This patch rewrites the old VEC macro-based interface into a new one based on the...
[gcc.git] / gcc / tree-vect-stmts.c
1 /* Statement Analysis and Transformation for Vectorization
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4 Contributed by Dorit Naishlos <dorit@il.ibm.com>
5 and Ira Rosen <irar@il.ibm.com>
6
7 This file is part of GCC.
8
9 GCC is free software; you can redistribute it and/or modify it under
10 the terms of the GNU General Public License as published by the Free
11 Software Foundation; either version 3, or (at your option) any later
12 version.
13
14 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
15 WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
17 for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with GCC; see the file COPYING3. If not see
21 <http://www.gnu.org/licenses/>. */
22
23 #include "config.h"
24 #include "system.h"
25 #include "coretypes.h"
26 #include "dumpfile.h"
27 #include "tm.h"
28 #include "ggc.h"
29 #include "tree.h"
30 #include "target.h"
31 #include "basic-block.h"
32 #include "gimple-pretty-print.h"
33 #include "tree-flow.h"
34 #include "cfgloop.h"
35 #include "expr.h"
36 #include "recog.h" /* FIXME: for insn_data */
37 #include "optabs.h"
38 #include "diagnostic-core.h"
39 #include "tree-vectorizer.h"
40 #include "dumpfile.h"
41
42 /* For lang_hooks.types.type_for_mode. */
43 #include "langhooks.h"
44
45 /* Return the vectorized type for the given statement. */
46
47 tree
48 stmt_vectype (struct _stmt_vec_info *stmt_info)
49 {
50 return STMT_VINFO_VECTYPE (stmt_info);
51 }
52
53 /* Return TRUE iff the given statement is in an inner loop relative to
54 the loop being vectorized. */
55 bool
56 stmt_in_inner_loop_p (struct _stmt_vec_info *stmt_info)
57 {
58 gimple stmt = STMT_VINFO_STMT (stmt_info);
59 basic_block bb = gimple_bb (stmt);
60 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
61 struct loop* loop;
62
63 if (!loop_vinfo)
64 return false;
65
66 loop = LOOP_VINFO_LOOP (loop_vinfo);
67
68 return (bb->loop_father == loop->inner);
69 }
70
71 /* Record the cost of a statement, either by directly informing the
72 target model or by saving it in a vector for later processing.
73 Return a preliminary estimate of the statement's cost. */
74
75 unsigned
76 record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count,
77 enum vect_cost_for_stmt kind, stmt_vec_info stmt_info,
78 int misalign, enum vect_cost_model_location where)
79 {
80 if (body_cost_vec)
81 {
82 tree vectype = stmt_info ? stmt_vectype (stmt_info) : NULL_TREE;
83 add_stmt_info_to_vec (body_cost_vec, count, kind,
84 stmt_info ? STMT_VINFO_STMT (stmt_info) : NULL,
85 misalign);
86 return (unsigned)
87 (builtin_vectorization_cost (kind, vectype, misalign) * count);
88
89 }
90 else
91 {
92 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
93 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
94 void *target_cost_data;
95
96 if (loop_vinfo)
97 target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
98 else
99 target_cost_data = BB_VINFO_TARGET_COST_DATA (bb_vinfo);
100
101 return add_stmt_cost (target_cost_data, count, kind, stmt_info,
102 misalign, where);
103 }
104 }
105
106 /* Return a variable of type ELEM_TYPE[NELEMS]. */
107
108 static tree
109 create_vector_array (tree elem_type, unsigned HOST_WIDE_INT nelems)
110 {
111 return create_tmp_var (build_array_type_nelts (elem_type, nelems),
112 "vect_array");
113 }
114
115 /* ARRAY is an array of vectors created by create_vector_array.
116 Return an SSA_NAME for the vector in index N. The reference
117 is part of the vectorization of STMT and the vector is associated
118 with scalar destination SCALAR_DEST. */
119
120 static tree
121 read_vector_array (gimple stmt, gimple_stmt_iterator *gsi, tree scalar_dest,
122 tree array, unsigned HOST_WIDE_INT n)
123 {
124 tree vect_type, vect, vect_name, array_ref;
125 gimple new_stmt;
126
127 gcc_assert (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE);
128 vect_type = TREE_TYPE (TREE_TYPE (array));
129 vect = vect_create_destination_var (scalar_dest, vect_type);
130 array_ref = build4 (ARRAY_REF, vect_type, array,
131 build_int_cst (size_type_node, n),
132 NULL_TREE, NULL_TREE);
133
134 new_stmt = gimple_build_assign (vect, array_ref);
135 vect_name = make_ssa_name (vect, new_stmt);
136 gimple_assign_set_lhs (new_stmt, vect_name);
137 vect_finish_stmt_generation (stmt, new_stmt, gsi);
138
139 return vect_name;
140 }
141
142 /* ARRAY is an array of vectors created by create_vector_array.
143 Emit code to store SSA_NAME VECT in index N of the array.
144 The store is part of the vectorization of STMT. */
145
146 static void
147 write_vector_array (gimple stmt, gimple_stmt_iterator *gsi, tree vect,
148 tree array, unsigned HOST_WIDE_INT n)
149 {
150 tree array_ref;
151 gimple new_stmt;
152
153 array_ref = build4 (ARRAY_REF, TREE_TYPE (vect), array,
154 build_int_cst (size_type_node, n),
155 NULL_TREE, NULL_TREE);
156
157 new_stmt = gimple_build_assign (array_ref, vect);
158 vect_finish_stmt_generation (stmt, new_stmt, gsi);
159 }
160
161 /* PTR is a pointer to an array of type TYPE. Return a representation
162 of *PTR. The memory reference replaces those in FIRST_DR
163 (and its group). */
164
165 static tree
166 create_array_ref (tree type, tree ptr, struct data_reference *first_dr)
167 {
168 tree mem_ref, alias_ptr_type;
169
170 alias_ptr_type = reference_alias_ptr_type (DR_REF (first_dr));
171 mem_ref = build2 (MEM_REF, type, ptr, build_int_cst (alias_ptr_type, 0));
172 /* Arrays have the same alignment as their type. */
173 set_ptr_info_alignment (get_ptr_info (ptr), TYPE_ALIGN_UNIT (type), 0);
174 return mem_ref;
175 }
176
177 /* Utility functions used by vect_mark_stmts_to_be_vectorized. */
178
179 /* Function vect_mark_relevant.
180
181 Mark STMT as "relevant for vectorization" and add it to WORKLIST. */
182
183 static void
184 vect_mark_relevant (vec<gimple> *worklist, gimple stmt,
185 enum vect_relevant relevant, bool live_p,
186 bool used_in_pattern)
187 {
188 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
189 enum vect_relevant save_relevant = STMT_VINFO_RELEVANT (stmt_info);
190 bool save_live_p = STMT_VINFO_LIVE_P (stmt_info);
191 gimple pattern_stmt;
192
193 if (dump_enabled_p ())
194 dump_printf_loc (MSG_NOTE, vect_location,
195 "mark relevant %d, live %d.", relevant, live_p);
196
197 /* If this stmt is an original stmt in a pattern, we might need to mark its
198 related pattern stmt instead of the original stmt. However, such stmts
199 may have their own uses that are not in any pattern, in such cases the
200 stmt itself should be marked. */
201 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
202 {
203 bool found = false;
204 if (!used_in_pattern)
205 {
206 imm_use_iterator imm_iter;
207 use_operand_p use_p;
208 gimple use_stmt;
209 tree lhs;
210 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
211 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
212
213 if (is_gimple_assign (stmt))
214 lhs = gimple_assign_lhs (stmt);
215 else
216 lhs = gimple_call_lhs (stmt);
217
218 /* This use is out of pattern use, if LHS has other uses that are
219 pattern uses, we should mark the stmt itself, and not the pattern
220 stmt. */
221 if (TREE_CODE (lhs) == SSA_NAME)
222 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, lhs)
223 {
224 if (is_gimple_debug (USE_STMT (use_p)))
225 continue;
226 use_stmt = USE_STMT (use_p);
227
228 if (!flow_bb_inside_loop_p (loop, gimple_bb (use_stmt)))
229 continue;
230
231 if (vinfo_for_stmt (use_stmt)
232 && STMT_VINFO_IN_PATTERN_P (vinfo_for_stmt (use_stmt)))
233 {
234 found = true;
235 break;
236 }
237 }
238 }
239
240 if (!found)
241 {
242 /* This is the last stmt in a sequence that was detected as a
243 pattern that can potentially be vectorized. Don't mark the stmt
244 as relevant/live because it's not going to be vectorized.
245 Instead mark the pattern-stmt that replaces it. */
246
247 pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
248
249 if (dump_enabled_p ())
250 dump_printf_loc (MSG_NOTE, vect_location,
251 "last stmt in pattern. don't mark"
252 " relevant/live.");
253 stmt_info = vinfo_for_stmt (pattern_stmt);
254 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_info) == stmt);
255 save_relevant = STMT_VINFO_RELEVANT (stmt_info);
256 save_live_p = STMT_VINFO_LIVE_P (stmt_info);
257 stmt = pattern_stmt;
258 }
259 }
260
261 STMT_VINFO_LIVE_P (stmt_info) |= live_p;
262 if (relevant > STMT_VINFO_RELEVANT (stmt_info))
263 STMT_VINFO_RELEVANT (stmt_info) = relevant;
264
265 if (STMT_VINFO_RELEVANT (stmt_info) == save_relevant
266 && STMT_VINFO_LIVE_P (stmt_info) == save_live_p)
267 {
268 if (dump_enabled_p ())
269 dump_printf_loc (MSG_NOTE, vect_location,
270 "already marked relevant/live.");
271 return;
272 }
273
274 worklist->safe_push (stmt);
275 }
276
277
278 /* Function vect_stmt_relevant_p.
279
280 Return true if STMT in loop that is represented by LOOP_VINFO is
281 "relevant for vectorization".
282
283 A stmt is considered "relevant for vectorization" if:
284 - it has uses outside the loop.
285 - it has vdefs (it alters memory).
286 - control stmts in the loop (except for the exit condition).
287
288 CHECKME: what other side effects would the vectorizer allow? */
289
290 static bool
291 vect_stmt_relevant_p (gimple stmt, loop_vec_info loop_vinfo,
292 enum vect_relevant *relevant, bool *live_p)
293 {
294 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
295 ssa_op_iter op_iter;
296 imm_use_iterator imm_iter;
297 use_operand_p use_p;
298 def_operand_p def_p;
299
300 *relevant = vect_unused_in_scope;
301 *live_p = false;
302
303 /* cond stmt other than loop exit cond. */
304 if (is_ctrl_stmt (stmt)
305 && STMT_VINFO_TYPE (vinfo_for_stmt (stmt))
306 != loop_exit_ctrl_vec_info_type)
307 *relevant = vect_used_in_scope;
308
309 /* changing memory. */
310 if (gimple_code (stmt) != GIMPLE_PHI)
311 if (gimple_vdef (stmt))
312 {
313 if (dump_enabled_p ())
314 dump_printf_loc (MSG_NOTE, vect_location,
315 "vec_stmt_relevant_p: stmt has vdefs.");
316 *relevant = vect_used_in_scope;
317 }
318
319 /* uses outside the loop. */
320 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
321 {
322 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p))
323 {
324 basic_block bb = gimple_bb (USE_STMT (use_p));
325 if (!flow_bb_inside_loop_p (loop, bb))
326 {
327 if (dump_enabled_p ())
328 dump_printf_loc (MSG_NOTE, vect_location,
329 "vec_stmt_relevant_p: used out of loop.");
330
331 if (is_gimple_debug (USE_STMT (use_p)))
332 continue;
333
334 /* We expect all such uses to be in the loop exit phis
335 (because of loop closed form) */
336 gcc_assert (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI);
337 gcc_assert (bb == single_exit (loop)->dest);
338
339 *live_p = true;
340 }
341 }
342 }
343
344 return (*live_p || *relevant);
345 }
346
347
348 /* Function exist_non_indexing_operands_for_use_p
349
350 USE is one of the uses attached to STMT. Check if USE is
351 used in STMT for anything other than indexing an array. */
352
353 static bool
354 exist_non_indexing_operands_for_use_p (tree use, gimple stmt)
355 {
356 tree operand;
357 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
358
359 /* USE corresponds to some operand in STMT. If there is no data
360 reference in STMT, then any operand that corresponds to USE
361 is not indexing an array. */
362 if (!STMT_VINFO_DATA_REF (stmt_info))
363 return true;
364
365 /* STMT has a data_ref. FORNOW this means that its of one of
366 the following forms:
367 -1- ARRAY_REF = var
368 -2- var = ARRAY_REF
369 (This should have been verified in analyze_data_refs).
370
371 'var' in the second case corresponds to a def, not a use,
372 so USE cannot correspond to any operands that are not used
373 for array indexing.
374
375 Therefore, all we need to check is if STMT falls into the
376 first case, and whether var corresponds to USE. */
377
378 if (!gimple_assign_copy_p (stmt))
379 return false;
380 if (TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
381 return false;
382 operand = gimple_assign_rhs1 (stmt);
383 if (TREE_CODE (operand) != SSA_NAME)
384 return false;
385
386 if (operand == use)
387 return true;
388
389 return false;
390 }
391
392
393 /*
394 Function process_use.
395
396 Inputs:
397 - a USE in STMT in a loop represented by LOOP_VINFO
398 - LIVE_P, RELEVANT - enum values to be set in the STMT_VINFO of the stmt
399 that defined USE. This is done by calling mark_relevant and passing it
400 the WORKLIST (to add DEF_STMT to the WORKLIST in case it is relevant).
401 - FORCE is true if exist_non_indexing_operands_for_use_p check shouldn't
402 be performed.
403
404 Outputs:
405 Generally, LIVE_P and RELEVANT are used to define the liveness and
406 relevance info of the DEF_STMT of this USE:
407 STMT_VINFO_LIVE_P (DEF_STMT_info) <-- live_p
408 STMT_VINFO_RELEVANT (DEF_STMT_info) <-- relevant
409 Exceptions:
410 - case 1: If USE is used only for address computations (e.g. array indexing),
411 which does not need to be directly vectorized, then the liveness/relevance
412 of the respective DEF_STMT is left unchanged.
413 - case 2: If STMT is a reduction phi and DEF_STMT is a reduction stmt, we
414 skip DEF_STMT cause it had already been processed.
415 - case 3: If DEF_STMT and STMT are in different nests, then "relevant" will
416 be modified accordingly.
417
418 Return true if everything is as expected. Return false otherwise. */
419
420 static bool
421 process_use (gimple stmt, tree use, loop_vec_info loop_vinfo, bool live_p,
422 enum vect_relevant relevant, vec<gimple> *worklist,
423 bool force)
424 {
425 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
426 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
427 stmt_vec_info dstmt_vinfo;
428 basic_block bb, def_bb;
429 tree def;
430 gimple def_stmt;
431 enum vect_def_type dt;
432
433 /* case 1: we are only interested in uses that need to be vectorized. Uses
434 that are used for address computation are not considered relevant. */
435 if (!force && !exist_non_indexing_operands_for_use_p (use, stmt))
436 return true;
437
438 if (!vect_is_simple_use (use, stmt, loop_vinfo, NULL, &def_stmt, &def, &dt))
439 {
440 if (dump_enabled_p ())
441 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
442 "not vectorized: unsupported use in stmt.");
443 return false;
444 }
445
446 if (!def_stmt || gimple_nop_p (def_stmt))
447 return true;
448
449 def_bb = gimple_bb (def_stmt);
450 if (!flow_bb_inside_loop_p (loop, def_bb))
451 {
452 if (dump_enabled_p ())
453 dump_printf_loc (MSG_NOTE, vect_location, "def_stmt is out of loop.");
454 return true;
455 }
456
457 /* case 2: A reduction phi (STMT) defined by a reduction stmt (DEF_STMT).
458 DEF_STMT must have already been processed, because this should be the
459 only way that STMT, which is a reduction-phi, was put in the worklist,
460 as there should be no other uses for DEF_STMT in the loop. So we just
461 check that everything is as expected, and we are done. */
462 dstmt_vinfo = vinfo_for_stmt (def_stmt);
463 bb = gimple_bb (stmt);
464 if (gimple_code (stmt) == GIMPLE_PHI
465 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
466 && gimple_code (def_stmt) != GIMPLE_PHI
467 && STMT_VINFO_DEF_TYPE (dstmt_vinfo) == vect_reduction_def
468 && bb->loop_father == def_bb->loop_father)
469 {
470 if (dump_enabled_p ())
471 dump_printf_loc (MSG_NOTE, vect_location,
472 "reduc-stmt defining reduc-phi in the same nest.");
473 if (STMT_VINFO_IN_PATTERN_P (dstmt_vinfo))
474 dstmt_vinfo = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (dstmt_vinfo));
475 gcc_assert (STMT_VINFO_RELEVANT (dstmt_vinfo) < vect_used_by_reduction);
476 gcc_assert (STMT_VINFO_LIVE_P (dstmt_vinfo)
477 || STMT_VINFO_RELEVANT (dstmt_vinfo) > vect_unused_in_scope);
478 return true;
479 }
480
481 /* case 3a: outer-loop stmt defining an inner-loop stmt:
482 outer-loop-header-bb:
483 d = def_stmt
484 inner-loop:
485 stmt # use (d)
486 outer-loop-tail-bb:
487 ... */
488 if (flow_loop_nested_p (def_bb->loop_father, bb->loop_father))
489 {
490 if (dump_enabled_p ())
491 dump_printf_loc (MSG_NOTE, vect_location,
492 "outer-loop def-stmt defining inner-loop stmt.");
493
494 switch (relevant)
495 {
496 case vect_unused_in_scope:
497 relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_nested_cycle) ?
498 vect_used_in_scope : vect_unused_in_scope;
499 break;
500
501 case vect_used_in_outer_by_reduction:
502 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def);
503 relevant = vect_used_by_reduction;
504 break;
505
506 case vect_used_in_outer:
507 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def);
508 relevant = vect_used_in_scope;
509 break;
510
511 case vect_used_in_scope:
512 break;
513
514 default:
515 gcc_unreachable ();
516 }
517 }
518
519 /* case 3b: inner-loop stmt defining an outer-loop stmt:
520 outer-loop-header-bb:
521 ...
522 inner-loop:
523 d = def_stmt
524 outer-loop-tail-bb (or outer-loop-exit-bb in double reduction):
525 stmt # use (d) */
526 else if (flow_loop_nested_p (bb->loop_father, def_bb->loop_father))
527 {
528 if (dump_enabled_p ())
529 dump_printf_loc (MSG_NOTE, vect_location,
530 "inner-loop def-stmt defining outer-loop stmt.");
531
532 switch (relevant)
533 {
534 case vect_unused_in_scope:
535 relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
536 || STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_double_reduction_def) ?
537 vect_used_in_outer_by_reduction : vect_unused_in_scope;
538 break;
539
540 case vect_used_by_reduction:
541 relevant = vect_used_in_outer_by_reduction;
542 break;
543
544 case vect_used_in_scope:
545 relevant = vect_used_in_outer;
546 break;
547
548 default:
549 gcc_unreachable ();
550 }
551 }
552
553 vect_mark_relevant (worklist, def_stmt, relevant, live_p,
554 is_pattern_stmt_p (stmt_vinfo));
555 return true;
556 }
557
558
559 /* Function vect_mark_stmts_to_be_vectorized.
560
561 Not all stmts in the loop need to be vectorized. For example:
562
563 for i...
564 for j...
565 1. T0 = i + j
566 2. T1 = a[T0]
567
568 3. j = j + 1
569
570 Stmt 1 and 3 do not need to be vectorized, because loop control and
571 addressing of vectorized data-refs are handled differently.
572
573 This pass detects such stmts. */
574
575 bool
576 vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo)
577 {
578 vec<gimple> worklist;
579 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
580 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
581 unsigned int nbbs = loop->num_nodes;
582 gimple_stmt_iterator si;
583 gimple stmt;
584 unsigned int i;
585 stmt_vec_info stmt_vinfo;
586 basic_block bb;
587 gimple phi;
588 bool live_p;
589 enum vect_relevant relevant, tmp_relevant;
590 enum vect_def_type def_type;
591
592 if (dump_enabled_p ())
593 dump_printf_loc (MSG_NOTE, vect_location,
594 "=== vect_mark_stmts_to_be_vectorized ===");
595
596 worklist.create (64);
597
598 /* 1. Init worklist. */
599 for (i = 0; i < nbbs; i++)
600 {
601 bb = bbs[i];
602 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
603 {
604 phi = gsi_stmt (si);
605 if (dump_enabled_p ())
606 {
607 dump_printf_loc (MSG_NOTE, vect_location, "init: phi relevant? ");
608 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
609 }
610
611 if (vect_stmt_relevant_p (phi, loop_vinfo, &relevant, &live_p))
612 vect_mark_relevant (&worklist, phi, relevant, live_p, false);
613 }
614 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
615 {
616 stmt = gsi_stmt (si);
617 if (dump_enabled_p ())
618 {
619 dump_printf_loc (MSG_NOTE, vect_location, "init: stmt relevant? ");
620 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
621 }
622
623 if (vect_stmt_relevant_p (stmt, loop_vinfo, &relevant, &live_p))
624 vect_mark_relevant (&worklist, stmt, relevant, live_p, false);
625 }
626 }
627
628 /* 2. Process_worklist */
629 while (worklist.length () > 0)
630 {
631 use_operand_p use_p;
632 ssa_op_iter iter;
633
634 stmt = worklist.pop ();
635 if (dump_enabled_p ())
636 {
637 dump_printf_loc (MSG_NOTE, vect_location, "worklist: examine stmt: ");
638 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
639 }
640
641 /* Examine the USEs of STMT. For each USE, mark the stmt that defines it
642 (DEF_STMT) as relevant/irrelevant and live/dead according to the
643 liveness and relevance properties of STMT. */
644 stmt_vinfo = vinfo_for_stmt (stmt);
645 relevant = STMT_VINFO_RELEVANT (stmt_vinfo);
646 live_p = STMT_VINFO_LIVE_P (stmt_vinfo);
647
648 /* Generally, the liveness and relevance properties of STMT are
649 propagated as is to the DEF_STMTs of its USEs:
650 live_p <-- STMT_VINFO_LIVE_P (STMT_VINFO)
651 relevant <-- STMT_VINFO_RELEVANT (STMT_VINFO)
652
653 One exception is when STMT has been identified as defining a reduction
654 variable; in this case we set the liveness/relevance as follows:
655 live_p = false
656 relevant = vect_used_by_reduction
657 This is because we distinguish between two kinds of relevant stmts -
658 those that are used by a reduction computation, and those that are
659 (also) used by a regular computation. This allows us later on to
660 identify stmts that are used solely by a reduction, and therefore the
661 order of the results that they produce does not have to be kept. */
662
663 def_type = STMT_VINFO_DEF_TYPE (stmt_vinfo);
664 tmp_relevant = relevant;
665 switch (def_type)
666 {
667 case vect_reduction_def:
668 switch (tmp_relevant)
669 {
670 case vect_unused_in_scope:
671 relevant = vect_used_by_reduction;
672 break;
673
674 case vect_used_by_reduction:
675 if (gimple_code (stmt) == GIMPLE_PHI)
676 break;
677 /* fall through */
678
679 default:
680 if (dump_enabled_p ())
681 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
682 "unsupported use of reduction.");
683 worklist.release ();
684 return false;
685 }
686
687 live_p = false;
688 break;
689
690 case vect_nested_cycle:
691 if (tmp_relevant != vect_unused_in_scope
692 && tmp_relevant != vect_used_in_outer_by_reduction
693 && tmp_relevant != vect_used_in_outer)
694 {
695 if (dump_enabled_p ())
696 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
697 "unsupported use of nested cycle.");
698
699 worklist.release ();
700 return false;
701 }
702
703 live_p = false;
704 break;
705
706 case vect_double_reduction_def:
707 if (tmp_relevant != vect_unused_in_scope
708 && tmp_relevant != vect_used_by_reduction)
709 {
710 if (dump_enabled_p ())
711 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
712 "unsupported use of double reduction.");
713
714 worklist.release ();
715 return false;
716 }
717
718 live_p = false;
719 break;
720
721 default:
722 break;
723 }
724
725 if (is_pattern_stmt_p (stmt_vinfo))
726 {
727 /* Pattern statements are not inserted into the code, so
728 FOR_EACH_PHI_OR_STMT_USE optimizes their operands out, and we
729 have to scan the RHS or function arguments instead. */
730 if (is_gimple_assign (stmt))
731 {
732 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
733 tree op = gimple_assign_rhs1 (stmt);
734
735 i = 1;
736 if (rhs_code == COND_EXPR && COMPARISON_CLASS_P (op))
737 {
738 if (!process_use (stmt, TREE_OPERAND (op, 0), loop_vinfo,
739 live_p, relevant, &worklist, false)
740 || !process_use (stmt, TREE_OPERAND (op, 1), loop_vinfo,
741 live_p, relevant, &worklist, false))
742 {
743 worklist.release ();
744 return false;
745 }
746 i = 2;
747 }
748 for (; i < gimple_num_ops (stmt); i++)
749 {
750 op = gimple_op (stmt, i);
751 if (!process_use (stmt, op, loop_vinfo, live_p, relevant,
752 &worklist, false))
753 {
754 worklist.release ();
755 return false;
756 }
757 }
758 }
759 else if (is_gimple_call (stmt))
760 {
761 for (i = 0; i < gimple_call_num_args (stmt); i++)
762 {
763 tree arg = gimple_call_arg (stmt, i);
764 if (!process_use (stmt, arg, loop_vinfo, live_p, relevant,
765 &worklist, false))
766 {
767 worklist.release ();
768 return false;
769 }
770 }
771 }
772 }
773 else
774 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
775 {
776 tree op = USE_FROM_PTR (use_p);
777 if (!process_use (stmt, op, loop_vinfo, live_p, relevant,
778 &worklist, false))
779 {
780 worklist.release ();
781 return false;
782 }
783 }
784
785 if (STMT_VINFO_GATHER_P (stmt_vinfo))
786 {
787 tree off;
788 tree decl = vect_check_gather (stmt, loop_vinfo, NULL, &off, NULL);
789 gcc_assert (decl);
790 if (!process_use (stmt, off, loop_vinfo, live_p, relevant,
791 &worklist, true))
792 {
793 worklist.release ();
794 return false;
795 }
796 }
797 } /* while worklist */
798
799 worklist.release ();
800 return true;
801 }
802
803
804 /* Function vect_model_simple_cost.
805
806 Models cost for simple operations, i.e. those that only emit ncopies of a
807 single op. Right now, this does not account for multiple insns that could
808 be generated for the single vector op. We will handle that shortly. */
809
810 void
811 vect_model_simple_cost (stmt_vec_info stmt_info, int ncopies,
812 enum vect_def_type *dt,
813 stmt_vector_for_cost *prologue_cost_vec,
814 stmt_vector_for_cost *body_cost_vec)
815 {
816 int i;
817 int inside_cost = 0, prologue_cost = 0;
818
819 /* The SLP costs were already calculated during SLP tree build. */
820 if (PURE_SLP_STMT (stmt_info))
821 return;
822
823 /* FORNOW: Assuming maximum 2 args per stmts. */
824 for (i = 0; i < 2; i++)
825 if (dt[i] == vect_constant_def || dt[i] == vect_external_def)
826 prologue_cost += record_stmt_cost (prologue_cost_vec, 1, vector_stmt,
827 stmt_info, 0, vect_prologue);
828
829 /* Pass the inside-of-loop statements to the target-specific cost model. */
830 inside_cost = record_stmt_cost (body_cost_vec, ncopies, vector_stmt,
831 stmt_info, 0, vect_body);
832
833 if (dump_enabled_p ())
834 dump_printf_loc (MSG_NOTE, vect_location,
835 "vect_model_simple_cost: inside_cost = %d, "
836 "prologue_cost = %d .", inside_cost, prologue_cost);
837 }
838
839
840 /* Model cost for type demotion and promotion operations. PWR is normally
841 zero for single-step promotions and demotions. It will be one if
842 two-step promotion/demotion is required, and so on. Each additional
843 step doubles the number of instructions required. */
844
845 static void
846 vect_model_promotion_demotion_cost (stmt_vec_info stmt_info,
847 enum vect_def_type *dt, int pwr)
848 {
849 int i, tmp;
850 int inside_cost = 0, prologue_cost = 0;
851 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
852 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
853 void *target_cost_data;
854
855 /* The SLP costs were already calculated during SLP tree build. */
856 if (PURE_SLP_STMT (stmt_info))
857 return;
858
859 if (loop_vinfo)
860 target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
861 else
862 target_cost_data = BB_VINFO_TARGET_COST_DATA (bb_vinfo);
863
864 for (i = 0; i < pwr + 1; i++)
865 {
866 tmp = (STMT_VINFO_TYPE (stmt_info) == type_promotion_vec_info_type) ?
