligned)
7517 {
7518 gcc_assert (aligned_access_p (first_dr));
7519 misalign = 0;
7520 }
7521 else if (DR_MISALIGNMENT (first_dr) == -1)
7522 {
7523 align = dr_alignment (vect_dr_behavior (first_dr));
7524 misalign = 0;
7525 TREE_TYPE (data_ref)
7526 = build_aligned_type (TREE_TYPE (data_ref),
7527 align * BITS_PER_UNIT);
7528 }
7529 else
7530 {
7531 TREE_TYPE (data_ref)
7532 = build_aligned_type (TREE_TYPE (data_ref),
7533 TYPE_ALIGN (elem_type));
7534 misalign = DR_MISALIGNMENT (first_dr);
7535 }
7536 if (dataref_offset == NULL_TREE
7537 && TREE_CODE (dataref_ptr) == SSA_NAME)
7538 set_ptr_info_alignment (get_ptr_info (dataref_ptr),
7539 align, misalign);
7540 break;
7541 }
7542 case dr_explicit_realign:
7543 {
7544 tree ptr, bump;
7545
7546 tree vs = size_int (TYPE_VECTOR_SUBPARTS (vectype));
7547
7548 if (compute_in_loop)
7549 msq = vect_setup_realignment (first_stmt, gsi,
7550 &realignment_token,
7551 dr_explicit_realign,
7552 dataref_ptr, NULL);
7553
7554 if (TREE_CODE (dataref_ptr) == SSA_NAME)
7555 ptr = copy_ssa_name (dataref_ptr);
7556 else
7557 ptr = make_ssa_name (TREE_TYPE (dataref_ptr));
7558 new_stmt = gimple_build_assign
7559 (ptr, BIT_AND_EXPR, dataref_ptr,
7560 build_int_cst
7561 (TREE_TYPE (dataref_ptr),
7562 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
7563 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7564 data_ref
7565 = build2 (MEM_REF, vectype, ptr,
7566 build_int_cst (ref_type, 0));
7567 vec_dest = vect_create_destination_var (scalar_dest,
7568 vectype);
7569 new_stmt = gimple_build_assign (vec_dest, data_ref);
7570 new_temp = make_ssa_name (vec_dest, new_stmt);
7571 gimple_assign_set_lhs (new_stmt, new_temp);
7572 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
7573 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
7574 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7575 msq = new_temp;
7576
7577 bump = size_binop (MULT_EXPR, vs,
7578 TYPE_SIZE_UNIT (elem_type));
7579 bump = size_binop (MINUS_EXPR, bump, size_one_node);
7580 ptr = bump_vector_ptr (dataref_ptr, NULL, gsi, stmt, bump);
7581 new_stmt = gimple_build_assign
7582 (NULL_TREE, BIT_AND_EXPR, ptr,
7583 build_int_cst
7584 (TREE_TYPE (ptr),
7585 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
7586 ptr = copy_ssa_name (ptr, new_stmt);
7587 gimple_assign_set_lhs (new_stmt, ptr);
7588 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7589 data_ref
7590 = build2 (MEM_REF, vectype, ptr,
7591 build_int_cst (ref_type, 0));
7592 break;
7593 }
7594 case dr_explicit_realign_optimized:
7595 if (TREE_CODE (dataref_ptr) == SSA_NAME)
7596 new_temp = copy_ssa_name (dataref_ptr);
7597 else
7598 new_temp = make_ssa_name (TREE_TYPE (dataref_ptr));
7599 new_stmt = gimple_build_assign
7600 (new_temp, BIT_AND_EXPR, dataref_ptr,
7601 build_int_cst
7602 (TREE_TYPE (dataref_ptr),
7603 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
7604 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7605 data_ref
7606 = build2 (MEM_REF, vectype, new_temp,
7607 build_int_cst (ref_type, 0));
7608 break;
7609 default:
7610 gcc_unreachable ();
7611 }
7612 vec_dest = vect_create_destination_var (scalar_dest, vectype);
7613 new_stmt = gimple_build_assign (vec_dest, data_ref);
7614 new_temp = make_ssa_name (vec_dest, new_stmt);
7615 gimple_assign_set_lhs (new_stmt, new_temp);
7616 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7617
7618 /* 3. Handle explicit realignment if necessary/supported.
7619 Create in loop:
7620 vec_dest = realign_load (msq, lsq, realignment_token) */
7621 if (alignment_support_scheme == dr_explicit_realign_optimized
7622 || alignment_support_scheme == dr_explicit_realign)
7623 {
7624 lsq = gimple_assign_lhs (new_stmt);
7625 if (!realignment_token)
7626 realignment_token = dataref_ptr;
7627 vec_dest = vect_create_destination_var (scalar_dest, vectype);
7628 new_stmt = gimple_build_assign (vec_dest, REALIGN_LOAD_EXPR,
7629 msq, lsq, realignment_token);
7630 new_temp = make_ssa_name (vec_dest, new_stmt);
7631 gimple_assign_set_lhs (new_stmt, new_temp);
7632 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7633
7634 if (alignment_support_scheme == dr_explicit_realign_optimized)
7635 {
7636 gcc_assert (phi);
7637 if (i == vec_num - 1 && j == ncopies - 1)
7638 add_phi_arg (phi, lsq,
7639 loop_latch_edge (containing_loop),
7640 UNKNOWN_LOCATION);
7641 msq = lsq;
7642 }
7643 }
7644
7645 /* 4. Handle invariant-load. */
7646 if (inv_p && !bb_vinfo)
7647 {
7648 gcc_assert (!grouped_load);
7649 /* If we have versioned for aliasing or the loop doesn't
7650 have any data dependencies that would preclude this,
7651 then we are sure this is a loop invariant load and
7652 thus we can insert it on the preheader edge. */
7653 if (LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo)
7654 && !nested_in_vect_loop
7655 && hoist_defs_of_uses (stmt, loop))
7656 {
7657 if (dump_enabled_p ())
7658 {
7659 dump_printf_loc (MSG_NOTE, vect_location,
7660 "hoisting out of the vectorized "
7661 "loop: ");
7662 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
7663 }
7664 tree tem = copy_ssa_name (scalar_dest);
7665 gsi_insert_on_edge_immediate
7666 (loop_preheader_edge (loop),
7667 gimple_build_assign (tem,
7668 unshare_expr
7669 (gimple_assign_rhs1 (stmt))));
7670 new_temp = vect_init_vector (stmt, tem, vectype, NULL);
7671 new_stmt = SSA_NAME_DEF_STMT (new_temp);
7672 set_vinfo_for_stmt (new_stmt,
7673 new_stmt_vec_info (new_stmt, vinfo));
7674 }
7675 else
7676 {
7677 gimple_stmt_iterator gsi2 = *gsi;
7678 gsi_next (&gsi2);
7679 new_temp = vect_init_vector (stmt, scalar_dest,
7680 vectype, &gsi2);
7681 new_stmt = SSA_NAME_DEF_STMT (new_temp);
7682 }
7683 }
7684
7685 if (memory_access_type == VMAT_CONTIGUOUS_REVERSE)
7686 {
7687 tree perm_mask = perm_mask_for_reverse (vectype);
7688 new_temp = permute_vec_elements (new_temp, new_temp,
7689 perm_mask, stmt, gsi);
7690 new_stmt = SSA_NAME_DEF_STMT (new_temp);
7691 }
7692
7693 /* Collect vector loads and later create their permutation in
7694 vect_transform_grouped_load (). */
7695 if (grouped_load || slp_perm)
7696 dr_chain.quick_push (new_temp);
7697
7698 /* Store vector loads in the corresponding SLP_NODE. */
7699 if (slp && !slp_perm)
7700 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
7701
7702 /* With SLP permutation we load the gaps as well, without
7703 we need to skip the gaps after we manage to fully load
7704 all elements. group_gap_adj is GROUP_SIZE here. */
7705 group_elt += nunits;
7706 if (group_gap_adj != 0 && ! slp_perm
7707 && group_elt == group_size - group_gap_adj)
7708 {
7709 bool ovf;
7710 tree bump
7711 = wide_int_to_tree (sizetype,
7712 wi::smul (TYPE_SIZE_UNIT (elem_type),
7713 group_gap_adj, &ovf));
7714 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
7715 stmt, bump);
7716 group_elt = 0;
7717 }
7718 }
7719 /* Bump the vector pointer to account for a gap or for excess
7720 elements loaded for a permuted SLP load. */
7721 if (group_gap_adj != 0 && slp_perm)
7722 {
7723 bool ovf;
7724 tree bump
7725 = wide_int_to_tree (sizetype,
7726 wi::smul (TYPE_SIZE_UNIT (elem_type),
7727 group_gap_adj, &ovf));
7728 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
7729 stmt, bump);
7730 }
7731 }
7732
7733 if (slp && !slp_perm)
7734 continue;
7735
7736 if (slp_perm)
7737 {
7738 unsigned n_perms;
7739 if (!vect_transform_slp_perm_load (slp_node, dr_chain, gsi, vf,
7740 slp_node_instance, false,
7741 &n_perms))
7742 {
7743 dr_chain.release ();
7744 return false;
7745 }
7746 }
7747 else
7748 {
7749 if (grouped_load)
7750 {
7751 if (memory_access_type != VMAT_LOAD_STORE_LANES)
7752 vect_transform_grouped_load (stmt, dr_chain, group_size, gsi);
7753 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
7754 }
7755 else
7756 {
7757 if (j == 0)
7758 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
7759 else
7760 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
7761 prev_stmt_info = vinfo_for_stmt (new_stmt);
7762 }
7763 }
7764 dr_chain.release ();
7765 }
7766
7767 return true;
7768 }
7769
7770 /* Function vect_is_simple_cond.
7771
7772 Input:
7773 LOOP - the loop that is being vectorized.
7774 COND - Condition that is checked for simple use.
7775
7776 Output:
7777 *COMP_VECTYPE - the vector type for the comparison.
