Daily bump.
[gcc.git] / gcc / tree-vrp.c
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2019 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "insn-codes.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "optabs-tree.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "flags.h"
36 #include "fold-const.h"
37 #include "stor-layout.h"
38 #include "calls.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimple-walk.h"
44 #include "tree-cfg.h"
45 #include "tree-dfa.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-ssa-loop.h"
49 #include "tree-into-ssa.h"
50 #include "tree-ssa.h"
51 #include "intl.h"
52 #include "cfgloop.h"
53 #include "tree-scalar-evolution.h"
54 #include "tree-ssa-propagate.h"
55 #include "tree-chrec.h"
56 #include "tree-ssa-threadupdate.h"
57 #include "tree-ssa-scopedtables.h"
58 #include "tree-ssa-threadedge.h"
59 #include "omp-general.h"
60 #include "target.h"
61 #include "case-cfn-macros.h"
62 #include "params.h"
63 #include "alloc-pool.h"
64 #include "domwalk.h"
65 #include "tree-cfgcleanup.h"
66 #include "stringpool.h"
67 #include "attribs.h"
68 #include "vr-values.h"
69 #include "builtins.h"
70 #include "wide-int-range.h"
71
72 /* Set of SSA names found live during the RPO traversal of the function
73 for still active basic-blocks. */
74 static sbitmap *live;
75
76 void
77 value_range_base::set (enum value_range_kind kind, tree min, tree max)
78 {
79 m_kind = kind;
80 m_min = min;
81 m_max = max;
82 if (flag_checking)
83 check ();
84 }
85
86 void
87 value_range::set_equiv (bitmap equiv)
88 {
89 /* Since updating the equivalence set involves deep copying the
90 bitmaps, only do it if absolutely necessary.
91
92 All equivalence bitmaps are allocated from the same obstack. So
93 we can use the obstack associated with EQUIV to allocate vr->equiv. */
94 if (m_equiv == NULL
95 && equiv != NULL)
96 m_equiv = BITMAP_ALLOC (equiv->obstack);
97
98 if (equiv != m_equiv)
99 {
100 if (equiv && !bitmap_empty_p (equiv))
101 bitmap_copy (m_equiv, equiv);
102 else
103 bitmap_clear (m_equiv);
104 }
105 }
106
107 /* Initialize value_range. */
108
109 void
110 value_range::set (enum value_range_kind kind, tree min, tree max,
111 bitmap equiv)
112 {
113 value_range_base::set (kind, min, max);
114 set_equiv (equiv);
115 if (flag_checking)
116 check ();
117 }
118
119 value_range_base::value_range_base (value_range_kind kind, tree min, tree max)
120 {
121 set (kind, min, max);
122 }
123
124 value_range::value_range (value_range_kind kind, tree min, tree max,
125 bitmap equiv)
126 {
127 m_equiv = NULL;
128 set (kind, min, max, equiv);
129 }
130
131 value_range::value_range (const value_range_base &other)
132 {
133 m_equiv = NULL;
134 set (other.kind (), other.min(), other.max (), NULL);
135 }
136
137 /* Like set, but keep the equivalences in place. */
138
139 void
140 value_range::update (value_range_kind kind, tree min, tree max)
141 {
142 set (kind, min, max,
143 (kind != VR_UNDEFINED && kind != VR_VARYING) ? m_equiv : NULL);
144 }
145
146 /* Copy value_range in FROM into THIS while avoiding bitmap sharing.
147
148 Note: The code that avoids the bitmap sharing looks at the existing
149 this->m_equiv, so this function cannot be used to initalize an
150 object. Use the constructors for initialization. */
151
152 void
153 value_range::deep_copy (const value_range *from)
154 {
155 set (from->m_kind, from->min (), from->max (), from->m_equiv);
156 }
157
158 void
159 value_range::move (value_range *from)
160 {
161 set (from->m_kind, from->min (), from->max ());
162 m_equiv = from->m_equiv;
163 from->m_equiv = NULL;
164 }
165
166 /* Check the validity of the range. */
167
168 void
169 value_range_base::check ()
170 {
171 switch (m_kind)
172 {
173 case VR_RANGE:
174 case VR_ANTI_RANGE:
175 {
176 int cmp;
177
178 gcc_assert (m_min && m_max);
179
180 gcc_assert (!TREE_OVERFLOW_P (m_min) && !TREE_OVERFLOW_P (m_max));
181
182 /* Creating ~[-MIN, +MAX] is stupid because that would be
183 the empty set. */
184 if (INTEGRAL_TYPE_P (TREE_TYPE (m_min)) && m_kind == VR_ANTI_RANGE)
185 gcc_assert (!vrp_val_is_min (m_min) || !vrp_val_is_max (m_max));
186
187 cmp = compare_values (m_min, m_max);
188 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
189 break;
190 }
191 case VR_UNDEFINED:
192 case VR_VARYING:
193 gcc_assert (!min () && !max ());
194 break;
195 default:
196 gcc_unreachable ();
197 }
198 }
199
200 void
201 value_range::check ()
202 {
203 value_range_base::check ();
204 switch (m_kind)
205 {
206 case VR_UNDEFINED:
207 case VR_VARYING:
208 gcc_assert (!m_equiv || bitmap_empty_p (m_equiv));
209 default:;
210 }
211 }
212
213 /* Equality operator. We purposely do not overload ==, to avoid
214 confusion with the equality bitmap in the derived value_range
215 class. */
216
217 bool
218 value_range_base::equal_p (const value_range_base &other) const
219 {
220 return (m_kind == other.m_kind
221 && vrp_operand_equal_p (m_min, other.m_min)
222 && vrp_operand_equal_p (m_max, other.m_max));
223 }
224
225 /* Returns TRUE if THIS == OTHER. Ignores the equivalence bitmap if
226 IGNORE_EQUIVS is TRUE. */
227
228 bool
229 value_range::equal_p (const value_range &other, bool ignore_equivs) const
230 {
231 return (value_range_base::equal_p (other)
232 && (ignore_equivs
233 || vrp_bitmap_equal_p (m_equiv, other.m_equiv)));
234 }
235
236 /* Return TRUE if this is a symbolic range. */
237
238 bool
239 value_range_base::symbolic_p () const
240 {
241 return (!varying_p ()
242 && !undefined_p ()
243 && (!is_gimple_min_invariant (m_min)
244 || !is_gimple_min_invariant (m_max)));
245 }
246
247 /* NOTE: This is not the inverse of symbolic_p because the range
248 could also be varying or undefined. Ideally they should be inverse
249 of each other, with varying only applying to symbolics. Varying of
250 constants would be represented as [-MIN, +MAX]. */
251
252 bool
253 value_range_base::constant_p () const
254 {
255 return (!varying_p ()
256 && !undefined_p ()
257 && TREE_CODE (m_min) == INTEGER_CST
258 && TREE_CODE (m_max) == INTEGER_CST);
259 }
260
261 void
262 value_range_base::set_undefined ()
263 {
264 set (VR_UNDEFINED, NULL, NULL);
265 }
266
267 void
268 value_range::set_undefined ()
269 {
270 set (VR_UNDEFINED, NULL, NULL, NULL);
271 }
272
273 void
274 value_range_base::set_varying ()
275 {
276 set (VR_VARYING, NULL, NULL);
277 }
278
279 void
280 value_range::set_varying ()
281 {
282 set (VR_VARYING, NULL, NULL, NULL);
283 }
284
285 /* Return TRUE if it is possible that range contains VAL. */
286
287 bool
288 value_range_base::may_contain_p (tree val) const
289 {
290 if (varying_p ())
291 return true;
292
293 if (undefined_p ())
294 return true;
295
296 if (m_kind == VR_ANTI_RANGE)
297 {
298 int res = value_inside_range (val, min (), max ());
299 return res == 0 || res == -2;
300 }
301 return value_inside_range (val, min (), max ()) != 0;
302 }
303
304 void
305 value_range::equiv_clear ()
306 {
307 if (m_equiv)
308 bitmap_clear (m_equiv);
309 }
310
311 /* Add VAR and VAR's equivalence set (VAR_VR) to the equivalence
312 bitmap. If no equivalence table has been created, OBSTACK is the
313 obstack to use (NULL for the default obstack).
314
315 This is the central point where equivalence processing can be
316 turned on/off. */
317
318 void
319 value_range::equiv_add (const_tree var,
320 const value_range *var_vr,
321 bitmap_obstack *obstack)
322 {
323 if (!m_equiv)
324 m_equiv = BITMAP_ALLOC (obstack);
325 unsigned ver = SSA_NAME_VERSION (var);
326 bitmap_set_bit (m_equiv, ver);
327 if (var_vr && var_vr->m_equiv)
328 bitmap_ior_into (m_equiv, var_vr->m_equiv);
329 }
330
331 /* If range is a singleton, place it in RESULT and return TRUE.
332 Note: A singleton can be any gimple invariant, not just constants.
333 So, [&x, &x] counts as a singleton. */
334
335 bool
336 value_range_base::singleton_p (tree *result) const
337 {
338 if (m_kind == VR_RANGE
339 && vrp_operand_equal_p (min (), max ())
340 && is_gimple_min_invariant (min ()))
341 {
342 if (result)
343 *result = min ();
344 return true;
345 }
346 return false;
347 }
348
349 tree
350 value_range_base::type () const
351 {
352 /* Types are only valid for VR_RANGE and VR_ANTI_RANGE, which are
353 known to have non-zero min/max. */
354 gcc_assert (min ());
355 return TREE_TYPE (min ());
356 }
357
358 void
359 value_range_base::dump (FILE *file) const
360 {
361 if (undefined_p ())
362 fprintf (file, "UNDEFINED");
363 else if (m_kind == VR_RANGE || m_kind == VR_ANTI_RANGE)
364 {
365 tree ttype = type ();
366
367 print_generic_expr (file, ttype);
368 fprintf (file, " ");
369
370 fprintf (file, "%s[", (m_kind == VR_ANTI_RANGE) ? "~" : "");
371
372 if (INTEGRAL_TYPE_P (ttype)
373 && !TYPE_UNSIGNED (ttype)
374 && vrp_val_is_min (min ())
375 && TYPE_PRECISION (ttype) != 1)
376 fprintf (file, "-INF");
377 else
378 print_generic_expr (file, min ());
379
380 fprintf (file, ", ");
381
382 if (INTEGRAL_TYPE_P (ttype)
383 && vrp_val_is_max (max ())
384 && TYPE_PRECISION (ttype) != 1)
385 fprintf (file, "+INF");
386 else
387 print_generic_expr (file, max ());
388
389 fprintf (file, "]");
390 }
391 else if (varying_p ())
392 fprintf (file, "VARYING");
393 else
394 gcc_unreachable ();
395 }
396
397 void
398 value_range::dump (FILE *file) const
399 {
400 value_range_base::dump (file);
401 if ((m_kind == VR_RANGE || m_kind == VR_ANTI_RANGE)
402 && m_equiv)
403 {
404 bitmap_iterator bi;
405 unsigned i, c = 0;
406
407 fprintf (file, " EQUIVALENCES: { ");
408
409 EXECUTE_IF_SET_IN_BITMAP (m_equiv, 0, i, bi)
410 {
411 print_generic_expr (file, ssa_name (i));
412 fprintf (file, " ");
413 c++;
414 }
415
416 fprintf (file, "} (%u elements)", c);
417 }
418 }
419
420 void
421 dump_value_range (FILE *file, const value_range *vr)
422 {
423 if (!vr)
424 fprintf (file, "[]");
425 else
426 vr->dump (file);
427 }
428
429 void
430 dump_value_range (FILE *file, const value_range_base *vr)
431 {
432 if (!vr)
433 fprintf (file, "[]");
434 else
435 vr->dump (file);
436 }
437
438 DEBUG_FUNCTION void
439 debug (const value_range_base *vr)
440 {
441 dump_value_range (stderr, vr);
442 }
443
444 DEBUG_FUNCTION void
445 debug (const value_range_base &vr)
446 {
447 dump_value_range (stderr, &vr);
448 }
449
450 DEBUG_FUNCTION void
451 debug (const value_range *vr)
452 {
453 dump_value_range (stderr, vr);
454 }
455
456 DEBUG_FUNCTION void
457 debug (const value_range &vr)
458 {
459 dump_value_range (stderr, &vr);
460 }
461
462 /* Return true if the SSA name NAME is live on the edge E. */
463
464 static bool
465 live_on_edge (edge e, tree name)
466 {
467 return (live[e->dest->index]
468 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
469 }
470
471 /* Location information for ASSERT_EXPRs. Each instance of this
472 structure describes an ASSERT_EXPR for an SSA name. Since a single
473 SSA name may have more than one assertion associated with it, these
474 locations are kept in a linked list attached to the corresponding
475 SSA name. */
476 struct assert_locus
477 {
478 /* Basic block where the assertion would be inserted. */
479 basic_block bb;
480
481 /* Some assertions need to be inserted on an edge (e.g., assertions
482 generated by COND_EXPRs). In those cases, BB will be NULL. */
483 edge e;
484
485 /* Pointer to the statement that generated this assertion. */
486 gimple_stmt_iterator si;
487
488 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
489 enum tree_code comp_code;
490
491 /* Value being compared against. */
492 tree val;
493
494 /* Expression to compare. */
495 tree expr;
496
497 /* Next node in the linked list. */
498 assert_locus *next;
499 };
500
501 /* If bit I is present, it means that SSA name N_i has a list of
502 assertions that should be inserted in the IL. */
503 static bitmap need_assert_for;
504
505 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
506 holds a list of ASSERT_LOCUS_T nodes that describe where
507 ASSERT_EXPRs for SSA name N_I should be inserted. */
508 static assert_locus **asserts_for;
509
510 /* Return the maximum value for TYPE. */
511
512 tree
513 vrp_val_max (const_tree type)
514 {
515 if (!INTEGRAL_TYPE_P (type))
516 return NULL_TREE;
517
518 return TYPE_MAX_VALUE (type);
519 }
520
521 /* Return the minimum value for TYPE. */
522
523 tree
524 vrp_val_min (const_tree type)
525 {
526 if (!INTEGRAL_TYPE_P (type))
527 return NULL_TREE;
528
529 return TYPE_MIN_VALUE (type);
530 }
531
532 /* Return whether VAL is equal to the maximum value of its type.