867 (i + 1) : i;
868 inside_cost += add_stmt_cost (target_cost_data, vect_pow2 (tmp),
869 vec_promote_demote, stmt_info, 0,
870 vect_body);
871 }
872
873 /* FORNOW: Assuming maximum 2 args per stmts. */
874 for (i = 0; i < 2; i++)
875 if (dt[i] == vect_constant_def || dt[i] == vect_external_def)
876 prologue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
877 stmt_info, 0, vect_prologue);
878
879 if (dump_enabled_p ())
880 dump_printf_loc (MSG_NOTE, vect_location,
881 "vect_model_promotion_demotion_cost: inside_cost = %d, "
882 "prologue_cost = %d .", inside_cost, prologue_cost);
883 }
884
885 /* Function vect_cost_group_size
886
887 For grouped load or store, return the group_size only if it is the first
888 load or store of a group, else return 1. This ensures that group size is
889 only returned once per group. */
890
891 static int
892 vect_cost_group_size (stmt_vec_info stmt_info)
893 {
894 gimple first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
895
896 if (first_stmt == STMT_VINFO_STMT (stmt_info))
897 return GROUP_SIZE (stmt_info);
898
899 return 1;
900 }
901
902
903 /* Function vect_model_store_cost
904
905 Models cost for stores. In the case of grouped accesses, one access
906 has the overhead of the grouped access attributed to it. */
907
908 void
909 vect_model_store_cost (stmt_vec_info stmt_info, int ncopies,
910 bool store_lanes_p, enum vect_def_type dt,
911 slp_tree slp_node,
912 stmt_vector_for_cost *prologue_cost_vec,
913 stmt_vector_for_cost *body_cost_vec)
914 {
915 int group_size;
916 unsigned int inside_cost = 0, prologue_cost = 0;
917 struct data_reference *first_dr;
918 gimple first_stmt;
919
920 /* The SLP costs were already calculated during SLP tree build. */
921 if (PURE_SLP_STMT (stmt_info))
922 return;
923
924 if (dt == vect_constant_def || dt == vect_external_def)
925 prologue_cost += record_stmt_cost (prologue_cost_vec, 1, scalar_to_vec,
926 stmt_info, 0, vect_prologue);
927
928 /* Grouped access? */
929 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
930 {
931 if (slp_node)
932 {
933 first_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[0];
934 group_size = 1;
935 }
936 else
937 {
938 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
939 group_size = vect_cost_group_size (stmt_info);
940 }
941
942 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
943 }
944 /* Not a grouped access. */
945 else
946 {
947 group_size = 1;
948 first_dr = STMT_VINFO_DATA_REF (stmt_info);
949 }
950
951 /* We assume that the cost of a single store-lanes instruction is
952 equivalent to the cost of GROUP_SIZE separate stores. If a grouped
953 access is instead being provided by a permute-and-store operation,
954 include the cost of the permutes. */
955 if (!store_lanes_p && group_size > 1)
956 {
957 /* Uses a high and low interleave operation for each needed permute. */
958
959 int nstmts = ncopies * exact_log2 (group_size) * group_size;
960 inside_cost = record_stmt_cost (body_cost_vec, nstmts, vec_perm,
961 stmt_info, 0, vect_body);
962
963 if (dump_enabled_p ())
964 dump_printf_loc (MSG_NOTE, vect_location,
965 "vect_model_store_cost: strided group_size = %d .",
966 group_size);
967 }
968
969 /* Costs of the stores. */
970 vect_get_store_cost (first_dr, ncopies, &inside_cost, body_cost_vec);
971
972 if (dump_enabled_p ())
973 dump_printf_loc (MSG_NOTE, vect_location,
974 "vect_model_store_cost: inside_cost = %d, "
975 "prologue_cost = %d .", inside_cost, prologue_cost);
976 }
977
978
979 /* Calculate cost of DR's memory access. */
980 void
981 vect_get_store_cost (struct data_reference *dr, int ncopies,
982 unsigned int *inside_cost,
983 stmt_vector_for_cost *body_cost_vec)
984 {
985 int alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
986 gimple stmt = DR_STMT (dr);
987 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
988
989 switch (alignment_support_scheme)
990 {
991 case dr_aligned:
992 {
993 *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
994 vector_store, stmt_info, 0,
995 vect_body);
996
997 if (dump_enabled_p ())
998 dump_printf_loc (MSG_NOTE, vect_location,
999 "vect_model_store_cost: aligned.");
1000 break;
1001 }
1002
1003 case dr_unaligned_supported:
1004 {
1005 /* Here, we assign an additional cost for the unaligned store. */
1006 *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
1007 unaligned_store, stmt_info,
1008 DR_MISALIGNMENT (dr), vect_body);
1009 if (dump_enabled_p ())
1010 dump_printf_loc (MSG_NOTE, vect_location,
1011 "vect_model_store_cost: unaligned supported by "
1012 "hardware.");
1013 break;
1014 }
1015
1016 case dr_unaligned_unsupported:
1017 {
1018 *inside_cost = VECT_MAX_COST;
1019
1020 if (dump_enabled_p ())
1021 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1022 "vect_model_store_cost: unsupported access.");
1023 break;
1024 }
1025
1026 default:
1027 gcc_unreachable ();
1028 }
1029 }
1030
1031
1032 /* Function vect_model_load_cost
1033
1034 Models cost for loads. In the case of grouped accesses, the last access
1035 has the overhead of the grouped access attributed to it. Since unaligned
1036 accesses are supported for loads, we also account for the costs of the
1037 access scheme chosen. */
1038
1039 void
1040 vect_model_load_cost (stmt_vec_info stmt_info, int ncopies,
1041 bool load_lanes_p, slp_tree slp_node,
1042 stmt_vector_for_cost *prologue_cost_vec,
1043 stmt_vector_for_cost *body_cost_vec)
1044 {
1045 int group_size;
1046 gimple first_stmt;
1047 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr;
1048 unsigned int inside_cost = 0, prologue_cost = 0;
1049
1050 /* The SLP costs were already calculated during SLP tree build. */
1051 if (PURE_SLP_STMT (stmt_info))
1052 return;
1053
1054 /* Grouped accesses? */
1055 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
1056 if (STMT_VINFO_GROUPED_ACCESS (stmt_info) && first_stmt && !slp_node)
1057 {
1058 group_size = vect_cost_group_size (stmt_info);
1059 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
1060 }
1061 /* Not a grouped access. */
1062 else
1063 {
1064 group_size = 1;
1065 first_dr = dr;
1066 }
1067
1068 /* We assume that the cost of a single load-lanes instruction is
1069 equivalent to the cost of GROUP_SIZE separate loads. If a grouped
1070 access is instead being provided by a load-and-permute operation,
1071 include the cost of the permutes. */
1072 if (!load_lanes_p && group_size > 1)
1073 {
1074 /* Uses an even and odd extract operations for each needed permute. */
1075 int nstmts = ncopies * exact_log2 (group_size) * group_size;
1076 inside_cost += record_stmt_cost (body_cost_vec, nstmts, vec_perm,
1077 stmt_info, 0, vect_body);
1078
1079 if (dump_enabled_p ())
1080 dump_printf_loc (MSG_NOTE, vect_location,
1081 "vect_model_load_cost: strided group_size = %d .",
1082 group_size);
1083 }
1084
1085 /* The loads themselves. */
1086 if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
1087 {
1088 /* N scalar loads plus gathering them into a vector. */
1089 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1090 inside_cost += record_stmt_cost (body_cost_vec,
1091 ncopies * TYPE_VECTOR_SUBPARTS (vectype),
1092 scalar_load, stmt_info, 0, vect_body);
1093 inside_cost += record_stmt_cost (body_cost_vec, ncopies, vec_construct,
1094 stmt_info, 0, vect_body);
1095 }
1096 else
1097 vect_get_load_cost (first_dr, ncopies,
1098 ((!STMT_VINFO_GROUPED_ACCESS (stmt_info))
1099 || group_size > 1 || slp_node),
1100 &inside_cost, &prologue_cost,
1101 prologue_cost_vec, body_cost_vec, true);
1102
1103 if (dump_enabled_p ())
1104 dump_printf_loc (MSG_NOTE, vect_location,
1105 "vect_model_load_cost: inside_cost = %d, "
1106 "prologue_cost = %d .", inside_cost, prologue_cost);
1107 }
1108
1109
1110 /* Calculate cost of DR's memory access. */
1111 void
1112 vect_get_load_cost (struct data_reference *dr, int ncopies,
1113 bool add_realign_cost, unsigned int *inside_cost,
1114 unsigned int *prologue_cost,
1115 stmt_vector_for_cost *prologue_cost_vec,
1116 stmt_vector_for_cost *body_cost_vec,
1117 bool record_prologue_costs)
1118 {
1119 int alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
1120 gimple stmt = DR_STMT (dr);
1121 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1122
1123 switch (alignment_support_scheme)
1124 {
1125 case dr_aligned:
1126 {
1127 *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vector_load,
1128 stmt_info, 0, vect_body);
1129
1130 if (dump_enabled_p ())
1131 dump_printf_loc (MSG_NOTE, vect_location,
1132 "vect_model_load_cost: aligned.");
1133
1134 break;
1135 }
1136 case dr_unaligned_supported:
1137 {
1138 /* Here, we assign an additional cost for the unaligned load. */
1139 *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
1140 unaligned_load, stmt_info,
1141 DR_MISALIGNMENT (dr), vect_body);
1142
1143 if (dump_enabled_p ())
1144 dump_printf_loc (MSG_NOTE, vect_location,
1145 "vect_model_load_cost: unaligned supported by "
1146 "hardware.");
1147
1148 break;
1149 }
1150 case dr_explicit_realign:
1151 {
1152 *inside_cost += record_stmt_cost (body_cost_vec, ncopies * 2,
1153 vector_load, stmt_info, 0, vect_body);
1154 *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
1155 vec_perm, stmt_info, 0, vect_body);
1156
1157 /* FIXME: If the misalignment remains fixed across the iterations of
1158 the containing loop, the following cost should be added to the
1159 prologue costs. */
1160 if (targetm.vectorize.builtin_mask_for_load)
1161 *inside_cost += record_stmt_cost (body_cost_vec, 1, vector_stmt,
1162 stmt_info, 0, vect_body);
1163
1164 if (dump_enabled_p ())
1165 dump_printf_loc (MSG_NOTE, vect_location,
1166 "vect_model_load_cost: explicit realign");
1167
1168 break;
1169 }
1170 case dr_explicit_realign_optimized:
1171 {
1172 if (dump_enabled_p ())
1173 dump_printf_loc (MSG_NOTE, vect_location,
1174 "vect_model_load_cost: unaligned software "
1175 "pipelined.");
1176
1177 /* Unaligned software pipeline has a load of an address, an initial
1178 load, and possibly a mask operation to "prime" the loop. However,
1179 if this is an access in a group of loads, which provide grouped
1180 access, then the above cost should only be considered for one
1181 access in the group. Inside the loop, there is a load op
1182 and a realignment op. */
1183
1184 if (add_realign_cost && record_prologue_costs)
1185 {
1186 *prologue_cost += record_stmt_cost (prologue_cost_vec, 2,
1187 vector_stmt, stmt_info,
1188 0, vect_prologue);
1189 if (targetm.vectorize.builtin_mask_for_load)
1190 *prologue_cost += record_stmt_cost (prologue_cost_vec, 1,
1191 vector_stmt, stmt_info,
1192 0, vect_prologue);
1193 }
1194
1195 *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vector_load,
1196 stmt_info, 0, vect_body);
1197 *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vec_perm,
1198 stmt_info, 0, vect_body);
1199
1200 if (dump_enabled_p ())
1201 dump_printf_loc (MSG_NOTE, vect_location,
1202 "vect_model_load_cost: explicit realign optimized");
1203
1204 break;
1205 }
1206
1207 case dr_unaligned_unsupported:
1208 {
1209 *inside_cost = VECT_MAX_COST;
1210
1211 if (dump_enabled_p ())
1212 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1213 "vect_model_load_cost: unsupported access.");
1214 break;
1215 }
1216
1217 default:
1218 gcc_unreachable ();
1219 }
1220 }
1221
1222 /* Insert the new stmt NEW_STMT at *GSI or at the appropriate place in
1223 the loop preheader for the vectorized stmt STMT. */
1224
1225 static void
1226 vect_init_vector_1 (gimple stmt, gimple new_stmt, gimple_stmt_iterator *gsi)
1227 {
1228 if (gsi)
1229 vect_finish_stmt_generation (stmt, new_stmt, gsi);
1230 else
1231 {
1232 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
1233 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
1234
1235 if (loop_vinfo)
1236 {
1237 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1238 basic_block new_bb;
1239 edge pe;
1240
1241 if (nested_in_vect_loop_p (loop, stmt))
1242 loop = loop->inner;
1243
1244 pe = loop_preheader_edge (loop);
1245 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
1246 gcc_assert (!new_bb);
1247 }
1248 else
1249 {
1250 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo);
1251 basic_block bb;
1252 gimple_stmt_iterator gsi_bb_start;
1253
1254 gcc_assert (bb_vinfo);
1255 bb = BB_VINFO_BB (bb_vinfo);
1256 gsi_bb_start = gsi_after_labels (bb);
1257 gsi_insert_before (&gsi_bb_start, new_stmt, GSI_SAME_STMT);
1258 }
1259 }
1260
1261 if (dump_enabled_p ())
1262 {
1263 dump_printf_loc (MSG_NOTE, vect_location,
1264 "created new init_stmt: ");
1265 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
1266 }
1267 }
1268
1269 /* Function vect_init_vector.
1270
1271 Insert a new stmt (INIT_STMT) that initializes a new variable of type
1272 TYPE with the value VAL. If TYPE is a vector type and VAL does not have
1273 vector type a vector with all elements equal to VAL is created first.
1274 Place the initialization at BSI if it is not NULL. Otherwise, place the
1275 initialization at the loop preheader.
1276 Return the DEF of INIT_STMT.
1277 It will be used in the vectorization of STMT. */
1278
1279 tree
1280 vect_init_vector (gimple stmt, tree val, tree type, gimple_stmt_iterator *gsi)
1281 {
1282 tree new_var;
1283 gimple init_stmt;
1284 tree vec_oprnd;
1285 tree new_temp;
1286
1287 if (TREE_CODE (type) == VECTOR_TYPE
1288 && TREE_CODE (TREE_TYPE (val)) != VECTOR_TYPE)
1289 {
1290 if (!types_compatible_p (TREE_TYPE (type), TREE_TYPE (val)))
1291 {
1292 if (CONSTANT_CLASS_P (val))
1293 val = fold_unary (VIEW_CONVERT_EXPR, TREE_TYPE (type), val);
1294 else
1295 {
1296 new_temp = make_ssa_name (TREE_TYPE (type), NULL);
1297 init_stmt = gimple_build_assign_with_ops (NOP_EXPR,
1298 new_temp, val,
1299 NULL_TREE);
1300 vect_init_vector_1 (stmt, init_stmt, gsi);
1301 val = new_temp;
1302 }
1303 }
1304 val = build_vector_from_val (type, val);
1305 }
1306
1307 new_var = vect_get_new_vect_var (type, vect_simple_var, "cst_");
1308 init_stmt = gimple_build_assign (new_var, val);
1309 new_temp = make_ssa_name (new_var, init_stmt);
1310 gimple_assign_set_lhs (init_stmt, new_temp);
1311 vect_init_vector_1 (stmt, init_stmt, gsi);
1312 vec_oprnd = gimple_assign_lhs (init_stmt);
1313 return vec_oprnd;
1314 }
1315
1316
1317 /* Function vect_get_vec_def_for_operand.
1318
1319 OP is an operand in STMT. This function returns a (vector) def that will be
1320 used in the vectorized stmt for STMT.
1321
1322 In the case that OP is an SSA_NAME which is defined in the loop, then
1323 STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.
1324
1325 In case OP is an invariant or constant, a new stmt that creates a vector def
1326 needs to be introduced. */
1327
1328 tree
1329 vect_get_vec_def_for_operand (tree op, gimple stmt, tree *scalar_def)
1330 {
1331 tree vec_oprnd;
1332 gimple vec_stmt;
1333 gimple def_stmt;
1334 stmt_vec_info def_stmt_info = NULL;
1335 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
1336 unsigned int nunits;
1337 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
1338 tree def;
1339 enum vect_def_type dt;
1340 bool is_simple_use;
1341 tree vector_type;
1342
1343 if (dump_enabled_p ())
1344 {
1345 dump_printf_loc (MSG_NOTE, vect_location,
1346 "vect_get_vec_def_for_operand: ");
1347 dump_generic_expr (MSG_NOTE, TDF_SLIM, op);
1348 }
1349
1350 is_simple_use = vect_is_simple_use (op, stmt, loop_vinfo, NULL,
1351 &def_stmt, &def, &dt);
1352 gcc_assert (is_simple_use);
1353 if (dump_enabled_p ())
1354 {
1355 int loc_printed = 0;
1356 if (def)
1357 {
1358 dump_printf_loc (MSG_NOTE, vect_location, "def = ");
1359 loc_printed = 1;
1360 dump_generic_expr (MSG_NOTE, TDF_SLIM, def);
1361 }
1362 if (def_stmt)
1363 {
1364 if (loc_printed)
1365 dump_printf (MSG_NOTE, " def_stmt = ");
1366 else
1367 dump_printf_loc (MSG_NOTE, vect_location, " def_stmt = ");
1368 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
1369 }
1370 }
1371
1372 switch (dt)
1373 {
1374 /* Case 1: operand is a constant. */
1375 case vect_constant_def:
1376 {
1377 vector_type = get_vectype_for_scalar_type (TREE_TYPE (op));
1378 gcc_assert (vector_type);
1379 nunits = TYPE_VECTOR_SUBPARTS (vector_type);
1380
1381 if (scalar_def)
1382 *scalar_def = op;
1383
1384 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1385 if (dump_enabled_p ())
1386 dump_printf_loc (MSG_NOTE, vect_location,
1387 "Create vector_cst. nunits = %d", nunits);
1388
1389 return vect_init_vector (stmt, op, vector_type, NULL);
1390 }
1391
1392 /* Case 2: operand is defined outside the loop - loop invariant. */
1393 case vect_external_def:
1394 {
1395 vector_type = get_vectype_for_scalar_type (TREE_TYPE (def));
1396 gcc_assert (vector_type);
1397
1398 if (scalar_def)
1399 *scalar_def = def;
1400
1401 /* Create 'vec_inv = {inv,inv,..,inv}' */
1402 if (dump_enabled_p ())
1403 dump_printf_loc (MSG_NOTE, vect_location, "Create vector_inv.");
1404
1405 return vect_init_vector (stmt, def, vector_type, NULL);
1406 }
1407
1408 /* Case 3: operand is defined inside the loop. */
1409 case vect_internal_def:
1410 {
1411 if (scalar_def)
1412 *scalar_def = NULL/* FIXME tuples: def_stmt*/;
1413
1414 /* Get the def from the vectorized stmt. */
1415 def_stmt_info = vinfo_for_stmt (def_stmt);
1416
1417 vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
1418 /* Get vectorized pattern statement. */
1419 if (!vec_stmt
1420 && STMT_VINFO_IN_PATTERN_P (def_stmt_info)
1421 && !STMT_VINFO_RELEVANT (def_stmt_info))
1422 vec_stmt = STMT_VINFO_VEC_STMT (vinfo_for_stmt (
1423 STMT_VINFO_RELATED_STMT (def_stmt_info)));
1424 gcc_assert (vec_stmt);
1425 if (gimple_code (vec_stmt) == GIMPLE_PHI)
1426 vec_oprnd = PHI_RESULT (vec_stmt);
1427 else if (is_gimple_call (vec_stmt))
1428 vec_oprnd = gimple_call_lhs (vec_stmt);
1429 else
1430 vec_oprnd = gimple_assign_lhs (vec_stmt);
1431 return vec_oprnd;
1432 }
1433
1434 /* Case 4: operand is defined by a loop header phi - reduction */
1435 case vect_reduction_def:
1436 case vect_double_reduction_def:
1437 case vect_nested_cycle:
1438 {
1439 struct loop *loop;
1440
1441 gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
1442 loop = (gimple_bb (def_stmt))->loop_father;
1443
1444 /* Get the def before the loop */
1445 op = PHI_ARG_DEF_FROM_EDGE (def_stmt, loop_preheader_edge (loop));
1446 return get_initial_def_for_reduction (stmt, op, scalar_def);
1447 }
1448
1449 /* Case 5: operand is defined by loop-header phi - induction. */
1450 case vect_induction_def:
1451 {
1452 gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
1453
1454 /* Get the def from the vectorized stmt. */
1455 def_stmt_info = vinfo_for_stmt (def_stmt);
1456 vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
1457 if (gimple_code (vec_stmt) == GIMPLE_PHI)
1458 vec_oprnd = PHI_RESULT (vec_stmt);
1459 else
1460 vec_oprnd = gimple_get_lhs (vec_stmt);
1461 return vec_oprnd;
1462 }
1463
1464 default:
1465 gcc_unreachable ();
1466 }
1467 }
1468
1469
1470 /* Function vect_get_vec_def_for_stmt_copy
1471
1472 Return a vector-def for an operand. This function is used when the
1473 vectorized stmt to be created (by the caller to this function) is a "copy"
1474 created in case the vectorized result cannot fit in one vector, and several
1475 copies of the vector-stmt are required. In this case the vector-def is
1476 retrieved from the vector stmt recorded in the STMT_VINFO_RELATED_STMT field
1477 of the stmt that defines VEC_OPRND.
1478 DT is the type of the vector def VEC_OPRND.
1479
1480 Context:
1481 In case the vectorization factor (VF) is bigger than the number
1482 of elements that can fit in a vectype (nunits), we have to generate
1483 more than one vector stmt to vectorize the scalar stmt. This situation
1484 arises when there are multiple data-types operated upon in the loop; the
1485 smallest data-type determines the VF, and as a result, when vectorizing
1486 stmts operating on wider types we need to create 'VF/nunits' "copies" of the
1487 vector stmt (each computing a vector of 'nunits' results, and together
1488 computing 'VF' results in each iteration). This function is called when
1489 vectorizing such a stmt (e.g. vectorizing S2 in the illustration below, in
1490 which VF=16 and nunits=4, so the number of copies required is 4):
1491
1492 scalar stmt: vectorized into: STMT_VINFO_RELATED_STMT
1493
1494 S1: x = load VS1.0: vx.0 = memref0 VS1.1
1495 VS1.1: vx.1 = memref1 VS1.2
1496 VS1.2: vx.2 = memref2 VS1.3
1497 VS1.3: vx.3 = memref3
1498
1499 S2: z = x + ... VSnew.0: vz0 = vx.0 + ... VSnew.1
1500 VSnew.1: vz1 = vx.1 + ... VSnew.2
1501 VSnew.2: vz2 = vx.2 + ... VSnew.3
1502 VSnew.3: vz3 = vx.3 + ...
1503
1504 The vectorization of S1 is explained in vectorizable_load.
1505 The vectorization of S2:
1506 To create the first vector-stmt out of the 4 copies - VSnew.0 -
1507 the function 'vect_get_vec_def_for_operand' is called to
1508 get the relevant vector-def for each operand of S2. For operand x it
1509 returns the vector-def 'vx.0'.
1510
1511 To create the remaining copies of the vector-stmt (VSnew.j), this
1512 function is called to get the relevant vector-def for each operand. It is
1513 obtained from the respective VS1.j stmt, which is recorded in the
1514 STMT_VINFO_RELATED_STMT field of the stmt that defines VEC_OPRND.
1515
1516 For example, to obtain the vector-def 'vx.1' in order to create the
1517 vector stmt 'VSnew.1', this function is called with VEC_OPRND='vx.0'.
1518 Given 'vx0' we obtain the stmt that defines it ('VS1.0'); from the
1519 STMT_VINFO_RELATED_STMT field of 'VS1.0' we obtain the next copy - 'VS1.1',
1520 and return its def ('vx.1').
1521 Overall, to create the above sequence this function will be called 3 times:
1522 vx.1 = vect_get_vec_def_for_stmt_copy (dt, vx.0);
1523 vx.2 = vect_get_vec_def_for_stmt_copy (dt, vx.1);
1524 vx.3 = vect_get_vec_def_for_stmt_copy (dt, vx.2); */
1525
1526 tree
1527 vect_get_vec_def_for_stmt_copy (enum vect_def_type dt, tree vec_oprnd)
1528 {
1529 gimple vec_stmt_for_operand;
1530 stmt_vec_info def_stmt_info;
1531
1532 /* Do nothing; can reuse same def. */
1533 if (dt == vect_external_def || dt == vect_constant_def )
1534 return vec_oprnd;
1535
1536 vec_stmt_for_operand = SSA_NAME_DEF_STMT (vec_oprnd);
1537 def_stmt_info = vinfo_for_stmt (vec_stmt_for_operand);
1538 gcc_assert (def_stmt_info);
1539 vec_stmt_for_operand = STMT_VINFO_RELATED_STMT (def_stmt_info);
1540 gcc_assert (vec_stmt_for_operand);
1541 vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
1542 if (gimple_code (vec_stmt_for_operand) == GIMPLE_PHI)
1543 vec_oprnd = PHI_RESULT (vec_stmt_for_operand);
1544 else
1545 vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
1546 return vec_oprnd;
1547 }
1548
1549
1550 /* Get vectorized definitions for the operands to create a copy of an original
1551 stmt. See vect_get_vec_def_for_stmt_copy () for details. */
1552
1553 static void
1554 vect_get_vec_defs_for_stmt_copy (enum vect_def_type *dt,
1555 vec<tree> *vec_oprnds0,
1556 vec<tree> *vec_oprnds1)
1557 {
1558 tree vec_oprnd = vec_oprnds0->pop ();
1559
1560 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd);
1561 vec_oprnds0->quick_push (vec_oprnd);
1562
1563 if (vec_oprnds1 && vec_oprnds1->length ())
1564 {
1565 vec_oprnd = vec_oprnds1->pop ();
1566 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd);
1567 vec_oprnds1->quick_push (vec_oprnd);
1568 }
1569 }
1570
1571
1572 /* Get vectorized definitions for OP0 and OP1.
1573 REDUC_INDEX is the index of reduction operand in case of reduction,
1574 and -1 otherwise. */
1575
1576 void
1577 vect_get_vec_defs (tree op0, tree op1, gimple stmt,
1578 vec<tree> *vec_oprnds0,
1579 vec<tree> *vec_oprnds1,
1580 slp_tree slp_node, int reduc_index)
1581 {
1582 if (slp_node)
1583 {
1584 int nops = (op1 == NULL_TREE) ? 1 : 2;
1585 vec<tree> ops;
1586 ops.create (nops);
1587 vec<slp_void_p> vec_defs;
1588 vec_defs.create (nops);
1589
1590 ops.quick_push (op0);
1591 if (op1)
1592 ops.quick_push (op1);
1593
1594 vect_get_slp_defs (ops, slp_node, &vec_defs, reduc_index);
1595
1596 *vec_oprnds0 = *((vec<tree> *) vec_defs[0]);
1597 if (op1)
1598 *vec_oprnds1 = *((vec<tree> *) vec_defs[1]);
1599
1600 ops.release ();
1601 vec_defs.release ();
1602 }
1603 else
1604 {
1605 tree vec_oprnd;
1606
1607 vec_oprnds0->create (1);
1608 vec_oprnd = vect_get_vec_def_for_operand (op0, stmt, NULL);
1609 vec_oprnds0->quick_push (vec_oprnd);
1610
1611 if (op1)
1612 {
1613 vec_oprnds1->create (1);
1614 vec_oprnd = vect_get_vec_def_for_operand (op1, stmt, NULL);
1615 vec_oprnds1->quick_push (vec_oprnd);
1616 }
1617 }
1618 }
1619
1620
1621 /* Function vect_finish_stmt_generation.
1622
1623 Insert a new stmt. */
1624
1625 void
1626 vect_finish_stmt_generation (gimple stmt, gimple vec_stmt,
1627 gimple_stmt_iterator *gsi)
1628 {
1629 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1630 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1631 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
1632
1633 gcc_assert (gimple_code (stmt) != GIMPLE_LABEL);
1634
1635 if (!gsi_end_p (*gsi)
1636 && gimple_has_mem_ops (vec_stmt))
1637 {
1638 gimple at_stmt = gsi_stmt (*gsi);
1639 tree vuse = gimple_vuse (at_stmt);
1640 if (vuse && TREE_CODE (vuse) == SSA_NAME)
1641 {
1642 tree vdef = gimple_vdef (at_stmt);
1643 gimple_set_vuse (vec_stmt, gimple_vuse (at_stmt));
1644 /* If we have an SSA vuse and insert a store, update virtual
1645 SSA form to avoid triggering the renamer. Do so only
1646 if we can easily see all uses - which is what almost always
1647 happens with the way vectorized stmts are inserted. */
1648 if ((vdef && TREE_CODE (vdef) == SSA_NAME)
1649 && ((is_gimple_assign (vec_stmt)
1650 && !is_gimple_reg (gimple_assign_lhs (vec_stmt)))
1651 || (is_gimple_call (vec_stmt)
1652 && !(gimple_call_flags (vec_stmt)
1653 & (ECF_CONST|ECF_PURE|ECF_NOVOPS)))))
1654 {
1655 tree new_vdef = copy_ssa_name (vuse, vec_stmt);
1656 gimple_set_vdef (vec_stmt, new_vdef);
1657 SET_USE (gimple_vuse_op (at_stmt), new_vdef);
1658 }
1659 }
1660 }
1661 gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
1662
1663 set_vinfo_for_stmt (vec_stmt, new_stmt_vec_info (vec_stmt, loop_vinfo,
1664 bb_vinfo));
1665
1666 if (dump_enabled_p ())
1667 {
1668 dump_printf_loc (MSG_NOTE, vect_location, "add new stmt: ");
1669 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vec_stmt, 0);
1670 }
1671
1672 gimple_set_location (vec_stmt, gimple_location (stmt));
1673 }
1674
1675 /* Checks if CALL can be vectorized in type VECTYPE. Returns
1676 a function declaration if the target has a vectorized version
1677 of the function, or NULL_TREE if the function cannot be vectorized. */
1678
1679 tree
1680 vectorizable_function (gimple call, tree vectype_out, tree vectype_in)
1681 {
1682 tree fndecl = gimple_call_fndecl (call);
1683
1684 /* We only handle functions that do not read or clobber memory -- i.e.
1685 const or novops ones. */
1686 if (!(gimple_call_flags (call) & (ECF_CONST | ECF_NOVOPS)))
1687 return NULL_TREE;
1688
1689 if (!fndecl
1690 || TREE_CODE (fndecl) != FUNCTION_DECL
1691 || !DECL_BUILT_IN (fndecl))
1692 return NULL_TREE;
1693
1694 return targetm.vectorize.builtin_vectorized_function (fndecl, vectype_out,
1695 vectype_in);
1696 }
1697
1698 /* Function vectorizable_call.