7778 *DTS - The def types for the arguments of the comparison
7779
7780 Returns whether a COND can be vectorized. Checks whether
7781 condition operands are supportable using vec_is_simple_use. */
7782
7783 static bool
7784 vect_is_simple_cond (tree cond, vec_info *vinfo,
7785 tree *comp_vectype, enum vect_def_type *dts)
7786 {
7787 tree lhs, rhs;
7788 tree vectype1 = NULL_TREE, vectype2 = NULL_TREE;
7789
7790 /* Mask case. */
7791 if (TREE_CODE (cond) == SSA_NAME
7792 && VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (cond)))
7793 {
7794 gimple *lhs_def_stmt = SSA_NAME_DEF_STMT (cond);
7795 if (!vect_is_simple_use (cond, vinfo, &lhs_def_stmt,
7796 &dts[0], comp_vectype)
7797 || !*comp_vectype
7798 || !VECTOR_BOOLEAN_TYPE_P (*comp_vectype))
7799 return false;
7800 return true;
7801 }
7802
7803 if (!COMPARISON_CLASS_P (cond))
7804 return false;
7805
7806 lhs = TREE_OPERAND (cond, 0);
7807 rhs = TREE_OPERAND (cond, 1);
7808
7809 if (TREE_CODE (lhs) == SSA_NAME)
7810 {
7811 gimple *lhs_def_stmt = SSA_NAME_DEF_STMT (lhs);
7812 if (!vect_is_simple_use (lhs, vinfo, &lhs_def_stmt, &dts[0], &vectype1))
7813 return false;
7814 }
7815 else if (TREE_CODE (lhs) == INTEGER_CST || TREE_CODE (lhs) == REAL_CST
7816 || TREE_CODE (lhs) == FIXED_CST)
7817 dts[0] = vect_constant_def;
7818 else
7819 return false;
7820
7821 if (TREE_CODE (rhs) == SSA_NAME)
7822 {
7823 gimple *rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
7824 if (!vect_is_simple_use (rhs, vinfo, &rhs_def_stmt, &dts[1], &vectype2))
7825 return false;
7826 }
7827 else if (TREE_CODE (rhs) == INTEGER_CST || TREE_CODE (rhs) == REAL_CST
7828 || TREE_CODE (rhs) == FIXED_CST)
7829 dts[1] = vect_constant_def;
7830 else
7831 return false;
7832
7833 if (vectype1 && vectype2
7834 && TYPE_VECTOR_SUBPARTS (vectype1) != TYPE_VECTOR_SUBPARTS (vectype2))
7835 return false;
7836
7837 *comp_vectype = vectype1 ? vectype1 : vectype2;
7838 return true;
7839 }
7840
7841 /* vectorizable_condition.
7842
7843 Check if STMT is conditional modify expression that can be vectorized.
7844 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
7845 stmt using VEC_COND_EXPR to replace it, put it in VEC_STMT, and insert it
7846 at GSI.
7847
7848 When STMT is vectorized as nested cycle, REDUC_DEF is the vector variable
7849 to be used at REDUC_INDEX (in then clause if REDUC_INDEX is 1, and in
7850 else clause if it is 2).
7851
7852 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
7853
7854 bool
7855 vectorizable_condition (gimple *stmt, gimple_stmt_iterator *gsi,
7856 gimple **vec_stmt, tree reduc_def, int reduc_index,
7857 slp_tree slp_node)
7858 {
7859 tree scalar_dest = NULL_TREE;
7860 tree vec_dest = NULL_TREE;
7861 tree cond_expr, cond_expr0 = NULL_TREE, cond_expr1 = NULL_TREE;
7862 tree then_clause, else_clause;
7863 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
7864 tree comp_vectype = NULL_TREE;
7865 tree vec_cond_lhs = NULL_TREE, vec_cond_rhs = NULL_TREE;
7866 tree vec_then_clause = NULL_TREE, vec_else_clause = NULL_TREE;
7867 tree vec_compare;
7868 tree new_temp;
7869 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
7870 enum vect_def_type dts[4]
7871 = {vect_unknown_def_type, vect_unknown_def_type,
7872 vect_unknown_def_type, vect_unknown_def_type};
7873 int ndts = 4;
7874 int ncopies;
7875 enum tree_code code, cond_code, bitop1 = NOP_EXPR, bitop2 = NOP_EXPR;
7876 stmt_vec_info prev_stmt_info = NULL;
7877 int i, j;
7878 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
7879 vec<tree> vec_oprnds0 = vNULL;
7880 vec<tree> vec_oprnds1 = vNULL;
7881 vec<tree> vec_oprnds2 = vNULL;
7882 vec<tree> vec_oprnds3 = vNULL;
7883 tree vec_cmp_type;
7884 bool masked = false;
7885
7886 if (reduc_index && STMT_SLP_TYPE (stmt_info))
7887 return false;
7888
7889 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == TREE_CODE_REDUCTION)
7890 {
7891 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
7892 return false;
7893
7894 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
7895 && !(STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle
7896 && reduc_def))
7897 return false;
7898
7899 /* FORNOW: not yet supported. */
7900 if (STMT_VINFO_LIVE_P (stmt_info))
7901 {
7902 if (dump_enabled_p ())
7903 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7904 "value used after loop.\n");
7905 return false;
7906 }
7907 }
7908
7909 /* Is vectorizable conditional operation? */
7910 if (!is_gimple_assign (stmt))
7911 return false;
7912
7913 code = gimple_assign_rhs_code (stmt);
7914
7915 if (code != COND_EXPR)
7916 return false;
7917
7918 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
7919 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
7920 tree vectype1 = NULL_TREE, vectype2 = NULL_TREE;
7921
7922 if (slp_node)
7923 ncopies = 1;
7924 else
7925 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
7926
7927 gcc_assert (ncopies >= 1);
7928 if (reduc_index && ncopies > 1)
7929 return false; /* FORNOW */
7930
7931 cond_expr = gimple_assign_rhs1 (stmt);
7932 then_clause = gimple_assign_rhs2 (stmt);
7933 else_clause = gimple_assign_rhs3 (stmt);
7934
7935 if (!vect_is_simple_cond (cond_expr, stmt_info->vinfo,
7936 &comp_vectype, &dts[0])
7937 || !comp_vectype)
7938 return false;
7939
7940 gimple *def_stmt;
7941 if (!vect_is_simple_use (then_clause, stmt_info->vinfo, &def_stmt, &dts[2],
7942 &vectype1))
7943 return false;
7944 if (!vect_is_simple_use (else_clause, stmt_info->vinfo, &def_stmt, &dts[3],
7945 &vectype2))
7946 return false;
7947
7948 if (vectype1 && !useless_type_conversion_p (vectype, vectype1))
7949 return false;
7950
7951 if (vectype2 && !useless_type_conversion_p (vectype, vectype2))
7952 return false;
7953
7954 masked = !COMPARISON_CLASS_P (cond_expr);
7955 vec_cmp_type = build_same_sized_truth_vector_type (comp_vectype);
7956
7957 if (vec_cmp_type == NULL_TREE)
7958 return false;
7959
7960 cond_code = TREE_CODE (cond_expr);
7961 if (!masked)
7962 {
7963 cond_expr0 = TREE_OPERAND (cond_expr, 0);
7964 cond_expr1 = TREE_OPERAND (cond_expr, 1);
7965 }
7966
7967 if (!masked && VECTOR_BOOLEAN_TYPE_P (comp_vectype))
7968 {
7969 /* Boolean values may have another representation in vectors
7970 and therefore we prefer bit operations over comparison for
7971 them (which also works for scalar masks). We store opcodes
7972 to use in bitop1 and bitop2. Statement is vectorized as
7973 BITOP2 (rhs1 BITOP1 rhs2) or rhs1 BITOP2 (BITOP1 rhs2)
7974 depending on bitop1 and bitop2 arity. */
7975 switch (cond_code)
7976 {
7977 case GT_EXPR:
7978 bitop1 = BIT_NOT_EXPR;
7979 bitop2 = BIT_AND_EXPR;
7980 break;
7981 case GE_EXPR:
7982 bitop1 = BIT_NOT_EXPR;
7983 bitop2 = BIT_IOR_EXPR;
7984 break;
7985 case LT_EXPR:
7986 bitop1 = BIT_NOT_EXPR;
7987 bitop2 = BIT_AND_EXPR;
7988 std::swap (cond_expr0, cond_expr1);
7989 break;
7990 case LE_EXPR:
7991 bitop1 = BIT_NOT_EXPR;
7992 bitop2 = BIT_IOR_EXPR;
7993 std::swap (cond_expr0, cond_expr1);
7994 break;
7995 case NE_EXPR:
7996 bitop1 = BIT_XOR_EXPR;
7997 break;
7998 case EQ_EXPR:
7999 bitop1 = BIT_XOR_EXPR;
8000 bitop2 = BIT_NOT_EXPR;
8001 break;
8002 default:
8003 return false;
8004 }
8005 cond_code = SSA_NAME;
8006 }
8007
8008 if (!vec_stmt)
8009 {
8010 STMT_VINFO_TYPE (stmt_info) = condition_vec_info_type;
8011 if (bitop1 != NOP_EXPR)
8012 {
8013 machine_mode mode = TYPE_MODE (comp_vectype);
8014 optab optab;
8015
8016 optab = optab_for_tree_code (bitop1, comp_vectype, optab_default);
8017 if (!optab || optab_handler (optab, mode) == CODE_FOR_nothing)
8018 return false;
8019
8020 if (bitop2 != NOP_EXPR)
8021 {
8022 optab = optab_for_tree_code (bitop2, comp_vectype,
8023 optab_default);
8024 if (!optab || optab_handler (optab, mode) == CODE_FOR_nothing)
8025 return false;
8026 }
8027 }
8028 if (expand_vec_cond_expr_p (vectype, comp_vectype,
8029 cond_code))
8030 {
8031 vect_model_simple_cost (stmt_info, ncopies, dts, ndts, NULL, NULL);
8032 return true;
8033 }
8034 return false;
8035 }
8036
8037 /* Transform. */
8038
8039 if (!slp_node)
8040 {
8041 vec_oprnds0.create (1);
8042 vec_oprnds1.create (1);
8043 vec_oprnds2.create (1);
8044 vec_oprnds3.create (1);
8045 }
8046
8047 /* Handle def. */
8048 scalar_dest = gimple_assign_lhs (stmt);
8049 vec_dest = vect_create_destination_var (scalar_dest, vectype);
8050
8051 /* Handle cond expr. */
8052 for (j = 0; j < ncopies; j++)
8053 {
8054 gassign *new_stmt = NULL;
8055 if (j == 0)
8056 {
8057 if (slp_node)
8058 {
8059 auto_vec<tree, 4> ops;
8060 auto_vec<vec<tree>, 4> vec_defs;
8061
8062 if (masked)
8063 ops.safe_push (cond_expr);
8064 else
8065 {
8066 ops.safe_push (cond_expr0);
8067 ops.safe_push (cond_expr1);
8068 }
8069 ops.safe_push (then_clause);
8070 ops.safe_push (else_clause);
8071 vect_get_slp_defs (ops, slp_node, &vec_defs);
8072 vec_oprnds3 = vec_defs.pop ();
8073 vec_oprnds2 = vec_defs.pop ();
8074 if (!masked)
8075 vec_oprnds1 = vec_defs.pop ();
8076 vec_oprnds0 = vec_defs.pop ();
8077 }
8078 else
8079 {
8080 gimple *gtemp;
8081 if (masked)
8082 {
8083 vec_cond_lhs
8084 = vect_get_vec_def_for_operand (cond_expr, stmt,
8085 comp_vectype);
8086 vect_is_simple_use (cond_expr, stmt_info->vinfo,
8087 &gtemp, &dts[0]);
8088 }
8089 else
8090 {
8091 vec_cond_lhs
