tree-vect-stmts.c (vectorizable_mask_load_store): Check types of stored value and...
[gcc.git] / gcc / tree-vect-stmts.c
1 /* Statement Analysis and Transformation for Vectorization
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "ssa.h"
31 #include "optabs-tree.h"
32 #include "insn-config.h"
33 #include "recog.h" /* FIXME: for insn_data */
34 #include "cgraph.h"
35 #include "dumpfile.h"
36 #include "alias.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
39 #include "tree-eh.h"
40 #include "gimplify.h"
41 #include "gimple-iterator.h"
42 #include "gimplify-me.h"
43 #include "tree-cfg.h"
44 #include "tree-ssa-loop-manip.h"
45 #include "cfgloop.h"
46 #include "tree-ssa-loop.h"
47 #include "tree-scalar-evolution.h"
48 #include "tree-vectorizer.h"
49 #include "builtins.h"
50
51 /* For lang_hooks.types.type_for_mode. */
52 #include "langhooks.h"
53
54 /* Return the vectorized type for the given statement. */
55
56 tree
57 stmt_vectype (struct _stmt_vec_info *stmt_info)
58 {
59 return STMT_VINFO_VECTYPE (stmt_info);
60 }
61
62 /* Return TRUE iff the given statement is in an inner loop relative to
63 the loop being vectorized. */
64 bool
65 stmt_in_inner_loop_p (struct _stmt_vec_info *stmt_info)
66 {
67 gimple *stmt = STMT_VINFO_STMT (stmt_info);
68 basic_block bb = gimple_bb (stmt);
69 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
70 struct loop* loop;
71
72 if (!loop_vinfo)
73 return false;
74
75 loop = LOOP_VINFO_LOOP (loop_vinfo);
76
77 return (bb->loop_father == loop->inner);
78 }
79
80 /* Record the cost of a statement, either by directly informing the
81 target model or by saving it in a vector for later processing.
82 Return a preliminary estimate of the statement's cost. */
83
84 unsigned
85 record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count,
86 enum vect_cost_for_stmt kind, stmt_vec_info stmt_info,
87 int misalign, enum vect_cost_model_location where)
88 {
89 if (body_cost_vec)
90 {
91 tree vectype = stmt_info ? stmt_vectype (stmt_info) : NULL_TREE;
92 stmt_info_for_cost si = { count, kind,
93 stmt_info ? STMT_VINFO_STMT (stmt_info) : NULL,
94 misalign };
95 body_cost_vec->safe_push (si);
96 return (unsigned)
97 (builtin_vectorization_cost (kind, vectype, misalign) * count);
98 }
99 else
100 return add_stmt_cost (stmt_info->vinfo->target_cost_data,
101 count, kind, stmt_info, misalign, where);
102 }
103
104 /* Return a variable of type ELEM_TYPE[NELEMS]. */
105
106 static tree
107 create_vector_array (tree elem_type, unsigned HOST_WIDE_INT nelems)
108 {
109 return create_tmp_var (build_array_type_nelts (elem_type, nelems),
110 "vect_array");
111 }
112
113 /* ARRAY is an array of vectors created by create_vector_array.
114 Return an SSA_NAME for the vector in index N. The reference
115 is part of the vectorization of STMT and the vector is associated
116 with scalar destination SCALAR_DEST. */
117
118 static tree
119 read_vector_array (gimple *stmt, gimple_stmt_iterator *gsi, tree scalar_dest,
120 tree array, unsigned HOST_WIDE_INT n)
121 {
122 tree vect_type, vect, vect_name, array_ref;
123 gimple *new_stmt;
124
125 gcc_assert (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE);
126 vect_type = TREE_TYPE (TREE_TYPE (array));
127 vect = vect_create_destination_var (scalar_dest, vect_type);
128 array_ref = build4 (ARRAY_REF, vect_type, array,
129 build_int_cst (size_type_node, n),
130 NULL_TREE, NULL_TREE);
131
132 new_stmt = gimple_build_assign (vect, array_ref);
133 vect_name = make_ssa_name (vect, new_stmt);
134 gimple_assign_set_lhs (new_stmt, vect_name);
135 vect_finish_stmt_generation (stmt, new_stmt, gsi);
136
137 return vect_name;
138 }
139
140 /* ARRAY is an array of vectors created by create_vector_array.
141 Emit code to store SSA_NAME VECT in index N of the array.
142 The store is part of the vectorization of STMT. */
143
144 static void
145 write_vector_array (gimple *stmt, gimple_stmt_iterator *gsi, tree vect,
146 tree array, unsigned HOST_WIDE_INT n)
147 {
148 tree array_ref;
149 gimple *new_stmt;
150
151 array_ref = build4 (ARRAY_REF, TREE_TYPE (vect), array,
152 build_int_cst (size_type_node, n),
153 NULL_TREE, NULL_TREE);
154
155 new_stmt = gimple_build_assign (array_ref, vect);
156 vect_finish_stmt_generation (stmt, new_stmt, gsi);
157 }
158
159 /* PTR is a pointer to an array of type TYPE. Return a representation
160 of *PTR. The memory reference replaces those in FIRST_DR
161 (and its group). */
162
163 static tree
164 create_array_ref (tree type, tree ptr, struct data_reference *first_dr)
165 {
166 tree mem_ref, alias_ptr_type;
167
168 alias_ptr_type = reference_alias_ptr_type (DR_REF (first_dr));
169 mem_ref = build2 (MEM_REF, type, ptr, build_int_cst (alias_ptr_type, 0));
170 /* Arrays have the same alignment as their type. */
171 set_ptr_info_alignment (get_ptr_info (ptr), TYPE_ALIGN_UNIT (type), 0);
172 return mem_ref;
173 }
174
175 /* Utility functions used by vect_mark_stmts_to_be_vectorized. */
176
177 /* Function vect_mark_relevant.
178
179 Mark STMT as "relevant for vectorization" and add it to WORKLIST. */
180
181 static void
182 vect_mark_relevant (vec<gimple *> *worklist, gimple *stmt,
183 enum vect_relevant relevant, bool live_p,
184 bool used_in_pattern)
185 {
186 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
187 enum vect_relevant save_relevant = STMT_VINFO_RELEVANT (stmt_info);
188 bool save_live_p = STMT_VINFO_LIVE_P (stmt_info);
189 gimple *pattern_stmt;
190
191 if (dump_enabled_p ())
192 dump_printf_loc (MSG_NOTE, vect_location,
193 "mark relevant %d, live %d.\n", relevant, live_p);
194
195 /* If this stmt is an original stmt in a pattern, we might need to mark its
196 related pattern stmt instead of the original stmt. However, such stmts
197 may have their own uses that are not in any pattern, in such cases the
198 stmt itself should be marked. */
199 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
200 {
201 bool found = false;
202 if (!used_in_pattern)
203 {
204 imm_use_iterator imm_iter;
205 use_operand_p use_p;
206 gimple *use_stmt;
207 tree lhs;
208 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
209 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
210
211 if (is_gimple_assign (stmt))
212 lhs = gimple_assign_lhs (stmt);
213 else
214 lhs = gimple_call_lhs (stmt);
215
216 /* This use is out of pattern use, if LHS has other uses that are
217 pattern uses, we should mark the stmt itself, and not the pattern
218 stmt. */
219 if (lhs && TREE_CODE (lhs) == SSA_NAME)
220 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
221 {
222 if (is_gimple_debug (USE_STMT (use_p)))
223 continue;
224 use_stmt = USE_STMT (use_p);
225
226 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
227 continue;
228
229 if (vinfo_for_stmt (use_stmt)
230 && STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
231 {
232 found = true;
233 break;
234 }
235 }
236 }
237
238 if (!found)
239 {
240 /* This is the last stmt in a sequence that was detected as a
241 pattern that can potentially be vectorized. Don't mark the stmt
242 as relevant/live because it's not going to be vectorized.
243 Instead mark the pattern-stmt that replaces it. */
244
245 pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
246
247 if (dump_enabled_p ())
248 dump_printf_loc (MSG_NOTE, vect_location,
249 "last stmt in pattern. don't mark"
250 " relevant/live.\n");
251 stmt_info = vinfo_for_stmt (pattern_stmt);
252 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_info) == stmt);
253 save_relevant = STMT_VINFO_RELEVANT (stmt_info);
254 save_live_p = STMT_VINFO_LIVE_P (stmt_info);
255 stmt = pattern_stmt;
256 }
257 }
258
259 STMT_VINFO_LIVE_P (stmt_info) |= live_p;
260 if (relevant > STMT_VINFO_RELEVANT (stmt_info))
261 STMT_VINFO_RELEVANT (stmt_info) = relevant;
262
263 if (STMT_VINFO_RELEVANT (stmt_info) == save_relevant
264 && STMT_VINFO_LIVE_P (stmt_info) == save_live_p)
265 {
266 if (dump_enabled_p ())
267 dump_printf_loc (MSG_NOTE, vect_location,
268 "already marked relevant/live.\n");
269 return;
270 }
271
272 worklist->safe_push (stmt);
273 }
274
275
276 /* Function vect_stmt_relevant_p.
277
278 Return true if STMT in loop that is represented by LOOP_VINFO is
279 "relevant for vectorization".
280
281 A stmt is considered "relevant for vectorization" if:
282 - it has uses outside the loop.
283 - it has vdefs (it alters memory).
284 - control stmts in the loop (except for the exit condition).
285
286 CHECKME: what other side effects would the vectorizer allow? */
287
288 static bool
289 vect_stmt_relevant_p (gimple *stmt, loop_vec_info loop_vinfo,
290 enum vect_relevant *relevant, bool *live_p)
291 {
292 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
293 ssa_op_iter op_iter;
294 imm_use_iterator imm_iter;
295 use_operand_p use_p;
296 def_operand_p def_p;
297
298 *relevant = vect_unused_in_scope;
299 *live_p = false;
300
301 /* cond stmt other than loop exit cond. */
302 if (is_ctrl_stmt (stmt)
303 && STMT_VINFO_TYPE (vinfo_for_stmt (stmt))
304 != loop_exit_ctrl_vec_info_type)
305 *relevant = vect_used_in_scope;
306
307 /* changing memory. */
308 if (gimple_code (stmt) != GIMPLE_PHI)
309 if (gimple_vdef (stmt)
310 && !gimple_clobber_p (stmt))
311 {
312 if (dump_enabled_p ())
313 dump_printf_loc (MSG_NOTE, vect_location,
314 "vec_stmt_relevant_p: stmt has vdefs.\n");
315 *relevant = vect_used_in_scope;
316 }
317
318 /* uses outside the loop. */
319 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
320 {
321 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p))
322 {
323 basic_block bb = gimple_bb (USE_STMT (use_p));
324 if (!flow_bb_inside_loop_p (loop, bb))
325 {
326 if (dump_enabled_p ())
327 dump_printf_loc (MSG_NOTE, vect_location,
328 "vec_stmt_relevant_p: used out of loop.\n");
329
330 if (is_gimple_debug (USE_STMT (use_p)))
331 continue;
332
333 /* We expect all such uses to be in the loop exit phis
334 (because of loop closed form) */
335 gcc_assert (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI);
336 gcc_assert (bb == single_exit (loop)->dest);
337
338 *live_p = true;
339 }
340 }
341 }
342
343 return (*live_p || *relevant);
344 }
345
346
347 /* Function exist_non_indexing_operands_for_use_p
348
349 USE is one of the uses attached to STMT. Check if USE is
350 used in STMT for anything other than indexing an array. */
351
352 static bool
353 exist_non_indexing_operands_for_use_p (tree use, gimple *stmt)
354 {
355 tree operand;
356 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
357
358 /* USE corresponds to some operand in STMT. If there is no data
359 reference in STMT, then any operand that corresponds to USE
360 is not indexing an array. */
361 if (!STMT_VINFO_DATA_REF (stmt_info))
362 return true;
363
364 /* STMT has a data_ref. FORNOW this means that its of one of
365 the following forms:
366 -1- ARRAY_REF = var
367 -2- var = ARRAY_REF
368 (This should have been verified in analyze_data_refs).
369
370 'var' in the second case corresponds to a def, not a use,
371 so USE cannot correspond to any operands that are not used
372 for array indexing.
373
374 Therefore, all we need to check is if STMT falls into the
375 first case, and whether var corresponds to USE. */
376
377 if (!gimple_assign_copy_p (stmt))
378 {
379 if (is_gimple_call (stmt)
380 && gimple_call_internal_p (stmt))
381 switch (gimple_call_internal_fn (stmt))
382 {
383 case IFN_MASK_STORE:
384 operand = gimple_call_arg (stmt, 3);
385 if (operand == use)
386 return true;
387 /* FALLTHRU */
388 case IFN_MASK_LOAD:
389 operand = gimple_call_arg (stmt, 2);
390 if (operand == use)
391 return true;
392 break;
393 default:
394 break;
395 }
396 return false;
397 }
398
399 if (TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
400 return false;
401 operand = gimple_assign_rhs1 (stmt);
402 if (TREE_CODE (operand) != SSA_NAME)
403 return false;
404
405 if (operand == use)
406 return true;
407
408 return false;
409 }
410
411
412 /*
413 Function process_use.
414
415 Inputs:
416 - a USE in STMT in a loop represented by LOOP_VINFO
417 - LIVE_P, RELEVANT - enum values to be set in the STMT_VINFO of the stmt
418 that defined USE. This is done by calling mark_relevant and passing it
419 the WORKLIST (to add DEF_STMT to the WORKLIST in case it is relevant).
420 - FORCE is true if exist_non_indexing_operands_for_use_p check shouldn't
421 be performed.
422
423 Outputs:
424 Generally, LIVE_P and RELEVANT are used to define the liveness and
425 relevance info of the DEF_STMT of this USE:
426 STMT_VINFO_LIVE_P (DEF_STMT_info) <-- live_p
427 STMT_VINFO_RELEVANT (DEF_STMT_info) <-- relevant
428 Exceptions:
429 - case 1: If USE is used only for address computations (e.g. array indexing),
430 which does not need to be directly vectorized, then the liveness/relevance
431 of the respective DEF_STMT is left unchanged.
432 - case 2: If STMT is a reduction phi and DEF_STMT is a reduction stmt, we
433 skip DEF_STMT cause it had already been processed.
434 - case 3: If DEF_STMT and STMT are in different nests, then "relevant" will
435 be modified accordingly.
436
437 Return true if everything is as expected. Return false otherwise. */
438
439 static bool
440 process_use (gimple *stmt, tree use, loop_vec_info loop_vinfo, bool live_p,
441 enum vect_relevant relevant, vec<gimple *> *worklist,
442 bool force)
443 {
444 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
445 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
446 stmt_vec_info dstmt_vinfo;
447 basic_block bb, def_bb;
448 gimple *def_stmt;
449 enum vect_def_type dt;
450
451 /* case 1: we are only interested in uses that need to be vectorized. Uses
452 that are used for address computation are not considered relevant. */
453 if (!force && !exist_non_indexing_operands_for_use_p (use, stmt))
454 return true;
455
456 if (!vect_is_simple_use (use, loop_vinfo, &def_stmt, &dt))
457 {
458 if (dump_enabled_p ())
459 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
460 "not vectorized: unsupported use in stmt.\n");
461 return false;
462 }
463
464 if (!def_stmt || gimple_nop_p (def_stmt))
465 return true;
466
467 def_bb = gimple_bb (def_stmt);
468 if (!flow_bb_inside_loop_p (loop, def_bb))
469 {
470 if (dump_enabled_p ())
471 dump_printf_loc (MSG_NOTE, vect_location, "def_stmt is out of loop.\n");
472 return true;
473 }
474
475 /* case 2: A reduction phi (STMT) defined by a reduction stmt (DEF_STMT).
476 DEF_STMT must have already been processed, because this should be the
477 only way that STMT, which is a reduction-phi, was put in the worklist,
478 as there should be no other uses for DEF_STMT in the loop. So we just
479 check that everything is as expected, and we are done. */
480 dstmt_vinfo = vinfo_for_stmt (def_stmt);
481 bb = gimple_bb (stmt);
482 if (gimple_code (stmt) == GIMPLE_PHI
483 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
484 && gimple_code (def_stmt) != GIMPLE_PHI
485 && STMT_VINFO_DEF_TYPE (dstmt_vinfo) == vect_reduction_def
486 && bb->loop_father == def_bb->loop_father)
487 {
488 if (dump_enabled_p ())
489 dump_printf_loc (MSG_NOTE, vect_location,
490 "reduc-stmt defining reduc-phi in the same nest.\n");
491 if (STMT_VINFO_IN_PATTERN_P (dstmt_vinfo))
492 dstmt_vinfo = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (dstmt_vinfo));
493 gcc_assert (STMT_VINFO_RELEVANT (dstmt_vinfo) < vect_used_by_reduction);
494 gcc_assert (STMT_VINFO_LIVE_P (dstmt_vinfo)
495 || STMT_VINFO_RELEVANT (dstmt_vinfo) > vect_unused_in_scope);
496 return true;
497 }
498
499 /* case 3a: outer-loop stmt defining an inner-loop stmt:
500 outer-loop-header-bb:
501 d = def_stmt
502 inner-loop:
503 stmt # use (d)
504 outer-loop-tail-bb:
505 ... */
506 if (flow_loop_nested_p (def_bb->loop_father, bb->loop_father))
507 {
508 if (dump_enabled_p ())
509 dump_printf_loc (MSG_NOTE, vect_location,
510 "outer-loop def-stmt defining inner-loop stmt.\n");
511
512 switch (relevant)
513 {
514 case vect_unused_in_scope:
515 relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_nested_cycle) ?
516 vect_used_in_scope : vect_unused_in_scope;
517 break;
518
519 case vect_used_in_outer_by_reduction:
520 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def);
521 relevant = vect_used_by_reduction;
522 break;
523
524 case vect_used_in_outer:
525 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def);
526 relevant = vect_used_in_scope;
527 break;
528
529 case vect_used_in_scope:
530 break;
531
532 default:
533 gcc_unreachable ();
534 }
535 }
536
537 /* case 3b: inner-loop stmt defining an outer-loop stmt:
538 outer-loop-header-bb:
539 ...
540 inner-loop:
541 d = def_stmt
542 outer-loop-tail-bb (or outer-loop-exit-bb in double reduction):
543 stmt # use (d) */
544 else if (flow_loop_nested_p (bb->loop_father, def_bb->loop_father))
545 {
546 if (dump_enabled_p ())
547 dump_printf_loc (MSG_NOTE, vect_location,
548 "inner-loop def-stmt defining outer-loop stmt.\n");
549
550 switch (relevant)
551 {
552 case vect_unused_in_scope:
553 relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
554 || STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_double_reduction_def) ?
555 vect_used_in_outer_by_reduction : vect_unused_in_scope;
556 break;
557
558 case vect_used_by_reduction:
559 relevant = vect_used_in_outer_by_reduction;
560 break;
561
562 case vect_used_in_scope:
563 relevant = vect_used_in_outer;
564 break;
565
566 default:
567 gcc_unreachable ();
568 }
569 }
570
571 vect_mark_relevant (worklist, def_stmt, relevant, live_p,
572 is_pattern_stmt_p (stmt_vinfo));
573 return true;
574 }
575
576
577 /* Function vect_mark_stmts_to_be_vectorized.
578
579 Not all stmts in the loop need to be vectorized. For example:
580
581 for i...
582 for j...
583 1. T0 = i + j
584 2. T1 = a[T0]
585
586 3. j = j + 1
587
588 Stmt 1 and 3 do not need to be vectorized, because loop control and
589 addressing of vectorized data-refs are handled differently.
590
591 This pass detects such stmts. */
592
593 bool
594 vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo)
595 {
596 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
597 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
598 unsigned int nbbs = loop->num_nodes;
599 gimple_stmt_iterator si;
600 gimple *stmt;
601 unsigned int i;
602 stmt_vec_info stmt_vinfo;
603 basic_block bb;
604 gimple *phi;
605 bool live_p;
606 enum vect_relevant relevant, tmp_relevant;
607 enum vect_def_type def_type;
608
609 if (dump_enabled_p ())
610 dump_printf_loc (MSG_NOTE, vect_location,
611 "=== vect_mark_stmts_to_be_vectorized ===\n");
612
613 auto_vec<gimple *, 64> worklist;
614
615 /* 1. Init worklist. */
616 for (i = 0; i < nbbs; i++)
617 {
618 bb = bbs[i];
619 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
620 {
621 phi = gsi_stmt (si);
622 if (dump_enabled_p ())
623 {
624 dump_printf_loc (MSG_NOTE, vect_location, "init: phi relevant? ");
625 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
626 }
627
628 if (vect_stmt_relevant_p (phi, loop_vinfo, &relevant, &live_p))
629 vect_mark_relevant (&worklist, phi, relevant, live_p, false);
630 }
631 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
632 {
633 stmt = gsi_stmt (si);
634 if (dump_enabled_p ())
635 {
636 dump_printf_loc (MSG_NOTE, vect_location, "init: stmt relevant? ");
637 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
638 }
639
640 if (vect_stmt_relevant_p (stmt, loop_vinfo, &relevant, &live_p))
641 vect_mark_relevant (&worklist, stmt, relevant, live_p, false);
642 }
643 }
644
645 /* 2. Process_worklist */
646 while (worklist.length () > 0)
647 {
648 use_operand_p use_p;
649 ssa_op_iter iter;
650
651 stmt = worklist.pop ();
652 if (dump_enabled_p ())
653 {
654 dump_printf_loc (MSG_NOTE, vect_location, "worklist: examine stmt: ");
655 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
656 }
657
658 /* Examine the USEs of STMT. For each USE, mark the stmt that defines it
659 (DEF_STMT) as relevant/irrelevant and live/dead according to the
660 liveness and relevance properties of STMT. */
661 stmt_vinfo = vinfo_for_stmt (stmt);
662 relevant = STMT_VINFO_RELEVANT (stmt_vinfo);
663 live_p = STMT_VINFO_LIVE_P (stmt_vinfo);
664
665 /* Generally, the liveness and relevance properties of STMT are
666 propagated as is to the DEF_STMTs of its USEs:
667 live_p <-- STMT_VINFO_LIVE_P (STMT_VINFO)
668 relevant <-- STMT_VINFO_RELEVANT (STMT_VINFO)
669
670 One exception is when STMT has been identified as defining a reduction
671 variable; in this case we set the liveness/relevance as follows:
672 live_p = false
673 relevant = vect_used_by_reduction
674 This is because we distinguish between two kinds of relevant stmts -
675 those that are used by a reduction computation, and those that are
676 (also) used by a regular computation. This allows us later on to
677 identify stmts that are used solely by a reduction, and therefore the
678 order of the results that they produce does not have to be kept. */
679
680 def_type = STMT_VINFO_DEF_TYPE (stmt_vinfo);
681 tmp_relevant = relevant;
682 switch (def_type)
683 {
684 case vect_reduction_def:
685 switch (tmp_relevant)
686 {
687 case vect_unused_in_scope:
688 relevant = vect_used_by_reduction;
689 break;
690
691 case vect_used_by_reduction:
692 if (gimple_code (stmt) == GIMPLE_PHI)
693 break;
694 /* fall through */
695
696 default:
697 if (dump_enabled_p ())
698 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
699 "unsupported use of reduction.\n");
700 return false;
701 }
702
703 live_p = false;
704 break;
705
706 case vect_nested_cycle:
707 if (tmp_relevant != vect_unused_in_scope
708 && tmp_relevant != vect_used_in_outer_by_reduction
709 && tmp_relevant != vect_used_in_outer)
710 {
711 if (dump_enabled_p ())
712 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
713 "unsupported use of nested cycle.\n");
714
715 return false;
716 }
717
718 live_p = false;
719 break;
720
721 case vect_double_reduction_def:
722 if (tmp_relevant != vect_unused_in_scope
723 && tmp_relevant != vect_used_by_reduction)
724 {
725 if (dump_enabled_p ())
726 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
727 "unsupported use of double reduction.\n");
728
729 return false;
730 }
731
732 live_p = false;
733 break;
734
735 default:
736 break;
737 }
738
739 if (is_pattern_stmt_p (stmt_vinfo))
740 {
741 /* Pattern statements are not inserted into the code, so
742 FOR_EACH_PHI_OR_STMT_USE optimizes their operands out, and we
743 have to scan the RHS or function arguments instead. */
744 if (is_gimple_assign (stmt))
745 {
746 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
747 tree op = gimple_assign_rhs1 (stmt);
748
749 i = 1;
750 if (rhs_code == COND_EXPR && COMPARISON_CLASS_P (op))
751 {
752 if (!process_use (stmt, TREE_OPERAND (op, 0), loop_vinfo,
753 live_p, relevant, &worklist, false)
754 || !process_use (stmt, TREE_OPERAND (op, 1), loop_vinfo,
755 live_p, relevant, &worklist, false))
756 return false;
757 i = 2;
758 }
759 for (; i < gimple_num_ops (stmt); i++)
760 {
761 op = gimple_op (stmt, i);
762 if (TREE_CODE (op) == SSA_NAME
763 && !process_use (stmt, op, loop_vinfo, live_p, relevant,
764 &worklist, false))
765 return false;
766 }
767 }
768 else if (is_gimple_call (stmt))
769 {
770 for (i = 0; i < gimple_call_num_args (stmt); i++)
771 {
772 tree arg = gimple_call_arg (stmt, i);
773 if (!process_use (stmt, arg, loop_vinfo, live_p, relevant,
774 &worklist, false))
775 return false;
776 }
777 }
778 }
779 else
780 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
781 {
782 tree op = USE_FROM_PTR (use_p);
783 if (!process_use (stmt, op, loop_vinfo, live_p, relevant,
784 &worklist, false))
785 return false;
786 }
787
788 if (STMT_VINFO_GATHER_SCATTER_P (stmt_vinfo))
789 {
790 tree off;
791 tree decl = vect_check_gather_scatter (stmt, loop_vinfo, NULL, &off, NULL);
792 gcc_assert (decl);
793 if (!process_use (stmt, off, loop_vinfo, live_p, relevant,
794 &worklist, true))
795 return false;
796 }
797 } /* while worklist */
798
799 return true;
800 }
801
802
803 /* Function vect_model_simple_cost.
804
805 Models cost for simple operations, i.e. those that only emit ncopies of a
806 single op. Right now, this does not account for multiple insns that could
807 be generated for the single vector op. We will handle that shortly. */
808
809 void
810 vect_model_simple_cost (stmt_vec_info stmt_info, int ncopies,
811 enum vect_def_type *dt,
812 stmt_vector_for_cost *prologue_cost_vec,
813 stmt_vector_for_cost *body_cost_vec)
814 {
815 int i;
816 int inside_cost = 0, prologue_cost = 0;
817
818 /* The SLP costs were already calculated during SLP tree build. */
819 if (PURE_SLP_STMT (stmt_info))
820 return;
821
822 /* FORNOW: Assuming maximum 2 args per stmts. */
823 for (i = 0; i < 2; i++)
824 if (dt[i] == vect_constant_def || dt[i] == vect_external_def)
825 prologue_cost += record_stmt_cost (prologue_cost_vec, 1, vector_stmt,
826 stmt_info, 0, vect_prologue);
827
828 /* Pass the inside-of-loop statements to the target-specific cost model. */
829 inside_cost = record_stmt_cost (body_cost_vec, ncopies, vector_stmt,
830 stmt_info, 0, vect_body);
831
832 if (dump_enabled_p ())
833 dump_printf_loc (MSG_NOTE, vect_location,
834 "vect_model_simple_cost: inside_cost = %d, "
835 "prologue_cost = %d .\n", inside_cost, prologue_cost);
836 }
837
838
839 /* Model cost for type demotion and promotion operations. PWR is normally
840 zero for single-step promotions and demotions. It will be one if
841 two-step promotion/demotion is required, and so on. Each additional
842 step doubles the number of instructions required. */
843
844 static void
845 vect_model_promotion_demotion_cost (stmt_vec_info stmt_info,
846 enum vect_def_type *dt, int pwr)
847 {
848 int i, tmp;
849 int inside_cost = 0, prologue_cost = 0;
850 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
851 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
852 void *target_cost_data;
853
854 /* The SLP costs were already calculated during SLP tree build. */
855 if (PURE_SLP_STMT (stmt_info))
856 return;
857
858 if (loop_vinfo)
859 target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
860 else
861 target_cost_data = BB_VINFO_TARGET_COST_DATA (bb_vinfo);
862
863 for (i = 0; i < pwr + 1; i++)
864 {
865 tmp = (STMT_VINFO_TYPE (stmt_info) == type_promotion_vec_info_type) ?
866 (i + 1) : i;
867 inside_cost += add_stmt_cost (target_cost_data, vect_pow2 (tmp),
868 vec_promote_demote, stmt_info, 0,
869 vect_body);
870 }
871
872 /* FORNOW: Assuming maximum 2 args per stmts. */
873 for (i = 0; i < 2; i++)
874 if (dt[i] == vect_constant_def || dt[i] == vect_external_def)
875 prologue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
876 stmt_info, 0, vect_prologue);
877
878 if (dump_enabled_p ())
879 dump_printf_loc (MSG_NOTE, vect_location,
880 "vect_model_promotion_demotion_cost: inside_cost = %d, "
881 "prologue_cost = %d .\n", inside_cost, prologue_cost);
882 }
883
884 /* Function vect_cost_group_size
885
886 For grouped load or store, return the group_size only if it is the first
887 load or store of a group, else return 1. This ensures that group size is
888 only returned once per group. */
889
890 static int
891 vect_cost_group_size (stmt_vec_info stmt_info)
892 {
893 gimple *first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
894
895 if (first_stmt == STMT_VINFO_STMT (stmt_info))
896 return GROUP_SIZE (stmt_info);
897
898 return 1;
899 }
900
901
902 /* Function vect_model_store_cost
903
904 Models cost for stores. In the case of grouped accesses, one access
905 has the overhead of the grouped access attributed to it. */
906
907 void
908 vect_model_store_cost (stmt_vec_info stmt_info, int ncopies,
909 bool store_lanes_p, enum vect_def_type dt,
910 slp_tree slp_node,
911 stmt_vector_for_cost *prologue_cost_vec,
912 stmt_vector_for_cost *body_cost_vec)
913 {
914 int group_size;
915 unsigned int inside_cost = 0, prologue_cost = 0;
916 struct data_reference *first_dr;
917 gimple *first_stmt;
918
919 if (dt == vect_constant_def || dt == vect_external_def)
920 prologue_cost += record_stmt_cost (prologue_cost_vec, 1, scalar_to_vec,
921 stmt_info, 0, vect_prologue);
922
923 /* Grouped access? */
924 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
925 {
926 if (slp_node)
927 {
928 first_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[0];
929 group_size = 1;
930 }
931 else
932 {
933 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
934 group_size = vect_cost_group_size (stmt_info);
935 }
936
937 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
938 }
939 /* Not a grouped access. */
940 else
941 {
942 group_size = 1;
943 first_dr = STMT_VINFO_DATA_REF (stmt_info);
944 }
945
946 /* We assume that the cost of a single store-lanes instruction is
947 equivalent to the cost of GROUP_SIZE separate stores. If a grouped
948 access is instead being provided by a permute-and-store operation,
949 include the cost of the permutes. */
950 if (!store_lanes_p && group_size > 1
951 && !STMT_VINFO_STRIDED_P (stmt_info))
952 {
953 /* Uses a high and low interleave or shuffle operations for each
954 needed permute. */
955 int nstmts = ncopies * ceil_log2 (group_size) * group_size;
956 inside_cost = record_stmt_cost (body_cost_vec, nstmts, vec_perm,
957 stmt_info, 0, vect_body);
958
959 if (dump_enabled_p ())
960 dump_printf_loc (MSG_NOTE, vect_location,
961 "vect_model_store_cost: strided group_size = %d .\n",
962 group_size);
963 }
964
965 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
966 /* Costs of the stores. */
967 if (STMT_VINFO_STRIDED_P (stmt_info)
968 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
969 {
970 /* N scalar stores plus extracting the elements. */
971 inside_cost += record_stmt_cost (body_cost_vec,
972 ncopies * TYPE_VECTOR_SUBPARTS (vectype),
973 scalar_store, stmt_info, 0, vect_body);
974 }
975 else
976 vect_get_store_cost (first_dr, ncopies, &inside_cost, body_cost_vec);
977
978 if (STMT_VINFO_STRIDED_P (stmt_info))
979 inside_cost += record_stmt_cost (body_cost_vec,
980 ncopies * TYPE_VECTOR_SUBPARTS (vectype),
981 vec_to_scalar, stmt_info, 0, vect_body);
982
983 if (dump_enabled_p ())
984 dump_printf_loc (MSG_NOTE, vect_location,
985 "vect_model_store_cost: inside_cost = %d, "
986 "prologue_cost = %d .\n", inside_cost, prologue_cost);
987 }
988
989
990 /* Calculate cost of DR's memory access. */
991 void
992 vect_get_store_cost (struct data_reference *dr, int ncopies,
993 unsigned int *inside_cost,
994 stmt_vector_for_cost *body_cost_vec)
995 {
996 int alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
997 gimple *stmt = DR_STMT (dr);
998 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
999
1000 switch (alignment_support_scheme)
1001 {
1002 case dr_aligned:
1003 {
1004 *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
1005 vector_store, stmt_info, 0,
1006 vect_body);
1007
1008 if (dump_enabled_p ())
1009 dump_printf_loc (MSG_NOTE, vect_location,
1010 "vect_model_store_cost: aligned.\n");
1011 break;
1012 }
1013
1014 case dr_unaligned_supported:
1015 {
1016 /* Here, we assign an additional cost for the unaligned store. */
1017 *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
1018 unaligned_store, stmt_info,
1019 DR_MISALIGNMENT (dr), vect_body);
1020 if (dump_enabled_p ())
1021 dump_printf_loc (MSG_NOTE, vect_location,
1022 "vect_model_store_cost: unaligned supported by "
1023 "hardware.\n");
1024 break;
1025 }
1026
1027 case dr_unaligned_unsupported:
1028 {
1029 *inside_cost = VECT_MAX_COST;
1030
1031 if (dump_enabled_p ())
1032 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1033 "vect_model_store_cost: unsupported access.\n");
1034 break;
1035 }
1036
1037 default:
1038 gcc_unreachable ();
1039 }
1040 }
1041
1042
1043 /* Function vect_model_load_cost
1044
1045 Models cost for loads. In the case of grouped accesses, the last access
1046 has the overhead of the grouped access attributed to it. Since unaligned
1047 accesses are supported for loads, we also account for the costs of the
1048 access scheme chosen. */
1049
1050 void
1051 vect_model_load_cost (stmt_vec_info stmt_info, int ncopies,
1052 bool load_lanes_p, slp_tree slp_node,
1053 stmt_vector_for_cost *prologue_cost_vec,
1054 stmt_vector_for_cost *body_cost_vec)
1055 {
1056 int group_size;
1057 gimple *first_stmt;
1058 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr;
1059 unsigned int inside_cost = 0, prologue_cost = 0;
1060
1061 /* Grouped accesses? */
1062 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
1063 if (STMT_VINFO_GROUPED_ACCESS (stmt_info) && first_stmt && !slp_node)
1064 {
1065 group_size = vect_cost_group_size (stmt_info);
1066 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
1067 }
1068 /* Not a grouped access. */
1069 else
1070 {
1071 group_size = 1;
1072 first_dr = dr;
1073 }
1074
1075 /* We assume that the cost of a single load-lanes instruction is
1076 equivalent to the cost of GROUP_SIZE separate loads. If a grouped
1077 access is instead being provided by a load-and-permute operation,
1078 include the cost of the permutes. */
1079 if (!load_lanes_p && group_size > 1
1080 && !STMT_VINFO_STRIDED_P (stmt_info))
1081 {
1082 /* Uses an even and odd extract operations or shuffle operations
1083 for each needed permute. */
1084 int nstmts = ncopies * ceil_log2 (group_size) * group_size;
1085 inside_cost = record_stmt_cost (body_cost_vec, nstmts, vec_perm,
1086 stmt_info, 0, vect_body);
1087
1088 if (dump_enabled_p ())
1089 dump_printf_loc (MSG_NOTE, vect_location,
1090 "vect_model_load_cost: strided group_size = %d .\n",
1091 group_size);
1092 }
1093
1094 /* The loads themselves. */
1095 if (STMT_VINFO_STRIDED_P (stmt_info)
1096 && !STMT_VINFO_GROUPED_ACCESS (stmt_info))
1097 {
1098 /* N scalar loads plus gathering them into a vector. */
1099 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1100 inside_cost += record_stmt_cost (body_cost_vec,
1101 ncopies * TYPE_VECTOR_SUBPARTS (vectype),
1102 scalar_load, stmt_info, 0, vect_body);
1103 }
1104 else
1105 vect_get_load_cost (first_dr, ncopies,
1106 ((!STMT_VINFO_GROUPED_ACCESS (stmt_info))
1107 || group_size > 1 || slp_node),
1108 &inside_cost, &prologue_cost,
1109 prologue_cost_vec, body_cost_vec, true);
1110 if (STMT_VINFO_STRIDED_P (stmt_info))
1111 inside_cost += record_stmt_cost (body_cost_vec, ncopies, vec_construct,
1112 stmt_info, 0, vect_body);
1113
1114 if (dump_enabled_p ())
1115 dump_printf_loc (MSG_NOTE, vect_location,
1116 "vect_model_load_cost: inside_cost = %d, "
1117 "prologue_cost = %d .\n", inside_cost, prologue_cost);
1118 }
1119
1120
1121 /* Calculate cost of DR's memory access. */
1122 void
1123 vect_get_load_cost (struct data_reference *dr, int ncopies,
1124 bool add_realign_cost, unsigned int *inside_cost,
1125 unsigned int *prologue_cost,
1126 stmt_vector_for_cost *prologue_cost_vec,
1127 stmt_vector_for_cost *body_cost_vec,
1128 bool record_prologue_costs)
1129 {
1130 int alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
1131 gimple *stmt = DR_STMT (dr);
1132 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1133
1134 switch (alignment_support_scheme)
1135 {
1136 case dr_aligned:
1137 {
1138 *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vector_load,
1139 stmt_info, 0, vect_body);
1140
1141 if (dump_enabled_p ())
1142 dump_printf_loc (MSG_NOTE, vect_location,
1143 "vect_model_load_cost: aligned.\n");
1144
1145 break;
1146 }
1147 case dr_unaligned_supported:
1148 {
1149 /* Here, we assign an additional cost for the unaligned load. */
1150 *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
1151 unaligned_load, stmt_info,
1152 DR_MISALIGNMENT (dr), vect_body);
1153
1154 if (dump_enabled_p ())
1155 dump_printf_loc (MSG_NOTE, vect_location,
1156 "vect_model_load_cost: unaligned supported by "
1157 "hardware.\n");
1158
1159 break;
1160 }
1161 case dr_explicit_realign:
1162 {
1163 *inside_cost += record_stmt_cost (body_cost_vec, ncopies * 2,
1164 vector_load, stmt_info, 0, vect_body);
1165 *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
1166 vec_perm, stmt_info, 0, vect_body);
1167
1168 /* FIXME: If the misalignment remains fixed across the iterations of
1169 the containing loop, the following cost should be added to the
1170 prologue costs. */
1171 if (targetm.vectorize.builtin_mask_for_load)
1172 *inside_cost += record_stmt_cost (body_cost_vec, 1, vector_stmt,
1173 stmt_info, 0, vect_body);
1174
1175 if (dump_enabled_p ())
1176 dump_printf_loc (MSG_NOTE, vect_location,
1177 "vect_model_load_cost: explicit realign\n");
1178
1179 break;
1180 }
1181 case dr_explicit_realign_optimized:
1182 {
1183 if (dump_enabled_p ())
1184 dump_printf_loc (MSG_NOTE, vect_location,
1185 "vect_model_load_cost: unaligned software "
1186 "pipelined.\n");
1187
1188 /* Unaligned software pipeline has a load of an address, an initial
1189 load, and possibly a mask operation to "prime" the loop. However,
1190 if this is an access in a group of loads, which provide grouped
1191 access, then the above cost should only be considered for one
1192 access in the group. Inside the loop, there is a load op
1193 and a realignment op. */
1194
1195 if (add_realign_cost && record_prologue_costs)
1196 {
1197 *prologue_cost += record_stmt_cost (prologue_cost_vec, 2,
1198 vector_stmt, stmt_info,
1199 0, vect_prologue);
1200 if (targetm.vectorize.builtin_mask_for_load)
1201 *prologue_cost += record_stmt_cost (prologue_cost_vec, 1,
1202 vector_stmt, stmt_info,
1203 0, vect_prologue);
1204 }
1205
1206 *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vector_load,
1207 stmt_info, 0, vect_body);
1208 *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vec_perm,
1209 stmt_info, 0, vect_body);
1210
1211 if (dump_enabled_p ())
1212 dump_printf_loc (MSG_NOTE, vect_location,
1213 "vect_model_load_cost: explicit realign optimized"
1214 "\n");
1215
1216 break;
1217 }
1218
1219 case dr_unaligned_unsupported:
1220 {
1221 *inside_cost = VECT_MAX_COST;
1222
1223 if (dump_enabled_p ())
1224 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1225 "vect_model_load_cost: unsupported access.\n");
1226 break;
1227 }
1228
1229 default:
1230 gcc_unreachable ();
1231 }
1232 }
1233
1234 /* Insert the new stmt NEW_STMT at *GSI or at the appropriate place in
1235 the loop preheader for the vectorized stmt STMT. */
1236
1237 static void
1238 vect_init_vector_1 (gimple *stmt, gimple *new_stmt, gimple_stmt_iterator *gsi)
1239 {
1240 if (gsi)
1241 vect_finish_stmt_generation (stmt, new_stmt, gsi);
1242 else
1243 {
1244 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
1245 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
1246
1247 if (loop_vinfo)
1248 {
1249 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1250 basic_block new_bb;
1251 edge pe;
1252
1253 if (nested_in_vect_loop_p (loop, stmt))
1254 loop = loop->inner;
1255
1256 pe = loop_preheader_edge (loop);
1257 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
1258 gcc_assert (!new_bb);
1259 }
1260 else
1261 {
1262 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo);
1263 basic_block bb;
1264 gimple_stmt_iterator gsi_bb_start;
1265
1266 gcc_assert (bb_vinfo);
1267 bb = BB_VINFO_BB (bb_vinfo);
1268 gsi_bb_start = gsi_after_labels (bb);
1269 gsi_insert_before (&gsi_bb_start, new_stmt, GSI_SAME_STMT);
1270 }
1271 }
1272
1273 if (dump_enabled_p ())
1274 {
1275 dump_printf_loc (MSG_NOTE, vect_location,
1276 "created new init_stmt: ");
1277 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
1278 }
1279 }
1280
1281 /* Function vect_init_vector.