1699
1700 Check if STMT performs a function call that can be vectorized.
1701 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
1702 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
1703 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
1704
1705 static bool
1706 vectorizable_call (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
1707 slp_tree slp_node)
1708 {
1709 tree vec_dest;
1710 tree scalar_dest;
1711 tree op, type;
1712 tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
1713 stmt_vec_info stmt_info = vinfo_for_stmt (stmt), prev_stmt_info;
1714 tree vectype_out, vectype_in;
1715 int nunits_in;
1716 int nunits_out;
1717 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1718 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
1719 tree fndecl, new_temp, def, rhs_type;
1720 gimple def_stmt;
1721 enum vect_def_type dt[3]
1722 = {vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type};
1723 gimple new_stmt = NULL;
1724 int ncopies, j;
1725 vec<tree> vargs = vec<tree>();
1726 enum { NARROW, NONE, WIDEN } modifier;
1727 size_t i, nargs;
1728 tree lhs;
1729
1730 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
1731 return false;
1732
1733 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
1734 return false;
1735
1736 /* Is STMT a vectorizable call? */
1737 if (!is_gimple_call (stmt))
1738 return false;
1739
1740 if (TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME)
1741 return false;
1742
1743 if (stmt_can_throw_internal (stmt))
1744 return false;
1745
1746 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
1747
1748 /* Process function arguments. */
1749 rhs_type = NULL_TREE;
1750 vectype_in = NULL_TREE;
1751 nargs = gimple_call_num_args (stmt);
1752
1753 /* Bail out if the function has more than three arguments, we do not have
1754 interesting builtin functions to vectorize with more than two arguments
1755 except for fma. No arguments is also not good. */
1756 if (nargs == 0 || nargs > 3)
1757 return false;
1758
1759 for (i = 0; i < nargs; i++)
1760 {
1761 tree opvectype;
1762
1763 op = gimple_call_arg (stmt, i);
1764
1765 /* We can only handle calls with arguments of the same type. */
1766 if (rhs_type
1767 && !types_compatible_p (rhs_type, TREE_TYPE (op)))
1768 {
1769 if (dump_enabled_p ())
1770 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1771 "argument types differ.");
1772 return false;
1773 }
1774 if (!rhs_type)
1775 rhs_type = TREE_TYPE (op);
1776
1777 if (!vect_is_simple_use_1 (op, stmt, loop_vinfo, bb_vinfo,
1778 &def_stmt, &def, &dt[i], &opvectype))
1779 {
1780 if (dump_enabled_p ())
1781 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1782 "use not simple.");
1783 return false;
1784 }
1785
1786 if (!vectype_in)
1787 vectype_in = opvectype;
1788 else if (opvectype
1789 && opvectype != vectype_in)
1790 {
1791 if (dump_enabled_p ())
1792 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1793 "argument vector types differ.");
1794 return false;
1795 }
1796 }
1797 /* If all arguments are external or constant defs use a vector type with
1798 the same size as the output vector type. */
1799 if (!vectype_in)
1800 vectype_in = get_same_sized_vectype (rhs_type, vectype_out);
1801 if (vec_stmt)
1802 gcc_assert (vectype_in);
1803 if (!vectype_in)
1804 {
1805 if (dump_enabled_p ())
1806 {
1807 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1808 "no vectype for scalar type ");
1809 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, rhs_type);
1810 }
1811
1812 return false;
1813 }
1814
1815 /* FORNOW */
1816 nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
1817 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
1818 if (nunits_in == nunits_out / 2)
1819 modifier = NARROW;
1820 else if (nunits_out == nunits_in)
1821 modifier = NONE;
1822 else if (nunits_out == nunits_in / 2)
1823 modifier = WIDEN;
1824 else
1825 return false;
1826
1827 /* For now, we only vectorize functions if a target specific builtin
1828 is available. TODO -- in some cases, it might be profitable to
1829 insert the calls for pieces of the vector, in order to be able
1830 to vectorize other operations in the loop. */
1831 fndecl = vectorizable_function (stmt, vectype_out, vectype_in);
1832 if (fndecl == NULL_TREE)
1833 {
1834 if (dump_enabled_p ())
1835 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1836 "function is not vectorizable.");
1837
1838 return false;
1839 }
1840
1841 gcc_assert (!gimple_vuse (stmt));
1842
1843 if (slp_node || PURE_SLP_STMT (stmt_info))
1844 ncopies = 1;
1845 else if (modifier == NARROW)
1846 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
1847 else
1848 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
1849
1850 /* Sanity check: make sure that at least one copy of the vectorized stmt
1851 needs to be generated. */
1852 gcc_assert (ncopies >= 1);
1853
1854 if (!vec_stmt) /* transformation not required. */
1855 {
1856 STMT_VINFO_TYPE (stmt_info) = call_vec_info_type;
1857 if (dump_enabled_p ())
1858 dump_printf_loc (MSG_NOTE, vect_location, "=== vectorizable_call ===");
1859 vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
1860 return true;
1861 }
1862
1863 /** Transform. **/
1864
1865 if (dump_enabled_p ())
1866 dump_printf_loc (MSG_NOTE, vect_location, "transform call.");
1867
1868 /* Handle def. */
1869 scalar_dest = gimple_call_lhs (stmt);
1870 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
1871
1872 prev_stmt_info = NULL;
1873 switch (modifier)
1874 {
1875 case NONE:
1876 for (j = 0; j < ncopies; ++j)
1877 {
1878 /* Build argument list for the vectorized call. */
1879 if (j == 0)
1880 vargs.create (nargs);
1881 else
1882 vargs.truncate (0);
1883
1884 if (slp_node)
1885 {
1886 vec<slp_void_p> vec_defs;
1887 vec_defs.create (nargs);
1888 vec<tree> vec_oprnds0;
1889
1890 for (i = 0; i < nargs; i++)
1891 vargs.quick_push (gimple_call_arg (stmt, i));
1892 vect_get_slp_defs (vargs, slp_node, &vec_defs, -1);
1893 vec_oprnds0 = *((vec<tree> *) vec_defs[0]);
1894
1895 /* Arguments are ready. Create the new vector stmt. */
1896 FOR_EACH_VEC_ELT (vec_oprnds0, i, vec_oprnd0)
1897 {
1898 size_t k;
1899 for (k = 0; k < nargs; k++)
1900 {
1901 vec<tree> vec_oprndsk = *((vec<tree> *) vec_defs[k]);
1902 vargs[k] = vec_oprndsk[i];
1903 }
1904 new_stmt = gimple_build_call_vec (fndecl, vargs);
1905 new_temp = make_ssa_name (vec_dest, new_stmt);
1906 gimple_call_set_lhs (new_stmt, new_temp);
1907 vect_finish_stmt_generation (stmt, new_stmt, gsi);
1908 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
1909 }
1910
1911 for (i = 0; i < nargs; i++)
1912 {
1913 vec<tree> vec_oprndsi = *((vec<tree> *) vec_defs[i]);
1914 vec_oprndsi.release ();
1915 }
1916 vec_defs.release ();
1917 continue;
1918 }
1919
1920 for (i = 0; i < nargs; i++)
1921 {
1922 op = gimple_call_arg (stmt, i);
1923 if (j == 0)
1924 vec_oprnd0
1925 = vect_get_vec_def_for_operand (op, stmt, NULL);
1926 else
1927 {
1928 vec_oprnd0 = gimple_call_arg (new_stmt, i);
1929 vec_oprnd0
1930 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
1931 }
1932
1933 vargs.quick_push (vec_oprnd0);
1934 }
1935
1936 new_stmt = gimple_build_call_vec (fndecl, vargs);
1937 new_temp = make_ssa_name (vec_dest, new_stmt);
1938 gimple_call_set_lhs (new_stmt, new_temp);
1939 vect_finish_stmt_generation (stmt, new_stmt, gsi);
1940
1941 if (j == 0)
1942 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
1943 else
1944 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
1945
1946 prev_stmt_info = vinfo_for_stmt (new_stmt);
1947 }
1948
1949 break;
1950
1951 case NARROW:
1952 for (j = 0; j < ncopies; ++j)
1953 {
1954 /* Build argument list for the vectorized call. */
1955 if (j == 0)
1956 vargs.create (nargs * 2);
1957 else
1958 vargs.truncate (0);
1959
1960 if (slp_node)
1961 {
1962 vec<slp_void_p> vec_defs;
1963 vec_defs.create (nargs);
1964 vec<tree> vec_oprnds0;
1965
1966 for (i = 0; i < nargs; i++)
1967 vargs.quick_push (gimple_call_arg (stmt, i));
1968 vect_get_slp_defs (vargs, slp_node, &vec_defs, -1);
1969 vec_oprnds0 = *((vec<tree> *) vec_defs[0]);
1970
1971 /* Arguments are ready. Create the new vector stmt. */
1972 for (i = 0; vec_oprnds0.iterate (i, &vec_oprnd0); i += 2)
1973 {
1974 size_t k;
1975 vargs.truncate (0);
1976 for (k = 0; k < nargs; k++)
1977 {
1978 vec<tree> vec_oprndsk = *((vec<tree> *) vec_defs[k]);
1979 vargs.quick_push (vec_oprndsk[i]);
1980 vargs.quick_push (vec_oprndsk[i + 1]);
1981 }
1982 new_stmt = gimple_build_call_vec (fndecl, vargs);
1983 new_temp = make_ssa_name (vec_dest, new_stmt);
1984 gimple_call_set_lhs (new_stmt, new_temp);
1985 vect_finish_stmt_generation (stmt, new_stmt, gsi);
1986 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
1987 }
1988
1989 for (i = 0; i < nargs; i++)
1990 {
1991 vec<tree> vec_oprndsi = *((vec<tree> *) vec_defs[i]);
1992 vec_oprndsi.release ();
1993 }
1994 vec_defs.release ();
1995 continue;
1996 }
1997
1998 for (i = 0; i < nargs; i++)
1999 {
2000 op = gimple_call_arg (stmt, i);
2001 if (j == 0)
2002 {
2003 vec_oprnd0
2004 = vect_get_vec_def_for_operand (op, stmt, NULL);
2005 vec_oprnd1
2006 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
2007 }
2008 else
2009 {
2010 vec_oprnd1 = gimple_call_arg (new_stmt, 2*i + 1);
2011 vec_oprnd0
2012 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd1);
2013 vec_oprnd1
2014 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
2015 }
2016
2017 vargs.quick_push (vec_oprnd0);
2018 vargs.quick_push (vec_oprnd1);
2019 }
2020
2021 new_stmt = gimple_build_call_vec (fndecl, vargs);
2022 new_temp = make_ssa_name (vec_dest, new_stmt);
2023 gimple_call_set_lhs (new_stmt, new_temp);
2024 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2025
2026 if (j == 0)
2027 STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
2028 else
2029 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2030
2031 prev_stmt_info = vinfo_for_stmt (new_stmt);
2032 }
2033
2034 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
2035
2036 break;
2037
2038 case WIDEN:
2039 /* No current target implements this case. */
2040 return false;
2041 }
2042
2043 vargs.release ();
2044
2045 /* Update the exception handling table with the vector stmt if necessary. */
2046 if (maybe_clean_or_replace_eh_stmt (stmt, *vec_stmt))
2047 gimple_purge_dead_eh_edges (gimple_bb (stmt));
2048
2049 /* The call in STMT might prevent it from being removed in dce.
2050 We however cannot remove it here, due to the way the ssa name
2051 it defines is mapped to the new definition. So just replace
2052 rhs of the statement with something harmless. */
2053
2054 if (slp_node)
2055 return true;
2056
2057 type = TREE_TYPE (scalar_dest);
2058 if (is_pattern_stmt_p (stmt_info))
2059 lhs = gimple_call_lhs (STMT_VINFO_RELATED_STMT (stmt_info));
2060 else
2061 lhs = gimple_call_lhs (stmt);
2062 new_stmt = gimple_build_assign (lhs, build_zero_cst (type));
2063 set_vinfo_for_stmt (new_stmt, stmt_info);
2064 set_vinfo_for_stmt (stmt, NULL);
2065 STMT_VINFO_STMT (stmt_info) = new_stmt;
2066 gsi_replace (gsi, new_stmt, false);
2067 SSA_NAME_DEF_STMT (gimple_assign_lhs (new_stmt)) = new_stmt;
2068
2069 return true;
2070 }
2071
2072
2073 /* Function vect_gen_widened_results_half
2074
2075 Create a vector stmt whose code, type, number of arguments, and result
2076 variable are CODE, OP_TYPE, and VEC_DEST, and its arguments are
2077 VEC_OPRND0 and VEC_OPRND1. The new vector stmt is to be inserted at BSI.
2078 In the case that CODE is a CALL_EXPR, this means that a call to DECL
2079 needs to be created (DECL is a function-decl of a target-builtin).
2080 STMT is the original scalar stmt that we are vectorizing. */
2081
2082 static gimple
2083 vect_gen_widened_results_half (enum tree_code code,
2084 tree decl,
2085 tree vec_oprnd0, tree vec_oprnd1, int op_type,
2086 tree vec_dest, gimple_stmt_iterator *gsi,
2087 gimple stmt)
2088 {
2089 gimple new_stmt;
2090 tree new_temp;
2091
2092 /* Generate half of the widened result: */
2093 if (code == CALL_EXPR)
2094 {
2095 /* Target specific support */
2096 if (op_type == binary_op)
2097 new_stmt = gimple_build_call (decl, 2, vec_oprnd0, vec_oprnd1);
2098 else
2099 new_stmt = gimple_build_call (decl, 1, vec_oprnd0);
2100 new_temp = make_ssa_name (vec_dest, new_stmt);
2101 gimple_call_set_lhs (new_stmt, new_temp);
2102 }
2103 else
2104 {
2105 /* Generic support */
2106 gcc_assert (op_type == TREE_CODE_LENGTH (code));
2107 if (op_type != binary_op)
2108 vec_oprnd1 = NULL;
2109 new_stmt = gimple_build_assign_with_ops (code, vec_dest, vec_oprnd0,
2110 vec_oprnd1);
2111 new_temp = make_ssa_name (vec_dest, new_stmt);
2112 gimple_assign_set_lhs (new_stmt, new_temp);
2113 }
2114 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2115
2116 return new_stmt;
2117 }
2118
2119
2120 /* Get vectorized definitions for loop-based vectorization. For the first
2121 operand we call vect_get_vec_def_for_operand() (with OPRND containing
2122 scalar operand), and for the rest we get a copy with
2123 vect_get_vec_def_for_stmt_copy() using the previous vector definition
2124 (stored in OPRND). See vect_get_vec_def_for_stmt_copy() for details.
2125 The vectors are collected into VEC_OPRNDS. */
2126
2127 static void
2128 vect_get_loop_based_defs (tree *oprnd, gimple stmt, enum vect_def_type dt,
2129 vec<tree> *vec_oprnds, int multi_step_cvt)
2130 {
2131 tree vec_oprnd;
2132
2133 /* Get first vector operand. */
2134 /* All the vector operands except the very first one (that is scalar oprnd)
2135 are stmt copies. */
2136 if (TREE_CODE (TREE_TYPE (*oprnd)) != VECTOR_TYPE)
2137 vec_oprnd = vect_get_vec_def_for_operand (*oprnd, stmt, NULL);
2138 else
2139 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, *oprnd);
2140
2141 vec_oprnds->quick_push (vec_oprnd);
2142
2143 /* Get second vector operand. */
2144 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, vec_oprnd);
2145 vec_oprnds->quick_push (vec_oprnd);
2146
2147 *oprnd = vec_oprnd;
2148
2149 /* For conversion in multiple steps, continue to get operands
2150 recursively. */
2151 if (multi_step_cvt)
2152 vect_get_loop_based_defs (oprnd, stmt, dt, vec_oprnds, multi_step_cvt - 1);
2153 }
2154
2155
2156 /* Create vectorized demotion statements for vector operands from VEC_OPRNDS.
2157 For multi-step conversions store the resulting vectors and call the function
2158 recursively. */
2159
2160 static void
2161 vect_create_vectorized_demotion_stmts (vec<tree> *vec_oprnds,
2162 int multi_step_cvt, gimple stmt,
2163 vec<tree> vec_dsts,
2164 gimple_stmt_iterator *gsi,
2165 slp_tree slp_node, enum tree_code code,
2166 stmt_vec_info *prev_stmt_info)
2167 {
2168 unsigned int i;
2169 tree vop0, vop1, new_tmp, vec_dest;
2170 gimple new_stmt;
2171 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2172
2173 vec_dest = vec_dsts.pop ();
2174
2175 for (i = 0; i < vec_oprnds->length (); i += 2)
2176 {
2177 /* Create demotion operation. */
2178 vop0 = (*vec_oprnds)[i];
2179 vop1 = (*vec_oprnds)[i + 1];
2180 new_stmt = gimple_build_assign_with_ops (code, vec_dest, vop0, vop1);
2181 new_tmp = make_ssa_name (vec_dest, new_stmt);
2182 gimple_assign_set_lhs (new_stmt, new_tmp);
2183 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2184
2185 if (multi_step_cvt)
2186 /* Store the resulting vector for next recursive call. */
2187 (*vec_oprnds)[i/2] = new_tmp;
2188 else
2189 {
2190 /* This is the last step of the conversion sequence. Store the
2191 vectors in SLP_NODE or in vector info of the scalar statement
2192 (or in STMT_VINFO_RELATED_STMT chain). */
2193 if (slp_node)
2194 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
2195 else
2196 {
2197 if (!*prev_stmt_info)
2198 STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
2199 else
2200 STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt;
2201
2202 *prev_stmt_info = vinfo_for_stmt (new_stmt);
2203 }
2204 }
2205 }
2206
2207 /* For multi-step demotion operations we first generate demotion operations
2208 from the source type to the intermediate types, and then combine the
2209 results (stored in VEC_OPRNDS) in demotion operation to the destination
2210 type. */
2211 if (multi_step_cvt)
2212 {
2213 /* At each level of recursion we have half of the operands we had at the
2214 previous level. */
2215 vec_oprnds->truncate ((i+1)/2);
2216 vect_create_vectorized_demotion_stmts (vec_oprnds, multi_step_cvt - 1,
2217 stmt, vec_dsts, gsi, slp_node,
2218 VEC_PACK_TRUNC_EXPR,
2219 prev_stmt_info);
2220 }
2221
2222 vec_dsts.quick_push (vec_dest);
2223 }
2224
2225
2226 /* Create vectorized promotion statements for vector operands from VEC_OPRNDS0
2227 and VEC_OPRNDS1 (for binary operations). For multi-step conversions store
2228 the resulting vectors and call the function recursively. */
2229
2230 static void
2231 vect_create_vectorized_promotion_stmts (vec<tree> *vec_oprnds0,
2232 vec<tree> *vec_oprnds1,
2233 gimple stmt, tree vec_dest,
2234 gimple_stmt_iterator *gsi,
2235 enum tree_code code1,
2236 enum tree_code code2, tree decl1,
2237 tree decl2, int op_type)
2238 {
2239 int i;
2240 tree vop0, vop1, new_tmp1, new_tmp2;
2241 gimple new_stmt1, new_stmt2;
2242 vec<tree> vec_tmp = vec<tree>();
2243
2244 vec_tmp.create (vec_oprnds0->length () * 2);
2245 FOR_EACH_VEC_ELT (*vec_oprnds0, i, vop0)
2246 {
2247 if (op_type == binary_op)
2248 vop1 = (*vec_oprnds1)[i];
2249 else
2250 vop1 = NULL_TREE;
2251
2252 /* Generate the two halves of promotion operation. */
2253 new_stmt1 = vect_gen_widened_results_half (code1, decl1, vop0, vop1,
2254 op_type, vec_dest, gsi, stmt);
2255 new_stmt2 = vect_gen_widened_results_half (code2, decl2, vop0, vop1,
2256 op_type, vec_dest, gsi, stmt);
2257 if (is_gimple_call (new_stmt1))
2258 {
2259 new_tmp1 = gimple_call_lhs (new_stmt1);
2260 new_tmp2 = gimple_call_lhs (new_stmt2);
2261 }
2262 else
2263 {
2264 new_tmp1 = gimple_assign_lhs (new_stmt1);
2265 new_tmp2 = gimple_assign_lhs (new_stmt2);
2266 }
2267
2268 /* Store the results for the next step. */
2269 vec_tmp.quick_push (new_tmp1);
2270 vec_tmp.quick_push (new_tmp2);
2271 }
2272
2273 vec_oprnds0->truncate (0);
2274 *vec_oprnds0 = vec_tmp;
2275 }
2276
2277
2278 /* Check if STMT performs a conversion operation, that can be vectorized.
2279 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
2280 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
2281 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
2282
2283 static bool
2284 vectorizable_conversion (gimple stmt, gimple_stmt_iterator *gsi,
2285 gimple *vec_stmt, slp_tree slp_node)
2286 {
2287 tree vec_dest;
2288 tree scalar_dest;
2289 tree op0, op1 = NULL_TREE;
2290 tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
2291 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2292 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2293 enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK;
2294 enum tree_code codecvt1 = ERROR_MARK, codecvt2 = ERROR_MARK;
2295 tree decl1 = NULL_TREE, decl2 = NULL_TREE;
2296 tree new_temp;
2297 tree def;
2298 gimple def_stmt;
2299 enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
2300 gimple new_stmt = NULL;
2301 stmt_vec_info prev_stmt_info;
2302 int nunits_in;
2303 int nunits_out;
2304 tree vectype_out, vectype_in;
2305 int ncopies, i, j;
2306 tree lhs_type, rhs_type;
2307 enum { NARROW, NONE, WIDEN } modifier;
2308 vec<tree> vec_oprnds0 = vec<tree>();
2309 vec<tree> vec_oprnds1 = vec<tree>();
2310 tree vop0;
2311 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2312 int multi_step_cvt = 0;
2313 vec<tree> vec_dsts = vec<tree>();
2314 vec<tree> interm_types = vec<tree>();
2315 tree last_oprnd, intermediate_type, cvt_type = NULL_TREE;
2316 int op_type;
2317 enum machine_mode rhs_mode;
2318 unsigned short fltsz;
2319
2320 /* Is STMT a vectorizable conversion? */
2321
2322 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
2323 return false;
2324
2325 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
2326 return false;
2327
2328 if (!is_gimple_assign (stmt))
2329 return false;
2330
2331 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
2332 return false;
2333
2334 code = gimple_assign_rhs_code (stmt);
2335 if (!CONVERT_EXPR_CODE_P (code)
2336 && code != FIX_TRUNC_EXPR
2337 && code != FLOAT_EXPR
2338 && code != WIDEN_MULT_EXPR
2339 && code != WIDEN_LSHIFT_EXPR)
2340 return false;
2341
2342 op_type = TREE_CODE_LENGTH (code);
2343
2344 /* Check types of lhs and rhs. */
2345 scalar_dest = gimple_assign_lhs (stmt);
2346 lhs_type = TREE_TYPE (scalar_dest);
2347 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
2348
2349 op0 = gimple_assign_rhs1 (stmt);
2350 rhs_type = TREE_TYPE (op0);
2351
2352 if ((code != FIX_TRUNC_EXPR && code != FLOAT_EXPR)
2353 && !((INTEGRAL_TYPE_P (lhs_type)
2354 && INTEGRAL_TYPE_P (rhs_type))
2355 || (SCALAR_FLOAT_TYPE_P (lhs_type)
2356 && SCALAR_FLOAT_TYPE_P (rhs_type))))
2357 return false;
2358
2359 if ((INTEGRAL_TYPE_P (lhs_type)
2360 && (TYPE_PRECISION (lhs_type)
2361 != GET_MODE_PRECISION (TYPE_MODE (lhs_type))))
2362 || (INTEGRAL_TYPE_P (rhs_type)
2363 && (TYPE_PRECISION (rhs_type)
2364 != GET_MODE_PRECISION (TYPE_MODE (rhs_type)))))
2365 {
2366 if (dump_enabled_p ())
2367 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2368 "type conversion to/from bit-precision unsupported.");
2369 return false;
2370 }
2371
2372 /* Check the operands of the operation. */
2373 if (!vect_is_simple_use_1 (op0, stmt, loop_vinfo, bb_vinfo,
2374 &def_stmt, &def, &dt[0], &vectype_in))
2375 {
2376 if (dump_enabled_p ())
2377 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2378 "use not simple.");
2379 return false;
2380 }
2381 if (op_type == binary_op)
2382 {
2383 bool ok;
2384
2385 op1 = gimple_assign_rhs2 (stmt);
2386 gcc_assert (code == WIDEN_MULT_EXPR || code == WIDEN_LSHIFT_EXPR);
2387 /* For WIDEN_MULT_EXPR, if OP0 is a constant, use the type of
2388 OP1. */
2389 if (CONSTANT_CLASS_P (op0))
2390 ok = vect_is_simple_use_1 (op1, stmt, loop_vinfo, bb_vinfo,
2391 &def_stmt, &def, &dt[1], &vectype_in);
2392 else
2393 ok = vect_is_simple_use (op1, stmt, loop_vinfo, bb_vinfo, &def_stmt,
2394 &def, &dt[1]);
2395
2396 if (!ok)
2397 {
2398 if (dump_enabled_p ())
2399 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2400 "use not simple.");
2401 return false;
2402 }
2403 }
2404
2405 /* If op0 is an external or constant defs use a vector type of
2406 the same size as the output vector type. */
2407 if (!vectype_in)
2408 vectype_in = get_same_sized_vectype (rhs_type, vectype_out);
2409 if (vec_stmt)
2410 gcc_assert (vectype_in);
2411 if (!vectype_in)
2412 {
2413 if (dump_enabled_p ())
2414 {
2415 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2416 "no vectype for scalar type ");
2417 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, rhs_type);
2418 }
2419
2420 return false;
2421 }
2422
2423 nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
2424 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
2425 if (nunits_in < nunits_out)
2426 modifier = NARROW;
2427 else if (nunits_out == nunits_in)
2428 modifier = NONE;
2429 else
2430 modifier = WIDEN;
2431
2432 /* Multiple types in SLP are handled by creating the appropriate number of
2433 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
2434 case of SLP. */
2435 if (slp_node || PURE_SLP_STMT (stmt_info))
2436 ncopies = 1;
2437 else if (modifier == NARROW)
2438 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
2439 else
2440 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
2441
2442 /* Sanity check: make sure that at least one copy of the vectorized stmt
2443 needs to be generated. */
2444 gcc_assert (ncopies >= 1);
2445
2446 /* Supportable by target? */
2447 switch (modifier)
2448 {
2449 case NONE:
2450 if (code != FIX_TRUNC_EXPR && code != FLOAT_EXPR)
2451 return false;
2452 if (supportable_convert_operation (code, vectype_out, vectype_in,
2453 &decl1, &code1))
2454 break;
2455 /* FALLTHRU */
2456 unsupported:
2457 if (dump_enabled_p ())
2458 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2459 "conversion not supported by target.");
2460 return false;
2461
2462 case WIDEN:
2463 if (supportable_widening_operation (code, stmt, vectype_out, vectype_in,
2464 &code1, &code2, &multi_step_cvt,
2465 &interm_types))
2466 {
2467 /* Binary widening operation can only be supported directly by the
2468 architecture. */
2469 gcc_assert (!(multi_step_cvt && op_type == binary_op));
2470 break;
2471 }
2472
2473 if (code != FLOAT_EXPR
2474 || (GET_MODE_SIZE (TYPE_MODE (lhs_type))
2475 <= GET_MODE_SIZE (TYPE_MODE (rhs_type))))
2476 goto unsupported;
2477
2478 rhs_mode = TYPE_MODE (rhs_type);
2479 fltsz = GET_MODE_SIZE (TYPE_MODE (lhs_type));
2480 for (rhs_mode = GET_MODE_2XWIDER_MODE (TYPE_MODE (rhs_type));
2481 rhs_mode != VOIDmode && GET_MODE_SIZE (rhs_mode) <= fltsz;
2482 rhs_mode = GET_MODE_2XWIDER_MODE (rhs_mode))
2483 {
2484 cvt_type
2485 = build_nonstandard_integer_type (GET_MODE_BITSIZE (rhs_mode), 0);
2486 cvt_type = get_same_sized_vectype (cvt_type, vectype_in);
2487 if (cvt_type == NULL_TREE)
2488 goto unsupported;
2489
2490 if (GET_MODE_SIZE (rhs_mode) == fltsz)
2491 {
2492 if (!supportable_convert_operation (code, vectype_out,
2493 cvt_type, &decl1, &codecvt1))
2494 goto unsupported;
2495 }
2496 else if (!supportable_widening_operation (code, stmt, vectype_out,
2497 cvt_type, &codecvt1,
2498 &codecvt2, &multi_step_cvt,
2499 &interm_types))
2500 continue;
2501 else
2502 gcc_assert (multi_step_cvt == 0);
2503
2504 if (supportable_widening_operation (NOP_EXPR, stmt, cvt_type,
2505 vectype_in, &code1, &code2,
2506 &multi_step_cvt, &interm_types))
2507 break;
2508 }
2509
2510 if (rhs_mode == VOIDmode || GET_MODE_SIZE (rhs_mode) > fltsz)
2511 goto unsupported;
2512
2513 if (GET_MODE_SIZE (rhs_mode) == fltsz)
2514 codecvt2 = ERROR_MARK;
2515 else
2516 {
2517 multi_step_cvt++;
2518 interm_types.safe_push (cvt_type);
2519 cvt_type = NULL_TREE;
2520 }
2521 break;
2522
2523 case NARROW:
2524 gcc_assert (op_type == unary_op);
2525 if (supportable_narrowing_operation (code, vectype_out, vectype_in,
2526 &code1, &multi_step_cvt,
2527 &interm_types))
2528 break;
2529
2530 if (code != FIX_TRUNC_EXPR
2531 || (GET_MODE_SIZE (TYPE_MODE (lhs_type))
2532 >= GET_MODE_SIZE (TYPE_MODE (rhs_type))))
2533 goto unsupported;
2534
2535 rhs_mode = TYPE_MODE (rhs_type);
2536 cvt_type
2537 = build_nonstandard_integer_type (GET_MODE_BITSIZE (rhs_mode), 0);
2538 cvt_type = get_same_sized_vectype (cvt_type, vectype_in);
2539 if (cvt_type == NULL_TREE)
2540 goto unsupported;
2541 if (!supportable_convert_operation (code, cvt_type, vectype_in,
2542 &decl1, &codecvt1))
2543 goto unsupported;
2544 if (supportable_narrowing_operation (NOP_EXPR, vectype_out, cvt_type,
2545 &code1, &multi_step_cvt,
2546 &interm_types))
2547 break;
2548 goto unsupported;
2549
2550 default:
2551 gcc_unreachable ();
2552 }
2553
2554 if (!vec_stmt) /* transformation not required. */
2555 {
2556 if (dump_enabled_p ())
2557 dump_printf_loc (MSG_NOTE, vect_location,
2558 "=== vectorizable_conversion ===");
2559 if (code == FIX_TRUNC_EXPR || code == FLOAT_EXPR)
2560 {
2561 STMT_VINFO_TYPE (stmt_info) = type_conversion_vec_info_type;
2562 vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
2563 }
2564 else if (modifier == NARROW)
2565 {
2566 STMT_VINFO_TYPE (stmt_info) = type_demotion_vec_info_type;
2567 vect_model_promotion_demotion_cost (stmt_info, dt, multi_step_cvt);
2568 }
2569 else
2570 {
2571 STMT_VINFO_TYPE (stmt_info) = type_promotion_vec_info_type;
2572 vect_model_promotion_demotion_cost (stmt_info, dt, multi_step_cvt);
2573 }
2574 interm_types.release ();
2575 return true;
2576 }
2577
2578 /** Transform. **/
2579 if (dump_enabled_p ())
2580 dump_printf_loc (MSG_NOTE, vect_location,
2581 "transform conversion. ncopies = %d.", ncopies);
2582
2583 if (op_type == binary_op)
2584 {
2585 if (CONSTANT_CLASS_P (op0))
2586 op0 = fold_convert (TREE_TYPE (op1), op0);
2587 else if (CONSTANT_CLASS_P (op1))
2588 op1 = fold_convert (TREE_TYPE (op0), op1);
2589 }
2590
2591 /* In case of multi-step conversion, we first generate conversion operations
2592 to the intermediate types, and then from that types to the final one.