8092 = vect_get_vec_def_for_operand (cond_expr0,
8093 stmt, comp_vectype);
8094 vect_is_simple_use (cond_expr0, loop_vinfo, &gtemp, &dts[0]);
8095
8096 vec_cond_rhs
8097 = vect_get_vec_def_for_operand (cond_expr1,
8098 stmt, comp_vectype);
8099 vect_is_simple_use (cond_expr1, loop_vinfo, &gtemp, &dts[1]);
8100 }
8101 if (reduc_index == 1)
8102 vec_then_clause = reduc_def;
8103 else
8104 {
8105 vec_then_clause = vect_get_vec_def_for_operand (then_clause,
8106 stmt);
8107 vect_is_simple_use (then_clause, loop_vinfo,
8108 &gtemp, &dts[2]);
8109 }
8110 if (reduc_index == 2)
8111 vec_else_clause = reduc_def;
8112 else
8113 {
8114 vec_else_clause = vect_get_vec_def_for_operand (else_clause,
8115 stmt);
8116 vect_is_simple_use (else_clause, loop_vinfo, &gtemp, &dts[3]);
8117 }
8118 }
8119 }
8120 else
8121 {
8122 vec_cond_lhs
8123 = vect_get_vec_def_for_stmt_copy (dts[0],
8124 vec_oprnds0.pop ());
8125 if (!masked)
8126 vec_cond_rhs
8127 = vect_get_vec_def_for_stmt_copy (dts[1],
8128 vec_oprnds1.pop ());
8129
8130 vec_then_clause = vect_get_vec_def_for_stmt_copy (dts[2],
8131 vec_oprnds2.pop ());
8132 vec_else_clause = vect_get_vec_def_for_stmt_copy (dts[3],
8133 vec_oprnds3.pop ());
8134 }
8135
8136 if (!slp_node)
8137 {
8138 vec_oprnds0.quick_push (vec_cond_lhs);
8139 if (!masked)
8140 vec_oprnds1.quick_push (vec_cond_rhs);
8141 vec_oprnds2.quick_push (vec_then_clause);
8142 vec_oprnds3.quick_push (vec_else_clause);
8143 }
8144
8145 /* Arguments are ready. Create the new vector stmt. */
8146 FOR_EACH_VEC_ELT (vec_oprnds0, i, vec_cond_lhs)
8147 {
8148 vec_then_clause = vec_oprnds2[i];
8149 vec_else_clause = vec_oprnds3[i];
8150
8151 if (masked)
8152 vec_compare = vec_cond_lhs;
8153 else
8154 {
8155 vec_cond_rhs = vec_oprnds1[i];
8156 if (bitop1 == NOP_EXPR)
8157 vec_compare = build2 (cond_code, vec_cmp_type,
8158 vec_cond_lhs, vec_cond_rhs);
8159 else
8160 {
8161 new_temp = make_ssa_name (vec_cmp_type);
8162 if (bitop1 == BIT_NOT_EXPR)
8163 new_stmt = gimple_build_assign (new_temp, bitop1,
8164 vec_cond_rhs);
8165 else
8166 new_stmt
8167 = gimple_build_assign (new_temp, bitop1, vec_cond_lhs,
8168 vec_cond_rhs);
8169 vect_finish_stmt_generation (stmt, new_stmt, gsi);
8170 if (bitop2 == NOP_EXPR)
8171 vec_compare = new_temp;
8172 else if (bitop2 == BIT_NOT_EXPR)
8173 {
8174 /* Instead of doing ~x ? y : z do x ? z : y. */
8175 vec_compare = new_temp;
8176 std::swap (vec_then_clause, vec_else_clause);
8177 }
8178 else
8179 {
8180 vec_compare = make_ssa_name (vec_cmp_type);
8181 new_stmt
8182 = gimple_build_assign (vec_compare, bitop2,
8183 vec_cond_lhs, new_temp);
8184 vect_finish_stmt_generation (stmt, new_stmt, gsi);
8185 }
8186 }
8187 }
8188 new_temp = make_ssa_name (vec_dest);
8189 new_stmt = gimple_build_assign (new_temp, VEC_COND_EXPR,
8190 vec_compare, vec_then_clause,
8191 vec_else_clause);
8192 vect_finish_stmt_generation (stmt, new_stmt, gsi);
8193 if (slp_node)
8194 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
8195 }
8196
8197 if (slp_node)
8198 continue;
8199
8200 if (j == 0)
8201 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
8202 else
8203 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
8204
8205 prev_stmt_info = vinfo_for_stmt (new_stmt);
8206 }
8207
8208 vec_oprnds0.release ();
8209 vec_oprnds1.release ();
8210 vec_oprnds2.release ();
8211 vec_oprnds3.release ();
8212
8213 return true;
8214 }
8215
8216 /* vectorizable_comparison.
8217
8218 Check if STMT is comparison expression that can be vectorized.
8219 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
8220 comparison, put it in VEC_STMT, and insert it at GSI.
8221
8222 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
8223
8224 static bool
8225 vectorizable_comparison (gimple *stmt, gimple_stmt_iterator *gsi,
8226 gimple **vec_stmt, tree reduc_def,
8227 slp_tree slp_node)
8228 {
8229 tree lhs, rhs1, rhs2;
8230 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
8231 tree vectype1 = NULL_TREE, vectype2 = NULL_TREE;
8232 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
8233 tree vec_rhs1 = NULL_TREE, vec_rhs2 = NULL_TREE;
8234 tree new_temp;
8235 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
8236 enum vect_def_type dts[2] = {vect_unknown_def_type, vect_unknown_def_type};
8237 int ndts = 2;
8238 unsigned nunits;
8239 int ncopies;
8240 enum tree_code code, bitop1 = NOP_EXPR, bitop2 = NOP_EXPR;
8241 stmt_vec_info prev_stmt_info = NULL;
8242 int i, j;
8243 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
8244 vec<tree> vec_oprnds0 = vNULL;
8245 vec<tree> vec_oprnds1 = vNULL;
8246 gimple *def_stmt;
8247 tree mask_type;
8248 tree mask;
8249
8250 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
8251 return false;
8252
8253 if (!vectype || !VECTOR_BOOLEAN_TYPE_P (vectype))
8254 return false;
8255
8256 mask_type = vectype;
8257 nunits = TYPE_VECTOR_SUBPARTS (vectype);
8258
8259 if (slp_node)
8260 ncopies = 1;
8261 else
8262 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
8263
8264 gcc_assert (ncopies >= 1);
8265 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
8266 && !(STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle
8267 && reduc_def))
8268 return false;
8269
8270 if (STMT_VINFO_LIVE_P (stmt_info))
8271 {
8272 if (dump_enabled_p ())
8273 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
8274 "value used after loop.\n");
8275 return false;
8276 }
8277
8278 if (!is_gimple_assign (stmt))
8279 return false;
8280
8281 code = gimple_assign_rhs_code (stmt);
8282
8283 if (TREE_CODE_CLASS (code) != tcc_comparison)
8284 return false;
8285
8286 rhs1 = gimple_assign_rhs1 (stmt);
8287 rhs2 = gimple_assign_rhs2 (stmt);
8288
8289 if (!vect_is_simple_use (rhs1, stmt_info->vinfo, &def_stmt,
8290 &dts[0], &vectype1))
8291 return false;
8292
8293 if (!vect_is_simple_use (rhs2, stmt_info->vinfo, &def_stmt,
8294 &dts[1], &vectype2))
8295 return false;
8296
8297 if (vectype1 && vectype2
8298 && TYPE_VECTOR_SUBPARTS (vectype1) != TYPE_VECTOR_SUBPARTS (vectype2))
8299 return false;
8300
8301 vectype = vectype1 ? vectype1 : vectype2;
8302
8303 /* Invariant comparison. */
8304 if (!vectype)
8305 {
8306 vectype = get_vectype_for_scalar_type (TREE_TYPE (rhs1));
8307 if (TYPE_VECTOR_SUBPARTS (vectype) != nunits)
8308 return false;
8309 }
8310 else if (nunits != TYPE_VECTOR_SUBPARTS (vectype))
8311 return false;
8312
8313 /* Can't compare mask and non-mask types. */
8314 if (vectype1 && vectype2
8315 && (VECTOR_BOOLEAN_TYPE_P (vectype1) ^ VECTOR_BOOLEAN_TYPE_P (vectype2)))
8316 return false;
8317
8318 /* Boolean values may have another representation in vectors
8319 and therefore we prefer bit operations over comparison for
8320 them (which also works for scalar masks). We store opcodes
8321 to use in bitop1 and bitop2. Statement is vectorized as
8322 BITOP2 (rhs1 BITOP1 rhs2) or
8323 rhs1 BITOP2 (BITOP1 rhs2)
8324 depending on bitop1 and bitop2 arity. */
8325 if (VECTOR_BOOLEAN_TYPE_P (vectype))
8326 {
8327 if (code == GT_EXPR)
8328 {
8329 bitop1 = BIT_NOT_EXPR;
8330 bitop2 = BIT_AND_EXPR;
8331 }
8332 else if (code == GE_EXPR)
8333 {
8334 bitop1 = BIT_NOT_EXPR;
8335 bitop2 = BIT_IOR_EXPR;
8336 }
8337 else if (code == LT_EXPR)
8338 {
8339 bitop1 = BIT_NOT_EXPR;
8340 bitop2 = BIT_AND_EXPR;
8341 std::swap (rhs1, rhs2);
8342 std::swap (dts[0], dts[1]);
8343 }
8344 else if (code == LE_EXPR)
8345 {
8346 bitop1 = BIT_NOT_EXPR;
8347 bitop2 = BIT_IOR_EXPR;
8348 std::swap (rhs1, rhs2);
8349 std::swap (dts[0], dts[1]);
8350 }
8351 else
8352 {
8353 bitop1 = BIT_XOR_EXPR;
8354 if (code == EQ_EXPR)
8355 bitop2 = BIT_NOT_EXPR;
8356 }
8357 }
8358
8359 if (!vec_stmt)
8360 {
8361 STMT_VINFO_TYPE (stmt_info) = comparison_vec_info_type;
8362 vect_model_simple_cost (stmt_info, ncopies * (1 + (bitop2 != NOP_EXPR)),
8363 dts, ndts, NULL, NULL);
8364 if (bitop1 == NOP_EXPR)
8365 return expand_vec_cmp_expr_p (vectype, mask_type, code);
8366 else
8367 {
8368 machine_mode mode = TYPE_MODE (vectype);
8369 optab optab;
8370
8371 optab = optab_for_tree_code (bitop1, vectype, optab_default);
8372 if (!optab || optab_handler (optab, mode) == CODE_FOR_nothing)
8373 return false;
8374
8375 if (bitop2 != NOP_EXPR)
8376 {
8377 optab = optab_for_tree_code (bitop2, vectype, optab_default);
8378 if (!optab || optab_handler (optab, mode) == CODE_FOR_nothing)
8379 return false;
8380 }
8381 return true;
8382 }
8383 }
8384
8385 /* Transform. */
8386 if (!slp_node)
8387 {
8388 vec_oprnds0.create (1);
8389 vec_oprnds1.create (1);
8390 }
8391
8392 /* Handle def. */
8393 lhs = gimple_assign_lhs (stmt);
8394 mask = vect_create_destination_var (lhs, mask_type);
8395
8396 /* Handle cmp expr. */
8397 for (j = 0; j < ncopies; j++)
8398 {
8399 gassign *new_stmt = NULL;
8400 if (j == 0)
8401 {
8402 if (slp_node)
8403 {
8404 auto_vec<tree, 2> ops;
8405 auto_vec<vec<tree>, 2> vec_defs;
8406
8407 ops.safe_push (rhs1);
8408 ops.safe_push (rhs2);
8409 vect_get_slp_defs (ops, slp_node, &vec_defs);
8410 vec_oprnds1 = vec_defs.pop ();
8411 vec_oprnds0 = vec_defs.pop ();
8412 }
8413 else
8414 {
8415 vec_rhs1 = vect_get_vec_def_for_operand (rhs1, stmt, vectype);
8416 vec_rhs2 = vect_get_vec_def_for_operand (rhs2, stmt, vectype);
8417 }
8418 }
8419 else
8420 {
8421 vec_rhs1 = vect_get_vec_def_for_stmt_copy (dts[0],