533 We can't do a simple equality comparison with TYPE_MAX_VALUE because
534 C typedefs and Ada subtypes can produce types whose TYPE_MAX_VALUE
535 is not == to the integer constant with the same value in the type. */
536
537 bool
538 vrp_val_is_max (const_tree val)
539 {
540 tree type_max = vrp_val_max (TREE_TYPE (val));
541 return (val == type_max
542 || (type_max != NULL_TREE
543 && operand_equal_p (val, type_max, 0)));
544 }
545
546 /* Return whether VAL is equal to the minimum value of its type. */
547
548 bool
549 vrp_val_is_min (const_tree val)
550 {
551 tree type_min = vrp_val_min (TREE_TYPE (val));
552 return (val == type_min
553 || (type_min != NULL_TREE
554 && operand_equal_p (val, type_min, 0)));
555 }
556
557 /* VR_TYPE describes a range with mininum value *MIN and maximum
558 value *MAX. Restrict the range to the set of values that have
559 no bits set outside NONZERO_BITS. Update *MIN and *MAX and
560 return the new range type.
561
562 SGN gives the sign of the values described by the range. */
563
564 enum value_range_kind
565 intersect_range_with_nonzero_bits (enum value_range_kind vr_type,
566 wide_int *min, wide_int *max,
567 const wide_int &nonzero_bits,
568 signop sgn)
569 {
570 if (vr_type == VR_ANTI_RANGE)
571 {
572 /* The VR_ANTI_RANGE is equivalent to the union of the ranges
573 A: [-INF, *MIN) and B: (*MAX, +INF]. First use NONZERO_BITS
574 to create an inclusive upper bound for A and an inclusive lower
575 bound for B. */
576 wide_int a_max = wi::round_down_for_mask (*min - 1, nonzero_bits);
577 wide_int b_min = wi::round_up_for_mask (*max + 1, nonzero_bits);
578
579 /* If the calculation of A_MAX wrapped, A is effectively empty
580 and A_MAX is the highest value that satisfies NONZERO_BITS.
581 Likewise if the calculation of B_MIN wrapped, B is effectively
582 empty and B_MIN is the lowest value that satisfies NONZERO_BITS. */
583 bool a_empty = wi::ge_p (a_max, *min, sgn);
584 bool b_empty = wi::le_p (b_min, *max, sgn);
585
586 /* If both A and B are empty, there are no valid values. */
587 if (a_empty && b_empty)
588 return VR_UNDEFINED;
589
590 /* If exactly one of A or B is empty, return a VR_RANGE for the
591 other one. */
592 if (a_empty || b_empty)
593 {
594 *min = b_min;
595 *max = a_max;
596 gcc_checking_assert (wi::le_p (*min, *max, sgn));
597 return VR_RANGE;
598 }
599
600 /* Update the VR_ANTI_RANGE bounds. */
601 *min = a_max + 1;
602 *max = b_min - 1;
603 gcc_checking_assert (wi::le_p (*min, *max, sgn));
604
605 /* Now check whether the excluded range includes any values that
606 satisfy NONZERO_BITS. If not, switch to a full VR_RANGE. */
607 if (wi::round_up_for_mask (*min, nonzero_bits) == b_min)
608 {
609 unsigned int precision = min->get_precision ();
610 *min = wi::min_value (precision, sgn);
611 *max = wi::max_value (precision, sgn);
612 vr_type = VR_RANGE;
613 }
614 }
615 if (vr_type == VR_RANGE)
616 {
617 *max = wi::round_down_for_mask (*max, nonzero_bits);
618
619 /* Check that the range contains at least one valid value. */
620 if (wi::gt_p (*min, *max, sgn))
621 return VR_UNDEFINED;
622
623 *min = wi::round_up_for_mask (*min, nonzero_bits);
624 gcc_checking_assert (wi::le_p (*min, *max, sgn));
625 }
626 return vr_type;
627 }
628
629
630 /* Set value range to the canonical form of {VRTYPE, MIN, MAX, EQUIV}.
631 This means adjusting VRTYPE, MIN and MAX representing the case of a
632 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
633 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
634 In corner cases where MAX+1 or MIN-1 wraps this will fall back
635 to varying.
636 This routine exists to ease canonicalization in the case where we
637 extract ranges from var + CST op limit. */
638
639 void
640 value_range_base::set_and_canonicalize (enum value_range_kind kind,
641 tree min, tree max)
642 {
643 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
644 if (kind == VR_UNDEFINED)
645 {
646 set_undefined ();
647 return;
648 }
649 else if (kind == VR_VARYING)
650 {
651 set_varying ();
652 return;
653 }
654
655 /* Nothing to canonicalize for symbolic ranges. */
656 if (TREE_CODE (min) != INTEGER_CST
657 || TREE_CODE (max) != INTEGER_CST)
658 {
659 set (kind, min, max);
660 return;
661 }
662
663 /* Wrong order for min and max, to swap them and the VR type we need
664 to adjust them. */
665 if (tree_int_cst_lt (max, min))
666 {
667 tree one, tmp;
668
669 /* For one bit precision if max < min, then the swapped
670 range covers all values, so for VR_RANGE it is varying and
671 for VR_ANTI_RANGE empty range, so drop to varying as well. */
672 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
673 {
674 set_varying ();
675 return;
676 }
677
678 one = build_int_cst (TREE_TYPE (min), 1);
679 tmp = int_const_binop (PLUS_EXPR, max, one);
680 max = int_const_binop (MINUS_EXPR, min, one);
681 min = tmp;
682
683 /* There's one corner case, if we had [C+1, C] before we now have
684 that again. But this represents an empty value range, so drop
685 to varying in this case. */
686 if (tree_int_cst_lt (max, min))
687 {
688 set_varying ();
689 return;
690 }
691
692 kind = kind == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
693 }
694
695 /* Anti-ranges that can be represented as ranges should be so. */
696 if (kind == VR_ANTI_RANGE)
697 {
698 /* For -fstrict-enums we may receive out-of-range ranges so consider
699 values < -INF and values > INF as -INF/INF as well. */
700 tree type = TREE_TYPE (min);
701 bool is_min = (INTEGRAL_TYPE_P (type)
702 && tree_int_cst_compare (min, TYPE_MIN_VALUE (type)) <= 0);
703 bool is_max = (INTEGRAL_TYPE_P (type)
704 && tree_int_cst_compare (max, TYPE_MAX_VALUE (type)) >= 0);
705
706 if (is_min && is_max)
707 {
708 /* We cannot deal with empty ranges, drop to varying.