2593 We create vector destinations for the intermediate type (TYPES) received
2594 from supportable_*_operation, and store them in the correct order
2595 for future use in vect_create_vectorized_*_stmts (). */
2596 vec_dsts.create (multi_step_cvt + 1);
2597 vec_dest = vect_create_destination_var (scalar_dest,
2598 (cvt_type && modifier == WIDEN)
2599 ? cvt_type : vectype_out);
2600 vec_dsts.quick_push (vec_dest);
2601
2602 if (multi_step_cvt)
2603 {
2604 for (i = interm_types.length () - 1;
2605 interm_types.iterate (i, &intermediate_type); i--)
2606 {
2607 vec_dest = vect_create_destination_var (scalar_dest,
2608 intermediate_type);
2609 vec_dsts.quick_push (vec_dest);
2610 }
2611 }
2612
2613 if (cvt_type)
2614 vec_dest = vect_create_destination_var (scalar_dest,
2615 modifier == WIDEN
2616 ? vectype_out : cvt_type);
2617
2618 if (!slp_node)
2619 {
2620 if (modifier == NONE)
2621 vec_oprnds0.create (1);
2622 else if (modifier == WIDEN)
2623 {
2624 vec_oprnds0.create (multi_step_cvt ? vect_pow2(multi_step_cvt) : 1);
2625 if (op_type == binary_op)
2626 vec_oprnds1.create (1);
2627 }
2628 else
2629 vec_oprnds0.create (
2630 2 * (multi_step_cvt ? vect_pow2 (multi_step_cvt) : 1));
2631 }
2632 else if (code == WIDEN_LSHIFT_EXPR)
2633 vec_oprnds1.create (slp_node->vec_stmts_size);
2634
2635 last_oprnd = op0;
2636 prev_stmt_info = NULL;
2637 switch (modifier)
2638 {
2639 case NONE:
2640 for (j = 0; j < ncopies; j++)
2641 {
2642 if (j == 0)
2643 vect_get_vec_defs (op0, NULL, stmt, &vec_oprnds0, NULL, slp_node,
2644 -1);
2645 else
2646 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, NULL);
2647
2648 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
2649 {
2650 /* Arguments are ready, create the new vector stmt. */
2651 if (code1 == CALL_EXPR)
2652 {
2653 new_stmt = gimple_build_call (decl1, 1, vop0);
2654 new_temp = make_ssa_name (vec_dest, new_stmt);
2655 gimple_call_set_lhs (new_stmt, new_temp);
2656 }
2657 else
2658 {
2659 gcc_assert (TREE_CODE_LENGTH (code1) == unary_op);
2660 new_stmt = gimple_build_assign_with_ops (code1, vec_dest,
2661 vop0, NULL);
2662 new_temp = make_ssa_name (vec_dest, new_stmt);
2663 gimple_assign_set_lhs (new_stmt, new_temp);
2664 }
2665
2666 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2667 if (slp_node)
2668 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
2669 }
2670
2671 if (j == 0)
2672 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
2673 else
2674 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2675 prev_stmt_info = vinfo_for_stmt (new_stmt);
2676 }
2677 break;
2678
2679 case WIDEN:
2680 /* In case the vectorization factor (VF) is bigger than the number
2681 of elements that we can fit in a vectype (nunits), we have to
2682 generate more than one vector stmt - i.e - we need to "unroll"
2683 the vector stmt by a factor VF/nunits. */
2684 for (j = 0; j < ncopies; j++)
2685 {
2686 /* Handle uses. */
2687 if (j == 0)
2688 {
2689 if (slp_node)
2690 {
2691 if (code == WIDEN_LSHIFT_EXPR)
2692 {
2693 unsigned int k;
2694
2695 vec_oprnd1 = op1;
2696 /* Store vec_oprnd1 for every vector stmt to be created
2697 for SLP_NODE. We check during the analysis that all
2698 the shift arguments are the same. */
2699 for (k = 0; k < slp_node->vec_stmts_size - 1; k++)
2700 vec_oprnds1.quick_push (vec_oprnd1);
2701
2702 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
2703 slp_node, -1);
2704 }
2705 else
2706 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0,
2707 &vec_oprnds1, slp_node, -1);
2708 }
2709 else
2710 {
2711 vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt, NULL);
2712 vec_oprnds0.quick_push (vec_oprnd0);
2713 if (op_type == binary_op)
2714 {
2715 if (code == WIDEN_LSHIFT_EXPR)
2716 vec_oprnd1 = op1;
2717 else
2718 vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt,
2719 NULL);
2720 vec_oprnds1.quick_push (vec_oprnd1);
2721 }
2722 }
2723 }
2724 else
2725 {
2726 vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
2727 vec_oprnds0.truncate (0);
2728 vec_oprnds0.quick_push (vec_oprnd0);
2729 if (op_type == binary_op)
2730 {
2731 if (code == WIDEN_LSHIFT_EXPR)
2732 vec_oprnd1 = op1;
2733 else
2734 vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[1],
2735 vec_oprnd1);
2736 vec_oprnds1.truncate (0);
2737 vec_oprnds1.quick_push (vec_oprnd1);
2738 }
2739 }
2740
2741 /* Arguments are ready. Create the new vector stmts. */
2742 for (i = multi_step_cvt; i >= 0; i--)
2743 {
2744 tree this_dest = vec_dsts[i];
2745 enum tree_code c1 = code1, c2 = code2;
2746 if (i == 0 && codecvt2 != ERROR_MARK)
2747 {
2748 c1 = codecvt1;
2749 c2 = codecvt2;
2750 }
2751 vect_create_vectorized_promotion_stmts (&vec_oprnds0,
2752 &vec_oprnds1,
2753 stmt, this_dest, gsi,
2754 c1, c2, decl1, decl2,
2755 op_type);
2756 }
2757
2758 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
2759 {
2760 if (cvt_type)
2761 {
2762 if (codecvt1 == CALL_EXPR)
2763 {
2764 new_stmt = gimple_build_call (decl1, 1, vop0);
2765 new_temp = make_ssa_name (vec_dest, new_stmt);
2766 gimple_call_set_lhs (new_stmt, new_temp);
2767 }
2768 else
2769 {
2770 gcc_assert (TREE_CODE_LENGTH (codecvt1) == unary_op);
2771 new_temp = make_ssa_name (vec_dest, NULL);
2772 new_stmt = gimple_build_assign_with_ops (codecvt1,
2773 new_temp,
2774 vop0, NULL);
2775 }
2776
2777 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2778 }
2779 else
2780 new_stmt = SSA_NAME_DEF_STMT (vop0);
2781
2782 if (slp_node)
2783 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
2784 else
2785 {
2786 if (!prev_stmt_info)
2787 STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
2788 else
2789 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2790 prev_stmt_info = vinfo_for_stmt (new_stmt);
2791 }
2792 }
2793 }
2794
2795 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
2796 break;
2797
2798 case NARROW:
2799 /* In case the vectorization factor (VF) is bigger than the number
2800 of elements that we can fit in a vectype (nunits), we have to
2801 generate more than one vector stmt - i.e - we need to "unroll"
2802 the vector stmt by a factor VF/nunits. */
2803 for (j = 0; j < ncopies; j++)
2804 {
2805 /* Handle uses. */
2806 if (slp_node)
2807 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
2808 slp_node, -1);
2809 else
2810 {
2811 vec_oprnds0.truncate (0);
2812 vect_get_loop_based_defs (&last_oprnd, stmt, dt[0], &vec_oprnds0,
2813 vect_pow2 (multi_step_cvt) - 1);
2814 }
2815
2816 /* Arguments are ready. Create the new vector stmts. */
2817 if (cvt_type)
2818 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
2819 {
2820 if (codecvt1 == CALL_EXPR)
2821 {
2822 new_stmt = gimple_build_call (decl1, 1, vop0);
2823 new_temp = make_ssa_name (vec_dest, new_stmt);
2824 gimple_call_set_lhs (new_stmt, new_temp);
2825 }
2826 else
2827 {
2828 gcc_assert (TREE_CODE_LENGTH (codecvt1) == unary_op);
2829 new_temp = make_ssa_name (vec_dest, NULL);
2830 new_stmt = gimple_build_assign_with_ops (codecvt1, new_temp,
2831 vop0, NULL);
2832 }
2833
2834 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2835 vec_oprnds0[i] = new_temp;
2836 }
2837
2838 vect_create_vectorized_demotion_stmts (&vec_oprnds0, multi_step_cvt,
2839 stmt, vec_dsts, gsi,
2840 slp_node, code1,
2841 &prev_stmt_info);
2842 }
2843
2844 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
2845 break;
2846 }
2847
2848 vec_oprnds0.release ();
2849 vec_oprnds1.release ();
2850 vec_dsts.release ();
2851 interm_types.release ();
2852
2853 return true;
2854 }
2855
2856
2857 /* Function vectorizable_assignment.
2858
2859 Check if STMT performs an assignment (copy) that can be vectorized.
2860 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
2861 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
2862 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
2863
2864 static bool
2865 vectorizable_assignment (gimple stmt, gimple_stmt_iterator *gsi,
2866 gimple *vec_stmt, slp_tree slp_node)
2867 {
2868 tree vec_dest;
2869 tree scalar_dest;
2870 tree op;
2871 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2872 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2873 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2874 tree new_temp;
2875 tree def;
2876 gimple def_stmt;
2877 enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
2878 unsigned int nunits = TYPE_VECTOR_SUBPARTS (vectype);
2879 int ncopies;
2880 int i, j;
2881 vec<tree> vec_oprnds = vec<tree>();
2882 tree vop;
2883 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2884 gimple new_stmt = NULL;
2885 stmt_vec_info prev_stmt_info = NULL;
2886 enum tree_code code;
2887 tree vectype_in;
2888
2889 /* Multiple types in SLP are handled by creating the appropriate number of
2890 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
2891 case of SLP. */
2892 if (slp_node || PURE_SLP_STMT (stmt_info))
2893 ncopies = 1;
2894 else
2895 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
2896
2897 gcc_assert (ncopies >= 1);
2898
2899 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
2900 return false;
2901
2902 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
2903 return false;
2904
2905 /* Is vectorizable assignment? */
2906 if (!is_gimple_assign (stmt))
2907 return false;
2908
2909 scalar_dest = gimple_assign_lhs (stmt);
2910 if (TREE_CODE (scalar_dest) != SSA_NAME)
2911 return false;
2912
2913 code = gimple_assign_rhs_code (stmt);
2914 if (gimple_assign_single_p (stmt)
2915 || code == PAREN_EXPR
2916 || CONVERT_EXPR_CODE_P (code))
2917 op = gimple_assign_rhs1 (stmt);
2918 else
2919 return false;
2920
2921 if (code == VIEW_CONVERT_EXPR)
2922 op = TREE_OPERAND (op, 0);
2923
2924 if (!vect_is_simple_use_1 (op, stmt, loop_vinfo, bb_vinfo,
2925 &def_stmt, &def, &dt[0], &vectype_in))
2926 {
2927 if (dump_enabled_p ())
2928 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2929 "use not simple.");
2930 return false;
2931 }
2932
2933 /* We can handle NOP_EXPR conversions that do not change the number
2934 of elements or the vector size. */
2935 if ((CONVERT_EXPR_CODE_P (code)
2936 || code == VIEW_CONVERT_EXPR)
2937 && (!vectype_in
2938 || TYPE_VECTOR_SUBPARTS (vectype_in) != nunits
2939 || (GET_MODE_SIZE (TYPE_MODE (vectype))
2940 != GET_MODE_SIZE (TYPE_MODE (vectype_in)))))
2941 return false;
2942
2943 /* We do not handle bit-precision changes. */
2944 if ((CONVERT_EXPR_CODE_P (code)
2945 || code == VIEW_CONVERT_EXPR)
2946 && INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
2947 && ((TYPE_PRECISION (TREE_TYPE (scalar_dest))
2948 != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest))))
2949 || ((TYPE_PRECISION (TREE_TYPE (op))
2950 != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (op))))))
2951 /* But a conversion that does not change the bit-pattern is ok. */
2952 && !((TYPE_PRECISION (TREE_TYPE (scalar_dest))
2953 > TYPE_PRECISION (TREE_TYPE (op)))
2954 && TYPE_UNSIGNED (TREE_TYPE (op))))
2955 {
2956 if (dump_enabled_p ())
2957 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2958 "type conversion to/from bit-precision "
2959 "unsupported.");
2960 return false;
2961 }
2962
2963 if (!vec_stmt) /* transformation not required. */
2964 {
2965 STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
2966 if (dump_enabled_p ())
2967 dump_printf_loc (MSG_NOTE, vect_location,
2968 "=== vectorizable_assignment ===");
2969 vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
2970 return true;
2971 }
2972
2973 /** Transform. **/
2974 if (dump_enabled_p ())
2975 dump_printf_loc (MSG_NOTE, vect_location, "transform assignment.");
2976
2977 /* Handle def. */
2978 vec_dest = vect_create_destination_var (scalar_dest, vectype);
2979
2980 /* Handle use. */
2981 for (j = 0; j < ncopies; j++)
2982 {
2983 /* Handle uses. */
2984 if (j == 0)
2985 vect_get_vec_defs (op, NULL, stmt, &vec_oprnds, NULL, slp_node, -1);
2986 else
2987 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds, NULL);
2988
2989 /* Arguments are ready. create the new vector stmt. */
2990 FOR_EACH_VEC_ELT (vec_oprnds, i, vop)
2991 {
2992 if (CONVERT_EXPR_CODE_P (code)
2993 || code == VIEW_CONVERT_EXPR)
2994 vop = build1 (VIEW_CONVERT_EXPR, vectype, vop);
2995 new_stmt = gimple_build_assign (vec_dest, vop);
2996 new_temp = make_ssa_name (vec_dest, new_stmt);
2997 gimple_assign_set_lhs (new_stmt, new_temp);
2998 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2999 if (slp_node)
3000 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
3001 }
3002
3003 if (slp_node)
3004 continue;
3005
3006 if (j == 0)
3007 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
3008 else
3009 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3010
3011 prev_stmt_info = vinfo_for_stmt (new_stmt);
3012 }
3013
3014 vec_oprnds.release ();
3015 return true;
3016 }
3017
3018
3019 /* Return TRUE if CODE (a shift operation) is supported for SCALAR_TYPE
3020 either as shift by a scalar or by a vector. */
3021
3022 bool
3023 vect_supportable_shift (enum tree_code code, tree scalar_type)
3024 {
3025
3026 enum machine_mode vec_mode;
3027 optab optab;
3028 int icode;
3029 tree vectype;
3030
3031 vectype = get_vectype_for_scalar_type (scalar_type);
3032 if (!vectype)
3033 return false;
3034
3035 optab = optab_for_tree_code (code, vectype, optab_scalar);
3036 if (!optab
3037 || optab_handler (optab, TYPE_MODE (vectype)) == CODE_FOR_nothing)
3038 {
3039 optab = optab_for_tree_code (code, vectype, optab_vector);
3040 if (!optab
3041 || (optab_handler (optab, TYPE_MODE (vectype))
3042 == CODE_FOR_nothing))
3043 return false;
3044 }
3045
3046 vec_mode = TYPE_MODE (vectype);
3047 icode = (int) optab_handler (optab, vec_mode);
3048 if (icode == CODE_FOR_nothing)
3049 return false;
3050
3051 return true;
3052 }
3053
3054
3055 /* Function vectorizable_shift.
3056
3057 Check if STMT performs a shift operation that can be vectorized.
3058 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
3059 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
3060 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
3061
3062 static bool
3063 vectorizable_shift (gimple stmt, gimple_stmt_iterator *gsi,
3064 gimple *vec_stmt, slp_tree slp_node)
3065 {
3066 tree vec_dest;
3067 tree scalar_dest;
3068 tree op0, op1 = NULL;
3069 tree vec_oprnd1 = NULL_TREE;
3070 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3071 tree vectype;
3072 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3073 enum tree_code code;
3074 enum machine_mode vec_mode;
3075 tree new_temp;
3076 optab optab;
3077 int icode;
3078 enum machine_mode optab_op2_mode;
3079 tree def;
3080 gimple def_stmt;
3081 enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
3082 gimple new_stmt = NULL;
3083 stmt_vec_info prev_stmt_info;
3084 int nunits_in;
3085 int nunits_out;
3086 tree vectype_out;
3087 tree op1_vectype;
3088 int ncopies;
3089 int j, i;
3090 vec<tree> vec_oprnds0 = vec<tree>();
3091 vec<tree> vec_oprnds1 = vec<tree>();
3092 tree vop0, vop1;
3093 unsigned int k;
3094 bool scalar_shift_arg = true;
3095 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
3096 int vf;
3097
3098 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
3099 return false;
3100
3101 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
3102 return false;
3103
3104 /* Is STMT a vectorizable binary/unary operation? */
3105 if (!is_gimple_assign (stmt))
3106 return false;
3107
3108 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
3109 return false;
3110
3111 code = gimple_assign_rhs_code (stmt);
3112
3113 if (!(code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR
3114 || code == RROTATE_EXPR))
3115 return false;
3116
3117 scalar_dest = gimple_assign_lhs (stmt);
3118 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
3119 if (TYPE_PRECISION (TREE_TYPE (scalar_dest))
3120 != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest))))
3121 {
3122 if (dump_enabled_p ())
3123 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3124 "bit-precision shifts not supported.");
3125 return false;
3126 }
3127
3128 op0 = gimple_assign_rhs1 (stmt);
3129 if (!vect_is_simple_use_1 (op0, stmt, loop_vinfo, bb_vinfo,
3130 &def_stmt, &def, &dt[0], &vectype))
3131 {
3132 if (dump_enabled_p ())
3133 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3134 "use not simple.");
3135 return false;
3136 }
3137 /* If op0 is an external or constant def use a vector type with
3138 the same size as the output vector type. */
3139 if (!vectype)
3140 vectype = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
3141 if (vec_stmt)
3142 gcc_assert (vectype);
3143 if (!vectype)
3144 {
3145 if (dump_enabled_p ())
3146 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3147 "no vectype for scalar type ");
3148 return false;
3149 }
3150
3151 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
3152 nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
3153 if (nunits_out != nunits_in)
3154 return false;
3155
3156 op1 = gimple_assign_rhs2 (stmt);
3157 if (!vect_is_simple_use_1 (op1, stmt, loop_vinfo, bb_vinfo, &def_stmt,
3158 &def, &dt[1], &op1_vectype))
3159 {
3160 if (dump_enabled_p ())
3161 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3162 "use not simple.");
3163 return false;
3164 }
3165
3166 if (loop_vinfo)
3167 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3168 else
3169 vf = 1;
3170
3171 /* Multiple types in SLP are handled by creating the appropriate number of
3172 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
3173 case of SLP. */
3174 if (slp_node || PURE_SLP_STMT (stmt_info))
3175 ncopies = 1;
3176 else
3177 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
3178
3179 gcc_assert (ncopies >= 1);
3180
3181 /* Determine whether the shift amount is a vector, or scalar. If the
3182 shift/rotate amount is a vector, use the vector/vector shift optabs. */
3183
3184 if (dt[1] == vect_internal_def && !slp_node)
3185 scalar_shift_arg = false;
3186 else if (dt[1] == vect_constant_def
3187 || dt[1] == vect_external_def
3188 || dt[1] == vect_internal_def)
3189 {
3190 /* In SLP, need to check whether the shift count is the same,
3191 in loops if it is a constant or invariant, it is always
3192 a scalar shift. */
3193 if (slp_node)
3194 {
3195 vec<gimple> stmts = SLP_TREE_SCALAR_STMTS (slp_node);
3196 gimple slpstmt;
3197
3198 FOR_EACH_VEC_ELT (stmts, k, slpstmt)
3199 if (!operand_equal_p (gimple_assign_rhs2 (slpstmt), op1, 0))
3200 scalar_shift_arg = false;
3201 }
3202 }
3203 else
3204 {
3205 if (dump_enabled_p ())
3206 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3207 "operand mode requires invariant argument.");
3208 return false;
3209 }
3210
3211 /* Vector shifted by vector. */
3212 if (!scalar_shift_arg)
3213 {
3214 optab = optab_for_tree_code (code, vectype, optab_vector);
3215 if (dump_enabled_p ())
3216 dump_printf_loc (MSG_NOTE, vect_location,
3217 "vector/vector shift/rotate found.");
3218
3219 if (!op1_vectype)
3220 op1_vectype = get_same_sized_vectype (TREE_TYPE (op1), vectype_out);
3221 if (op1_vectype == NULL_TREE
3222 || TYPE_MODE (op1_vectype) != TYPE_MODE (vectype))
3223 {
3224 if (dump_enabled_p ())
3225 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3226 "unusable type for last operand in"
3227 " vector/vector shift/rotate.");
3228 return false;
3229 }
3230 }
3231 /* See if the machine has a vector shifted by scalar insn and if not
3232 then see if it has a vector shifted by vector insn. */
3233 else
3234 {
3235 optab = optab_for_tree_code (code, vectype, optab_scalar);
3236 if (optab
3237 && optab_handler (optab, TYPE_MODE (vectype)) != CODE_FOR_nothing)
3238 {
3239 if (dump_enabled_p ())
3240 dump_printf_loc (MSG_NOTE, vect_location,
3241 "vector/scalar shift/rotate found.");
3242 }
3243 else
3244 {
3245 optab = optab_for_tree_code (code, vectype, optab_vector);
3246 if (optab
3247 && (optab_handler (optab, TYPE_MODE (vectype))
3248 != CODE_FOR_nothing))
3249 {
3250 scalar_shift_arg = false;
3251
3252 if (dump_enabled_p ())
3253 dump_printf_loc (MSG_NOTE, vect_location,
3254 "vector/vector shift/rotate found.");
3255
3256 /* Unlike the other binary operators, shifts/rotates have
3257 the rhs being int, instead of the same type as the lhs,
3258 so make sure the scalar is the right type if we are
3259 dealing with vectors of long long/long/short/char. */
3260 if (dt[1] == vect_constant_def)
3261 op1 = fold_convert (TREE_TYPE (vectype), op1);
3262 else if (!useless_type_conversion_p (TREE_TYPE (vectype),
3263 TREE_TYPE (op1)))
3264 {
3265 if (slp_node
3266 && TYPE_MODE (TREE_TYPE (vectype))
3267 != TYPE_MODE (TREE_TYPE (op1)))
3268 {
3269 if (dump_enabled_p ())
3270 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3271 "unusable type for last operand in"
3272 " vector/vector shift/rotate.");
3273 return false;
3274 }
3275 if (vec_stmt && !slp_node)
3276 {
3277 op1 = fold_convert (TREE_TYPE (vectype), op1);
3278 op1 = vect_init_vector (stmt, op1,
3279 TREE_TYPE (vectype), NULL);
3280 }
3281 }
3282 }
3283 }
3284 }
3285
3286 /* Supportable by target? */
3287 if (!optab)
3288 {
3289 if (dump_enabled_p ())
3290 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3291 "no optab.");
3292 return false;
3293 }
3294 vec_mode = TYPE_MODE (vectype);
3295 icode = (int) optab_handler (optab, vec_mode);
3296 if (icode == CODE_FOR_nothing)
3297 {
3298 if (dump_enabled_p ())
3299 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3300 "op not supported by target.");
3301 /* Check only during analysis. */
3302 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
3303 || (vf < vect_min_worthwhile_factor (code)
3304 && !vec_stmt))
3305 return false;
3306 if (dump_enabled_p ())
3307 dump_printf_loc (MSG_NOTE, vect_location, "proceeding using word mode.");
3308 }
3309
3310 /* Worthwhile without SIMD support? Check only during analysis. */
3311 if (!VECTOR_MODE_P (TYPE_MODE (vectype))
3312 && vf < vect_min_worthwhile_factor (code)
3313 && !vec_stmt)
3314 {
3315 if (dump_enabled_p ())
3316 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3317 "not worthwhile without SIMD support.");
3318 return false;
3319 }
3320
3321 if (!vec_stmt) /* transformation not required. */
3322 {
3323 STMT_VINFO_TYPE (stmt_info) = shift_vec_info_type;
3324 if (dump_enabled_p ())
3325 dump_printf_loc (MSG_NOTE, vect_location, "=== vectorizable_shift ===");
3326 vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
3327 return true;
3328 }
3329
3330 /** Transform. **/
3331
3332 if (dump_enabled_p ())
3333 dump_printf_loc (MSG_NOTE, vect_location,
3334 "transform binary/unary operation.");
3335
3336 /* Handle def. */
3337 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3338
3339 /* Allocate VECs for vector operands. In case of SLP, vector operands are
3340 created in the previous stages of the recursion, so no allocation is
3341 needed, except for the case of shift with scalar shift argument. In that
3342 case we store the scalar operand in VEC_OPRNDS1 for every vector stmt to
3343 be created to vectorize the SLP group, i.e., SLP_NODE->VEC_STMTS_SIZE.
3344 In case of loop-based vectorization we allocate VECs of size 1. We
3345 allocate VEC_OPRNDS1 only in case of binary operation. */
3346 if (!slp_node)
3347 {
3348 vec_oprnds0.create (1);
3349 vec_oprnds1.create (1);
3350 }
3351 else if (scalar_shift_arg)
3352 vec_oprnds1.create (slp_node->vec_stmts_size);
3353
3354 prev_stmt_info = NULL;
3355 for (j = 0; j < ncopies; j++)
3356 {
3357 /* Handle uses. */
3358 if (j == 0)
3359 {
3360 if (scalar_shift_arg)
3361 {
3362 /* Vector shl and shr insn patterns can be defined with scalar
3363 operand 2 (shift operand). In this case, use constant or loop
3364 invariant op1 directly, without extending it to vector mode
3365 first. */
3366 optab_op2_mode = insn_data[icode].operand[2].mode;
3367 if (!VECTOR_MODE_P (optab_op2_mode))
3368 {
3369 if (dump_enabled_p ())
3370 dump_printf_loc (MSG_NOTE, vect_location,
3371 "operand 1 using scalar mode.");
3372 vec_oprnd1 = op1;
3373 vec_oprnds1.quick_push (vec_oprnd1);
3374 if (slp_node)
3375 {
3376 /* Store vec_oprnd1 for every vector stmt to be created
3377 for SLP_NODE. We check during the analysis that all
3378 the shift arguments are the same.
3379 TODO: Allow different constants for different vector
3380 stmts generated for an SLP instance. */
3381 for (k = 0; k < slp_node->vec_stmts_size - 1; k++)
3382 vec_oprnds1.quick_push (vec_oprnd1);
3383 }
3384 }
3385 }
3386
3387 /* vec_oprnd1 is available if operand 1 should be of a scalar-type
3388 (a special case for certain kind of vector shifts); otherwise,
3389 operand 1 should be of a vector type (the usual case). */
3390 if (vec_oprnd1)
3391 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
3392 slp_node, -1);
3393 else
3394 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
3395 slp_node, -1);
3396 }
3397 else
3398 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1);
3399
3400 /* Arguments are ready. Create the new vector stmt. */
3401 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
3402 {
3403 vop1 = vec_oprnds1[i];
3404 new_stmt = gimple_build_assign_with_ops (code, vec_dest, vop0, vop1);
3405 new_temp = make_ssa_name (vec_dest, new_stmt);
3406 gimple_assign_set_lhs (new_stmt, new_temp);
3407 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3408 if (slp_node)
3409 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
3410 }
3411
3412 if (slp_node)
3413 continue;
3414
3415 if (j == 0)
3416 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
3417 else
3418 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3419 prev_stmt_info = vinfo_for_stmt (new_stmt);
3420 }
3421
3422 vec_oprnds0.release ();
3423 vec_oprnds1.release ();
3424
3425 return true;
3426 }
3427
3428
3429 static tree permute_vec_elements (tree, tree, tree, gimple,
3430 gimple_stmt_iterator *);
3431
3432
3433 /* Function vectorizable_operation.