8422 vec_oprnds0.pop ());
8423 vec_rhs2 = vect_get_vec_def_for_stmt_copy (dts[1],
8424 vec_oprnds1.pop ());
8425 }
8426
8427 if (!slp_node)
8428 {
8429 vec_oprnds0.quick_push (vec_rhs1);
8430 vec_oprnds1.quick_push (vec_rhs2);
8431 }
8432
8433 /* Arguments are ready. Create the new vector stmt. */
8434 FOR_EACH_VEC_ELT (vec_oprnds0, i, vec_rhs1)
8435 {
8436 vec_rhs2 = vec_oprnds1[i];
8437
8438 new_temp = make_ssa_name (mask);
8439 if (bitop1 == NOP_EXPR)
8440 {
8441 new_stmt = gimple_build_assign (new_temp, code,
8442 vec_rhs1, vec_rhs2);
8443 vect_finish_stmt_generation (stmt, new_stmt, gsi);
8444 }
8445 else
8446 {
8447 if (bitop1 == BIT_NOT_EXPR)
8448 new_stmt = gimple_build_assign (new_temp, bitop1, vec_rhs2);
8449 else
8450 new_stmt = gimple_build_assign (new_temp, bitop1, vec_rhs1,
8451 vec_rhs2);
8452 vect_finish_stmt_generation (stmt, new_stmt, gsi);
8453 if (bitop2 != NOP_EXPR)
8454 {
8455 tree res = make_ssa_name (mask);
8456 if (bitop2 == BIT_NOT_EXPR)
8457 new_stmt = gimple_build_assign (res, bitop2, new_temp);
8458 else
8459 new_stmt = gimple_build_assign (res, bitop2, vec_rhs1,
8460 new_temp);
8461 vect_finish_stmt_generation (stmt, new_stmt, gsi);
8462 }
8463 }
8464 if (slp_node)
8465 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
8466 }
8467
8468 if (slp_node)
8469 continue;
8470
8471 if (j == 0)
8472 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
8473 else
8474 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
8475
8476 prev_stmt_info = vinfo_for_stmt (new_stmt);
8477 }
8478
8479 vec_oprnds0.release ();
8480 vec_oprnds1.release ();
8481
8482 return true;
8483 }
8484
8485 /* Make sure the statement is vectorizable. */
8486
8487 bool
8488 vect_analyze_stmt (gimple *stmt, bool *need_to_vectorize, slp_tree node,
8489 slp_instance node_instance)
8490 {
8491 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
8492 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
8493 enum vect_relevant relevance = STMT_VINFO_RELEVANT (stmt_info);
8494 bool ok;
8495 gimple *pattern_stmt;
8496 gimple_seq pattern_def_seq;
8497
8498 if (dump_enabled_p ())
8499 {
8500 dump_printf_loc (MSG_NOTE, vect_location, "==> examining statement: ");
8501 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
8502 }
8503
8504 if (gimple_has_volatile_ops (stmt))
8505 {
8506 if (dump_enabled_p ())
8507 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
8508 "not vectorized: stmt has volatile operands\n");
8509
8510 return false;
8511 }
8512
8513 /* Skip stmts that do not need to be vectorized. In loops this is expected
8514 to include:
8515 - the COND_EXPR which is the loop exit condition
8516 - any LABEL_EXPRs in the loop
8517 - computations that are used only for array indexing or loop control.
8518 In basic blocks we only analyze statements that are a part of some SLP
8519 instance, therefore, all the statements are relevant.
8520
8521 Pattern statement needs to be analyzed instead of the original statement
8522 if the original statement is not relevant. Otherwise, we analyze both
8523 statements. In basic blocks we are called from some SLP instance
8524 traversal, don't analyze pattern stmts instead, the pattern stmts
8525 already will be part of SLP instance. */
8526
8527 pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
8528 if (!STMT_VINFO_RELEVANT_P (stmt_info)
8529 && !STMT_VINFO_LIVE_P (stmt_info))
8530 {
8531 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
8532 && pattern_stmt
8533 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
8534 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
8535 {
8536 /* Analyze PATTERN_STMT instead of the original stmt. */
8537 stmt = pattern_stmt;
8538 stmt_info = vinfo_for_stmt (pattern_stmt);
8539 if (dump_enabled_p ())
8540 {
8541 dump_printf_loc (MSG_NOTE, vect_location,
8542 "==> examining pattern statement: ");
8543 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
8544 }
8545 }
8546 else
8547 {
8548 if (dump_enabled_p ())
8549 dump_printf_loc (MSG_NOTE, vect_location, "irrelevant.\n");
8550
8551 return true;
8552 }
8553 }
8554 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
8555 && node == NULL
8556 && pattern_stmt
8557 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
8558 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
8559 {
8560 /* Analyze PATTERN_STMT too. */
8561 if (dump_enabled_p ())
8562 {
8563 dump_printf_loc (MSG_NOTE, vect_location,
8564 "==> examining pattern statement: ");
8565 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
8566 }
8567
8568 if (!vect_analyze_stmt (pattern_stmt, need_to_vectorize, node,
8569 node_instance))
8570 return false;
8571 }
8572
8573 if (is_pattern_stmt_p (stmt_info)
8574 && node == NULL
8575 && (pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info)))
8576 {
8577 gimple_stmt_iterator si;
8578
8579 for (si = gsi_start (pattern_def_seq); !gsi_end_p (si); gsi_next (&si))
8580 {
8581 gimple *pattern_def_stmt = gsi_stmt (si);
8582 if (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_def_stmt))
8583 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_def_stmt)))
8584 {
8585 /* Analyze def stmt of STMT if it's a pattern stmt. */
8586 if (dump_enabled_p ())
8587 {
8588 dump_printf_loc (MSG_NOTE, vect_location,
8589 "==> examining pattern def statement: ");
8590 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_def_stmt, 0);
8591 }
8592
8593 if (!vect_analyze_stmt (pattern_def_stmt,
8594 need_to_vectorize, node, node_instance))
8595 return false;
8596 }
8597 }
8598 }
8599
8600 switch (STMT_VINFO_DEF_TYPE (stmt_info))
8601 {
8602 case vect_internal_def:
8603 break;
8604
8605 case vect_reduction_def:
8606 case vect_nested_cycle:
8607 gcc_assert (!bb_vinfo
8608 && (relevance == vect_used_in_outer
8609 || relevance == vect_used_in_outer_by_reduction
8610 || relevance == vect_used_by_reduction
8611 || relevance == vect_unused_in_scope
8612 || relevance == vect_used_only_live));
8613 break;
8614
8615 case vect_induction_def:
8616 gcc_assert (!bb_vinfo);
8617 break;
8618
8619 case vect_constant_def:
8620 case vect_external_def:
8621 case vect_unknown_def_type:
8622 default:
8623 gcc_unreachable ();
8624 }
8625
8626 if (STMT_VINFO_RELEVANT_P (stmt_info))
8627 {
8628 gcc_assert (!VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))));
8629 gcc_assert (STMT_VINFO_VECTYPE (stmt_info)
8630 || (is_gimple_call (stmt)
8631 && gimple_call_lhs (stmt) == NULL_TREE));
8632 *need_to_vectorize = true;
8633 }
8634
8635 if (PURE_SLP_STMT (stmt_info) && !node)
8636 {
8637 dump_printf_loc (MSG_NOTE, vect_location,
8638 "handled only by SLP analysis\n");
8639 return true;
8640 }
8641
8642 ok = true;
8643 if (!bb_vinfo
8644 && (STMT_VINFO_RELEVANT_P (stmt_info)
8645 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def))
8646 ok = (vectorizable_simd_clone_call (stmt, NULL, NULL, node)
8647 || vectorizable_conversion (stmt, NULL, NULL, node)
8648 || vectorizable_shift (stmt, NULL, NULL, node)
8649 || vectorizable_operation (stmt, NULL, NULL, node)
8650 || vectorizable_assignment (stmt, NULL, NULL, node)
8651 || vectorizable_load (stmt, NULL, NULL, node, NULL)
8652 || vectorizable_call (stmt, NULL, NULL, node)
8653 || vectorizable_store (stmt, NULL, NULL, node)
8654 || vectorizable_reduction (stmt, NULL, NULL, node, node_instance)
8655 || vectorizable_induction (stmt, NULL, NULL, node)
8656 || vectorizable_condition (stmt, NULL, NULL, NULL, 0, node)
8657 || vectorizable_comparison (stmt, NULL, NULL, NULL, node));
8658 else
8659 {
8660 if (bb_vinfo)
8661 ok = (vectorizable_simd_clone_call (stmt, NULL, NULL, node)
8662 || vectorizable_conversion (stmt, NULL, NULL, node)
8663 || vectorizable_shift (stmt, NULL, NULL, node)
8664 || vectorizable_operation (stmt, NULL, NULL, node)
8665 || vectorizable_assignment (stmt, NULL, NULL, node)
8666 || vectorizable_load (stmt, NULL, NULL, node, NULL)
8667 || vectorizable_call (stmt, NULL, NULL, node)
8668 || vectorizable_store (stmt, NULL, NULL, node)
8669 || vectorizable_condition (stmt, NULL, NULL, NULL, 0, node)
8670 || vectorizable_comparison (stmt, NULL, NULL, NULL, node));
8671 }
8672
8673 if (!ok)
8674 {
8675 if (dump_enabled_p ())
8676 {
8677 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
8678 "not vectorized: relevant stmt not ");
8679 dump_printf (MSG_MISSED_OPTIMIZATION, "supported: ");
8680 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
8681 }
8682
8683 return false;
8684 }
8685
8686 if (bb_vinfo)
8687 return true;
8688
8689 /* Stmts that are (also) "live" (i.e. - that are used out of the loop)
8690 need extra handling, except for vectorizable reductions. */
8691 if (STMT_VINFO_LIVE_P (stmt_info)
8692 && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
8693 ok = vectorizable_live_operation (stmt, NULL, NULL, -1, NULL);
8694
8695 if (!ok)
8696 {
8697 if (dump_enabled_p ())
8698 {
8699 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
8700 "not vectorized: live stmt not ");
8701 dump_printf (MSG_MISSED_OPTIMIZATION, "supported: ");
8702 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
8703 }
8704
8705 return false;
8706 }
8707
8708 return true;
8709 }
8710
8711
8712 /* Function vect_transform_stmt.