709 ??? This could be VR_UNDEFINED instead. */
710 set_varying ();
711 return;
712 }
713 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
714 && (is_min || is_max))
715 {
716 /* Non-empty boolean ranges can always be represented
717 as a singleton range. */
718 if (is_min)
719 min = max = vrp_val_max (TREE_TYPE (min));
720 else
721 min = max = vrp_val_min (TREE_TYPE (min));
722 kind = VR_RANGE;
723 }
724 else if (is_min
725 /* As a special exception preserve non-null ranges. */
726 && !(TYPE_UNSIGNED (TREE_TYPE (min))
727 && integer_zerop (max)))
728 {
729 tree one = build_int_cst (TREE_TYPE (max), 1);
730 min = int_const_binop (PLUS_EXPR, max, one);
731 max = vrp_val_max (TREE_TYPE (max));
732 kind = VR_RANGE;
733 }
734 else if (is_max)
735 {
736 tree one = build_int_cst (TREE_TYPE (min), 1);
737 max = int_const_binop (MINUS_EXPR, min, one);
738 min = vrp_val_min (TREE_TYPE (min));
739 kind = VR_RANGE;
740 }
741 }
742
743 /* Do not drop [-INF(OVF), +INF(OVF)] to varying. (OVF) has to be sticky
744 to make sure VRP iteration terminates, otherwise we can get into
745 oscillations. */
746
747 set (kind, min, max);
748 }
749
750 void
751 value_range::set_and_canonicalize (enum value_range_kind kind,
752 tree min, tree max, bitmap equiv)
753 {
754 value_range_base::set_and_canonicalize (kind, min, max);
755 if (this->kind () == VR_RANGE || this->kind () == VR_ANTI_RANGE)
756 set_equiv (equiv);
757 else
758 equiv_clear ();
759 }
760
761 void
762 value_range_base::set (tree val)
763 {
764 gcc_assert (TREE_CODE (val) == SSA_NAME || is_gimple_min_invariant (val));
765 if (TREE_OVERFLOW_P (val))
766 val = drop_tree_overflow (val);
767 set (VR_RANGE, val, val);
768 }
769
770 void
771 value_range::set (tree val)
772 {
773 gcc_assert (TREE_CODE (val) == SSA_NAME || is_gimple_min_invariant (val));
774 if (TREE_OVERFLOW_P (val))
775 val = drop_tree_overflow (val);
776 set (VR_RANGE, val, val, NULL);
777 }
778
779 /* Set value range VR to a non-NULL range of type TYPE. */
780
781 void
782 value_range_base::set_nonnull (tree type)
783 {
784 tree zero = build_int_cst (type, 0);
785 set (VR_ANTI_RANGE, zero, zero);
786 }
787
788 void
789 value_range::set_nonnull (tree type)
790 {
791 tree zero = build_int_cst (type, 0);
792 set (VR_ANTI_RANGE, zero, zero, NULL);
793 }
794
795 /* Set value range VR to a NULL range of type TYPE. */
796
797 void
798 value_range_base::set_null (tree type)
799 {
800 set (build_int_cst (type, 0));
801 }
802
803 void
804 value_range::set_null (tree type)
805 {
806 set (build_int_cst (type, 0));
807 }
808
809 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
810
811 bool
812 vrp_operand_equal_p (const_tree val1, const_tree val2)
813 {
814 if (val1 == val2)
815 return true;
816 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
817 return false;
818 return true;
819 }
820
821 /* Return true, if the bitmaps B1 and B2 are equal. */
822
823 bool
824 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
825 {
826 return (b1 == b2
827 || ((!b1 || bitmap_empty_p (b1))
828 && (!b2 || bitmap_empty_p (b2)))
829 || (b1 && b2
830 && bitmap_equal_p (b1, b2)));
831 }
832
833 /* Return true if VR is [0, 0]. */
834
835 static inline bool
836 range_is_null (const value_range_base *vr)
837 {
838 return vr->zero_p ();
839 }
840
841 static inline bool
842 range_is_nonnull (const value_range_base *vr)
843 {
844 return (vr->kind () == VR_ANTI_RANGE
845 && vr->min () == vr->max ()
846 && integer_zerop (vr->min ()));
847 }
848
849 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
850 a singleton. */
851
852 bool
853 range_int_cst_p (const value_range_base *vr)
854 {
855 return (vr->kind () == VR_RANGE
856 && TREE_CODE (vr->min ()) == INTEGER_CST
857 && TREE_CODE (vr->max ()) == INTEGER_CST);
858 }
859
860 /* Return true if VR is a INTEGER_CST singleton. */
861
862 bool
863 range_int_cst_singleton_p (const value_range_base *vr)
864 {
865 return (range_int_cst_p (vr)
866 && tree_int_cst_equal (vr->min (), vr->max ()));
867 }
868
869 /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
870 otherwise. We only handle additive operations and set NEG to true if the
871 symbol is negated and INV to the invariant part, if any. */
872
873 tree
874 get_single_symbol (tree t, bool *neg, tree *inv)
875 {
876 bool neg_;
877 tree inv_;
878
879 *inv = NULL_TREE;
880 *neg = false;
881
882 if (TREE_CODE (t) == PLUS_EXPR
883 || TREE_CODE (t) == POINTER_PLUS_EXPR
884 || TREE_CODE (t) == MINUS_EXPR)
885 {
886 if (is_gimple_min_invariant (TREE_OPERAND (t, 0)))
887 {
888 neg_ = (TREE_CODE (t) == MINUS_EXPR);
889 inv_ = TREE_OPERAND (t, 0);
890 t = TREE_OPERAND (t, 1);
891 }
892 else if (is_gimple_min_invariant (TREE_OPERAND (t, 1)))
893 {
894 neg_ = false;
895 inv_ = TREE_OPERAND (t, 1);
896 t = TREE_OPERAND (t, 0);
897 }
898 else
899 return NULL_TREE;
900 }
901 else
902 {
903 neg_ = false;
904 inv_ = NULL_TREE;
905 }
906
907 if (TREE_CODE (t) == NEGATE_EXPR)
908 {
909 t = TREE_OPERAND (t, 0);
910 neg_ = !neg_;
911 }
912
913 if (TREE_CODE (t) != SSA_NAME)
914 return NULL_TREE;
915
916 if (inv_ && TREE_OVERFLOW_P (inv_))
917 inv_ = drop_tree_overflow (inv_);
918
919 *neg = neg_;
920 *inv = inv_;
921 return t;
922 }
923
924 /* The reverse operation: build a symbolic expression with TYPE
925 from symbol SYM, negated according to NEG, and invariant INV. */
926
927 static tree
928 build_symbolic_expr (tree type, tree sym, bool neg, tree inv)
929 {
930 const bool pointer_p = POINTER_TYPE_P (type);
931 tree t = sym;
932
933 if (neg)
934 t = build1 (NEGATE_EXPR, type, t);
935
936 if (integer_zerop (inv))
937 return t;
938
939 return build2 (pointer_p ? POINTER_PLUS_EXPR : PLUS_EXPR, type, t, inv);
940 }
941
942 /* Return
943 1 if VAL < VAL2
944 0 if !(VAL < VAL2)
945 -2 if those are incomparable. */
946 int
947 operand_less_p (tree val, tree val2)
948 {
949 /* LT is folded faster than GE and others. Inline the common case. */
950 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
951 return tree_int_cst_lt (val, val2);
952 else
953 {
954 tree tcmp;
955
956 fold_defer_overflow_warnings ();
957
958 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
959
960 fold_undefer_and_ignore_overflow_warnings ();
961
962 if (!tcmp
963 || TREE_CODE (tcmp) != INTEGER_CST)
964 return -2;
965
966 if (!integer_zerop (tcmp))
967 return 1;
968 }
969
970 return 0;
971 }
972
973 /* Compare two values VAL1 and VAL2. Return
974
975 -2 if VAL1 and VAL2 cannot be compared at compile-time,
976 -1 if VAL1 < VAL2,
977 0 if VAL1 == VAL2,
978 +1 if VAL1 > VAL2, and
979 +2 if VAL1 != VAL2
980
981 This is similar to tree_int_cst_compare but supports pointer values
982 and values that cannot be compared at compile time.
983
984 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
985 true if the return value is only valid if we assume that signed
986 overflow is undefined. */
987
988 int
989 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
990 {
991 if (val1 == val2)
992 return 0;
993
994 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
995 both integers. */
996 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
997 == POINTER_TYPE_P (TREE_TYPE (val2)));
998
999 /* Convert the two values into the same type. This is needed because
1000 sizetype causes sign extension even for unsigned types. */
1001 val2 = fold_convert (TREE_TYPE (val1), val2);
1002 STRIP_USELESS_TYPE_CONVERSION (val2);
1003
1004 const bool overflow_undefined
1005 = INTEGRAL_TYPE_P (TREE_TYPE (val1))
1006 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1));
1007 tree inv1, inv2;
1008 bool neg1, neg2;
1009 tree sym1 = get_single_symbol (val1, &neg1, &inv1);
1010 tree sym2 = get_single_symbol (val2, &neg2, &inv2);
1011
1012 /* If VAL1 and VAL2 are of the form '[-]NAME [+ CST]', return -1 or +1
1013 accordingly. If VAL1 and VAL2 don't use the same name, return -2. */
1014 if (sym1 && sym2)
1015 {
1016 /* Both values must use the same name with the same sign. */
1017 if (sym1 != sym2 || neg1 != neg2)
1018 return -2;
1019
1020 /* [-]NAME + CST == [-]NAME + CST. */
1021 if (inv1 == inv2)
1022 return 0;
1023
1024 /* If overflow is defined we cannot simplify more. */
1025 if (!overflow_undefined)
1026 return -2;
1027
1028 if (strict_overflow_p != NULL
1029 /* Symbolic range building sets TREE_NO_WARNING to declare
1030 that overflow doesn't happen. */
1031 && (!inv1 || !TREE_NO_WARNING (val1))
1032 && (!inv2 || !TREE_NO_WARNING (val2)))
1033 *strict_overflow_p = true;
1034
1035 if (!inv1)
1036 inv1 = build_int_cst (TREE_TYPE (val1), 0);
1037 if (!inv2)
1038 inv2 = build_int_cst (TREE_TYPE (val2), 0);
1039
1040 return wi::cmp (wi::to_wide (inv1), wi::to_wide (inv2),
1041 TYPE_SIGN (TREE_TYPE (val1)));
1042 }
1043
1044 const bool cst1 = is_gimple_min_invariant (val1);
1045 const bool cst2 = is_gimple_min_invariant (val2);
1046
1047 /* If one is of the form '[-]NAME + CST' and the other is constant, then
1048 it might be possible to say something depending on the constants. */
1049 if ((sym1 && inv1 && cst2) || (sym2 && inv2 && cst1))
1050 {
1051 if (!overflow_undefined)
1052 return -2;
1053
1054 if (strict_overflow_p != NULL
1055 /* Symbolic range building sets TREE_NO_WARNING to declare
1056 that overflow doesn't happen. */
1057 && (!sym1 || !TREE_NO_WARNING (val1))
1058 && (!sym2 || !TREE_NO_WARNING (val2)))
1059 *strict_overflow_p = true;
1060
1061 const signop sgn = TYPE_SIGN (TREE_TYPE (val1));
1062 tree cst = cst1 ? val1 : val2;
1063 tree inv = cst1 ? inv2 : inv1;
1064
1065 /* Compute the difference between the constants. If it overflows or
1066 underflows, this means that we can trivially compare the NAME with
1067 it and, consequently, the two values with each other. */
1068 wide_int diff = wi::to_wide (cst) - wi::to_wide (inv);
1069 if (wi::cmp (0, wi::to_wide (inv), sgn)
1070 != wi::cmp (diff, wi::to_wide (cst), sgn))
1071 {
1072 const int res = wi::cmp (wi::to_wide (cst), wi::to_wide (inv), sgn);
1073 return cst1 ? res : -res;
1074 }
1075
1076 return -2;
1077 }
1078
1079 /* We cannot say anything more for non-constants. */
1080 if (!cst1 || !cst2)
1081 return -2;
1082
1083 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1084 {
1085 /* We cannot compare overflowed values. */
1086 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1087 return -2;
1088
1089 if (TREE_CODE (val1) == INTEGER_CST
1090 && TREE_CODE (val2) == INTEGER_CST)
1091 return tree_int_cst_compare (val1, val2);
1092
1093 if (poly_int_tree_p (val1) && poly_int_tree_p (val2))
1094 {
1095 if (known_eq (wi::to_poly_widest (val1),
1096 wi::to_poly_widest (val2)))
1097 return 0;
1098 if (known_lt (wi::to_poly_widest (val1),
1099 wi::to_poly_widest (val2)))
1100 return -1;
1101 if (known_gt (wi::to_poly_widest (val1),
1102 wi::to_poly_widest (val2)))
1103 return 1;
1104 }
1105
1106 return -2;
1107 }
1108 else
1109 {
1110 tree t;
1111
1112 /* First see if VAL1 and VAL2 are not the same. */
1113 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1114 return 0;
1115
1116 /* If VAL1 is a lower address than VAL2, return -1. */
1117 if (operand_less_p (val1, val2) == 1)
1118 return -1;
1119
1120 /* If VAL1 is a higher address than VAL2, return +1. */
1121 if (operand_less_p (val2, val1) == 1)
1122 return 1;
1123
1124 /* If VAL1 is different than VAL2, return +2.
1125 For integer constants we either have already returned -1 or 1
1126 or they are equivalent. We still might succeed in proving
1127 something about non-trivial operands. */
1128 if (TREE_CODE (val1) != INTEGER_CST
1129 || TREE_CODE (val2) != INTEGER_CST)
1130 {
1131 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1132 if (t && integer_onep (t))
1133 return 2;
1134 }
1135
1136 return -2;
1137 }
1138 }
1139
1140 /* Compare values like compare_values_warnv. */
1141
1142 int
1143 compare_values (tree val1, tree val2)
1144 {
1145 bool sop;
1146 return compare_values_warnv (val1, val2, &sop);
1147 }
1148
1149
1150 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1151 0 if VAL is not inside [MIN, MAX],
1152 -2 if we cannot tell either way.