1282
1283 Insert a new stmt (INIT_STMT) that initializes a new variable of type
1284 TYPE with the value VAL. If TYPE is a vector type and VAL does not have
1285 vector type a vector with all elements equal to VAL is created first.
1286 Place the initialization at BSI if it is not NULL. Otherwise, place the
1287 initialization at the loop preheader.
1288 Return the DEF of INIT_STMT.
1289 It will be used in the vectorization of STMT. */
1290
1291 tree
1292 vect_init_vector (gimple *stmt, tree val, tree type, gimple_stmt_iterator *gsi)
1293 {
1294 gimple *init_stmt;
1295 tree new_temp;
1296
1297 if (TREE_CODE (type) == VECTOR_TYPE
1298 && TREE_CODE (TREE_TYPE (val)) != VECTOR_TYPE)
1299 {
1300 if (!types_compatible_p (TREE_TYPE (type), TREE_TYPE (val)))
1301 {
1302 if (CONSTANT_CLASS_P (val))
1303 val = fold_convert (TREE_TYPE (type), val);
1304 else
1305 {
1306 new_temp = make_ssa_name (TREE_TYPE (type));
1307 init_stmt = gimple_build_assign (new_temp, NOP_EXPR, val);
1308 vect_init_vector_1 (stmt, init_stmt, gsi);
1309 val = new_temp;
1310 }
1311 }
1312 val = build_vector_from_val (type, val);
1313 }
1314
1315 new_temp = vect_get_new_ssa_name (type, vect_simple_var, "cst_");
1316 init_stmt = gimple_build_assign (new_temp, val);
1317 vect_init_vector_1 (stmt, init_stmt, gsi);
1318 return new_temp;
1319 }
1320
1321
1322 /* Function vect_get_vec_def_for_operand.
1323
1324 OP is an operand in STMT. This function returns a (vector) def that will be
1325 used in the vectorized stmt for STMT.
1326
1327 In the case that OP is an SSA_NAME which is defined in the loop, then
1328 STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.
1329
1330 In case OP is an invariant or constant, a new stmt that creates a vector def
1331 needs to be introduced. VECTYPE may be used to specify a required type for
1332 vector invariant. */
1333
1334 tree
1335 vect_get_vec_def_for_operand (tree op, gimple *stmt, tree vectype)
1336 {
1337 tree vec_oprnd;
1338 gimple *vec_stmt;
1339 gimple *def_stmt;
1340 stmt_vec_info def_stmt_info = NULL;
1341 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
1342 tree stmt_vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
1343 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
1344 enum vect_def_type dt;
1345 bool is_simple_use;
1346 tree vector_type;
1347
1348 if (dump_enabled_p ())
1349 {
1350 dump_printf_loc (MSG_NOTE, vect_location,
1351 "vect_get_vec_def_for_operand: ");
1352 dump_generic_expr (MSG_NOTE, TDF_SLIM, op);
1353 dump_printf (MSG_NOTE, "\n");
1354 }
1355
1356 is_simple_use = vect_is_simple_use (op, loop_vinfo, &def_stmt, &dt);
1357 gcc_assert (is_simple_use);
1358 if (dump_enabled_p ())
1359 {
1360 int loc_printed = 0;
1361 if (def_stmt)
1362 {
1363 if (loc_printed)
1364 dump_printf (MSG_NOTE, " def_stmt = ");
1365 else
1366 dump_printf_loc (MSG_NOTE, vect_location, " def_stmt = ");
1367 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
1368 }
1369 }
1370
1371 switch (dt)
1372 {
1373 /* operand is a constant or a loop invariant. */
1374 case vect_constant_def:
1375 case vect_external_def:
1376 {
1377 if (vectype)
1378 vector_type = vectype;
1379 else if (TREE_CODE (TREE_TYPE (op)) == BOOLEAN_TYPE
1380 && VECTOR_BOOLEAN_TYPE_P (stmt_vectype))
1381 vector_type = build_same_sized_truth_vector_type (stmt_vectype);
1382 else
1383 vector_type = get_vectype_for_scalar_type (TREE_TYPE (op));
1384
1385 gcc_assert (vector_type);
1386 return vect_init_vector (stmt, op, vector_type, NULL);
1387 }
1388
1389 /* operand is defined inside the loop. */
1390 case vect_internal_def:
1391 {
1392 /* Get the def from the vectorized stmt. */
1393 def_stmt_info = vinfo_for_stmt (def_stmt);
1394
1395 vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
1396 /* Get vectorized pattern statement. */
1397 if (!vec_stmt
1398 && STMT_VINFO_IN_PATTERN_P (def_stmt_info)
1399 && !STMT_VINFO_RELEVANT (def_stmt_info))
1400 vec_stmt = STMT_VINFO_VEC_STMT (vinfo_for_stmt (
1401 STMT_VINFO_RELATED_STMT (def_stmt_info)));
1402 gcc_assert (vec_stmt);
1403 if (gimple_code (vec_stmt) == GIMPLE_PHI)
1404 vec_oprnd = PHI_RESULT (vec_stmt);
1405 else if (is_gimple_call (vec_stmt))
1406 vec_oprnd = gimple_call_lhs (vec_stmt);
1407 else
1408 vec_oprnd = gimple_assign_lhs (vec_stmt);
1409 return vec_oprnd;
1410 }
1411
1412 /* operand is defined by a loop header phi - reduction */
1413 case vect_reduction_def:
1414 case vect_double_reduction_def:
1415 case vect_nested_cycle:
1416 /* Code should use get_initial_def_for_reduction. */
1417 gcc_unreachable ();
1418
1419 /* operand is defined by loop-header phi - induction. */
1420 case vect_induction_def:
1421 {
1422 gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
1423
1424 /* Get the def from the vectorized stmt. */
1425 def_stmt_info = vinfo_for_stmt (def_stmt);
1426 vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
1427 if (gimple_code (vec_stmt) == GIMPLE_PHI)
1428 vec_oprnd = PHI_RESULT (vec_stmt);
1429 else
1430 vec_oprnd = gimple_get_lhs (vec_stmt);
1431 return vec_oprnd;
1432 }
1433
1434 default:
1435 gcc_unreachable ();
1436 }
1437 }
1438
1439
1440 /* Function vect_get_vec_def_for_stmt_copy
1441
1442 Return a vector-def for an operand. This function is used when the
1443 vectorized stmt to be created (by the caller to this function) is a "copy"
1444 created in case the vectorized result cannot fit in one vector, and several
1445 copies of the vector-stmt are required. In this case the vector-def is
1446 retrieved from the vector stmt recorded in the STMT_VINFO_RELATED_STMT field
1447 of the stmt that defines VEC_OPRND.
1448 DT is the type of the vector def VEC_OPRND.
1449
1450 Context:
1451 In case the vectorization factor (VF) is bigger than the number
1452 of elements that can fit in a vectype (nunits), we have to generate
1453 more than one vector stmt to vectorize the scalar stmt. This situation
1454 arises when there are multiple data-types operated upon in the loop; the
1455 smallest data-type determines the VF, and as a result, when vectorizing
1456 stmts operating on wider types we need to create 'VF/nunits' "copies" of the
1457 vector stmt (each computing a vector of 'nunits' results, and together
1458 computing 'VF' results in each iteration). This function is called when
1459 vectorizing such a stmt (e.g. vectorizing S2 in the illustration below, in
1460 which VF=16 and nunits=4, so the number of copies required is 4):
1461
1462 scalar stmt: vectorized into: STMT_VINFO_RELATED_STMT
1463
1464 S1: x = load VS1.0: vx.0 = memref0 VS1.1
1465 VS1.1: vx.1 = memref1 VS1.2
1466 VS1.2: vx.2 = memref2 VS1.3
1467 VS1.3: vx.3 = memref3
1468
1469 S2: z = x + ... VSnew.0: vz0 = vx.0 + ... VSnew.1
1470 VSnew.1: vz1 = vx.1 + ... VSnew.2
1471 VSnew.2: vz2 = vx.2 + ... VSnew.3
1472 VSnew.3: vz3 = vx.3 + ...
1473
1474 The vectorization of S1 is explained in vectorizable_load.
1475 The vectorization of S2:
1476 To create the first vector-stmt out of the 4 copies - VSnew.0 -
1477 the function 'vect_get_vec_def_for_operand' is called to
1478 get the relevant vector-def for each operand of S2. For operand x it
1479 returns the vector-def 'vx.0'.
1480
1481 To create the remaining copies of the vector-stmt (VSnew.j), this
1482 function is called to get the relevant vector-def for each operand. It is
1483 obtained from the respective VS1.j stmt, which is recorded in the
1484 STMT_VINFO_RELATED_STMT field of the stmt that defines VEC_OPRND.
1485
1486 For example, to obtain the vector-def 'vx.1' in order to create the
1487 vector stmt 'VSnew.1', this function is called with VEC_OPRND='vx.0'.
1488 Given 'vx0' we obtain the stmt that defines it ('VS1.0'); from the
1489 STMT_VINFO_RELATED_STMT field of 'VS1.0' we obtain the next copy - 'VS1.1',
1490 and return its def ('vx.1').
1491 Overall, to create the above sequence this function will be called 3 times:
1492 vx.1 = vect_get_vec_def_for_stmt_copy (dt, vx.0);
1493 vx.2 = vect_get_vec_def_for_stmt_copy (dt, vx.1);
1494 vx.3 = vect_get_vec_def_for_stmt_copy (dt, vx.2); */
1495
1496 tree
1497 vect_get_vec_def_for_stmt_copy (enum vect_def_type dt, tree vec_oprnd)
1498 {
1499 gimple *vec_stmt_for_operand;
1500 stmt_vec_info def_stmt_info;
1501
1502 /* Do nothing; can reuse same def. */
1503 if (dt == vect_external_def || dt == vect_constant_def )
1504 return vec_oprnd;
1505
1506 vec_stmt_for_operand = SSA_NAME_DEF_STMT (vec_oprnd);
1507 def_stmt_info = vinfo_for_stmt (vec_stmt_for_operand);
1508 gcc_assert (def_stmt_info);
1509 vec_stmt_for_operand = STMT_VINFO_RELATED_STMT (def_stmt_info);
1510 gcc_assert (vec_stmt_for_operand);
1511 if (gimple_code (vec_stmt_for_operand) == GIMPLE_PHI)
1512 vec_oprnd = PHI_RESULT (vec_stmt_for_operand);
1513 else
1514 vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
1515 return vec_oprnd;
1516 }
1517
1518
1519 /* Get vectorized definitions for the operands to create a copy of an original
1520 stmt. See vect_get_vec_def_for_stmt_copy () for details. */
1521
1522 static void
1523 vect_get_vec_defs_for_stmt_copy (enum vect_def_type *dt,
1524 vec<tree> *vec_oprnds0,
1525 vec<tree> *vec_oprnds1)
1526 {
1527 tree vec_oprnd = vec_oprnds0->pop ();
1528
1529 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd);
1530 vec_oprnds0->quick_push (vec_oprnd);
1531
1532 if (vec_oprnds1 && vec_oprnds1->length ())
1533 {
1534 vec_oprnd = vec_oprnds1->pop ();
1535 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd);
1536 vec_oprnds1->quick_push (vec_oprnd);
1537 }
1538 }
1539
1540
1541 /* Get vectorized definitions for OP0 and OP1.
1542 REDUC_INDEX is the index of reduction operand in case of reduction,
1543 and -1 otherwise. */
1544
1545 void
1546 vect_get_vec_defs (tree op0, tree op1, gimple *stmt,
1547 vec<tree> *vec_oprnds0,
1548 vec<tree> *vec_oprnds1,
1549 slp_tree slp_node, int reduc_index)
1550 {
1551 if (slp_node)
1552 {
1553 int nops = (op1 == NULL_TREE) ? 1 : 2;
1554 auto_vec<tree> ops (nops);
1555 auto_vec<vec<tree> > vec_defs (nops);
1556
1557 ops.quick_push (op0);
1558 if (op1)
1559 ops.quick_push (op1);
1560
1561 vect_get_slp_defs (ops, slp_node, &vec_defs, reduc_index);
1562
1563 *vec_oprnds0 = vec_defs[0];
1564 if (op1)
1565 *vec_oprnds1 = vec_defs[1];
1566 }
1567 else
1568 {
1569 tree vec_oprnd;
1570
1571 vec_oprnds0->create (1);
1572 vec_oprnd = vect_get_vec_def_for_operand (op0, stmt);
1573 vec_oprnds0->quick_push (vec_oprnd);
1574
1575 if (op1)
1576 {
1577 vec_oprnds1->create (1);
1578 vec_oprnd = vect_get_vec_def_for_operand (op1, stmt);
1579 vec_oprnds1->quick_push (vec_oprnd);
1580 }
1581 }
1582 }
1583
1584
1585 /* Function vect_finish_stmt_generation.
1586
1587 Insert a new stmt. */
1588
1589 void
1590 vect_finish_stmt_generation (gimple *stmt, gimple *vec_stmt,
1591 gimple_stmt_iterator *gsi)
1592 {
1593 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1594 vec_info *vinfo = stmt_info->vinfo;
1595
1596 gcc_assert (gimple_code (stmt) != GIMPLE_LABEL);
1597
1598 if (!gsi_end_p (*gsi)
1599 && gimple_has_mem_ops (vec_stmt))
1600 {
1601 gimple *at_stmt = gsi_stmt (*gsi);
1602 tree vuse = gimple_vuse (at_stmt);
1603 if (vuse && TREE_CODE (vuse) == SSA_NAME)
1604 {
1605 tree vdef = gimple_vdef (at_stmt);
1606 gimple_set_vuse (vec_stmt, gimple_vuse (at_stmt));
1607 /* If we have an SSA vuse and insert a store, update virtual
1608 SSA form to avoid triggering the renamer. Do so only
1609 if we can easily see all uses - which is what almost always
1610 happens with the way vectorized stmts are inserted. */
1611 if ((vdef && TREE_CODE (vdef) == SSA_NAME)
1612 && ((is_gimple_assign (vec_stmt)
1613 && !is_gimple_reg (gimple_assign_lhs (vec_stmt)))
1614 || (is_gimple_call (vec_stmt)
1615 && !(gimple_call_flags (vec_stmt)
1616 & (ECF_CONST|ECF_PURE|ECF_NOVOPS)))))
1617 {
1618 tree new_vdef = copy_ssa_name (vuse, vec_stmt);
1619 gimple_set_vdef (vec_stmt, new_vdef);
1620 SET_USE (gimple_vuse_op (at_stmt), new_vdef);
1621 }
1622 }
1623 }
1624 gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
1625
1626 set_vinfo_for_stmt (vec_stmt, new_stmt_vec_info (vec_stmt, vinfo));
1627
1628 if (dump_enabled_p ())
1629 {
1630 dump_printf_loc (MSG_NOTE, vect_location, "add new stmt: ");
1631 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vec_stmt, 0);
1632 }
1633
1634 gimple_set_location (vec_stmt, gimple_location (stmt));
1635
1636 /* While EH edges will generally prevent vectorization, stmt might
1637 e.g. be in a must-not-throw region. Ensure newly created stmts
1638 that could throw are part of the same region. */
1639 int lp_nr = lookup_stmt_eh_lp (stmt);
1640 if (lp_nr != 0 && stmt_could_throw_p (vec_stmt))
1641 add_stmt_to_eh_lp (vec_stmt, lp_nr);
1642 }
1643
1644 /* Checks if CALL can be vectorized in type VECTYPE. Returns
1645 a function declaration if the target has a vectorized version
1646 of the function, or NULL_TREE if the function cannot be vectorized. */
1647
1648 tree
1649 vectorizable_function (gcall *call, tree vectype_out, tree vectype_in)
1650 {
1651 tree fndecl = gimple_call_fndecl (call);
1652
1653 /* We only handle functions that do not read or clobber memory -- i.e.
1654 const or novops ones. */
1655 if (!(gimple_call_flags (call) & (ECF_CONST | ECF_NOVOPS)))
1656 return NULL_TREE;
1657
1658 if (!fndecl
1659 || TREE_CODE (fndecl) != FUNCTION_DECL
1660 || !DECL_BUILT_IN (fndecl))
1661 return NULL_TREE;
1662
1663 return targetm.vectorize.builtin_vectorized_function (fndecl, vectype_out,
1664 vectype_in);
1665 }
1666
1667
1668 static tree permute_vec_elements (tree, tree, tree, gimple *,
1669 gimple_stmt_iterator *);
1670
1671
1672 /* Function vectorizable_mask_load_store.
1673
1674 Check if STMT performs a conditional load or store that can be vectorized.
1675 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
1676 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
1677 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
1678
1679 static bool
1680 vectorizable_mask_load_store (gimple *stmt, gimple_stmt_iterator *gsi,
1681 gimple **vec_stmt, slp_tree slp_node)
1682 {
1683 tree vec_dest = NULL;
1684 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1685 stmt_vec_info prev_stmt_info;
1686 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1687 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1688 bool nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
1689 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
1690 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1691 tree rhs_vectype = NULL_TREE;
1692 tree mask_vectype;
1693 tree elem_type;
1694 gimple *new_stmt;
1695 tree dummy;
1696 tree dataref_ptr = NULL_TREE;
1697 gimple *ptr_incr;
1698 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
1699 int ncopies;
1700 int i, j;
1701 bool inv_p;
1702 tree gather_base = NULL_TREE, gather_off = NULL_TREE;
1703 tree gather_off_vectype = NULL_TREE, gather_decl = NULL_TREE;
1704 int gather_scale = 1;
1705 enum vect_def_type gather_dt = vect_unknown_def_type;
1706 bool is_store;
1707 tree mask;
1708 gimple *def_stmt;
1709 enum vect_def_type dt;
1710
1711 if (slp_node != NULL)
1712 return false;
1713
1714 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
1715 gcc_assert (ncopies >= 1);
1716
1717 is_store = gimple_call_internal_fn (stmt) == IFN_MASK_STORE;
1718 mask = gimple_call_arg (stmt, 2);
1719
1720 if (TREE_CODE (TREE_TYPE (mask)) != BOOLEAN_TYPE)
1721 return false;
1722
1723 /* FORNOW. This restriction should be relaxed. */
1724 if (nested_in_vect_loop && ncopies > 1)
1725 {
1726 if (dump_enabled_p ())
1727 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1728 "multiple types in nested loop.");
1729 return false;
1730 }
1731
1732 if (!STMT_VINFO_RELEVANT_P (stmt_info))
1733 return false;
1734
1735 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
1736 return false;
1737
1738 if (!STMT_VINFO_DATA_REF (stmt_info))
1739 return false;
1740
1741 elem_type = TREE_TYPE (vectype);
1742
1743 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1744 return false;
1745
1746 if (STMT_VINFO_STRIDED_P (stmt_info))
1747 return false;
1748
1749 if (TREE_CODE (mask) != SSA_NAME)
1750 return false;
1751
1752 if (!vect_is_simple_use (mask, loop_vinfo, &def_stmt, &dt, &mask_vectype))
1753 return false;
1754
1755 if (!mask_vectype)
1756 mask_vectype = get_mask_type_for_scalar_type (TREE_TYPE (vectype));
1757
1758 if (!mask_vectype)
1759 return false;
1760
1761 if (is_store)
1762 {
1763 tree rhs = gimple_call_arg (stmt, 3);
1764 if (!vect_is_simple_use (rhs, loop_vinfo, &def_stmt, &dt, &rhs_vectype))
1765 return false;
1766 }
1767
1768 if (STMT_VINFO_GATHER_SCATTER_P (stmt_info))
1769 {
1770 gimple *def_stmt;
1771 gather_decl = vect_check_gather_scatter (stmt, loop_vinfo, &gather_base,
1772 &gather_off, &gather_scale);
1773 gcc_assert (gather_decl);
1774 if (!vect_is_simple_use (gather_off, loop_vinfo, &def_stmt, &gather_dt,
1775 &gather_off_vectype))
1776 {
1777 if (dump_enabled_p ())
1778 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1779 "gather index use not simple.");
1780 return false;
1781 }
1782
1783 tree arglist = TYPE_ARG_TYPES (TREE_TYPE (gather_decl));
1784 tree masktype
1785 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arglist))));
1786 if (TREE_CODE (masktype) == INTEGER_TYPE)
1787 {
1788 if (dump_enabled_p ())
1789 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1790 "masked gather with integer mask not supported.");
1791 return false;
1792 }
1793 }
1794 else if (tree_int_cst_compare (nested_in_vect_loop
1795 ? STMT_VINFO_DR_STEP (stmt_info)
1796 : DR_STEP (dr), size_zero_node) <= 0)
1797 return false;
1798 else if (!VECTOR_MODE_P (TYPE_MODE (vectype))
1799 || !can_vec_mask_load_store_p (TYPE_MODE (vectype),
1800 TYPE_MODE (mask_vectype),
1801 !is_store)
1802 || (rhs_vectype
1803 && !useless_type_conversion_p (vectype, rhs_vectype)))
1804 return false;
1805
1806 if (!vec_stmt) /* transformation not required. */
1807 {
1808 STMT_VINFO_TYPE (stmt_info) = call_vec_info_type;
1809 if (is_store)
1810 vect_model_store_cost (stmt_info, ncopies, false, dt,
1811 NULL, NULL, NULL);
1812 else
1813 vect_model_load_cost (stmt_info, ncopies, false, NULL, NULL, NULL);
1814 return true;
1815 }
1816
1817 /** Transform. **/
1818
1819 if (STMT_VINFO_GATHER_SCATTER_P (stmt_info))
1820 {
1821 tree vec_oprnd0 = NULL_TREE, op;
1822 tree arglist = TYPE_ARG_TYPES (TREE_TYPE (gather_decl));
1823 tree rettype, srctype, ptrtype, idxtype, masktype, scaletype;
1824 tree ptr, vec_mask = NULL_TREE, mask_op = NULL_TREE, var, scale;
1825 tree perm_mask = NULL_TREE, prev_res = NULL_TREE;
1826 tree mask_perm_mask = NULL_TREE;
1827 edge pe = loop_preheader_edge (loop);
1828 gimple_seq seq;
1829 basic_block new_bb;
1830 enum { NARROW, NONE, WIDEN } modifier;
1831 int gather_off_nunits = TYPE_VECTOR_SUBPARTS (gather_off_vectype);
1832
1833 rettype = TREE_TYPE (TREE_TYPE (gather_decl));
1834 srctype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
1835 ptrtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
1836 idxtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
1837 masktype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
1838 scaletype = TREE_VALUE (arglist);
1839 gcc_checking_assert (types_compatible_p (srctype, rettype)
1840 && types_compatible_p (srctype, masktype));
1841
1842 if (nunits == gather_off_nunits)
1843 modifier = NONE;
1844 else if (nunits == gather_off_nunits / 2)
1845 {
1846 unsigned char *sel = XALLOCAVEC (unsigned char, gather_off_nunits);
1847 modifier = WIDEN;
1848
1849 for (i = 0; i < gather_off_nunits; ++i)
1850 sel[i] = i | nunits;
1851
1852 perm_mask = vect_gen_perm_mask_checked (gather_off_vectype, sel);
1853 }
1854 else if (nunits == gather_off_nunits * 2)
1855 {
1856 unsigned char *sel = XALLOCAVEC (unsigned char, nunits);
1857 modifier = NARROW;
1858
1859 for (i = 0; i < nunits; ++i)
1860 sel[i] = i < gather_off_nunits
1861 ? i : i + nunits - gather_off_nunits;
1862
1863 perm_mask = vect_gen_perm_mask_checked (vectype, sel);
1864 ncopies *= 2;
1865 for (i = 0; i < nunits; ++i)
1866 sel[i] = i | gather_off_nunits;
1867 mask_perm_mask = vect_gen_perm_mask_checked (masktype, sel);
1868 }
1869 else
1870 gcc_unreachable ();
1871
1872 vec_dest = vect_create_destination_var (gimple_call_lhs (stmt), vectype);
1873
1874 ptr = fold_convert (ptrtype, gather_base);
1875 if (!is_gimple_min_invariant (ptr))
1876 {
1877 ptr = force_gimple_operand (ptr, &seq, true, NULL_TREE);
1878 new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
1879 gcc_assert (!new_bb);
1880 }
1881
1882 scale = build_int_cst (scaletype, gather_scale);
1883
1884 prev_stmt_info = NULL;
1885 for (j = 0; j < ncopies; ++j)
1886 {
1887 if (modifier == WIDEN && (j & 1))
1888 op = permute_vec_elements (vec_oprnd0, vec_oprnd0,
1889 perm_mask, stmt, gsi);
1890 else if (j == 0)
1891 op = vec_oprnd0
1892 = vect_get_vec_def_for_operand (gather_off, stmt);
1893 else
1894 op = vec_oprnd0
1895 = vect_get_vec_def_for_stmt_copy (gather_dt, vec_oprnd0);
1896
1897 if (!useless_type_conversion_p (idxtype, TREE_TYPE (op)))
1898 {
1899 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (op))
1900 == TYPE_VECTOR_SUBPARTS (idxtype));
1901 var = vect_get_new_ssa_name (idxtype, vect_simple_var);
1902 op = build1 (VIEW_CONVERT_EXPR, idxtype, op);
1903 new_stmt
1904 = gimple_build_assign (var, VIEW_CONVERT_EXPR, op);
1905 vect_finish_stmt_generation (stmt, new_stmt, gsi);
1906 op = var;
1907 }
1908
1909 if (mask_perm_mask && (j & 1))
1910 mask_op = permute_vec_elements (mask_op, mask_op,
1911 mask_perm_mask, stmt, gsi);
1912 else
1913 {
1914 if (j == 0)
1915 vec_mask = vect_get_vec_def_for_operand (mask, stmt);
1916 else
1917 {
1918 vect_is_simple_use (vec_mask, loop_vinfo, &def_stmt, &dt);
1919 vec_mask = vect_get_vec_def_for_stmt_copy (dt, vec_mask);
1920 }
1921
1922 mask_op = vec_mask;
1923 if (!useless_type_conversion_p (masktype, TREE_TYPE (vec_mask)))
1924 {
1925 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (mask_op))
1926 == TYPE_VECTOR_SUBPARTS (masktype));
1927 var = vect_get_new_ssa_name (masktype, vect_simple_var);
1928 mask_op = build1 (VIEW_CONVERT_EXPR, masktype, mask_op);
1929 new_stmt
1930 = gimple_build_assign (var, VIEW_CONVERT_EXPR, mask_op);
1931 vect_finish_stmt_generation (stmt, new_stmt, gsi);
1932 mask_op = var;
1933 }
1934 }
1935
1936 new_stmt
1937 = gimple_build_call (gather_decl, 5, mask_op, ptr, op, mask_op,
1938 scale);
1939
1940 if (!useless_type_conversion_p (vectype, rettype))
1941 {
1942 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype)
1943 == TYPE_VECTOR_SUBPARTS (rettype));
1944 op = vect_get_new_ssa_name (rettype, vect_simple_var);
1945 gimple_call_set_lhs (new_stmt, op);
1946 vect_finish_stmt_generation (stmt, new_stmt, gsi);
1947 var = make_ssa_name (vec_dest);
1948 op = build1 (VIEW_CONVERT_EXPR, vectype, op);
1949 new_stmt = gimple_build_assign (var, VIEW_CONVERT_EXPR, op);
1950 }
1951 else
1952 {
1953 var = make_ssa_name (vec_dest, new_stmt);
1954 gimple_call_set_lhs (new_stmt, var);
1955 }
1956
1957 vect_finish_stmt_generation (stmt, new_stmt, gsi);
1958
1959 if (modifier == NARROW)
1960 {
1961 if ((j & 1) == 0)
1962 {
1963 prev_res = var;
1964 continue;
1965 }
1966 var = permute_vec_elements (prev_res, var,
1967 perm_mask, stmt, gsi);
1968 new_stmt = SSA_NAME_DEF_STMT (var);
1969 }
1970
1971 if (prev_stmt_info == NULL)
1972 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
1973 else
1974 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
1975 prev_stmt_info = vinfo_for_stmt (new_stmt);
1976 }
1977
1978 /* Ensure that even with -fno-tree-dce the scalar MASK_LOAD is removed
1979 from the IL. */
1980 if (STMT_VINFO_RELATED_STMT (stmt_info))
1981 {
1982 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
1983 stmt_info = vinfo_for_stmt (stmt);
1984 }
1985 tree lhs = gimple_call_lhs (stmt);
1986 new_stmt = gimple_build_assign (lhs, build_zero_cst (TREE_TYPE (lhs)));
1987 set_vinfo_for_stmt (new_stmt, stmt_info);
1988 set_vinfo_for_stmt (stmt, NULL);
1989 STMT_VINFO_STMT (stmt_info) = new_stmt;
1990 gsi_replace (gsi, new_stmt, true);
1991 return true;
1992 }
1993 else if (is_store)
1994 {
1995 tree vec_rhs = NULL_TREE, vec_mask = NULL_TREE;
1996 prev_stmt_info = NULL;
1997 for (i = 0; i < ncopies; i++)
1998 {
1999 unsigned align, misalign;
2000
2001 if (i == 0)
2002 {
2003 tree rhs = gimple_call_arg (stmt, 3);
2004 vec_rhs = vect_get_vec_def_for_operand (rhs, stmt);
2005 vec_mask = vect_get_vec_def_for_operand (mask, stmt);
2006 /* We should have catched mismatched types earlier. */
2007 gcc_assert (useless_type_conversion_p (vectype,
2008 TREE_TYPE (vec_rhs)));
2009 dataref_ptr = vect_create_data_ref_ptr (stmt, vectype, NULL,
2010 NULL_TREE, &dummy, gsi,
2011 &ptr_incr, false, &inv_p);
2012 gcc_assert (!inv_p);
2013 }
2014 else
2015 {
2016 vect_is_simple_use (vec_rhs, loop_vinfo, &def_stmt, &dt);
2017 vec_rhs = vect_get_vec_def_for_stmt_copy (dt, vec_rhs);
2018 vect_is_simple_use (vec_mask, loop_vinfo, &def_stmt, &dt);
2019 vec_mask = vect_get_vec_def_for_stmt_copy (dt, vec_mask);
2020 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
2021 TYPE_SIZE_UNIT (vectype));
2022 }
2023
2024 align = TYPE_ALIGN_UNIT (vectype);
2025 if (aligned_access_p (dr))
2026 misalign = 0;
2027 else if (DR_MISALIGNMENT (dr) == -1)
2028 {
2029 align = TYPE_ALIGN_UNIT (elem_type);
2030 misalign = 0;
2031 }
2032 else
2033 misalign = DR_MISALIGNMENT (dr);
2034 set_ptr_info_alignment (get_ptr_info (dataref_ptr), align,
2035 misalign);
2036 new_stmt
2037 = gimple_build_call_internal (IFN_MASK_STORE, 4, dataref_ptr,
2038 gimple_call_arg (stmt, 1),
2039 vec_mask, vec_rhs);
2040 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2041 if (i == 0)
2042 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
2043 else
2044 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2045 prev_stmt_info = vinfo_for_stmt (new_stmt);
2046 }
2047 }
2048 else
2049 {
2050 tree vec_mask = NULL_TREE;
2051 prev_stmt_info = NULL;
2052 vec_dest = vect_create_destination_var (gimple_call_lhs (stmt), vectype);
2053 for (i = 0; i < ncopies; i++)
2054 {
2055 unsigned align, misalign;
2056
2057 if (i == 0)
2058 {
2059 vec_mask = vect_get_vec_def_for_operand (mask, stmt);
2060 dataref_ptr = vect_create_data_ref_ptr (stmt, vectype, NULL,
2061 NULL_TREE, &dummy, gsi,
2062 &ptr_incr, false, &inv_p);
2063 gcc_assert (!inv_p);
2064 }
2065 else
2066 {
2067 vect_is_simple_use (vec_mask, loop_vinfo, &def_stmt, &dt);
2068 vec_mask = vect_get_vec_def_for_stmt_copy (dt, vec_mask);
2069 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
2070 TYPE_SIZE_UNIT (vectype));
2071 }
2072
2073 align = TYPE_ALIGN_UNIT (vectype);
2074 if (aligned_access_p (dr))
2075 misalign = 0;
2076 else if (DR_MISALIGNMENT (dr) == -1)
2077 {
2078 align = TYPE_ALIGN_UNIT (elem_type);
2079 misalign = 0;
2080 }
2081 else
2082 misalign = DR_MISALIGNMENT (dr);
2083 set_ptr_info_alignment (get_ptr_info (dataref_ptr), align,
2084 misalign);
2085 new_stmt
2086 = gimple_build_call_internal (IFN_MASK_LOAD, 3, dataref_ptr,
2087 gimple_call_arg (stmt, 1),
2088 vec_mask);
2089 gimple_call_set_lhs (new_stmt, make_ssa_name (vec_dest));
2090 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2091 if (i == 0)
2092 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
2093 else
2094 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2095 prev_stmt_info = vinfo_for_stmt (new_stmt);
2096 }
2097 }
2098
2099 if (!is_store)
2100 {
2101 /* Ensure that even with -fno-tree-dce the scalar MASK_LOAD is removed
2102 from the IL. */
2103 if (STMT_VINFO_RELATED_STMT (stmt_info))
2104 {
2105 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
2106 stmt_info = vinfo_for_stmt (stmt);
2107 }
2108 tree lhs = gimple_call_lhs (stmt);
2109 new_stmt = gimple_build_assign (lhs, build_zero_cst (TREE_TYPE (lhs)));
2110 set_vinfo_for_stmt (new_stmt, stmt_info);
2111 set_vinfo_for_stmt (stmt, NULL);
2112 STMT_VINFO_STMT (stmt_info) = new_stmt;
2113 gsi_replace (gsi, new_stmt, true);
2114 }
2115
2116 return true;
2117 }
2118
2119
2120 /* Function vectorizable_call.