8713
8714 Create a vectorized stmt to replace STMT, and insert it at BSI. */
8715
8716 bool
8717 vect_transform_stmt (gimple *stmt, gimple_stmt_iterator *gsi,
8718 bool *grouped_store, slp_tree slp_node,
8719 slp_instance slp_node_instance)
8720 {
8721 bool is_store = false;
8722 gimple *vec_stmt = NULL;
8723 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
8724 bool done;
8725
8726 gcc_assert (slp_node || !PURE_SLP_STMT (stmt_info));
8727 gimple *old_vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
8728
8729 switch (STMT_VINFO_TYPE (stmt_info))
8730 {
8731 case type_demotion_vec_info_type:
8732 case type_promotion_vec_info_type:
8733 case type_conversion_vec_info_type:
8734 done = vectorizable_conversion (stmt, gsi, &vec_stmt, slp_node);
8735 gcc_assert (done);
8736 break;
8737
8738 case induc_vec_info_type:
8739 done = vectorizable_induction (stmt, gsi, &vec_stmt, slp_node);
8740 gcc_assert (done);
8741 break;
8742
8743 case shift_vec_info_type:
8744 done = vectorizable_shift (stmt, gsi, &vec_stmt, slp_node);
8745 gcc_assert (done);
8746 break;
8747
8748 case op_vec_info_type:
8749 done = vectorizable_operation (stmt, gsi, &vec_stmt, slp_node);
8750 gcc_assert (done);
8751 break;
8752
8753 case assignment_vec_info_type:
8754 done = vectorizable_assignment (stmt, gsi, &vec_stmt, slp_node);
8755 gcc_assert (done);
8756 break;
8757
8758 case load_vec_info_type:
8759 done = vectorizable_load (stmt, gsi, &vec_stmt, slp_node,
8760 slp_node_instance);
8761 gcc_assert (done);
8762 break;
8763
8764 case store_vec_info_type:
8765 done = vectorizable_store (stmt, gsi, &vec_stmt, slp_node);
8766 gcc_assert (done);
8767 if (STMT_VINFO_GROUPED_ACCESS (stmt_info) && !slp_node)
8768 {
8769 /* In case of interleaving, the whole chain is vectorized when the
8770 last store in the chain is reached. Store stmts before the last
8771 one are skipped, and there vec_stmt_info shouldn't be freed
8772 meanwhile. */
8773 *grouped_store = true;
8774 if (STMT_VINFO_VEC_STMT (stmt_info))
8775 is_store = true;
8776 }
8777 else
8778 is_store = true;
8779 break;
8780
8781 case condition_vec_info_type:
8782 done = vectorizable_condition (stmt, gsi, &vec_stmt, NULL, 0, slp_node);
8783 gcc_assert (done);
8784 break;
8785
8786 case comparison_vec_info_type:
8787 done = vectorizable_comparison (stmt, gsi, &vec_stmt, NULL, slp_node);
8788 gcc_assert (done);
8789 break;
8790
8791 case call_vec_info_type:
8792 done = vectorizable_call (stmt, gsi, &vec_stmt, slp_node);
8793 stmt = gsi_stmt (*gsi);
8794 if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
8795 is_store = true;
8796 break;
8797
8798 case call_simd_clone_vec_info_type:
8799 done = vectorizable_simd_clone_call (stmt, gsi, &vec_stmt, slp_node);
8800 stmt = gsi_stmt (*gsi);
8801 break;
8802
8803 case reduc_vec_info_type:
8804 done = vectorizable_reduction (stmt, gsi, &vec_stmt, slp_node,
8805 slp_node_instance);
8806 gcc_assert (done);
8807 break;
8808
8809 default:
8810 if (!STMT_VINFO_LIVE_P (stmt_info))
8811 {
8812 if (dump_enabled_p ())
8813 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
8814 "stmt not supported.\n");
8815 gcc_unreachable ();
8816 }
8817 }
8818
8819 /* Verify SLP vectorization doesn't mess with STMT_VINFO_VEC_STMT.
8820 This would break hybrid SLP vectorization. */
8821 if (slp_node)
8822 gcc_assert (!vec_stmt
8823 && STMT_VINFO_VEC_STMT (stmt_info) == old_vec_stmt);
8824
8825 /* Handle inner-loop stmts whose DEF is used in the loop-nest that
8826 is being vectorized, but outside the immediately enclosing loop. */
8827 if (vec_stmt
8828 && STMT_VINFO_LOOP_VINFO (stmt_info)
8829 && nested_in_vect_loop_p (LOOP_VINFO_LOOP (
8830 STMT_VINFO_LOOP_VINFO (stmt_info)), stmt)
8831 && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type
8832 && (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_outer
8833 || STMT_VINFO_RELEVANT (stmt_info) ==
8834 vect_used_in_outer_by_reduction))
8835 {
8836 struct loop *innerloop = LOOP_VINFO_LOOP (
8837 STMT_VINFO_LOOP_VINFO (stmt_info))->inner;
8838 imm_use_iterator imm_iter;
8839 use_operand_p use_p;
8840 tree scalar_dest;
8841 gimple *exit_phi;
8842
8843 if (dump_enabled_p ())
8844 dump_printf_loc (MSG_NOTE, vect_location,
8845 "Record the vdef for outer-loop vectorization.\n");
8846
8847 /* Find the relevant loop-exit phi-node, and reord the vec_stmt there
8848 (to be used when vectorizing outer-loop stmts that use the DEF of
8849 STMT). */
8850 if (gimple_code (stmt) == GIMPLE_PHI)
8851 scalar_dest = PHI_RESULT (stmt);
8852 else
8853 scalar_dest = gimple_assign_lhs (stmt);
8854
8855 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
8856 {
8857 if (!flow_bb_inside_loop_p (innerloop, gimple_bb (USE_STMT (use_p))))
8858 {
8859 exit_phi = USE_STMT (use_p);
8860 STMT_VINFO_VEC_STMT (vinfo_for_stmt (exit_phi)) = vec_stmt;
8861 }
8862 }
8863 }
8864
8865 /* Handle stmts whose DEF is used outside the loop-nest that is
8866 being vectorized. */
8867 if (slp_node)
8868 {
8869 gimple *slp_stmt;
8870 int i;
8871 if (STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
8872 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (slp_node), i, slp_stmt)
8873 {
8874 stmt_vec_info slp_stmt_info = vinfo_for_stmt (slp_stmt);
8875 if (STMT_VINFO_LIVE_P (slp_stmt_info))
8876 {
8877 done = vectorizable_live_operation (slp_stmt, gsi, slp_node, i,
8878 &vec_stmt);
8879 gcc_assert (done);
8880 }
8881 }
8882 }
8883 else if (STMT_VINFO_LIVE_P (stmt_info)
8884 && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
8885 {
8886 done = vectorizable_live_operation (stmt, gsi, slp_node, -1, &vec_stmt);
8887 gcc_assert (done);
8888 }
8889
8890 if (vec_stmt)
8891 STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
8892
8893 return is_store;
8894 }
8895
8896
8897 /* Remove a group of stores (for SLP or interleaving), free their
8898 stmt_vec_info. */
8899
8900 void
8901 vect_remove_stores (gimple *first_stmt)
8902 {
8903 gimple *next = first_stmt;
8904 gimple *tmp;
8905 gimple_stmt_iterator next_si;
8906
8907 while (next)
8908 {
8909 stmt_vec_info stmt_info = vinfo_for_stmt (next);
8910
8911 tmp = GROUP_NEXT_ELEMENT (stmt_info);
8912 if (is_pattern_stmt_p (stmt_info))
8913 next = STMT_VINFO_RELATED_STMT (stmt_info);
8914 /* Free the attached stmt_vec_info and remove the stmt. */
8915 next_si = gsi_for_stmt (next);
8916 unlink_stmt_vdef (next);
8917 gsi_remove (&next_si, true);
8918 release_defs (next);
8919 free_stmt_vec_info (next);
8920 next = tmp;
8921 }
8922 }
8923
8924
8925 /* Function new_stmt_vec_info.