1153
1154 Benchmark compile/20001226-1.c compilation time after changing this
1155 function. */
1156
1157 int
1158 value_inside_range (tree val, tree min, tree max)
1159 {
1160 int cmp1, cmp2;
1161
1162 cmp1 = operand_less_p (val, min);
1163 if (cmp1 == -2)
1164 return -2;
1165 if (cmp1 == 1)
1166 return 0;
1167
1168 cmp2 = operand_less_p (max, val);
1169 if (cmp2 == -2)
1170 return -2;
1171
1172 return !cmp2;
1173 }
1174
1175
1176 /* Return TRUE if *VR includes the value X. */
1177
1178 bool
1179 range_includes_p (const value_range_base *vr, HOST_WIDE_INT x)
1180 {
1181 if (vr->varying_p () || vr->undefined_p ())
1182 return true;
1183 return vr->may_contain_p (build_int_cst (vr->type (), x));
1184 }
1185
1186 /* If *VR has a value range that is a single constant value return that,
1187 otherwise return NULL_TREE.
1188
1189 ?? This actually returns TRUE for [&x, &x], so perhaps "constant"
1190 is not the best name. */
1191
1192 tree
1193 value_range_constant_singleton (const value_range_base *vr)
1194 {
1195 tree result = NULL;
1196 if (vr->singleton_p (&result))
1197 return result;
1198 return NULL;
1199 }
1200
1201 /* Value range wrapper for wide_int_range_set_zero_nonzero_bits.
1202
1203 Compute MAY_BE_NONZERO and MUST_BE_NONZERO bit masks for range in VR.
1204
1205 Return TRUE if VR was a constant range and we were able to compute
1206 the bit masks. */
1207
1208 bool
1209 vrp_set_zero_nonzero_bits (const tree expr_type,
1210 const value_range_base *vr,
1211 wide_int *may_be_nonzero,
1212 wide_int *must_be_nonzero)
1213 {
1214 if (!range_int_cst_p (vr))
1215 {
1216 *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
1217 *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
1218 return false;
1219 }
1220 wide_int_range_set_zero_nonzero_bits (TYPE_SIGN (expr_type),
1221 wi::to_wide (vr->min ()),
1222 wi::to_wide (vr->max ()),
1223 *may_be_nonzero, *must_be_nonzero);
1224 return true;
1225 }
1226
1227 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
1228 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
1229 false otherwise. If *AR can be represented with a single range
1230 *VR1 will be VR_UNDEFINED. */
1231
1232 static bool
1233 ranges_from_anti_range (const value_range_base *ar,
1234 value_range_base *vr0, value_range_base *vr1)
1235 {
1236 tree type = ar->type ();
1237
1238 vr0->set_undefined ();
1239 vr1->set_undefined ();
1240
1241 /* As a future improvement, we could handle ~[0, A] as: [-INF, -1] U
1242 [A+1, +INF]. Not sure if this helps in practice, though. */
1243
1244 if (ar->kind () != VR_ANTI_RANGE
1245 || TREE_CODE (ar->min ()) != INTEGER_CST
1246 || TREE_CODE (ar->max ()) != INTEGER_CST
1247 || !vrp_val_min (type)
1248 || !vrp_val_max (type))
1249 return false;
1250
1251 if (tree_int_cst_lt (vrp_val_min (type), ar->min ()))
1252 vr0->set (VR_RANGE,
1253 vrp_val_min (type),
1254 wide_int_to_tree (type, wi::to_wide (ar->min ()) - 1));
1255 if (tree_int_cst_lt (ar->max (), vrp_val_max (type)))
1256 vr1->set (VR_RANGE,
1257 wide_int_to_tree (type, wi::to_wide (ar->max ()) + 1),
1258 vrp_val_max (type));
1259 if (vr0->undefined_p ())
1260 {
1261 *vr0 = *vr1;
1262 vr1->set_undefined ();
1263 }
1264
1265 return !vr0->undefined_p ();
1266 }
1267
1268 /* Extract the components of a value range into a pair of wide ints in
1269 [WMIN, WMAX].
1270
1271 If the value range is anything but a VR_*RANGE of constants, the
1272 resulting wide ints are set to [-MIN, +MAX] for the type. */
1273
1274 static void inline
1275 extract_range_into_wide_ints (const value_range_base *vr,
1276 signop sign, unsigned prec,
1277 wide_int &wmin, wide_int &wmax)
1278 {
1279 gcc_assert (vr->kind () != VR_ANTI_RANGE || vr->symbolic_p ());
1280 if (range_int_cst_p (vr))
1281 {
1282 wmin = wi::to_wide (vr->min ());
1283 wmax = wi::to_wide (vr->max ());
1284 }
1285 else
1286 {
1287 wmin = wi::min_value (prec, sign);
1288 wmax = wi::max_value (prec, sign);
1289 }
1290 }
1291
1292 /* Value range wrapper for wide_int_range_multiplicative_op:
1293
1294 *VR = *VR0 .CODE. *VR1. */
1295
1296 static void
1297 extract_range_from_multiplicative_op (value_range_base *vr,
1298 enum tree_code code,
1299 const value_range_base *vr0,
1300 const value_range_base *vr1)
1301 {
1302 gcc_assert (code == MULT_EXPR
1303 || code == TRUNC_DIV_EXPR
1304 || code == FLOOR_DIV_EXPR
1305 || code == CEIL_DIV_EXPR
1306 || code == EXACT_DIV_EXPR
1307 || code == ROUND_DIV_EXPR
1308 || code == RSHIFT_EXPR
1309 || code == LSHIFT_EXPR);
1310 gcc_assert (vr0->kind () == VR_RANGE
1311 && vr0->kind () == vr1->kind ());
1312
1313 tree type = vr0->type ();
1314 wide_int res_lb, res_ub;
1315 wide_int vr0_lb = wi::to_wide (vr0->min ());
1316 wide_int vr0_ub = wi::to_wide (vr0->max ());
1317 wide_int vr1_lb = wi::to_wide (vr1->min ());
1318 wide_int vr1_ub = wi::to_wide (vr1->max ());
1319 bool overflow_undefined = TYPE_OVERFLOW_UNDEFINED (type);
1320 unsigned prec = TYPE_PRECISION (type);
1321
1322 if (wide_int_range_multiplicative_op (res_lb, res_ub,
1323 code, TYPE_SIGN (type), prec,
1324 vr0_lb, vr0_ub, vr1_lb, vr1_ub,
1325 overflow_undefined))
1326 vr->set_and_canonicalize (VR_RANGE,
1327 wide_int_to_tree (type, res_lb),
1328 wide_int_to_tree (type, res_ub));
1329 else
1330 vr->set_varying ();
1331 }
1332
1333 /* If BOUND will include a symbolic bound, adjust it accordingly,
1334 otherwise leave it as is.
1335
1336 CODE is the original operation that combined the bounds (PLUS_EXPR
1337 or MINUS_EXPR).
1338
1339 TYPE is the type of the original operation.
1340
1341 SYM_OPn is the symbolic for OPn if it has a symbolic.
1342
1343 NEG_OPn is TRUE if the OPn was negated. */
1344
1345 static void
1346 adjust_symbolic_bound (tree &bound, enum tree_code code, tree type,
1347 tree sym_op0, tree sym_op1,
1348 bool neg_op0, bool neg_op1)
1349 {
1350 bool minus_p = (code == MINUS_EXPR);
1351 /* If the result bound is constant, we're done; otherwise, build the
1352 symbolic lower bound. */
1353 if (sym_op0 == sym_op1)
1354 ;
1355 else if (sym_op0)
1356 bound = build_symbolic_expr (type, sym_op0,
1357 neg_op0, bound);
1358 else if (sym_op1)
1359 {
1360 /* We may not negate if that might introduce
1361 undefined overflow. */
1362 if (!minus_p
1363 || neg_op1
1364 || TYPE_OVERFLOW_WRAPS (type))
1365 bound = build_symbolic_expr (type, sym_op1,
1366 neg_op1 ^ minus_p, bound);
1367 else
1368 bound = NULL_TREE;
1369 }
1370 }
1371
1372 /* Combine OP1 and OP1, which are two parts of a bound, into one wide
1373 int bound according to CODE. CODE is the operation combining the
1374 bound (either a PLUS_EXPR or a MINUS_EXPR).
1375
1376 TYPE is the type of the combine operation.
1377
1378 WI is the wide int to store the result.
1379
1380 OVF is -1 if an underflow occurred, +1 if an overflow occurred or 0
1381 if over/underflow occurred. */
1382
1383 static void
1384 combine_bound (enum tree_code code, wide_int &wi, wi::overflow_type &ovf,
1385 tree type, tree op0, tree op1)
1386 {
1387 bool minus_p = (code == MINUS_EXPR);
1388 const signop sgn = TYPE_SIGN (type);
1389 const unsigned int prec = TYPE_PRECISION (type);
1390
1391 /* Combine the bounds, if any. */
1392 if (op0 && op1)
1393 {
1394 if (minus_p)
1395 wi = wi::sub (wi::to_wide (op0), wi::to_wide (op1), sgn, &ovf);
1396 else
1397 wi = wi::add (wi::to_wide (op0), wi::to_wide (op1), sgn, &ovf);
1398 }
1399 else if (op0)
1400 wi = wi::to_wide (op0);
1401 else if (op1)
1402 {
1403 if (minus_p)
1404 wi = wi::neg (wi::to_wide (op1), &ovf);
1405 else
1406 wi = wi::to_wide (op1);
1407 }
1408 else
1409 wi = wi::shwi (0, prec);
1410 }
1411
1412 /* Given a range in [WMIN, WMAX], adjust it for possible overflow and
1413 put the result in VR.
1414
1415 TYPE is the type of the range.
1416
1417 MIN_OVF and MAX_OVF indicate what type of overflow, if any,
1418 occurred while originally calculating WMIN or WMAX. -1 indicates
1419 underflow. +1 indicates overflow. 0 indicates neither. */
1420
1421 static void
1422 set_value_range_with_overflow (value_range_kind &kind, tree &min, tree &max,
1423 tree type,
1424 const wide_int &wmin, const wide_int &wmax,
1425 wi::overflow_type min_ovf,
1426 wi::overflow_type max_ovf)
1427 {
1428 const signop sgn = TYPE_SIGN (type);
1429 const unsigned int prec = TYPE_PRECISION (type);
1430
1431 /* For one bit precision if max < min, then the swapped
1432 range covers all values. */
1433 if (prec == 1 && wi::lt_p (wmax, wmin, sgn))
1434 {
1435 kind = VR_VARYING;
1436 return;
1437 }
1438
1439 if (TYPE_OVERFLOW_WRAPS (type))
1440 {
1441 /* If overflow wraps, truncate the values and adjust the
1442 range kind and bounds appropriately. */
1443 wide_int tmin = wide_int::from (wmin, prec, sgn);
1444 wide_int tmax = wide_int::from (wmax, prec, sgn);
1445 if ((min_ovf != wi::OVF_NONE) == (max_ovf != wi::OVF_NONE))
1446 {
1447 /* If the limits are swapped, we wrapped around and cover
1448 the entire range. We have a similar check at the end of
1449 extract_range_from_binary_expr. */
1450 if (wi::gt_p (tmin, tmax, sgn))
1451 kind = VR_VARYING;
1452 else
1453 {
1454 kind = VR_RANGE;
1455 /* No overflow or both overflow or underflow. The
1456 range kind stays VR_RANGE. */
1457 min = wide_int_to_tree (type, tmin);
1458 max = wide_int_to_tree (type, tmax);
1459 }
1460 return;
1461 }
1462 else if ((min_ovf == wi::OVF_UNDERFLOW && max_ovf == wi::OVF_NONE)
1463 || (max_ovf == wi::OVF_OVERFLOW && min_ovf == wi::OVF_NONE))
1464 {
1465 /* Min underflow or max overflow. The range kind
1466 changes to VR_ANTI_RANGE. */
1467 bool covers = false;
1468 wide_int tem = tmin;
1469 tmin = tmax + 1;
1470 if (wi::cmp (tmin, tmax, sgn) < 0)
1471 covers = true;
1472 tmax = tem - 1;
1473 if (wi::cmp (tmax, tem, sgn) > 0)
1474 covers = true;
1475 /* If the anti-range would cover nothing, drop to varying.