2121
2122 Check if GS performs a function call that can be vectorized.
2123 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
2124 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
2125 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
2126
2127 static bool
2128 vectorizable_call (gimple *gs, gimple_stmt_iterator *gsi, gimple **vec_stmt,
2129 slp_tree slp_node)
2130 {
2131 gcall *stmt;
2132 tree vec_dest;
2133 tree scalar_dest;
2134 tree op, type;
2135 tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
2136 stmt_vec_info stmt_info = vinfo_for_stmt (gs), prev_stmt_info;
2137 tree vectype_out, vectype_in;
2138 int nunits_in;
2139 int nunits_out;
2140 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2141 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2142 vec_info *vinfo = stmt_info->vinfo;
2143 tree fndecl, new_temp, rhs_type;
2144 gimple *def_stmt;
2145 enum vect_def_type dt[3]
2146 = {vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type};
2147 gimple *new_stmt = NULL;
2148 int ncopies, j;
2149 vec<tree> vargs = vNULL;
2150 enum { NARROW, NONE, WIDEN } modifier;
2151 size_t i, nargs;
2152 tree lhs;
2153
2154 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
2155 return false;
2156
2157 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
2158 return false;
2159
2160 /* Is GS a vectorizable call? */
2161 stmt = dyn_cast <gcall *> (gs);
2162 if (!stmt)
2163 return false;
2164
2165 if (gimple_call_internal_p (stmt)
2166 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
2167 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE))
2168 return vectorizable_mask_load_store (stmt, gsi, vec_stmt,
2169 slp_node);
2170
2171 if (gimple_call_lhs (stmt) == NULL_TREE
2172 || TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME)
2173 return false;
2174
2175 gcc_checking_assert (!stmt_can_throw_internal (stmt));
2176
2177 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
2178
2179 /* Process function arguments. */
2180 rhs_type = NULL_TREE;
2181 vectype_in = NULL_TREE;
2182 nargs = gimple_call_num_args (stmt);
2183
2184 /* Bail out if the function has more than three arguments, we do not have
2185 interesting builtin functions to vectorize with more than two arguments
2186 except for fma. No arguments is also not good. */
2187 if (nargs == 0 || nargs > 3)
2188 return false;
2189
2190 /* Ignore the argument of IFN_GOMP_SIMD_LANE, it is magic. */
2191 if (gimple_call_internal_p (stmt)
2192 && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE)
2193 {
2194 nargs = 0;
2195 rhs_type = unsigned_type_node;
2196 }
2197
2198 for (i = 0; i < nargs; i++)
2199 {
2200 tree opvectype;
2201
2202 op = gimple_call_arg (stmt, i);
2203
2204 /* We can only handle calls with arguments of the same type. */
2205 if (rhs_type
2206 && !types_compatible_p (rhs_type, TREE_TYPE (op)))
2207 {
2208 if (dump_enabled_p ())
2209 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2210 "argument types differ.\n");
2211 return false;
2212 }
2213 if (!rhs_type)
2214 rhs_type = TREE_TYPE (op);
2215
2216 if (!vect_is_simple_use (op, vinfo, &def_stmt, &dt[i], &opvectype))
2217 {
2218 if (dump_enabled_p ())
2219 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2220 "use not simple.\n");
2221 return false;
2222 }
2223
2224 if (!vectype_in)
2225 vectype_in = opvectype;
2226 else if (opvectype
2227 && opvectype != vectype_in)
2228 {
2229 if (dump_enabled_p ())
2230 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2231 "argument vector types differ.\n");
2232 return false;
2233 }
2234 }
2235 /* If all arguments are external or constant defs use a vector type with
2236 the same size as the output vector type. */
2237 if (!vectype_in)
2238 vectype_in = get_same_sized_vectype (rhs_type, vectype_out);
2239 if (vec_stmt)
2240 gcc_assert (vectype_in);
2241 if (!vectype_in)
2242 {
2243 if (dump_enabled_p ())
2244 {
2245 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2246 "no vectype for scalar type ");
2247 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, rhs_type);
2248 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2249 }
2250
2251 return false;
2252 }
2253
2254 /* FORNOW */
2255 nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
2256 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
2257 if (nunits_in == nunits_out / 2)
2258 modifier = NARROW;
2259 else if (nunits_out == nunits_in)
2260 modifier = NONE;
2261 else if (nunits_out == nunits_in / 2)
2262 modifier = WIDEN;
2263 else
2264 return false;
2265
2266 /* For now, we only vectorize functions if a target specific builtin
2267 is available. TODO -- in some cases, it might be profitable to
2268 insert the calls for pieces of the vector, in order to be able
2269 to vectorize other operations in the loop. */
2270 fndecl = vectorizable_function (stmt, vectype_out, vectype_in);
2271 if (fndecl == NULL_TREE)
2272 {
2273 if (gimple_call_internal_p (stmt)
2274 && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE
2275 && !slp_node
2276 && loop_vinfo
2277 && LOOP_VINFO_LOOP (loop_vinfo)->simduid
2278 && TREE_CODE (gimple_call_arg (stmt, 0)) == SSA_NAME
2279 && LOOP_VINFO_LOOP (loop_vinfo)->simduid
2280 == SSA_NAME_VAR (gimple_call_arg (stmt, 0)))
2281 {
2282 /* We can handle IFN_GOMP_SIMD_LANE by returning a
2283 { 0, 1, 2, ... vf - 1 } vector. */
2284 gcc_assert (nargs == 0);
2285 }
2286 else
2287 {
2288 if (dump_enabled_p ())
2289 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2290 "function is not vectorizable.\n");
2291 return false;
2292 }
2293 }
2294
2295 gcc_assert (!gimple_vuse (stmt));
2296
2297 if (slp_node || PURE_SLP_STMT (stmt_info))
2298 ncopies = 1;
2299 else if (modifier == NARROW)
2300 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
2301 else
2302 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
2303
2304 /* Sanity check: make sure that at least one copy of the vectorized stmt
2305 needs to be generated. */
2306 gcc_assert (ncopies >= 1);
2307
2308 if (!vec_stmt) /* transformation not required. */
2309 {
2310 STMT_VINFO_TYPE (stmt_info) = call_vec_info_type;
2311 if (dump_enabled_p ())
2312 dump_printf_loc (MSG_NOTE, vect_location, "=== vectorizable_call ==="
2313 "\n");
2314 vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
2315 return true;
2316 }
2317
2318 /** Transform. **/
2319
2320 if (dump_enabled_p ())
2321 dump_printf_loc (MSG_NOTE, vect_location, "transform call.\n");
2322
2323 /* Handle def. */
2324 scalar_dest = gimple_call_lhs (stmt);
2325 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
2326
2327 prev_stmt_info = NULL;
2328 switch (modifier)
2329 {
2330 case NONE:
2331 for (j = 0; j < ncopies; ++j)
2332 {
2333 /* Build argument list for the vectorized call. */
2334 if (j == 0)
2335 vargs.create (nargs);
2336 else
2337 vargs.truncate (0);
2338
2339 if (slp_node)
2340 {
2341 auto_vec<vec<tree> > vec_defs (nargs);
2342 vec<tree> vec_oprnds0;
2343
2344 for (i = 0; i < nargs; i++)
2345 vargs.quick_push (gimple_call_arg (stmt, i));
2346 vect_get_slp_defs (vargs, slp_node, &vec_defs, -1);
2347 vec_oprnds0 = vec_defs[0];
2348
2349 /* Arguments are ready. Create the new vector stmt. */
2350 FOR_EACH_VEC_ELT (vec_oprnds0, i, vec_oprnd0)
2351 {
2352 size_t k;
2353 for (k = 0; k < nargs; k++)
2354 {
2355 vec<tree> vec_oprndsk = vec_defs[k];
2356 vargs[k] = vec_oprndsk[i];
2357 }
2358 new_stmt = gimple_build_call_vec (fndecl, vargs);
2359 new_temp = make_ssa_name (vec_dest, new_stmt);
2360 gimple_call_set_lhs (new_stmt, new_temp);
2361 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2362 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
2363 }
2364
2365 for (i = 0; i < nargs; i++)
2366 {
2367 vec<tree> vec_oprndsi = vec_defs[i];
2368 vec_oprndsi.release ();
2369 }
2370 continue;
2371 }
2372
2373 for (i = 0; i < nargs; i++)
2374 {
2375 op = gimple_call_arg (stmt, i);
2376 if (j == 0)
2377 vec_oprnd0
2378 = vect_get_vec_def_for_operand (op, stmt);
2379 else
2380 {
2381 vec_oprnd0 = gimple_call_arg (new_stmt, i);
2382 vec_oprnd0
2383 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
2384 }
2385
2386 vargs.quick_push (vec_oprnd0);
2387 }
2388
2389 if (gimple_call_internal_p (stmt)
2390 && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE)
2391 {
2392 tree *v = XALLOCAVEC (tree, nunits_out);
2393 int k;
2394 for (k = 0; k < nunits_out; ++k)
2395 v[k] = build_int_cst (unsigned_type_node, j * nunits_out + k);
2396 tree cst = build_vector (vectype_out, v);
2397 tree new_var
2398 = vect_get_new_ssa_name (vectype_out, vect_simple_var, "cst_");
2399 gimple *init_stmt = gimple_build_assign (new_var, cst);
2400 vect_init_vector_1 (stmt, init_stmt, NULL);
2401 new_temp = make_ssa_name (vec_dest);
2402 new_stmt = gimple_build_assign (new_temp, new_var);
2403 }
2404 else
2405 {
2406 new_stmt = gimple_build_call_vec (fndecl, vargs);
2407 new_temp = make_ssa_name (vec_dest, new_stmt);
2408 gimple_call_set_lhs (new_stmt, new_temp);
2409 }
2410 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2411
2412 if (j == 0)
2413 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
2414 else
2415 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2416
2417 prev_stmt_info = vinfo_for_stmt (new_stmt);
2418 }
2419
2420 break;
2421
2422 case NARROW:
2423 for (j = 0; j < ncopies; ++j)
2424 {
2425 /* Build argument list for the vectorized call. */
2426 if (j == 0)
2427 vargs.create (nargs * 2);
2428 else
2429 vargs.truncate (0);
2430
2431 if (slp_node)
2432 {
2433 auto_vec<vec<tree> > vec_defs (nargs);
2434 vec<tree> vec_oprnds0;
2435
2436 for (i = 0; i < nargs; i++)
2437 vargs.quick_push (gimple_call_arg (stmt, i));
2438 vect_get_slp_defs (vargs, slp_node, &vec_defs, -1);
2439 vec_oprnds0 = vec_defs[0];
2440
2441 /* Arguments are ready. Create the new vector stmt. */
2442 for (i = 0; vec_oprnds0.iterate (i, &vec_oprnd0); i += 2)
2443 {
2444 size_t k;
2445 vargs.truncate (0);
2446 for (k = 0; k < nargs; k++)
2447 {
2448 vec<tree> vec_oprndsk = vec_defs[k];
2449 vargs.quick_push (vec_oprndsk[i]);
2450 vargs.quick_push (vec_oprndsk[i + 1]);
2451 }
2452 new_stmt = gimple_build_call_vec (fndecl, vargs);
2453 new_temp = make_ssa_name (vec_dest, new_stmt);
2454 gimple_call_set_lhs (new_stmt, new_temp);
2455 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2456 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
2457 }
2458
2459 for (i = 0; i < nargs; i++)
2460 {
2461 vec<tree> vec_oprndsi = vec_defs[i];
2462 vec_oprndsi.release ();
2463 }
2464 continue;
2465 }
2466
2467 for (i = 0; i < nargs; i++)
2468 {
2469 op = gimple_call_arg (stmt, i);
2470 if (j == 0)
2471 {
2472 vec_oprnd0
2473 = vect_get_vec_def_for_operand (op, stmt);
2474 vec_oprnd1
2475 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
2476 }
2477 else
2478 {
2479 vec_oprnd1 = gimple_call_arg (new_stmt, 2*i + 1);
2480 vec_oprnd0
2481 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd1);
2482 vec_oprnd1
2483 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
2484 }
2485
2486 vargs.quick_push (vec_oprnd0);
2487 vargs.quick_push (vec_oprnd1);
2488 }
2489
2490 new_stmt = gimple_build_call_vec (fndecl, vargs);
2491 new_temp = make_ssa_name (vec_dest, new_stmt);
2492 gimple_call_set_lhs (new_stmt, new_temp);
2493 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2494
2495 if (j == 0)
2496 STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
2497 else
2498 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2499
2500 prev_stmt_info = vinfo_for_stmt (new_stmt);
2501 }
2502
2503 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
2504
2505 break;
2506
2507 case WIDEN:
2508 /* No current target implements this case. */
2509 return false;
2510 }
2511
2512 vargs.release ();
2513
2514 /* The call in STMT might prevent it from being removed in dce.
2515 We however cannot remove it here, due to the way the ssa name
2516 it defines is mapped to the new definition. So just replace
2517 rhs of the statement with something harmless. */
2518
2519 if (slp_node)
2520 return true;
2521
2522 type = TREE_TYPE (scalar_dest);
2523 if (is_pattern_stmt_p (stmt_info))
2524 lhs = gimple_call_lhs (STMT_VINFO_RELATED_STMT (stmt_info));
2525 else
2526 lhs = gimple_call_lhs (stmt);
2527
2528 if (gimple_call_internal_p (stmt)
2529 && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE)
2530 {
2531 /* Replace uses of the lhs of GOMP_SIMD_LANE call outside the loop
2532 with vf - 1 rather than 0, that is the last iteration of the
2533 vectorized loop. */
2534 imm_use_iterator iter;
2535 use_operand_p use_p;
2536 gimple *use_stmt;
2537 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
2538 {
2539 basic_block use_bb = gimple_bb (use_stmt);
2540 if (use_bb
2541 && !flow_bb_inside_loop_p (LOOP_VINFO_LOOP (loop_vinfo), use_bb))
2542 {
2543 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2544 SET_USE (use_p, build_int_cst (TREE_TYPE (lhs),
2545 ncopies * nunits_out - 1));
2546 update_stmt (use_stmt);
2547 }
2548 }
2549 }
2550
2551 new_stmt = gimple_build_assign (lhs, build_zero_cst (type));
2552 set_vinfo_for_stmt (new_stmt, stmt_info);
2553 set_vinfo_for_stmt (stmt, NULL);
2554 STMT_VINFO_STMT (stmt_info) = new_stmt;
2555 gsi_replace (gsi, new_stmt, false);
2556
2557 return true;
2558 }
2559
2560
2561 struct simd_call_arg_info
2562 {
2563 tree vectype;
2564 tree op;
2565 enum vect_def_type dt;
2566 HOST_WIDE_INT linear_step;
2567 unsigned int align;
2568 bool simd_lane_linear;
2569 };
2570
2571 /* Helper function of vectorizable_simd_clone_call. If OP, an SSA_NAME,
2572 is linear within simd lane (but not within whole loop), note it in
2573 *ARGINFO. */
2574
2575 static void
2576 vect_simd_lane_linear (tree op, struct loop *loop,
2577 struct simd_call_arg_info *arginfo)
2578 {
2579 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
2580
2581 if (!is_gimple_assign (def_stmt)
2582 || gimple_assign_rhs_code (def_stmt) != POINTER_PLUS_EXPR
2583 || !is_gimple_min_invariant (gimple_assign_rhs1 (def_stmt)))
2584 return;
2585
2586 tree base = gimple_assign_rhs1 (def_stmt);
2587 HOST_WIDE_INT linear_step = 0;
2588 tree v = gimple_assign_rhs2 (def_stmt);
2589 while (TREE_CODE (v) == SSA_NAME)
2590 {
2591 tree t;
2592 def_stmt = SSA_NAME_DEF_STMT (v);
2593 if (is_gimple_assign (def_stmt))
2594 switch (gimple_assign_rhs_code (def_stmt))
2595 {
2596 case PLUS_EXPR:
2597 t = gimple_assign_rhs2 (def_stmt);
2598 if (linear_step || TREE_CODE (t) != INTEGER_CST)
2599 return;
2600 base = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (base), base, t);
2601 v = gimple_assign_rhs1 (def_stmt);
2602 continue;
2603 case MULT_EXPR:
2604 t = gimple_assign_rhs2 (def_stmt);
2605 if (linear_step || !tree_fits_shwi_p (t) || integer_zerop (t))
2606 return;
2607 linear_step = tree_to_shwi (t);
2608 v = gimple_assign_rhs1 (def_stmt);
2609 continue;
2610 CASE_CONVERT:
2611 t = gimple_assign_rhs1 (def_stmt);
2612 if (TREE_CODE (TREE_TYPE (t)) != INTEGER_TYPE
2613 || (TYPE_PRECISION (TREE_TYPE (v))
2614 < TYPE_PRECISION (TREE_TYPE (t))))
2615 return;
2616 if (!linear_step)
2617 linear_step = 1;
2618 v = t;
2619 continue;
2620 default:
2621 return;
2622 }
2623 else if (is_gimple_call (def_stmt)
2624 && gimple_call_internal_p (def_stmt)
2625 && gimple_call_internal_fn (def_stmt) == IFN_GOMP_SIMD_LANE
2626 && loop->simduid
2627 && TREE_CODE (gimple_call_arg (def_stmt, 0)) == SSA_NAME
2628 && (SSA_NAME_VAR (gimple_call_arg (def_stmt, 0))
2629 == loop->simduid))
2630 {
2631 if (!linear_step)
2632 linear_step = 1;
2633 arginfo->linear_step = linear_step;
2634 arginfo->op = base;
2635 arginfo->simd_lane_linear = true;
2636 return;
2637 }
2638 }
2639 }
2640
2641 /* Function vectorizable_simd_clone_call.
2642
2643 Check if STMT performs a function call that can be vectorized
2644 by calling a simd clone of the function.
2645 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
2646 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
2647 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
2648
2649 static bool
2650 vectorizable_simd_clone_call (gimple *stmt, gimple_stmt_iterator *gsi,
2651 gimple **vec_stmt, slp_tree slp_node)
2652 {
2653 tree vec_dest;
2654 tree scalar_dest;
2655 tree op, type;
2656 tree vec_oprnd0 = NULL_TREE;
2657 stmt_vec_info stmt_info = vinfo_for_stmt (stmt), prev_stmt_info;
2658 tree vectype;
2659 unsigned int nunits;
2660 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2661 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2662 vec_info *vinfo = stmt_info->vinfo;
2663 struct loop *loop = loop_vinfo ? LOOP_VINFO_LOOP (loop_vinfo) : NULL;
2664 tree fndecl, new_temp;
2665 gimple *def_stmt;
2666 gimple *new_stmt = NULL;
2667 int ncopies, j;
2668 vec<simd_call_arg_info> arginfo = vNULL;
2669 vec<tree> vargs = vNULL;
2670 size_t i, nargs;
2671 tree lhs, rtype, ratype;
2672 vec<constructor_elt, va_gc> *ret_ctor_elts;
2673
2674 /* Is STMT a vectorizable call? */
2675 if (!is_gimple_call (stmt))
2676 return false;
2677
2678 fndecl = gimple_call_fndecl (stmt);
2679 if (fndecl == NULL_TREE)
2680 return false;
2681
2682 struct cgraph_node *node = cgraph_node::get (fndecl);
2683 if (node == NULL || node->simd_clones == NULL)
2684 return false;
2685
2686 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
2687 return false;
2688
2689 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
2690 return false;
2691
2692 if (gimple_call_lhs (stmt)
2693 && TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME)
2694 return false;
2695
2696 gcc_checking_assert (!stmt_can_throw_internal (stmt));
2697
2698 vectype = STMT_VINFO_VECTYPE (stmt_info);
2699
2700 if (loop_vinfo && nested_in_vect_loop_p (loop, stmt))
2701 return false;
2702
2703 /* FORNOW */
2704 if (slp_node || PURE_SLP_STMT (stmt_info))
2705 return false;
2706
2707 /* Process function arguments. */
2708 nargs = gimple_call_num_args (stmt);
2709
2710 /* Bail out if the function has zero arguments. */
2711 if (nargs == 0)
2712 return false;
2713
2714 arginfo.create (nargs);
2715
2716 for (i = 0; i < nargs; i++)
2717 {
2718 simd_call_arg_info thisarginfo;
2719 affine_iv iv;
2720
2721 thisarginfo.linear_step = 0;
2722 thisarginfo.align = 0;
2723 thisarginfo.op = NULL_TREE;
2724 thisarginfo.simd_lane_linear = false;
2725
2726 op = gimple_call_arg (stmt, i);
2727 if (!vect_is_simple_use (op, vinfo, &def_stmt, &thisarginfo.dt,
2728 &thisarginfo.vectype)
2729 || thisarginfo.dt == vect_uninitialized_def)
2730 {
2731 if (dump_enabled_p ())
2732 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2733 "use not simple.\n");
2734 arginfo.release ();
2735 return false;
2736 }
2737
2738 if (thisarginfo.dt == vect_constant_def
2739 || thisarginfo.dt == vect_external_def)
2740 gcc_assert (thisarginfo.vectype == NULL_TREE);
2741 else
2742 gcc_assert (thisarginfo.vectype != NULL_TREE);
2743
2744 /* For linear arguments, the analyze phase should have saved
2745 the base and step in STMT_VINFO_SIMD_CLONE_INFO. */
2746 if (i * 3 + 4 <= STMT_VINFO_SIMD_CLONE_INFO (stmt_info).length ()
2747 && STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[i * 3 + 2])
2748 {
2749 gcc_assert (vec_stmt);
2750 thisarginfo.linear_step
2751 = tree_to_shwi (STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[i * 3 + 2]);
2752 thisarginfo.op
2753 = STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[i * 3 + 1];
2754 thisarginfo.simd_lane_linear
2755 = (STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[i * 3 + 3]
2756 == boolean_true_node);
2757 /* If loop has been peeled for alignment, we need to adjust it. */
2758 tree n1 = LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo);
2759 tree n2 = LOOP_VINFO_NITERS (loop_vinfo);
2760 if (n1 != n2 && !thisarginfo.simd_lane_linear)
2761 {
2762 tree bias = fold_build2 (MINUS_EXPR, TREE_TYPE (n1), n1, n2);
2763 tree step = STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[i * 3 + 2];
2764 tree opt = TREE_TYPE (thisarginfo.op);
2765 bias = fold_convert (TREE_TYPE (step), bias);
2766 bias = fold_build2 (MULT_EXPR, TREE_TYPE (step), bias, step);
2767 thisarginfo.op
2768 = fold_build2 (POINTER_TYPE_P (opt)
2769 ? POINTER_PLUS_EXPR : PLUS_EXPR, opt,
2770 thisarginfo.op, bias);
2771 }
2772 }
2773 else if (!vec_stmt
2774 && thisarginfo.dt != vect_constant_def
2775 && thisarginfo.dt != vect_external_def
2776 && loop_vinfo
2777 && TREE_CODE (op) == SSA_NAME
2778 && simple_iv (loop, loop_containing_stmt (stmt), op,
2779 &iv, false)
2780 && tree_fits_shwi_p (iv.step))
2781 {
2782 thisarginfo.linear_step = tree_to_shwi (iv.step);
2783 thisarginfo.op = iv.base;
2784 }
2785 else if ((thisarginfo.dt == vect_constant_def
2786 || thisarginfo.dt == vect_external_def)
2787 && POINTER_TYPE_P (TREE_TYPE (op)))
2788 thisarginfo.align = get_pointer_alignment (op) / BITS_PER_UNIT;
2789 /* Addresses of array elements indexed by GOMP_SIMD_LANE are
2790 linear too. */
2791 if (POINTER_TYPE_P (TREE_TYPE (op))
2792 && !thisarginfo.linear_step
2793 && !vec_stmt
2794 && thisarginfo.dt != vect_constant_def
2795 && thisarginfo.dt != vect_external_def
2796 && loop_vinfo
2797 && !slp_node
2798 && TREE_CODE (op) == SSA_NAME)
2799 vect_simd_lane_linear (op, loop, &thisarginfo);
2800
2801 arginfo.quick_push (thisarginfo);
2802 }
2803
2804 unsigned int badness = 0;
2805 struct cgraph_node *bestn = NULL;
2806 if (STMT_VINFO_SIMD_CLONE_INFO (stmt_info).exists ())
2807 bestn = cgraph_node::get (STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[0]);
2808 else
2809 for (struct cgraph_node *n = node->simd_clones; n != NULL;
2810 n = n->simdclone->next_clone)
2811 {
2812 unsigned int this_badness = 0;
2813 if (n->simdclone->simdlen
2814 > (unsigned) LOOP_VINFO_VECT_FACTOR (loop_vinfo)
2815 || n->simdclone->nargs != nargs)
2816 continue;
2817 if (n->simdclone->simdlen
2818 < (unsigned) LOOP_VINFO_VECT_FACTOR (loop_vinfo))
2819 this_badness += (exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo))
2820 - exact_log2 (n->simdclone->simdlen)) * 1024;
2821 if (n->simdclone->inbranch)
2822 this_badness += 2048;
2823 int target_badness = targetm.simd_clone.usable (n);
2824 if (target_badness < 0)
2825 continue;
2826 this_badness += target_badness * 512;
2827 /* FORNOW: Have to add code to add the mask argument. */
2828 if (n->simdclone->inbranch)
2829 continue;
2830 for (i = 0; i < nargs; i++)
2831 {
2832 switch (n->simdclone->args[i].arg_type)
2833 {
2834 case SIMD_CLONE_ARG_TYPE_VECTOR:
2835 if (!useless_type_conversion_p
2836 (n->simdclone->args[i].orig_type,
2837 TREE_TYPE (gimple_call_arg (stmt, i))))
2838 i = -1;
2839 else if (arginfo[i].dt == vect_constant_def
2840 || arginfo[i].dt == vect_external_def
2841 || arginfo[i].linear_step)
2842 this_badness += 64;
2843 break;
2844 case SIMD_CLONE_ARG_TYPE_UNIFORM:
2845 if (arginfo[i].dt != vect_constant_def
2846 && arginfo[i].dt != vect_external_def)
2847 i = -1;
2848 break;
2849 case SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP:
2850 case SIMD_CLONE_ARG_TYPE_LINEAR_REF_CONSTANT_STEP:
2851 if (arginfo[i].dt == vect_constant_def
2852 || arginfo[i].dt == vect_external_def
2853 || (arginfo[i].linear_step
2854 != n->simdclone->args[i].linear_step))
2855 i = -1;
2856 break;
2857 case SIMD_CLONE_ARG_TYPE_LINEAR_VARIABLE_STEP:
2858 case SIMD_CLONE_ARG_TYPE_LINEAR_VAL_CONSTANT_STEP:
2859 case SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_CONSTANT_STEP:
2860 case SIMD_CLONE_ARG_TYPE_LINEAR_REF_VARIABLE_STEP:
2861 case SIMD_CLONE_ARG_TYPE_LINEAR_VAL_VARIABLE_STEP:
2862 case SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_VARIABLE_STEP:
2863 /* FORNOW */
2864 i = -1;
2865 break;
2866 case SIMD_CLONE_ARG_TYPE_MASK:
2867 gcc_unreachable ();
2868 }
2869 if (i == (size_t) -1)
2870 break;
2871 if (n->simdclone->args[i].alignment > arginfo[i].align)
2872 {
2873 i = -1;
2874 break;
2875 }
2876 if (arginfo[i].align)
2877 this_badness += (exact_log2 (arginfo[i].align)
2878 - exact_log2 (n->simdclone->args[i].alignment));
2879 }
2880 if (i == (size_t) -1)
2881 continue;
2882 if (bestn == NULL || this_badness < badness)
2883 {
2884 bestn = n;
2885 badness = this_badness;
2886 }
2887 }
2888
2889 if (bestn == NULL)
2890 {
2891 arginfo.release ();
2892 return false;
2893 }
2894
2895 for (i = 0; i < nargs; i++)
2896 if ((arginfo[i].dt == vect_constant_def
2897 || arginfo[i].dt == vect_external_def)
2898 && bestn->simdclone->args[i].arg_type == SIMD_CLONE_ARG_TYPE_VECTOR)
2899 {
2900 arginfo[i].vectype
2901 = get_vectype_for_scalar_type (TREE_TYPE (gimple_call_arg (stmt,
2902 i)));
2903 if (arginfo[i].vectype == NULL
2904 || (TYPE_VECTOR_SUBPARTS (arginfo[i].vectype)
2905 > bestn->simdclone->simdlen))
2906 {
2907 arginfo.release ();
2908 return false;
2909 }
2910 }
2911
2912 fndecl = bestn->decl;
2913 nunits = bestn->simdclone->simdlen;
2914 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
2915
2916 /* If the function isn't const, only allow it in simd loops where user
2917 has asserted that at least nunits consecutive iterations can be
2918 performed using SIMD instructions. */
2919 if ((loop == NULL || (unsigned) loop->safelen < nunits)
2920 && gimple_vuse (stmt))
2921 {
2922 arginfo.release ();
2923 return false;
2924 }
2925
2926 /* Sanity check: make sure that at least one copy of the vectorized stmt
2927 needs to be generated. */
2928 gcc_assert (ncopies >= 1);
2929
2930 if (!vec_stmt) /* transformation not required. */
2931 {
2932 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_push (bestn->decl);
2933 for (i = 0; i < nargs; i++)
2934 if (bestn->simdclone->args[i].arg_type
2935 == SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP)
2936 {
2937 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_grow_cleared (i * 3
2938 + 1);
2939 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_push (arginfo[i].op);
2940 tree lst = POINTER_TYPE_P (TREE_TYPE (arginfo[i].op))
2941 ? size_type_node : TREE_TYPE (arginfo[i].op);
2942 tree ls = build_int_cst (lst, arginfo[i].linear_step);
2943 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_push (ls);
2944 tree sll = arginfo[i].simd_lane_linear
2945 ? boolean_true_node : boolean_false_node;
2946 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_push (sll);
2947 }
2948 STMT_VINFO_TYPE (stmt_info) = call_simd_clone_vec_info_type;
2949 if (dump_enabled_p ())
2950 dump_printf_loc (MSG_NOTE, vect_location,
2951 "=== vectorizable_simd_clone_call ===\n");
2952 /* vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL); */
2953 arginfo.release ();
2954 return true;
2955 }
2956
2957 /** Transform. **/
2958
2959 if (dump_enabled_p ())
2960 dump_printf_loc (MSG_NOTE, vect_location, "transform call.\n");
2961
2962 /* Handle def. */
2963 scalar_dest = gimple_call_lhs (stmt);
2964 vec_dest = NULL_TREE;
2965 rtype = NULL_TREE;
2966 ratype = NULL_TREE;
2967 if (scalar_dest)
2968 {
2969 vec_dest = vect_create_destination_var (scalar_dest, vectype);
2970 rtype = TREE_TYPE (TREE_TYPE (fndecl));
2971 if (TREE_CODE (rtype) == ARRAY_TYPE)
2972 {
2973 ratype = rtype;
2974 rtype = TREE_TYPE (ratype);
2975 }
2976 }
2977
2978 prev_stmt_info = NULL;
2979 for (j = 0; j < ncopies; ++j)
2980 {
2981 /* Build argument list for the vectorized call. */
2982 if (j == 0)
2983 vargs.create (nargs);
2984 else
2985 vargs.truncate (0);
2986
2987 for (i = 0; i < nargs; i++)
2988 {
2989 unsigned int k, l, m, o;
2990 tree atype;
2991 op = gimple_call_arg (stmt, i);
2992 switch (bestn->simdclone->args[i].arg_type)
2993 {
2994 case SIMD_CLONE_ARG_TYPE_VECTOR:
2995 atype = bestn->simdclone->args[i].vector_type;
2996 o = nunits / TYPE_VECTOR_SUBPARTS (atype);
2997 for (m = j * o; m < (j + 1) * o; m++)
2998 {
2999 if (TYPE_VECTOR_SUBPARTS (atype)
3000 < TYPE_VECTOR_SUBPARTS (arginfo[i].vectype))
3001 {
3002 unsigned int prec = GET_MODE_BITSIZE (TYPE_MODE (atype));
3003 k = (TYPE_VECTOR_SUBPARTS (arginfo[i].vectype)
3004 / TYPE_VECTOR_SUBPARTS (atype));
3005 gcc_assert ((k & (k - 1)) == 0);
3006 if (m == 0)
3007 vec_oprnd0
3008 = vect_get_vec_def_for_operand (op, stmt);
3009 else
3010 {
3011 vec_oprnd0 = arginfo[i].op;
3012 if ((m & (k - 1)) == 0)
3013 vec_oprnd0
3014 = vect_get_vec_def_for_stmt_copy (arginfo[i].dt,
3015 vec_oprnd0);
3016 }
3017 arginfo[i].op = vec_oprnd0;
3018 vec_oprnd0
3019 = build3 (BIT_FIELD_REF, atype, vec_oprnd0,
3020 size_int (prec),
3021 bitsize_int ((m & (k - 1)) * prec));
3022 new_stmt
3023 = gimple_build_assign (make_ssa_name (atype),
3024 vec_oprnd0);
3025 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3026 vargs.safe_push (gimple_assign_lhs (new_stmt));
3027 }
3028 else
3029 {
3030 k = (TYPE_VECTOR_SUBPARTS (atype)
3031 / TYPE_VECTOR_SUBPARTS (arginfo[i].vectype));
3032 gcc_assert ((k & (k - 1)) == 0);
3033 vec<constructor_elt, va_gc> *ctor_elts;
3034 if (k != 1)
3035 vec_alloc (ctor_elts, k);
3036 else
3037 ctor_elts = NULL;
3038 for (l = 0; l < k; l++)
3039 {
3040 if (m == 0 && l == 0)
3041 vec_oprnd0
3042 = vect_get_vec_def_for_operand (op, stmt);
3043 else
3044 vec_oprnd0
3045 = vect_get_vec_def_for_stmt_copy (arginfo[i].dt,
3046 arginfo[i].op);
3047 arginfo[i].op = vec_oprnd0;
3048 if (k == 1)
3049 break;
3050 CONSTRUCTOR_APPEND_ELT (ctor_elts, NULL_TREE,
3051 vec_oprnd0);
3052 }
3053 if (k == 1)
3054 vargs.safe_push (vec_oprnd0);
3055 else
3056 {
3057 vec_oprnd0 = build_constructor (atype, ctor_elts);
3058 new_stmt
3059 = gimple_build_assign (make_ssa_name (atype),
3060 vec_oprnd0);
3061 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3062 vargs.safe_push (gimple_assign_lhs (new_stmt));
3063 }
3064 }
3065 }
3066 break;
3067 case SIMD_CLONE_ARG_TYPE_UNIFORM:
3068 vargs.safe_push (op);
3069 break;
3070 case SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP:
3071 if (j == 0)
3072 {
3073 gimple_seq stmts;
3074 arginfo[i].op
3075 = force_gimple_operand (arginfo[i].op, &stmts, true,
3076 NULL_TREE);
3077 if (stmts != NULL)
3078 {
3079 basic_block new_bb;
3080 edge pe = loop_preheader_edge (loop);
3081 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3082 gcc_assert (!new_bb);
3083 }
3084 if (arginfo[i].simd_lane_linear)
3085 {
3086 vargs.safe_push (arginfo[i].op);
3087 break;
3088 }
3089 tree phi_res = copy_ssa_name (op);
3090 gphi *new_phi = create_phi_node (phi_res, loop->header);
3091 set_vinfo_for_stmt (new_phi,
3092 new_stmt_vec_info (new_phi, loop_vinfo));
3093 add_phi_arg (new_phi, arginfo[i].op,
3094 loop_preheader_edge (loop), UNKNOWN_LOCATION);
3095 enum tree_code code
3096 = POINTER_TYPE_P (TREE_TYPE (op))
3097 ? POINTER_PLUS_EXPR : PLUS_EXPR;
3098 tree type = POINTER_TYPE_P (TREE_TYPE (op))
3099 ? sizetype : TREE_TYPE (op);
3100 widest_int cst
3101 = wi::mul (bestn->simdclone->args[i].linear_step,
3102 ncopies * nunits);
3103 tree tcst = wide_int_to_tree (type, cst);
3104 tree phi_arg = copy_ssa_name (op);
3105 new_stmt
3106 = gimple_build_assign (phi_arg, code, phi_res, tcst);
3107 gimple_stmt_iterator si = gsi_after_labels (loop->header);
3108 gsi_insert_after (&si, new_stmt, GSI_NEW_STMT);
3109 set_vinfo_for_stmt (new_stmt,
3110 new_stmt_vec_info (new_stmt, loop_vinfo));
3111 add_phi_arg (new_phi, phi_arg, loop_latch_edge (loop),
3112 UNKNOWN_LOCATION);
3113 arginfo[i].op = phi_res;
3114 vargs.safe_push (phi_res);
3115 }
3116 else
3117 {
3118 enum tree_code code
3119 = POINTER_TYPE_P (TREE_TYPE (op))
3120 ? POINTER_PLUS_EXPR : PLUS_EXPR;
3121 tree type = POINTER_TYPE_P (TREE_TYPE (op))
3122 ? sizetype : TREE_TYPE (op);
3123 widest_int cst
3124 = wi::mul (bestn->simdclone->args[i].linear_step,
3125 j * nunits);
3126 tree tcst = wide_int_to_tree (type, cst);
3127 new_temp = make_ssa_name (TREE_TYPE (op));
3128 new_stmt = gimple_build_assign (new_temp, code,
3129 arginfo[i].op, tcst);
3130 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3131 vargs.safe_push (new_temp);
3132 }
3133 break;
3134 case SIMD_CLONE_ARG_TYPE_LINEAR_VARIABLE_STEP:
3135 case SIMD_CLONE_ARG_TYPE_LINEAR_REF_VARIABLE_STEP:
3136 case SIMD_CLONE_ARG_TYPE_LINEAR_VAL_VARIABLE_STEP:
3137 case SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_VARIABLE_STEP:
3138 default:
3139 gcc_unreachable ();
3140 }
3141 }
3142
3143 new_stmt = gimple_build_call_vec (fndecl, vargs);
3144 if (vec_dest)
3145 {
3146 gcc_assert (ratype || TYPE_VECTOR_SUBPARTS (rtype) == nunits);
3147 if (ratype)
3148 new_temp = create_tmp_var (ratype);
3149 else if (TYPE_VECTOR_SUBPARTS (vectype)
3150 == TYPE_VECTOR_SUBPARTS (rtype))
3151 new_temp = make_ssa_name (vec_dest, new_stmt);
3152 else
3153 new_temp = make_ssa_name (rtype, new_stmt);
3154 gimple_call_set_lhs (new_stmt, new_temp);
3155 }
3156 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3157
3158 if (vec_dest)
3159 {
3160 if (TYPE_VECTOR_SUBPARTS (vectype) < nunits)
3161 {
3162 unsigned int k, l;
3163 unsigned int prec = GET_MODE_BITSIZE (TYPE_MODE (vectype));
3164 k = nunits / TYPE_VECTOR_SUBPARTS (vectype);
3165 gcc_assert ((k & (k - 1)) == 0);
3166 for (l = 0; l < k; l++)
3167 {
3168 tree t;
3169 if (ratype)
3170 {
3171 t = build_fold_addr_expr (new_temp);
3172 t = build2 (MEM_REF, vectype, t,
3173 build_int_cst (TREE_TYPE (t),
3174 l * prec / BITS_PER_UNIT));
3175 }
3176 else
3177 t = build3 (BIT_FIELD_REF, vectype, new_temp,
3178 size_int (prec), bitsize_int (l * prec));
3179 new_stmt
3180 = gimple_build_assign (make_ssa_name (vectype), t);
3181 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3182 if (j == 0 && l == 0)
3183 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
3184 else
3185 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3186
3187 prev_stmt_info = vinfo_for_stmt (new_stmt);
3188 }
3189
3190 if (ratype)
3191 {
3192 tree clobber = build_constructor (ratype, NULL);
3193 TREE_THIS_VOLATILE (clobber) = 1;
3194 new_stmt = gimple_build_assign (new_temp, clobber);
3195 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3196 }
3197 continue;
3198 }
3199 else if (TYPE_VECTOR_SUBPARTS (vectype) > nunits)
3200 {
3201 unsigned int k = (TYPE_VECTOR_SUBPARTS (vectype)
3202 / TYPE_VECTOR_SUBPARTS (rtype));
3203 gcc_assert ((k & (k - 1)) == 0);
3204 if ((j & (k - 1)) == 0)
3205 vec_alloc (ret_ctor_elts, k);
3206 if (ratype)
3207 {
3208 unsigned int m, o = nunits / TYPE_VECTOR_SUBPARTS (rtype);
3209 for (m = 0; m < o; m++)
3210 {
3211 tree tem = build4 (ARRAY_REF, rtype, new_temp,
3212 size_int (m), NULL_TREE, NULL_TREE);
3213 new_stmt
3214 = gimple_build_assign (make_ssa_name (rtype), tem);
3215 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3216 CONSTRUCTOR_APPEND_ELT (ret_ctor_elts, NULL_TREE,
3217 gimple_assign_lhs (new_stmt));
3218 }
3219 tree clobber = build_constructor (ratype, NULL);
3220 TREE_THIS_VOLATILE (clobber) = 1;
3221 new_stmt = gimple_build_assign (new_temp, clobber);
3222 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3223 }
3224 else
3225 CONSTRUCTOR_APPEND_ELT (ret_ctor_elts, NULL_TREE, new_temp);
3226 if ((j & (k - 1)) != k - 1)
3227 continue;
3228 vec_oprnd0 = build_constructor (vectype, ret_ctor_elts);
3229 new_stmt
3230 = gimple_build_assign (make_ssa_name (vec_dest), vec_oprnd0);
3231 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3232
3233 if ((unsigned) j == k - 1)
3234 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
3235 else
3236 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3237
3238 prev_stmt_info = vinfo_for_stmt (new_stmt);
3239 continue;
3240 }
3241 else if (ratype)
3242 {
3243 tree t = build_fold_addr_expr (new_temp);
3244 t = build2 (MEM_REF, vectype, t,
3245 build_int_cst (TREE_TYPE (t), 0));
3246 new_stmt
3247 = gimple_build_assign (make_ssa_name (vec_dest), t);
3248 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3249 tree clobber = build_constructor (ratype, NULL);
3250 TREE_THIS_VOLATILE (clobber) = 1;
3251 vect_finish_stmt_generation (stmt,
3252 gimple_build_assign (new_temp,
3253 clobber), gsi);
3254 }
3255 }
3256
3257 if (j == 0)
3258 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
3259 else
3260 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3261
3262 prev_stmt_info = vinfo_for_stmt (new_stmt);
3263 }
3264
3265 vargs.release ();
3266
3267 /* The call in STMT might prevent it from being removed in dce.
3268 We however cannot remove it here, due to the way the ssa name
3269 it defines is mapped to the new definition. So just replace
3270 rhs of the statement with something harmless. */
3271
3272 if (slp_node)
3273 return true;
3274
3275 if (scalar_dest)
3276 {
3277 type = TREE_TYPE (scalar_dest);
3278 if (is_pattern_stmt_p (stmt_info))
3279 lhs = gimple_call_lhs (STMT_VINFO_RELATED_STMT (stmt_info));
3280 else
3281 lhs = gimple_call_lhs (stmt);
3282 new_stmt = gimple_build_assign (lhs, build_zero_cst (type));
3283 }
3284 else
3285 new_stmt = gimple_build_nop ();
3286 set_vinfo_for_stmt (new_stmt, stmt_info);
3287 set_vinfo_for_stmt (stmt, NULL);
3288 STMT_VINFO_STMT (stmt_info) = new_stmt;
3289 gsi_replace (gsi, new_stmt, true);
3290 unlink_stmt_vdef (stmt);
3291
3292 return true;
3293 }
3294
3295
3296 /* Function vect_gen_widened_results_half
3297
3298 Create a vector stmt whose code, type, number of arguments, and result
3299 variable are CODE, OP_TYPE, and VEC_DEST, and its arguments are
3300 VEC_OPRND0 and VEC_OPRND1. The new vector stmt is to be inserted at BSI.
3301 In the case that CODE is a CALL_EXPR, this means that a call to DECL
3302 needs to be created (DECL is a function-decl of a target-builtin).
3303 STMT is the original scalar stmt that we are vectorizing. */
3304
3305 static gimple *
3306 vect_gen_widened_results_half (enum tree_code code,
3307 tree decl,
3308 tree vec_oprnd0, tree vec_oprnd1, int op_type,
3309 tree vec_dest, gimple_stmt_iterator *gsi,
3310 gimple *stmt)
3311 {
3312 gimple *new_stmt;
3313 tree new_temp;
3314
3315 /* Generate half of the widened result: */
3316 if (code == CALL_EXPR)
3317 {
3318 /* Target specific support */
3319 if (op_type == binary_op)
3320 new_stmt = gimple_build_call (decl, 2, vec_oprnd0, vec_oprnd1);
3321 else
3322 new_stmt = gimple_build_call (decl, 1, vec_oprnd0);
3323 new_temp = make_ssa_name (vec_dest, new_stmt);
3324 gimple_call_set_lhs (new_stmt, new_temp);
3325 }
3326 else
3327 {
3328 /* Generic support */
3329 gcc_assert (op_type == TREE_CODE_LENGTH (code));
3330 if (op_type != binary_op)
3331 vec_oprnd1 = NULL;
3332 new_stmt = gimple_build_assign (vec_dest, code, vec_oprnd0, vec_oprnd1);
3333 new_temp = make_ssa_name (vec_dest, new_stmt);
3334 gimple_assign_set_lhs (new_stmt, new_temp);
3335 }
3336 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3337
3338 return new_stmt;
3339 }
3340
3341
3342 /* Get vectorized definitions for loop-based vectorization. For the first
3343 operand we call vect_get_vec_def_for_operand() (with OPRND containing
3344 scalar operand), and for the rest we get a copy with
3345 vect_get_vec_def_for_stmt_copy() using the previous vector definition
3346 (stored in OPRND). See vect_get_vec_def_for_stmt_copy() for details.