8926
8927 Create and initialize a new stmt_vec_info struct for STMT. */
8928
8929 stmt_vec_info
8930 new_stmt_vec_info (gimple *stmt, vec_info *vinfo)
8931 {
8932 stmt_vec_info res;
8933 res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));
8934
8935 STMT_VINFO_TYPE (res) = undef_vec_info_type;
8936 STMT_VINFO_STMT (res) = stmt;
8937 res->vinfo = vinfo;
8938 STMT_VINFO_RELEVANT (res) = vect_unused_in_scope;
8939 STMT_VINFO_LIVE_P (res) = false;
8940 STMT_VINFO_VECTYPE (res) = NULL;
8941 STMT_VINFO_VEC_STMT (res) = NULL;
8942 STMT_VINFO_VECTORIZABLE (res) = true;
8943 STMT_VINFO_IN_PATTERN_P (res) = false;
8944 STMT_VINFO_RELATED_STMT (res) = NULL;
8945 STMT_VINFO_PATTERN_DEF_SEQ (res) = NULL;
8946 STMT_VINFO_DATA_REF (res) = NULL;
8947 STMT_VINFO_VEC_REDUCTION_TYPE (res) = TREE_CODE_REDUCTION;
8948 STMT_VINFO_VEC_CONST_COND_REDUC_CODE (res) = ERROR_MARK;
8949
8950 if (gimple_code (stmt) == GIMPLE_PHI
8951 && is_loop_header_bb_p (gimple_bb (stmt)))
8952 STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
8953 else
8954 STMT_VINFO_DEF_TYPE (res) = vect_internal_def;
8955
8956 STMT_VINFO_SAME_ALIGN_REFS (res).create (0);
8957 STMT_SLP_TYPE (res) = loop_vect;
8958 STMT_VINFO_NUM_SLP_USES (res) = 0;
8959
8960 GROUP_FIRST_ELEMENT (res) = NULL;
8961 GROUP_NEXT_ELEMENT (res) = NULL;
8962 GROUP_SIZE (res) = 0;
8963 GROUP_STORE_COUNT (res) = 0;
8964 GROUP_GAP (res) = 0;
8965 GROUP_SAME_DR_STMT (res) = NULL;
8966
8967 return res;
8968 }
8969
8970
8971 /* Create a hash table for stmt_vec_info. */
8972
8973 void
8974 init_stmt_vec_info_vec (void)
8975 {
8976 gcc_assert (!stmt_vec_info_vec.exists ());
8977 stmt_vec_info_vec.create (50);
8978 }
8979
8980
8981 /* Free hash table for stmt_vec_info. */
8982
8983 void
8984 free_stmt_vec_info_vec (void)
8985 {
8986 unsigned int i;
8987 stmt_vec_info info;
8988 FOR_EACH_VEC_ELT (stmt_vec_info_vec, i, info)
8989 if (info != NULL)
8990 free_stmt_vec_info (STMT_VINFO_STMT (info));
8991 gcc_assert (stmt_vec_info_vec.exists ());
8992 stmt_vec_info_vec.release ();
8993 }
8994
8995
8996 /* Free stmt vectorization related info. */
8997
8998 void
8999 free_stmt_vec_info (gimple *stmt)
9000 {
9001 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
9002
9003 if (!stmt_info)
9004 return;
9005
9006 /* Check if this statement has a related "pattern stmt"
9007 (introduced by the vectorizer during the pattern recognition
9008 pass). Free pattern's stmt_vec_info and def stmt's stmt_vec_info
9009 too. */
9010 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
9011 {
9012 stmt_vec_info patt_info
9013 = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
9014 if (patt_info)
9015 {
9016 gimple_seq seq = STMT_VINFO_PATTERN_DEF_SEQ (patt_info);
9017 gimple *patt_stmt = STMT_VINFO_STMT (patt_info);
9018 gimple_set_bb (patt_stmt, NULL);
9019 tree lhs = gimple_get_lhs (patt_stmt);
9020 if (lhs && TREE_CODE (lhs) == SSA_NAME)
9021 release_ssa_name (lhs);
9022 if (seq)
9023 {
9024 gimple_stmt_iterator si;
9025 for (si = gsi_start (seq); !gsi_end_p (si); gsi_next (&si))
9026 {
9027 gimple *seq_stmt = gsi_stmt (si);
9028 gimple_set_bb (seq_stmt, NULL);
9029 lhs = gimple_get_lhs (seq_stmt);
9030 if (lhs && TREE_CODE (lhs) == SSA_NAME)
9031 release_ssa_name (lhs);
9032 free_stmt_vec_info (seq_stmt);
9033 }
9034 }
9035 free_stmt_vec_info (patt_stmt);
9036 }
9037 }
9038
9039 STMT_VINFO_SAME_ALIGN_REFS (stmt_info).release ();
9040 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).release ();
9041 set_vinfo_for_stmt (stmt, NULL);
9042 free (stmt_info);
9043 }
9044
9045
9046 /* Function get_vectype_for_scalar_type_and_size.
9047
9048 Returns the vector type corresponding to SCALAR_TYPE and SIZE as supported
9049 by the target. */
9050
9051 static tree
9052 get_vectype_for_scalar_type_and_size (tree scalar_type, unsigned size)
9053 {
9054 tree orig_scalar_type = scalar_type;
9055 scalar_mode inner_mode;
9056 machine_mode simd_mode;
9057 int nunits;
9058 tree vectype;
9059
9060 if (!is_int_mode (TYPE_MODE (scalar_type), &inner_mode)
9061 && !is_float_mode (TYPE_MODE (scalar_type), &inner_mode))
9062 return NULL_TREE;
9063
9064 unsigned int nbytes = GET_MODE_SIZE (inner_mode);
9065
9066 /* For vector types of elements whose mode precision doesn't
9067 match their types precision we use a element type of mode
9068 precision. The vectorization routines will have to make sure
9069 they support the proper result truncation/extension.
9070 We also make sure to build vector types with INTEGER_TYPE
9071 component type only. */
9072 if (INTEGRAL_TYPE_P (scalar_type)
9073 && (GET_MODE_BITSIZE (inner_mode) != TYPE_PRECISION (scalar_type)
9074 || TREE_CODE (scalar_type) != INTEGER_TYPE))
9075 scalar_type = build_nonstandard_integer_type (GET_MODE_BITSIZE (inner_mode),
9076 TYPE_UNSIGNED (scalar_type));
9077
9078 /* We shouldn't end up building VECTOR_TYPEs of non-scalar components.
9079 When the component mode passes the above test simply use a type
9080 corresponding to that mode. The theory is that any use that
9081 would cause problems with this will disable vectorization anyway. */
9082 else if (!SCALAR_FLOAT_TYPE_P (scalar_type)
9083 && !INTEGRAL_TYPE_P (scalar_type))
9084 scalar_type = lang_hooks.types.type_for_mode (inner_mode, 1);
9085
9086 /* We can't build a vector type of elements with alignment bigger than
9087 their size. */
9088 else if (nbytes < TYPE_ALIGN_UNIT (scalar_type))
9089 scalar_type = lang_hooks.types.type_for_mode (inner_mode,
9090 TYPE_UNSIGNED (scalar_type));
9091
9092 /* If we felt back to using the mode fail if there was
9093 no scalar type for it. */
9094 if (scalar_type == NULL_TREE)
9095 return NULL_TREE;
9096
9097 /* If no size was supplied use the mode the target prefers. Otherwise
9098 lookup a vector mode of the specified size. */
9099 if (size == 0)
9100 simd_mode = targetm.vectorize.preferred_simd_mode (inner_mode);
9101 else
9102 simd_mode = mode_for_vector (inner_mode, size / nbytes);
9103 nunits = GET_MODE_SIZE (simd_mode) / nbytes;
9104 if (nunits <= 1)
9105 return NULL_TREE;
9106
9107 vectype = build_vector_type (scalar_type, nunits);
9108
9109 if (!VECTOR_MODE_P (TYPE_MODE (vectype))
9110 && !INTEGRAL_MODE_P (TYPE_MODE (vectype)))
9111 return NULL_TREE;
9112
9113 /* Re-attach the address-space qualifier if we canonicalized the scalar
9114 type. */
9115 if (TYPE_ADDR_SPACE (orig_scalar_type) != TYPE_ADDR_SPACE (vectype))
9116 return build_qualified_type
9117 (vectype, KEEP_QUAL_ADDR_SPACE (TYPE_QUALS (orig_scalar_type)));
9118
9119 return vectype;
9120 }
9121
9122 unsigned int current_vector_size;
9123
9124 /* Function get_vectype_for_scalar_type.
9125
9126 Returns the vector type corresponding to SCALAR_TYPE as supported
9127 by the target. */
9128
9129 tree
9130 get_vectype_for_scalar_type (tree scalar_type)
9131 {
9132 tree vectype;
9133 vectype = get_vectype_for_scalar_type_and_size (scalar_type,
9134 current_vector_size);
9135 if (vectype
9136 && current_vector_size == 0)
9137 current_vector_size = GET_MODE_SIZE (TYPE_MODE (vectype));
9138 return vectype;
9139 }
9140
9141 /* Function get_mask_type_for_scalar_type.
9142
9143 Returns the mask type corresponding to a result of comparison
9144 of vectors of specified SCALAR_TYPE as supported by target. */
9145
9146 tree
9147 get_mask_type_for_scalar_type (tree scalar_type)
9148 {
9149 tree vectype = get_vectype_for_scalar_type (scalar_type);
9150
9151 if (!vectype)
9152 return NULL;
9153
9154 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (vectype),
9155 current_vector_size);
9156 }
9157
9158 /* Function get_same_sized_vectype
9159
9160 Returns a vector type corresponding to SCALAR_TYPE of size
9161 VECTOR_TYPE if supported by the target. */
9162
9163 tree
9164 get_same_sized_vectype (tree scalar_type, tree vector_type)
9165 {
9166 if (VECT_SCALAR_BOOLEAN_TYPE_P (scalar_type))
9167 return build_same_sized_truth_vector_type (vector_type);
9168
9169 return get_vectype_for_scalar_type_and_size
9170 (scalar_type, GET_MODE_SIZE (TYPE_MODE (vector_type)));
9171 }
9172
9173 /* Function vect_is_simple_use.
9174
9175 Input:
9176 VINFO - the vect info of the loop or basic block that is being vectorized.
9177 OPERAND - operand in the loop or bb.
9178 Output:
9179 DEF_STMT - the defining stmt in case OPERAND is an SSA_NAME.
9180 DT - the type of definition
9181
9182 Returns whether a stmt with OPERAND can be vectorized.
9183 For loops, supportable operands are constants, loop invariants, and operands
9184 that are defined by the current iteration of the loop. Unsupportable
9185 operands are those that are defined by a previous iteration of the loop (as
9186 is the case in reduction/induction computations).