1476 Likewise if the anti-range bounds are outside of the
1477 types values. */
1478 if (covers || wi::cmp (tmin, tmax, sgn) > 0)
1479 {
1480 kind = VR_VARYING;
1481 return;
1482 }
1483 kind = VR_ANTI_RANGE;
1484 min = wide_int_to_tree (type, tmin);
1485 max = wide_int_to_tree (type, tmax);
1486 return;
1487 }
1488 else
1489 {
1490 /* Other underflow and/or overflow, drop to VR_VARYING. */
1491 kind = VR_VARYING;
1492 return;
1493 }
1494 }
1495 else
1496 {
1497 /* If overflow does not wrap, saturate to the types min/max
1498 value. */
1499 wide_int type_min = wi::min_value (prec, sgn);
1500 wide_int type_max = wi::max_value (prec, sgn);
1501 kind = VR_RANGE;
1502 if (min_ovf == wi::OVF_UNDERFLOW)
1503 min = wide_int_to_tree (type, type_min);
1504 else if (min_ovf == wi::OVF_OVERFLOW)
1505 min = wide_int_to_tree (type, type_max);
1506 else
1507 min = wide_int_to_tree (type, wmin);
1508
1509 if (max_ovf == wi::OVF_UNDERFLOW)
1510 max = wide_int_to_tree (type, type_min);
1511 else if (max_ovf == wi::OVF_OVERFLOW)
1512 max = wide_int_to_tree (type, type_max);
1513 else
1514 max = wide_int_to_tree (type, wmax);
1515 }
1516 }
1517
1518 /* Extract range information from a binary operation CODE based on
1519 the ranges of each of its operands *VR0 and *VR1 with resulting
1520 type EXPR_TYPE. The resulting range is stored in *VR. */
1521
1522 void
1523 extract_range_from_binary_expr (value_range_base *vr,
1524 enum tree_code code, tree expr_type,
1525 const value_range_base *vr0_,
1526 const value_range_base *vr1_)
1527 {
1528 signop sign = TYPE_SIGN (expr_type);
1529 unsigned int prec = TYPE_PRECISION (expr_type);
1530 value_range_base vr0 = *vr0_, vr1 = *vr1_;
1531 value_range_base vrtem0, vrtem1;
1532 enum value_range_kind type;
1533 tree min = NULL_TREE, max = NULL_TREE;
1534 int cmp;
1535
1536 if (!INTEGRAL_TYPE_P (expr_type)
1537 && !POINTER_TYPE_P (expr_type))
1538 {
1539 vr->set_varying ();
1540 return;
1541 }
1542
1543 /* Not all binary expressions can be applied to ranges in a
1544 meaningful way. Handle only arithmetic operations. */
1545 if (code != PLUS_EXPR
1546 && code != MINUS_EXPR
1547 && code != POINTER_PLUS_EXPR
1548 && code != MULT_EXPR
1549 && code != TRUNC_DIV_EXPR
1550 && code != FLOOR_DIV_EXPR
1551 && code != CEIL_DIV_EXPR
1552 && code != EXACT_DIV_EXPR
1553 && code != ROUND_DIV_EXPR
1554 && code != TRUNC_MOD_EXPR
1555 && code != RSHIFT_EXPR
1556 && code != LSHIFT_EXPR
1557 && code != MIN_EXPR
1558 && code != MAX_EXPR
1559 && code != BIT_AND_EXPR
1560 && code != BIT_IOR_EXPR
1561 && code != BIT_XOR_EXPR)
1562 {
1563 vr->set_varying ();
1564 return;
1565 }
1566
1567 /* If both ranges are UNDEFINED, so is the result. */
1568 if (vr0.undefined_p () && vr1.undefined_p ())
1569 {
1570 vr->set_undefined ();
1571 return;
1572 }
1573 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
1574 code. At some point we may want to special-case operations that
1575 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
1576 operand. */
1577 else if (vr0.undefined_p ())
1578 vr0.set_varying ();
1579 else if (vr1.undefined_p ())
1580 vr1.set_varying ();
1581
1582 /* We get imprecise results from ranges_from_anti_range when
1583 code is EXACT_DIV_EXPR. We could mask out bits in the resulting
1584 range, but then we also need to hack up vrp_union. It's just
1585 easier to special case when vr0 is ~[0,0] for EXACT_DIV_EXPR. */
1586 if (code == EXACT_DIV_EXPR && range_is_nonnull (&vr0))
1587 {
1588 vr->set_nonnull (expr_type);
1589 return;
1590 }
1591
1592 /* Now canonicalize anti-ranges to ranges when they are not symbolic
1593 and express ~[] op X as ([]' op X) U ([]'' op X). */
1594 if (vr0.kind () == VR_ANTI_RANGE
1595 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
1596 {
1597 extract_range_from_binary_expr (vr, code, expr_type, &vrtem0, vr1_);
1598 if (!vrtem1.undefined_p ())
1599 {
1600 value_range_base vrres;
1601 extract_range_from_binary_expr (&vrres, code, expr_type,
1602 &vrtem1, vr1_);
1603 vr->union_ (&vrres);
1604 }
1605 return;
1606 }
1607 /* Likewise for X op ~[]. */
1608 if (vr1.kind () == VR_ANTI_RANGE
1609 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
1610 {
1611 extract_range_from_binary_expr (vr, code, expr_type, vr0_, &vrtem0);
1612 if (!vrtem1.undefined_p ())
1613 {
1614 value_range_base vrres;
1615 extract_range_from_binary_expr (&vrres, code, expr_type,
1616 vr0_, &vrtem1);
1617 vr->union_ (&vrres);
1618 }
1619 return;
1620 }
1621
1622 /* The type of the resulting value range defaults to VR0.TYPE. */
1623 type = vr0.kind ();
1624
1625 /* Refuse to operate on VARYING ranges, ranges of different kinds
1626 and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
1627 because we may be able to derive a useful range even if one of
1628 the operands is VR_VARYING or symbolic range. Similarly for
1629 divisions, MIN/MAX and PLUS/MINUS.
1630
1631 TODO, we may be able to derive anti-ranges in some cases. */
1632 if (code != BIT_AND_EXPR
1633 && code != BIT_IOR_EXPR
1634 && code != TRUNC_DIV_EXPR
1635 && code != FLOOR_DIV_EXPR
1636 && code != CEIL_DIV_EXPR
1637 && code != EXACT_DIV_EXPR
1638 && code != ROUND_DIV_EXPR
1639 && code != TRUNC_MOD_EXPR
1640 && code != MIN_EXPR
1641 && code != MAX_EXPR
1642 && code != PLUS_EXPR
1643 && code != MINUS_EXPR
1644 && code != RSHIFT_EXPR
1645 && code != POINTER_PLUS_EXPR
1646 && (vr0.varying_p ()
1647 || vr1.varying_p ()
1648 || vr0.kind () != vr1.kind ()
1649 || vr0.symbolic_p ()
1650 || vr1.symbolic_p ()))
1651 {
1652 vr->set_varying ();
1653 return;
1654 }
1655
1656 /* Now evaluate the expression to determine the new range. */
1657 if (POINTER_TYPE_P (expr_type))
1658 {
1659 if (code == MIN_EXPR || code == MAX_EXPR)
1660 {
1661 /* For MIN/MAX expressions with pointers, we only care about
1662 nullness, if both are non null, then the result is nonnull.
1663 If both are null, then the result is null. Otherwise they
1664 are varying. */
1665 if (!range_includes_zero_p (&vr0) && !range_includes_zero_p (&vr1))
1666 vr->set_nonnull (expr_type);
1667 else if (range_is_null (&vr0) && range_is_null (&vr1))
1668 vr->set_null (expr_type);
1669 else
1670 vr->set_varying ();
1671 }
1672 else if (code == POINTER_PLUS_EXPR)
1673 {
1674 /* For pointer types, we are really only interested in asserting
1675 whether the expression evaluates to non-NULL.
1676 With -fno-delete-null-pointer-checks we need to be more
1677 conservative. As some object might reside at address 0,
1678 then some offset could be added to it and the same offset
1679 subtracted again and the result would be NULL.
1680 E.g.
1681 static int a[12]; where &a[0] is NULL and
1682 ptr = &a[6];
1683 ptr -= 6;
1684 ptr will be NULL here, even when there is POINTER_PLUS_EXPR
1685 where the first range doesn't include zero and the second one
1686 doesn't either. As the second operand is sizetype (unsigned),
1687 consider all ranges where the MSB could be set as possible
1688 subtractions where the result might be NULL. */
1689 if ((!range_includes_zero_p (&vr0)
1690 || !range_includes_zero_p (&vr1))
1691 && !TYPE_OVERFLOW_WRAPS (expr_type)
1692 && (flag_delete_null_pointer_checks
1693 || (range_int_cst_p (&vr1)
1694 && !tree_int_cst_sign_bit (vr1.max ()))))
1695 vr->set_nonnull (expr_type);
1696 else if (range_is_null (&vr0) && range_is_null (&vr1))
1697 vr->set_null (expr_type);
1698 else
1699 vr->set_varying ();
1700 }
1701 else if (code == BIT_AND_EXPR)
1702 {
1703 /* For pointer types, we are really only interested in asserting
1704 whether the expression evaluates to non-NULL. */
1705 if (!range_includes_zero_p (&vr0) && !range_includes_zero_p (&vr1))
1706 vr->set_nonnull (expr_type);
1707 else if (range_is_null (&vr0) || range_is_null (&vr1))
1708 vr->set_null (expr_type);
1709 else
1710 vr->set_varying ();
1711 }
1712 else
1713 vr->set_varying ();
1714
1715 return;
1716 }
1717
1718 /* For integer ranges, apply the operation to each end of the
1719 range and see what we end up with. */
1720 if (code == PLUS_EXPR || code == MINUS_EXPR)
1721 {
1722 /* This will normalize things such that calculating
1723 [0,0] - VR_VARYING is not dropped to varying, but is
1724 calculated as [MIN+1, MAX]. */
1725 if (vr0.varying_p ())
1726 vr0.set (VR_RANGE, vrp_val_min (expr_type), vrp_val_max (expr_type));
1727 if (vr1.varying_p ())
1728 vr1.set (VR_RANGE, vrp_val_min (expr_type), vrp_val_max (expr_type));
1729
1730 const bool minus_p = (code == MINUS_EXPR);
1731 tree min_op0 = vr0.min ();
1732 tree min_op1 = minus_p ? vr1.max () : vr1.min ();
1733 tree max_op0 = vr0.max ();
1734 tree max_op1 = minus_p ? vr1.min () : vr1.max ();
1735 tree sym_min_op0 = NULL_TREE;
1736 tree sym_min_op1 = NULL_TREE;
1737 tree sym_max_op0 = NULL_TREE;
1738 tree sym_max_op1 = NULL_TREE;
1739 bool neg_min_op0, neg_min_op1, neg_max_op0, neg_max_op1;
1740
1741 neg_min_op0 = neg_min_op1 = neg_max_op0 = neg_max_op1 = false;
1742
1743 /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
1744 single-symbolic ranges, try to compute the precise resulting range,
1745 but only if we know that this resulting range will also be constant
1746 or single-symbolic. */
1747 if (vr0.kind () == VR_RANGE && vr1.kind () == VR_RANGE
1748 && (TREE_CODE (min_op0) == INTEGER_CST
1749 || (sym_min_op0
1750 = get_single_symbol (min_op0, &neg_min_op0, &min_op0)))
1751 && (TREE_CODE (min_op1) == INTEGER_CST
1752 || (sym_min_op1
1753 = get_single_symbol (min_op1, &neg_min_op1, &min_op1)))
1754 && (!(sym_min_op0 && sym_min_op1)
1755 || (sym_min_op0 == sym_min_op1
1756 && neg_min_op0 == (minus_p ? neg_min_op1 : !neg_min_op1)))
1757 && (TREE_CODE (max_op0) == INTEGER_CST
1758 || (sym_max_op0
1759 = get_single_symbol (max_op0, &neg_max_op0, &max_op0)))
1760 && (TREE_CODE (max_op1) == INTEGER_CST
1761 || (sym_max_op1
1762 = get_single_symbol (max_op1, &neg_max_op1, &max_op1)))
1763 && (!(sym_max_op0 && sym_max_op1)
1764 || (sym_max_op0 == sym_max_op1
1765 && neg_max_op0 == (minus_p ? neg_max_op1 : !neg_max_op1))))
1766 {
1767 wide_int wmin, wmax;
1768 wi::overflow_type min_ovf = wi::OVF_NONE;
1769 wi::overflow_type max_ovf = wi::OVF_NONE;
1770
1771 /* Build the bounds. */
1772 combine_bound (code, wmin, min_ovf, expr_type, min_op0, min_op1);
1773 combine_bound (code, wmax, max_ovf, expr_type, max_op0, max_op1);
1774
1775 /* If we have overflow for the constant part and the resulting
1776 range will be symbolic, drop to VR_VARYING. */
1777 if (((bool)min_ovf && sym_min_op0 != sym_min_op1)
1778 || ((bool)max_ovf && sym_max_op0 != sym_max_op1))
1779 {
1780 vr->set_varying ();
1781 return;
1782 }
1783
1784 /* Adjust the range for possible overflow. */
1785 min = NULL_TREE;
1786 max = NULL_TREE;
1787 set_value_range_with_overflow (type, min, max, expr_type,
1788 wmin, wmax, min_ovf, max_ovf);
1789 if (type == VR_VARYING)
1790 {
1791 vr->set_varying ();
1792 return;
1793 }
1794
1795 /* Build the symbolic bounds if needed. */
1796 adjust_symbolic_bound (min, code, expr_type,
1797 sym_min_op0, sym_min_op1,
1798 neg_min_op0, neg_min_op1);
1799 adjust_symbolic_bound (max, code, expr_type,
1800 sym_max_op0, sym_max_op1,
1801 neg_max_op0, neg_max_op1);
1802 }
1803 else
1804 {
1805 /* For other cases, for example if we have a PLUS_EXPR with two
1806 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
1807 to compute a precise range for such a case.