3347 The vectors are collected into VEC_OPRNDS. */
3348
3349 static void
3350 vect_get_loop_based_defs (tree *oprnd, gimple *stmt, enum vect_def_type dt,
3351 vec<tree> *vec_oprnds, int multi_step_cvt)
3352 {
3353 tree vec_oprnd;
3354
3355 /* Get first vector operand. */
3356 /* All the vector operands except the very first one (that is scalar oprnd)
3357 are stmt copies. */
3358 if (TREE_CODE (TREE_TYPE (*oprnd)) != VECTOR_TYPE)
3359 vec_oprnd = vect_get_vec_def_for_operand (*oprnd, stmt);
3360 else
3361 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, *oprnd);
3362
3363 vec_oprnds->quick_push (vec_oprnd);
3364
3365 /* Get second vector operand. */
3366 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, vec_oprnd);
3367 vec_oprnds->quick_push (vec_oprnd);
3368
3369 *oprnd = vec_oprnd;
3370
3371 /* For conversion in multiple steps, continue to get operands
3372 recursively. */
3373 if (multi_step_cvt)
3374 vect_get_loop_based_defs (oprnd, stmt, dt, vec_oprnds, multi_step_cvt - 1);
3375 }
3376
3377
3378 /* Create vectorized demotion statements for vector operands from VEC_OPRNDS.
3379 For multi-step conversions store the resulting vectors and call the function
3380 recursively. */
3381
3382 static void
3383 vect_create_vectorized_demotion_stmts (vec<tree> *vec_oprnds,
3384 int multi_step_cvt, gimple *stmt,
3385 vec<tree> vec_dsts,
3386 gimple_stmt_iterator *gsi,
3387 slp_tree slp_node, enum tree_code code,
3388 stmt_vec_info *prev_stmt_info)
3389 {
3390 unsigned int i;
3391 tree vop0, vop1, new_tmp, vec_dest;
3392 gimple *new_stmt;
3393 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3394
3395 vec_dest = vec_dsts.pop ();
3396
3397 for (i = 0; i < vec_oprnds->length (); i += 2)
3398 {
3399 /* Create demotion operation. */
3400 vop0 = (*vec_oprnds)[i];
3401 vop1 = (*vec_oprnds)[i + 1];
3402 new_stmt = gimple_build_assign (vec_dest, code, vop0, vop1);
3403 new_tmp = make_ssa_name (vec_dest, new_stmt);
3404 gimple_assign_set_lhs (new_stmt, new_tmp);
3405 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3406
3407 if (multi_step_cvt)
3408 /* Store the resulting vector for next recursive call. */
3409 (*vec_oprnds)[i/2] = new_tmp;
3410 else
3411 {
3412 /* This is the last step of the conversion sequence. Store the
3413 vectors in SLP_NODE or in vector info of the scalar statement
3414 (or in STMT_VINFO_RELATED_STMT chain). */
3415 if (slp_node)
3416 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
3417 else
3418 {
3419 if (!*prev_stmt_info)
3420 STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
3421 else
3422 STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt;
3423
3424 *prev_stmt_info = vinfo_for_stmt (new_stmt);
3425 }
3426 }
3427 }
3428
3429 /* For multi-step demotion operations we first generate demotion operations
3430 from the source type to the intermediate types, and then combine the
3431 results (stored in VEC_OPRNDS) in demotion operation to the destination
3432 type. */
3433 if (multi_step_cvt)
3434 {
3435 /* At each level of recursion we have half of the operands we had at the
3436 previous level. */
3437 vec_oprnds->truncate ((i+1)/2);
3438 vect_create_vectorized_demotion_stmts (vec_oprnds, multi_step_cvt - 1,
3439 stmt, vec_dsts, gsi, slp_node,
3440 VEC_PACK_TRUNC_EXPR,
3441 prev_stmt_info);
3442 }
3443
3444 vec_dsts.quick_push (vec_dest);
3445 }
3446
3447
3448 /* Create vectorized promotion statements for vector operands from VEC_OPRNDS0
3449 and VEC_OPRNDS1 (for binary operations). For multi-step conversions store
3450 the resulting vectors and call the function recursively. */
3451
3452 static void
3453 vect_create_vectorized_promotion_stmts (vec<tree> *vec_oprnds0,
3454 vec<tree> *vec_oprnds1,
3455 gimple *stmt, tree vec_dest,
3456 gimple_stmt_iterator *gsi,
3457 enum tree_code code1,
3458 enum tree_code code2, tree decl1,
3459 tree decl2, int op_type)
3460 {
3461 int i;
3462 tree vop0, vop1, new_tmp1, new_tmp2;
3463 gimple *new_stmt1, *new_stmt2;
3464 vec<tree> vec_tmp = vNULL;
3465
3466 vec_tmp.create (vec_oprnds0->length () * 2);
3467 FOR_EACH_VEC_ELT (*vec_oprnds0, i, vop0)
3468 {
3469 if (op_type == binary_op)
3470 vop1 = (*vec_oprnds1)[i];
3471 else
3472 vop1 = NULL_TREE;
3473
3474 /* Generate the two halves of promotion operation. */
3475 new_stmt1 = vect_gen_widened_results_half (code1, decl1, vop0, vop1,
3476 op_type, vec_dest, gsi, stmt);
3477 new_stmt2 = vect_gen_widened_results_half (code2, decl2, vop0, vop1,
3478 op_type, vec_dest, gsi, stmt);
3479 if (is_gimple_call (new_stmt1))
3480 {
3481 new_tmp1 = gimple_call_lhs (new_stmt1);
3482 new_tmp2 = gimple_call_lhs (new_stmt2);
3483 }
3484 else
3485 {
3486 new_tmp1 = gimple_assign_lhs (new_stmt1);
3487 new_tmp2 = gimple_assign_lhs (new_stmt2);
3488 }
3489
3490 /* Store the results for the next step. */
3491 vec_tmp.quick_push (new_tmp1);
3492 vec_tmp.quick_push (new_tmp2);
3493 }
3494
3495 vec_oprnds0->release ();
3496 *vec_oprnds0 = vec_tmp;
3497 }
3498
3499
3500 /* Check if STMT performs a conversion operation, that can be vectorized.
3501 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
3502 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
3503 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
3504
3505 static bool
3506 vectorizable_conversion (gimple *stmt, gimple_stmt_iterator *gsi,
3507 gimple **vec_stmt, slp_tree slp_node)
3508 {
3509 tree vec_dest;
3510 tree scalar_dest;
3511 tree op0, op1 = NULL_TREE;
3512 tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
3513 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3514 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3515 enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK;
3516 enum tree_code codecvt1 = ERROR_MARK, codecvt2 = ERROR_MARK;
3517 tree decl1 = NULL_TREE, decl2 = NULL_TREE;
3518 tree new_temp;
3519 gimple *def_stmt;
3520 enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
3521 gimple *new_stmt = NULL;
3522 stmt_vec_info prev_stmt_info;
3523 int nunits_in;
3524 int nunits_out;
3525 tree vectype_out, vectype_in;
3526 int ncopies, i, j;
3527 tree lhs_type, rhs_type;
3528 enum { NARROW, NONE, WIDEN } modifier;
3529 vec<tree> vec_oprnds0 = vNULL;
3530 vec<tree> vec_oprnds1 = vNULL;
3531 tree vop0;
3532 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
3533 vec_info *vinfo = stmt_info->vinfo;
3534 int multi_step_cvt = 0;
3535 vec<tree> vec_dsts = vNULL;
3536 vec<tree> interm_types = vNULL;
3537 tree last_oprnd, intermediate_type, cvt_type = NULL_TREE;
3538 int op_type;
3539 machine_mode rhs_mode;
3540 unsigned short fltsz;
3541
3542 /* Is STMT a vectorizable conversion? */
3543
3544 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
3545 return false;
3546
3547 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
3548 return false;
3549
3550 if (!is_gimple_assign (stmt))
3551 return false;
3552
3553 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
3554 return false;
3555
3556 code = gimple_assign_rhs_code (stmt);
3557 if (!CONVERT_EXPR_CODE_P (code)
3558 && code != FIX_TRUNC_EXPR
3559 && code != FLOAT_EXPR
3560 && code != WIDEN_MULT_EXPR
3561 && code != WIDEN_LSHIFT_EXPR)
3562 return false;
3563
3564 op_type = TREE_CODE_LENGTH (code);
3565
3566 /* Check types of lhs and rhs. */
3567 scalar_dest = gimple_assign_lhs (stmt);
3568 lhs_type = TREE_TYPE (scalar_dest);
3569 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
3570
3571 op0 = gimple_assign_rhs1 (stmt);
3572 rhs_type = TREE_TYPE (op0);
3573
3574 if ((code != FIX_TRUNC_EXPR && code != FLOAT_EXPR)
3575 && !((INTEGRAL_TYPE_P (lhs_type)
3576 && INTEGRAL_TYPE_P (rhs_type))
3577 || (SCALAR_FLOAT_TYPE_P (lhs_type)
3578 && SCALAR_FLOAT_TYPE_P (rhs_type))))
3579 return false;
3580
3581 if (!VECTOR_BOOLEAN_TYPE_P (vectype_out)
3582 && ((INTEGRAL_TYPE_P (lhs_type)
3583 && (TYPE_PRECISION (lhs_type)
3584 != GET_MODE_PRECISION (TYPE_MODE (lhs_type))))
3585 || (INTEGRAL_TYPE_P (rhs_type)
3586 && (TYPE_PRECISION (rhs_type)
3587 != GET_MODE_PRECISION (TYPE_MODE (rhs_type))))))
3588 {
3589 if (dump_enabled_p ())
3590 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3591 "type conversion to/from bit-precision unsupported."
3592 "\n");
3593 return false;
3594 }
3595
3596 /* Check the operands of the operation. */
3597 if (!vect_is_simple_use (op0, vinfo, &def_stmt, &dt[0], &vectype_in))
3598 {
3599 if (dump_enabled_p ())
3600 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3601 "use not simple.\n");
3602 return false;
3603 }
3604 if (op_type == binary_op)
3605 {
3606 bool ok;
3607
3608 op1 = gimple_assign_rhs2 (stmt);
3609 gcc_assert (code == WIDEN_MULT_EXPR || code == WIDEN_LSHIFT_EXPR);
3610 /* For WIDEN_MULT_EXPR, if OP0 is a constant, use the type of
3611 OP1. */
3612 if (CONSTANT_CLASS_P (op0))
3613 ok = vect_is_simple_use (op1, vinfo, &def_stmt, &dt[1], &vectype_in);
3614 else
3615 ok = vect_is_simple_use (op1, vinfo, &def_stmt, &dt[1]);
3616
3617 if (!ok)
3618 {
3619 if (dump_enabled_p ())
3620 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3621 "use not simple.\n");
3622 return false;
3623 }
3624 }
3625
3626 /* If op0 is an external or constant defs use a vector type of
3627 the same size as the output vector type. */
3628 if (!vectype_in)
3629 vectype_in = get_same_sized_vectype (rhs_type, vectype_out);
3630 if (vec_stmt)
3631 gcc_assert (vectype_in);
3632 if (!vectype_in)
3633 {
3634 if (dump_enabled_p ())
3635 {
3636 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3637 "no vectype for scalar type ");
3638 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, rhs_type);
3639 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3640 }
3641
3642 return false;
3643 }
3644
3645 if (VECTOR_BOOLEAN_TYPE_P (vectype_out)
3646 && !VECTOR_BOOLEAN_TYPE_P (vectype_in))
3647 {
3648 if (dump_enabled_p ())
3649 {
3650 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3651 "can't convert between boolean and non "
3652 "boolean vectors");
3653 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, rhs_type);
3654 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
3655 }
3656
3657 return false;
3658 }
3659
3660 nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
3661 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
3662 if (nunits_in < nunits_out)
3663 modifier = NARROW;
3664 else if (nunits_out == nunits_in)
3665 modifier = NONE;
3666 else
3667 modifier = WIDEN;
3668
3669 /* Multiple types in SLP are handled by creating the appropriate number of
3670 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
3671 case of SLP. */
3672 if (slp_node || PURE_SLP_STMT (stmt_info))
3673 ncopies = 1;
3674 else if (modifier == NARROW)
3675 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
3676 else
3677 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
3678
3679 /* Sanity check: make sure that at least one copy of the vectorized stmt
3680 needs to be generated. */
3681 gcc_assert (ncopies >= 1);
3682
3683 /* Supportable by target? */
3684 switch (modifier)
3685 {
3686 case NONE:
3687 if (code != FIX_TRUNC_EXPR && code != FLOAT_EXPR)
3688 return false;
3689 if (supportable_convert_operation (code, vectype_out, vectype_in,
3690 &decl1, &code1))
3691 break;
3692 /* FALLTHRU */
3693 unsupported:
3694 if (dump_enabled_p ())
3695 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3696 "conversion not supported by target.\n");
3697 return false;
3698
3699 case WIDEN:
3700 if (supportable_widening_operation (code, stmt, vectype_out, vectype_in,
3701 &code1, &code2, &multi_step_cvt,
3702 &interm_types))
3703 {
3704 /* Binary widening operation can only be supported directly by the
3705 architecture. */
3706 gcc_assert (!(multi_step_cvt && op_type == binary_op));
3707 break;
3708 }
3709
3710 if (code != FLOAT_EXPR
3711 || (GET_MODE_SIZE (TYPE_MODE (lhs_type))
3712 <= GET_MODE_SIZE (TYPE_MODE (rhs_type))))
3713 goto unsupported;
3714
3715 rhs_mode = TYPE_MODE (rhs_type);
3716 fltsz = GET_MODE_SIZE (TYPE_MODE (lhs_type));
3717 for (rhs_mode = GET_MODE_2XWIDER_MODE (TYPE_MODE (rhs_type));
3718 rhs_mode != VOIDmode && GET_MODE_SIZE (rhs_mode) <= fltsz;
3719 rhs_mode = GET_MODE_2XWIDER_MODE (rhs_mode))
3720 {
3721 cvt_type
3722 = build_nonstandard_integer_type (GET_MODE_BITSIZE (rhs_mode), 0);
3723 cvt_type = get_same_sized_vectype (cvt_type, vectype_in);
3724 if (cvt_type == NULL_TREE)
3725 goto unsupported;
3726
3727 if (GET_MODE_SIZE (rhs_mode) == fltsz)
3728 {
3729 if (!supportable_convert_operation (code, vectype_out,
3730 cvt_type, &decl1, &codecvt1))
3731 goto unsupported;
3732 }
3733 else if (!supportable_widening_operation (code, stmt, vectype_out,
3734 cvt_type, &codecvt1,
3735 &codecvt2, &multi_step_cvt,
3736 &interm_types))
3737 continue;
3738 else
3739 gcc_assert (multi_step_cvt == 0);
3740
3741 if (supportable_widening_operation (NOP_EXPR, stmt, cvt_type,
3742 vectype_in, &code1, &code2,
3743 &multi_step_cvt, &interm_types))
3744 break;
3745 }
3746
3747 if (rhs_mode == VOIDmode || GET_MODE_SIZE (rhs_mode) > fltsz)
3748 goto unsupported;
3749
3750 if (GET_MODE_SIZE (rhs_mode) == fltsz)
3751 codecvt2 = ERROR_MARK;
3752 else
3753 {
3754 multi_step_cvt++;
3755 interm_types.safe_push (cvt_type);
3756 cvt_type = NULL_TREE;
3757 }
3758 break;
3759
3760 case NARROW:
3761 gcc_assert (op_type == unary_op);
3762 if (supportable_narrowing_operation (code, vectype_out, vectype_in,
3763 &code1, &multi_step_cvt,
3764 &interm_types))
3765 break;
3766
3767 if (code != FIX_TRUNC_EXPR
3768 || (GET_MODE_SIZE (TYPE_MODE (lhs_type))
3769 >= GET_MODE_SIZE (TYPE_MODE (rhs_type))))
3770 goto unsupported;
3771
3772 rhs_mode = TYPE_MODE (rhs_type);
3773 cvt_type
3774 = build_nonstandard_integer_type (GET_MODE_BITSIZE (rhs_mode), 0);
3775 cvt_type = get_same_sized_vectype (cvt_type, vectype_in);
3776 if (cvt_type == NULL_TREE)
3777 goto unsupported;
3778 if (!supportable_convert_operation (code, cvt_type, vectype_in,
3779 &decl1, &codecvt1))
3780 goto unsupported;
3781 if (supportable_narrowing_operation (NOP_EXPR, vectype_out, cvt_type,
3782 &code1, &multi_step_cvt,
3783 &interm_types))
3784 break;
3785 goto unsupported;
3786
3787 default:
3788 gcc_unreachable ();
3789 }
3790
3791 if (!vec_stmt) /* transformation not required. */
3792 {
3793 if (dump_enabled_p ())
3794 dump_printf_loc (MSG_NOTE, vect_location,
3795 "=== vectorizable_conversion ===\n");
3796 if (code == FIX_TRUNC_EXPR || code == FLOAT_EXPR)
3797 {
3798 STMT_VINFO_TYPE (stmt_info) = type_conversion_vec_info_type;
3799 vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
3800 }
3801 else if (modifier == NARROW)
3802 {
3803 STMT_VINFO_TYPE (stmt_info) = type_demotion_vec_info_type;
3804 vect_model_promotion_demotion_cost (stmt_info, dt, multi_step_cvt);
3805 }
3806 else
3807 {
3808 STMT_VINFO_TYPE (stmt_info) = type_promotion_vec_info_type;
3809 vect_model_promotion_demotion_cost (stmt_info, dt, multi_step_cvt);
3810 }
3811 interm_types.release ();
3812 return true;
3813 }
3814
3815 /** Transform. **/
3816 if (dump_enabled_p ())
3817 dump_printf_loc (MSG_NOTE, vect_location,
3818 "transform conversion. ncopies = %d.\n", ncopies);
3819
3820 if (op_type == binary_op)
3821 {
3822 if (CONSTANT_CLASS_P (op0))
3823 op0 = fold_convert (TREE_TYPE (op1), op0);
3824 else if (CONSTANT_CLASS_P (op1))
3825 op1 = fold_convert (TREE_TYPE (op0), op1);
3826 }
3827
3828 /* In case of multi-step conversion, we first generate conversion operations
3829 to the intermediate types, and then from that types to the final one.
3830 We create vector destinations for the intermediate type (TYPES) received
3831 from supportable_*_operation, and store them in the correct order
3832 for future use in vect_create_vectorized_*_stmts (). */
3833 vec_dsts.create (multi_step_cvt + 1);
3834 vec_dest = vect_create_destination_var (scalar_dest,
3835 (cvt_type && modifier == WIDEN)
3836 ? cvt_type : vectype_out);
3837 vec_dsts.quick_push (vec_dest);
3838
3839 if (multi_step_cvt)
3840 {
3841 for (i = interm_types.length () - 1;
3842 interm_types.iterate (i, &intermediate_type); i--)
3843 {
3844 vec_dest = vect_create_destination_var (scalar_dest,
3845 intermediate_type);
3846 vec_dsts.quick_push (vec_dest);
3847 }
3848 }
3849
3850 if (cvt_type)
3851 vec_dest = vect_create_destination_var (scalar_dest,
3852 modifier == WIDEN
3853 ? vectype_out : cvt_type);
3854
3855 if (!slp_node)
3856 {
3857 if (modifier == WIDEN)
3858 {
3859 vec_oprnds0.create (multi_step_cvt ? vect_pow2 (multi_step_cvt) : 1);
3860 if (op_type == binary_op)
3861 vec_oprnds1.create (1);
3862 }
3863 else if (modifier == NARROW)
3864 vec_oprnds0.create (
3865 2 * (multi_step_cvt ? vect_pow2 (multi_step_cvt) : 1));
3866 }
3867 else if (code == WIDEN_LSHIFT_EXPR)
3868 vec_oprnds1.create (slp_node->vec_stmts_size);
3869
3870 last_oprnd = op0;
3871 prev_stmt_info = NULL;
3872 switch (modifier)
3873 {
3874 case NONE:
3875 for (j = 0; j < ncopies; j++)
3876 {
3877 if (j == 0)
3878 vect_get_vec_defs (op0, NULL, stmt, &vec_oprnds0, NULL, slp_node,
3879 -1);
3880 else
3881 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, NULL);
3882
3883 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
3884 {
3885 /* Arguments are ready, create the new vector stmt. */
3886 if (code1 == CALL_EXPR)
3887 {
3888 new_stmt = gimple_build_call (decl1, 1, vop0);
3889 new_temp = make_ssa_name (vec_dest, new_stmt);
3890 gimple_call_set_lhs (new_stmt, new_temp);
3891 }
3892 else
3893 {
3894 gcc_assert (TREE_CODE_LENGTH (code1) == unary_op);
3895 new_stmt = gimple_build_assign (vec_dest, code1, vop0);
3896 new_temp = make_ssa_name (vec_dest, new_stmt);
3897 gimple_assign_set_lhs (new_stmt, new_temp);
3898 }
3899
3900 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3901 if (slp_node)
3902 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
3903 else
3904 {
3905 if (!prev_stmt_info)
3906 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
3907 else
3908 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3909 prev_stmt_info = vinfo_for_stmt (new_stmt);
3910 }
3911 }
3912 }
3913 break;
3914
3915 case WIDEN:
3916 /* In case the vectorization factor (VF) is bigger than the number
3917 of elements that we can fit in a vectype (nunits), we have to
3918 generate more than one vector stmt - i.e - we need to "unroll"
3919 the vector stmt by a factor VF/nunits. */
3920 for (j = 0; j < ncopies; j++)
3921 {
3922 /* Handle uses. */
3923 if (j == 0)
3924 {
3925 if (slp_node)
3926 {
3927 if (code == WIDEN_LSHIFT_EXPR)
3928 {
3929 unsigned int k;
3930
3931 vec_oprnd1 = op1;
3932 /* Store vec_oprnd1 for every vector stmt to be created
3933 for SLP_NODE. We check during the analysis that all
3934 the shift arguments are the same. */
3935 for (k = 0; k < slp_node->vec_stmts_size - 1; k++)
3936 vec_oprnds1.quick_push (vec_oprnd1);
3937
3938 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
3939 slp_node, -1);
3940 }
3941 else
3942 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0,
3943 &vec_oprnds1, slp_node, -1);
3944 }
3945 else
3946 {
3947 vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt);
3948 vec_oprnds0.quick_push (vec_oprnd0);
3949 if (op_type == binary_op)
3950 {
3951 if (code == WIDEN_LSHIFT_EXPR)
3952 vec_oprnd1 = op1;
3953 else
3954 vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt);
3955 vec_oprnds1.quick_push (vec_oprnd1);
3956 }
3957 }
3958 }
3959 else
3960 {
3961 vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
3962 vec_oprnds0.truncate (0);
3963 vec_oprnds0.quick_push (vec_oprnd0);
3964 if (op_type == binary_op)
3965 {
3966 if (code == WIDEN_LSHIFT_EXPR)
3967 vec_oprnd1 = op1;
3968 else
3969 vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[1],
3970 vec_oprnd1);
3971 vec_oprnds1.truncate (0);
3972 vec_oprnds1.quick_push (vec_oprnd1);
3973 }
3974 }
3975
3976 /* Arguments are ready. Create the new vector stmts. */
3977 for (i = multi_step_cvt; i >= 0; i--)
3978 {
3979 tree this_dest = vec_dsts[i];
3980 enum tree_code c1 = code1, c2 = code2;
3981 if (i == 0 && codecvt2 != ERROR_MARK)
3982 {
3983 c1 = codecvt1;
3984 c2 = codecvt2;
3985 }
3986 vect_create_vectorized_promotion_stmts (&vec_oprnds0,
3987 &vec_oprnds1,
3988 stmt, this_dest, gsi,
3989 c1, c2, decl1, decl2,
3990 op_type);
3991 }
3992
3993 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
3994 {
3995 if (cvt_type)
3996 {
3997 if (codecvt1 == CALL_EXPR)
3998 {
3999 new_stmt = gimple_build_call (decl1, 1, vop0);
4000 new_temp = make_ssa_name (vec_dest, new_stmt);
4001 gimple_call_set_lhs (new_stmt, new_temp);
4002 }
4003 else
4004 {
4005 gcc_assert (TREE_CODE_LENGTH (codecvt1) == unary_op);
4006 new_temp = make_ssa_name (vec_dest);
4007 new_stmt = gimple_build_assign (new_temp, codecvt1,
4008 vop0);
4009 }
4010
4011 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4012 }
4013 else
4014 new_stmt = SSA_NAME_DEF_STMT (vop0);
4015
4016 if (slp_node)
4017 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
4018 else
4019 {
4020 if (!prev_stmt_info)
4021 STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
4022 else
4023 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
4024 prev_stmt_info = vinfo_for_stmt (new_stmt);
4025 }
4026 }
4027 }
4028
4029 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
4030 break;
4031
4032 case NARROW:
4033 /* In case the vectorization factor (VF) is bigger than the number
4034 of elements that we can fit in a vectype (nunits), we have to
4035 generate more than one vector stmt - i.e - we need to "unroll"
4036 the vector stmt by a factor VF/nunits. */
4037 for (j = 0; j < ncopies; j++)
4038 {
4039 /* Handle uses. */
4040 if (slp_node)
4041 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
4042 slp_node, -1);
4043 else
4044 {
4045 vec_oprnds0.truncate (0);
4046 vect_get_loop_based_defs (&last_oprnd, stmt, dt[0], &vec_oprnds0,
4047 vect_pow2 (multi_step_cvt) - 1);
4048 }
4049
4050 /* Arguments are ready. Create the new vector stmts. */
4051 if (cvt_type)
4052 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
4053 {
4054 if (codecvt1 == CALL_EXPR)
4055 {
4056 new_stmt = gimple_build_call (decl1, 1, vop0);
4057 new_temp = make_ssa_name (vec_dest, new_stmt);
4058 gimple_call_set_lhs (new_stmt, new_temp);
4059 }
4060 else
4061 {
4062 gcc_assert (TREE_CODE_LENGTH (codecvt1) == unary_op);
4063 new_temp = make_ssa_name (vec_dest);
4064 new_stmt = gimple_build_assign (new_temp, codecvt1,
4065 vop0);
4066 }
4067
4068 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4069 vec_oprnds0[i] = new_temp;
4070 }
4071
4072 vect_create_vectorized_demotion_stmts (&vec_oprnds0, multi_step_cvt,
4073 stmt, vec_dsts, gsi,
4074 slp_node, code1,
4075 &prev_stmt_info);
4076 }
4077
4078 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
4079 break;
4080 }
4081
4082 vec_oprnds0.release ();
4083 vec_oprnds1.release ();
4084 vec_dsts.release ();
4085 interm_types.release ();
4086
4087 return true;
4088 }
4089
4090
4091 /* Function vectorizable_assignment.
4092
4093 Check if STMT performs an assignment (copy) that can be vectorized.
4094 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4095 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
4096 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
4097
4098 static bool
4099 vectorizable_assignment (gimple *stmt, gimple_stmt_iterator *gsi,
4100 gimple **vec_stmt, slp_tree slp_node)
4101 {
4102 tree vec_dest;
4103 tree scalar_dest;
4104 tree op;
4105 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4106 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4107 tree new_temp;
4108 gimple *def_stmt;
4109 enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
4110 int ncopies;
4111 int i, j;
4112 vec<tree> vec_oprnds = vNULL;
4113 tree vop;
4114 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4115 vec_info *vinfo = stmt_info->vinfo;
4116 gimple *new_stmt = NULL;
4117 stmt_vec_info prev_stmt_info = NULL;
4118 enum tree_code code;
4119 tree vectype_in;
4120
4121 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
4122 return false;
4123
4124 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
4125 return false;
4126
4127 /* Is vectorizable assignment? */
4128 if (!is_gimple_assign (stmt))
4129 return false;
4130
4131 scalar_dest = gimple_assign_lhs (stmt);
4132 if (TREE_CODE (scalar_dest) != SSA_NAME)
4133 return false;
4134
4135 code = gimple_assign_rhs_code (stmt);
4136 if (gimple_assign_single_p (stmt)
4137 || code == PAREN_EXPR
4138 || CONVERT_EXPR_CODE_P (code))
4139 op = gimple_assign_rhs1 (stmt);
4140 else
4141 return false;
4142
4143 if (code == VIEW_CONVERT_EXPR)
4144 op = TREE_OPERAND (op, 0);
4145
4146 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4147 unsigned int nunits = TYPE_VECTOR_SUBPARTS (vectype);
4148
4149 /* Multiple types in SLP are handled by creating the appropriate number of
4150 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
4151 case of SLP. */
4152 if (slp_node || PURE_SLP_STMT (stmt_info))
4153 ncopies = 1;
4154 else
4155 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
4156
4157 gcc_assert (ncopies >= 1);
4158
4159 if (!vect_is_simple_use (op, vinfo, &def_stmt, &dt[0], &vectype_in))
4160 {
4161 if (dump_enabled_p ())
4162 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4163 "use not simple.\n");
4164 return false;
4165 }
4166
4167 /* We can handle NOP_EXPR conversions that do not change the number
4168 of elements or the vector size. */
4169 if ((CONVERT_EXPR_CODE_P (code)
4170 || code == VIEW_CONVERT_EXPR)
4171 && (!vectype_in
4172 || TYPE_VECTOR_SUBPARTS (vectype_in) != nunits
4173 || (GET_MODE_SIZE (TYPE_MODE (vectype))
4174 != GET_MODE_SIZE (TYPE_MODE (vectype_in)))))
4175 return false;
4176
4177 /* We do not handle bit-precision changes. */
4178 if ((CONVERT_EXPR_CODE_P (code)
4179 || code == VIEW_CONVERT_EXPR)
4180 && INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
4181 && ((TYPE_PRECISION (TREE_TYPE (scalar_dest))
4182 != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest))))
4183 || ((TYPE_PRECISION (TREE_TYPE (op))
4184 != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (op))))))
4185 /* But a conversion that does not change the bit-pattern is ok. */
4186 && !((TYPE_PRECISION (TREE_TYPE (scalar_dest))
4187 > TYPE_PRECISION (TREE_TYPE (op)))
4188 && TYPE_UNSIGNED (TREE_TYPE (op))))
4189 {
4190 if (dump_enabled_p ())
4191 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4192 "type conversion to/from bit-precision "
4193 "unsupported.\n");
4194 return false;
4195 }
4196
4197 if (!vec_stmt) /* transformation not required. */
4198 {
4199 STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
4200 if (dump_enabled_p ())
4201 dump_printf_loc (MSG_NOTE, vect_location,
4202 "=== vectorizable_assignment ===\n");
4203 vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
4204 return true;
4205 }
4206
4207 /** Transform. **/
4208 if (dump_enabled_p ())
4209 dump_printf_loc (MSG_NOTE, vect_location, "transform assignment.\n");
4210
4211 /* Handle def. */
4212 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4213
4214 /* Handle use. */
4215 for (j = 0; j < ncopies; j++)
4216 {
4217 /* Handle uses. */
4218 if (j == 0)
4219 vect_get_vec_defs (op, NULL, stmt, &vec_oprnds, NULL, slp_node, -1);
4220 else
4221 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds, NULL);
4222
4223 /* Arguments are ready. create the new vector stmt. */
4224 FOR_EACH_VEC_ELT (vec_oprnds, i, vop)
4225 {
4226 if (CONVERT_EXPR_CODE_P (code)
4227 || code == VIEW_CONVERT_EXPR)
4228 vop = build1 (VIEW_CONVERT_EXPR, vectype, vop);
4229 new_stmt = gimple_build_assign (vec_dest, vop);
4230 new_temp = make_ssa_name (vec_dest, new_stmt);
4231 gimple_assign_set_lhs (new_stmt, new_temp);
4232 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4233 if (slp_node)
4234 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
4235 }
4236
4237 if (slp_node)
4238 continue;
4239
4240 if (j == 0)
4241 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
4242 else
4243 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
4244
4245 prev_stmt_info = vinfo_for_stmt (new_stmt);
4246 }
4247
4248 vec_oprnds.release ();
4249 return true;
4250 }
4251
4252
4253 /* Return TRUE if CODE (a shift operation) is supported for SCALAR_TYPE
4254 either as shift by a scalar or by a vector. */
4255
4256 bool
4257 vect_supportable_shift (enum tree_code code, tree scalar_type)
4258 {
4259
4260 machine_mode vec_mode;
4261 optab optab;
4262 int icode;
4263 tree vectype;
4264
4265 vectype = get_vectype_for_scalar_type (scalar_type);
4266 if (!vectype)
4267 return false;
4268
4269 optab = optab_for_tree_code (code, vectype, optab_scalar);
4270 if (!optab
4271 || optab_handler (optab, TYPE_MODE (vectype)) == CODE_FOR_nothing)
4272 {
4273 optab = optab_for_tree_code (code, vectype, optab_vector);
4274 if (!optab
4275 || (optab_handler (optab, TYPE_MODE (vectype))
4276 == CODE_FOR_nothing))
4277 return false;
4278 }
4279
4280 vec_mode = TYPE_MODE (vectype);
4281 icode = (int) optab_handler (optab, vec_mode);
4282 if (icode == CODE_FOR_nothing)
4283 return false;
4284
4285 return true;
4286 }
4287
4288
4289 /* Function vectorizable_shift.
4290
4291 Check if STMT performs a shift operation that can be vectorized.
4292 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4293 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
4294 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
4295
4296 static bool
4297 vectorizable_shift (gimple *stmt, gimple_stmt_iterator *gsi,
4298 gimple **vec_stmt, slp_tree slp_node)
4299 {
4300 tree vec_dest;
4301 tree scalar_dest;
4302 tree op0, op1 = NULL;
4303 tree vec_oprnd1 = NULL_TREE;
4304 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4305 tree vectype;
4306 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4307 enum tree_code code;
4308 machine_mode vec_mode;
4309 tree new_temp;
4310 optab optab;
4311 int icode;
4312 machine_mode optab_op2_mode;
4313 gimple *def_stmt;
4314 enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
4315 gimple *new_stmt = NULL;
4316 stmt_vec_info prev_stmt_info;
4317 int nunits_in;
4318 int nunits_out;
4319 tree vectype_out;
4320 tree op1_vectype;
4321 int ncopies;
4322 int j, i;
4323 vec<tree> vec_oprnds0 = vNULL;
4324 vec<tree> vec_oprnds1 = vNULL;
4325 tree vop0, vop1;
4326 unsigned int k;
4327 bool scalar_shift_arg = true;
4328 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4329 vec_info *vinfo = stmt_info->vinfo;
4330 int vf;
4331
4332 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
4333 return false;
4334
4335 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
4336 return false;
4337
4338 /* Is STMT a vectorizable binary/unary operation? */
4339 if (!is_gimple_assign (stmt))
4340 return false;
4341
4342 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
4343 return false;
4344
4345 code = gimple_assign_rhs_code (stmt);
4346
4347 if (!(code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR
4348 || code == RROTATE_EXPR))
4349 return false;
4350
4351 scalar_dest = gimple_assign_lhs (stmt);
4352 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
4353 if (TYPE_PRECISION (TREE_TYPE (scalar_dest))
4354 != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest))))
4355 {
4356 if (dump_enabled_p ())
4357 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4358 "bit-precision shifts not supported.\n");
4359 return false;
4360 }
4361
4362 op0 = gimple_assign_rhs1 (stmt);
4363 if (!vect_is_simple_use (op0, vinfo, &def_stmt, &dt[0], &vectype))
4364 {
4365 if (dump_enabled_p ())
4366 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4367 "use not simple.\n");
4368 return false;
4369 }
4370 /* If op0 is an external or constant def use a vector type with
4371 the same size as the output vector type. */
4372 if (!vectype)
4373 vectype = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
4374 if (vec_stmt)
4375 gcc_assert (vectype);
4376 if (!vectype)
4377 {
4378 if (dump_enabled_p ())
4379 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4380 "no vectype for scalar type\n");
4381 return false;
4382 }
4383
4384 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
4385 nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
4386 if (nunits_out != nunits_in)
4387 return false;
4388
4389 op1 = gimple_assign_rhs2 (stmt);
4390 if (!vect_is_simple_use (op1, vinfo, &def_stmt, &dt[1], &op1_vectype))
4391 {
4392 if (dump_enabled_p ())
4393 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4394 "use not simple.\n");
4395 return false;
4396 }
4397
4398 if (loop_vinfo)
4399 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
4400 else
4401 vf = 1;
4402
4403 /* Multiple types in SLP are handled by creating the appropriate number of
4404 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
4405 case of SLP. */
4406 if (slp_node || PURE_SLP_STMT (stmt_info))
4407 ncopies = 1;
4408 else
4409 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
4410
4411 gcc_assert (ncopies >= 1);
4412
4413 /* Determine whether the shift amount is a vector, or scalar. If the
4414 shift/rotate amount is a vector, use the vector/vector shift optabs. */
4415
4416 if ((dt[1] == vect_internal_def
4417 || dt[1] == vect_induction_def)
4418 && !slp_node)
4419 scalar_shift_arg = false;
4420 else if (dt[1] == vect_constant_def
4421 || dt[1] == vect_external_def
4422 || dt[1] == vect_internal_def)
4423 {
4424 /* In SLP, need to check whether the shift count is the same,
4425 in loops if it is a constant or invariant, it is always
4426 a scalar shift. */
4427 if (slp_node)
4428 {
4429 vec<gimple *> stmts = SLP_TREE_SCALAR_STMTS (slp_node);
4430 gimple *slpstmt;
4431
4432 FOR_EACH_VEC_ELT (stmts, k, slpstmt)
4433 if (!operand_equal_p (gimple_assign_rhs2 (slpstmt), op1, 0))
4434 scalar_shift_arg = false;
4435 }
4436 }
4437 else
4438 {
4439 if (dump_enabled_p ())
4440 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4441 "operand mode requires invariant argument.\n");
4442 return false;
4443 }
4444
4445 /* Vector shifted by vector. */
4446 if (!scalar_shift_arg)
4447 {
4448 optab = optab_for_tree_code (code, vectype, optab_vector);
4449 if (dump_enabled_p ())
4450 dump_printf_loc (MSG_NOTE, vect_location,
4451 "vector/vector shift/rotate found.\n");
4452
4453 if (!op1_vectype)
4454 op1_vectype = get_same_sized_vectype (TREE_TYPE (op1), vectype_out);
4455 if (op1_vectype == NULL_TREE
4456 || TYPE_MODE (op1_vectype) != TYPE_MODE (vectype))
4457 {
4458 if (dump_enabled_p ())
4459 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4460 "unusable type for last operand in"
4461 " vector/vector shift/rotate.\n");
4462 return false;
4463 }
4464 }
4465 /* See if the machine has a vector shifted by scalar insn and if not
4466 then see if it has a vector shifted by vector insn. */
4467 else
4468 {
4469 optab = optab_for_tree_code (code, vectype, optab_scalar);
4470 if (optab
4471 && optab_handler (optab, TYPE_MODE (vectype)) != CODE_FOR_nothing)
4472 {
4473 if (dump_enabled_p ())
4474 dump_printf_loc (MSG_NOTE, vect_location,
4475 "vector/scalar shift/rotate found.\n");
4476 }
4477 else
4478 {
4479 optab = optab_for_tree_code (code, vectype, optab_vector);
4480 if (optab
4481 && (optab_handler (optab, TYPE_MODE (vectype))
4482 != CODE_FOR_nothing))
4483 {
4484 scalar_shift_arg = false;
4485
4486 if (dump_enabled_p ())
4487 dump_printf_loc (MSG_NOTE, vect_location,
4488 "vector/vector shift/rotate found.\n");
4489
4490 /* Unlike the other binary operators, shifts/rotates have
4491 the rhs being int, instead of the same type as the lhs,
4492 so make sure the scalar is the right type if we are
4493 dealing with vectors of long long/long/short/char. */
4494 if (dt[1] == vect_constant_def)
4495 op1 = fold_convert (TREE_TYPE (vectype), op1);
4496 else if (!useless_type_conversion_p (TREE_TYPE (vectype),
4497 TREE_TYPE (op1)))
4498 {
4499 if (slp_node
4500 && TYPE_MODE (TREE_TYPE (vectype))
4501 != TYPE_MODE (TREE_TYPE (op1)))
4502 {
4503 if (dump_enabled_p ())
4504 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4505 "unusable type for last operand in"
4506 " vector/vector shift/rotate.\n");
4507 return false;
4508 }
4509 if (vec_stmt && !slp_node)
4510 {
4511 op1 = fold_convert (TREE_TYPE (vectype), op1);
4512 op1 = vect_init_vector (stmt, op1,
4513 TREE_TYPE (vectype), NULL);
4514 }
4515 }
4516 }
4517 }
4518 }
4519
4520 /* Supportable by target? */
4521 if (!optab)
4522 {
4523 if (dump_enabled_p ())
4524 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4525 "no optab.\n");
4526 return false;
4527 }
4528 vec_mode = TYPE_MODE (vectype);
4529 icode = (int) optab_handler (optab, vec_mode);
4530 if (icode == CODE_FOR_nothing)
4531 {
4532 if (dump_enabled_p ())
4533 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4534 "op not supported by target.\n");
4535 /* Check only during analysis. */
4536 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
4537 || (vf < vect_min_worthwhile_factor (code)
4538 && !vec_stmt))
4539 return false;
4540 if (dump_enabled_p ())
4541 dump_printf_loc (MSG_NOTE, vect_location,
4542 "proceeding using word mode.\n");
4543 }
4544
4545 /* Worthwhile without SIMD support? Check only during analysis. */
4546 if (!VECTOR_MODE_P (TYPE_MODE (vectype))
4547 && vf < vect_min_worthwhile_factor (code)
4548 && !vec_stmt)
4549 {
4550 if (dump_enabled_p ())
4551 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4552 "not worthwhile without SIMD support.\n");
4553 return false;
4554 }
4555
4556 if (!vec_stmt) /* transformation not required. */
4557 {
4558 STMT_VINFO_TYPE (stmt_info) = shift_vec_info_type;
4559 if (dump_enabled_p ())
4560 dump_printf_loc (MSG_NOTE, vect_location,
4561 "=== vectorizable_shift ===\n");
4562 vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
4563 return true;
4564 }
4565
4566 /** Transform. **/
4567
4568 if (dump_enabled_p ())
4569 dump_printf_loc (MSG_NOTE, vect_location,
4570 "transform binary/unary operation.\n");
4571
4572 /* Handle def. */
4573 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4574
4575 prev_stmt_info = NULL;
4576 for (j = 0; j < ncopies; j++)
4577 {
4578 /* Handle uses. */
4579 if (j == 0)
4580 {
4581 if (scalar_shift_arg)
4582 {
4583 /* Vector shl and shr insn patterns can be defined with scalar
4584 operand 2 (shift operand). In this case, use constant or loop
4585 invariant op1 directly, without extending it to vector mode
4586 first. */
4587 optab_op2_mode = insn_data[icode].operand[2].mode;
4588 if (!VECTOR_MODE_P (optab_op2_mode))
4589 {
4590 if (dump_enabled_p ())
4591 dump_printf_loc (MSG_NOTE, vect_location,
4592 "operand 1 using scalar mode.\n");
4593 vec_oprnd1 = op1;
4594 vec_oprnds1.create (slp_node ? slp_node->vec_stmts_size : 1);
4595 vec_oprnds1.quick_push (vec_oprnd1);
4596 if (slp_node)
4597 {
4598 /* Store vec_oprnd1 for every vector stmt to be created
4599 for SLP_NODE. We check during the analysis that all
4600 the shift arguments are the same.