9187 For basic blocks, supportable operands are constants and bb invariants.
9188 For now, operands defined outside the basic block are not supported. */
9189
9190 bool
9191 vect_is_simple_use (tree operand, vec_info *vinfo,
9192 gimple **def_stmt, enum vect_def_type *dt)
9193 {
9194 *def_stmt = NULL;
9195 *dt = vect_unknown_def_type;
9196
9197 if (dump_enabled_p ())
9198 {
9199 dump_printf_loc (MSG_NOTE, vect_location,
9200 "vect_is_simple_use: operand ");
9201 dump_generic_expr (MSG_NOTE, TDF_SLIM, operand);
9202 dump_printf (MSG_NOTE, "\n");
9203 }
9204
9205 if (CONSTANT_CLASS_P (operand))
9206 {
9207 *dt = vect_constant_def;
9208 return true;
9209 }
9210
9211 if (is_gimple_min_invariant (operand))
9212 {
9213 *dt = vect_external_def;
9214 return true;
9215 }
9216
9217 if (TREE_CODE (operand) != SSA_NAME)
9218 {
9219 if (dump_enabled_p ())
9220 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
9221 "not ssa-name.\n");
9222 return false;
9223 }
9224
9225 if (SSA_NAME_IS_DEFAULT_DEF (operand))
9226 {
9227 *dt = vect_external_def;
9228 return true;
9229 }
9230
9231 *def_stmt = SSA_NAME_DEF_STMT (operand);
9232 if (dump_enabled_p ())
9233 {
9234 dump_printf_loc (MSG_NOTE, vect_location, "def_stmt: ");
9235 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, *def_stmt, 0);
9236 }
9237
9238 if (! vect_stmt_in_region_p (vinfo, *def_stmt))
9239 *dt = vect_external_def;
9240 else
9241 {
9242 stmt_vec_info stmt_vinfo = vinfo_for_stmt (*def_stmt);
9243 *dt = STMT_VINFO_DEF_TYPE (stmt_vinfo);
9244 }
9245
9246 if (dump_enabled_p ())
9247 {
9248 dump_printf_loc (MSG_NOTE, vect_location, "type of def: ");
9249 switch (*dt)
9250 {
9251 case vect_uninitialized_def:
9252 dump_printf (MSG_NOTE, "uninitialized\n");
9253 break;
9254 case vect_constant_def:
9255 dump_printf (MSG_NOTE, "constant\n");
9256 break;
9257 case vect_external_def:
9258 dump_printf (MSG_NOTE, "external\n");
9259 break;
9260 case vect_internal_def:
9261 dump_printf (MSG_NOTE, "internal\n");
9262 break;
9263 case vect_induction_def:
9264 dump_printf (MSG_NOTE, "induction\n");
9265 break;
9266 case vect_reduction_def:
9267 dump_printf (MSG_NOTE, "reduction\n");
9268 break;
9269 case vect_double_reduction_def:
9270 dump_printf (MSG_NOTE, "double reduction\n");
9271 break;
9272 case vect_nested_cycle:
9273 dump_printf (MSG_NOTE, "nested cycle\n");
9274 break;
9275 case vect_unknown_def_type:
9276 dump_printf (MSG_NOTE, "unknown\n");
9277 break;
9278 }
9279 }
9280
9281 if (*dt == vect_unknown_def_type)
9282 {
9283 if (dump_enabled_p ())
9284 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
9285 "Unsupported pattern.\n");
9286 return false;
9287 }
9288
9289 switch (gimple_code (*def_stmt))
9290 {
9291 case GIMPLE_PHI:
9292 case GIMPLE_ASSIGN:
9293 case GIMPLE_CALL:
9294 break;
9295 default:
9296 if (dump_enabled_p ())
9297 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
9298 "unsupported defining stmt:\n");
9299 return false;
9300 }
9301
9302 return true;
9303 }
9304
9305 /* Function vect_is_simple_use.
9306
9307 Same as vect_is_simple_use but also determines the vector operand
9308 type of OPERAND and stores it to *VECTYPE. If the definition of
9309 OPERAND is vect_uninitialized_def, vect_constant_def or
9310 vect_external_def *VECTYPE will be set to NULL_TREE and the caller
9311 is responsible to compute the best suited vector type for the
9312 scalar operand. */
9313
9314 bool
9315 vect_is_simple_use (tree operand, vec_info *vinfo,
9316 gimple **def_stmt, enum vect_def_type *dt, tree *vectype)
9317 {
9318 if (!vect_is_simple_use (operand, vinfo, def_stmt, dt))
9319 return false;
9320
9321 /* Now get a vector type if the def is internal, otherwise supply
9322 NULL_TREE and leave it up to the caller to figure out a proper
9323 type for the use stmt. */
9324 if (*dt == vect_internal_def
9325 || *dt == vect_induction_def
9326 || *dt == vect_reduction_def
9327 || *dt == vect_double_reduction_def
9328 || *dt == vect_nested_cycle)
9329 {
9330 stmt_vec_info stmt_info = vinfo_for_stmt (*def_stmt);
9331
9332 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
9333 && !STMT_VINFO_RELEVANT (stmt_info)
9334 && !STMT_VINFO_LIVE_P (stmt_info))
9335 stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
9336
9337 *vectype = STMT_VINFO_VECTYPE (stmt_info);
9338 gcc_assert (*vectype != NULL_TREE);
9339 }
9340 else if (*dt == vect_uninitialized_def
9341 || *dt == vect_constant_def
9342 || *dt == vect_external_def)
9343 *vectype = NULL_TREE;
9344 else
9345 gcc_unreachable ();
9346
9347 return true;
9348 }
9349
9350
9351 /* Function supportable_widening_operation
9352
9353 Check whether an operation represented by the code CODE is a
9354 widening operation that is supported by the target platform in
9355 vector form (i.e., when operating on arguments of type VECTYPE_IN
9356 producing a result of type VECTYPE_OUT).
9357
9358 Widening operations we currently support are NOP (CONVERT), FLOAT
9359 and WIDEN_MULT. This function checks if these operations are supported
9360 by the target platform either directly (via vector tree-codes), or via
9361 target builtins.
9362
9363 Output:
9364 - CODE1 and CODE2 are codes of vector operations to be used when
9365 vectorizing the operation, if available.
9366 - MULTI_STEP_CVT determines the number of required intermediate steps in
9367 case of multi-step conversion (like char->short->int - in that case
9368 MULTI_STEP_CVT will be 1).
9369 - INTERM_TYPES contains the intermediate type required to perform the
9370 widening operation (short in the above example). */
9371
9372 bool
9373 supportable_widening_operation (enum tree_code code, gimple *stmt,
9374 tree vectype_out, tree vectype_in,
9375 enum tree_code *code1, enum tree_code *code2,
9376 int *multi_step_cvt,
9377 vec<tree> *interm_types)
9378 {
9379 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
9380 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_info);
9381 struct loop *vect_loop = NULL;
9382 machine_mode vec_mode;
9383 enum insn_code icode1, icode2;
9384 optab optab1, optab2;
9385 tree vectype = vectype_in;
9386 tree wide_vectype = vectype_out;
9387 enum tree_code c1, c2;
9388 int i;
9389 tree prev_type, intermediate_type;
9390 machine_mode intermediate_mode, prev_mode;
9391 optab optab3, optab4;
9392
9393 *multi_step_cvt = 0;
9394 if (loop_info)
9395 vect_loop = LOOP_VINFO_LOOP (loop_info);
9396
9397 switch (code)
9398 {
9399 case WIDEN_MULT_EXPR:
9400 /* The result of a vectorized widening operation usually requires
9401 two vectors (because the widened results do not fit into one vector).
9402 The generated vector results would normally be expected to be
9403 generated in the same order as in the original scalar computation,
9404 i.e. if 8 results are generated in each vector iteration, they are
9405 to be organized as follows:
9406 vect1: [res1,res2,res3,res4],
9407 vect2: [res5,res6,res7,res8].
9408
9409 However, in the special case that the result of the widening
9410 operation is used in a reduction computation only, the order doesn't
9411 matter (because when vectorizing a reduction we change the order of
9412 the computation). Some targets can take advantage of this and
9413 generate more efficient code. For example, targets like Altivec,
9414 that support widen_mult using a sequence of {mult_even,mult_odd}
9415 generate the following vectors:
9416 vect1: [res1,res3,res5,res7],
9417 vect2: [res2,res4,res6,res8].
9418
9419 When vectorizing outer-loops, we execute the inner-loop sequentially
9420 (each vectorized inner-loop iteration contributes to VF outer-loop
9421 iterations in parallel). We therefore don't allow to change the
9422 order of the computation in the inner-loop during outer-loop
9423 vectorization. */
9424 /* TODO: Another case in which order doesn't *really* matter is when we
9425 widen and then contract again, e.g. (short)((int)x * y >> 8).