3434
3435 Check if STMT performs a binary, unary or ternary operation that can
3436 be vectorized.
3437 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
3438 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
3439 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
3440
3441 static bool
3442 vectorizable_operation (gimple stmt, gimple_stmt_iterator *gsi,
3443 gimple *vec_stmt, slp_tree slp_node)
3444 {
3445 tree vec_dest;
3446 tree scalar_dest;
3447 tree op0, op1 = NULL_TREE, op2 = NULL_TREE;
3448 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3449 tree vectype;
3450 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3451 enum tree_code code;
3452 enum machine_mode vec_mode;
3453 tree new_temp;
3454 int op_type;
3455 optab optab;
3456 int icode;
3457 tree def;
3458 gimple def_stmt;
3459 enum vect_def_type dt[3]
3460 = {vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type};
3461 gimple new_stmt = NULL;
3462 stmt_vec_info prev_stmt_info;
3463 int nunits_in;
3464 int nunits_out;
3465 tree vectype_out;
3466 int ncopies;
3467 int j, i;
3468 vec<tree> vec_oprnds0 = vec<tree>();
3469 vec<tree> vec_oprnds1 = vec<tree>();
3470 vec<tree> vec_oprnds2 = vec<tree>();
3471 tree vop0, vop1, vop2;
3472 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
3473 int vf;
3474
3475 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
3476 return false;
3477
3478 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
3479 return false;
3480
3481 /* Is STMT a vectorizable binary/unary operation? */
3482 if (!is_gimple_assign (stmt))
3483 return false;
3484
3485 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
3486 return false;
3487
3488 code = gimple_assign_rhs_code (stmt);
3489
3490 /* For pointer addition, we should use the normal plus for
3491 the vector addition. */
3492 if (code == POINTER_PLUS_EXPR)
3493 code = PLUS_EXPR;
3494
3495 /* Support only unary or binary operations. */
3496 op_type = TREE_CODE_LENGTH (code);
3497 if (op_type != unary_op && op_type != binary_op && op_type != ternary_op)
3498 {
3499 if (dump_enabled_p ())
3500 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3501 "num. args = %d (not unary/binary/ternary op).",
3502 op_type);
3503 return false;
3504 }
3505
3506 scalar_dest = gimple_assign_lhs (stmt);
3507 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
3508
3509 /* Most operations cannot handle bit-precision types without extra
3510 truncations. */
3511 if ((TYPE_PRECISION (TREE_TYPE (scalar_dest))
3512 != GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (scalar_dest))))
3513 /* Exception are bitwise binary operations. */
3514 && code != BIT_IOR_EXPR
3515 && code != BIT_XOR_EXPR
3516 && code != BIT_AND_EXPR)
3517 {
3518 if (dump_enabled_p ())
3519 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3520 "bit-precision arithmetic not supported.");
3521 return false;
3522 }
3523
3524 op0 = gimple_assign_rhs1 (stmt);
3525 if (!vect_is_simple_use_1 (op0, stmt, loop_vinfo, bb_vinfo,
3526 &def_stmt, &def, &dt[0], &vectype))
3527 {
3528 if (dump_enabled_p ())
3529 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3530 "use not simple.");
3531 return false;
3532 }
3533 /* If op0 is an external or constant def use a vector type with
3534 the same size as the output vector type. */
3535 if (!vectype)
3536 vectype = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
3537 if (vec_stmt)
3538 gcc_assert (vectype);
3539 if (!vectype)
3540 {
3541 if (dump_enabled_p ())
3542 {
3543 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3544 "no vectype for scalar type ");
3545 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
3546 TREE_TYPE (op0));
3547 }
3548
3549 return false;
3550 }
3551
3552 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
3553 nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
3554 if (nunits_out != nunits_in)
3555 return false;
3556
3557 if (op_type == binary_op || op_type == ternary_op)
3558 {
3559 op1 = gimple_assign_rhs2 (stmt);
3560 if (!vect_is_simple_use (op1, stmt, loop_vinfo, bb_vinfo, &def_stmt,
3561 &def, &dt[1]))
3562 {
3563 if (dump_enabled_p ())
3564 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3565 "use not simple.");
3566 return false;
3567 }
3568 }
3569 if (op_type == ternary_op)
3570 {
3571 op2 = gimple_assign_rhs3 (stmt);
3572 if (!vect_is_simple_use (op2, stmt, loop_vinfo, bb_vinfo, &def_stmt,
3573 &def, &dt[2]))
3574 {
3575 if (dump_enabled_p ())
3576 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3577 "use not simple.");
3578 return false;
3579 }
3580 }
3581
3582 if (loop_vinfo)
3583 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
3584 else
3585 vf = 1;
3586
3587 /* Multiple types in SLP are handled by creating the appropriate number of
3588 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
3589 case of SLP. */
3590 if (slp_node || PURE_SLP_STMT (stmt_info))
3591 ncopies = 1;
3592 else
3593 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
3594
3595 gcc_assert (ncopies >= 1);
3596
3597 /* Shifts are handled in vectorizable_shift (). */
3598 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR
3599 || code == RROTATE_EXPR)
3600 return false;
3601
3602 /* Supportable by target? */
3603
3604 vec_mode = TYPE_MODE (vectype);
3605 if (code == MULT_HIGHPART_EXPR)
3606 {
3607 if (can_mult_highpart_p (vec_mode, TYPE_UNSIGNED (vectype)))
3608 icode = LAST_INSN_CODE;
3609 else
3610 icode = CODE_FOR_nothing;
3611 }
3612 else
3613 {
3614 optab = optab_for_tree_code (code, vectype, optab_default);
3615 if (!optab)
3616 {
3617 if (dump_enabled_p ())
3618 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3619 "no optab.");
3620 return false;
3621 }
3622 icode = (int) optab_handler (optab, vec_mode);
3623 }
3624
3625 if (icode == CODE_FOR_nothing)
3626 {
3627 if (dump_enabled_p ())
3628 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3629 "op not supported by target.");
3630 /* Check only during analysis. */
3631 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
3632 || (!vec_stmt && vf < vect_min_worthwhile_factor (code)))
3633 return false;
3634 if (dump_enabled_p ())
3635 dump_printf_loc (MSG_NOTE, vect_location, "proceeding using word mode.");
3636 }
3637
3638 /* Worthwhile without SIMD support? Check only during analysis. */
3639 if (!VECTOR_MODE_P (vec_mode)
3640 && !vec_stmt
3641 && vf < vect_min_worthwhile_factor (code))
3642 {
3643 if (dump_enabled_p ())
3644 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3645 "not worthwhile without SIMD support.");
3646 return false;
3647 }
3648
3649 if (!vec_stmt) /* transformation not required. */
3650 {
3651 STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
3652 if (dump_enabled_p ())
3653 dump_printf_loc (MSG_NOTE, vect_location,
3654 "=== vectorizable_operation ===");
3655 vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL);
3656 return true;
3657 }
3658
3659 /** Transform. **/
3660
3661 if (dump_enabled_p ())
3662 dump_printf_loc (MSG_NOTE, vect_location,
3663 "transform binary/unary operation.");
3664
3665 /* Handle def. */
3666 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3667
3668 /* In case the vectorization factor (VF) is bigger than the number
3669 of elements that we can fit in a vectype (nunits), we have to generate
3670 more than one vector stmt - i.e - we need to "unroll" the
3671 vector stmt by a factor VF/nunits. In doing so, we record a pointer
3672 from one copy of the vector stmt to the next, in the field
3673 STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
3674 stages to find the correct vector defs to be used when vectorizing
3675 stmts that use the defs of the current stmt. The example below
3676 illustrates the vectorization process when VF=16 and nunits=4 (i.e.,
3677 we need to create 4 vectorized stmts):
3678
3679 before vectorization:
3680 RELATED_STMT VEC_STMT
3681 S1: x = memref - -
3682 S2: z = x + 1 - -
3683
3684 step 1: vectorize stmt S1 (done in vectorizable_load. See more details
3685 there):
3686 RELATED_STMT VEC_STMT
3687 VS1_0: vx0 = memref0 VS1_1 -
3688 VS1_1: vx1 = memref1 VS1_2 -
3689 VS1_2: vx2 = memref2 VS1_3 -
3690 VS1_3: vx3 = memref3 - -
3691 S1: x = load - VS1_0
3692 S2: z = x + 1 - -
3693
3694 step2: vectorize stmt S2 (done here):
3695 To vectorize stmt S2 we first need to find the relevant vector
3696 def for the first operand 'x'. This is, as usual, obtained from
3697 the vector stmt recorded in the STMT_VINFO_VEC_STMT of the stmt
3698 that defines 'x' (S1). This way we find the stmt VS1_0, and the
3699 relevant vector def 'vx0'. Having found 'vx0' we can generate
3700 the vector stmt VS2_0, and as usual, record it in the
3701 STMT_VINFO_VEC_STMT of stmt S2.
3702 When creating the second copy (VS2_1), we obtain the relevant vector
3703 def from the vector stmt recorded in the STMT_VINFO_RELATED_STMT of
3704 stmt VS1_0. This way we find the stmt VS1_1 and the relevant
3705 vector def 'vx1'. Using 'vx1' we create stmt VS2_1 and record a
3706 pointer to it in the STMT_VINFO_RELATED_STMT of the vector stmt VS2_0.
3707 Similarly when creating stmts VS2_2 and VS2_3. This is the resulting
3708 chain of stmts and pointers:
3709 RELATED_STMT VEC_STMT
3710 VS1_0: vx0 = memref0 VS1_1 -
3711 VS1_1: vx1 = memref1 VS1_2 -
3712 VS1_2: vx2 = memref2 VS1_3 -
3713 VS1_3: vx3 = memref3 - -
3714 S1: x = load - VS1_0
3715 VS2_0: vz0 = vx0 + v1 VS2_1 -
3716 VS2_1: vz1 = vx1 + v1 VS2_2 -
3717 VS2_2: vz2 = vx2 + v1 VS2_3 -
3718 VS2_3: vz3 = vx3 + v1 - -
3719 S2: z = x + 1 - VS2_0 */
3720
3721 prev_stmt_info = NULL;
3722 for (j = 0; j < ncopies; j++)
3723 {
3724 /* Handle uses. */
3725 if (j == 0)
3726 {
3727 if (op_type == binary_op || op_type == ternary_op)
3728 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
3729 slp_node, -1);
3730 else
3731 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
3732 slp_node, -1);
3733 if (op_type == ternary_op)
3734 {
3735 vec_oprnds2.create (1);
3736 vec_oprnds2.quick_push (vect_get_vec_def_for_operand (op2,
3737 stmt,
3738 NULL));
3739 }
3740 }
3741 else
3742 {
3743 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1);
3744 if (op_type == ternary_op)
3745 {
3746 tree vec_oprnd = vec_oprnds2.pop ();
3747 vec_oprnds2.quick_push (vect_get_vec_def_for_stmt_copy (dt[2],
3748 vec_oprnd));
3749 }
3750 }
3751
3752 /* Arguments are ready. Create the new vector stmt. */
3753 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
3754 {
3755 vop1 = ((op_type == binary_op || op_type == ternary_op)
3756 ? vec_oprnds1[i] : NULL_TREE);
3757 vop2 = ((op_type == ternary_op)
3758 ? vec_oprnds2[i] : NULL_TREE);
3759 new_stmt = gimple_build_assign_with_ops (code, vec_dest,
3760 vop0, vop1, vop2);
3761 new_temp = make_ssa_name (vec_dest, new_stmt);
3762 gimple_assign_set_lhs (new_stmt, new_temp);
3763 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3764 if (slp_node)
3765 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
3766 }
3767
3768 if (slp_node)
3769 continue;
3770
3771 if (j == 0)
3772 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
3773 else
3774 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3775 prev_stmt_info = vinfo_for_stmt (new_stmt);
3776 }
3777
3778 vec_oprnds0.release ();
3779 vec_oprnds1.release ();
3780 vec_oprnds2.release ();
3781
3782 return true;
3783 }
3784
3785
3786 /* Function vectorizable_store.
3787
3788 Check if STMT defines a non scalar data-ref (array/pointer/structure) that
3789 can be vectorized.
3790 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
3791 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
3792 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
3793
3794 static bool
3795 vectorizable_store (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
3796 slp_tree slp_node)
3797 {
3798 tree scalar_dest;
3799 tree data_ref;
3800 tree op;
3801 tree vec_oprnd = NULL_TREE;
3802 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3803 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr = NULL;
3804 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
3805 tree elem_type;
3806 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3807 struct loop *loop = NULL;
3808 enum machine_mode vec_mode;
3809 tree dummy;
3810 enum dr_alignment_support alignment_support_scheme;
3811 tree def;
3812 gimple def_stmt;
3813 enum vect_def_type dt;
3814 stmt_vec_info prev_stmt_info = NULL;
3815 tree dataref_ptr = NULL_TREE;
3816 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
3817 int ncopies;
3818 int j;
3819 gimple next_stmt, first_stmt = NULL;
3820 bool grouped_store = false;
3821 bool store_lanes_p = false;
3822 unsigned int group_size, i;
3823 vec<tree> dr_chain = vec<tree>();
3824 vec<tree> oprnds = vec<tree>();
3825 vec<tree> result_chain = vec<tree>();
3826 bool inv_p;
3827 vec<tree> vec_oprnds = vec<tree>();
3828 bool slp = (slp_node != NULL);
3829 unsigned int vec_num;
3830 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
3831 tree aggr_type;
3832
3833 if (loop_vinfo)
3834 loop = LOOP_VINFO_LOOP (loop_vinfo);
3835
3836 /* Multiple types in SLP are handled by creating the appropriate number of
3837 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
3838 case of SLP. */
3839 if (slp || PURE_SLP_STMT (stmt_info))
3840 ncopies = 1;
3841 else
3842 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
3843
3844 gcc_assert (ncopies >= 1);
3845
3846 /* FORNOW. This restriction should be relaxed. */
3847 if (loop && nested_in_vect_loop_p (loop, stmt) && ncopies > 1)
3848 {
3849 if (dump_enabled_p ())
3850 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3851 "multiple types in nested loop.");
3852 return false;
3853 }
3854
3855 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
3856 return false;
3857
3858 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
3859 return false;
3860
3861 /* Is vectorizable store? */
3862
3863 if (!is_gimple_assign (stmt))
3864 return false;
3865
3866 scalar_dest = gimple_assign_lhs (stmt);
3867 if (TREE_CODE (scalar_dest) == VIEW_CONVERT_EXPR
3868 && is_pattern_stmt_p (stmt_info))
3869 scalar_dest = TREE_OPERAND (scalar_dest, 0);
3870 if (TREE_CODE (scalar_dest) != ARRAY_REF
3871 && TREE_CODE (scalar_dest) != INDIRECT_REF
3872 && TREE_CODE (scalar_dest) != COMPONENT_REF
3873 && TREE_CODE (scalar_dest) != IMAGPART_EXPR
3874 && TREE_CODE (scalar_dest) != REALPART_EXPR
3875 && TREE_CODE (scalar_dest) != MEM_REF)
3876 return false;
3877
3878 gcc_assert (gimple_assign_single_p (stmt));
3879 op = gimple_assign_rhs1 (stmt);
3880 if (!vect_is_simple_use (op, stmt, loop_vinfo, bb_vinfo, &def_stmt,
3881 &def, &dt))
3882 {
3883 if (dump_enabled_p ())
3884 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3885 "use not simple.");
3886 return false;
3887 }
3888
3889 elem_type = TREE_TYPE (vectype);
3890 vec_mode = TYPE_MODE (vectype);
3891
3892 /* FORNOW. In some cases can vectorize even if data-type not supported
3893 (e.g. - array initialization with 0). */
3894 if (optab_handler (mov_optab, vec_mode) == CODE_FOR_nothing)
3895 return false;
3896
3897 if (!STMT_VINFO_DATA_REF (stmt_info))
3898 return false;
3899
3900 if (tree_int_cst_compare (loop && nested_in_vect_loop_p (loop, stmt)
3901 ? STMT_VINFO_DR_STEP (stmt_info) : DR_STEP (dr),
3902 size_zero_node) < 0)
3903 {
3904 if (dump_enabled_p ())
3905 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3906 "negative step for store.");
3907 return false;
3908 }
3909
3910 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
3911 {
3912 grouped_store = true;
3913 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
3914 if (!slp && !PURE_SLP_STMT (stmt_info))
3915 {
3916 group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
3917 if (vect_store_lanes_supported (vectype, group_size))
3918 store_lanes_p = true;
3919 else if (!vect_grouped_store_supported (vectype, group_size))
3920 return false;
3921 }
3922
3923 if (first_stmt == stmt)
3924 {
3925 /* STMT is the leader of the group. Check the operands of all the
3926 stmts of the group. */
3927 next_stmt = GROUP_NEXT_ELEMENT (stmt_info);
3928 while (next_stmt)
3929 {
3930 gcc_assert (gimple_assign_single_p (next_stmt));
3931 op = gimple_assign_rhs1 (next_stmt);
3932 if (!vect_is_simple_use (op, next_stmt, loop_vinfo, bb_vinfo,
3933 &def_stmt, &def, &dt))
3934 {
3935 if (dump_enabled_p ())
3936 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3937 "use not simple.");
3938 return false;
3939 }
3940 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
3941 }
3942 }
3943 }
3944
3945 if (!vec_stmt) /* transformation not required. */
3946 {
3947 STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
3948 vect_model_store_cost (stmt_info, ncopies, store_lanes_p, dt,
3949 NULL, NULL, NULL);
3950 return true;
3951 }
3952
3953 /** Transform. **/
3954
3955 if (grouped_store)
3956 {
3957 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
3958 group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
3959
3960 GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))++;
3961
3962 /* FORNOW */
3963 gcc_assert (!loop || !nested_in_vect_loop_p (loop, stmt));
3964
3965 /* We vectorize all the stmts of the interleaving group when we
3966 reach the last stmt in the group. */
3967 if (GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))
3968 < GROUP_SIZE (vinfo_for_stmt (first_stmt))
3969 && !slp)
3970 {
3971 *vec_stmt = NULL;
3972 return true;
3973 }
3974
3975 if (slp)
3976 {
3977 grouped_store = false;
3978 /* VEC_NUM is the number of vect stmts to be created for this
3979 group. */
3980 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
3981 first_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[0];
3982 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
3983 op = gimple_assign_rhs1 (first_stmt);
3984 }
3985 else
3986 /* VEC_NUM is the number of vect stmts to be created for this
3987 group. */
3988 vec_num = group_size;
3989 }
3990 else
3991 {
3992 first_stmt = stmt;
3993 first_dr = dr;
3994 group_size = vec_num = 1;
3995 }
3996
3997 if (dump_enabled_p ())
3998 dump_printf_loc (MSG_NOTE, vect_location,
3999 "transform store. ncopies = %d", ncopies);
4000
4001 dr_chain.create (group_size);
4002 oprnds.create (group_size);
4003
4004 alignment_support_scheme = vect_supportable_dr_alignment (first_dr, false);
4005 gcc_assert (alignment_support_scheme);
4006 /* Targets with store-lane instructions must not require explicit
4007 realignment. */
4008 gcc_assert (!store_lanes_p
4009 || alignment_support_scheme == dr_aligned
4010 || alignment_support_scheme == dr_unaligned_supported);
4011
4012 if (store_lanes_p)
4013 aggr_type = build_array_type_nelts (elem_type, vec_num * nunits);
4014 else
4015 aggr_type = vectype;
4016
4017 /* In case the vectorization factor (VF) is bigger than the number
4018 of elements that we can fit in a vectype (nunits), we have to generate
4019 more than one vector stmt - i.e - we need to "unroll" the
4020 vector stmt by a factor VF/nunits. For more details see documentation in
4021 vect_get_vec_def_for_copy_stmt. */
4022
4023 /* In case of interleaving (non-unit grouped access):
4024
4025 S1: &base + 2 = x2
4026 S2: &base = x0
4027 S3: &base + 1 = x1
4028 S4: &base + 3 = x3
4029
4030 We create vectorized stores starting from base address (the access of the
4031 first stmt in the chain (S2 in the above example), when the last store stmt
4032 of the chain (S4) is reached:
4033
4034 VS1: &base = vx2
4035 VS2: &base + vec_size*1 = vx0
4036 VS3: &base + vec_size*2 = vx1
4037 VS4: &base + vec_size*3 = vx3
4038
4039 Then permutation statements are generated:
4040
4041 VS5: vx5 = VEC_PERM_EXPR < vx0, vx3, {0, 8, 1, 9, 2, 10, 3, 11} >
4042 VS6: vx6 = VEC_PERM_EXPR < vx0, vx3, {4, 12, 5, 13, 6, 14, 7, 15} >
4043 ...
4044
4045 And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
4046 (the order of the data-refs in the output of vect_permute_store_chain
4047 corresponds to the order of scalar stmts in the interleaving chain - see
4048 the documentation of vect_permute_store_chain()).
4049
4050 In case of both multiple types and interleaving, above vector stores and
4051 permutation stmts are created for every copy. The result vector stmts are
4052 put in STMT_VINFO_VEC_STMT for the first copy and in the corresponding
4053 STMT_VINFO_RELATED_STMT for the next copies.
4054 */
4055
4056 prev_stmt_info = NULL;
4057 for (j = 0; j < ncopies; j++)
4058 {
4059 gimple new_stmt;
4060 gimple ptr_incr;
4061
4062 if (j == 0)
4063 {
4064 if (slp)
4065 {
4066 /* Get vectorized arguments for SLP_NODE. */
4067 vect_get_vec_defs (op, NULL_TREE, stmt, &vec_oprnds,
4068 NULL, slp_node, -1);
4069
4070 vec_oprnd = vec_oprnds[0];
4071 }
4072 else
4073 {
4074 /* For interleaved stores we collect vectorized defs for all the
4075 stores in the group in DR_CHAIN and OPRNDS. DR_CHAIN is then
4076 used as an input to vect_permute_store_chain(), and OPRNDS as
4077 an input to vect_get_vec_def_for_stmt_copy() for the next copy.
4078
4079 If the store is not grouped, GROUP_SIZE is 1, and DR_CHAIN and
4080 OPRNDS are of size 1. */
4081 next_stmt = first_stmt;
4082 for (i = 0; i < group_size; i++)
4083 {
4084 /* Since gaps are not supported for interleaved stores,
4085 GROUP_SIZE is the exact number of stmts in the chain.
4086 Therefore, NEXT_STMT can't be NULL_TREE. In case that
4087 there is no interleaving, GROUP_SIZE is 1, and only one
4088 iteration of the loop will be executed. */
4089 gcc_assert (next_stmt
4090 && gimple_assign_single_p (next_stmt));
4091 op = gimple_assign_rhs1 (next_stmt);
4092
4093 vec_oprnd = vect_get_vec_def_for_operand (op, next_stmt,
4094 NULL);
4095 dr_chain.quick_push (vec_oprnd);
4096 oprnds.quick_push (vec_oprnd);
4097 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
4098 }
4099 }
4100
4101 /* We should have catched mismatched types earlier. */
4102 gcc_assert (useless_type_conversion_p (vectype,
4103 TREE_TYPE (vec_oprnd)));
4104 dataref_ptr = vect_create_data_ref_ptr (first_stmt, aggr_type, NULL,
4105 NULL_TREE, &dummy, gsi,
4106 &ptr_incr, false, &inv_p);
4107 gcc_assert (bb_vinfo || !inv_p);
4108 }
4109 else
4110 {
4111 /* For interleaved stores we created vectorized defs for all the
4112 defs stored in OPRNDS in the previous iteration (previous copy).
4113 DR_CHAIN is then used as an input to vect_permute_store_chain(),
4114 and OPRNDS as an input to vect_get_vec_def_for_stmt_copy() for the
4115 next copy.
4116 If the store is not grouped, GROUP_SIZE is 1, and DR_CHAIN and
4117 OPRNDS are of size 1. */
4118 for (i = 0; i < group_size; i++)
4119 {
4120 op = oprnds[i];
4121 vect_is_simple_use (op, NULL, loop_vinfo, bb_vinfo, &def_stmt,
4122 &def, &dt);
4123 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, op);
4124 dr_chain[i] = vec_oprnd;
4125 oprnds[i] = vec_oprnd;
4126 }
4127 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
4128 TYPE_SIZE_UNIT (aggr_type));
4129 }
4130
4131 if (store_lanes_p)
4132 {
4133 tree vec_array;
4134
4135 /* Combine all the vectors into an array. */
4136 vec_array = create_vector_array (vectype, vec_num);
4137 for (i = 0; i < vec_num; i++)
4138 {
4139 vec_oprnd = dr_chain[i];
4140 write_vector_array (stmt, gsi, vec_oprnd, vec_array, i);
4141 }
4142
4143 /* Emit:
4144 MEM_REF[...all elements...] = STORE_LANES (VEC_ARRAY). */
4145 data_ref = create_array_ref (aggr_type, dataref_ptr, first_dr);
4146 new_stmt = gimple_build_call_internal (IFN_STORE_LANES, 1, vec_array);
4147 gimple_call_set_lhs (new_stmt, data_ref);
4148 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4149 }
4150 else
4151 {
4152 new_stmt = NULL;
4153 if (grouped_store)
4154 {
4155 result_chain.create (group_size);
4156 /* Permute. */
4157 vect_permute_store_chain (dr_chain, group_size, stmt, gsi,
4158 &result_chain);
4159 }
4160
4161 next_stmt = first_stmt;
4162 for (i = 0; i < vec_num; i++)
4163 {
4164 unsigned align, misalign;
4165
4166 if (i > 0)
4167 /* Bump the vector pointer. */
4168 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
4169 stmt, NULL_TREE);
4170
4171 if (slp)
4172 vec_oprnd = vec_oprnds[i];
4173 else if (grouped_store)
4174 /* For grouped stores vectorized defs are interleaved in
4175 vect_permute_store_chain(). */
4176 vec_oprnd = result_chain[i];
4177
4178 data_ref = build2 (MEM_REF, TREE_TYPE (vec_oprnd), dataref_ptr,
4179 build_int_cst (reference_alias_ptr_type
4180 (DR_REF (first_dr)), 0));
4181 align = TYPE_ALIGN_UNIT (vectype);
4182 if (aligned_access_p (first_dr))
4183 misalign = 0;
4184 else if (DR_MISALIGNMENT (first_dr) == -1)
4185 {
4186 TREE_TYPE (data_ref)
4187 = build_aligned_type (TREE_TYPE (data_ref),
4188 TYPE_ALIGN (elem_type));
4189 align = TYPE_ALIGN_UNIT (elem_type);
4190 misalign = 0;
4191 }
4192 else
4193 {
4194 TREE_TYPE (data_ref)
4195 = build_aligned_type (TREE_TYPE (data_ref),
4196 TYPE_ALIGN (elem_type));
4197 misalign = DR_MISALIGNMENT (first_dr);
4198 }
4199 set_ptr_info_alignment (get_ptr_info (dataref_ptr), align,
4200 misalign);
4201
4202 /* Arguments are ready. Create the new vector stmt. */
4203 new_stmt = gimple_build_assign (data_ref, vec_oprnd);
4204 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4205
4206 if (slp)
4207 continue;
4208
4209 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
4210 if (!next_stmt)
4211 break;
4212 }
4213 }
4214 if (!slp)
4215 {
4216 if (j == 0)
4217 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
4218 else
4219 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
4220 prev_stmt_info = vinfo_for_stmt (new_stmt);
4221 }
4222 }
4223
4224 dr_chain.release ();
4225 oprnds.release ();
4226 result_chain.release ();
4227 vec_oprnds.release ();
4228
4229 return true;
4230 }
4231
4232 /* Given a vector type VECTYPE and permutation SEL returns
4233 the VECTOR_CST mask that implements the permutation of the
4234 vector elements. If that is impossible to do, returns NULL. */
4235
4236 tree
4237 vect_gen_perm_mask (tree vectype, unsigned char *sel)
4238 {
4239 tree mask_elt_type, mask_type, mask_vec, *mask_elts;
4240 int i, nunits;
4241
4242 nunits = TYPE_VECTOR_SUBPARTS (vectype);
4243
4244 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
4245 return NULL;
4246
4247 mask_elt_type = lang_hooks.types.type_for_mode
4248 (int_mode_for_mode (TYPE_MODE (TREE_TYPE (vectype))), 1);
4249 mask_type = get_vectype_for_scalar_type (mask_elt_type);
4250
4251 mask_elts = XALLOCAVEC (tree, nunits);
4252 for (i = nunits - 1; i >= 0; i--)
4253 mask_elts[i] = build_int_cst (mask_elt_type, sel[i]);
4254 mask_vec = build_vector (mask_type, mask_elts);
4255
4256 return mask_vec;
4257 }
4258
4259 /* Given a vector type VECTYPE returns the VECTOR_CST mask that implements
4260 reversal of the vector elements. If that is impossible to do,
4261 returns NULL. */
4262
4263 static tree
4264 perm_mask_for_reverse (tree vectype)
4265 {
4266 int i, nunits;
4267 unsigned char *sel;
4268
4269 nunits = TYPE_VECTOR_SUBPARTS (vectype);
4270 sel = XALLOCAVEC (unsigned char, nunits);
4271
4272 for (i = 0; i < nunits; ++i)
4273 sel[i] = nunits - 1 - i;
4274
4275 return vect_gen_perm_mask (vectype, sel);
4276 }
4277
4278 /* Given a vector variable X and Y, that was generated for the scalar
4279 STMT, generate instructions to permute the vector elements of X and Y
4280 using permutation mask MASK_VEC, insert them at *GSI and return the
4281 permuted vector variable. */
4282
4283 static tree
4284 permute_vec_elements (tree x, tree y, tree mask_vec, gimple stmt,
4285 gimple_stmt_iterator *gsi)
4286 {
4287 tree vectype = TREE_TYPE (x);
4288 tree perm_dest, data_ref;
4289 gimple perm_stmt;
4290
4291 perm_dest = vect_create_destination_var (gimple_assign_lhs (stmt), vectype);
4292 data_ref = make_ssa_name (perm_dest, NULL);
4293
4294 /* Generate the permute statement. */
4295 perm_stmt = gimple_build_assign_with_ops (VEC_PERM_EXPR, data_ref,
4296 x, y, mask_vec);
4297 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
4298
4299 return data_ref;
4300 }
4301
4302 /* vectorizable_load.