4601 TODO: Allow different constants for different vector
4602 stmts generated for an SLP instance. */
4603 for (k = 0; k < slp_node->vec_stmts_size - 1; k++)
4604 vec_oprnds1.quick_push (vec_oprnd1);
4605 }
4606 }
4607 }
4608
4609 /* vec_oprnd1 is available if operand 1 should be of a scalar-type
4610 (a special case for certain kind of vector shifts); otherwise,
4611 operand 1 should be of a vector type (the usual case). */
4612 if (vec_oprnd1)
4613 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
4614 slp_node, -1);
4615 else
4616 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
4617 slp_node, -1);
4618 }
4619 else
4620 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1);
4621
4622 /* Arguments are ready. Create the new vector stmt. */
4623 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
4624 {
4625 vop1 = vec_oprnds1[i];
4626 new_stmt = gimple_build_assign (vec_dest, code, vop0, vop1);
4627 new_temp = make_ssa_name (vec_dest, new_stmt);
4628 gimple_assign_set_lhs (new_stmt, new_temp);
4629 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4630 if (slp_node)
4631 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
4632 }
4633
4634 if (slp_node)
4635 continue;
4636
4637 if (j == 0)
4638 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
4639 else
4640 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
4641 prev_stmt_info = vinfo_for_stmt (new_stmt);
4642 }
4643
4644 vec_oprnds0.release ();
4645 vec_oprnds1.release ();
4646
4647 return true;
4648 }
4649
4650
4651 /* Function vectorizable_operation.
4652
4653 Check if STMT performs a binary, unary or ternary operation that can
4654 be vectorized.
4655 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4656 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
4657 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
4658
4659 static bool
4660 vectorizable_operation (gimple *stmt, gimple_stmt_iterator *gsi,
4661 gimple **vec_stmt, slp_tree slp_node)
4662 {
4663 tree vec_dest;
4664 tree scalar_dest;
4665 tree op0, op1 = NULL_TREE, op2 = NULL_TREE;
4666 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4667 tree vectype;
4668 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4669 enum tree_code code;
4670 machine_mode vec_mode;
4671 tree new_temp;
4672 int op_type;
4673 optab optab;
4674 bool target_support_p;
4675 gimple *def_stmt;
4676 enum vect_def_type dt[3]
4677 = {vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type};
4678 gimple *new_stmt = NULL;
4679 stmt_vec_info prev_stmt_info;
4680 int nunits_in;
4681 int nunits_out;
4682 tree vectype_out;
4683 int ncopies;
4684 int j, i;
4685 vec<tree> vec_oprnds0 = vNULL;
4686 vec<tree> vec_oprnds1 = vNULL;
4687 vec<tree> vec_oprnds2 = vNULL;
4688 tree vop0, vop1, vop2;
4689 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4690 vec_info *vinfo = stmt_info->vinfo;
4691 int vf;
4692
4693 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
4694 return false;
4695
4696 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
4697 return false;
4698
4699 /* Is STMT a vectorizable binary/unary operation? */
4700 if (!is_gimple_assign (stmt))
4701 return false;
4702
4703 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
4704 return false;
4705
4706 code = gimple_assign_rhs_code (stmt);
4707
4708 /* For pointer addition, we should use the normal plus for
4709 the vector addition. */
4710 if (code == POINTER_PLUS_EXPR)
4711 code = PLUS_EXPR;
4712
4713 /* Support only unary or binary operations. */
4714 op_type = TREE_CODE_LENGTH (code);
4715 if (op_type != unary_op && op_type != binary_op && op_type != ternary_op)
4716 {
4717 if (dump_enabled_p ())
4718 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4719 "num. args = %d (not unary/binary/ternary op).\n",
4720 op_type);
4721 return false;
4722 }
4723
4724 scalar_dest = gimple_assign_lhs (stmt);
4725 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
4726
4727 /* Most operations cannot handle bit-precision types without extra
4728 truncations. */
4729 if (!VECTOR_BOOLEAN_TYPE_P (vectype_out)
4730 && (TYPE_PRECISION (TREE_TYPE (scalar_dest))
4731 != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest))))
4732 /* Exception are bitwise binary operations. */
4733 && code != BIT_IOR_EXPR
4734 && code != BIT_XOR_EXPR
4735 && code != BIT_AND_EXPR)
4736 {
4737 if (dump_enabled_p ())
4738 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4739 "bit-precision arithmetic not supported.\n");
4740 return false;
4741 }
4742
4743 op0 = gimple_assign_rhs1 (stmt);
4744 if (!vect_is_simple_use (op0, vinfo, &def_stmt, &dt[0], &vectype))
4745 {
4746 if (dump_enabled_p ())
4747 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4748 "use not simple.\n");
4749 return false;
4750 }
4751 /* If op0 is an external or constant def use a vector type with
4752 the same size as the output vector type. */
4753 if (!vectype)
4754 {
4755 /* For boolean type we cannot determine vectype by
4756 invariant value (don't know whether it is a vector
4757 of booleans or vector of integers). We use output
4758 vectype because operations on boolean don't change
4759 type. */
4760 if (TREE_CODE (TREE_TYPE (op0)) == BOOLEAN_TYPE)
4761 {
4762 if (TREE_CODE (TREE_TYPE (scalar_dest)) != BOOLEAN_TYPE)
4763 {
4764 if (dump_enabled_p ())
4765 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4766 "not supported operation on bool value.\n");
4767 return false;
4768 }
4769 vectype = vectype_out;
4770 }
4771 else
4772 vectype = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
4773 }
4774 if (vec_stmt)
4775 gcc_assert (vectype);
4776 if (!vectype)
4777 {
4778 if (dump_enabled_p ())
4779 {
4780 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4781 "no vectype for scalar type ");
4782 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
4783 TREE_TYPE (op0));
4784 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
4785 }
4786
4787 return false;
4788 }
4789
4790 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
4791 nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
4792 if (nunits_out != nunits_in)
4793 return false;
4794
4795 if (op_type == binary_op || op_type == ternary_op)
4796 {
4797 op1 = gimple_assign_rhs2 (stmt);
4798 if (!vect_is_simple_use (op1, vinfo, &def_stmt, &dt[1]))
4799 {
4800 if (dump_enabled_p ())
4801 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4802 "use not simple.\n");
4803 return false;
4804 }
4805 }
4806 if (op_type == ternary_op)
4807 {
4808 op2 = gimple_assign_rhs3 (stmt);
4809 if (!vect_is_simple_use (op2, vinfo, &def_stmt, &dt[2]))
4810 {
4811 if (dump_enabled_p ())
4812 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4813 "use not simple.\n");
4814 return false;
4815 }
4816 }
4817
4818 if (loop_vinfo)
4819 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
4820 else
4821 vf = 1;
4822
4823 /* Multiple types in SLP are handled by creating the appropriate number of
4824 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
4825 case of SLP. */
4826 if (slp_node || PURE_SLP_STMT (stmt_info))
4827 ncopies = 1;
4828 else
4829 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
4830
4831 gcc_assert (ncopies >= 1);
4832
4833 /* Shifts are handled in vectorizable_shift (). */
4834 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR
4835 || code == RROTATE_EXPR)
4836 return false;
4837
4838 /* Supportable by target? */
4839
4840 vec_mode = TYPE_MODE (vectype);
4841 if (code == MULT_HIGHPART_EXPR)
4842 target_support_p = can_mult_highpart_p (vec_mode, TYPE_UNSIGNED (vectype));
4843 else
4844 {
4845 optab = optab_for_tree_code (code, vectype, optab_default);
4846 if (!optab)
4847 {
4848 if (dump_enabled_p ())
4849 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4850 "no optab.\n");
4851 return false;
4852 }
4853 target_support_p = (optab_handler (optab, vec_mode)
4854 != CODE_FOR_nothing);
4855 }
4856
4857 if (!target_support_p)
4858 {
4859 if (dump_enabled_p ())
4860 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4861 "op not supported by target.\n");
4862 /* Check only during analysis. */
4863 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
4864 || (!vec_stmt && vf < vect_min_worthwhile_factor (code)))
4865 return false;
4866 if (dump_enabled_p ())
4867 dump_printf_loc (MSG_NOTE, vect_location,
4868 "proceeding using word mode.\n");
4869 }
4870
4871 /* Worthwhile without SIMD support? Check only during analysis. */
4872 if (!VECTOR_MODE_P (vec_mode)
4873 && !vec_stmt
4874 && vf < vect_min_worthwhile_factor (code))
4875 {
4876 if (dump_enabled_p ())
4877 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4878 "not worthwhile without SIMD support.\n");
4879 return false;
4880 }
4881
4882 if (!vec_stmt) /* transformation not required. */
4883 {
4884 STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
4885 if (dump_enabled_p ())
4886 dump_printf_loc (MSG_NOTE, vect_location,
4887 "=== vectorizable_operation ===\n");
4888 vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
4889 return true;
4890 }
4891
4892 /** Transform. **/
4893
4894 if (dump_enabled_p ())
4895 dump_printf_loc (MSG_NOTE, vect_location,
4896 "transform binary/unary operation.\n");
4897
4898 /* Handle def. */
4899 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4900
4901 /* In case the vectorization factor (VF) is bigger than the number
4902 of elements that we can fit in a vectype (nunits), we have to generate
4903 more than one vector stmt - i.e - we need to "unroll" the
4904 vector stmt by a factor VF/nunits. In doing so, we record a pointer
4905 from one copy of the vector stmt to the next, in the field
4906 STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
4907 stages to find the correct vector defs to be used when vectorizing
4908 stmts that use the defs of the current stmt. The example below
4909 illustrates the vectorization process when VF=16 and nunits=4 (i.e.,
4910 we need to create 4 vectorized stmts):
4911
4912 before vectorization:
4913 RELATED_STMT VEC_STMT
4914 S1: x = memref - -
4915 S2: z = x + 1 - -
4916
4917 step 1: vectorize stmt S1 (done in vectorizable_load. See more details
4918 there):
4919 RELATED_STMT VEC_STMT
4920 VS1_0: vx0 = memref0 VS1_1 -
4921 VS1_1: vx1 = memref1 VS1_2 -
4922 VS1_2: vx2 = memref2 VS1_3 -
4923 VS1_3: vx3 = memref3 - -
4924 S1: x = load - VS1_0
4925 S2: z = x + 1 - -
4926
4927 step2: vectorize stmt S2 (done here):
4928 To vectorize stmt S2 we first need to find the relevant vector
4929 def for the first operand 'x'. This is, as usual, obtained from
4930 the vector stmt recorded in the STMT_VINFO_VEC_STMT of the stmt
4931 that defines 'x' (S1). This way we find the stmt VS1_0, and the
4932 relevant vector def 'vx0'. Having found 'vx0' we can generate
4933 the vector stmt VS2_0, and as usual, record it in the
4934 STMT_VINFO_VEC_STMT of stmt S2.
4935 When creating the second copy (VS2_1), we obtain the relevant vector
4936 def from the vector stmt recorded in the STMT_VINFO_RELATED_STMT of
4937 stmt VS1_0. This way we find the stmt VS1_1 and the relevant
4938 vector def 'vx1'. Using 'vx1' we create stmt VS2_1 and record a
4939 pointer to it in the STMT_VINFO_RELATED_STMT of the vector stmt VS2_0.
4940 Similarly when creating stmts VS2_2 and VS2_3. This is the resulting
4941 chain of stmts and pointers:
4942 RELATED_STMT VEC_STMT
4943 VS1_0: vx0 = memref0 VS1_1 -
4944 VS1_1: vx1 = memref1 VS1_2 -
4945 VS1_2: vx2 = memref2 VS1_3 -
4946 VS1_3: vx3 = memref3 - -
4947 S1: x = load - VS1_0
4948 VS2_0: vz0 = vx0 + v1 VS2_1 -
4949 VS2_1: vz1 = vx1 + v1 VS2_2 -
4950 VS2_2: vz2 = vx2 + v1 VS2_3 -
4951 VS2_3: vz3 = vx3 + v1 - -
4952 S2: z = x + 1 - VS2_0 */
4953
4954 prev_stmt_info = NULL;
4955 for (j = 0; j < ncopies; j++)
4956 {
4957 /* Handle uses. */
4958 if (j == 0)
4959 {
4960 if (op_type == binary_op || op_type == ternary_op)
4961 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
4962 slp_node, -1);
4963 else
4964 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
4965 slp_node, -1);
4966 if (op_type == ternary_op)
4967 {
4968 vec_oprnds2.create (1);
4969 vec_oprnds2.quick_push (vect_get_vec_def_for_operand (op2,
4970 stmt));
4971 }
4972 }
4973 else
4974 {
4975 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1);
4976 if (op_type == ternary_op)
4977 {
4978 tree vec_oprnd = vec_oprnds2.pop ();
4979 vec_oprnds2.quick_push (vect_get_vec_def_for_stmt_copy (dt[2],
4980 vec_oprnd));
4981 }
4982 }
4983
4984 /* Arguments are ready. Create the new vector stmt. */
4985 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
4986 {
4987 vop1 = ((op_type == binary_op || op_type == ternary_op)
4988 ? vec_oprnds1[i] : NULL_TREE);
4989 vop2 = ((op_type == ternary_op)
4990 ? vec_oprnds2[i] : NULL_TREE);
4991 new_stmt = gimple_build_assign (vec_dest, code, vop0, vop1, vop2);
4992 new_temp = make_ssa_name (vec_dest, new_stmt);
4993 gimple_assign_set_lhs (new_stmt, new_temp);
4994 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4995 if (slp_node)
4996 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
4997 }
4998
4999 if (slp_node)
5000 continue;
5001
5002 if (j == 0)
5003 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5004 else
5005 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5006 prev_stmt_info = vinfo_for_stmt (new_stmt);
5007 }
5008
5009 vec_oprnds0.release ();
5010 vec_oprnds1.release ();
5011 vec_oprnds2.release ();
5012
5013 return true;
5014 }
5015
5016 /* A helper function to ensure data reference DR's base alignment
5017 for STMT_INFO. */
5018
5019 static void
5020 ensure_base_align (stmt_vec_info stmt_info, struct data_reference *dr)
5021 {
5022 if (!dr->aux)
5023 return;
5024
5025 if (DR_VECT_AUX (dr)->base_misaligned)
5026 {
5027 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5028 tree base_decl = DR_VECT_AUX (dr)->base_decl;
5029
5030 if (decl_in_symtab_p (base_decl))
5031 symtab_node::get (base_decl)->increase_alignment (TYPE_ALIGN (vectype));
5032 else
5033 {
5034 DECL_ALIGN (base_decl) = TYPE_ALIGN (vectype);
5035 DECL_USER_ALIGN (base_decl) = 1;
5036 }
5037 DR_VECT_AUX (dr)->base_misaligned = false;
5038 }
5039 }
5040
5041
5042 /* Given a vector type VECTYPE returns the VECTOR_CST mask that implements
5043 reversal of the vector elements. If that is impossible to do,
5044 returns NULL. */
5045
5046 static tree
5047 perm_mask_for_reverse (tree vectype)
5048 {
5049 int i, nunits;
5050 unsigned char *sel;
5051
5052 nunits = TYPE_VECTOR_SUBPARTS (vectype);
5053 sel = XALLOCAVEC (unsigned char, nunits);
5054
5055 for (i = 0; i < nunits; ++i)
5056 sel[i] = nunits - 1 - i;
5057
5058 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
5059 return NULL_TREE;
5060 return vect_gen_perm_mask_checked (vectype, sel);
5061 }
5062
5063 /* Function vectorizable_store.
5064
5065 Check if STMT defines a non scalar data-ref (array/pointer/structure) that
5066 can be vectorized.
5067 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
5068 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
5069 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
5070
5071 static bool
5072 vectorizable_store (gimple *stmt, gimple_stmt_iterator *gsi, gimple **vec_stmt,
5073 slp_tree slp_node)
5074 {
5075 tree scalar_dest;
5076 tree data_ref;
5077 tree op;
5078 tree vec_oprnd = NULL_TREE;
5079 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5080 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr = NULL;
5081 tree elem_type;
5082 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5083 struct loop *loop = NULL;
5084 machine_mode vec_mode;
5085 tree dummy;
5086 enum dr_alignment_support alignment_support_scheme;
5087 gimple *def_stmt;
5088 enum vect_def_type dt;
5089 stmt_vec_info prev_stmt_info = NULL;
5090 tree dataref_ptr = NULL_TREE;
5091 tree dataref_offset = NULL_TREE;
5092 gimple *ptr_incr = NULL;
5093 int ncopies;
5094 int j;
5095 gimple *next_stmt, *first_stmt = NULL;
5096 bool grouped_store = false;
5097 bool store_lanes_p = false;
5098 unsigned int group_size, i;
5099 vec<tree> dr_chain = vNULL;
5100 vec<tree> oprnds = vNULL;
5101 vec<tree> result_chain = vNULL;
5102 bool inv_p;
5103 bool negative = false;
5104 tree offset = NULL_TREE;
5105 vec<tree> vec_oprnds = vNULL;
5106 bool slp = (slp_node != NULL);
5107 unsigned int vec_num;
5108 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
5109 vec_info *vinfo = stmt_info->vinfo;
5110 tree aggr_type;
5111 tree scatter_base = NULL_TREE, scatter_off = NULL_TREE;
5112 tree scatter_off_vectype = NULL_TREE, scatter_decl = NULL_TREE;
5113 int scatter_scale = 1;
5114 enum vect_def_type scatter_idx_dt = vect_unknown_def_type;
5115 enum vect_def_type scatter_src_dt = vect_unknown_def_type;
5116 gimple *new_stmt;
5117
5118 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
5119 return false;
5120
5121 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
5122 return false;
5123
5124 /* Is vectorizable store? */
5125
5126 if (!is_gimple_assign (stmt))
5127 return false;
5128
5129 scalar_dest = gimple_assign_lhs (stmt);
5130 if (TREE_CODE (scalar_dest) == VIEW_CONVERT_EXPR
5131 && is_pattern_stmt_p (stmt_info))
5132 scalar_dest = TREE_OPERAND (scalar_dest, 0);
5133 if (TREE_CODE (scalar_dest) != ARRAY_REF
5134 && TREE_CODE (scalar_dest) != BIT_FIELD_REF
5135 && TREE_CODE (scalar_dest) != INDIRECT_REF
5136 && TREE_CODE (scalar_dest) != COMPONENT_REF
5137 && TREE_CODE (scalar_dest) != IMAGPART_EXPR
5138 && TREE_CODE (scalar_dest) != REALPART_EXPR
5139 && TREE_CODE (scalar_dest) != MEM_REF)
5140 return false;
5141
5142 gcc_assert (gimple_assign_single_p (stmt));
5143
5144 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5145 unsigned int nunits = TYPE_VECTOR_SUBPARTS (vectype);
5146
5147 if (loop_vinfo)
5148 loop = LOOP_VINFO_LOOP (loop_vinfo);
5149
5150 /* Multiple types in SLP are handled by creating the appropriate number of
5151 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
5152 case of SLP. */
5153 if (slp || PURE_SLP_STMT (stmt_info))
5154 ncopies = 1;
5155 else
5156 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
5157
5158 gcc_assert (ncopies >= 1);
5159
5160 /* FORNOW. This restriction should be relaxed. */
5161 if (loop && nested_in_vect_loop_p (loop, stmt) && ncopies > 1)
5162 {
5163 if (dump_enabled_p ())
5164 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5165 "multiple types in nested loop.\n");
5166 return false;
5167 }
5168
5169 op = gimple_assign_rhs1 (stmt);
5170 if (!vect_is_simple_use (op, vinfo, &def_stmt, &dt))
5171 {
5172 if (dump_enabled_p ())
5173 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5174 "use not simple.\n");
5175 return false;
5176 }
5177
5178 elem_type = TREE_TYPE (vectype);
5179 vec_mode = TYPE_MODE (vectype);
5180
5181 /* FORNOW. In some cases can vectorize even if data-type not supported
5182 (e.g. - array initialization with 0). */
5183 if (optab_handler (mov_optab, vec_mode) == CODE_FOR_nothing)
5184 return false;
5185
5186 if (!STMT_VINFO_DATA_REF (stmt_info))
5187 return false;
5188
5189 if (!STMT_VINFO_STRIDED_P (stmt_info))
5190 {
5191 negative =
5192 tree_int_cst_compare (loop && nested_in_vect_loop_p (loop, stmt)
5193 ? STMT_VINFO_DR_STEP (stmt_info) : DR_STEP (dr),
5194 size_zero_node) < 0;
5195 if (negative && ncopies > 1)
5196 {
5197 if (dump_enabled_p ())
5198 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5199 "multiple types with negative step.\n");
5200 return false;
5201 }
5202 if (negative)
5203 {
5204 gcc_assert (!grouped_store);
5205 alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
5206 if (alignment_support_scheme != dr_aligned
5207 && alignment_support_scheme != dr_unaligned_supported)
5208 {
5209 if (dump_enabled_p ())
5210 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5211 "negative step but alignment required.\n");
5212 return false;
5213 }
5214 if (dt != vect_constant_def
5215 && dt != vect_external_def
5216 && !perm_mask_for_reverse (vectype))
5217 {
5218 if (dump_enabled_p ())
5219 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5220 "negative step and reversing not supported.\n");
5221 return false;
5222 }
5223 }
5224 }
5225
5226 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
5227 {
5228 grouped_store = true;
5229 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
5230 group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
5231 if (!slp
5232 && !PURE_SLP_STMT (stmt_info)
5233 && !STMT_VINFO_STRIDED_P (stmt_info))
5234 {
5235 if (vect_store_lanes_supported (vectype, group_size))
5236 store_lanes_p = true;
5237 else if (!vect_grouped_store_supported (vectype, group_size))
5238 return false;
5239 }
5240
5241 if (STMT_VINFO_STRIDED_P (stmt_info)
5242 && (slp || PURE_SLP_STMT (stmt_info))
5243 && (group_size > nunits
5244 || nunits % group_size != 0))
5245 {
5246 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5247 "unhandled strided group store\n");
5248 return false;
5249 }
5250
5251 if (first_stmt == stmt)
5252 {
5253 /* STMT is the leader of the group. Check the operands of all the
5254 stmts of the group. */
5255 next_stmt = GROUP_NEXT_ELEMENT (stmt_info);
5256 while (next_stmt)
5257 {
5258 gcc_assert (gimple_assign_single_p (next_stmt));
5259 op = gimple_assign_rhs1 (next_stmt);
5260 if (!vect_is_simple_use (op, vinfo, &def_stmt, &dt))
5261 {
5262 if (dump_enabled_p ())
5263 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5264 "use not simple.\n");
5265 return false;
5266 }
5267 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
5268 }
5269 }
5270 }
5271
5272 if (STMT_VINFO_GATHER_SCATTER_P (stmt_info))
5273 {
5274 gimple *def_stmt;
5275 scatter_decl = vect_check_gather_scatter (stmt, loop_vinfo, &scatter_base,
5276 &scatter_off, &scatter_scale);
5277 gcc_assert (scatter_decl);
5278 if (!vect_is_simple_use (scatter_off, vinfo, &def_stmt, &scatter_idx_dt,
5279 &scatter_off_vectype))
5280 {
5281 if (dump_enabled_p ())
5282 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5283 "scatter index use not simple.");
5284 return false;
5285 }
5286 }
5287
5288 if (!vec_stmt) /* transformation not required. */
5289 {
5290 STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
5291 /* The SLP costs are calculated during SLP analysis. */
5292 if (!PURE_SLP_STMT (stmt_info))
5293 vect_model_store_cost (stmt_info, ncopies, store_lanes_p, dt,
5294 NULL, NULL, NULL);
5295 return true;
5296 }
5297
5298 /** Transform. **/
5299
5300 ensure_base_align (stmt_info, dr);
5301
5302 if (STMT_VINFO_GATHER_SCATTER_P (stmt_info))
5303 {
5304 tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE, op, src;
5305 tree arglist = TYPE_ARG_TYPES (TREE_TYPE (scatter_decl));
5306 tree rettype, srctype, ptrtype, idxtype, masktype, scaletype;
5307 tree ptr, mask, var, scale, perm_mask = NULL_TREE;
5308 edge pe = loop_preheader_edge (loop);
5309 gimple_seq seq;
5310 basic_block new_bb;
5311 enum { NARROW, NONE, WIDEN } modifier;
5312 int scatter_off_nunits = TYPE_VECTOR_SUBPARTS (scatter_off_vectype);
5313
5314 if (nunits == (unsigned int) scatter_off_nunits)
5315 modifier = NONE;
5316 else if (nunits == (unsigned int) scatter_off_nunits / 2)
5317 {
5318 unsigned char *sel = XALLOCAVEC (unsigned char, scatter_off_nunits);
5319 modifier = WIDEN;
5320
5321 for (i = 0; i < (unsigned int) scatter_off_nunits; ++i)
5322 sel[i] = i | nunits;
5323
5324 perm_mask = vect_gen_perm_mask_checked (scatter_off_vectype, sel);
5325 gcc_assert (perm_mask != NULL_TREE);
5326 }
5327 else if (nunits == (unsigned int) scatter_off_nunits * 2)
5328 {
5329 unsigned char *sel = XALLOCAVEC (unsigned char, nunits);
5330 modifier = NARROW;
5331
5332 for (i = 0; i < (unsigned int) nunits; ++i)
5333 sel[i] = i | scatter_off_nunits;
5334
5335 perm_mask = vect_gen_perm_mask_checked (vectype, sel);
5336 gcc_assert (perm_mask != NULL_TREE);
5337 ncopies *= 2;
5338 }
5339 else
5340 gcc_unreachable ();
5341
5342 rettype = TREE_TYPE (TREE_TYPE (scatter_decl));
5343 ptrtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
5344 masktype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
5345 idxtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
5346 srctype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
5347 scaletype = TREE_VALUE (arglist);
5348
5349 gcc_checking_assert (TREE_CODE (masktype) == INTEGER_TYPE
5350 && TREE_CODE (rettype) == VOID_TYPE);
5351
5352 ptr = fold_convert (ptrtype, scatter_base);
5353 if (!is_gimple_min_invariant (ptr))
5354 {
5355 ptr = force_gimple_operand (ptr, &seq, true, NULL_TREE);
5356 new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
5357 gcc_assert (!new_bb);
5358 }
5359
5360 /* Currently we support only unconditional scatter stores,
5361 so mask should be all ones. */
5362 mask = build_int_cst (masktype, -1);
5363 mask = vect_init_vector (stmt, mask, masktype, NULL);
5364
5365 scale = build_int_cst (scaletype, scatter_scale);
5366
5367 prev_stmt_info = NULL;
5368 for (j = 0; j < ncopies; ++j)
5369 {
5370 if (j == 0)
5371 {
5372 src = vec_oprnd1
5373 = vect_get_vec_def_for_operand (gimple_assign_rhs1 (stmt), stmt);
5374 op = vec_oprnd0
5375 = vect_get_vec_def_for_operand (scatter_off, stmt);
5376 }
5377 else if (modifier != NONE && (j & 1))
5378 {
5379 if (modifier == WIDEN)
5380 {
5381 src = vec_oprnd1
5382 = vect_get_vec_def_for_stmt_copy (scatter_src_dt, vec_oprnd1);
5383 op = permute_vec_elements (vec_oprnd0, vec_oprnd0, perm_mask,
5384 stmt, gsi);
5385 }
5386 else if (modifier == NARROW)
5387 {
5388 src = permute_vec_elements (vec_oprnd1, vec_oprnd1, perm_mask,
5389 stmt, gsi);
5390 op = vec_oprnd0
5391 = vect_get_vec_def_for_stmt_copy (scatter_idx_dt, vec_oprnd0);
5392 }
5393 else
5394 gcc_unreachable ();
5395 }
5396 else
5397 {
5398 src = vec_oprnd1
5399 = vect_get_vec_def_for_stmt_copy (scatter_src_dt, vec_oprnd1);
5400 op = vec_oprnd0
5401 = vect_get_vec_def_for_stmt_copy (scatter_idx_dt, vec_oprnd0);
5402 }
5403
5404 if (!useless_type_conversion_p (srctype, TREE_TYPE (src)))
5405 {
5406 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (src))
5407 == TYPE_VECTOR_SUBPARTS (srctype));
5408 var = vect_get_new_ssa_name (srctype, vect_simple_var);
5409 src = build1 (VIEW_CONVERT_EXPR, srctype, src);
5410 new_stmt = gimple_build_assign (var, VIEW_CONVERT_EXPR, src);
5411 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5412 src = var;
5413 }
5414
5415 if (!useless_type_conversion_p (idxtype, TREE_TYPE (op)))
5416 {
5417 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (op))
5418 == TYPE_VECTOR_SUBPARTS (idxtype));
5419 var = vect_get_new_ssa_name (idxtype, vect_simple_var);
5420 op = build1 (VIEW_CONVERT_EXPR, idxtype, op);
5421 new_stmt = gimple_build_assign (var, VIEW_CONVERT_EXPR, op);
5422 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5423 op = var;
5424 }
5425
5426 new_stmt
5427 = gimple_build_call (scatter_decl, 5, ptr, mask, op, src, scale);
5428
5429 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5430
5431 if (prev_stmt_info == NULL)
5432 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5433 else
5434 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5435 prev_stmt_info = vinfo_for_stmt (new_stmt);
5436 }
5437 return true;
5438 }
5439
5440 if (grouped_store)
5441 {
5442 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
5443 group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
5444
5445 GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))++;
5446
5447 /* FORNOW */
5448 gcc_assert (!loop || !nested_in_vect_loop_p (loop, stmt));
5449
5450 /* We vectorize all the stmts of the interleaving group when we
5451 reach the last stmt in the group. */
5452 if (GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))
5453 < GROUP_SIZE (vinfo_for_stmt (first_stmt))
5454 && !slp)
5455 {
5456 *vec_stmt = NULL;
5457 return true;
5458 }
5459
5460 if (slp)
5461 {
5462 grouped_store = false;
5463 /* VEC_NUM is the number of vect stmts to be created for this
5464 group. */
5465 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
5466 first_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[0];
5467 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
5468 op = gimple_assign_rhs1 (first_stmt);
5469 }
5470 else
5471 /* VEC_NUM is the number of vect stmts to be created for this
5472 group. */
5473 vec_num = group_size;
5474 }
5475 else
5476 {
5477 first_stmt = stmt;
5478 first_dr = dr;
5479 group_size = vec_num = 1;
5480 }
5481
5482 if (dump_enabled_p ())
5483 dump_printf_loc (MSG_NOTE, vect_location,
5484 "transform store. ncopies = %d\n", ncopies);
5485
5486 if (STMT_VINFO_STRIDED_P (stmt_info))
5487 {
5488 gimple_stmt_iterator incr_gsi;
5489 bool insert_after;
5490 gimple *incr;
5491 tree offvar;
5492 tree ivstep;
5493 tree running_off;
5494 gimple_seq stmts = NULL;
5495 tree stride_base, stride_step, alias_off;
5496 tree vec_oprnd;
5497 unsigned int g;
5498
5499 gcc_assert (!nested_in_vect_loop_p (loop, stmt));
5500
5501 stride_base
5502 = fold_build_pointer_plus
5503 (unshare_expr (DR_BASE_ADDRESS (first_dr)),
5504 size_binop (PLUS_EXPR,
5505 convert_to_ptrofftype (unshare_expr (DR_OFFSET (first_dr))),
5506 convert_to_ptrofftype (DR_INIT(first_dr))));
5507 stride_step = fold_convert (sizetype, unshare_expr (DR_STEP (first_dr)));
5508
5509 /* For a store with loop-invariant (but other than power-of-2)
5510 stride (i.e. not a grouped access) like so:
5511
5512 for (i = 0; i < n; i += stride)
5513 array[i] = ...;
5514
5515 we generate a new induction variable and new stores from
5516 the components of the (vectorized) rhs:
5517
5518 for (j = 0; ; j += VF*stride)
5519 vectemp = ...;
5520 tmp1 = vectemp[0];
5521 array[j] = tmp1;
5522 tmp2 = vectemp[1];
5523 array[j + stride] = tmp2;
5524 ...
5525 */
5526
5527 unsigned nstores = nunits;
5528 tree ltype = elem_type;
5529 if (slp)
5530 {
5531 nstores = nunits / group_size;
5532 if (group_size < nunits)
5533 ltype = build_vector_type (elem_type, group_size);
5534 else
5535 ltype = vectype;
5536 ltype = build_aligned_type (ltype, TYPE_ALIGN (elem_type));
5537 ncopies = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
5538 group_size = 1;
5539 }
5540
5541 ivstep = stride_step;
5542 ivstep = fold_build2 (MULT_EXPR, TREE_TYPE (ivstep), ivstep,
5543 build_int_cst (TREE_TYPE (ivstep),
5544 ncopies * nstores));
5545
5546 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
5547
5548 create_iv (stride_base, ivstep, NULL,
5549 loop, &incr_gsi, insert_after,
5550 &offvar, NULL);
5551 incr = gsi_stmt (incr_gsi);
5552 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo));
5553
5554 stride_step = force_gimple_operand (stride_step, &stmts, true, NULL_TREE);
5555 if (stmts)
5556 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
5557
5558 prev_stmt_info = NULL;
5559 alias_off = build_int_cst (reference_alias_ptr_type (DR_REF (first_dr)), 0);
5560 next_stmt = first_stmt;
5561 for (g = 0; g < group_size; g++)
5562 {
5563 running_off = offvar;
5564 if (g)
5565 {
5566 tree size = TYPE_SIZE_UNIT (ltype);
5567 tree pos = fold_build2 (MULT_EXPR, sizetype, size_int (g),
5568 size);
5569 tree newoff = copy_ssa_name (running_off, NULL);
5570 incr = gimple_build_assign (newoff, POINTER_PLUS_EXPR,
5571 running_off, pos);
5572 vect_finish_stmt_generation (stmt, incr, gsi);
5573 running_off = newoff;
5574 }
5575 for (j = 0; j < ncopies; j++)
5576 {
5577 /* We've set op and dt above, from gimple_assign_rhs1(stmt),
5578 and first_stmt == stmt. */
5579 if (j == 0)
5580 {
5581 if (slp)
5582 {
5583 vect_get_vec_defs (op, NULL_TREE, stmt, &vec_oprnds, NULL,
5584 slp_node, -1);
5585 vec_oprnd = vec_oprnds[0];
5586 }
5587 else
5588 {
5589 gcc_assert (gimple_assign_single_p (next_stmt));
5590 op = gimple_assign_rhs1 (next_stmt);
5591 vec_oprnd = vect_get_vec_def_for_operand (op, next_stmt);
5592 }
5593 }
5594 else
5595 {
5596 if (slp)
5597 vec_oprnd = vec_oprnds[j];
5598 else
5599 {
5600 vect_is_simple_use (vec_oprnd, vinfo, &def_stmt, &dt);
5601 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, vec_oprnd);
5602 }
5603 }
5604
5605 for (i = 0; i < nstores; i++)
5606 {
5607 tree newref, newoff;
5608 gimple *incr, *assign;
5609 tree size = TYPE_SIZE (ltype);
5610 /* Extract the i'th component. */
5611 tree pos = fold_build2 (MULT_EXPR, bitsizetype,
5612 bitsize_int (i), size);
5613 tree elem = fold_build3 (BIT_FIELD_REF, ltype, vec_oprnd,
5614 size, pos);
5615
5616 elem = force_gimple_operand_gsi (gsi, elem, true,
5617 NULL_TREE, true,
5618 GSI_SAME_STMT);
5619
5620 newref = build2 (MEM_REF, ltype,
5621 running_off, alias_off);
5622
5623 /* And store it to *running_off. */
5624 assign = gimple_build_assign (newref, elem);
5625 vect_finish_stmt_generation (stmt, assign, gsi);
5626
5627 newoff = copy_ssa_name (running_off, NULL);
5628 incr = gimple_build_assign (newoff, POINTER_PLUS_EXPR,
5629 running_off, stride_step);
5630 vect_finish_stmt_generation (stmt, incr, gsi);
5631
5632 running_off = newoff;
5633 if (g == group_size - 1
5634 && !slp)
5635 {
5636 if (j == 0 && i == 0)
5637 STMT_VINFO_VEC_STMT (stmt_info)
5638 = *vec_stmt = assign;
5639 else
5640 STMT_VINFO_RELATED_STMT (prev_stmt_info) = assign;
5641 prev_stmt_info = vinfo_for_stmt (assign);
5642 }
5643 }
5644 }
5645 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
5646 }
5647 return true;
5648 }
5649
5650 dr_chain.create (group_size);
5651 oprnds.create (group_size);
5652
5653 alignment_support_scheme = vect_supportable_dr_alignment (first_dr, false);
5654 gcc_assert (alignment_support_scheme);
5655 /* Targets with store-lane instructions must not require explicit
5656 realignment. */
5657 gcc_assert (!store_lanes_p
5658 || alignment_support_scheme == dr_aligned
5659 || alignment_support_scheme == dr_unaligned_supported);
5660
5661 if (negative)
5662 offset = size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1);
5663
5664 if (store_lanes_p)
5665 aggr_type = build_array_type_nelts (elem_type, vec_num * nunits);
5666 else
5667 aggr_type = vectype;
5668
5669 /* In case the vectorization factor (VF) is bigger than the number
5670 of elements that we can fit in a vectype (nunits), we have to generate
5671 more than one vector stmt - i.e - we need to "unroll" the
5672 vector stmt by a factor VF/nunits. For more details see documentation in
5673 vect_get_vec_def_for_copy_stmt. */
5674
5675 /* In case of interleaving (non-unit grouped access):
5676
5677 S1: &base + 2 = x2
5678 S2: &base = x0
5679 S3: &base + 1 = x1
5680 S4: &base + 3 = x3
5681
5682 We create vectorized stores starting from base address (the access of the
5683 first stmt in the chain (S2 in the above example), when the last store stmt
5684 of the chain (S4) is reached:
5685
5686 VS1: &base = vx2
5687 VS2: &base + vec_size*1 = vx0
5688 VS3: &base + vec_size*2 = vx1
5689 VS4: &base + vec_size*3 = vx3
5690
5691 Then permutation statements are generated:
5692
5693 VS5: vx5 = VEC_PERM_EXPR < vx0, vx3, {0, 8, 1, 9, 2, 10, 3, 11} >
5694 VS6: vx6 = VEC_PERM_EXPR < vx0, vx3, {4, 12, 5, 13, 6, 14, 7, 15} >
5695 ...