1808 ??? General even mixed range kind operations can be expressed
1809 by for example transforming ~[3, 5] + [1, 2] to range-only
1810 operations and a union primitive:
1811 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
1812 [-INF+1, 4] U [6, +INF(OVF)]
1813 though usually the union is not exactly representable with
1814 a single range or anti-range as the above is
1815 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
1816 but one could use a scheme similar to equivalences for this. */
1817 vr->set_varying ();
1818 return;
1819 }
1820 }
1821 else if (code == MIN_EXPR
1822 || code == MAX_EXPR)
1823 {
1824 wide_int wmin, wmax;
1825 wide_int vr0_min, vr0_max;
1826 wide_int vr1_min, vr1_max;
1827 extract_range_into_wide_ints (&vr0, sign, prec, vr0_min, vr0_max);
1828 extract_range_into_wide_ints (&vr1, sign, prec, vr1_min, vr1_max);
1829 if (wide_int_range_min_max (wmin, wmax, code, sign, prec,
1830 vr0_min, vr0_max, vr1_min, vr1_max))
1831 vr->set (VR_RANGE, wide_int_to_tree (expr_type, wmin),
1832 wide_int_to_tree (expr_type, wmax));
1833 else
1834 vr->set_varying ();
1835 return;
1836 }
1837 else if (code == MULT_EXPR)
1838 {
1839 if (!range_int_cst_p (&vr0)
1840 || !range_int_cst_p (&vr1))
1841 {
1842 vr->set_varying ();
1843 return;
1844 }
1845 extract_range_from_multiplicative_op (vr, code, &vr0, &vr1);
1846 return;
1847 }
1848 else if (code == RSHIFT_EXPR
1849 || code == LSHIFT_EXPR)
1850 {
1851 if (range_int_cst_p (&vr1)
1852 && !wide_int_range_shift_undefined_p
1853 (TYPE_SIGN (TREE_TYPE (vr1.min ())),
1854 prec,
1855 wi::to_wide (vr1.min ()),
1856 wi::to_wide (vr1.max ())))
1857 {
1858 if (code == RSHIFT_EXPR)
1859 {
1860 /* Even if vr0 is VARYING or otherwise not usable, we can derive
1861 useful ranges just from the shift count. E.g.
1862 x >> 63 for signed 64-bit x is always [-1, 0]. */
1863 if (vr0.kind () != VR_RANGE || vr0.symbolic_p ())
1864 vr0.set (VR_RANGE, vrp_val_min (expr_type),
1865 vrp_val_max (expr_type));
1866 extract_range_from_multiplicative_op (vr, code, &vr0, &vr1);
1867 return;
1868 }
1869 else if (code == LSHIFT_EXPR
1870 && range_int_cst_p (&vr0))
1871 {
1872 wide_int res_lb, res_ub;
1873 if (wide_int_range_lshift (res_lb, res_ub, sign, prec,
1874 wi::to_wide (vr0.min ()),
1875 wi::to_wide (vr0.max ()),
1876 wi::to_wide (vr1.min ()),
1877 wi::to_wide (vr1.max ()),
1878 TYPE_OVERFLOW_UNDEFINED (expr_type)))
1879 {
1880 min = wide_int_to_tree (expr_type, res_lb);
1881 max = wide_int_to_tree (expr_type, res_ub);
1882 vr->set_and_canonicalize (VR_RANGE, min, max);
1883 return;
1884 }
1885 }
1886 }
1887 vr->set_varying ();
1888 return;
1889 }
1890 else if (code == TRUNC_DIV_EXPR
1891 || code == FLOOR_DIV_EXPR
1892 || code == CEIL_DIV_EXPR
1893 || code == EXACT_DIV_EXPR
1894 || code == ROUND_DIV_EXPR)
1895 {
1896 wide_int dividend_min, dividend_max, divisor_min, divisor_max;
1897 wide_int wmin, wmax, extra_min, extra_max;
1898 bool extra_range_p;
1899
1900 /* Special case explicit division by zero as undefined. */
1901 if (range_is_null (&vr1))
1902 {
1903 vr->set_undefined ();
1904 return;
1905 }
1906
1907 /* First, normalize ranges into constants we can handle. Note
1908 that VR_ANTI_RANGE's of constants were already normalized
1909 before arriving here.
1910
1911 NOTE: As a future improvement, we may be able to do better
1912 with mixed symbolic (anti-)ranges like [0, A]. See note in
1913 ranges_from_anti_range. */
1914 extract_range_into_wide_ints (&vr0, sign, prec,
1915 dividend_min, dividend_max);
1916 extract_range_into_wide_ints (&vr1, sign, prec,
1917 divisor_min, divisor_max);
1918 if (!wide_int_range_div (wmin, wmax, code, sign, prec,
1919 dividend_min, dividend_max,
1920 divisor_min, divisor_max,
1921 TYPE_OVERFLOW_UNDEFINED (expr_type),
1922 extra_range_p, extra_min, extra_max))
1923 {
1924 vr->set_varying ();
1925 return;
1926 }
1927 vr->set (VR_RANGE, wide_int_to_tree (expr_type, wmin),
1928 wide_int_to_tree (expr_type, wmax));
1929 if (extra_range_p)
1930 {
1931 value_range_base
1932 extra_range (VR_RANGE, wide_int_to_tree (expr_type, extra_min),
1933 wide_int_to_tree (expr_type, extra_max));
1934 vr->union_ (&extra_range);
1935 }
1936 return;
1937 }
1938 else if (code == TRUNC_MOD_EXPR)
1939 {
1940 if (range_is_null (&vr1))
1941 {
1942 vr->set_undefined ();
1943 return;
1944 }
1945 wide_int wmin, wmax, tmp;
1946 wide_int vr0_min, vr0_max, vr1_min, vr1_max;
1947 extract_range_into_wide_ints (&vr0, sign, prec, vr0_min, vr0_max);
1948 extract_range_into_wide_ints (&vr1, sign, prec, vr1_min, vr1_max);
1949 wide_int_range_trunc_mod (wmin, wmax, sign, prec,
1950 vr0_min, vr0_max, vr1_min, vr1_max);
1951 min = wide_int_to_tree (expr_type, wmin);
1952 max = wide_int_to_tree (expr_type, wmax);
1953 vr->set (VR_RANGE, min, max);
1954 return;
1955 }
1956 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
1957 {
1958 wide_int may_be_nonzero0, may_be_nonzero1;
1959 wide_int must_be_nonzero0, must_be_nonzero1;
1960 wide_int wmin, wmax;
1961 wide_int vr0_min, vr0_max, vr1_min, vr1_max;
1962 vrp_set_zero_nonzero_bits (expr_type, &vr0,
1963 &may_be_nonzero0, &must_be_nonzero0);
1964 vrp_set_zero_nonzero_bits (expr_type, &vr1,
1965 &may_be_nonzero1, &must_be_nonzero1);
1966 extract_range_into_wide_ints (&vr0, sign, prec, vr0_min, vr0_max);
1967 extract_range_into_wide_ints (&vr1, sign, prec, vr1_min, vr1_max);
1968 if (code == BIT_AND_EXPR)
1969 {
1970 if (wide_int_range_bit_and (wmin, wmax, sign, prec,
1971 vr0_min, vr0_max,
1972 vr1_min, vr1_max,
1973 must_be_nonzero0,
1974 may_be_nonzero0,
1975 must_be_nonzero1,
1976 may_be_nonzero1))
1977 {
1978 min = wide_int_to_tree (expr_type, wmin);
1979 max = wide_int_to_tree (expr_type, wmax);
1980 vr->set (VR_RANGE, min, max);
1981 }
1982 else
1983 vr->set_varying ();
1984 return;
1985 }
1986 else if (code == BIT_IOR_EXPR)
1987 {
1988 if (wide_int_range_bit_ior (wmin, wmax, sign,
1989 vr0_min, vr0_max,
1990 vr1_min, vr1_max,
1991 must_be_nonzero0,
1992 may_be_nonzero0,
1993 must_be_nonzero1,
1994 may_be_nonzero1))
1995 {
1996 min = wide_int_to_tree (expr_type, wmin);
1997 max = wide_int_to_tree (expr_type, wmax);
1998 vr->set (VR_RANGE, min, max);
1999 }
2000 else
2001 vr->set_varying ();
2002 return;
2003 }
2004 else if (code == BIT_XOR_EXPR)
2005 {
2006 if (wide_int_range_bit_xor (wmin, wmax, sign, prec,
2007 must_be_nonzero0,
2008 may_be_nonzero0,
2009 must_be_nonzero1,
2010 may_be_nonzero1))
2011 {
2012 min = wide_int_to_tree (expr_type, wmin);
2013 max = wide_int_to_tree (expr_type, wmax);
2014 vr->set (VR_RANGE, min, max);
2015 }
2016 else
2017 vr->set_varying ();
2018 return;
2019 }
2020 }
2021 else
2022 gcc_unreachable ();
2023
2024 /* If either MIN or MAX overflowed, then set the resulting range to
2025 VARYING. */
2026 if (min == NULL_TREE
2027 || TREE_OVERFLOW_P (min)
2028 || max == NULL_TREE
2029 || TREE_OVERFLOW_P (max))
2030 {
2031 vr->set_varying ();
2032 return;
2033 }
2034
2035 /* We punt for [-INF, +INF].