4303
4304 Check if STMT reads a non scalar data-ref (array/pointer/structure) that
4305 can be vectorized.
4306 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4307 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
4308 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
4309
4310 static bool
4311 vectorizable_load (gimple stmt, gimple_stmt_iterator *gsi, gimple *vec_stmt,
4312 slp_tree slp_node, slp_instance slp_node_instance)
4313 {
4314 tree scalar_dest;
4315 tree vec_dest = NULL;
4316 tree data_ref = NULL;
4317 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4318 stmt_vec_info prev_stmt_info;
4319 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4320 struct loop *loop = NULL;
4321 struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
4322 bool nested_in_vect_loop = false;
4323 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr;
4324 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4325 tree elem_type;
4326 tree new_temp;
4327 enum machine_mode mode;
4328 gimple new_stmt = NULL;
4329 tree dummy;
4330 enum dr_alignment_support alignment_support_scheme;
4331 tree dataref_ptr = NULL_TREE;
4332 gimple ptr_incr;
4333 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
4334 int ncopies;
4335 int i, j, group_size;
4336 tree msq = NULL_TREE, lsq;
4337 tree offset = NULL_TREE;
4338 tree realignment_token = NULL_TREE;
4339 gimple phi = NULL;
4340 vec<tree> dr_chain = vec<tree>();
4341 bool grouped_load = false;
4342 bool load_lanes_p = false;
4343 gimple first_stmt;
4344 bool inv_p;
4345 bool negative = false;
4346 bool compute_in_loop = false;
4347 struct loop *at_loop;
4348 int vec_num;
4349 bool slp = (slp_node != NULL);
4350 bool slp_perm = false;
4351 enum tree_code code;
4352 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4353 int vf;
4354 tree aggr_type;
4355 tree gather_base = NULL_TREE, gather_off = NULL_TREE;
4356 tree gather_off_vectype = NULL_TREE, gather_decl = NULL_TREE;
4357 tree stride_base, stride_step;
4358 int gather_scale = 1;
4359 enum vect_def_type gather_dt = vect_unknown_def_type;
4360
4361 if (loop_vinfo)
4362 {
4363 loop = LOOP_VINFO_LOOP (loop_vinfo);
4364 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
4365 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
4366 }
4367 else
4368 vf = 1;
4369
4370 /* Multiple types in SLP are handled by creating the appropriate number of
4371 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
4372 case of SLP. */
4373 if (slp || PURE_SLP_STMT (stmt_info))
4374 ncopies = 1;
4375 else
4376 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
4377
4378 gcc_assert (ncopies >= 1);
4379
4380 /* FORNOW. This restriction should be relaxed. */
4381 if (nested_in_vect_loop && ncopies > 1)
4382 {
4383 if (dump_enabled_p ())
4384 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4385 "multiple types in nested loop.");
4386 return false;
4387 }
4388
4389 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
4390 return false;
4391
4392 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def)
4393 return false;
4394
4395 /* Is vectorizable load? */
4396 if (!is_gimple_assign (stmt))
4397 return false;
4398
4399 scalar_dest = gimple_assign_lhs (stmt);
4400 if (TREE_CODE (scalar_dest) != SSA_NAME)
4401 return false;
4402
4403 code = gimple_assign_rhs_code (stmt);
4404 if (code != ARRAY_REF
4405 && code != INDIRECT_REF
4406 && code != COMPONENT_REF
4407 && code != IMAGPART_EXPR
4408 && code != REALPART_EXPR
4409 && code != MEM_REF
4410 && TREE_CODE_CLASS (code) != tcc_declaration)
4411 return false;
4412
4413 if (!STMT_VINFO_DATA_REF (stmt_info))
4414 return false;
4415
4416 elem_type = TREE_TYPE (vectype);
4417 mode = TYPE_MODE (vectype);
4418
4419 /* FORNOW. In some cases can vectorize even if data-type not supported
4420 (e.g. - data copies). */
4421 if (optab_handler (mov_optab, mode) == CODE_FOR_nothing)
4422 {
4423 if (dump_enabled_p ())
4424 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4425 "Aligned load, but unsupported type.");
4426 return false;
4427 }
4428
4429 /* Check if the load is a part of an interleaving chain. */
4430 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
4431 {
4432 grouped_load = true;
4433 /* FORNOW */
4434 gcc_assert (! nested_in_vect_loop && !STMT_VINFO_GATHER_P (stmt_info));
4435
4436 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
4437 if (!slp && !PURE_SLP_STMT (stmt_info))
4438 {
4439 group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
4440 if (vect_load_lanes_supported (vectype, group_size))
4441 load_lanes_p = true;
4442 else if (!vect_grouped_load_supported (vectype, group_size))
4443 return false;
4444 }
4445 }
4446
4447
4448 if (STMT_VINFO_GATHER_P (stmt_info))
4449 {
4450 gimple def_stmt;
4451 tree def;
4452 gather_decl = vect_check_gather (stmt, loop_vinfo, &gather_base,
4453 &gather_off, &gather_scale);
4454 gcc_assert (gather_decl);
4455 if (!vect_is_simple_use_1 (gather_off, NULL, loop_vinfo, bb_vinfo,
4456 &def_stmt, &def, &gather_dt,
4457 &gather_off_vectype))
4458 {
4459 if (dump_enabled_p ())
4460 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4461 "gather index use not simple.");
4462 return false;
4463 }
4464 }
4465 else if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
4466 {
4467 if (!vect_check_strided_load (stmt, loop_vinfo,
4468 &stride_base, &stride_step))
4469 return false;
4470 }
4471 else
4472 {
4473 negative = tree_int_cst_compare (nested_in_vect_loop
4474 ? STMT_VINFO_DR_STEP (stmt_info)
4475 : DR_STEP (dr),
4476 size_zero_node) < 0;
4477 if (negative && ncopies > 1)
4478 {
4479 if (dump_enabled_p ())
4480 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4481 "multiple types with negative step.");
4482 return false;
4483 }
4484
4485 if (negative)
4486 {
4487 gcc_assert (!grouped_load);
4488 alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
4489 if (alignment_support_scheme != dr_aligned
4490 && alignment_support_scheme != dr_unaligned_supported)
4491 {
4492 if (dump_enabled_p ())
4493 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4494 "negative step but alignment required.");
4495 return false;
4496 }
4497 if (!perm_mask_for_reverse (vectype))
4498 {
4499 if (dump_enabled_p ())
4500 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4501 "negative step and reversing not supported.");
4502 return false;
4503 }
4504 }
4505 }
4506
4507 if (!vec_stmt) /* transformation not required. */
4508 {
4509 STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
4510 vect_model_load_cost (stmt_info, ncopies, load_lanes_p, NULL, NULL, NULL);
4511 return true;
4512 }
4513
4514 if (dump_enabled_p ())
4515 dump_printf_loc (MSG_NOTE, vect_location,
4516 "transform load. ncopies = %d", ncopies);
4517
4518 /** Transform. **/
4519
4520 if (STMT_VINFO_GATHER_P (stmt_info))
4521 {
4522 tree vec_oprnd0 = NULL_TREE, op;
4523 tree arglist = TYPE_ARG_TYPES (TREE_TYPE (gather_decl));
4524 tree rettype, srctype, ptrtype, idxtype, masktype, scaletype;
4525 tree ptr, mask, var, scale, perm_mask = NULL_TREE, prev_res = NULL_TREE;
4526 edge pe = loop_preheader_edge (loop);
4527 gimple_seq seq;
4528 basic_block new_bb;
4529 enum { NARROW, NONE, WIDEN } modifier;
4530 int gather_off_nunits = TYPE_VECTOR_SUBPARTS (gather_off_vectype);
4531
4532 if (nunits == gather_off_nunits)
4533 modifier = NONE;
4534 else if (nunits == gather_off_nunits / 2)
4535 {
4536 unsigned char *sel = XALLOCAVEC (unsigned char, gather_off_nunits);
4537 modifier = WIDEN;
4538
4539 for (i = 0; i < gather_off_nunits; ++i)
4540 sel[i] = i | nunits;
4541
4542 perm_mask = vect_gen_perm_mask (gather_off_vectype, sel);
4543 gcc_assert (perm_mask != NULL_TREE);
4544 }
4545 else if (nunits == gather_off_nunits * 2)
4546 {
4547 unsigned char *sel = XALLOCAVEC (unsigned char, nunits);
4548 modifier = NARROW;
4549
4550 for (i = 0; i < nunits; ++i)
4551 sel[i] = i < gather_off_nunits
4552 ? i : i + nunits - gather_off_nunits;
4553
4554 perm_mask = vect_gen_perm_mask (vectype, sel);
4555 gcc_assert (perm_mask != NULL_TREE);
4556 ncopies *= 2;
4557 }
4558 else
4559 gcc_unreachable ();
4560
4561 rettype = TREE_TYPE (TREE_TYPE (gather_decl));
4562 srctype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
4563 ptrtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
4564 idxtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
4565 masktype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
4566 scaletype = TREE_VALUE (arglist);
4567 gcc_checking_assert (types_compatible_p (srctype, rettype)
4568 && types_compatible_p (srctype, masktype));
4569
4570 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4571
4572 ptr = fold_convert (ptrtype, gather_base);
4573 if (!is_gimple_min_invariant (ptr))
4574 {
4575 ptr = force_gimple_operand (ptr, &seq, true, NULL_TREE);
4576 new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
4577 gcc_assert (!new_bb);
4578 }
4579
4580 /* Currently we support only unconditional gather loads,
4581 so mask should be all ones. */
4582 if (TREE_CODE (TREE_TYPE (masktype)) == INTEGER_TYPE)
4583 mask = build_int_cst (TREE_TYPE (masktype), -1);
4584 else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (masktype)))
4585 {
4586 REAL_VALUE_TYPE r;
4587 long tmp[6];
4588 for (j = 0; j < 6; ++j)
4589 tmp[j] = -1;
4590 real_from_target (&r, tmp, TYPE_MODE (TREE_TYPE (masktype)));
4591 mask = build_real (TREE_TYPE (masktype), r);
4592 }
4593 else
4594 gcc_unreachable ();
4595 mask = build_vector_from_val (masktype, mask);
4596 mask = vect_init_vector (stmt, mask, masktype, NULL);
4597
4598 scale = build_int_cst (scaletype, gather_scale);
4599
4600 prev_stmt_info = NULL;
4601 for (j = 0; j < ncopies; ++j)
4602 {
4603 if (modifier == WIDEN && (j & 1))
4604 op = permute_vec_elements (vec_oprnd0, vec_oprnd0,
4605 perm_mask, stmt, gsi);
4606 else if (j == 0)
4607 op = vec_oprnd0
4608 = vect_get_vec_def_for_operand (gather_off, stmt, NULL);
4609 else
4610 op = vec_oprnd0
4611 = vect_get_vec_def_for_stmt_copy (gather_dt, vec_oprnd0);
4612
4613 if (!useless_type_conversion_p (idxtype, TREE_TYPE (op)))
4614 {
4615 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (op))
4616 == TYPE_VECTOR_SUBPARTS (idxtype));
4617 var = vect_get_new_vect_var (idxtype, vect_simple_var, NULL);
4618 var = make_ssa_name (var, NULL);
4619 op = build1 (VIEW_CONVERT_EXPR, idxtype, op);
4620 new_stmt
4621 = gimple_build_assign_with_ops (VIEW_CONVERT_EXPR, var,
4622 op, NULL_TREE);
4623 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4624 op = var;
4625 }
4626
4627 new_stmt
4628 = gimple_build_call (gather_decl, 5, mask, ptr, op, mask, scale);
4629
4630 if (!useless_type_conversion_p (vectype, rettype))
4631 {
4632 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype)
4633 == TYPE_VECTOR_SUBPARTS (rettype));
4634 var = vect_get_new_vect_var (rettype, vect_simple_var, NULL);
4635 op = make_ssa_name (var, new_stmt);
4636 gimple_call_set_lhs (new_stmt, op);
4637 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4638 var = make_ssa_name (vec_dest, NULL);
4639 op = build1 (VIEW_CONVERT_EXPR, vectype, op);
4640 new_stmt
4641 = gimple_build_assign_with_ops (VIEW_CONVERT_EXPR, var, op,
4642 NULL_TREE);
4643 }
4644 else
4645 {
4646 var = make_ssa_name (vec_dest, new_stmt);
4647 gimple_call_set_lhs (new_stmt, var);
4648 }
4649
4650 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4651
4652 if (modifier == NARROW)
4653 {
4654 if ((j & 1) == 0)
4655 {
4656 prev_res = var;
4657 continue;
4658 }
4659 var = permute_vec_elements (prev_res, var,
4660 perm_mask, stmt, gsi);
4661 new_stmt = SSA_NAME_DEF_STMT (var);
4662 }
4663
4664 if (prev_stmt_info == NULL)
4665 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
4666 else
4667 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
4668 prev_stmt_info = vinfo_for_stmt (new_stmt);
4669 }
4670 return true;
4671 }
4672 else if (STMT_VINFO_STRIDE_LOAD_P (stmt_info))
4673 {
4674 gimple_stmt_iterator incr_gsi;
4675 bool insert_after;
4676 gimple incr;
4677 tree offvar;
4678 tree ref = DR_REF (dr);
4679 tree ivstep;
4680 tree running_off;
4681 vec<constructor_elt, va_gc> *v = NULL;
4682 gimple_seq stmts = NULL;
4683
4684 gcc_assert (stride_base && stride_step);
4685
4686 /* For a load with loop-invariant (but other than power-of-2)
4687 stride (i.e. not a grouped access) like so:
4688
4689 for (i = 0; i < n; i += stride)
4690 ... = array[i];
4691
4692 we generate a new induction variable and new accesses to
4693 form a new vector (or vectors, depending on ncopies):
4694
4695 for (j = 0; ; j += VF*stride)
4696 tmp1 = array[j];
4697 tmp2 = array[j + stride];
4698 ...
4699 vectemp = {tmp1, tmp2, ...}
4700 */
4701
4702 ivstep = stride_step;
4703 ivstep = fold_build2 (MULT_EXPR, TREE_TYPE (ivstep), ivstep,
4704 build_int_cst (TREE_TYPE (ivstep), vf));
4705
4706 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
4707
4708 create_iv (stride_base, ivstep, NULL,
4709 loop, &incr_gsi, insert_after,
4710 &offvar, NULL);
4711 incr = gsi_stmt (incr_gsi);
4712 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo, NULL));
4713
4714 stride_step = force_gimple_operand (stride_step, &stmts, true, NULL_TREE);
4715 if (stmts)
4716 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
4717
4718 prev_stmt_info = NULL;
4719 running_off = offvar;
4720 for (j = 0; j < ncopies; j++)
4721 {
4722 tree vec_inv;
4723
4724 vec_alloc (v, nunits);
4725 for (i = 0; i < nunits; i++)
4726 {
4727 tree newref, newoff;
4728 gimple incr;
4729 if (TREE_CODE (ref) == ARRAY_REF)
4730 {
4731 newref = build4 (ARRAY_REF, TREE_TYPE (ref),
4732 unshare_expr (TREE_OPERAND (ref, 0)),
4733 running_off,
4734 NULL_TREE, NULL_TREE);
4735 if (!useless_type_conversion_p (TREE_TYPE (vectype),
4736 TREE_TYPE (newref)))
4737 newref = build1 (VIEW_CONVERT_EXPR, TREE_TYPE (vectype),
4738 newref);
4739 }
4740 else
4741 newref = build2 (MEM_REF, TREE_TYPE (vectype),
4742 running_off,
4743 TREE_OPERAND (ref, 1));
4744
4745 newref = force_gimple_operand_gsi (gsi, newref, true,
4746 NULL_TREE, true,
4747 GSI_SAME_STMT);
4748 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, newref);
4749 newoff = copy_ssa_name (running_off, NULL);
4750 if (POINTER_TYPE_P (TREE_TYPE (newoff)))
4751 incr = gimple_build_assign_with_ops (POINTER_PLUS_EXPR, newoff,
4752 running_off, stride_step);
4753 else
4754 incr = gimple_build_assign_with_ops (PLUS_EXPR, newoff,
4755 running_off, stride_step);
4756 vect_finish_stmt_generation (stmt, incr, gsi);
4757
4758 running_off = newoff;
4759 }
4760
4761 vec_inv = build_constructor (vectype, v);
4762 new_temp = vect_init_vector (stmt, vec_inv, vectype, gsi);
4763 new_stmt = SSA_NAME_DEF_STMT (new_temp);
4764
4765 if (j == 0)
4766 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
4767 else
4768 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
4769 prev_stmt_info = vinfo_for_stmt (new_stmt);
4770 }
4771 return true;
4772 }
4773
4774 if (grouped_load)
4775 {
4776 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
4777 if (slp
4778 && !SLP_INSTANCE_LOAD_PERMUTATION (slp_node_instance).exists ()
4779 && first_stmt != SLP_TREE_SCALAR_STMTS (slp_node)[0])
4780 first_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[0];
4781
4782 /* Check if the chain of loads is already vectorized. */
4783 if (STMT_VINFO_VEC_STMT (vinfo_for_stmt (first_stmt)))
4784 {
4785 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
4786 return true;
4787 }
4788 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
4789 group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
4790
4791 /* VEC_NUM is the number of vect stmts to be created for this group. */
4792 if (slp)
4793 {
4794 grouped_load = false;
4795 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
4796 if (SLP_INSTANCE_LOAD_PERMUTATION (slp_node_instance).exists ())
4797 slp_perm = true;
4798 }
4799 else
4800 vec_num = group_size;
4801 }
4802 else
4803 {
4804 first_stmt = stmt;
4805 first_dr = dr;
4806 group_size = vec_num = 1;
4807 }
4808
4809 alignment_support_scheme = vect_supportable_dr_alignment (first_dr, false);
4810 gcc_assert (alignment_support_scheme);
4811 /* Targets with load-lane instructions must not require explicit
4812 realignment. */
4813 gcc_assert (!load_lanes_p
4814 || alignment_support_scheme == dr_aligned
4815 || alignment_support_scheme == dr_unaligned_supported);
4816
4817 /* In case the vectorization factor (VF) is bigger than the number
4818 of elements that we can fit in a vectype (nunits), we have to generate
4819 more than one vector stmt - i.e - we need to "unroll" the
4820 vector stmt by a factor VF/nunits. In doing so, we record a pointer
4821 from one copy of the vector stmt to the next, in the field
4822 STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
4823 stages to find the correct vector defs to be used when vectorizing
4824 stmts that use the defs of the current stmt. The example below
4825 illustrates the vectorization process when VF=16 and nunits=4 (i.e., we
4826 need to create 4 vectorized stmts):
4827
4828 before vectorization:
4829 RELATED_STMT VEC_STMT
4830 S1: x = memref - -
4831 S2: z = x + 1 - -
4832
4833 step 1: vectorize stmt S1:
4834 We first create the vector stmt VS1_0, and, as usual, record a
4835 pointer to it in the STMT_VINFO_VEC_STMT of the scalar stmt S1.
4836 Next, we create the vector stmt VS1_1, and record a pointer to
4837 it in the STMT_VINFO_RELATED_STMT of the vector stmt VS1_0.
4838 Similarly, for VS1_2 and VS1_3. This is the resulting chain of
4839 stmts and pointers:
4840 RELATED_STMT VEC_STMT
4841 VS1_0: vx0 = memref0 VS1_1 -
4842 VS1_1: vx1 = memref1 VS1_2 -
4843 VS1_2: vx2 = memref2 VS1_3 -
4844 VS1_3: vx3 = memref3 - -
4845 S1: x = load - VS1_0
4846 S2: z = x + 1 - -
4847
4848 See in documentation in vect_get_vec_def_for_stmt_copy for how the
4849 information we recorded in RELATED_STMT field is used to vectorize
4850 stmt S2. */
4851
4852 /* In case of interleaving (non-unit grouped access):
4853
4854 S1: x2 = &base + 2
4855 S2: x0 = &base
4856 S3: x1 = &base + 1
4857 S4: x3 = &base + 3
4858
4859 Vectorized loads are created in the order of memory accesses
4860 starting from the access of the first stmt of the chain:
4861
4862 VS1: vx0 = &base
4863 VS2: vx1 = &base + vec_size*1
4864 VS3: vx3 = &base + vec_size*2
4865 VS4: vx4 = &base + vec_size*3
4866
4867 Then permutation statements are generated:
4868
4869 VS5: vx5 = VEC_PERM_EXPR < vx0, vx1, { 0, 2, ..., i*2 } >
4870 VS6: vx6 = VEC_PERM_EXPR < vx0, vx1, { 1, 3, ..., i*2+1 } >
4871 ...
4872
4873 And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
4874 (the order of the data-refs in the output of vect_permute_load_chain
4875 corresponds to the order of scalar stmts in the interleaving chain - see
4876 the documentation of vect_permute_load_chain()).
4877 The generation of permutation stmts and recording them in
4878 STMT_VINFO_VEC_STMT is done in vect_transform_grouped_load().
4879
4880 In case of both multiple types and interleaving, the vector loads and
4881 permutation stmts above are created for every copy. The result vector
4882 stmts are put in STMT_VINFO_VEC_STMT for the first copy and in the
4883 corresponding STMT_VINFO_RELATED_STMT for the next copies. */
4884
4885 /* If the data reference is aligned (dr_aligned) or potentially unaligned
4886 on a target that supports unaligned accesses (dr_unaligned_supported)
4887 we generate the following code:
4888 p = initial_addr;
4889 indx = 0;
4890 loop {
4891 p = p + indx * vectype_size;
4892 vec_dest = *(p);
4893 indx = indx + 1;
4894 }
4895
4896 Otherwise, the data reference is potentially unaligned on a target that
4897 does not support unaligned accesses (dr_explicit_realign_optimized) -
4898 then generate the following code, in which the data in each iteration is
4899 obtained by two vector loads, one from the previous iteration, and one
4900 from the current iteration:
4901 p1 = initial_addr;
4902 msq_init = *(floor(p1))
4903 p2 = initial_addr + VS - 1;
4904 realignment_token = call target_builtin;
4905 indx = 0;
4906 loop {
4907 p2 = p2 + indx * vectype_size
4908 lsq = *(floor(p2))
4909 vec_dest = realign_load (msq, lsq, realignment_token)
4910 indx = indx + 1;
4911 msq = lsq;
4912 } */
4913
4914 /* If the misalignment remains the same throughout the execution of the
4915 loop, we can create the init_addr and permutation mask at the loop
4916 preheader. Otherwise, it needs to be created inside the loop.
4917 This can only occur when vectorizing memory accesses in the inner-loop
4918 nested within an outer-loop that is being vectorized. */
4919
4920 if (nested_in_vect_loop
4921 && (TREE_INT_CST_LOW (DR_STEP (dr))
4922 % GET_MODE_SIZE (TYPE_MODE (vectype)) != 0))
4923 {
4924 gcc_assert (alignment_support_scheme != dr_explicit_realign_optimized);
4925 compute_in_loop = true;
4926 }
4927
4928 if ((alignment_support_scheme == dr_explicit_realign_optimized
4929 || alignment_support_scheme == dr_explicit_realign)
4930 && !compute_in_loop)
4931 {
4932 msq = vect_setup_realignment (first_stmt, gsi, &realignment_token,
4933 alignment_support_scheme, NULL_TREE,
4934 &at_loop);
4935 if (alignment_support_scheme == dr_explicit_realign_optimized)
4936 {
4937 phi = SSA_NAME_DEF_STMT (msq);
4938 offset = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
4939 }
4940 }
4941 else
4942 at_loop = loop;
4943
4944 if (negative)
4945 offset = size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1);
4946
4947 if (load_lanes_p)
4948 aggr_type = build_array_type_nelts (elem_type, vec_num * nunits);
4949 else
4950 aggr_type = vectype;
4951
4952 prev_stmt_info = NULL;
4953 for (j = 0; j < ncopies; j++)
4954 {
4955 /* 1. Create the vector or array pointer update chain. */
4956 if (j == 0)
4957 dataref_ptr = vect_create_data_ref_ptr (first_stmt, aggr_type, at_loop,
4958 offset, &dummy, gsi,
4959 &ptr_incr, false, &inv_p);
4960 else
4961 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
4962 TYPE_SIZE_UNIT (aggr_type));
4963
4964 if (grouped_load || slp_perm)
4965 dr_chain.create (vec_num);
4966
4967 if (load_lanes_p)
4968 {
4969 tree vec_array;
4970
4971 vec_array = create_vector_array (vectype, vec_num);
4972
4973 /* Emit:
4974 VEC_ARRAY = LOAD_LANES (MEM_REF[...all elements...]). */
4975 data_ref = create_array_ref (aggr_type, dataref_ptr, first_dr);
4976 new_stmt = gimple_build_call_internal (IFN_LOAD_LANES, 1, data_ref);
4977 gimple_call_set_lhs (new_stmt, vec_array);
4978 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4979
4980 /* Extract each vector into an SSA_NAME. */
4981 for (i = 0; i < vec_num; i++)
4982 {
4983 new_temp = read_vector_array (stmt, gsi, scalar_dest,
4984 vec_array, i);
4985 dr_chain.quick_push (new_temp);
4986 }
4987
4988 /* Record the mapping between SSA_NAMEs and statements. */
4989 vect_record_grouped_load_vectors (stmt, dr_chain);
4990 }
4991 else
4992 {
4993 for (i = 0; i < vec_num; i++)
4994 {
4995 if (i > 0)
4996 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
4997 stmt, NULL_TREE);
4998
4999 /* 2. Create the vector-load in the loop. */
5000 switch (alignment_support_scheme)
5001 {
5002 case dr_aligned:
5003 case dr_unaligned_supported:
5004 {
5005 unsigned int align, misalign;
5006
5007 data_ref
5008 = build2 (MEM_REF, vectype, dataref_ptr,
5009 build_int_cst (reference_alias_ptr_type
5010 (DR_REF (first_dr)), 0));
5011 align = TYPE_ALIGN_UNIT (vectype);
5012 if (alignment_support_scheme == dr_aligned)
5013 {
5014 gcc_assert (aligned_access_p (first_dr));
5015 misalign = 0;
5016 }
5017 else if (DR_MISALIGNMENT (first_dr) == -1)
5018 {
5019 TREE_TYPE (data_ref)
5020 = build_aligned_type (TREE_TYPE (data_ref),
5021 TYPE_ALIGN (elem_type));
5022 align = TYPE_ALIGN_UNIT (elem_type);
5023 misalign = 0;
5024 }
5025 else
5026 {
5027 TREE_TYPE (data_ref)
5028 = build_aligned_type (TREE_TYPE (data_ref),
5029 TYPE_ALIGN (elem_type));
5030 misalign = DR_MISALIGNMENT (first_dr);
5031 }
5032 set_ptr_info_alignment (get_ptr_info (dataref_ptr),
5033 align, misalign);
5034 break;
5035 }
5036 case dr_explicit_realign:
5037 {
5038 tree ptr, bump;
5039 tree vs_minus_1;
5040
5041 vs_minus_1 = size_int (TYPE_VECTOR_SUBPARTS (vectype) - 1);
5042
5043 if (compute_in_loop)
5044 msq = vect_setup_realignment (first_stmt, gsi,
5045 &realignment_token,
5046 dr_explicit_realign,
5047 dataref_ptr, NULL);
5048
5049 ptr = copy_ssa_name (dataref_ptr, NULL);
5050 new_stmt = gimple_build_assign_with_ops
5051 (BIT_AND_EXPR, ptr, dataref_ptr,
5052 build_int_cst
5053 (TREE_TYPE (dataref_ptr),
5054 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
5055 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5056 data_ref
5057 = build2 (MEM_REF, vectype, ptr,
5058 build_int_cst (reference_alias_ptr_type
5059 (DR_REF (first_dr)), 0));
5060 vec_dest = vect_create_destination_var (scalar_dest,
5061 vectype);
5062 new_stmt = gimple_build_assign (vec_dest, data_ref);
5063 new_temp = make_ssa_name (vec_dest, new_stmt);
5064 gimple_assign_set_lhs (new_stmt, new_temp);
5065 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
5066 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
5067 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5068 msq = new_temp;
5069
5070 bump = size_binop (MULT_EXPR, vs_minus_1,
5071 TYPE_SIZE_UNIT (elem_type));
5072 ptr = bump_vector_ptr (dataref_ptr, NULL, gsi, stmt, bump);
5073 new_stmt = gimple_build_assign_with_ops
5074 (BIT_AND_EXPR, NULL_TREE, ptr,
5075 build_int_cst
5076 (TREE_TYPE (ptr),
5077 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
5078 ptr = copy_ssa_name (dataref_ptr, new_stmt);
5079 gimple_assign_set_lhs (new_stmt, ptr);
5080 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5081 data_ref
5082 = build2 (MEM_REF, vectype, ptr,
5083 build_int_cst (reference_alias_ptr_type
5084 (DR_REF (first_dr)), 0));
5085 break;
5086 }
5087 case dr_explicit_realign_optimized:
5088 new_temp = copy_ssa_name (dataref_ptr, NULL);
5089 new_stmt = gimple_build_assign_with_ops
5090 (BIT_AND_EXPR, new_temp, dataref_ptr,
5091 build_int_cst
5092 (TREE_TYPE (dataref_ptr),
5093 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
5094 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5095 data_ref
5096 = build2 (MEM_REF, vectype, new_temp,
5097 build_int_cst (reference_alias_ptr_type
5098 (DR_REF (first_dr)), 0));
5099 break;
5100 default:
5101 gcc_unreachable ();
5102 }
5103 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5104 new_stmt = gimple_build_assign (vec_dest, data_ref);
5105 new_temp = make_ssa_name (vec_dest, new_stmt);
5106 gimple_assign_set_lhs (new_stmt, new_temp);
5107 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5108
5109 /* 3. Handle explicit realignment if necessary/supported.