5696
5697 And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
5698 (the order of the data-refs in the output of vect_permute_store_chain
5699 corresponds to the order of scalar stmts in the interleaving chain - see
5700 the documentation of vect_permute_store_chain()).
5701
5702 In case of both multiple types and interleaving, above vector stores and
5703 permutation stmts are created for every copy. The result vector stmts are
5704 put in STMT_VINFO_VEC_STMT for the first copy and in the corresponding
5705 STMT_VINFO_RELATED_STMT for the next copies.
5706 */
5707
5708 prev_stmt_info = NULL;
5709 for (j = 0; j < ncopies; j++)
5710 {
5711
5712 if (j == 0)
5713 {
5714 if (slp)
5715 {
5716 /* Get vectorized arguments for SLP_NODE. */
5717 vect_get_vec_defs (op, NULL_TREE, stmt, &vec_oprnds,
5718 NULL, slp_node, -1);
5719
5720 vec_oprnd = vec_oprnds[0];
5721 }
5722 else
5723 {
5724 /* For interleaved stores we collect vectorized defs for all the
5725 stores in the group in DR_CHAIN and OPRNDS. DR_CHAIN is then
5726 used as an input to vect_permute_store_chain(), and OPRNDS as
5727 an input to vect_get_vec_def_for_stmt_copy() for the next copy.
5728
5729 If the store is not grouped, GROUP_SIZE is 1, and DR_CHAIN and
5730 OPRNDS are of size 1. */
5731 next_stmt = first_stmt;
5732 for (i = 0; i < group_size; i++)
5733 {
5734 /* Since gaps are not supported for interleaved stores,
5735 GROUP_SIZE is the exact number of stmts in the chain.
5736 Therefore, NEXT_STMT can't be NULL_TREE. In case that
5737 there is no interleaving, GROUP_SIZE is 1, and only one
5738 iteration of the loop will be executed. */
5739 gcc_assert (next_stmt
5740 && gimple_assign_single_p (next_stmt));
5741 op = gimple_assign_rhs1 (next_stmt);
5742
5743 vec_oprnd = vect_get_vec_def_for_operand (op, next_stmt);
5744 dr_chain.quick_push (vec_oprnd);
5745 oprnds.quick_push (vec_oprnd);
5746 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
5747 }
5748 }
5749
5750 /* We should have catched mismatched types earlier. */
5751 gcc_assert (useless_type_conversion_p (vectype,
5752 TREE_TYPE (vec_oprnd)));
5753 bool simd_lane_access_p
5754 = STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info);
5755 if (simd_lane_access_p
5756 && TREE_CODE (DR_BASE_ADDRESS (first_dr)) == ADDR_EXPR
5757 && VAR_P (TREE_OPERAND (DR_BASE_ADDRESS (first_dr), 0))
5758 && integer_zerop (DR_OFFSET (first_dr))
5759 && integer_zerop (DR_INIT (first_dr))
5760 && alias_sets_conflict_p (get_alias_set (aggr_type),
5761 get_alias_set (DR_REF (first_dr))))
5762 {
5763 dataref_ptr = unshare_expr (DR_BASE_ADDRESS (first_dr));
5764 dataref_offset = build_int_cst (reference_alias_ptr_type
5765 (DR_REF (first_dr)), 0);
5766 inv_p = false;
5767 }
5768 else
5769 dataref_ptr
5770 = vect_create_data_ref_ptr (first_stmt, aggr_type,
5771 simd_lane_access_p ? loop : NULL,
5772 offset, &dummy, gsi, &ptr_incr,
5773 simd_lane_access_p, &inv_p);
5774 gcc_assert (bb_vinfo || !inv_p);
5775 }
5776 else
5777 {
5778 /* For interleaved stores we created vectorized defs for all the
5779 defs stored in OPRNDS in the previous iteration (previous copy).
5780 DR_CHAIN is then used as an input to vect_permute_store_chain(),
5781 and OPRNDS as an input to vect_get_vec_def_for_stmt_copy() for the
5782 next copy.
5783 If the store is not grouped, GROUP_SIZE is 1, and DR_CHAIN and
5784 OPRNDS are of size 1. */
5785 for (i = 0; i < group_size; i++)
5786 {
5787 op = oprnds[i];
5788 vect_is_simple_use (op, vinfo, &def_stmt, &dt);
5789 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, op);
5790 dr_chain[i] = vec_oprnd;
5791 oprnds[i] = vec_oprnd;
5792 }
5793 if (dataref_offset)
5794 dataref_offset
5795 = int_const_binop (PLUS_EXPR, dataref_offset,
5796 TYPE_SIZE_UNIT (aggr_type));
5797 else
5798 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
5799 TYPE_SIZE_UNIT (aggr_type));
5800 }
5801
5802 if (store_lanes_p)
5803 {
5804 tree vec_array;
5805
5806 /* Combine all the vectors into an array. */
5807 vec_array = create_vector_array (vectype, vec_num);
5808 for (i = 0; i < vec_num; i++)
5809 {
5810 vec_oprnd = dr_chain[i];
5811 write_vector_array (stmt, gsi, vec_oprnd, vec_array, i);
5812 }
5813
5814 /* Emit:
5815 MEM_REF[...all elements...] = STORE_LANES (VEC_ARRAY). */
5816 data_ref = create_array_ref (aggr_type, dataref_ptr, first_dr);
5817 new_stmt = gimple_build_call_internal (IFN_STORE_LANES, 1, vec_array);
5818 gimple_call_set_lhs (new_stmt, data_ref);
5819 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5820 }
5821 else
5822 {
5823 new_stmt = NULL;
5824 if (grouped_store)
5825 {
5826 if (j == 0)
5827 result_chain.create (group_size);
5828 /* Permute. */
5829 vect_permute_store_chain (dr_chain, group_size, stmt, gsi,
5830 &result_chain);
5831 }
5832
5833 next_stmt = first_stmt;
5834 for (i = 0; i < vec_num; i++)
5835 {
5836 unsigned align, misalign;
5837
5838 if (i > 0)
5839 /* Bump the vector pointer. */
5840 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
5841 stmt, NULL_TREE);
5842
5843 if (slp)
5844 vec_oprnd = vec_oprnds[i];
5845 else if (grouped_store)
5846 /* For grouped stores vectorized defs are interleaved in
5847 vect_permute_store_chain(). */
5848 vec_oprnd = result_chain[i];
5849
5850 data_ref = fold_build2 (MEM_REF, TREE_TYPE (vec_oprnd),
5851 dataref_ptr,
5852 dataref_offset
5853 ? dataref_offset
5854 : build_int_cst (reference_alias_ptr_type
5855 (DR_REF (first_dr)), 0));
5856 align = TYPE_ALIGN_UNIT (vectype);
5857 if (aligned_access_p (first_dr))
5858 misalign = 0;
5859 else if (DR_MISALIGNMENT (first_dr) == -1)
5860 {
5861 if (DR_VECT_AUX (first_dr)->base_element_aligned)
5862 align = TYPE_ALIGN_UNIT (elem_type);
5863 else
5864 align = get_object_alignment (DR_REF (first_dr))
5865 / BITS_PER_UNIT;
5866 misalign = 0;
5867 TREE_TYPE (data_ref)
5868 = build_aligned_type (TREE_TYPE (data_ref),
5869 align * BITS_PER_UNIT);
5870 }
5871 else
5872 {
5873 TREE_TYPE (data_ref)
5874 = build_aligned_type (TREE_TYPE (data_ref),
5875 TYPE_ALIGN (elem_type));
5876 misalign = DR_MISALIGNMENT (first_dr);
5877 }
5878 if (dataref_offset == NULL_TREE
5879 && TREE_CODE (dataref_ptr) == SSA_NAME)
5880 set_ptr_info_alignment (get_ptr_info (dataref_ptr), align,
5881 misalign);
5882
5883 if (negative
5884 && dt != vect_constant_def
5885 && dt != vect_external_def)
5886 {
5887 tree perm_mask = perm_mask_for_reverse (vectype);
5888 tree perm_dest
5889 = vect_create_destination_var (gimple_assign_rhs1 (stmt),
5890 vectype);
5891 tree new_temp = make_ssa_name (perm_dest);
5892
5893 /* Generate the permute statement. */
5894 gimple *perm_stmt
5895 = gimple_build_assign (new_temp, VEC_PERM_EXPR, vec_oprnd,
5896 vec_oprnd, perm_mask);
5897 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5898
5899 perm_stmt = SSA_NAME_DEF_STMT (new_temp);
5900 vec_oprnd = new_temp;
5901 }
5902
5903 /* Arguments are ready. Create the new vector stmt. */
5904 new_stmt = gimple_build_assign (data_ref, vec_oprnd);
5905 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5906
5907 if (slp)
5908 continue;
5909
5910 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
5911 if (!next_stmt)
5912 break;
5913 }
5914 }
5915 if (!slp)
5916 {
5917 if (j == 0)
5918 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5919 else
5920 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5921 prev_stmt_info = vinfo_for_stmt (new_stmt);
5922 }
5923 }
5924
5925 dr_chain.release ();
5926 oprnds.release ();
5927 result_chain.release ();
5928 vec_oprnds.release ();
5929
5930 return true;
5931 }
5932
5933 /* Given a vector type VECTYPE, turns permutation SEL into the equivalent
5934 VECTOR_CST mask. No checks are made that the target platform supports the
5935 mask, so callers may wish to test can_vec_perm_p separately, or use
5936 vect_gen_perm_mask_checked. */
5937
5938 tree
5939 vect_gen_perm_mask_any (tree vectype, const unsigned char *sel)
5940 {
5941 tree mask_elt_type, mask_type, mask_vec, *mask_elts;
5942 int i, nunits;
5943
5944 nunits = TYPE_VECTOR_SUBPARTS (vectype);
5945
5946 mask_elt_type = lang_hooks.types.type_for_mode
5947 (int_mode_for_mode (TYPE_MODE (TREE_TYPE (vectype))), 1);
5948 mask_type = get_vectype_for_scalar_type (mask_elt_type);
5949
5950 mask_elts = XALLOCAVEC (tree, nunits);
5951 for (i = nunits - 1; i >= 0; i--)
5952 mask_elts[i] = build_int_cst (mask_elt_type, sel[i]);
5953 mask_vec = build_vector (mask_type, mask_elts);
5954
5955 return mask_vec;
5956 }
5957
5958 /* Checked version of vect_gen_perm_mask_any. Asserts can_vec_perm_p,
5959 i.e. that the target supports the pattern _for arbitrary input vectors_. */
5960
5961 tree
5962 vect_gen_perm_mask_checked (tree vectype, const unsigned char *sel)
5963 {
5964 gcc_assert (can_vec_perm_p (TYPE_MODE (vectype), false, sel));
5965 return vect_gen_perm_mask_any (vectype, sel);
5966 }
5967
5968 /* Given a vector variable X and Y, that was generated for the scalar
5969 STMT, generate instructions to permute the vector elements of X and Y
5970 using permutation mask MASK_VEC, insert them at *GSI and return the
5971 permuted vector variable. */
5972
5973 static tree
5974 permute_vec_elements (tree x, tree y, tree mask_vec, gimple *stmt,
5975 gimple_stmt_iterator *gsi)
5976 {
5977 tree vectype = TREE_TYPE (x);
5978 tree perm_dest, data_ref;
5979 gimple *perm_stmt;
5980
5981 perm_dest = vect_create_destination_var (gimple_get_lhs (stmt), vectype);
5982 data_ref = make_ssa_name (perm_dest);
5983
5984 /* Generate the permute statement. */
5985 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, x, y, mask_vec);
5986 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
5987
5988 return data_ref;
5989 }
5990
5991 /* Hoist the definitions of all SSA uses on STMT out of the loop LOOP,
5992 inserting them on the loops preheader edge. Returns true if we
5993 were successful in doing so (and thus STMT can be moved then),
5994 otherwise returns false. */
5995
5996 static bool
5997 hoist_defs_of_uses (gimple *stmt, struct loop *loop)
5998 {
5999 ssa_op_iter i;
6000 tree op;
6001 bool any = false;
6002
6003 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6004 {
6005 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
6006 if (!gimple_nop_p (def_stmt)
6007 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)))
6008 {
6009 /* Make sure we don't need to recurse. While we could do
6010 so in simple cases when there are more complex use webs
6011 we don't have an easy way to preserve stmt order to fulfil
6012 dependencies within them. */
6013 tree op2;
6014 ssa_op_iter i2;
6015 if (gimple_code (def_stmt) == GIMPLE_PHI)
6016 return false;
6017 FOR_EACH_SSA_TREE_OPERAND (op2, def_stmt, i2, SSA_OP_USE)
6018 {
6019 gimple *def_stmt2 = SSA_NAME_DEF_STMT (op2);
6020 if (!gimple_nop_p (def_stmt2)
6021 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt2)))
6022 return false;
6023 }
6024 any = true;
6025 }
6026 }
6027
6028 if (!any)
6029 return true;
6030
6031 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6032 {
6033 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
6034 if (!gimple_nop_p (def_stmt)
6035 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)))
6036 {
6037 gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
6038 gsi_remove (&gsi, false);
6039 gsi_insert_on_edge_immediate (loop_preheader_edge (loop), def_stmt);
6040 }
6041 }
6042
6043 return true;
6044 }
6045
6046 /* vectorizable_load.
6047
6048 Check if STMT reads a non scalar data-ref (array/pointer/structure) that
6049 can be vectorized.
6050 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
6051 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
6052 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
6053
6054 static bool
6055 vectorizable_load (gimple *stmt, gimple_stmt_iterator *gsi, gimple **vec_stmt,
6056 slp_tree slp_node, slp_instance slp_node_instance)
6057 {
6058 tree scalar_dest;
6059 tree vec_dest = NULL;
6060 tree data_ref = NULL;
6061 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
6062 stmt_vec_info prev_stmt_info;
6063 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6064 struct loop *loop = NULL;
6065 struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
6066 bool nested_in_vect_loop = false;
6067 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr = NULL;
6068 tree elem_type;
6069 tree new_temp;
6070 machine_mode mode;
6071 gimple *new_stmt = NULL;
6072 tree dummy;
6073 enum dr_alignment_support alignment_support_scheme;
6074 tree dataref_ptr = NULL_TREE;
6075 tree dataref_offset = NULL_TREE;
6076 gimple *ptr_incr = NULL;
6077 int ncopies;
6078 int i, j, group_size = -1, group_gap_adj;
6079 tree msq = NULL_TREE, lsq;
6080 tree offset = NULL_TREE;
6081 tree byte_offset = NULL_TREE;
6082 tree realignment_token = NULL_TREE;
6083 gphi *phi = NULL;
6084 vec<tree> dr_chain = vNULL;
6085 bool grouped_load = false;
6086 bool load_lanes_p = false;
6087 gimple *first_stmt;
6088 bool inv_p;
6089 bool negative = false;
6090 bool compute_in_loop = false;
6091 struct loop *at_loop;
6092 int vec_num;
6093 bool slp = (slp_node != NULL);
6094 bool slp_perm = false;
6095 enum tree_code code;
6096 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
6097 int vf;
6098 tree aggr_type;
6099 tree gather_base = NULL_TREE, gather_off = NULL_TREE;
6100 tree gather_off_vectype = NULL_TREE, gather_decl = NULL_TREE;
6101 int gather_scale = 1;
6102 enum vect_def_type gather_dt = vect_unknown_def_type;
6103 vec_info *vinfo = stmt_info->vinfo;
6104
6105 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
6106 return false;
6107
6108 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
6109 return false;
6110
6111 /* Is vectorizable load? */
6112 if (!is_gimple_assign (stmt))
6113 return false;
6114
6115 scalar_dest = gimple_assign_lhs (stmt);
6116 if (TREE_CODE (scalar_dest) != SSA_NAME)
6117 return false;
6118
6119 code = gimple_assign_rhs_code (stmt);
6120 if (code != ARRAY_REF
6121 && code != BIT_FIELD_REF
6122 && code != INDIRECT_REF
6123 && code != COMPONENT_REF
6124 && code != IMAGPART_EXPR
6125 && code != REALPART_EXPR
6126 && code != MEM_REF
6127 && TREE_CODE_CLASS (code) != tcc_declaration)
6128 return false;
6129
6130 if (!STMT_VINFO_DATA_REF (stmt_info))
6131 return false;
6132
6133 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6134 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
6135
6136 if (loop_vinfo)
6137 {
6138 loop = LOOP_VINFO_LOOP (loop_vinfo);
6139 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
6140 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
6141 }
6142 else
6143 vf = 1;
6144
6145 /* Multiple types in SLP are handled by creating the appropriate number of
6146 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
6147 case of SLP. */
6148 if (slp || PURE_SLP_STMT (stmt_info))
6149 ncopies = 1;
6150 else
6151 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
6152
6153 gcc_assert (ncopies >= 1);
6154
6155 /* FORNOW. This restriction should be relaxed. */
6156 if (nested_in_vect_loop && ncopies > 1)
6157 {
6158 if (dump_enabled_p ())
6159 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6160 "multiple types in nested loop.\n");
6161 return false;
6162 }
6163
6164 /* Invalidate assumptions made by dependence analysis when vectorization
6165 on the unrolled body effectively re-orders stmts. */
6166 if (ncopies > 1
6167 && STMT_VINFO_MIN_NEG_DIST (stmt_info) != 0
6168 && ((unsigned)LOOP_VINFO_VECT_FACTOR (loop_vinfo)
6169 > STMT_VINFO_MIN_NEG_DIST (stmt_info)))
6170 {
6171 if (dump_enabled_p ())
6172 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6173 "cannot perform implicit CSE when unrolling "
6174 "with negative dependence distance\n");
6175 return false;
6176 }
6177
6178 elem_type = TREE_TYPE (vectype);
6179 mode = TYPE_MODE (vectype);
6180
6181 /* FORNOW. In some cases can vectorize even if data-type not supported
6182 (e.g. - data copies). */
6183 if (optab_handler (mov_optab, mode) == CODE_FOR_nothing)
6184 {
6185 if (dump_enabled_p ())
6186 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6187 "Aligned load, but unsupported type.\n");
6188 return false;
6189 }
6190
6191 /* Check if the load is a part of an interleaving chain. */
6192 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
6193 {
6194 grouped_load = true;
6195 /* FORNOW */
6196 gcc_assert (!nested_in_vect_loop && !STMT_VINFO_GATHER_SCATTER_P (stmt_info));
6197
6198 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
6199
6200 /* If this is single-element interleaving with an element distance
6201 that leaves unused vector loads around punt - we at least create
6202 very sub-optimal code in that case (and blow up memory,
6203 see PR65518). */
6204 if (first_stmt == stmt
6205 && !GROUP_NEXT_ELEMENT (stmt_info)
6206 && GROUP_SIZE (stmt_info) > TYPE_VECTOR_SUBPARTS (vectype))
6207 {
6208 if (dump_enabled_p ())
6209 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6210 "single-element interleaving not supported "
6211 "for not adjacent vector loads\n");
6212 return false;
6213 }
6214
6215 if (slp && SLP_TREE_LOAD_PERMUTATION (slp_node).exists ())
6216 slp_perm = true;
6217
6218 group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
6219 if (!slp
6220 && !PURE_SLP_STMT (stmt_info)
6221 && !STMT_VINFO_STRIDED_P (stmt_info))
6222 {
6223 if (vect_load_lanes_supported (vectype, group_size))
6224 load_lanes_p = true;
6225 else if (!vect_grouped_load_supported (vectype, group_size))
6226 return false;
6227 }
6228
6229 /* Invalidate assumptions made by dependence analysis when vectorization
6230 on the unrolled body effectively re-orders stmts. */
6231 if (!PURE_SLP_STMT (stmt_info)
6232 && STMT_VINFO_MIN_NEG_DIST (stmt_info) != 0
6233 && ((unsigned)LOOP_VINFO_VECT_FACTOR (loop_vinfo)
6234 > STMT_VINFO_MIN_NEG_DIST (stmt_info)))
6235 {
6236 if (dump_enabled_p ())
6237 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6238 "cannot perform implicit CSE when performing "
6239 "group loads with negative dependence distance\n");
6240 return false;
6241 }
6242
6243 /* Similarly when the stmt is a load that is both part of a SLP
6244 instance and a loop vectorized stmt via the same-dr mechanism
6245 we have to give up. */
6246 if (STMT_VINFO_GROUP_SAME_DR_STMT (stmt_info)
6247 && (STMT_SLP_TYPE (stmt_info)
6248 != STMT_SLP_TYPE (vinfo_for_stmt
6249 (STMT_VINFO_GROUP_SAME_DR_STMT (stmt_info)))))
6250 {
6251 if (dump_enabled_p ())
6252 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6253 "conflicting SLP types for CSEd load\n");
6254 return false;
6255 }
6256 }
6257
6258
6259 if (STMT_VINFO_GATHER_SCATTER_P (stmt_info))
6260 {
6261 gimple *def_stmt;
6262 gather_decl = vect_check_gather_scatter (stmt, loop_vinfo, &gather_base,
6263 &gather_off, &gather_scale);
6264 gcc_assert (gather_decl);
6265 if (!vect_is_simple_use (gather_off, vinfo, &def_stmt, &gather_dt,
6266 &gather_off_vectype))
6267 {
6268 if (dump_enabled_p ())
6269 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6270 "gather index use not simple.\n");
6271 return false;
6272 }
6273 }
6274 else if (STMT_VINFO_STRIDED_P (stmt_info))
6275 {
6276 if ((grouped_load
6277 && (slp || PURE_SLP_STMT (stmt_info)))
6278 && (group_size > nunits
6279 || nunits % group_size != 0))
6280 {
6281 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6282 "unhandled strided group load\n");
6283 return false;
6284 }
6285 }
6286 else
6287 {
6288 negative = tree_int_cst_compare (nested_in_vect_loop
6289 ? STMT_VINFO_DR_STEP (stmt_info)
6290 : DR_STEP (dr),
6291 size_zero_node) < 0;
6292 if (negative && ncopies > 1)
6293 {
6294 if (dump_enabled_p ())
6295 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6296 "multiple types with negative step.\n");
6297 return false;
6298 }
6299
6300 if (negative)
6301 {
6302 if (grouped_load)
6303 {
6304 if (dump_enabled_p ())
6305 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6306 "negative step for group load not supported"
6307 "\n");
6308 return false;
6309 }
6310 alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
6311 if (alignment_support_scheme != dr_aligned
6312 && alignment_support_scheme != dr_unaligned_supported)
6313 {
6314 if (dump_enabled_p ())
6315 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6316 "negative step but alignment required.\n");
6317 return false;
6318 }
6319 if (!perm_mask_for_reverse (vectype))
6320 {
6321 if (dump_enabled_p ())
6322 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6323 "negative step and reversing not supported."
6324 "\n");
6325 return false;
6326 }
6327 }
6328 }
6329
6330 if (!vec_stmt) /* transformation not required. */
6331 {
6332 STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
6333 /* The SLP costs are calculated during SLP analysis. */
6334 if (!PURE_SLP_STMT (stmt_info))
6335 vect_model_load_cost (stmt_info, ncopies, load_lanes_p,
6336 NULL, NULL, NULL);
6337 return true;
6338 }
6339
6340 if (dump_enabled_p ())
6341 dump_printf_loc (MSG_NOTE, vect_location,
6342 "transform load. ncopies = %d\n", ncopies);
6343
6344 /** Transform. **/
6345
6346 ensure_base_align (stmt_info, dr);
6347
6348 if (STMT_VINFO_GATHER_SCATTER_P (stmt_info))
6349 {
6350 tree vec_oprnd0 = NULL_TREE, op;
6351 tree arglist = TYPE_ARG_TYPES (TREE_TYPE (gather_decl));
6352 tree rettype, srctype, ptrtype, idxtype, masktype, scaletype;
6353 tree ptr, mask, var, scale, merge, perm_mask = NULL_TREE, prev_res = NULL_TREE;
6354 edge pe = loop_preheader_edge (loop);
6355 gimple_seq seq;
6356 basic_block new_bb;
6357 enum { NARROW, NONE, WIDEN } modifier;
6358 int gather_off_nunits = TYPE_VECTOR_SUBPARTS (gather_off_vectype);
6359
6360 if (nunits == gather_off_nunits)
6361 modifier = NONE;
6362 else if (nunits == gather_off_nunits / 2)
6363 {
6364 unsigned char *sel = XALLOCAVEC (unsigned char, gather_off_nunits);
6365 modifier = WIDEN;
6366
6367 for (i = 0; i < gather_off_nunits; ++i)
6368 sel[i] = i | nunits;
6369
6370 perm_mask = vect_gen_perm_mask_checked (gather_off_vectype, sel);
6371 }
6372 else if (nunits == gather_off_nunits * 2)
6373 {
6374 unsigned char *sel = XALLOCAVEC (unsigned char, nunits);
6375 modifier = NARROW;
6376
6377 for (i = 0; i < nunits; ++i)
6378 sel[i] = i < gather_off_nunits
6379 ? i : i + nunits - gather_off_nunits;
6380
6381 perm_mask = vect_gen_perm_mask_checked (vectype, sel);
6382 ncopies *= 2;
6383 }
6384 else
6385 gcc_unreachable ();
6386
6387 rettype = TREE_TYPE (TREE_TYPE (gather_decl));
6388 srctype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
6389 ptrtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
6390 idxtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
6391 masktype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
6392 scaletype = TREE_VALUE (arglist);
6393 gcc_checking_assert (types_compatible_p (srctype, rettype));
6394
6395 vec_dest = vect_create_destination_var (scalar_dest, vectype);
6396
6397 ptr = fold_convert (ptrtype, gather_base);
6398 if (!is_gimple_min_invariant (ptr))
6399 {
6400 ptr = force_gimple_operand (ptr, &seq, true, NULL_TREE);
6401 new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
6402 gcc_assert (!new_bb);
6403 }
6404
6405 /* Currently we support only unconditional gather loads,
6406 so mask should be all ones. */
6407 if (TREE_CODE (masktype) == INTEGER_TYPE)
6408 mask = build_int_cst (masktype, -1);
6409 else if (TREE_CODE (TREE_TYPE (masktype)) == INTEGER_TYPE)
6410 {
6411 mask = build_int_cst (TREE_TYPE (masktype), -1);
6412 mask = build_vector_from_val (masktype, mask);
6413 mask = vect_init_vector (stmt, mask, masktype, NULL);
6414 }
6415 else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (masktype)))
6416 {
6417 REAL_VALUE_TYPE r;
6418 long tmp[6];
6419 for (j = 0; j < 6; ++j)
6420 tmp[j] = -1;
6421 real_from_target (&r, tmp, TYPE_MODE (TREE_TYPE (masktype)));
6422 mask = build_real (TREE_TYPE (masktype), r);
6423 mask = build_vector_from_val (masktype, mask);
6424 mask = vect_init_vector (stmt, mask, masktype, NULL);
6425 }
6426 else
6427 gcc_unreachable ();
6428
6429 scale = build_int_cst (scaletype, gather_scale);
6430
6431 if (TREE_CODE (TREE_TYPE (rettype)) == INTEGER_TYPE)
6432 merge = build_int_cst (TREE_TYPE (rettype), 0);
6433 else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (rettype)))
6434 {
6435 REAL_VALUE_TYPE r;
6436 long tmp[6];
6437 for (j = 0; j < 6; ++j)
6438 tmp[j] = 0;
6439 real_from_target (&r, tmp, TYPE_MODE (TREE_TYPE (rettype)));
6440 merge = build_real (TREE_TYPE (rettype), r);
6441 }
6442 else
6443 gcc_unreachable ();
6444 merge = build_vector_from_val (rettype, merge);
6445 merge = vect_init_vector (stmt, merge, rettype, NULL);
6446
6447 prev_stmt_info = NULL;
6448 for (j = 0; j < ncopies; ++j)
6449 {
6450 if (modifier == WIDEN && (j & 1))
6451 op = permute_vec_elements (vec_oprnd0, vec_oprnd0,
6452 perm_mask, stmt, gsi);
6453 else if (j == 0)
6454 op = vec_oprnd0
6455 = vect_get_vec_def_for_operand (gather_off, stmt);
6456 else
6457 op = vec_oprnd0
6458 = vect_get_vec_def_for_stmt_copy (gather_dt, vec_oprnd0);
6459
6460 if (!useless_type_conversion_p (idxtype, TREE_TYPE (op)))
6461 {
6462 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (op))
6463 == TYPE_VECTOR_SUBPARTS (idxtype));
6464 var = vect_get_new_ssa_name (idxtype, vect_simple_var);
6465 op = build1 (VIEW_CONVERT_EXPR, idxtype, op);
6466 new_stmt
6467 = gimple_build_assign (var, VIEW_CONVERT_EXPR, op);
6468 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6469 op = var;
6470 }
6471
6472 new_stmt
6473 = gimple_build_call (gather_decl, 5, merge, ptr, op, mask, scale);
6474
6475 if (!useless_type_conversion_p (vectype, rettype))
6476 {
6477 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype)
6478 == TYPE_VECTOR_SUBPARTS (rettype));
6479 op = vect_get_new_ssa_name (rettype, vect_simple_var);
6480 gimple_call_set_lhs (new_stmt, op);
6481 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6482 var = make_ssa_name (vec_dest);
6483 op = build1 (VIEW_CONVERT_EXPR, vectype, op);
6484 new_stmt
6485 = gimple_build_assign (var, VIEW_CONVERT_EXPR, op);
6486 }
6487 else
6488 {
6489 var = make_ssa_name (vec_dest, new_stmt);
6490 gimple_call_set_lhs (new_stmt, var);
6491 }
6492
6493 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6494
6495 if (modifier == NARROW)
6496 {
6497 if ((j & 1) == 0)
6498 {
6499 prev_res = var;
6500 continue;
6501 }
6502 var = permute_vec_elements (prev_res, var,
6503 perm_mask, stmt, gsi);
6504 new_stmt = SSA_NAME_DEF_STMT (var);
6505 }
6506
6507 if (prev_stmt_info == NULL)
6508 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
6509 else
6510 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
6511 prev_stmt_info = vinfo_for_stmt (new_stmt);
6512 }
6513 return true;
6514 }
6515 else if (STMT_VINFO_STRIDED_P (stmt_info))
6516 {
6517 gimple_stmt_iterator incr_gsi;
6518 bool insert_after;
6519 gimple *incr;
6520 tree offvar;
6521 tree ivstep;
6522 tree running_off;
6523 vec<constructor_elt, va_gc> *v = NULL;
6524 gimple_seq stmts = NULL;
6525 tree stride_base, stride_step, alias_off;
6526
6527 gcc_assert (!nested_in_vect_loop);
6528
6529 if (slp && grouped_load)
6530 first_dr = STMT_VINFO_DATA_REF
6531 (vinfo_for_stmt (GROUP_FIRST_ELEMENT (stmt_info)));
6532 else
6533 first_dr = dr;
6534
6535 stride_base
6536 = fold_build_pointer_plus
6537 (DR_BASE_ADDRESS (first_dr),
6538 size_binop (PLUS_EXPR,
6539 convert_to_ptrofftype (DR_OFFSET (first_dr)),
6540 convert_to_ptrofftype (DR_INIT (first_dr))));
6541 stride_step = fold_convert (sizetype, DR_STEP (first_dr));
6542
6543 /* For a load with loop-invariant (but other than power-of-2)
6544 stride (i.e. not a grouped access) like so:
6545
6546 for (i = 0; i < n; i += stride)
6547 ... = array[i];
6548
6549 we generate a new induction variable and new accesses to
6550 form a new vector (or vectors, depending on ncopies):
6551
6552 for (j = 0; ; j += VF*stride)
6553 tmp1 = array[j];
6554 tmp2 = array[j + stride];
6555 ...
6556 vectemp = {tmp1, tmp2, ...}
6557 */
6558
6559 ivstep = fold_build2 (MULT_EXPR, TREE_TYPE (stride_step), stride_step,
6560 build_int_cst (TREE_TYPE (stride_step), vf));
6561
6562 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
6563
6564 create_iv (unshare_expr (stride_base), unshare_expr (ivstep), NULL,
6565 loop, &incr_gsi, insert_after,
6566 &offvar, NULL);
6567 incr = gsi_stmt (incr_gsi);
6568 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo));
6569
6570 stride_step = force_gimple_operand (unshare_expr (stride_step),
6571 &stmts, true, NULL_TREE);
6572 if (stmts)
6573 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
6574
6575 prev_stmt_info = NULL;
6576 running_off = offvar;
6577 alias_off = build_int_cst (reference_alias_ptr_type (DR_REF (first_dr)), 0);
6578 int nloads = nunits;
6579 tree ltype = TREE_TYPE (vectype);
6580 auto_vec<tree> dr_chain;
6581 if (slp)
6582 {
6583 nloads = nunits / group_size;
6584 if (group_size < nunits)
6585 ltype = build_vector_type (TREE_TYPE (vectype), group_size);
6586 else
6587 ltype = vectype;
6588 ltype = build_aligned_type (ltype, TYPE_ALIGN (TREE_TYPE (vectype)));
6589 ncopies = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
6590 if (slp_perm)
6591 dr_chain.create (ncopies);
6592 }
6593 for (j = 0; j < ncopies; j++)
6594 {
6595 tree vec_inv;
6596
6597 if (nloads > 1)
6598 {
6599 vec_alloc (v, nloads);
6600 for (i = 0; i < nloads; i++)
6601 {
6602 tree newref, newoff;
6603 gimple *incr;
6604 newref = build2 (MEM_REF, ltype, running_off, alias_off);
6605
6606 newref = force_gimple_operand_gsi (gsi, newref, true,
6607 NULL_TREE, true,
6608 GSI_SAME_STMT);
6609 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, newref);
6610 newoff = copy_ssa_name (running_off);
6611 incr = gimple_build_assign (newoff, POINTER_PLUS_EXPR,
6612 running_off, stride_step);
6613 vect_finish_stmt_generation (stmt, incr, gsi);
6614
6615 running_off = newoff;
6616 }
6617
6618 vec_inv = build_constructor (vectype, v);
6619 new_temp = vect_init_vector (stmt, vec_inv, vectype, gsi);
6620 new_stmt = SSA_NAME_DEF_STMT (new_temp);
6621 }
6622 else
6623 {
6624 new_stmt = gimple_build_assign (make_ssa_name (ltype),
6625 build2 (MEM_REF, ltype,
6626 running_off, alias_off));
6627 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6628
6629 tree newoff = copy_ssa_name (running_off);
6630 gimple *incr = gimple_build_assign (newoff, POINTER_PLUS_EXPR,
6631 running_off, stride_step);
6632 vect_finish_stmt_generation (stmt, incr, gsi);
6633
6634 running_off = newoff;
6635 }
6636
6637 if (slp)
6638 {
6639 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
6640 if (slp_perm)
6641 dr_chain.quick_push (gimple_assign_lhs (new_stmt));
6642 }
6643 else
6644 {
6645 if (j == 0)
6646 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
6647 else
6648 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
6649 prev_stmt_info = vinfo_for_stmt (new_stmt);
6650 }
6651 }
6652 if (slp_perm)
6653 vect_transform_slp_perm_load (slp_node, dr_chain, gsi, vf,
6654 slp_node_instance, false);
6655 return true;
6656 }
6657
6658 if (grouped_load)
6659 {
6660 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
6661 if (slp
6662 && !SLP_TREE_LOAD_PERMUTATION (slp_node).exists ()
6663 && first_stmt != SLP_TREE_SCALAR_STMTS (slp_node)[0])
6664 first_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[0];
6665
6666 /* Check if the chain of loads is already vectorized. */
6667 if (STMT_VINFO_VEC_STMT (vinfo_for_stmt (first_stmt))
6668 /* For SLP we would need to copy over SLP_TREE_VEC_STMTS.
6669 ??? But we can only do so if there is exactly one
6670 as we have no way to get at the rest. Leave the CSE
6671 opportunity alone.
6672 ??? With the group load eventually participating
6673 in multiple different permutations (having multiple
6674 slp nodes which refer to the same group) the CSE
6675 is even wrong code. See PR56270. */
6676 && !slp)
6677 {
6678 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
6679 return true;
6680 }
6681 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
6682 group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
6683 group_gap_adj = 0;
6684
6685 /* VEC_NUM is the number of vect stmts to be created for this group. */
6686 if (slp)
6687 {
6688 grouped_load = false;
6689 /* For SLP permutation support we need to load the whole group,
6690 not only the number of vector stmts the permutation result
6691 fits in. */
6692 if (slp_perm)
6693 vec_num = (group_size * vf + nunits - 1) / nunits;
6694 else
6695 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
6696 group_gap_adj = vf * group_size - nunits * vec_num;
6697 }
6698 else
6699 vec_num = group_size;
6700 }
6701 else
6702 {
6703 first_stmt = stmt;
6704 first_dr = dr;
6705 group_size = vec_num = 1;
6706 group_gap_adj = 0;
6707 }
6708
6709 alignment_support_scheme = vect_supportable_dr_alignment (first_dr, false);
6710 gcc_assert (alignment_support_scheme);
6711 /* Targets with load-lane instructions must not require explicit
6712 realignment. */
6713 gcc_assert (!load_lanes_p
6714 || alignment_support_scheme == dr_aligned
6715 || alignment_support_scheme == dr_unaligned_supported);
6716
6717 /* In case the vectorization factor (VF) is bigger than the number
6718 of elements that we can fit in a vectype (nunits), we have to generate
6719 more than one vector stmt - i.e - we need to "unroll" the
6720 vector stmt by a factor VF/nunits. In doing so, we record a pointer
6721 from one copy of the vector stmt to the next, in the field
6722 STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
6723 stages to find the correct vector defs to be used when vectorizing
6724 stmts that use the defs of the current stmt. The example below
6725 illustrates the vectorization process when VF=16 and nunits=4 (i.e., we
6726 need to create 4 vectorized stmts):
6727
6728 before vectorization:
6729 RELATED_STMT VEC_STMT
6730 S1: x = memref - -
6731 S2: z = x + 1 - -
6732
6733 step 1: vectorize stmt S1:
6734 We first create the vector stmt VS1_0, and, as usual, record a
6735 pointer to it in the STMT_VINFO_VEC_STMT of the scalar stmt S1.
6736 Next, we create the vector stmt VS1_1, and record a pointer to
6737 it in the STMT_VINFO_RELATED_STMT of the vector stmt VS1_0.
6738 Similarly, for VS1_2 and VS1_3. This is the resulting chain of
6739 stmts and pointers:
6740 RELATED_STMT VEC_STMT
6741 VS1_0: vx0 = memref0 VS1_1 -
6742 VS1_1: vx1 = memref1 VS1_2 -
6743 VS1_2: vx2 = memref2 VS1_3 -
6744 VS1_3: vx3 = memref3 - -
6745 S1: x = load - VS1_0
6746 S2: z = x + 1 - -
6747
6748 See in documentation in vect_get_vec_def_for_stmt_copy for how the
6749 information we recorded in RELATED_STMT field is used to vectorize
6750 stmt S2. */
6751
6752 /* In case of interleaving (non-unit grouped access):
6753
6754 S1: x2 = &base + 2
6755 S2: x0 = &base
6756 S3: x1 = &base + 1
6757 S4: x3 = &base + 3
6758
6759 Vectorized loads are created in the order of memory accesses
6760 starting from the access of the first stmt of the chain:
6761
6762 VS1: vx0 = &base
6763 VS2: vx1 = &base + vec_size*1
6764 VS3: vx3 = &base + vec_size*2
6765 VS4: vx4 = &base + vec_size*3
6766
6767 Then permutation statements are generated:
6768
6769 VS5: vx5 = VEC_PERM_EXPR < vx0, vx1, { 0, 2, ..., i*2 } >
6770 VS6: vx6 = VEC_PERM_EXPR < vx0, vx1, { 1, 3, ..., i*2+1 } >
6771 ...