9426 Normally, pack_trunc performs an even/odd permute, whereas the
9427 repack from an even/odd expansion would be an interleave, which
9428 would be significantly simpler for e.g. AVX2. */
9429 /* In any case, in order to avoid duplicating the code below, recurse
9430 on VEC_WIDEN_MULT_EVEN_EXPR. If it succeeds, all the return values
9431 are properly set up for the caller. If we fail, we'll continue with
9432 a VEC_WIDEN_MULT_LO/HI_EXPR check. */
9433 if (vect_loop
9434 && STMT_VINFO_RELEVANT (stmt_info) == vect_used_by_reduction
9435 && !nested_in_vect_loop_p (vect_loop, stmt)
9436 && supportable_widening_operation (VEC_WIDEN_MULT_EVEN_EXPR,
9437 stmt, vectype_out, vectype_in,
9438 code1, code2, multi_step_cvt,
9439 interm_types))
9440 {
9441 /* Elements in a vector with vect_used_by_reduction property cannot
9442 be reordered if the use chain with this property does not have the
9443 same operation. One such an example is s += a * b, where elements
9444 in a and b cannot be reordered. Here we check if the vector defined
9445 by STMT is only directly used in the reduction statement. */
9446 tree lhs = gimple_assign_lhs (stmt);
9447 use_operand_p dummy;
9448 gimple *use_stmt;
9449 stmt_vec_info use_stmt_info = NULL;
9450 if (single_imm_use (lhs, &dummy, &use_stmt)
9451 && (use_stmt_info = vinfo_for_stmt (use_stmt))
9452 && STMT_VINFO_DEF_TYPE (use_stmt_info) == vect_reduction_def)
9453 return true;
9454 }
9455 c1 = VEC_WIDEN_MULT_LO_EXPR;
9456 c2 = VEC_WIDEN_MULT_HI_EXPR;
9457 break;
9458
9459 case DOT_PROD_EXPR:
9460 c1 = DOT_PROD_EXPR;
9461 c2 = DOT_PROD_EXPR;
9462 break;
9463
9464 case SAD_EXPR:
9465 c1 = SAD_EXPR;
9466 c2 = SAD_EXPR;
9467 break;
9468
9469 case VEC_WIDEN_MULT_EVEN_EXPR:
9470 /* Support the recursion induced just above. */
9471 c1 = VEC_WIDEN_MULT_EVEN_EXPR;
9472 c2 = VEC_WIDEN_MULT_ODD_EXPR;
9473 break;
9474
9475 case WIDEN_LSHIFT_EXPR:
9476 c1 = VEC_WIDEN_LSHIFT_LO_EXPR;
9477 c2 = VEC_WIDEN_LSHIFT_HI_EXPR;
9478 break;
9479
9480 CASE_CONVERT:
9481 c1 = VEC_UNPACK_LO_EXPR;
9482 c2 = VEC_UNPACK_HI_EXPR;
9483 break;
9484
9485 case FLOAT_EXPR:
9486 c1 = VEC_UNPACK_FLOAT_LO_EXPR;
9487 c2 = VEC_UNPACK_FLOAT_HI_EXPR;
9488 break;
9489
9490 case FIX_TRUNC_EXPR:
9491 /* ??? Not yet implemented due to missing VEC_UNPACK_FIX_TRUNC_HI_EXPR/
9492 VEC_UNPACK_FIX_TRUNC_LO_EXPR tree codes and optabs used for
9493 computing the operation. */
9494 return false;
9495
9496 default:
9497 gcc_unreachable ();
9498 }
9499
9500 if (BYTES_BIG_ENDIAN && c1 != VEC_WIDEN_MULT_EVEN_EXPR)
9501 std::swap (c1, c2);
9502
9503 if (code == FIX_TRUNC_EXPR)
9504 {
9505 /* The signedness is determined from output operand. */
9506 optab1 = optab_for_tree_code (c1, vectype_out, optab_default);
9507 optab2 = optab_for_tree_code (c2, vectype_out, optab_default);
9508 }
9509 else
9510 {
9511 optab1 = optab_for_tree_code (c1, vectype, optab_default);
9512 optab2 = optab_for_tree_code (c2, vectype, optab_default);
9513 }
9514
9515 if (!optab1 || !optab2)
9516 return false;
9517
9518 vec_mode = TYPE_MODE (vectype);
9519 if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing
9520 || (icode2 = optab_handler (optab2, vec_mode)) == CODE_FOR_nothing)
9521 return false;
9522
9523 *code1 = c1;
9524 *code2 = c2;
9525
9526 if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
9527 && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
9528 /* For scalar masks we may have different boolean
9529 vector types having the same QImode. Thus we
9530 add additional check for elements number. */
9531 return (!VECTOR_BOOLEAN_TYPE_P (vectype)
9532 || (TYPE_VECTOR_SUBPARTS (vectype) / 2
9533 == TYPE_VECTOR_SUBPARTS (wide_vectype)));
9534
9535 /* Check if it's a multi-step conversion that can be done using intermediate
9536 types. */
9537
9538 prev_type = vectype;
9539 prev_mode = vec_mode;
9540
9541 if (!CONVERT_EXPR_CODE_P (code))
9542 return false;
9543
9544 /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
9545 intermediate steps in promotion sequence. We try
9546 MAX_INTERM_CVT_STEPS to get to NARROW_VECTYPE, and fail if we do
9547 not. */
9548 interm_types->create (MAX_INTERM_CVT_STEPS);
9549 for (i = 0; i < MAX_INTERM_CVT_STEPS; i++)
9550 {
9551 intermediate_mode = insn_data[icode1].operand[0].mode;
9552 if (VECTOR_BOOLEAN_TYPE_P (prev_type))
9553 {
9554 intermediate_type
9555 = build_truth_vector_type (TYPE_VECTOR_SUBPARTS (prev_type) / 2,
9556 current_vector_size);
9557 if (intermediate_mode != TYPE_MODE (intermediate_type))
9558 return false;
9559 }
9560 else
9561 intermediate_type
9562 = lang_hooks.types.type_for_mode (intermediate_mode,
9563 TYPE_UNSIGNED (prev_type));
9564
9565 optab3 = optab_for_tree_code (c1, intermediate_type, optab_default);
9566 optab4 = optab_for_tree_code (c2, intermediate_type, optab_default);
9567
9568 if (!optab3 || !optab4
9569 || (icode1 = optab_handler (optab1, prev_mode)) == CODE_FOR_nothing
9570 || insn_data[icode1].operand[0].mode != intermediate_mode
9571 || (icode2 = optab_handler (optab2, prev_mode)) == CODE_FOR_nothing
9572 || insn_data[icode2].operand[0].mode != intermediate_mode
9573 || ((icode1 = optab_handler (optab3, intermediate_mode))
9574 == CODE_FOR_nothing)
9575 || ((icode2 = optab_handler (optab4, intermediate_mode))
9576 == CODE_FOR_nothing))
9577 break;
9578
9579 interm_types->quick_push (intermediate_type);
9580 (*multi_step_cvt)++;
9581
9582 if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
9583 && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
9584 return (!VECTOR_BOOLEAN_TYPE_P (vectype)
9585 || (TYPE_VECTOR_SUBPARTS (intermediate_type) / 2
9586 == TYPE_VECTOR_SUBPARTS (wide_vectype)));
9587
9588 prev_type = intermediate_type;
9589 prev_mode = intermediate_mode;
9590 }
9591
9592 interm_types->release ();
9593 return false;
9594 }
9595
9596
9597 /* Function supportable_narrowing_operation
9598
9599 Check whether an operation represented by the code CODE is a
9600 narrowing operation that is supported by the target platform in
9601 vector form (i.e., when operating on arguments of type VECTYPE_IN
9602 and producing a result of type VECTYPE_OUT).
9603
9604 Narrowing operations we currently support are NOP (CONVERT) and
9605 FIX_TRUNC. This function checks if these operations are supported by
9606 the target platform directly via vector tree-codes.
9607
9608 Output:
9609 - CODE1 is the code of a vector operation to be used when
9610 vectorizing the operation, if available.
9611 - MULTI_STEP_CVT determines the number of required intermediate steps in
9612 case of multi-step conversion (like int->short->char - in that case
9613 MULTI_STEP_CVT will be 1).
9614 - INTERM_TYPES contains the intermediate type required to perform the
9615 narrowing operation (short in the above example). */
9616
9617 bool
9618 supportable_narrowing_operation (enum tree_code code,
9619 tree vectype_out, tree vectype_in,
9620 enum tree_code *code1, int *multi_step_cvt,
9621 vec<tree> *interm_types)
9622 {
9623 machine_mode vec_mode;
9624 enum insn_code icode1;
9625 optab optab1, interm_optab;
9626 tree vectype = vectype_in;
9627 tree narrow_vectype = vectype_out;
9628 enum tree_code c1;
9629 tree intermediate_type, prev_type;
9630 machine_mode intermediate_mode, prev_mode;
9631 int i;
9632 bool uns;
9633
9634 *multi_step_cvt = 0;
9635 switch (code)
9636 {
9637 CASE_CONVERT:
9638 c1 = VEC_PACK_TRUNC_EXPR;
9639 break;
9640
9641 case FIX_TRUNC_EXPR:
9642 c1 = VEC_PACK_FIX_TRUNC_EXPR;
9643 break;
9644
9645 case FLOAT_EXPR:
9646 /* ??? Not yet implemented due to missing VEC_PACK_FLOAT_EXPR
9647 tree code and optabs used for computing the operation. */
9648 return false;
9649
9650 default:
9651 gcc_unreachable ();
9652 }
9653
9654 if (code == FIX_TRUNC_EXPR)
9655 /* The signedness is determined from output operand. */
9656 optab1 = optab_for_tree_code (c1, vectype_out, optab_default);
9657 else
9658 optab1 = optab_for_tree_code (c1, vectype, optab_default);
9659
9660 if (!optab1)
9661 return false;
9662
9663 vec_mode = TYPE_MODE (vectype);
9664 if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing)
9665 return false;
9666
9667 *code1 = c1;
9668
9669 if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
9670 /* For scalar masks we may have different boolean
9671 vector types having the same QImode. Thus we
9672 add additional check for elements number. */
9673 return (!VECTOR_BOOLEAN_TYPE_P (vectype)
9674 || (TYPE_VECTOR_SUBPARTS (vectype) * 2
9675 == TYPE_VECTOR_SUBPARTS (narrow_vectype)));
9676
9677 /* Check if it's a multi-step conversion that can be done using intermediate
9678 types. */
9679 prev_mode = vec_mode;
9680 prev_type = vectype;
9681 if (code == FIX_TRUNC_EXPR)
9682 uns = TYPE_UNSIGNED (vectype_out);
9683 else
9684 uns = TYPE_UNSIGNED (vectype);
9685
9686 /* For multi-step FIX_TRUNC_EXPR prefer signed floating to integer
9687 conversion over unsigned, as unsigned FIX_TRUNC_EXPR is often more
9688 costly than signed. */
9689 if (code == FIX_TRUNC_EXPR && uns)
9690 {
9691 enum insn_code icode2;
9692
9693 intermediate_type
9694 = lang_hooks.types.type_for_mode (TYPE_MODE (vectype_out), 0);
9695 interm_optab
9696 = optab_for_tree_code (c1, intermediate_type, optab_default);
9697 if (interm_optab != unknown_optab
9698 && (icode2 = optab_handler (optab1, vec_mode)) != CODE_FOR_nothing
9699 && insn_data[icode1].operand[0].mode
9700 == insn_data[icode2].operand[0].mode)
9701 {
9702 uns = false;
9703 optab1 = interm_optab;
9704 icode1 = icode2;
9705 }
9706 }
9707
9708 /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
9709 intermediate steps in promotion sequence. We try
9710 MAX_INTERM_CVT_STEPS to get to NARROW_VECTYPE, and fail if we do not. */
9711 interm_types->create (MAX_INTERM_CVT_STEPS);
9712 for (i = 0; i < MAX_INTERM_CVT_STEPS; i++)
9713 {
9714 intermediate_mode = insn_data[icode1].operand[0].mode;
9715 if (VECTOR_BOOLEAN_TYPE_P (prev_type))
9716 {
9717 intermediate_type
9718 = build_truth_vector_type (TYPE_VECTOR_SUBPARTS (prev_type) * 2,
9719 current_vector_size);
9720 if (intermediate_mode != TYPE_MODE (intermediate_type))
9721 return false;
9722 }
9723 else
9724 intermediate_type
9725 = lang_hooks.types.type_for_mode (intermediate_mode, uns);
9726 interm_optab
9727 = optab_for_tree_code (VEC_PACK_TRUNC_EXPR, intermediate_type,
9728 optab_default);
9729 if (!interm_optab
9730 || ((icode1 = optab_handler (optab1, prev_mode)) == CODE_FOR_nothing)
9731 || insn_data[icode1].operand[0].mode != intermediate_mode
9732 || ((icode1 = optab_handler (interm_optab, intermediate_mode))
9733 == CODE_FOR_nothing))
9734 break;
9735
9736 interm_types->quick_push (intermediate_type);
9737 (*multi_step_cvt)++;
9738
9739 if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
9740 return (!VECTOR_BOOLEAN_TYPE_P (vectype)
9741 || (TYPE_VECTOR_SUBPARTS (intermediate_type) * 2
9742 == TYPE_VECTOR_SUBPARTS (narrow_vectype)));
9743
9744 prev_mode = intermediate_mode;
9745 prev_type = intermediate_type;
9746 optab1 = interm_optab;
9747 }
9748
9749 interm_types->release ();
9750 return false;
9751 }