5110 Create in loop:
5111 vec_dest = realign_load (msq, lsq, realignment_token) */
5112 if (alignment_support_scheme == dr_explicit_realign_optimized
5113 || alignment_support_scheme == dr_explicit_realign)
5114 {
5115 lsq = gimple_assign_lhs (new_stmt);
5116 if (!realignment_token)
5117 realignment_token = dataref_ptr;
5118 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5119 new_stmt
5120 = gimple_build_assign_with_ops (REALIGN_LOAD_EXPR,
5121 vec_dest, msq, lsq,
5122 realignment_token);
5123 new_temp = make_ssa_name (vec_dest, new_stmt);
5124 gimple_assign_set_lhs (new_stmt, new_temp);
5125 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5126
5127 if (alignment_support_scheme == dr_explicit_realign_optimized)
5128 {
5129 gcc_assert (phi);
5130 if (i == vec_num - 1 && j == ncopies - 1)
5131 add_phi_arg (phi, lsq,
5132 loop_latch_edge (containing_loop),
5133 UNKNOWN_LOCATION);
5134 msq = lsq;
5135 }
5136 }
5137
5138 /* 4. Handle invariant-load. */
5139 if (inv_p && !bb_vinfo)
5140 {
5141 gimple_stmt_iterator gsi2 = *gsi;
5142 gcc_assert (!grouped_load);
5143 gsi_next (&gsi2);
5144 new_temp = vect_init_vector (stmt, scalar_dest,
5145 vectype, &gsi2);
5146 new_stmt = SSA_NAME_DEF_STMT (new_temp);
5147 }
5148
5149 if (negative)
5150 {
5151 tree perm_mask = perm_mask_for_reverse (vectype);
5152 new_temp = permute_vec_elements (new_temp, new_temp,
5153 perm_mask, stmt, gsi);
5154 new_stmt = SSA_NAME_DEF_STMT (new_temp);
5155 }
5156
5157 /* Collect vector loads and later create their permutation in
5158 vect_transform_grouped_load (). */
5159 if (grouped_load || slp_perm)
5160 dr_chain.quick_push (new_temp);
5161
5162 /* Store vector loads in the corresponding SLP_NODE. */
5163 if (slp && !slp_perm)
5164 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
5165 }
5166 }
5167
5168 if (slp && !slp_perm)
5169 continue;
5170
5171 if (slp_perm)
5172 {
5173 if (!vect_transform_slp_perm_load (stmt, dr_chain, gsi, vf,
5174 slp_node_instance, false))
5175 {
5176 dr_chain.release ();
5177 return false;
5178 }
5179 }
5180 else
5181 {
5182 if (grouped_load)
5183 {
5184 if (!load_lanes_p)
5185 vect_transform_grouped_load (stmt, dr_chain, group_size, gsi);
5186 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
5187 }
5188 else
5189 {
5190 if (j == 0)
5191 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5192 else
5193 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5194 prev_stmt_info = vinfo_for_stmt (new_stmt);
5195 }
5196 }
5197 dr_chain.release ();
5198 }
5199
5200 return true;
5201 }
5202
5203 /* Function vect_is_simple_cond.
5204
5205 Input:
5206 LOOP - the loop that is being vectorized.
5207 COND - Condition that is checked for simple use.
5208
5209 Output:
5210 *COMP_VECTYPE - the vector type for the comparison.
5211
5212 Returns whether a COND can be vectorized. Checks whether
5213 condition operands are supportable using vec_is_simple_use. */
5214
5215 static bool
5216 vect_is_simple_cond (tree cond, gimple stmt, loop_vec_info loop_vinfo,
5217 bb_vec_info bb_vinfo, tree *comp_vectype)
5218 {
5219 tree lhs, rhs;
5220 tree def;
5221 enum vect_def_type dt;
5222 tree vectype1 = NULL_TREE, vectype2 = NULL_TREE;
5223
5224 if (!COMPARISON_CLASS_P (cond))
5225 return false;
5226
5227 lhs = TREE_OPERAND (cond, 0);
5228 rhs = TREE_OPERAND (cond, 1);
5229
5230 if (TREE_CODE (lhs) == SSA_NAME)
5231 {
5232 gimple lhs_def_stmt = SSA_NAME_DEF_STMT (lhs);
5233 if (!vect_is_simple_use_1 (lhs, stmt, loop_vinfo, bb_vinfo,
5234 &lhs_def_stmt, &def, &dt, &vectype1))
5235 return false;
5236 }
5237 else if (TREE_CODE (lhs) != INTEGER_CST && TREE_CODE (lhs) != REAL_CST
5238 && TREE_CODE (lhs) != FIXED_CST)
5239 return false;
5240
5241 if (TREE_CODE (rhs) == SSA_NAME)
5242 {
5243 gimple rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
5244 if (!vect_is_simple_use_1 (rhs, stmt, loop_vinfo, bb_vinfo,
5245 &rhs_def_stmt, &def, &dt, &vectype2))
5246 return false;
5247 }
5248 else if (TREE_CODE (rhs) != INTEGER_CST && TREE_CODE (rhs) != REAL_CST
5249 && TREE_CODE (rhs) != FIXED_CST)
5250 return false;
5251
5252 *comp_vectype = vectype1 ? vectype1 : vectype2;
5253 return true;
5254 }
5255
5256 /* vectorizable_condition.
5257
5258 Check if STMT is conditional modify expression that can be vectorized.
5259 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
5260 stmt using VEC_COND_EXPR to replace it, put it in VEC_STMT, and insert it
5261 at GSI.
5262
5263 When STMT is vectorized as nested cycle, REDUC_DEF is the vector variable
5264 to be used at REDUC_INDEX (in then clause if REDUC_INDEX is 1, and in
5265 else caluse if it is 2).
5266
5267 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
5268
5269 bool
5270 vectorizable_condition (gimple stmt, gimple_stmt_iterator *gsi,
5271 gimple *vec_stmt, tree reduc_def, int reduc_index,
5272 slp_tree slp_node)
5273 {
5274 tree scalar_dest = NULL_TREE;
5275 tree vec_dest = NULL_TREE;
5276 tree cond_expr, then_clause, else_clause;
5277 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5278 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5279 tree comp_vectype = NULL_TREE;
5280 tree vec_cond_lhs = NULL_TREE, vec_cond_rhs = NULL_TREE;
5281 tree vec_then_clause = NULL_TREE, vec_else_clause = NULL_TREE;
5282 tree vec_compare, vec_cond_expr;
5283 tree new_temp;
5284 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5285 tree def;
5286 enum vect_def_type dt, dts[4];
5287 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
5288 int ncopies;
5289 enum tree_code code;
5290 stmt_vec_info prev_stmt_info = NULL;
5291 int i, j;
5292 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
5293 vec<tree> vec_oprnds0 = vec<tree>();
5294 vec<tree> vec_oprnds1 = vec<tree>();
5295 vec<tree> vec_oprnds2 = vec<tree>();
5296 vec<tree> vec_oprnds3 = vec<tree>();
5297 tree vec_cmp_type = vectype;
5298
5299 if (slp_node || PURE_SLP_STMT (stmt_info))
5300 ncopies = 1;
5301 else
5302 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
5303
5304 gcc_assert (ncopies >= 1);
5305 if (reduc_index && ncopies > 1)
5306 return false; /* FORNOW */
5307
5308 if (reduc_index && STMT_SLP_TYPE (stmt_info))
5309 return false;
5310
5311 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
5312 return false;
5313
5314 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
5315 && !(STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle
5316 && reduc_def))
5317 return false;
5318
5319 /* FORNOW: not yet supported. */
5320 if (STMT_VINFO_LIVE_P (stmt_info))
5321 {
5322 if (dump_enabled_p ())
5323 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5324 "value used after loop.");
5325 return false;
5326 }
5327
5328 /* Is vectorizable conditional operation? */
5329 if (!is_gimple_assign (stmt))
5330 return false;
5331
5332 code = gimple_assign_rhs_code (stmt);
5333
5334 if (code != COND_EXPR)
5335 return false;
5336
5337 cond_expr = gimple_assign_rhs1 (stmt);
5338 then_clause = gimple_assign_rhs2 (stmt);
5339 else_clause = gimple_assign_rhs3 (stmt);
5340
5341 if (!vect_is_simple_cond (cond_expr, stmt, loop_vinfo, bb_vinfo,
5342 &comp_vectype)
5343 || !comp_vectype)
5344 return false;
5345
5346 if (TREE_CODE (then_clause) == SSA_NAME)
5347 {
5348 gimple then_def_stmt = SSA_NAME_DEF_STMT (then_clause);
5349 if (!vect_is_simple_use (then_clause, stmt, loop_vinfo, bb_vinfo,
5350 &then_def_stmt, &def, &dt))
5351 return false;
5352 }
5353 else if (TREE_CODE (then_clause) != INTEGER_CST
5354 && TREE_CODE (then_clause) != REAL_CST
5355 && TREE_CODE (then_clause) != FIXED_CST)
5356 return false;
5357
5358 if (TREE_CODE (else_clause) == SSA_NAME)
5359 {
5360 gimple else_def_stmt = SSA_NAME_DEF_STMT (else_clause);
5361 if (!vect_is_simple_use (else_clause, stmt, loop_vinfo, bb_vinfo,
5362 &else_def_stmt, &def, &dt))
5363 return false;
5364 }
5365 else if (TREE_CODE (else_clause) != INTEGER_CST
5366 && TREE_CODE (else_clause) != REAL_CST
5367 && TREE_CODE (else_clause) != FIXED_CST)
5368 return false;
5369
5370 if (!INTEGRAL_TYPE_P (TREE_TYPE (vectype)))
5371 {
5372 unsigned int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (vectype)));
5373 tree cmp_type = build_nonstandard_integer_type (prec, 1);
5374 vec_cmp_type = get_same_sized_vectype (cmp_type, vectype);
5375 if (vec_cmp_type == NULL_TREE)
5376 return false;
5377 }
5378
5379 if (!vec_stmt)
5380 {
5381 STMT_VINFO_TYPE (stmt_info) = condition_vec_info_type;
5382 return expand_vec_cond_expr_p (vectype, comp_vectype);
5383 }
5384
5385 /* Transform. */
5386
5387 if (!slp_node)
5388 {
5389 vec_oprnds0.create (1);
5390 vec_oprnds1.create (1);
5391 vec_oprnds2.create (1);
5392 vec_oprnds3.create (1);
5393 }
5394
5395 /* Handle def. */
5396 scalar_dest = gimple_assign_lhs (stmt);
5397 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5398
5399 /* Handle cond expr. */
5400 for (j = 0; j < ncopies; j++)
5401 {
5402 gimple new_stmt = NULL;
5403 if (j == 0)
5404 {
5405 if (slp_node)
5406 {
5407 vec<tree> ops;
5408 ops.create (4);
5409 vec<slp_void_p> vec_defs;
5410
5411 vec_defs.create (4);
5412 ops.safe_push (TREE_OPERAND (cond_expr, 0));
5413 ops.safe_push (TREE_OPERAND (cond_expr, 1));
5414 ops.safe_push (then_clause);
5415 ops.safe_push (else_clause);
5416 vect_get_slp_defs (ops, slp_node, &vec_defs, -1);
5417 vec_oprnds3 = *((vec<tree> *) vec_defs.pop ());
5418 vec_oprnds2 = *((vec<tree> *) vec_defs.pop ());
5419 vec_oprnds1 = *((vec<tree> *) vec_defs.pop ());
5420 vec_oprnds0 = *((vec<tree> *) vec_defs.pop ());
5421
5422 ops.release ();
5423 vec_defs.release ();
5424 }
5425 else
5426 {
5427 gimple gtemp;
5428 vec_cond_lhs =
5429 vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 0),
5430 stmt, NULL);
5431 vect_is_simple_use (TREE_OPERAND (cond_expr, 0), stmt,
5432 loop_vinfo, NULL, &gtemp, &def, &dts[0]);
5433
5434 vec_cond_rhs =
5435 vect_get_vec_def_for_operand (TREE_OPERAND (cond_expr, 1),
5436 stmt, NULL);
5437 vect_is_simple_use (TREE_OPERAND (cond_expr, 1), stmt,
5438 loop_vinfo, NULL, &gtemp, &def, &dts[1]);
5439 if (reduc_index == 1)
5440 vec_then_clause = reduc_def;
5441 else
5442 {
5443 vec_then_clause = vect_get_vec_def_for_operand (then_clause,
5444 stmt, NULL);
5445 vect_is_simple_use (then_clause, stmt, loop_vinfo,
5446 NULL, &gtemp, &def, &dts[2]);
5447 }
5448 if (reduc_index == 2)
5449 vec_else_clause = reduc_def;
5450 else
5451 {
5452 vec_else_clause = vect_get_vec_def_for_operand (else_clause,
5453 stmt, NULL);
5454 vect_is_simple_use (else_clause, stmt, loop_vinfo,
5455 NULL, &gtemp, &def, &dts[3]);
5456 }
5457 }
5458 }
5459 else
5460 {
5461 vec_cond_lhs = vect_get_vec_def_for_stmt_copy (dts[0],
5462 vec_oprnds0.pop ());
5463 vec_cond_rhs = vect_get_vec_def_for_stmt_copy (dts[1],
5464 vec_oprnds1.pop ());
5465 vec_then_clause = vect_get_vec_def_for_stmt_copy (dts[2],
5466 vec_oprnds2.pop ());
5467 vec_else_clause = vect_get_vec_def_for_stmt_copy (dts[3],
5468 vec_oprnds3.pop ());
5469 }
5470
5471 if (!slp_node)
5472 {
5473 vec_oprnds0.quick_push (vec_cond_lhs);
5474 vec_oprnds1.quick_push (vec_cond_rhs);
5475 vec_oprnds2.quick_push (vec_then_clause);
5476 vec_oprnds3.quick_push (vec_else_clause);
5477 }
5478
5479 /* Arguments are ready. Create the new vector stmt. */
5480 FOR_EACH_VEC_ELT (vec_oprnds0, i, vec_cond_lhs)
5481 {
5482 vec_cond_rhs = vec_oprnds1[i];
5483 vec_then_clause = vec_oprnds2[i];
5484 vec_else_clause = vec_oprnds3[i];
5485
5486 vec_compare = build2 (TREE_CODE (cond_expr), vec_cmp_type,
5487 vec_cond_lhs, vec_cond_rhs);
5488 vec_cond_expr = build3 (VEC_COND_EXPR, vectype,
5489 vec_compare, vec_then_clause, vec_else_clause);
5490
5491 new_stmt = gimple_build_assign (vec_dest, vec_cond_expr);
5492 new_temp = make_ssa_name (vec_dest, new_stmt);
5493 gimple_assign_set_lhs (new_stmt, new_temp);
5494 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5495 if (slp_node)
5496 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
5497 }
5498
5499 if (slp_node)
5500 continue;
5501
5502 if (j == 0)
5503 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5504 else
5505 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5506
5507 prev_stmt_info = vinfo_for_stmt (new_stmt);
5508 }
5509
5510 vec_oprnds0.release ();
5511 vec_oprnds1.release ();
5512 vec_oprnds2.release ();
5513 vec_oprnds3.release ();
5514
5515 return true;
5516 }
5517
5518
5519 /* Make sure the statement is vectorizable. */
5520
5521 bool
5522 vect_analyze_stmt (gimple stmt, bool *need_to_vectorize, slp_tree node)
5523 {
5524 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5525 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
5526 enum vect_relevant relevance = STMT_VINFO_RELEVANT (stmt_info);
5527 bool ok;
5528 tree scalar_type, vectype;
5529 gimple pattern_stmt;
5530 gimple_seq pattern_def_seq;
5531
5532 if (dump_enabled_p ())
5533 {
5534 dump_printf_loc (MSG_NOTE, vect_location, "==> examining statement: ");
5535 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
5536 }
5537
5538 if (gimple_has_volatile_ops (stmt))
5539 {
5540 if (dump_enabled_p ())
5541 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5542 "not vectorized: stmt has volatile operands");
5543
5544 return false;
5545 }
5546
5547 /* Skip stmts that do not need to be vectorized. In loops this is expected
5548 to include:
5549 - the COND_EXPR which is the loop exit condition
5550 - any LABEL_EXPRs in the loop
5551 - computations that are used only for array indexing or loop control.
5552 In basic blocks we only analyze statements that are a part of some SLP
5553 instance, therefore, all the statements are relevant.
5554
5555 Pattern statement needs to be analyzed instead of the original statement
5556 if the original statement is not relevant. Otherwise, we analyze both
5557 statements. In basic blocks we are called from some SLP instance
5558 traversal, don't analyze pattern stmts instead, the pattern stmts
5559 already will be part of SLP instance. */
5560
5561 pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
5562 if (!STMT_VINFO_RELEVANT_P (stmt_info)
5563 && !STMT_VINFO_LIVE_P (stmt_info))
5564 {
5565 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5566 && pattern_stmt
5567 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5568 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5569 {
5570 /* Analyze PATTERN_STMT instead of the original stmt. */
5571 stmt = pattern_stmt;
5572 stmt_info = vinfo_for_stmt (pattern_stmt);
5573 if (dump_enabled_p ())
5574 {
5575 dump_printf_loc (MSG_NOTE, vect_location,
5576 "==> examining pattern statement: ");
5577 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
5578 }
5579 }
5580 else
5581 {
5582 if (dump_enabled_p ())
5583 dump_printf_loc (MSG_NOTE, vect_location, "irrelevant.");
5584
5585 return true;
5586 }
5587 }
5588 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
5589 && node == NULL
5590 && pattern_stmt
5591 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
5592 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
5593 {
5594 /* Analyze PATTERN_STMT too. */
5595 if (dump_enabled_p ())
5596 {
5597 dump_printf_loc (MSG_NOTE, vect_location,
5598 "==> examining pattern statement: ");
5599 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
5600 }
5601
5602 if (!vect_analyze_stmt (pattern_stmt, need_to_vectorize, node))
5603 return false;
5604 }
5605
5606 if (is_pattern_stmt_p (stmt_info)
5607 && node == NULL
5608 && (pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info)))
5609 {
5610 gimple_stmt_iterator si;
5611
5612 for (si = gsi_start (pattern_def_seq); !gsi_end_p (si); gsi_next (&si))
5613 {
5614 gimple pattern_def_stmt = gsi_stmt (si);
5615 if (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_def_stmt))
5616 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_def_stmt)))
5617 {
5618 /* Analyze def stmt of STMT if it's a pattern stmt. */
5619 if (dump_enabled_p ())
5620 {
5621 dump_printf_loc (MSG_NOTE, vect_location,
5622 "==> examining pattern def statement: ");
5623 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_def_stmt, 0);
5624 }
5625
5626 if (!vect_analyze_stmt (pattern_def_stmt,
5627 need_to_vectorize, node))
5628 return false;
5629 }
5630 }
5631 }
5632
5633 switch (STMT_VINFO_DEF_TYPE (stmt_info))
5634 {
5635 case vect_internal_def:
5636 break;
5637
5638 case vect_reduction_def:
5639 case vect_nested_cycle:
5640 gcc_assert (!bb_vinfo && (relevance == vect_used_in_outer
5641 || relevance == vect_used_in_outer_by_reduction
5642 || relevance == vect_unused_in_scope));
5643 break;
5644
5645 case vect_induction_def:
5646 case vect_constant_def:
5647 case vect_external_def:
5648 case vect_unknown_def_type:
5649 default:
5650 gcc_unreachable ();
5651 }
5652
5653 if (bb_vinfo)
5654 {
5655 gcc_assert (PURE_SLP_STMT (stmt_info));
5656
5657 scalar_type = TREE_TYPE (gimple_get_lhs (stmt));
5658 if (dump_enabled_p ())
5659 {
5660 dump_printf_loc (MSG_NOTE, vect_location,
5661 "get vectype for scalar type: ");
5662 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
5663 }
5664
5665 vectype = get_vectype_for_scalar_type (scalar_type);
5666 if (!vectype)
5667 {
5668 if (dump_enabled_p ())
5669 {
5670 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5671 "not SLPed: unsupported data-type ");
5672 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
5673 scalar_type);
5674 }
5675 return false;
5676 }
5677
5678 if (dump_enabled_p ())
5679 {
5680 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
5681 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
5682 }
5683
5684 STMT_VINFO_VECTYPE (stmt_info) = vectype;
5685 }
5686
5687 if (STMT_VINFO_RELEVANT_P (stmt_info))
5688 {
5689 gcc_assert (!VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))));
5690 gcc_assert (STMT_VINFO_VECTYPE (stmt_info));
5691 *need_to_vectorize = true;
5692 }
5693
5694 ok = true;
5695 if (!bb_vinfo
5696 && (STMT_VINFO_RELEVANT_P (stmt_info)
5697 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def))
5698 ok = (vectorizable_conversion (stmt, NULL, NULL, NULL)
5699 || vectorizable_shift (stmt, NULL, NULL, NULL)
5700 || vectorizable_operation (stmt, NULL, NULL, NULL)
5701 || vectorizable_assignment (stmt, NULL, NULL, NULL)
5702 || vectorizable_load (stmt, NULL, NULL, NULL, NULL)
5703 || vectorizable_call (stmt, NULL, NULL, NULL)
5704 || vectorizable_store (stmt, NULL, NULL, NULL)
5705 || vectorizable_reduction (stmt, NULL, NULL, NULL)
5706 || vectorizable_condition (stmt, NULL, NULL, NULL, 0, NULL));
5707 else
5708 {
5709 if (bb_vinfo)
5710 ok = (vectorizable_conversion (stmt, NULL, NULL, node)
5711 || vectorizable_shift (stmt, NULL, NULL, node)
5712 || vectorizable_operation (stmt, NULL, NULL, node)
5713 || vectorizable_assignment (stmt, NULL, NULL, node)
5714 || vectorizable_load (stmt, NULL, NULL, node, NULL)
5715 || vectorizable_call (stmt, NULL, NULL, node)
5716 || vectorizable_store (stmt, NULL, NULL, node)
5717 || vectorizable_condition (stmt, NULL, NULL, NULL, 0, node));
5718 }
5719
5720 if (!ok)
5721 {
5722 if (dump_enabled_p ())
5723 {
5724 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5725 "not vectorized: relevant stmt not ");
5726 dump_printf (MSG_MISSED_OPTIMIZATION, "supported: ");
5727 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
5728 }
5729
5730 return false;
5731 }
5732
5733 if (bb_vinfo)
5734 return true;
5735
5736 /* Stmts that are (also) "live" (i.e. - that are used out of the loop)
5737 need extra handling, except for vectorizable reductions. */
5738 if (STMT_VINFO_LIVE_P (stmt_info)
5739 && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
5740 ok = vectorizable_live_operation (stmt, NULL, NULL);
5741
5742 if (!ok)
5743 {
5744 if (dump_enabled_p ())
5745 {
5746 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5747 "not vectorized: live stmt not ");
5748 dump_printf (MSG_MISSED_OPTIMIZATION, "supported: ");
5749 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
5750 }
5751
5752 return false;
5753 }
5754
5755 return true;
5756 }
5757
5758
5759 /* Function vect_transform_stmt.
5760
5761 Create a vectorized stmt to replace STMT, and insert it at BSI. */
5762
5763 bool
5764 vect_transform_stmt (gimple stmt, gimple_stmt_iterator *gsi,
5765 bool *grouped_store, slp_tree slp_node,
5766 slp_instance slp_node_instance)
5767 {
5768 bool is_store = false;
5769 gimple vec_stmt = NULL;
5770 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5771 bool done;
5772
5773 switch (STMT_VINFO_TYPE (stmt_info))
5774 {
5775 case type_demotion_vec_info_type:
5776 case type_promotion_vec_info_type:
5777 case type_conversion_vec_info_type:
5778 done = vectorizable_conversion (stmt, gsi, &vec_stmt, slp_node);
5779 gcc_assert (done);
5780 break;
5781
5782 case induc_vec_info_type:
5783 gcc_assert (!slp_node);
5784 done = vectorizable_induction (stmt, gsi, &vec_stmt);
5785 gcc_assert (done);
5786 break;
5787
5788 case shift_vec_info_type:
5789 done = vectorizable_shift (stmt, gsi, &vec_stmt, slp_node);
5790 gcc_assert (done);
5791 break;
5792
5793 case op_vec_info_type:
5794 done = vectorizable_operation (stmt, gsi, &vec_stmt, slp_node);
5795 gcc_assert (done);
5796 break;
5797
5798 case assignment_vec_info_type:
5799 done = vectorizable_assignment (stmt, gsi, &vec_stmt, slp_node);
5800 gcc_assert (done);
5801 break;
5802
5803 case load_vec_info_type:
5804 done = vectorizable_load (stmt, gsi, &vec_stmt, slp_node,
5805 slp_node_instance);
5806 gcc_assert (done);
5807 break;
5808
5809 case store_vec_info_type:
5810 done = vectorizable_store (stmt, gsi, &vec_stmt, slp_node);
5811 gcc_assert (done);
5812 if (STMT_VINFO_GROUPED_ACCESS (stmt_info) && !slp_node)
5813 {
5814 /* In case of interleaving, the whole chain is vectorized when the
5815 last store in the chain is reached. Store stmts before the last
5816 one are skipped, and there vec_stmt_info shouldn't be freed
5817 meanwhile. */
5818 *grouped_store = true;
5819 if (STMT_VINFO_VEC_STMT (stmt_info))
5820 is_store = true;
5821 }
5822 else
5823 is_store = true;
5824 break;
5825
5826 case condition_vec_info_type:
5827 done = vectorizable_condition (stmt, gsi, &vec_stmt, NULL, 0, slp_node);
5828 gcc_assert (done);
5829 break;
5830
5831 case call_vec_info_type:
5832 done = vectorizable_call (stmt, gsi, &vec_stmt, slp_node);
5833 stmt = gsi_stmt (*gsi);
5834 break;
5835
5836 case reduc_vec_info_type:
5837 done = vectorizable_reduction (stmt, gsi, &vec_stmt, slp_node);
5838 gcc_assert (done);
5839 break;
5840
5841 default:
5842 if (!STMT_VINFO_LIVE_P (stmt_info))
5843 {
5844 if (dump_enabled_p ())
5845 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5846 "stmt not supported.");
5847 gcc_unreachable ();
5848 }
5849 }
5850
5851 /* Handle inner-loop stmts whose DEF is used in the loop-nest that
5852 is being vectorized, but outside the immediately enclosing loop. */
5853 if (vec_stmt
5854 && STMT_VINFO_LOOP_VINFO (stmt_info)
5855 && nested_in_vect_loop_p (LOOP_VINFO_LOOP (
5856 STMT_VINFO_LOOP_VINFO (stmt_info)), stmt)
5857 && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type
5858 && (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_outer
5859 || STMT_VINFO_RELEVANT (stmt_info) ==
5860 vect_used_in_outer_by_reduction))
5861 {
5862 struct loop *innerloop = LOOP_VINFO_LOOP (
5863 STMT_VINFO_LOOP_VINFO (stmt_info))->inner;
5864 imm_use_iterator imm_iter;
5865 use_operand_p use_p;
5866 tree scalar_dest;
5867 gimple exit_phi;
5868
5869 if (dump_enabled_p ())
5870 dump_printf_loc (MSG_NOTE, vect_location,
5871 "Record the vdef for outer-loop vectorization.");
5872
5873 /* Find the relevant loop-exit phi-node, and reord the vec_stmt there
5874 (to be used when vectorizing outer-loop stmts that use the DEF of
5875 STMT). */
5876 if (gimple_code (stmt) == GIMPLE_PHI)
5877 scalar_dest = PHI_RESULT (stmt);
5878 else
5879 scalar_dest = gimple_assign_lhs (stmt);
5880
5881 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
5882 {
5883 if (!flow_bb_inside_loop_p (innerloop, gimple_bb (USE_STMT (use_p))))
5884 {
5885 exit_phi = USE_STMT (use_p);
5886 STMT_VINFO_VEC_STMT (vinfo_for_stmt (exit_phi)) = vec_stmt;
5887 }
5888 }
5889 }
5890
5891 /* Handle stmts whose DEF is used outside the loop-nest that is
5892 being vectorized. */
5893 if (STMT_VINFO_LIVE_P (stmt_info)
5894 && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
5895 {
5896 done = vectorizable_live_operation (stmt, gsi, &vec_stmt);
5897 gcc_assert (done);
5898 }
5899
5900 if (vec_stmt)
5901 STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
5902
5903 return is_store;
5904 }
5905
5906
5907 /* Remove a group of stores (for SLP or interleaving), free their
5908 stmt_vec_info. */
5909
5910 void
5911 vect_remove_stores (gimple first_stmt)
5912 {
5913 gimple next = first_stmt;
5914 gimple tmp;
5915 gimple_stmt_iterator next_si;
5916
5917 while (next)
5918 {
5919 stmt_vec_info stmt_info = vinfo_for_stmt (next);
5920
5921 tmp = GROUP_NEXT_ELEMENT (stmt_info);
5922 if (is_pattern_stmt_p (stmt_info))
5923 next = STMT_VINFO_RELATED_STMT (stmt_info);
5924 /* Free the attached stmt_vec_info and remove the stmt. */
5925 next_si = gsi_for_stmt (next);
5926 unlink_stmt_vdef (next);
5927 gsi_remove (&next_si, true);
5928 release_defs (next);
5929 free_stmt_vec_info (next);
5930 next = tmp;
5931 }
5932 }
5933
5934
5935 /* Function new_stmt_vec_info.