6772
6773 And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
6774 (the order of the data-refs in the output of vect_permute_load_chain
6775 corresponds to the order of scalar stmts in the interleaving chain - see
6776 the documentation of vect_permute_load_chain()).
6777 The generation of permutation stmts and recording them in
6778 STMT_VINFO_VEC_STMT is done in vect_transform_grouped_load().
6779
6780 In case of both multiple types and interleaving, the vector loads and
6781 permutation stmts above are created for every copy. The result vector
6782 stmts are put in STMT_VINFO_VEC_STMT for the first copy and in the
6783 corresponding STMT_VINFO_RELATED_STMT for the next copies. */
6784
6785 /* If the data reference is aligned (dr_aligned) or potentially unaligned
6786 on a target that supports unaligned accesses (dr_unaligned_supported)
6787 we generate the following code:
6788 p = initial_addr;
6789 indx = 0;
6790 loop {
6791 p = p + indx * vectype_size;
6792 vec_dest = *(p);
6793 indx = indx + 1;
6794 }
6795
6796 Otherwise, the data reference is potentially unaligned on a target that
6797 does not support unaligned accesses (dr_explicit_realign_optimized) -
6798 then generate the following code, in which the data in each iteration is
6799 obtained by two vector loads, one from the previous iteration, and one
6800 from the current iteration:
6801 p1 = initial_addr;
6802 msq_init = *(floor(p1))
6803 p2 = initial_addr + VS - 1;
6804 realignment_token = call target_builtin;
6805 indx = 0;
6806 loop {
6807 p2 = p2 + indx * vectype_size
6808 lsq = *(floor(p2))
6809 vec_dest = realign_load (msq, lsq, realignment_token)
6810 indx = indx + 1;
6811 msq = lsq;
6812 } */
6813
6814 /* If the misalignment remains the same throughout the execution of the
6815 loop, we can create the init_addr and permutation mask at the loop
6816 preheader. Otherwise, it needs to be created inside the loop.
6817 This can only occur when vectorizing memory accesses in the inner-loop
6818 nested within an outer-loop that is being vectorized. */
6819
6820 if (nested_in_vect_loop
6821 && (TREE_INT_CST_LOW (DR_STEP (dr))
6822 % GET_MODE_SIZE (TYPE_MODE (vectype)) != 0))
6823 {
6824 gcc_assert (alignment_support_scheme != dr_explicit_realign_optimized);
6825 compute_in_loop = true;
6826 }
6827
6828 if ((alignment_support_scheme == dr_explicit_realign_optimized
6829 || alignment_support_scheme == dr_explicit_realign)
6830 && !compute_in_loop)
6831 {
6832 msq = vect_setup_realignment (first_stmt, gsi, &realignment_token,
6833 alignment_support_scheme, NULL_TREE,
6834 &at_loop);
6835 if (alignment_support_scheme == dr_explicit_realign_optimized)
6836 {
6837 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (msq));
6838 byte_offset = size_binop (MINUS_EXPR, TYPE_SIZE_UNIT (vectype),
6839 size_one_node);
6840 }
6841 }
6842 else
6843 at_loop = loop;
6844
6845 if (negative)
6846 offset = size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1);
6847
6848 if (load_lanes_p)
6849 aggr_type = build_array_type_nelts (elem_type, vec_num * nunits);
6850 else
6851 aggr_type = vectype;
6852
6853 prev_stmt_info = NULL;
6854 for (j = 0; j < ncopies; j++)
6855 {
6856 /* 1. Create the vector or array pointer update chain. */
6857 if (j == 0)
6858 {
6859 bool simd_lane_access_p
6860 = STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info);
6861 if (simd_lane_access_p
6862 && TREE_CODE (DR_BASE_ADDRESS (first_dr)) == ADDR_EXPR
6863 && VAR_P (TREE_OPERAND (DR_BASE_ADDRESS (first_dr), 0))
6864 && integer_zerop (DR_OFFSET (first_dr))
6865 && integer_zerop (DR_INIT (first_dr))
6866 && alias_sets_conflict_p (get_alias_set (aggr_type),
6867 get_alias_set (DR_REF (first_dr)))
6868 && (alignment_support_scheme == dr_aligned
6869 || alignment_support_scheme == dr_unaligned_supported))
6870 {
6871 dataref_ptr = unshare_expr (DR_BASE_ADDRESS (first_dr));
6872 dataref_offset = build_int_cst (reference_alias_ptr_type
6873 (DR_REF (first_dr)), 0);
6874 inv_p = false;
6875 }
6876 else
6877 dataref_ptr
6878 = vect_create_data_ref_ptr (first_stmt, aggr_type, at_loop,
6879 offset, &dummy, gsi, &ptr_incr,
6880 simd_lane_access_p, &inv_p,
6881 byte_offset);
6882 }
6883 else if (dataref_offset)
6884 dataref_offset = int_const_binop (PLUS_EXPR, dataref_offset,
6885 TYPE_SIZE_UNIT (aggr_type));
6886 else
6887 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
6888 TYPE_SIZE_UNIT (aggr_type));
6889
6890 if (grouped_load || slp_perm)
6891 dr_chain.create (vec_num);
6892
6893 if (load_lanes_p)
6894 {
6895 tree vec_array;
6896
6897 vec_array = create_vector_array (vectype, vec_num);
6898
6899 /* Emit:
6900 VEC_ARRAY = LOAD_LANES (MEM_REF[...all elements...]). */
6901 data_ref = create_array_ref (aggr_type, dataref_ptr, first_dr);
6902 new_stmt = gimple_build_call_internal (IFN_LOAD_LANES, 1, data_ref);
6903 gimple_call_set_lhs (new_stmt, vec_array);
6904 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6905
6906 /* Extract each vector into an SSA_NAME. */
6907 for (i = 0; i < vec_num; i++)
6908 {
6909 new_temp = read_vector_array (stmt, gsi, scalar_dest,
6910 vec_array, i);
6911 dr_chain.quick_push (new_temp);
6912 }
6913
6914 /* Record the mapping between SSA_NAMEs and statements. */
6915 vect_record_grouped_load_vectors (stmt, dr_chain);
6916 }
6917 else
6918 {
6919 for (i = 0; i < vec_num; i++)
6920 {
6921 if (i > 0)
6922 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
6923 stmt, NULL_TREE);
6924
6925 /* 2. Create the vector-load in the loop. */
6926 switch (alignment_support_scheme)
6927 {
6928 case dr_aligned:
6929 case dr_unaligned_supported:
6930 {
6931 unsigned int align, misalign;
6932
6933 data_ref
6934 = fold_build2 (MEM_REF, vectype, dataref_ptr,
6935 dataref_offset
6936 ? dataref_offset
6937 : build_int_cst (reference_alias_ptr_type
6938 (DR_REF (first_dr)), 0));
6939 align = TYPE_ALIGN_UNIT (vectype);
6940 if (alignment_support_scheme == dr_aligned)
6941 {
6942 gcc_assert (aligned_access_p (first_dr));
6943 misalign = 0;
6944 }
6945 else if (DR_MISALIGNMENT (first_dr) == -1)
6946 {
6947 if (DR_VECT_AUX (first_dr)->base_element_aligned)
6948 align = TYPE_ALIGN_UNIT (elem_type);
6949 else
6950 align = (get_object_alignment (DR_REF (first_dr))
6951 / BITS_PER_UNIT);
6952 misalign = 0;
6953 TREE_TYPE (data_ref)
6954 = build_aligned_type (TREE_TYPE (data_ref),
6955 align * BITS_PER_UNIT);
6956 }
6957 else
6958 {
6959 TREE_TYPE (data_ref)
6960 = build_aligned_type (TREE_TYPE (data_ref),
6961 TYPE_ALIGN (elem_type));
6962 misalign = DR_MISALIGNMENT (first_dr);
6963 }
6964 if (dataref_offset == NULL_TREE
6965 && TREE_CODE (dataref_ptr) == SSA_NAME)
6966 set_ptr_info_alignment (get_ptr_info (dataref_ptr),
6967 align, misalign);
6968 break;
6969 }
6970 case dr_explicit_realign:
6971 {
6972 tree ptr, bump;
6973
6974 tree vs = size_int (TYPE_VECTOR_SUBPARTS (vectype));
6975
6976 if (compute_in_loop)
6977 msq = vect_setup_realignment (first_stmt, gsi,
6978 &realignment_token,
6979 dr_explicit_realign,
6980 dataref_ptr, NULL);
6981
6982 if (TREE_CODE (dataref_ptr) == SSA_NAME)
6983 ptr = copy_ssa_name (dataref_ptr);
6984 else
6985 ptr = make_ssa_name (TREE_TYPE (dataref_ptr));
6986 new_stmt = gimple_build_assign
6987 (ptr, BIT_AND_EXPR, dataref_ptr,
6988 build_int_cst
6989 (TREE_TYPE (dataref_ptr),
6990 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
6991 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6992 data_ref
6993 = build2 (MEM_REF, vectype, ptr,
6994 build_int_cst (reference_alias_ptr_type
6995 (DR_REF (first_dr)), 0));
6996 vec_dest = vect_create_destination_var (scalar_dest,
6997 vectype);
6998 new_stmt = gimple_build_assign (vec_dest, data_ref);
6999 new_temp = make_ssa_name (vec_dest, new_stmt);
7000 gimple_assign_set_lhs (new_stmt, new_temp);
7001 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
7002 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
7003 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7004 msq = new_temp;
7005
7006 bump = size_binop (MULT_EXPR, vs,
7007 TYPE_SIZE_UNIT (elem_type));
7008 bump = size_binop (MINUS_EXPR, bump, size_one_node);
7009 ptr = bump_vector_ptr (dataref_ptr, NULL, gsi, stmt, bump);
7010 new_stmt = gimple_build_assign
7011 (NULL_TREE, BIT_AND_EXPR, ptr,
7012 build_int_cst
7013 (TREE_TYPE (ptr),
7014 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
7015 ptr = copy_ssa_name (ptr, new_stmt);
7016 gimple_assign_set_lhs (new_stmt, ptr);
7017 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7018 data_ref
7019 = build2 (MEM_REF, vectype, ptr,
7020 build_int_cst (reference_alias_ptr_type
7021 (DR_REF (first_dr)), 0));
7022 break;
7023 }
7024 case dr_explicit_realign_optimized:
7025 if (TREE_CODE (dataref_ptr) == SSA_NAME)
7026 new_temp = copy_ssa_name (dataref_ptr);
7027 else
7028 new_temp = make_ssa_name (TREE_TYPE (dataref_ptr));
7029 new_stmt = gimple_build_assign
7030 (new_temp, BIT_AND_EXPR, dataref_ptr,
7031 build_int_cst
7032 (TREE_TYPE (dataref_ptr),
7033 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
7034 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7035 data_ref
7036 = build2 (MEM_REF, vectype, new_temp,
7037 build_int_cst (reference_alias_ptr_type
7038 (DR_REF (first_dr)), 0));
7039 break;
7040 default:
7041 gcc_unreachable ();
7042 }
7043 vec_dest = vect_create_destination_var (scalar_dest, vectype);
7044 new_stmt = gimple_build_assign (vec_dest, data_ref);
7045 new_temp = make_ssa_name (vec_dest, new_stmt);
7046 gimple_assign_set_lhs (new_stmt, new_temp);
7047 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7048
7049 /* 3. Handle explicit realignment if necessary/supported.
7050 Create in loop:
7051 vec_dest = realign_load (msq, lsq, realignment_token) */
7052 if (alignment_support_scheme == dr_explicit_realign_optimized
7053 || alignment_support_scheme == dr_explicit_realign)
7054 {
7055 lsq = gimple_assign_lhs (new_stmt);
7056 if (!realignment_token)
7057 realignment_token = dataref_ptr;
7058 vec_dest = vect_create_destination_var (scalar_dest, vectype);
7059 new_stmt = gimple_build_assign (vec_dest, REALIGN_LOAD_EXPR,
7060 msq, lsq, realignment_token);
7061 new_temp = make_ssa_name (vec_dest, new_stmt);
7062 gimple_assign_set_lhs (new_stmt, new_temp);
7063 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7064
7065 if (alignment_support_scheme == dr_explicit_realign_optimized)
7066 {
7067 gcc_assert (phi);
7068 if (i == vec_num - 1 && j == ncopies - 1)
7069 add_phi_arg (phi, lsq,
7070 loop_latch_edge (containing_loop),
7071 UNKNOWN_LOCATION);
7072 msq = lsq;
7073 }
7074 }
7075
7076 /* 4. Handle invariant-load. */
7077 if (inv_p && !bb_vinfo)
7078 {
7079 gcc_assert (!grouped_load);
7080 /* If we have versioned for aliasing or the loop doesn't
7081 have any data dependencies that would preclude this,
7082 then we are sure this is a loop invariant load and
7083 thus we can insert it on the preheader edge. */
7084 if (LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo)
7085 && !nested_in_vect_loop
7086 && hoist_defs_of_uses (stmt, loop))
7087 {
7088 if (dump_enabled_p ())
7089 {
7090 dump_printf_loc (MSG_NOTE, vect_location,
7091 "hoisting out of the vectorized "
7092 "loop: ");
7093 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
7094 }
7095 tree tem = copy_ssa_name (scalar_dest);
7096 gsi_insert_on_edge_immediate
7097 (loop_preheader_edge (loop),
7098 gimple_build_assign (tem,
7099 unshare_expr
7100 (gimple_assign_rhs1 (stmt))));
7101 new_temp = vect_init_vector (stmt, tem, vectype, NULL);
7102 }
7103 else
7104 {
7105 gimple_stmt_iterator gsi2 = *gsi;
7106 gsi_next (&gsi2);
7107 new_temp = vect_init_vector (stmt, scalar_dest,
7108 vectype, &gsi2);
7109 }
7110 new_stmt = SSA_NAME_DEF_STMT (new_temp);
7111 set_vinfo_for_stmt (new_stmt,
7112 new_stmt_vec_info (new_stmt, vinfo));
7113 }
7114
7115 if (negative)
7116 {
7117 tree perm_mask = perm_mask_for_reverse (vectype);
7118 new_temp = permute_vec_elements (new_temp, new_temp,
7119 perm_mask, stmt, gsi);
7120 new_stmt = SSA_NAME_DEF_STMT (new_temp);
7121 }
7122
7123 /* Collect vector loads and later create their permutation in
7124 vect_transform_grouped_load (). */
7125 if (grouped_load || slp_perm)
7126 dr_chain.quick_push (new_temp);
7127
7128 /* Store vector loads in the corresponding SLP_NODE. */
7129 if (slp && !slp_perm)
7130 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
7131 }
7132 /* Bump the vector pointer to account for a gap or for excess
7133 elements loaded for a permuted SLP load. */
7134 if (group_gap_adj != 0)
7135 {
7136 bool ovf;
7137 tree bump
7138 = wide_int_to_tree (sizetype,
7139 wi::smul (TYPE_SIZE_UNIT (elem_type),
7140 group_gap_adj, &ovf));
7141 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
7142 stmt, bump);
7143 }
7144 }
7145
7146 if (slp && !slp_perm)
7147 continue;
7148
7149 if (slp_perm)
7150 {
7151 if (!vect_transform_slp_perm_load (slp_node, dr_chain, gsi, vf,
7152 slp_node_instance, false))
7153 {
7154 dr_chain.release ();
7155 return false;
7156 }
7157 }
7158 else
7159 {
7160 if (grouped_load)
7161 {
7162 if (!load_lanes_p)
7163 vect_transform_grouped_load (stmt, dr_chain, group_size, gsi);
7164 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
7165 }
7166 else
7167 {
7168 if (j == 0)
7169 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
7170 else
7171 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
7172 prev_stmt_info = vinfo_for_stmt (new_stmt);
7173 }
7174 }
7175 dr_chain.release ();
7176 }
7177
7178 return true;
7179 }
7180
7181 /* Function vect_is_simple_cond.
7182
7183 Input:
7184 LOOP - the loop that is being vectorized.
7185 COND - Condition that is checked for simple use.
7186
7187 Output:
7188 *COMP_VECTYPE - the vector type for the comparison.
7189
7190 Returns whether a COND can be vectorized. Checks whether
7191 condition operands are supportable using vec_is_simple_use. */
7192
7193 static bool
7194 vect_is_simple_cond (tree cond, vec_info *vinfo, tree *comp_vectype)
7195 {
7196 tree lhs, rhs;
7197 enum vect_def_type dt;
7198 tree vectype1 = NULL_TREE, vectype2 = NULL_TREE;
7199
7200 /* Mask case. */
7201 if (TREE_CODE (cond) == SSA_NAME
7202 && TREE_CODE (TREE_TYPE (cond)) == BOOLEAN_TYPE)
7203 {
7204 gimple *lhs_def_stmt = SSA_NAME_DEF_STMT (cond);
7205 if (!vect_is_simple_use (cond, vinfo, &lhs_def_stmt,
7206 &dt, comp_vectype)
7207 || !*comp_vectype
7208 || !VECTOR_BOOLEAN_TYPE_P (*comp_vectype))
7209 return false;
7210 return true;
7211 }
7212
7213 if (!COMPARISON_CLASS_P (cond))
7214 return false;
7215
7216 lhs = TREE_OPERAND (cond, 0);
7217 rhs = TREE_OPERAND (cond, 1);
7218
7219 if (TREE_CODE (lhs) == SSA_NAME)
7220 {
7221 gimple *lhs_def_stmt = SSA_NAME_DEF_STMT (lhs);
7222 if (!vect_is_simple_use (lhs, vinfo, &lhs_def_stmt, &dt, &vectype1))
7223 return false;
7224 }
7225 else if (TREE_CODE (lhs) != INTEGER_CST && TREE_CODE (lhs) != REAL_CST
7226 && TREE_CODE (lhs) != FIXED_CST)
7227 return false;
7228
7229 if (TREE_CODE (rhs) == SSA_NAME)
7230 {
7231 gimple *rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
7232 if (!vect_is_simple_use (rhs, vinfo, &rhs_def_stmt, &dt, &vectype2))
7233 return false;
7234 }
7235 else if (TREE_CODE (rhs) != INTEGER_CST && TREE_CODE (rhs) != REAL_CST
7236 && TREE_CODE (rhs) != FIXED_CST)
7237 return false;
7238
7239 *comp_vectype = vectype1 ? vectype1 : vectype2;
7240 return true;
7241 }
7242
7243 /* vectorizable_condition.
7244
7245 Check if STMT is conditional modify expression that can be vectorized.
7246 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
7247 stmt using VEC_COND_EXPR to replace it, put it in VEC_STMT, and insert it
7248 at GSI.
7249
7250 When STMT is vectorized as nested cycle, REDUC_DEF is the vector variable
7251 to be used at REDUC_INDEX (in then clause if REDUC_INDEX is 1, and in
7252 else clause if it is 2).
7253
7254 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
7255
7256 bool
7257 vectorizable_condition (gimple *stmt, gimple_stmt_iterator *gsi,
7258 gimple **vec_stmt, tree reduc_def, int reduc_index,
7259 slp_tree slp_node)
7260 {
7261 tree scalar_dest = NULL_TREE;
7262 tree vec_dest = NULL_TREE;
7263 tree cond_expr, then_clause, else_clause;
7264 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
7265 tree comp_vectype = NULL_TREE;
7266 tree vec_cond_lhs = NULL_TREE, vec_cond_rhs = NULL_TREE;
7267 tree vec_then_clause = NULL_TREE, vec_else_clause = NULL_TREE;
7268 tree vec_compare, vec_cond_expr;
7269 tree new_temp;
7270 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
7271 enum vect_def_type dt, dts[4];
7272 int ncopies;
7273 enum tree_code code;
7274 stmt_vec_info prev_stmt_info = NULL;
7275 int i, j;
7276 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
7277 vec<tree> vec_oprnds0 = vNULL;
7278 vec<tree> vec_oprnds1 = vNULL;
7279 vec<tree> vec_oprnds2 = vNULL;
7280 vec<tree> vec_oprnds3 = vNULL;
7281 tree vec_cmp_type;
7282 bool masked = false;
7283
7284 if (reduc_index && STMT_SLP_TYPE (stmt_info))
7285 return false;
7286
7287 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == TREE_CODE_REDUCTION)
7288 {
7289 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
7290 return false;
7291
7292 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
7293 && !(STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle
7294 && reduc_def))
7295 return false;
7296
7297 /* FORNOW: not yet supported. */
7298 if (STMT_VINFO_LIVE_P (stmt_info))
7299 {
7300 if (dump_enabled_p ())
7301 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7302 "value used after loop.\n");
7303 return false;
7304 }
7305 }
7306
7307 /* Is vectorizable conditional operation? */
7308 if (!is_gimple_assign (stmt))
7309 return false;
7310
7311 code = gimple_assign_rhs_code (stmt);
7312
7313 if (code != COND_EXPR)
7314 return false;
7315
7316 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
7317 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
7318
7319 if (slp_node || PURE_SLP_STMT (stmt_info))
7320 ncopies = 1;
7321 else
7322 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
7323
7324 gcc_assert (ncopies >= 1);
7325 if (reduc_index && ncopies > 1)
7326 return false; /* FORNOW */
7327
7328 cond_expr = gimple_assign_rhs1 (stmt);
7329 then_clause = gimple_assign_rhs2 (stmt);
7330 else_clause = gimple_assign_rhs3 (stmt);
7331
7332 if (!vect_is_simple_cond (cond_expr, stmt_info->vinfo, &comp_vectype)
7333 || !comp_vectype)
7334 return false;
7335
7336 gimple *def_stmt;
7337 if (!vect_is_simple_use (then_clause, stmt_info->vinfo, &def_stmt, &dt))
7338 return false;
7339 if (!vect_is_simple_use (else_clause, stmt_info->vinfo, &def_stmt, &dt))
7340 return false;
7341
7342 if (VECTOR_BOOLEAN_TYPE_P (comp_vectype))
7343 {
7344 vec_cmp_type = comp_vectype;
7345 masked = true;
7346 }
7347 else
7348 vec_cmp_type = build_same_sized_truth_vector_type (comp_vectype);
7349 if (vec_cmp_type == NULL_TREE)
7350 return false;
7351
7352 if (!vec_stmt)
7353 {
7354 STMT_VINFO_TYPE (stmt_info) = condition_vec_info_type;
7355 return expand_vec_cond_expr_p (vectype, comp_vectype);
7356 }
7357
7358 /* Transform. */
7359
7360 if (!slp_node)
7361 {
7362 vec_oprnds0.create (1);
7363 vec_oprnds1.create (1);
7364 vec_oprnds2.create (1);
7365 vec_oprnds3.create (1);
7366 }
7367
7368 /* Handle def. */
7369 scalar_dest = gimple_assign_lhs (stmt);
7370 vec_dest = vect_create_destination_var (scalar_dest, vectype);
7371
7372 /* Handle cond expr. */
7373 for (j = 0; j < ncopies; j++)
7374 {
7375 gassign *new_stmt = NULL;
7376 if (j == 0)
7377 {
7378 if (slp_node)
7379 {
7380 auto_vec<tree, 4> ops;
7381 auto_vec<vec<tree>, 4> vec_defs;
7382
7383 if (masked)
7384 ops.safe_push (cond_expr);
7385 else
7386 {
7387 ops.safe_push (TREE_OPERAND (cond_expr, 0));
7388 ops.safe_push (TREE_OPERAND (cond_expr, 1));
7389 }
7390 ops.safe_push (then_clause);
7391 ops.safe_push (else_clause);
7392 vect_get_slp_defs (ops, slp_node, &vec_defs, -1);
7393 vec_oprnds3 = vec_defs.pop ();
7394 vec_oprnds2 = vec_defs.pop ();
7395 if (!masked)
7396 vec_oprnds1 = vec_defs.pop ();
7397 vec_oprnds0 = vec_defs.pop ();
7398
7399 ops.release ();
7400 vec_defs.release ();
7401 }
7402 else
7403 {
7404 gimple *gtemp;
7405 if (masked)
7406 {
7407 vec_cond_lhs
7408 = vect_get_vec_def_for_operand (cond_expr, stmt,
7409 comp_vectype);
7410 vect_is_simple_use (cond_expr, stmt_info->vinfo,
7411 &gtemp, &dts[0]);
7412 }
7413 else
7414 {
7415 vec_cond_lhs =
7416 vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 0),
7417 stmt, comp_vectype);
7418 vect_is_simple_use (TREE_OPERAND (cond_expr, 0),
7419 loop_vinfo, &gtemp, &dts[0]);
7420
7421 vec_cond_rhs =
7422 vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 1),
7423 stmt, comp_vectype);
7424 vect_is_simple_use (TREE_OPERAND (cond_expr, 1),
7425 loop_vinfo, &gtemp, &dts[1]);
7426 }
7427 if (reduc_index == 1)
7428 vec_then_clause = reduc_def;
7429 else
7430 {
7431 vec_then_clause = vect_get_vec_def_for_operand (then_clause,
7432 stmt);
7433 vect_is_simple_use (then_clause, loop_vinfo,
7434 &gtemp, &dts[2]);
7435 }
7436 if (reduc_index == 2)
7437 vec_else_clause = reduc_def;
7438 else
7439 {
7440 vec_else_clause = vect_get_vec_def_for_operand (else_clause,
7441 stmt);
7442 vect_is_simple_use (else_clause, loop_vinfo, &gtemp, &dts[3]);
7443 }
7444 }
7445 }
7446 else
7447 {
7448 vec_cond_lhs
7449 = vect_get_vec_def_for_stmt_copy (dts[0],
7450 vec_oprnds0.pop ());
7451 if (!masked)
7452 vec_cond_rhs
7453 = vect_get_vec_def_for_stmt_copy (dts[1],
7454 vec_oprnds1.pop ());
7455
7456 vec_then_clause = vect_get_vec_def_for_stmt_copy (dts[2],
7457 vec_oprnds2.pop ());
7458 vec_else_clause = vect_get_vec_def_for_stmt_copy (dts[3],
7459 vec_oprnds3.pop ());
7460 }
7461
7462 if (!slp_node)
7463 {
7464 vec_oprnds0.quick_push (vec_cond_lhs);
7465 if (!masked)
7466 vec_oprnds1.quick_push (vec_cond_rhs);
7467 vec_oprnds2.quick_push (vec_then_clause);
7468 vec_oprnds3.quick_push (vec_else_clause);
7469 }
7470
7471 /* Arguments are ready. Create the new vector stmt. */
7472 FOR_EACH_VEC_ELT (vec_oprnds0, i, vec_cond_lhs)
7473 {
7474 vec_then_clause = vec_oprnds2[i];
7475 vec_else_clause = vec_oprnds3[i];
7476
7477 if (masked)
7478 vec_compare = vec_cond_lhs;
7479 else
7480 {
7481 vec_cond_rhs = vec_oprnds1[i];
7482 vec_compare = build2 (TREE_CODE (cond_expr), vec_cmp_type,
7483 vec_cond_lhs, vec_cond_rhs);
7484 }
7485 vec_cond_expr = build3 (VEC_COND_EXPR, vectype,
7486 vec_compare, vec_then_clause, vec_else_clause);
7487
7488 new_stmt = gimple_build_assign (vec_dest, vec_cond_expr);
7489 new_temp = make_ssa_name (vec_dest, new_stmt);
7490 gimple_assign_set_lhs (new_stmt, new_temp);
7491 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7492 if (slp_node)
7493 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
7494 }
7495
7496 if (slp_node)
7497 continue;
7498
7499 if (j == 0)
7500 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
7501 else
7502 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
7503
7504 prev_stmt_info = vinfo_for_stmt (new_stmt);
7505 }
7506
7507 vec_oprnds0.release ();
7508 vec_oprnds1.release ();
7509 vec_oprnds2.release ();
7510 vec_oprnds3.release ();
7511
7512 return true;
7513 }
7514
7515 /* vectorizable_comparison.
7516
7517 Check if STMT is comparison expression that can be vectorized.
7518 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
7519 comparison, put it in VEC_STMT, and insert it at GSI.
7520
7521 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
7522
7523 bool
7524 vectorizable_comparison (gimple *stmt, gimple_stmt_iterator *gsi,
7525 gimple **vec_stmt, tree reduc_def,
7526 slp_tree slp_node)
7527 {
7528 tree lhs, rhs1, rhs2;
7529 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
7530 tree vectype1 = NULL_TREE, vectype2 = NULL_TREE;
7531 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
7532 tree vec_rhs1 = NULL_TREE, vec_rhs2 = NULL_TREE;
7533 tree new_temp;
7534 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
7535 enum vect_def_type dts[2] = {vect_unknown_def_type, vect_unknown_def_type};
7536 unsigned nunits;
7537 int ncopies;
7538 enum tree_code code;
7539 stmt_vec_info prev_stmt_info = NULL;
7540 int i, j;
7541 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
7542 vec<tree> vec_oprnds0 = vNULL;
7543 vec<tree> vec_oprnds1 = vNULL;
7544 gimple *def_stmt;
7545 tree mask_type;
7546 tree mask;
7547
7548 if (!VECTOR_BOOLEAN_TYPE_P (vectype))
7549 return false;
7550
7551 mask_type = vectype;
7552 nunits = TYPE_VECTOR_SUBPARTS (vectype);
7553
7554 if (slp_node || PURE_SLP_STMT (stmt_info))
7555 ncopies = 1;
7556 else
7557 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
7558
7559 gcc_assert (ncopies >= 1);
7560 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
7561 return false;
7562
7563 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
7564 && !(STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle
7565 && reduc_def))
7566 return false;
7567
7568 if (STMT_VINFO_LIVE_P (stmt_info))
7569 {
7570 if (dump_enabled_p ())
7571 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7572 "value used after loop.\n");
7573 return false;
7574 }
7575
7576 if (!is_gimple_assign (stmt))
7577 return false;
7578
7579 code = gimple_assign_rhs_code (stmt);
7580
7581 if (TREE_CODE_CLASS (code) != tcc_comparison)
7582 return false;
7583
7584 rhs1 = gimple_assign_rhs1 (stmt);
7585 rhs2 = gimple_assign_rhs2 (stmt);
7586
7587 if (!vect_is_simple_use (rhs1, stmt_info->vinfo, &def_stmt,
7588 &dts[0], &vectype1))
7589 return false;
7590
7591 if (!vect_is_simple_use (rhs2, stmt_info->vinfo, &def_stmt,
7592 &dts[1], &vectype2))
7593 return false;
7594
7595 if (vectype1 && vectype2
7596 && TYPE_VECTOR_SUBPARTS (vectype1) != TYPE_VECTOR_SUBPARTS (vectype2))
7597 return false;
7598
7599 vectype = vectype1 ? vectype1 : vectype2;
7600
7601 /* Invariant comparison. */
7602 if (!vectype)
7603 {
7604 vectype = build_vector_type (TREE_TYPE (rhs1), nunits);
7605 if (tree_to_shwi (TYPE_SIZE_UNIT (vectype)) != current_vector_size)
7606 return false;
7607 }
7608 else if (nunits != TYPE_VECTOR_SUBPARTS (vectype))
7609 return false;
7610
7611 if (!vec_stmt)
7612 {
7613 STMT_VINFO_TYPE (stmt_info) = comparison_vec_info_type;
7614 vect_model_simple_cost (stmt_info, ncopies, dts, NULL, NULL);
7615 return expand_vec_cmp_expr_p (vectype, mask_type);
7616 }
7617
7618 /* Transform. */
7619 if (!slp_node)
7620 {
7621 vec_oprnds0.create (1);
7622 vec_oprnds1.create (1);
7623 }
7624
7625 /* Handle def. */
7626 lhs = gimple_assign_lhs (stmt);
7627 mask = vect_create_destination_var (lhs, mask_type);
7628
7629 /* Handle cmp expr. */
7630 for (j = 0; j < ncopies; j++)
7631 {
7632 gassign *new_stmt = NULL;
7633 if (j == 0)
7634 {
7635 if (slp_node)
7636 {
7637 auto_vec<tree, 2> ops;
7638 auto_vec<vec<tree>, 2> vec_defs;
7639
7640 ops.safe_push (rhs1);
7641 ops.safe_push (rhs2);
7642 vect_get_slp_defs (ops, slp_node, &vec_defs, -1);
7643 vec_oprnds1 = vec_defs.pop ();
7644 vec_oprnds0 = vec_defs.pop ();
7645 }
7646 else
7647 {
7648 vec_rhs1 = vect_get_vec_def_for_operand (rhs1, stmt, NULL);
7649 vec_rhs2 = vect_get_vec_def_for_operand (rhs2, stmt, NULL);
7650 }
7651 }
7652 else
7653 {
7654 vec_rhs1 = vect_get_vec_def_for_stmt_copy (dts[0],
7655 vec_oprnds0.pop ());
7656 vec_rhs2 = vect_get_vec_def_for_stmt_copy (dts[1],
7657 vec_oprnds1.pop ());
7658 }
7659
7660 if (!slp_node)
7661 {
7662 vec_oprnds0.quick_push (vec_rhs1);
7663 vec_oprnds1.quick_push (vec_rhs2);
7664 }
7665
7666 /* Arguments are ready. Create the new vector stmt. */
7667 FOR_EACH_VEC_ELT (vec_oprnds0, i, vec_rhs1)
7668 {
7669 vec_rhs2 = vec_oprnds1[i];
7670
7671 new_temp = make_ssa_name (mask);
7672 new_stmt = gimple_build_assign (new_temp, code, vec_rhs1, vec_rhs2);
7673 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7674 if (slp_node)
7675 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
7676 }
7677
7678 if (slp_node)
7679 continue;
7680
7681 if (j == 0)
7682 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
7683 else
7684 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
7685
7686 prev_stmt_info = vinfo_for_stmt (new_stmt);
7687 }
7688
7689 vec_oprnds0.release ();
7690 vec_oprnds1.release ();
7691
7692 return true;
7693 }
7694
7695 /* Make sure the statement is vectorizable. */
7696
7697 bool
7698 vect_analyze_stmt (gimple *stmt, bool *need_to_vectorize, slp_tree node)
7699 {
7700 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
7701 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
7702 enum vect_relevant relevance = STMT_VINFO_RELEVANT (stmt_info);
7703 bool ok;
7704 tree scalar_type, vectype;
7705 gimple *pattern_stmt;
7706 gimple_seq pattern_def_seq;
7707
7708 if (dump_enabled_p ())
7709 {
7710 dump_printf_loc (MSG_NOTE, vect_location, "==> examining statement: ");
7711 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
7712 }
7713
7714 if (gimple_has_volatile_ops (stmt))
7715 {
7716 if (dump_enabled_p ())
7717 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7718 "not vectorized: stmt has volatile operands\n");
7719
7720 return false;
7721 }
7722
7723 /* Skip stmts that do not need to be vectorized. In loops this is expected
7724 to include:
7725 - the COND_EXPR which is the loop exit condition
7726 - any LABEL_EXPRs in the loop
7727 - computations that are used only for array indexing or loop control.
7728 In basic blocks we only analyze statements that are a part of some SLP
7729 instance, therefore, all the statements are relevant.
7730
7731 Pattern statement needs to be analyzed instead of the original statement
7732 if the original statement is not relevant. Otherwise, we analyze both
7733 statements. In basic blocks we are called from some SLP instance
7734 traversal, don't analyze pattern stmts instead, the pattern stmts
7735 already will be part of SLP instance. */
7736
7737 pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
7738 if (!STMT_VINFO_RELEVANT_P (stmt_info)
7739 && !STMT_VINFO_LIVE_P (stmt_info))
7740 {
7741 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
7742 && pattern_stmt
7743 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
7744 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
7745 {
7746 /* Analyze PATTERN_STMT instead of the original stmt. */
7747 stmt = pattern_stmt;
7748 stmt_info = vinfo_for_stmt (pattern_stmt);
7749 if (dump_enabled_p ())
7750 {
7751 dump_printf_loc (MSG_NOTE, vect_location,
7752 "==> examining pattern statement: ");
7753 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
7754 }
7755 }
7756 else
7757 {
7758 if (dump_enabled_p ())
7759 dump_printf_loc (MSG_NOTE, vect_location, "irrelevant.\n");
7760
7761 return true;
7762 }
7763 }
7764 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
7765 && node == NULL
7766 && pattern_stmt
7767 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
7768 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
7769 {
7770 /* Analyze PATTERN_STMT too. */
7771 if (dump_enabled_p ())
7772 {
7773 dump_printf_loc (MSG_NOTE, vect_location,
7774 "==> examining pattern statement: ");
7775 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
7776 }
7777
7778 if (!vect_analyze_stmt (pattern_stmt, need_to_vectorize, node))
7779 return false;
7780 }
7781
7782 if (is_pattern_stmt_p (stmt_info)
7783 && node == NULL
7784 && (pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info)))
7785 {
7786 gimple_stmt_iterator si;
7787
7788 for (si = gsi_start (pattern_def_seq); !gsi_end_p (si); gsi_next (&si))
7789 {
7790 gimple *pattern_def_stmt = gsi_stmt (si);
7791 if (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_def_stmt))
7792 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_def_stmt)))
7793 {
7794 /* Analyze def stmt of STMT if it's a pattern stmt. */
7795 if (dump_enabled_p ())
7796 {
7797 dump_printf_loc (MSG_NOTE, vect_location,
7798 "==> examining pattern def statement: ");
7799 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_def_stmt, 0);
7800 }
7801
7802 if (!vect_analyze_stmt (pattern_def_stmt,
7803 need_to_vectorize, node))
7804 return false;
7805 }
7806 }
7807 }
7808
7809 switch (STMT_VINFO_DEF_TYPE (stmt_info))
7810 {
7811 case vect_internal_def:
7812 break;
7813
7814 case vect_reduction_def:
7815 case vect_nested_cycle:
7816 gcc_assert (!bb_vinfo
7817 && (relevance == vect_used_in_outer
7818 || relevance == vect_used_in_outer_by_reduction
7819 || relevance == vect_used_by_reduction
7820 || relevance == vect_unused_in_scope));
7821 break;
7822
7823 case vect_induction_def:
7824 case vect_constant_def:
7825 case vect_external_def:
7826 case vect_unknown_def_type:
7827 default:
7828 gcc_unreachable ();
7829 }
7830
7831 if (bb_vinfo)
7832 {
7833 gcc_assert (PURE_SLP_STMT (stmt_info));
7834
7835 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
7836 if (dump_enabled_p ())
7837 {
7838 dump_printf_loc (MSG_NOTE, vect_location,
7839 "get vectype for scalar type: ");
7840 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
7841 dump_printf (MSG_NOTE, "\n");
7842 }
7843
7844 vectype = get_vectype_for_scalar_type (scalar_type);
7845 if (!vectype)
7846 {
7847 if (dump_enabled_p ())
7848 {
7849 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7850 "not SLPed: unsupported data-type ");
7851 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
7852 scalar_type);
7853 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
7854 }
7855 return false;
7856 }
7857
7858 if (dump_enabled_p ())
7859 {
7860 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
7861 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
7862 dump_printf (MSG_NOTE, "\n");
7863 }
7864
7865 STMT_VINFO_VECTYPE (stmt_info) = vectype;
7866 }
7867
7868 if (STMT_VINFO_RELEVANT_P (stmt_info))
7869 {
7870 gcc_assert (!VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))));
7871 gcc_assert (STMT_VINFO_VECTYPE (stmt_info)
7872 || (is_gimple_call (stmt)
7873 && gimple_call_lhs (stmt) == NULL_TREE));
7874 *need_to_vectorize = true;
7875 }
7876
7877 if (PURE_SLP_STMT (stmt_info) && !node)
7878 {
7879 dump_printf_loc (MSG_NOTE, vect_location,
7880 "handled only by SLP analysis\n");
7881 return true;
7882 }
7883
7884 ok = true;
7885 if (!bb_vinfo
7886 && (STMT_VINFO_RELEVANT_P (stmt_info)
7887 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def))
7888 ok = (vectorizable_simd_clone_call (stmt, NULL, NULL, node)
7889 || vectorizable_conversion (stmt, NULL, NULL, node)
7890 || vectorizable_shift (stmt, NULL, NULL, node)
7891 || vectorizable_operation (stmt, NULL, NULL, node)
7892 || vectorizable_assignment (stmt, NULL, NULL, node)
7893 || vectorizable_load (stmt, NULL, NULL, node, NULL)
7894 || vectorizable_call (stmt, NULL, NULL, node)
7895 || vectorizable_store (stmt, NULL, NULL, node)
7896 || vectorizable_reduction (stmt, NULL, NULL, node)
7897 || vectorizable_condition (stmt, NULL, NULL, NULL, 0, node)
7898 || vectorizable_comparison (stmt, NULL, NULL, NULL, node));
7899 else
7900 {
7901 if (bb_vinfo)
7902 ok = (vectorizable_simd_clone_call (stmt, NULL, NULL, node)
7903 || vectorizable_conversion (stmt, NULL, NULL, node)
7904 || vectorizable_shift (stmt, NULL, NULL, node)
7905 || vectorizable_operation (stmt, NULL, NULL, node)
7906 || vectorizable_assignment (stmt, NULL, NULL, node)
7907 || vectorizable_load (stmt, NULL, NULL, node, NULL)
7908 || vectorizable_call (stmt, NULL, NULL, node)
7909 || vectorizable_store (stmt, NULL, NULL, node)
7910 || vectorizable_condition (stmt, NULL, NULL, NULL, 0, node)
7911 || vectorizable_comparison (stmt, NULL, NULL, NULL, node));
7912 }
7913
7914 if (!ok)
7915 {
7916 if (dump_enabled_p ())
7917 {
7918 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7919 "not vectorized: relevant stmt not ");
7920 dump_printf (MSG_MISSED_OPTIMIZATION, "supported: ");
7921 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
7922 }
7923
7924 return false;
7925 }
7926
7927 if (bb_vinfo)
7928 return true;
7929
7930 /* Stmts that are (also) "live" (i.e. - that are used out of the loop)
7931 need extra handling, except for vectorizable reductions. */
7932 if (STMT_VINFO_LIVE_P (stmt_info)
7933 && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
7934 ok = vectorizable_live_operation (stmt, NULL, NULL);
7935
7936 if (!ok)
7937 {
7938 if (dump_enabled_p ())
7939 {
7940 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7941 "not vectorized: live stmt not ");
7942 dump_printf (MSG_MISSED_OPTIMIZATION, "supported: ");
7943 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
7944 }
7945
7946 return false;
7947 }
7948
7949 return true;
7950 }
7951
7952
7953 /* Function vect_transform_stmt.