2036 We learn nothing when we have INF on both sides.
2037 Note that we do accept [-INF, -INF] and [+INF, +INF]. */
2038 if (vrp_val_is_min (min) && vrp_val_is_max (max))
2039 {
2040 vr->set_varying ();
2041 return;
2042 }
2043
2044 cmp = compare_values (min, max);
2045 if (cmp == -2 || cmp == 1)
2046 {
2047 /* If the new range has its limits swapped around (MIN > MAX),
2048 then the operation caused one of them to wrap around, mark
2049 the new range VARYING. */
2050 vr->set_varying ();
2051 }
2052 else
2053 vr->set (type, min, max);
2054 }
2055
2056 /* Extract range information from a unary operation CODE based on
2057 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
2058 The resulting range is stored in *VR. */
2059
2060 void
2061 extract_range_from_unary_expr (value_range_base *vr,
2062 enum tree_code code, tree type,
2063 const value_range_base *vr0_, tree op0_type)
2064 {
2065 signop sign = TYPE_SIGN (type);
2066 unsigned int prec = TYPE_PRECISION (type);
2067 value_range_base vr0 = *vr0_;
2068 value_range_base vrtem0, vrtem1;
2069
2070 /* VRP only operates on integral and pointer types. */
2071 if (!(INTEGRAL_TYPE_P (op0_type)
2072 || POINTER_TYPE_P (op0_type))
2073 || !(INTEGRAL_TYPE_P (type)
2074 || POINTER_TYPE_P (type)))
2075 {
2076 vr->set_varying ();
2077 return;
2078 }
2079
2080 /* If VR0 is UNDEFINED, so is the result. */
2081 if (vr0.undefined_p ())
2082 {
2083 vr->set_undefined ();
2084 return;
2085 }
2086
2087 /* Handle operations that we express in terms of others. */
2088 if (code == PAREN_EXPR)
2089 {
2090 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
2091 *vr = vr0;
2092 return;
2093 }
2094 else if (code == NEGATE_EXPR)
2095 {
2096 /* -X is simply 0 - X, so re-use existing code that also handles
2097 anti-ranges fine. */
2098 value_range_base zero;
2099 zero.set (build_int_cst (type, 0));
2100 extract_range_from_binary_expr (vr, MINUS_EXPR, type, &zero, &vr0);
2101 return;
2102 }
2103 else if (code == BIT_NOT_EXPR)
2104 {
2105 /* ~X is simply -1 - X, so re-use existing code that also handles
2106 anti-ranges fine. */
2107 value_range_base minusone;
2108 minusone.set (build_int_cst (type, -1));
2109 extract_range_from_binary_expr (vr, MINUS_EXPR, type, &minusone, &vr0);
2110 return;
2111 }
2112
2113 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2114 and express op ~[] as (op []') U (op []''). */
2115 if (vr0.kind () == VR_ANTI_RANGE
2116 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2117 {
2118 extract_range_from_unary_expr (vr, code, type, &vrtem0, op0_type);
2119 if (!vrtem1.undefined_p ())
2120 {
2121 value_range_base vrres;
2122 extract_range_from_unary_expr (&vrres, code, type,
2123 &vrtem1, op0_type);
2124 vr->union_ (&vrres);
2125 }
2126 return;
2127 }
2128
2129 if (CONVERT_EXPR_CODE_P (code))
2130 {
2131 tree inner_type = op0_type;
2132 tree outer_type = type;
2133
2134 /* If the expression involves a pointer, we are only interested in
2135 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]).
2136
2137 This may lose precision when converting (char *)~[0,2] to
2138 int, because we'll forget that the pointer can also not be 1
2139 or 2. In practice we don't care, as this is some idiot
2140 storing a magic constant to a pointer. */
2141 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (op0_type))
2142 {
2143 if (!range_includes_zero_p (&vr0))
2144 vr->set_nonnull (type);
2145 else if (range_is_null (&vr0))
2146 vr->set_null (type);
2147 else
2148 vr->set_varying ();
2149 return;
2150 }
2151
2152 /* The POINTER_TYPE_P code above will have dealt with all
2153 pointer anti-ranges. Any remaining anti-ranges at this point
2154 will be integer conversions from SSA names that will be
2155 normalized into VARYING. For instance: ~[x_55, x_55]. */
2156 gcc_assert (vr0.kind () != VR_ANTI_RANGE
2157 || TREE_CODE (vr0.min ()) != INTEGER_CST);
2158
2159 /* NOTES: Previously we were returning VARYING for all symbolics, but
2160 we can do better by treating them as [-MIN, +MAX]. For
2161 example, converting [SYM, SYM] from INT to LONG UNSIGNED,
2162 we can return: ~[0x8000000, 0xffffffff7fffffff].
2163
2164 We were also failing to convert ~[0,0] from char* to unsigned,
2165 instead choosing to return VR_VARYING. Now we return ~[0,0]. */
2166 wide_int vr0_min, vr0_max, wmin, wmax;
2167 signop inner_sign = TYPE_SIGN (inner_type);
2168 signop outer_sign = TYPE_SIGN (outer_type);
2169 unsigned inner_prec = TYPE_PRECISION (inner_type);
2170 unsigned outer_prec = TYPE_PRECISION (outer_type);
2171 extract_range_into_wide_ints (&vr0, inner_sign, inner_prec,
2172 vr0_min, vr0_max);
2173 if (wide_int_range_convert (wmin, wmax,
2174 inner_sign, inner_prec,
2175 outer_sign, outer_prec,
2176 vr0_min, vr0_max))
2177 {
2178 tree min = wide_int_to_tree (outer_type, wmin);
2179 tree max = wide_int_to_tree (outer_type, wmax);
2180 vr->set_and_canonicalize (VR_RANGE, min, max);
2181 }
2182 else
2183 vr->set_varying ();
2184 return;
2185 }
2186 else if (code == ABS_EXPR)
2187 {
2188 wide_int wmin, wmax;
2189 wide_int vr0_min, vr0_max;
2190 extract_range_into_wide_ints (&vr0, sign, prec, vr0_min, vr0_max);
2191 if (wide_int_range_abs (wmin, wmax, sign, prec, vr0_min, vr0_max,
2192 TYPE_OVERFLOW_UNDEFINED (type)))
2193 vr->set (VR_RANGE, wide_int_to_tree (type, wmin),
2194 wide_int_to_tree (type, wmax));
2195 else
2196 vr->set_varying ();
2197 return;
2198 }
2199 else if (code == ABSU_EXPR)
2200 {
2201 wide_int wmin, wmax;
2202 wide_int vr0_min, vr0_max;
2203 extract_range_into_wide_ints (&vr0, SIGNED, prec, vr0_min, vr0_max);
2204 wide_int_range_absu (wmin, wmax, prec, vr0_min, vr0_max);
2205 vr->set (VR_RANGE, wide_int_to_tree (type, wmin),
2206 wide_int_to_tree (type, wmax));
2207 return;
2208 }
2209
2210 /* For unhandled operations fall back to varying. */
2211 vr->set_varying ();
2212 return;
2213 }
2214
2215 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2216 create a new SSA name N and return the assertion assignment
2217 'N = ASSERT_EXPR <V, V OP W>'. */
2218
2219 static gimple *
2220 build_assert_expr_for (tree cond, tree v)
2221 {
2222 tree a;
2223 gassign *assertion;
2224
2225 gcc_assert (TREE_CODE (v) == SSA_NAME
2226 && COMPARISON_CLASS_P (cond));
2227
2228 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
2229 assertion = gimple_build_assign (NULL_TREE, a);
2230
2231 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2232 operand of the ASSERT_EXPR. Create it so the new name and the old one
2233 are registered in the replacement table so that we can fix the SSA web
2234 after adding all the ASSERT_EXPRs. */
2235 tree new_def = create_new_def_for (v, assertion, NULL);
2236 /* Make sure we preserve abnormalness throughout an ASSERT_EXPR chain
2237 given we have to be able to fully propagate those out to re-create
2238 valid SSA when removing the asserts. */
2239 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (v))
2240 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_def) = 1;
2241
2242 return assertion;
2243 }
2244
2245
2246 /* Return false if EXPR is a predicate expression involving floating
2247 point values. */
2248
2249 static inline bool
2250 fp_predicate (gimple *stmt)
2251 {
2252 GIMPLE_CHECK (stmt, GIMPLE_COND);
2253
2254 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
2255 }
2256
2257 /* If the range of values taken by OP can be inferred after STMT executes,
2258 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2259 describes the inferred range. Return true if a range could be
2260 inferred. */
2261
2262 bool
2263 infer_value_range (gimple *stmt, tree op, tree_code *comp_code_p, tree *val_p)
2264 {
2265 *val_p = NULL_TREE;
2266 *comp_code_p = ERROR_MARK;
2267
2268 /* Do not attempt to infer anything in names that flow through
2269 abnormal edges. */
2270 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
2271 return false;
2272
2273 /* If STMT is the last statement of a basic block with no normal
2274 successors, there is no point inferring anything about any of its
2275 operands. We would not be able to find a proper insertion point
2276 for the assertion, anyway. */
2277 if (stmt_ends_bb_p (stmt))
2278 {
2279 edge_iterator ei;
2280 edge e;
2281
2282 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
2283 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
2284 break;
2285 if (e == NULL)
2286 return false;
2287 }
2288
2289 if (infer_nonnull_range (stmt, op))
2290 {
2291 *val_p = build_int_cst (TREE_TYPE (op), 0);
2292 *comp_code_p = NE_EXPR;
2293 return true;
2294 }
2295
2296 return false;
2297 }
2298
2299
2300 void dump_asserts_for (FILE *, tree);
2301 void debug_asserts_for (tree);
2302 void dump_all_asserts (FILE *);
2303 void debug_all_asserts (void);
2304
2305 /* Dump all the registered assertions for NAME to FILE. */
2306
2307 void
2308 dump_asserts_for (FILE *file, tree name)
2309 {
2310 assert_locus *loc;
2311
2312 fprintf (file, "Assertions to be inserted for ");
2313 print_generic_expr (file, name);
2314 fprintf (file, "\n");
2315
2316 loc = asserts_for[SSA_NAME_VERSION (name)];
2317 while (loc)
2318 {
2319 fprintf (file, "\t");
2320 print_gimple_stmt (file, gsi_stmt (loc->si), 0);
2321 fprintf (file, "\n\tBB #%d", loc->bb->index);
2322 if (loc->e)
2323 {
2324 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
2325 loc->e->dest->index);
2326 dump_edge_info (file, loc->e, dump_flags, 0);
2327 }
2328 fprintf (file, "\n\tPREDICATE: ");
2329 print_generic_expr (file, loc->expr);
2330 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
2331 print_generic_expr (file, loc->val);
2332 fprintf (file, "\n\n");
2333 loc = loc->next;
2334 }
2335
2336 fprintf (file, "\n");
2337 }
2338
2339
2340 /* Dump all the registered assertions for NAME to stderr. */
2341
2342 DEBUG_FUNCTION void
2343 debug_asserts_for (tree name)
2344 {
2345 dump_asserts_for (stderr, name);
2346 }
2347
2348
2349 /* Dump all the registered assertions for all the names to FILE. */
2350
2351 void
2352 dump_all_asserts (FILE *file)
2353 {
2354 unsigned i;
2355 bitmap_iterator bi;
2356
2357 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
2358 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2359 dump_asserts_for (file, ssa_name (i));
2360 fprintf (file, "\n");
2361 }
2362
2363
2364 /* Dump all the registered assertions for all the names to stderr. */
2365
2366 DEBUG_FUNCTION void
2367 debug_all_asserts (void)
2368 {
2369 dump_all_asserts (stderr);
2370 }
2371
2372 /* Push the assert info for NAME, EXPR, COMP_CODE and VAL to ASSERTS. */
2373
2374 static void
2375 add_assert_info (vec<assert_info> &asserts,
2376 tree name, tree expr, enum tree_code comp_code, tree val)
2377 {
2378 assert_info info;
2379 info.comp_code = comp_code;
2380 info.name = name;
2381 if (TREE_OVERFLOW_P (val))
2382 val = drop_tree_overflow (val);
2383 info.val = val;
2384 info.expr = expr;
2385 asserts.safe_push (info);
2386 if (dump_enabled_p ())
2387 dump_printf (MSG_NOTE | MSG_PRIORITY_INTERNALS,
2388 "Adding assert for %T from %T %s %T\n",
2389 name, expr, op_symbol_code (comp_code), val);
2390 }
2391
2392 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2393 'EXPR COMP_CODE VAL' at a location that dominates block BB or
2394 E->DEST, then register this location as a possible insertion point
2395 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
2396
2397 BB, E and SI provide the exact insertion point for the new
2398 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2399 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2400 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2401 must not be NULL. */
2402
2403 static void
2404 register_new_assert_for (tree name, tree expr,
2405 enum tree_code comp_code,
2406 tree val,
2407 basic_block bb,
2408 edge e,
2409 gimple_stmt_iterator si)
2410 {
2411 assert_locus *n, *loc, *last_loc;
2412 basic_block dest_bb;
2413
2414 gcc_checking_assert (bb == NULL || e == NULL);
2415
2416 if (e == NULL)
2417 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
2418 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
2419
2420 /* Never build an assert comparing against an integer constant with
2421 TREE_OVERFLOW set. This confuses our undefined overflow warning
2422 machinery. */
2423 if (TREE_OVERFLOW_P (val))
2424 val = drop_tree_overflow (val);
2425
2426 /* The new assertion A will be inserted at BB or E. We need to
2427 determine if the new location is dominated by a previously
2428 registered location for A. If we are doing an edge insertion,
2429 assume that A will be inserted at E->DEST. Note that this is not
2430 necessarily true.