5936
5937 Create and initialize a new stmt_vec_info struct for STMT. */
5938
5939 stmt_vec_info
5940 new_stmt_vec_info (gimple stmt, loop_vec_info loop_vinfo,
5941 bb_vec_info bb_vinfo)
5942 {
5943 stmt_vec_info res;
5944 res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));
5945
5946 STMT_VINFO_TYPE (res) = undef_vec_info_type;
5947 STMT_VINFO_STMT (res) = stmt;
5948 STMT_VINFO_LOOP_VINFO (res) = loop_vinfo;
5949 STMT_VINFO_BB_VINFO (res) = bb_vinfo;
5950 STMT_VINFO_RELEVANT (res) = vect_unused_in_scope;
5951 STMT_VINFO_LIVE_P (res) = false;
5952 STMT_VINFO_VECTYPE (res) = NULL;
5953 STMT_VINFO_VEC_STMT (res) = NULL;
5954 STMT_VINFO_VECTORIZABLE (res) = true;
5955 STMT_VINFO_IN_PATTERN_P (res) = false;
5956 STMT_VINFO_RELATED_STMT (res) = NULL;
5957 STMT_VINFO_PATTERN_DEF_SEQ (res) = NULL;
5958 STMT_VINFO_DATA_REF (res) = NULL;
5959
5960 STMT_VINFO_DR_BASE_ADDRESS (res) = NULL;
5961 STMT_VINFO_DR_OFFSET (res) = NULL;
5962 STMT_VINFO_DR_INIT (res) = NULL;
5963 STMT_VINFO_DR_STEP (res) = NULL;
5964 STMT_VINFO_DR_ALIGNED_TO (res) = NULL;
5965
5966 if (gimple_code (stmt) == GIMPLE_PHI
5967 && is_loop_header_bb_p (gimple_bb (stmt)))
5968 STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
5969 else
5970 STMT_VINFO_DEF_TYPE (res) = vect_internal_def;
5971
5972 STMT_VINFO_SAME_ALIGN_REFS (res).create (0);
5973 STMT_SLP_TYPE (res) = loop_vect;
5974 GROUP_FIRST_ELEMENT (res) = NULL;
5975 GROUP_NEXT_ELEMENT (res) = NULL;
5976 GROUP_SIZE (res) = 0;
5977 GROUP_STORE_COUNT (res) = 0;
5978 GROUP_GAP (res) = 0;
5979 GROUP_SAME_DR_STMT (res) = NULL;
5980 GROUP_READ_WRITE_DEPENDENCE (res) = false;
5981
5982 return res;
5983 }
5984
5985
5986 /* Create a hash table for stmt_vec_info. */
5987
5988 void
5989 init_stmt_vec_info_vec (void)
5990 {
5991 gcc_assert (!stmt_vec_info_vec.exists ());
5992 stmt_vec_info_vec.create (50);
5993 }
5994
5995
5996 /* Free hash table for stmt_vec_info. */
5997
5998 void
5999 free_stmt_vec_info_vec (void)
6000 {
6001 gcc_assert (stmt_vec_info_vec.exists ());
6002 stmt_vec_info_vec.release ();
6003 }
6004
6005
6006 /* Free stmt vectorization related info. */
6007
6008 void
6009 free_stmt_vec_info (gimple stmt)
6010 {
6011 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
6012
6013 if (!stmt_info)
6014 return;
6015
6016 /* Check if this statement has a related "pattern stmt"
6017 (introduced by the vectorizer during the pattern recognition
6018 pass). Free pattern's stmt_vec_info and def stmt's stmt_vec_info
6019 too. */
6020 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
6021 {
6022 stmt_vec_info patt_info
6023 = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
6024 if (patt_info)
6025 {
6026 gimple_seq seq = STMT_VINFO_PATTERN_DEF_SEQ (patt_info);
6027 if (seq)
6028 {
6029 gimple_stmt_iterator si;
6030 for (si = gsi_start (seq); !gsi_end_p (si); gsi_next (&si))
6031 free_stmt_vec_info (gsi_stmt (si));
6032 }
6033 free_stmt_vec_info (STMT_VINFO_RELATED_STMT (stmt_info));
6034 }
6035 }
6036
6037 STMT_VINFO_SAME_ALIGN_REFS (stmt_info).release ();
6038 set_vinfo_for_stmt (stmt, NULL);
6039 free (stmt_info);
6040 }
6041
6042
6043 /* Function get_vectype_for_scalar_type_and_size.
6044
6045 Returns the vector type corresponding to SCALAR_TYPE and SIZE as supported
6046 by the target. */
6047
6048 static tree
6049 get_vectype_for_scalar_type_and_size (tree scalar_type, unsigned size)
6050 {
6051 enum machine_mode inner_mode = TYPE_MODE (scalar_type);
6052 enum machine_mode simd_mode;
6053 unsigned int nbytes = GET_MODE_SIZE (inner_mode);
6054 int nunits;
6055 tree vectype;
6056
6057 if (nbytes == 0)
6058 return NULL_TREE;
6059
6060 if (GET_MODE_CLASS (inner_mode) != MODE_INT
6061 && GET_MODE_CLASS (inner_mode) != MODE_FLOAT)
6062 return NULL_TREE;
6063
6064 /* For vector types of elements whose mode precision doesn't
6065 match their types precision we use a element type of mode
6066 precision. The vectorization routines will have to make sure
6067 they support the proper result truncation/extension.
6068 We also make sure to build vector types with INTEGER_TYPE
6069 component type only. */
6070 if (INTEGRAL_TYPE_P (scalar_type)
6071 && (GET_MODE_BITSIZE (inner_mode) != TYPE_PRECISION (scalar_type)
6072 || TREE_CODE (scalar_type) != INTEGER_TYPE))
6073 scalar_type = build_nonstandard_integer_type (GET_MODE_BITSIZE (inner_mode),
6074 TYPE_UNSIGNED (scalar_type));
6075
6076 /* We shouldn't end up building VECTOR_TYPEs of non-scalar components.
6077 When the component mode passes the above test simply use a type
6078 corresponding to that mode. The theory is that any use that
6079 would cause problems with this will disable vectorization anyway. */
6080 else if (!SCALAR_FLOAT_TYPE_P (scalar_type)
6081 && !INTEGRAL_TYPE_P (scalar_type)
6082 && !POINTER_TYPE_P (scalar_type))
6083 scalar_type = lang_hooks.types.type_for_mode (inner_mode, 1);
6084
6085 /* We can't build a vector type of elements with alignment bigger than
6086 their size. */
6087 else if (nbytes < TYPE_ALIGN_UNIT (scalar_type))
6088 scalar_type = lang_hooks.types.type_for_mode (inner_mode, 1);
6089
6090 /* If we felt back to using the mode fail if there was
6091 no scalar type for it. */
6092 if (scalar_type == NULL_TREE)
6093 return NULL_TREE;
6094
6095 /* If no size was supplied use the mode the target prefers. Otherwise
6096 lookup a vector mode of the specified size. */
6097 if (size == 0)
6098 simd_mode = targetm.vectorize.preferred_simd_mode (inner_mode);
6099 else
6100 simd_mode = mode_for_vector (inner_mode, size / nbytes);
6101 nunits = GET_MODE_SIZE (simd_mode) / nbytes;
6102 if (nunits <= 1)
6103 return NULL_TREE;
6104
6105 vectype = build_vector_type (scalar_type, nunits);
6106 if (dump_enabled_p ())
6107 {
6108 dump_printf_loc (MSG_NOTE, vect_location,
6109 "get vectype with %d units of type ", nunits);
6110 dump_generic_expr (MSG_NOTE, TDF_SLIM, scalar_type);
6111 }
6112
6113 if (!vectype)
6114 return NULL_TREE;
6115
6116 if (dump_enabled_p ())
6117 {
6118 dump_printf_loc (MSG_NOTE, vect_location, "vectype: ");
6119 dump_generic_expr (MSG_NOTE, TDF_SLIM, vectype);
6120 }
6121
6122 if (!VECTOR_MODE_P (TYPE_MODE (vectype))
6123 && !INTEGRAL_MODE_P (TYPE_MODE (vectype)))
6124 {
6125 if (dump_enabled_p ())
6126 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6127 "mode not supported by target.");
6128 return NULL_TREE;
6129 }
6130
6131 return vectype;
6132 }
6133
6134 unsigned int current_vector_size;
6135
6136 /* Function get_vectype_for_scalar_type.
6137
6138 Returns the vector type corresponding to SCALAR_TYPE as supported
6139 by the target. */
6140
6141 tree
6142 get_vectype_for_scalar_type (tree scalar_type)
6143 {
6144 tree vectype;
6145 vectype = get_vectype_for_scalar_type_and_size (scalar_type,
6146 current_vector_size);
6147 if (vectype
6148 && current_vector_size == 0)
6149 current_vector_size = GET_MODE_SIZE (TYPE_MODE (vectype));
6150 return vectype;
6151 }
6152
6153 /* Function get_same_sized_vectype
6154
6155 Returns a vector type corresponding to SCALAR_TYPE of size
6156 VECTOR_TYPE if supported by the target. */
6157
6158 tree
6159 get_same_sized_vectype (tree scalar_type, tree vector_type)
6160 {
6161 return get_vectype_for_scalar_type_and_size
6162 (scalar_type, GET_MODE_SIZE (TYPE_MODE (vector_type)));
6163 }
6164
6165 /* Function vect_is_simple_use.
6166
6167 Input:
6168 LOOP_VINFO - the vect info of the loop that is being vectorized.
6169 BB_VINFO - the vect info of the basic block that is being vectorized.
6170 OPERAND - operand of STMT in the loop or bb.
6171 DEF - the defining stmt in case OPERAND is an SSA_NAME.
6172
6173 Returns whether a stmt with OPERAND can be vectorized.
6174 For loops, supportable operands are constants, loop invariants, and operands
6175 that are defined by the current iteration of the loop. Unsupportable
6176 operands are those that are defined by a previous iteration of the loop (as
6177 is the case in reduction/induction computations).
6178 For basic blocks, supportable operands are constants and bb invariants.
6179 For now, operands defined outside the basic block are not supported. */
6180
6181 bool
6182 vect_is_simple_use (tree operand, gimple stmt, loop_vec_info loop_vinfo,
6183 bb_vec_info bb_vinfo, gimple *def_stmt,
6184 tree *def, enum vect_def_type *dt)
6185 {
6186 basic_block bb;
6187 stmt_vec_info stmt_vinfo;
6188 struct loop *loop = NULL;
6189
6190 if (loop_vinfo)
6191 loop = LOOP_VINFO_LOOP (loop_vinfo);
6192
6193 *def_stmt = NULL;
6194 *def = NULL_TREE;
6195
6196 if (dump_enabled_p ())
6197 {
6198 dump_printf_loc (MSG_NOTE, vect_location,
6199 "vect_is_simple_use: operand ");
6200 dump_generic_expr (MSG_NOTE, TDF_SLIM, operand);
6201 }
6202
6203 if (CONSTANT_CLASS_P (operand))
6204 {
6205 *dt = vect_constant_def;
6206 return true;
6207 }
6208
6209 if (is_gimple_min_invariant (operand))
6210 {
6211 *def = operand;
6212 *dt = vect_external_def;
6213 return true;
6214 }
6215
6216 if (TREE_CODE (operand) == PAREN_EXPR)
6217 {
6218 if (dump_enabled_p ())
6219 dump_printf_loc (MSG_NOTE, vect_location, "non-associatable copy.");
6220 operand = TREE_OPERAND (operand, 0);
6221 }
6222
6223 if (TREE_CODE (operand) != SSA_NAME)
6224 {
6225 if (dump_enabled_p ())
6226 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6227 "not ssa-name.");
6228 return false;
6229 }
6230
6231 *def_stmt = SSA_NAME_DEF_STMT (operand);
6232 if (*def_stmt == NULL)
6233 {
6234 if (dump_enabled_p ())
6235 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6236 "no def_stmt.");
6237 return false;
6238 }
6239
6240 if (dump_enabled_p ())
6241 {
6242 dump_printf_loc (MSG_NOTE, vect_location, "def_stmt: ");
6243 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, *def_stmt, 0);
6244 }
6245
6246 /* Empty stmt is expected only in case of a function argument.
6247 (Otherwise - we expect a phi_node or a GIMPLE_ASSIGN). */
6248 if (gimple_nop_p (*def_stmt))
6249 {
6250 *def = operand;
6251 *dt = vect_external_def;
6252 return true;
6253 }
6254
6255 bb = gimple_bb (*def_stmt);
6256
6257 if ((loop && !flow_bb_inside_loop_p (loop, bb))
6258 || (!loop && bb != BB_VINFO_BB (bb_vinfo))
6259 || (!loop && gimple_code (*def_stmt) == GIMPLE_PHI))
6260 *dt = vect_external_def;
6261 else
6262 {
6263 stmt_vinfo = vinfo_for_stmt (*def_stmt);
6264 *dt = STMT_VINFO_DEF_TYPE (stmt_vinfo);
6265 }
6266
6267 if (*dt == vect_unknown_def_type
6268 || (stmt
6269 && *dt == vect_double_reduction_def
6270 && gimple_code (stmt) != GIMPLE_PHI))
6271 {
6272 if (dump_enabled_p ())
6273 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6274 "Unsupported pattern.");
6275 return false;
6276 }
6277
6278 if (dump_enabled_p ())
6279 dump_printf_loc (MSG_NOTE, vect_location, "type of def: %d.", *dt);
6280
6281 switch (gimple_code (*def_stmt))
6282 {
6283 case GIMPLE_PHI:
6284 *def = gimple_phi_result (*def_stmt);
6285 break;
6286
6287 case GIMPLE_ASSIGN:
6288 *def = gimple_assign_lhs (*def_stmt);
6289 break;
6290
6291 case GIMPLE_CALL:
6292 *def = gimple_call_lhs (*def_stmt);
6293 if (*def != NULL)
6294 break;
6295 /* FALLTHRU */
6296 default:
6297 if (dump_enabled_p ())
6298 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6299 "unsupported defining stmt: ");
6300 return false;
6301 }
6302
6303 return true;
6304 }
6305
6306 /* Function vect_is_simple_use_1.
6307
6308 Same as vect_is_simple_use_1 but also determines the vector operand
6309 type of OPERAND and stores it to *VECTYPE. If the definition of
6310 OPERAND is vect_uninitialized_def, vect_constant_def or
6311 vect_external_def *VECTYPE will be set to NULL_TREE and the caller
6312 is responsible to compute the best suited vector type for the
6313 scalar operand. */
6314
6315 bool
6316 vect_is_simple_use_1 (tree operand, gimple stmt, loop_vec_info loop_vinfo,
6317 bb_vec_info bb_vinfo, gimple *def_stmt,
6318 tree *def, enum vect_def_type *dt, tree *vectype)
6319 {
6320 if (!vect_is_simple_use (operand, stmt, loop_vinfo, bb_vinfo, def_stmt,
6321 def, dt))
6322 return false;
6323
6324 /* Now get a vector type if the def is internal, otherwise supply
6325 NULL_TREE and leave it up to the caller to figure out a proper
6326 type for the use stmt. */
6327 if (*dt == vect_internal_def
6328 || *dt == vect_induction_def
6329 || *dt == vect_reduction_def
6330 || *dt == vect_double_reduction_def
6331 || *dt == vect_nested_cycle)
6332 {
6333 stmt_vec_info stmt_info = vinfo_for_stmt (*def_stmt);
6334
6335 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
6336 && !STMT_VINFO_RELEVANT (stmt_info)
6337 && !STMT_VINFO_LIVE_P (stmt_info))
6338 stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
6339
6340 *vectype = STMT_VINFO_VECTYPE (stmt_info);
6341 gcc_assert (*vectype != NULL_TREE);
6342 }
6343 else if (*dt == vect_uninitialized_def
6344 || *dt == vect_constant_def
6345 || *dt == vect_external_def)
6346 *vectype = NULL_TREE;
6347 else
6348 gcc_unreachable ();
6349
6350 return true;
6351 }
6352
6353
6354 /* Function supportable_widening_operation
6355
6356 Check whether an operation represented by the code CODE is a
6357 widening operation that is supported by the target platform in
6358 vector form (i.e., when operating on arguments of type VECTYPE_IN
6359 producing a result of type VECTYPE_OUT).
6360
6361 Widening operations we currently support are NOP (CONVERT), FLOAT
6362 and WIDEN_MULT. This function checks if these operations are supported
6363 by the target platform either directly (via vector tree-codes), or via
6364 target builtins.
6365
6366 Output:
6367 - CODE1 and CODE2 are codes of vector operations to be used when
6368 vectorizing the operation, if available.
6369 - MULTI_STEP_CVT determines the number of required intermediate steps in
6370 case of multi-step conversion (like char->short->int - in that case
6371 MULTI_STEP_CVT will be 1).
6372 - INTERM_TYPES contains the intermediate type required to perform the
6373 widening operation (short in the above example). */
6374
6375 bool
6376 supportable_widening_operation (enum tree_code code, gimple stmt,
6377 tree vectype_out, tree vectype_in,
6378 enum tree_code *code1, enum tree_code *code2,
6379 int *multi_step_cvt,
6380 vec<tree> *interm_types)
6381 {
6382 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
6383 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_info);
6384 struct loop *vect_loop = NULL;
6385 enum machine_mode vec_mode;
6386 enum insn_code icode1, icode2;
6387 optab optab1, optab2;
6388 tree vectype = vectype_in;
6389 tree wide_vectype = vectype_out;
6390 enum tree_code c1, c2;
6391 int i;
6392 tree prev_type, intermediate_type;
6393 enum machine_mode intermediate_mode, prev_mode;
6394 optab optab3, optab4;
6395
6396 *multi_step_cvt = 0;
6397 if (loop_info)
6398 vect_loop = LOOP_VINFO_LOOP (loop_info);
6399
6400 switch (code)
6401 {
6402 case WIDEN_MULT_EXPR:
6403 /* The result of a vectorized widening operation usually requires
6404 two vectors (because the widened results do not fit into one vector).
6405 The generated vector results would normally be expected to be
6406 generated in the same order as in the original scalar computation,
6407 i.e. if 8 results are generated in each vector iteration, they are
6408 to be organized as follows:
6409 vect1: [res1,res2,res3,res4],
6410 vect2: [res5,res6,res7,res8].
6411
6412 However, in the special case that the result of the widening
6413 operation is used in a reduction computation only, the order doesn't
6414 matter (because when vectorizing a reduction we change the order of
6415 the computation). Some targets can take advantage of this and
6416 generate more efficient code. For example, targets like Altivec,
6417 that support widen_mult using a sequence of {mult_even,mult_odd}
6418 generate the following vectors:
6419 vect1: [res1,res3,res5,res7],
6420 vect2: [res2,res4,res6,res8].
6421
6422 When vectorizing outer-loops, we execute the inner-loop sequentially
6423 (each vectorized inner-loop iteration contributes to VF outer-loop
6424 iterations in parallel). We therefore don't allow to change the
6425 order of the computation in the inner-loop during outer-loop
6426 vectorization. */
6427 /* TODO: Another case in which order doesn't *really* matter is when we
6428 widen and then contract again, e.g. (short)((int)x * y >> 8).
6429 Normally, pack_trunc performs an even/odd permute, whereas the
6430 repack from an even/odd expansion would be an interleave, which
6431 would be significantly simpler for e.g. AVX2. */
6432 /* In any case, in order to avoid duplicating the code below, recurse
6433 on VEC_WIDEN_MULT_EVEN_EXPR. If it succeeds, all the return values
6434 are properly set up for the caller. If we fail, we'll continue with
6435 a VEC_WIDEN_MULT_LO/HI_EXPR check. */
6436 if (vect_loop
6437 && STMT_VINFO_RELEVANT (stmt_info) == vect_used_by_reduction
6438 && !nested_in_vect_loop_p (vect_loop, stmt)
6439 && supportable_widening_operation (VEC_WIDEN_MULT_EVEN_EXPR,
6440 stmt, vectype_out, vectype_in,
6441 code1, code2, multi_step_cvt,
6442 interm_types))
6443 return true;
6444 c1 = VEC_WIDEN_MULT_LO_EXPR;
6445 c2 = VEC_WIDEN_MULT_HI_EXPR;
6446 break;
6447
6448 case VEC_WIDEN_MULT_EVEN_EXPR:
6449 /* Support the recursion induced just above. */
6450 c1 = VEC_WIDEN_MULT_EVEN_EXPR;
6451 c2 = VEC_WIDEN_MULT_ODD_EXPR;
6452 break;
6453
6454 case WIDEN_LSHIFT_EXPR:
6455 c1 = VEC_WIDEN_LSHIFT_LO_EXPR;
6456 c2 = VEC_WIDEN_LSHIFT_HI_EXPR;
6457 break;
6458
6459 CASE_CONVERT:
6460 c1 = VEC_UNPACK_LO_EXPR;
6461 c2 = VEC_UNPACK_HI_EXPR;
6462 break;
6463
6464 case FLOAT_EXPR:
6465 c1 = VEC_UNPACK_FLOAT_LO_EXPR;
6466 c2 = VEC_UNPACK_FLOAT_HI_EXPR;
6467 break;
6468
6469 case FIX_TRUNC_EXPR:
6470 /* ??? Not yet implemented due to missing VEC_UNPACK_FIX_TRUNC_HI_EXPR/
6471 VEC_UNPACK_FIX_TRUNC_LO_EXPR tree codes and optabs used for
6472 computing the operation. */
6473 return false;
6474
6475 default:
6476 gcc_unreachable ();
6477 }
6478
6479 if (BYTES_BIG_ENDIAN && c1 != VEC_WIDEN_MULT_EVEN_EXPR)
6480 {
6481 enum tree_code ctmp = c1;
6482 c1 = c2;
6483 c2 = ctmp;
6484 }
6485
6486 if (code == FIX_TRUNC_EXPR)
6487 {
6488 /* The signedness is determined from output operand. */
6489 optab1 = optab_for_tree_code (c1, vectype_out, optab_default);
6490 optab2 = optab_for_tree_code (c2, vectype_out, optab_default);
6491 }
6492 else
6493 {
6494 optab1 = optab_for_tree_code (c1, vectype, optab_default);
6495 optab2 = optab_for_tree_code (c2, vectype, optab_default);
6496 }
6497
6498 if (!optab1 || !optab2)
6499 return false;
6500
6501 vec_mode = TYPE_MODE (vectype);
6502 if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing
6503 || (icode2 = optab_handler (optab2, vec_mode)) == CODE_FOR_nothing)
6504 return false;
6505
6506 *code1 = c1;
6507 *code2 = c2;
6508
6509 if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
6510 && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
6511 return true;
6512
6513 /* Check if it's a multi-step conversion that can be done using intermediate
6514 types. */
6515
6516 prev_type = vectype;
6517 prev_mode = vec_mode;
6518
6519 if (!CONVERT_EXPR_CODE_P (code))
6520 return false;
6521
6522 /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
6523 intermediate steps in promotion sequence. We try
6524 MAX_INTERM_CVT_STEPS to get to NARROW_VECTYPE, and fail if we do
6525 not. */
6526 interm_types->create (MAX_INTERM_CVT_STEPS);
6527 for (i = 0; i < MAX_INTERM_CVT_STEPS; i++)
6528 {
6529 intermediate_mode = insn_data[icode1].operand[0].mode;
6530 intermediate_type
6531 = lang_hooks.types.type_for_mode (intermediate_mode,
6532 TYPE_UNSIGNED (prev_type));
6533 optab3 = optab_for_tree_code (c1, intermediate_type, optab_default);
6534 optab4 = optab_for_tree_code (c2, intermediate_type, optab_default);
6535
6536 if (!optab3 || !optab4
6537 || (icode1 = optab_handler (optab1, prev_mode)) == CODE_FOR_nothing
6538 || insn_data[icode1].operand[0].mode != intermediate_mode
6539 || (icode2 = optab_handler (optab2, prev_mode)) == CODE_FOR_nothing
6540 || insn_data[icode2].operand[0].mode != intermediate_mode
6541 || ((icode1 = optab_handler (optab3, intermediate_mode))
6542 == CODE_FOR_nothing)
6543 || ((icode2 = optab_handler (optab4, intermediate_mode))
6544 == CODE_FOR_nothing))
6545 break;
6546
6547 interm_types->quick_push (intermediate_type);
6548 (*multi_step_cvt)++;
6549
6550 if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
6551 && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
6552 return true;
6553
6554 prev_type = intermediate_type;
6555 prev_mode = intermediate_mode;
6556 }
6557
6558 interm_types->release ();
6559 return false;
6560 }
6561
6562
6563 /* Function supportable_narrowing_operation
6564
6565 Check whether an operation represented by the code CODE is a
6566 narrowing operation that is supported by the target platform in
6567 vector form (i.e., when operating on arguments of type VECTYPE_IN
6568 and producing a result of type VECTYPE_OUT).
6569
6570 Narrowing operations we currently support are NOP (CONVERT) and
6571 FIX_TRUNC. This function checks if these operations are supported by
6572 the target platform directly via vector tree-codes.
6573
6574 Output:
6575 - CODE1 is the code of a vector operation to be used when
6576 vectorizing the operation, if available.
6577 - MULTI_STEP_CVT determines the number of required intermediate steps in
6578 case of multi-step conversion (like int->short->char - in that case
6579 MULTI_STEP_CVT will be 1).
6580 - INTERM_TYPES contains the intermediate type required to perform the
6581 narrowing operation (short in the above example). */
6582
6583 bool
6584 supportable_narrowing_operation (enum tree_code code,
6585 tree vectype_out, tree vectype_in,
6586 enum tree_code *code1, int *multi_step_cvt,
6587 vec<tree> *interm_types)
6588 {
6589 enum machine_mode vec_mode;
6590 enum insn_code icode1;
6591 optab optab1, interm_optab;
6592 tree vectype = vectype_in;
6593 tree narrow_vectype = vectype_out;
6594 enum tree_code c1;
6595 tree intermediate_type;
6596 enum machine_mode intermediate_mode, prev_mode;
6597 int i;
6598 bool uns;
6599
6600 *multi_step_cvt = 0;
6601 switch (code)
6602 {
6603 CASE_CONVERT:
6604 c1 = VEC_PACK_TRUNC_EXPR;
6605 break;
6606
6607 case FIX_TRUNC_EXPR:
6608 c1 = VEC_PACK_FIX_TRUNC_EXPR;
6609 break;
6610
6611 case FLOAT_EXPR:
6612 /* ??? Not yet implemented due to missing VEC_PACK_FLOAT_EXPR
6613 tree code and optabs used for computing the operation. */
6614 return false;
6615
6616 default:
6617 gcc_unreachable ();
6618 }
6619
6620 if (code == FIX_TRUNC_EXPR)
6621 /* The signedness is determined from output operand. */
6622 optab1 = optab_for_tree_code (c1, vectype_out, optab_default);
6623 else
6624 optab1 = optab_for_tree_code (c1, vectype, optab_default);
6625
6626 if (!optab1)
6627 return false;
6628
6629 vec_mode = TYPE_MODE (vectype);
6630 if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing)
6631 return false;
6632
6633 *code1 = c1;
6634
6635 if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
6636 return true;
6637
6638 /* Check if it's a multi-step conversion that can be done using intermediate
6639 types. */
6640 prev_mode = vec_mode;
6641 if (code == FIX_TRUNC_EXPR)
6642 uns = TYPE_UNSIGNED (vectype_out);
6643 else
6644 uns = TYPE_UNSIGNED (vectype);
6645
6646 /* For multi-step FIX_TRUNC_EXPR prefer signed floating to integer
6647 conversion over unsigned, as unsigned FIX_TRUNC_EXPR is often more
6648 costly than signed. */
6649 if (code == FIX_TRUNC_EXPR && uns)
6650 {
6651 enum insn_code icode2;
6652
6653 intermediate_type
6654 = lang_hooks.types.type_for_mode (TYPE_MODE (vectype_out), 0);
6655 interm_optab
6656 = optab_for_tree_code (c1, intermediate_type, optab_default);
6657 if (interm_optab != unknown_optab
6658 && (icode2 = optab_handler (optab1, vec_mode)) != CODE_FOR_nothing
6659 && insn_data[icode1].operand[0].mode
6660 == insn_data[icode2].operand[0].mode)
6661 {
6662 uns = false;
6663 optab1 = interm_optab;
6664 icode1 = icode2;
6665 }
6666 }
6667
6668 /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
6669 intermediate steps in promotion sequence. We try
6670 MAX_INTERM_CVT_STEPS to get to NARROW_VECTYPE, and fail if we do not. */
6671 interm_types->create (MAX_INTERM_CVT_STEPS);
6672 for (i = 0; i < MAX_INTERM_CVT_STEPS; i++)
6673 {
6674 intermediate_mode = insn_data[icode1].operand[0].mode;
6675 intermediate_type
6676 = lang_hooks.types.type_for_mode (intermediate_mode, uns);
6677 interm_optab
6678 = optab_for_tree_code (VEC_PACK_TRUNC_EXPR, intermediate_type,
6679 optab_default);
6680 if (!interm_optab
6681 || ((icode1 = optab_handler (optab1, prev_mode)) == CODE_FOR_nothing)
6682 || insn_data[icode1].operand[0].mode != intermediate_mode
6683 || ((icode1 = optab_handler (interm_optab, intermediate_mode))
6684 == CODE_FOR_nothing))
6685 break;
6686
6687 interm_types->quick_push (intermediate_type);
6688 (*multi_step_cvt)++;
6689
6690 if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
6691 return true;
6692
6693 prev_mode = intermediate_mode;
6694 optab1 = interm_optab;
6695 }
6696
6697 interm_types->release ();
6698 return false;
6699 }