7954
7955 Create a vectorized stmt to replace STMT, and insert it at BSI. */
7956
7957 bool
7958 vect_transform_stmt (gimple *stmt, gimple_stmt_iterator *gsi,
7959 bool *grouped_store, slp_tree slp_node,
7960 slp_instance slp_node_instance)
7961 {
7962 bool is_store = false;
7963 gimple *vec_stmt = NULL;
7964 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
7965 bool done;
7966
7967 gimple *old_vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
7968
7969 switch (STMT_VINFO_TYPE (stmt_info))
7970 {
7971 case type_demotion_vec_info_type:
7972 case type_promotion_vec_info_type:
7973 case type_conversion_vec_info_type:
7974 done = vectorizable_conversion (stmt, gsi, &vec_stmt, slp_node);
7975 gcc_assert (done);
7976 break;
7977
7978 case induc_vec_info_type:
7979 gcc_assert (!slp_node);
7980 done = vectorizable_induction (stmt, gsi, &vec_stmt);
7981 gcc_assert (done);
7982 break;
7983
7984 case shift_vec_info_type:
7985 done = vectorizable_shift (stmt, gsi, &vec_stmt, slp_node);
7986 gcc_assert (done);
7987 break;
7988
7989 case op_vec_info_type:
7990 done = vectorizable_operation (stmt, gsi, &vec_stmt, slp_node);
7991 gcc_assert (done);
7992 break;
7993
7994 case assignment_vec_info_type:
7995 done = vectorizable_assignment (stmt, gsi, &vec_stmt, slp_node);
7996 gcc_assert (done);
7997 break;
7998
7999 case load_vec_info_type:
8000 done = vectorizable_load (stmt, gsi, &vec_stmt, slp_node,
8001 slp_node_instance);
8002 gcc_assert (done);
8003 break;
8004
8005 case store_vec_info_type:
8006 done = vectorizable_store (stmt, gsi, &vec_stmt, slp_node);
8007 gcc_assert (done);
8008 if (STMT_VINFO_GROUPED_ACCESS (stmt_info) && !slp_node)
8009 {
8010 /* In case of interleaving, the whole chain is vectorized when the
8011 last store in the chain is reached. Store stmts before the last
8012 one are skipped, and there vec_stmt_info shouldn't be freed
8013 meanwhile. */
8014 *grouped_store = true;
8015 if (STMT_VINFO_VEC_STMT (stmt_info))
8016 is_store = true;
8017 }
8018 else
8019 is_store = true;
8020 break;
8021
8022 case condition_vec_info_type:
8023 done = vectorizable_condition (stmt, gsi, &vec_stmt, NULL, 0, slp_node);
8024 gcc_assert (done);
8025 break;
8026
8027 case comparison_vec_info_type:
8028 done = vectorizable_comparison (stmt, gsi, &vec_stmt, NULL, slp_node);
8029 gcc_assert (done);
8030 break;
8031
8032 case call_vec_info_type:
8033 done = vectorizable_call (stmt, gsi, &vec_stmt, slp_node);
8034 stmt = gsi_stmt (*gsi);
8035 if (is_gimple_call (stmt)
8036 && gimple_call_internal_p (stmt)
8037 && gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
8038 is_store = true;
8039 break;
8040
8041 case call_simd_clone_vec_info_type:
8042 done = vectorizable_simd_clone_call (stmt, gsi, &vec_stmt, slp_node);
8043 stmt = gsi_stmt (*gsi);
8044 break;
8045
8046 case reduc_vec_info_type:
8047 done = vectorizable_reduction (stmt, gsi, &vec_stmt, slp_node);
8048 gcc_assert (done);
8049 break;
8050
8051 default:
8052 if (!STMT_VINFO_LIVE_P (stmt_info))
8053 {
8054 if (dump_enabled_p ())
8055 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
8056 "stmt not supported.\n");
8057 gcc_unreachable ();
8058 }
8059 }
8060
8061 /* Verify SLP vectorization doesn't mess with STMT_VINFO_VEC_STMT.
8062 This would break hybrid SLP vectorization. */
8063 if (slp_node)
8064 gcc_assert (!vec_stmt
8065 && STMT_VINFO_VEC_STMT (stmt_info) == old_vec_stmt);
8066
8067 /* Handle inner-loop stmts whose DEF is used in the loop-nest that
8068 is being vectorized, but outside the immediately enclosing loop. */
8069 if (vec_stmt
8070 && STMT_VINFO_LOOP_VINFO (stmt_info)
8071 && nested_in_vect_loop_p (LOOP_VINFO_LOOP (
8072 STMT_VINFO_LOOP_VINFO (stmt_info)), stmt)
8073 && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type
8074 && (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_outer
8075 || STMT_VINFO_RELEVANT (stmt_info) ==
8076 vect_used_in_outer_by_reduction))
8077 {
8078 struct loop *innerloop = LOOP_VINFO_LOOP (
8079 STMT_VINFO_LOOP_VINFO (stmt_info))->inner;
8080 imm_use_iterator imm_iter;
8081 use_operand_p use_p;
8082 tree scalar_dest;
8083 gimple *exit_phi;
8084
8085 if (dump_enabled_p ())
8086 dump_printf_loc (MSG_NOTE, vect_location,
8087 "Record the vdef for outer-loop vectorization.\n");
8088
8089 /* Find the relevant loop-exit phi-node, and reord the vec_stmt there
8090 (to be used when vectorizing outer-loop stmts that use the DEF of
8091 STMT). */
8092 if (gimple_code (stmt) == GIMPLE_PHI)
8093 scalar_dest = PHI_RESULT (stmt);
8094 else
8095 scalar_dest = gimple_assign_lhs (stmt);
8096
8097 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
8098 {
8099 if (!flow_bb_inside_loop_p (innerloop, gimple_bb (USE_STMT (use_p))))
8100 {
8101 exit_phi = USE_STMT (use_p);
8102 STMT_VINFO_VEC_STMT (vinfo_for_stmt (exit_phi)) = vec_stmt;
8103 }
8104 }
8105 }
8106
8107 /* Handle stmts whose DEF is used outside the loop-nest that is
8108 being vectorized. */
8109 if (STMT_VINFO_LIVE_P (stmt_info)
8110 && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
8111 {
8112 done = vectorizable_live_operation (stmt, gsi, &vec_stmt);
8113 gcc_assert (done);
8114 }
8115
8116 if (vec_stmt)
8117 STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
8118
8119 return is_store;
8120 }
8121
8122
8123 /* Remove a group of stores (for SLP or interleaving), free their
8124 stmt_vec_info. */
8125
8126 void
8127 vect_remove_stores (gimple *first_stmt)
8128 {
8129 gimple *next = first_stmt;
8130 gimple *tmp;
8131 gimple_stmt_iterator next_si;
8132
8133 while (next)
8134 {
8135 stmt_vec_info stmt_info = vinfo_for_stmt (next);
8136
8137 tmp = GROUP_NEXT_ELEMENT (stmt_info);
8138 if (is_pattern_stmt_p (stmt_info))
8139 next = STMT_VINFO_RELATED_STMT (stmt_info);
8140 /* Free the attached stmt_vec_info and remove the stmt. */
8141 next_si = gsi_for_stmt (next);
8142 unlink_stmt_vdef (next);
8143 gsi_remove (&next_si, true);
8144 release_defs (next);
8145 free_stmt_vec_info (next);
8146 next = tmp;
8147 }
8148 }
8149
8150
8151 /* Function new_stmt_vec_info.
8152
8153 Create and initialize a new stmt_vec_info struct for STMT. */
8154
8155 stmt_vec_info
8156 new_stmt_vec_info (gimple *stmt, vec_info *vinfo)
8157 {
8158 stmt_vec_info res;
8159 res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));
8160
8161 STMT_VINFO_TYPE (res) = undef_vec_info_type;
8162 STMT_VINFO_STMT (res) = stmt;
8163 res->vinfo = vinfo;
8164 STMT_VINFO_RELEVANT (res) = vect_unused_in_scope;
8165 STMT_VINFO_LIVE_P (res) = false;
8166 STMT_VINFO_VECTYPE (res) = NULL;
8167 STMT_VINFO_VEC_STMT (res) = NULL;
8168 STMT_VINFO_VECTORIZABLE (res) = true;
8169 STMT_VINFO_IN_PATTERN_P (res) = false;
8170 STMT_VINFO_RELATED_STMT (res) = NULL;
8171 STMT_VINFO_PATTERN_DEF_SEQ (res) = NULL;
8172 STMT_VINFO_DATA_REF (res) = NULL;
8173 STMT_VINFO_VEC_REDUCTION_TYPE (res) = TREE_CODE_REDUCTION;
8174
8175 STMT_VINFO_DR_BASE_ADDRESS (res) = NULL;
8176 STMT_VINFO_DR_OFFSET (res) = NULL;
8177 STMT_VINFO_DR_INIT (res) = NULL;
8178 STMT_VINFO_DR_STEP (res) = NULL;
8179 STMT_VINFO_DR_ALIGNED_TO (res) = NULL;
8180
8181 if (gimple_code (stmt) == GIMPLE_PHI
8182 && is_loop_header_bb_p (gimple_bb (stmt)))
8183 STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
8184 else
8185 STMT_VINFO_DEF_TYPE (res) = vect_internal_def;
8186
8187 STMT_VINFO_SAME_ALIGN_REFS (res).create (0);
8188 STMT_SLP_TYPE (res) = loop_vect;
8189 GROUP_FIRST_ELEMENT (res) = NULL;
8190 GROUP_NEXT_ELEMENT (res) = NULL;
8191 GROUP_SIZE (res) = 0;
8192 GROUP_STORE_COUNT (res) = 0;
8193 GROUP_GAP (res) = 0;
8194 GROUP_SAME_DR_STMT (res) = NULL;
8195
8196 return res;
8197 }
8198
8199
8200 /* Create a hash table for stmt_vec_info. */
8201
8202 void
8203 init_stmt_vec_info_vec (void)
8204 {
8205 gcc_assert (!stmt_vec_info_vec.exists ());
8206 stmt_vec_info_vec.create (50);
8207 }
8208
8209
8210 /* Free hash table for stmt_vec_info. */
8211
8212 void
8213 free_stmt_vec_info_vec (void)
8214 {
8215 unsigned int i;
8216 stmt_vec_info info;
8217 FOR_EACH_VEC_ELT (stmt_vec_info_vec, i, info)
8218 if (info != NULL)
8219 free_stmt_vec_info (STMT_VINFO_STMT (info));
8220 gcc_assert (stmt_vec_info_vec.exists ());
8221 stmt_vec_info_vec.release ();
8222 }
8223
8224
8225 /* Free stmt vectorization related info. */
8226
8227 void
8228 free_stmt_vec_info (gimple *stmt)
8229 {
8230 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
8231
8232 if (!stmt_info)
8233 return;
8234
8235 /* Check if this statement has a related "pattern stmt"
8236 (introduced by the vectorizer during the pattern recognition
8237 pass). Free pattern's stmt_vec_info and def stmt's stmt_vec_info
8238 too. */
8239 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
8240 {
8241 stmt_vec_info patt_info
8242 = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
8243 if (patt_info)
8244 {
8245 gimple_seq seq = STMT_VINFO_PATTERN_DEF_SEQ (patt_info);
8246 gimple *patt_stmt = STMT_VINFO_STMT (patt_info);
8247 gimple_set_bb (patt_stmt, NULL);
8248 tree lhs = gimple_get_lhs (patt_stmt);
8249 if (lhs && TREE_CODE (lhs) == SSA_NAME)
8250 release_ssa_name (lhs);
8251 if (seq)
8252 {
8253 gimple_stmt_iterator si;
8254 for (si = gsi_start (seq); !gsi_end_p (si); gsi_next (&si))
8255 {
8256 gimple *seq_stmt = gsi_stmt (si);
8257 gimple_set_bb (seq_stmt, NULL);
8258 lhs = gimple_get_lhs (seq_stmt);
8259 if (lhs && TREE_CODE (lhs) == SSA_NAME)
8260 release_ssa_name (lhs);
8261 free_stmt_vec_info (seq_stmt);
8262 }
8263 }
8264 free_stmt_vec_info (patt_stmt);
8265 }
8266 }
8267
8268 STMT_VINFO_SAME_ALIGN_REFS (stmt_info).release ();
8269 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).release ();
8270 set_vinfo_for_stmt (stmt, NULL);
8271 free (stmt_info);
8272 }
8273
8274
8275 /* Function get_vectype_for_scalar_type_and_size.
8276
8277 Returns the vector type corresponding to SCALAR_TYPE and SIZE as supported
8278 by the target. */
8279
8280 static tree
8281 get_vectype_for_scalar_type_and_size (tree scalar_type, unsigned size)
8282 {
8283 machine_mode inner_mode = TYPE_MODE (scalar_type);
8284 machine_mode simd_mode;
8285 unsigned int nbytes = GET_MODE_SIZE (inner_mode);
8286 int nunits;
8287 tree vectype;
8288
8289 if (nbytes == 0)
8290 return NULL_TREE;
8291
8292 if (GET_MODE_CLASS (inner_mode) != MODE_INT
8293 && GET_MODE_CLASS (inner_mode) != MODE_FLOAT)
8294 return NULL_TREE;
8295
8296 /* For vector types of elements whose mode precision doesn't
8297 match their types precision we use a element type of mode
8298 precision. The vectorization routines will have to make sure
8299 they support the proper result truncation/extension.
8300 We also make sure to build vector types with INTEGER_TYPE
8301 component type only. */
8302 if (INTEGRAL_TYPE_P (scalar_type)
8303 && (GET_MODE_BITSIZE (inner_mode) != TYPE_PRECISION (scalar_type)
8304 || TREE_CODE (scalar_type) != INTEGER_TYPE))
8305 scalar_type = build_nonstandard_integer_type (GET_MODE_BITSIZE (inner_mode),
8306 TYPE_UNSIGNED (scalar_type));
8307
8308 /* We shouldn't end up building VECTOR_TYPEs of non-scalar components.
8309 When the component mode passes the above test simply use a type
8310 corresponding to that mode. The theory is that any use that
8311 would cause problems with this will disable vectorization anyway. */
8312 else if (!SCALAR_FLOAT_TYPE_P (scalar_type)
8313 && !INTEGRAL_TYPE_P (scalar_type))
8314 scalar_type = lang_hooks.types.type_for_mode (inner_mode, 1);
8315
8316 /* We can't build a vector type of elements with alignment bigger than
8317 their size. */
8318 else if (nbytes < TYPE_ALIGN_UNIT (scalar_type))
8319 scalar_type = lang_hooks.types.type_for_mode (inner_mode,
8320 TYPE_UNSIGNED (scalar_type));
8321
8322 /* If we felt back to using the mode fail if there was
8323 no scalar type for it. */
8324 if (scalar_type == NULL_TREE)
8325 return NULL_TREE;
8326
8327 /* If no size was supplied use the mode the target prefers. Otherwise
8328 lookup a vector mode of the specified size. */
8329 if (size == 0)
8330 simd_mode = targetm.vectorize.preferred_simd_mode (inner_mode);
8331 else
8332 simd_mode = mode_for_vector (inner_mode, size / nbytes);
8333 nunits = GET_MODE_SIZE (simd_mode) / nbytes;
8334 if (nunits <= 1)
8335 return NULL_TREE;
8336
8337 vectype = build_vector_type (scalar_type, nunits);
8338
8339 if (!VECTOR_MODE_P (TYPE_MODE (vectype))
8340 && !INTEGRAL_MODE_P (TYPE_MODE (vectype)))
8341 return NULL_TREE;
8342
8343 return vectype;
8344 }
8345
8346 unsigned int current_vector_size;
8347
8348 /* Function get_vectype_for_scalar_type.
8349
8350 Returns the vector type corresponding to SCALAR_TYPE as supported
8351 by the target. */
8352
8353 tree
8354 get_vectype_for_scalar_type (tree scalar_type)
8355 {
8356 tree vectype;
8357 vectype = get_vectype_for_scalar_type_and_size (scalar_type,
8358 current_vector_size);
8359 if (vectype
8360 && current_vector_size == 0)
8361 current_vector_size = GET_MODE_SIZE (TYPE_MODE (vectype));
8362 return vectype;
8363 }
8364
8365 /* Function get_mask_type_for_scalar_type.
8366
8367 Returns the mask type corresponding to a result of comparison
8368 of vectors of specified SCALAR_TYPE as supported by target. */
8369
8370 tree
8371 get_mask_type_for_scalar_type (tree scalar_type)
8372 {
8373 tree vectype = get_vectype_for_scalar_type (scalar_type);
8374
8375 if (!vectype)
8376 return NULL;
8377
8378 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (vectype),
8379 current_vector_size);
8380 }
8381
8382 /* Function get_same_sized_vectype
8383
8384 Returns a vector type corresponding to SCALAR_TYPE of size
8385 VECTOR_TYPE if supported by the target. */
8386
8387 tree
8388 get_same_sized_vectype (tree scalar_type, tree vector_type)
8389 {
8390 if (TREE_CODE (scalar_type) == BOOLEAN_TYPE)
8391 return build_same_sized_truth_vector_type (vector_type);
8392
8393 return get_vectype_for_scalar_type_and_size
8394 (scalar_type, GET_MODE_SIZE (TYPE_MODE (vector_type)));
8395 }
8396
8397 /* Function vect_is_simple_use.
8398
8399 Input:
8400 VINFO - the vect info of the loop or basic block that is being vectorized.
8401 OPERAND - operand in the loop or bb.
8402 Output:
8403 DEF_STMT - the defining stmt in case OPERAND is an SSA_NAME.
8404 DT - the type of definition
8405
8406 Returns whether a stmt with OPERAND can be vectorized.
8407 For loops, supportable operands are constants, loop invariants, and operands
8408 that are defined by the current iteration of the loop. Unsupportable
8409 operands are those that are defined by a previous iteration of the loop (as
8410 is the case in reduction/induction computations).
8411 For basic blocks, supportable operands are constants and bb invariants.
8412 For now, operands defined outside the basic block are not supported. */
8413
8414 bool
8415 vect_is_simple_use (tree operand, vec_info *vinfo,
8416 gimple **def_stmt, enum vect_def_type *dt)
8417 {
8418 *def_stmt = NULL;
8419 *dt = vect_unknown_def_type;
8420
8421 if (dump_enabled_p ())
8422 {
8423 dump_printf_loc (MSG_NOTE, vect_location,
8424 "vect_is_simple_use: operand ");
8425 dump_generic_expr (MSG_NOTE, TDF_SLIM, operand);
8426 dump_printf (MSG_NOTE, "\n");
8427 }
8428
8429 if (CONSTANT_CLASS_P (operand))
8430 {
8431 *dt = vect_constant_def;
8432 return true;
8433 }
8434
8435 if (is_gimple_min_invariant (operand))
8436 {
8437 *dt = vect_external_def;
8438 return true;
8439 }
8440
8441 if (TREE_CODE (operand) != SSA_NAME)
8442 {
8443 if (dump_enabled_p ())
8444 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
8445 "not ssa-name.\n");
8446 return false;
8447 }
8448
8449 if (SSA_NAME_IS_DEFAULT_DEF (operand))
8450 {
8451 *dt = vect_external_def;
8452 return true;
8453 }
8454
8455 *def_stmt = SSA_NAME_DEF_STMT (operand);
8456 if (dump_enabled_p ())
8457 {
8458 dump_printf_loc (MSG_NOTE, vect_location, "def_stmt: ");
8459 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, *def_stmt, 0);
8460 }
8461
8462 if (! vect_stmt_in_region_p (vinfo, *def_stmt))
8463 *dt = vect_external_def;
8464 else
8465 {
8466 stmt_vec_info stmt_vinfo = vinfo_for_stmt (*def_stmt);
8467 if (is_a <bb_vec_info> (vinfo) && !STMT_VINFO_VECTORIZABLE (stmt_vinfo))
8468 *dt = vect_external_def;
8469 else
8470 *dt = STMT_VINFO_DEF_TYPE (stmt_vinfo);
8471 }
8472
8473 if (dump_enabled_p ())
8474 {
8475 dump_printf_loc (MSG_NOTE, vect_location, "type of def: ");
8476 switch (*dt)
8477 {
8478 case vect_uninitialized_def:
8479 dump_printf (MSG_NOTE, "uninitialized\n");
8480 break;
8481 case vect_constant_def:
8482 dump_printf (MSG_NOTE, "constant\n");
8483 break;
8484 case vect_external_def:
8485 dump_printf (MSG_NOTE, "external\n");
8486 break;
8487 case vect_internal_def:
8488 dump_printf (MSG_NOTE, "internal\n");
8489 break;
8490 case vect_induction_def:
8491 dump_printf (MSG_NOTE, "induction\n");
8492 break;
8493 case vect_reduction_def:
8494 dump_printf (MSG_NOTE, "reduction\n");
8495 break;
8496 case vect_double_reduction_def:
8497 dump_printf (MSG_NOTE, "double reduction\n");
8498 break;
8499 case vect_nested_cycle:
8500 dump_printf (MSG_NOTE, "nested cycle\n");
8501 break;
8502 case vect_unknown_def_type:
8503 dump_printf (MSG_NOTE, "unknown\n");
8504 break;
8505 }
8506 }
8507
8508 if (*dt == vect_unknown_def_type)
8509 {
8510 if (dump_enabled_p ())
8511 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
8512 "Unsupported pattern.\n");
8513 return false;
8514 }
8515
8516 switch (gimple_code (*def_stmt))
8517 {
8518 case GIMPLE_PHI:
8519 case GIMPLE_ASSIGN:
8520 case GIMPLE_CALL:
8521 break;
8522 default:
8523 if (dump_enabled_p ())
8524 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
8525 "unsupported defining stmt:\n");
8526 return false;
8527 }
8528
8529 return true;
8530 }
8531
8532 /* Function vect_is_simple_use.
8533
8534 Same as vect_is_simple_use but also determines the vector operand
8535 type of OPERAND and stores it to *VECTYPE. If the definition of
8536 OPERAND is vect_uninitialized_def, vect_constant_def or
8537 vect_external_def *VECTYPE will be set to NULL_TREE and the caller
8538 is responsible to compute the best suited vector type for the
8539 scalar operand. */
8540
8541 bool
8542 vect_is_simple_use (tree operand, vec_info *vinfo,
8543 gimple **def_stmt, enum vect_def_type *dt, tree *vectype)
8544 {
8545 if (!vect_is_simple_use (operand, vinfo, def_stmt, dt))
8546 return false;
8547
8548 /* Now get a vector type if the def is internal, otherwise supply
8549 NULL_TREE and leave it up to the caller to figure out a proper
8550 type for the use stmt. */
8551 if (*dt == vect_internal_def
8552 || *dt == vect_induction_def
8553 || *dt == vect_reduction_def
8554 || *dt == vect_double_reduction_def
8555 || *dt == vect_nested_cycle)
8556 {
8557 stmt_vec_info stmt_info = vinfo_for_stmt (*def_stmt);
8558
8559 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
8560 && !STMT_VINFO_RELEVANT (stmt_info)
8561 && !STMT_VINFO_LIVE_P (stmt_info))
8562 stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
8563
8564 *vectype = STMT_VINFO_VECTYPE (stmt_info);
8565 gcc_assert (*vectype != NULL_TREE);
8566 }
8567 else if (*dt == vect_uninitialized_def
8568 || *dt == vect_constant_def
8569 || *dt == vect_external_def)
8570 *vectype = NULL_TREE;
8571 else
8572 gcc_unreachable ();
8573
8574 return true;
8575 }
8576
8577
8578 /* Function supportable_widening_operation
8579
8580 Check whether an operation represented by the code CODE is a
8581 widening operation that is supported by the target platform in
8582 vector form (i.e., when operating on arguments of type VECTYPE_IN
8583 producing a result of type VECTYPE_OUT).
8584
8585 Widening operations we currently support are NOP (CONVERT), FLOAT
8586 and WIDEN_MULT. This function checks if these operations are supported
8587 by the target platform either directly (via vector tree-codes), or via
8588 target builtins.
8589
8590 Output:
8591 - CODE1 and CODE2 are codes of vector operations to be used when
8592 vectorizing the operation, if available.
8593 - MULTI_STEP_CVT determines the number of required intermediate steps in
8594 case of multi-step conversion (like char->short->int - in that case
8595 MULTI_STEP_CVT will be 1).
8596 - INTERM_TYPES contains the intermediate type required to perform the
8597 widening operation (short in the above example). */
8598
8599 bool
8600 supportable_widening_operation (enum tree_code code, gimple *stmt,
8601 tree vectype_out, tree vectype_in,
8602 enum tree_code *code1, enum tree_code *code2,
8603 int *multi_step_cvt,
8604 vec<tree> *interm_types)
8605 {
8606 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
8607 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_info);
8608 struct loop *vect_loop = NULL;
8609 machine_mode vec_mode;
8610 enum insn_code icode1, icode2;
8611 optab optab1, optab2;
8612 tree vectype = vectype_in;
8613 tree wide_vectype = vectype_out;
8614 enum tree_code c1, c2;
8615 int i;
8616 tree prev_type, intermediate_type;
8617 machine_mode intermediate_mode, prev_mode;
8618 optab optab3, optab4;
8619
8620 *multi_step_cvt = 0;
8621 if (loop_info)
8622 vect_loop = LOOP_VINFO_LOOP (loop_info);
8623
8624 switch (code)
8625 {
8626 case WIDEN_MULT_EXPR:
8627 /* The result of a vectorized widening operation usually requires
8628 two vectors (because the widened results do not fit into one vector).
8629 The generated vector results would normally be expected to be
8630 generated in the same order as in the original scalar computation,
8631 i.e. if 8 results are generated in each vector iteration, they are
8632 to be organized as follows:
8633 vect1: [res1,res2,res3,res4],
8634 vect2: [res5,res6,res7,res8].
8635
8636 However, in the special case that the result of the widening
8637 operation is used in a reduction computation only, the order doesn't
8638 matter (because when vectorizing a reduction we change the order of
8639 the computation). Some targets can take advantage of this and
8640 generate more efficient code. For example, targets like Altivec,
8641 that support widen_mult using a sequence of {mult_even,mult_odd}
8642 generate the following vectors:
8643 vect1: [res1,res3,res5,res7],
8644 vect2: [res2,res4,res6,res8].
8645
8646 When vectorizing outer-loops, we execute the inner-loop sequentially
8647 (each vectorized inner-loop iteration contributes to VF outer-loop
8648 iterations in parallel). We therefore don't allow to change the
8649 order of the computation in the inner-loop during outer-loop
8650 vectorization. */
8651 /* TODO: Another case in which order doesn't *really* matter is when we
8652 widen and then contract again, e.g. (short)((int)x * y >> 8).
8653 Normally, pack_trunc performs an even/odd permute, whereas the
8654 repack from an even/odd expansion would be an interleave, which
8655 would be significantly simpler for e.g. AVX2. */
8656 /* In any case, in order to avoid duplicating the code below, recurse
8657 on VEC_WIDEN_MULT_EVEN_EXPR. If it succeeds, all the return values
8658 are properly set up for the caller. If we fail, we'll continue with
8659 a VEC_WIDEN_MULT_LO/HI_EXPR check. */
8660 if (vect_loop
8661 && STMT_VINFO_RELEVANT (stmt_info) == vect_used_by_reduction
8662 && !nested_in_vect_loop_p (vect_loop, stmt)
8663 && supportable_widening_operation (VEC_WIDEN_MULT_EVEN_EXPR,
8664 stmt, vectype_out, vectype_in,
8665 code1, code2, multi_step_cvt,
8666 interm_types))
8667 {
8668 /* Elements in a vector with vect_used_by_reduction property cannot
8669 be reordered if the use chain with this property does not have the
8670 same operation. One such an example is s += a * b, where elements
8671 in a and b cannot be reordered. Here we check if the vector defined
8672 by STMT is only directly used in the reduction statement. */
8673 tree lhs = gimple_assign_lhs (stmt);
8674 use_operand_p dummy;
8675 gimple *use_stmt;
8676 stmt_vec_info use_stmt_info = NULL;
8677 if (single_imm_use (lhs, &dummy, &use_stmt)
8678 && (use_stmt_info = vinfo_for_stmt (use_stmt))
8679 && STMT_VINFO_DEF_TYPE (use_stmt_info) == vect_reduction_def)
8680 return true;
8681 }
8682 c1 = VEC_WIDEN_MULT_LO_EXPR;
8683 c2 = VEC_WIDEN_MULT_HI_EXPR;
8684 break;
8685
8686 case DOT_PROD_EXPR:
8687 c1 = DOT_PROD_EXPR;
8688 c2 = DOT_PROD_EXPR;
8689 break;
8690
8691 case SAD_EXPR:
8692 c1 = SAD_EXPR;
8693 c2 = SAD_EXPR;
8694 break;
8695
8696 case VEC_WIDEN_MULT_EVEN_EXPR:
8697 /* Support the recursion induced just above. */
8698 c1 = VEC_WIDEN_MULT_EVEN_EXPR;
8699 c2 = VEC_WIDEN_MULT_ODD_EXPR;
8700 break;
8701
8702 case WIDEN_LSHIFT_EXPR:
8703 c1 = VEC_WIDEN_LSHIFT_LO_EXPR;
8704 c2 = VEC_WIDEN_LSHIFT_HI_EXPR;
8705 break;
8706
8707 CASE_CONVERT:
8708 c1 = VEC_UNPACK_LO_EXPR;
8709 c2 = VEC_UNPACK_HI_EXPR;
8710 break;
8711
8712 case FLOAT_EXPR:
8713 c1 = VEC_UNPACK_FLOAT_LO_EXPR;
8714 c2 = VEC_UNPACK_FLOAT_HI_EXPR;
8715 break;
8716
8717 case FIX_TRUNC_EXPR:
8718 /* ??? Not yet implemented due to missing VEC_UNPACK_FIX_TRUNC_HI_EXPR/
8719 VEC_UNPACK_FIX_TRUNC_LO_EXPR tree codes and optabs used for
8720 computing the operation. */
8721 return false;
8722
8723 default:
8724 gcc_unreachable ();
8725 }
8726
8727 if (BYTES_BIG_ENDIAN && c1 != VEC_WIDEN_MULT_EVEN_EXPR)
8728 std::swap (c1, c2);
8729
8730 if (code == FIX_TRUNC_EXPR)
8731 {
8732 /* The signedness is determined from output operand. */
8733 optab1 = optab_for_tree_code (c1, vectype_out, optab_default);
8734 optab2 = optab_for_tree_code (c2, vectype_out, optab_default);
8735 }
8736 else
8737 {
8738 optab1 = optab_for_tree_code (c1, vectype, optab_default);
8739 optab2 = optab_for_tree_code (c2, vectype, optab_default);
8740 }
8741
8742 if (!optab1 || !optab2)
8743 return false;
8744
8745 vec_mode = TYPE_MODE (vectype);
8746 if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing
8747 || (icode2 = optab_handler (optab2, vec_mode)) == CODE_FOR_nothing)
8748 return false;
8749
8750 *code1 = c1;
8751 *code2 = c2;
8752
8753 if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
8754 && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
8755 return true;
8756
8757 /* Check if it's a multi-step conversion that can be done using intermediate
8758 types. */
8759
8760 prev_type = vectype;
8761 prev_mode = vec_mode;
8762
8763 if (!CONVERT_EXPR_CODE_P (code))
8764 return false;
8765
8766 /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
8767 intermediate steps in promotion sequence. We try
8768 MAX_INTERM_CVT_STEPS to get to NARROW_VECTYPE, and fail if we do
8769 not. */
8770 interm_types->create (MAX_INTERM_CVT_STEPS);
8771 for (i = 0; i < MAX_INTERM_CVT_STEPS; i++)
8772 {
8773 intermediate_mode = insn_data[icode1].operand[0].mode;
8774 intermediate_type
8775 = lang_hooks.types.type_for_mode (intermediate_mode,
8776 TYPE_UNSIGNED (prev_type));
8777 optab3 = optab_for_tree_code (c1, intermediate_type, optab_default);
8778 optab4 = optab_for_tree_code (c2, intermediate_type, optab_default);
8779
8780 if (!optab3 || !optab4
8781 || (icode1 = optab_handler (optab1, prev_mode)) == CODE_FOR_nothing
8782 || insn_data[icode1].operand[0].mode != intermediate_mode
8783 || (icode2 = optab_handler (optab2, prev_mode)) == CODE_FOR_nothing
8784 || insn_data[icode2].operand[0].mode != intermediate_mode
8785 || ((icode1 = optab_handler (optab3, intermediate_mode))
8786 == CODE_FOR_nothing)
8787 || ((icode2 = optab_handler (optab4, intermediate_mode))
8788 == CODE_FOR_nothing))
8789 break;
8790
8791 interm_types->quick_push (intermediate_type);
8792 (*multi_step_cvt)++;
8793
8794 if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
8795 && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
8796 return true;
8797
8798 prev_type = intermediate_type;
8799 prev_mode = intermediate_mode;
8800 }
8801
8802 interm_types->release ();
8803 return false;
8804 }
8805
8806
8807 /* Function supportable_narrowing_operation
8808
8809 Check whether an operation represented by the code CODE is a
8810 narrowing operation that is supported by the target platform in
8811 vector form (i.e., when operating on arguments of type VECTYPE_IN
8812 and producing a result of type VECTYPE_OUT).
8813
8814 Narrowing operations we currently support are NOP (CONVERT) and
8815 FIX_TRUNC. This function checks if these operations are supported by
8816 the target platform directly via vector tree-codes.
8817
8818 Output:
8819 - CODE1 is the code of a vector operation to be used when
8820 vectorizing the operation, if available.
8821 - MULTI_STEP_CVT determines the number of required intermediate steps in
8822 case of multi-step conversion (like int->short->char - in that case
8823 MULTI_STEP_CVT will be 1).
8824 - INTERM_TYPES contains the intermediate type required to perform the
8825 narrowing operation (short in the above example). */
8826
8827 bool
8828 supportable_narrowing_operation (enum tree_code code,
8829 tree vectype_out, tree vectype_in,
8830 enum tree_code *code1, int *multi_step_cvt,
8831 vec<tree> *interm_types)
8832 {
8833 machine_mode vec_mode;
8834 enum insn_code icode1;
8835 optab optab1, interm_optab;
8836 tree vectype = vectype_in;
8837 tree narrow_vectype = vectype_out;
8838 enum tree_code c1;
8839 tree intermediate_type;
8840 machine_mode intermediate_mode, prev_mode;
8841 int i;
8842 bool uns;
8843
8844 *multi_step_cvt = 0;
8845 switch (code)
8846 {
8847 CASE_CONVERT:
8848 c1 = VEC_PACK_TRUNC_EXPR;
8849 break;
8850
8851 case FIX_TRUNC_EXPR:
8852 c1 = VEC_PACK_FIX_TRUNC_EXPR;
8853 break;
8854
8855 case FLOAT_EXPR:
8856 /* ??? Not yet implemented due to missing VEC_PACK_FLOAT_EXPR
8857 tree code and optabs used for computing the operation. */
8858 return false;
8859
8860 default:
8861 gcc_unreachable ();
8862 }
8863
8864 if (code == FIX_TRUNC_EXPR)
8865 /* The signedness is determined from output operand. */
8866 optab1 = optab_for_tree_code (c1, vectype_out, optab_default);
8867 else
8868 optab1 = optab_for_tree_code (c1, vectype, optab_default);
8869
8870 if (!optab1)
8871 return false;
8872
8873 vec_mode = TYPE_MODE (vectype);
8874 if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing)
8875 return false;
8876
8877 *code1 = c1;
8878
8879 if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
8880 return true;
8881
8882 /* Check if it's a multi-step conversion that can be done using intermediate
8883 types. */
8884 prev_mode = vec_mode;
8885 if (code == FIX_TRUNC_EXPR)
8886 uns = TYPE_UNSIGNED (vectype_out);
8887 else
8888 uns = TYPE_UNSIGNED (vectype);
8889
8890 /* For multi-step FIX_TRUNC_EXPR prefer signed floating to integer
8891 conversion over unsigned, as unsigned FIX_TRUNC_EXPR is often more
8892 costly than signed. */
8893 if (code == FIX_TRUNC_EXPR && uns)
8894 {
8895 enum insn_code icode2;
8896
8897 intermediate_type
8898 = lang_hooks.types.type_for_mode (TYPE_MODE (vectype_out), 0);
8899 interm_optab
8900 = optab_for_tree_code (c1, intermediate_type, optab_default);
8901 if (interm_optab != unknown_optab
8902 && (icode2 = optab_handler (optab1, vec_mode)) != CODE_FOR_nothing
8903 && insn_data[icode1].operand[0].mode
8904 == insn_data[icode2].operand[0].mode)
8905 {
8906 uns = false;
8907 optab1 = interm_optab;
8908 icode1 = icode2;
8909 }
8910 }
8911
8912 /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
8913 intermediate steps in promotion sequence. We try
8914 MAX_INTERM_CVT_STEPS to get to NARROW_VECTYPE, and fail if we do not. */
8915 interm_types->create (MAX_INTERM_CVT_STEPS);
8916 for (i = 0; i < MAX_INTERM_CVT_STEPS; i++)
8917 {
8918 intermediate_mode = insn_data[icode1].operand[0].mode;
8919 intermediate_type
8920 = lang_hooks.types.type_for_mode (intermediate_mode, uns);
8921 interm_optab
8922 = optab_for_tree_code (VEC_PACK_TRUNC_EXPR, intermediate_type,
8923 optab_default);
8924 if (!interm_optab
8925 || ((icode1 = optab_handler (optab1, prev_mode)) == CODE_FOR_nothing)
8926 || insn_data[icode1].operand[0].mode != intermediate_mode
8927 || ((icode1 = optab_handler (interm_optab, intermediate_mode))
8928 == CODE_FOR_nothing))
8929 break;
8930
8931 interm_types->quick_push (intermediate_type);
8932 (*multi_step_cvt)++;
8933
8934 if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
8935 return true;
8936
8937 prev_mode = intermediate_mode;
8938 optab1 = interm_optab;
8939 }
8940
8941 interm_types->release ();
8942 return false;
8943 }