2431
2432 If E is a critical edge, it will be split. But even if E is
2433 split, the new block will dominate the same set of blocks that
2434 E->DEST dominates.
2435
2436 The reverse, however, is not true, blocks dominated by E->DEST
2437 will not be dominated by the new block created to split E. So,
2438 if the insertion location is on a critical edge, we will not use
2439 the new location to move another assertion previously registered
2440 at a block dominated by E->DEST. */
2441 dest_bb = (bb) ? bb : e->dest;
2442
2443 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2444 VAL at a block dominating DEST_BB, then we don't need to insert a new
2445 one. Similarly, if the same assertion already exists at a block
2446 dominated by DEST_BB and the new location is not on a critical
2447 edge, then update the existing location for the assertion (i.e.,
2448 move the assertion up in the dominance tree).
2449
2450 Note, this is implemented as a simple linked list because there
2451 should not be more than a handful of assertions registered per
2452 name. If this becomes a performance problem, a table hashed by
2453 COMP_CODE and VAL could be implemented. */
2454 loc = asserts_for[SSA_NAME_VERSION (name)];
2455 last_loc = loc;
2456 while (loc)
2457 {
2458 if (loc->comp_code == comp_code
2459 && (loc->val == val
2460 || operand_equal_p (loc->val, val, 0))
2461 && (loc->expr == expr
2462 || operand_equal_p (loc->expr, expr, 0)))
2463 {
2464 /* If E is not a critical edge and DEST_BB
2465 dominates the existing location for the assertion, move
2466 the assertion up in the dominance tree by updating its
2467 location information. */
2468 if ((e == NULL || !EDGE_CRITICAL_P (e))
2469 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
2470 {
2471 loc->bb = dest_bb;
2472 loc->e = e;
2473 loc->si = si;
2474 return;
2475 }
2476 }
2477
2478 /* Update the last node of the list and move to the next one. */
2479 last_loc = loc;
2480 loc = loc->next;
2481 }
2482
2483 /* If we didn't find an assertion already registered for
2484 NAME COMP_CODE VAL, add a new one at the end of the list of
2485 assertions associated with NAME. */
2486 n = XNEW (struct assert_locus);
2487 n->bb = dest_bb;
2488 n->e = e;
2489 n->si = si;
2490 n->comp_code = comp_code;
2491 n->val = val;
2492 n->expr = expr;
2493 n->next = NULL;
2494
2495 if (last_loc)
2496 last_loc->next = n;
2497 else
2498 asserts_for[SSA_NAME_VERSION (name)] = n;
2499
2500 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
2501 }
2502
2503 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
2504 Extract a suitable test code and value and store them into *CODE_P and
2505 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
2506
2507 If no extraction was possible, return FALSE, otherwise return TRUE.
2508
2509 If INVERT is true, then we invert the result stored into *CODE_P. */
2510
2511 static bool
2512 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
2513 tree cond_op0, tree cond_op1,
2514 bool invert, enum tree_code *code_p,
2515 tree *val_p)
2516 {
2517 enum tree_code comp_code;
2518 tree val;
2519
2520 /* Otherwise, we have a comparison of the form NAME COMP VAL
2521 or VAL COMP NAME. */
2522 if (name == cond_op1)
2523 {
2524 /* If the predicate is of the form VAL COMP NAME, flip
2525 COMP around because we need to register NAME as the
2526 first operand in the predicate. */
2527 comp_code = swap_tree_comparison (cond_code);
2528 val = cond_op0;
2529 }
2530 else if (name == cond_op0)
2531 {
2532 /* The comparison is of the form NAME COMP VAL, so the
2533 comparison code remains unchanged. */
2534 comp_code = cond_code;
2535 val = cond_op1;
2536 }
2537 else
2538 gcc_unreachable ();
2539
2540 /* Invert the comparison code as necessary. */
2541 if (invert)
2542 comp_code = invert_tree_comparison (comp_code, 0);
2543
2544 /* VRP only handles integral and pointer types. */
2545 if (! INTEGRAL_TYPE_P (TREE_TYPE (val))
2546 && ! POINTER_TYPE_P (TREE_TYPE (val)))
2547 return false;
2548
2549 /* Do not register always-false predicates.
2550 FIXME: this works around a limitation in fold() when dealing with
2551 enumerations. Given 'enum { N1, N2 } x;', fold will not
2552 fold 'if (x > N2)' to 'if (0)'. */
2553 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
2554 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2555 {
2556 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
2557 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
2558
2559 if (comp_code == GT_EXPR
2560 && (!max
2561 || compare_values (val, max) == 0))
2562 return false;
2563
2564 if (comp_code == LT_EXPR
2565 && (!min
2566 || compare_values (val, min) == 0))
2567 return false;
2568 }
2569 *code_p = comp_code;
2570 *val_p = val;
2571 return true;
2572 }
2573
2574 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
2575 (otherwise return VAL). VAL and MASK must be zero-extended for
2576 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
2577 (to transform signed values into unsigned) and at the end xor
2578 SGNBIT back. */
2579
2580 static wide_int
2581 masked_increment (const wide_int &val_in, const wide_int &mask,
2582 const wide_int &sgnbit, unsigned int prec)
2583 {
2584 wide_int bit = wi::one (prec), res;
2585 unsigned int i;
2586
2587 wide_int val = val_in ^ sgnbit;
2588 for (i = 0; i < prec; i++, bit += bit)
2589 {
2590 res = mask;
2591 if ((res & bit) == 0)
2592 continue;
2593 res = bit - 1;
2594 res = wi::bit_and_not (val + bit, res);
2595 res &= mask;
2596 if (wi::gtu_p (res, val))
2597 return res ^ sgnbit;
2598 }
2599 return val ^ sgnbit;
2600 }
2601
2602 /* Helper for overflow_comparison_p
2603
2604 OP0 CODE OP1 is a comparison. Examine the comparison and potentially
2605 OP1's defining statement to see if it ultimately has the form
2606 OP0 CODE (OP0 PLUS INTEGER_CST)
2607
2608 If so, return TRUE indicating this is an overflow test and store into
2609 *NEW_CST an updated constant that can be used in a narrowed range test.
2610
2611 REVERSED indicates if the comparison was originally:
2612
2613 OP1 CODE' OP0.
2614
2615 This affects how we build the updated constant. */
2616
2617 static bool
2618 overflow_comparison_p_1 (enum tree_code code, tree op0, tree op1,
2619 bool follow_assert_exprs, bool reversed, tree *new_cst)
2620 {
2621 /* See if this is a relational operation between two SSA_NAMES with
2622 unsigned, overflow wrapping values. If so, check it more deeply. */
2623 if ((code == LT_EXPR || code == LE_EXPR
2624 || code == GE_EXPR || code == GT_EXPR)
2625 && TREE_CODE (op0) == SSA_NAME
2626 && TREE_CODE (op1) == SSA_NAME
2627 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
2628 && TYPE_UNSIGNED (TREE_TYPE (op0))
2629 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
2630 {
2631 gimple *op1_def = SSA_NAME_DEF_STMT (op1);
2632
2633 /* If requested, follow any ASSERT_EXPRs backwards for OP1. */
2634 if (follow_assert_exprs)
2635 {
2636 while (gimple_assign_single_p (op1_def)
2637 && TREE_CODE (gimple_assign_rhs1 (op1_def)) == ASSERT_EXPR)
2638 {
2639 op1 = TREE_OPERAND (gimple_assign_rhs1 (op1_def), 0);
2640 if (TREE_CODE (op1) != SSA_NAME)
2641 break;
2642 op1_def = SSA_NAME_DEF_STMT (op1);
2643 }
2644 }
2645
2646 /* Now look at the defining statement of OP1 to see if it adds
2647 or subtracts a nonzero constant from another operand. */
2648 if (op1_def
2649 && is_gimple_assign (op1_def)
2650 && gimple_assign_rhs_code (op1_def) == PLUS_EXPR
2651 && TREE_CODE (gimple_assign_rhs2 (op1_def)) == INTEGER_CST
2652 && !integer_zerop (gimple_assign_rhs2 (op1_def)))
2653 {
2654 tree target = gimple_assign_rhs1 (op1_def);
2655
2656 /* If requested, follow ASSERT_EXPRs backwards for op0 looking
2657 for one where TARGET appears on the RHS. */
2658 if (follow_assert_exprs)
2659 {
2660 /* Now see if that "other operand" is op0, following the chain
2661 of ASSERT_EXPRs if necessary. */
2662 gimple *op0_def = SSA_NAME_DEF_STMT (op0);
2663 while (op0 != target
2664 && gimple_assign_single_p (op0_def)
2665 && TREE_CODE (gimple_assign_rhs1 (op0_def)) == ASSERT_EXPR)
2666 {
2667 op0 = TREE_OPERAND (gimple_assign_rhs1 (op0_def), 0);
2668 if (TREE_CODE (op0) != SSA_NAME)
2669 break;
2670 op0_def = SSA_NAME_DEF_STMT (op0);
2671 }
2672 }
2673
2674 /* If we did not find our target SSA_NAME, then this is not
2675 an overflow test. */
2676 if (op0 != target)
2677 return false;
2678
2679 tree type = TREE_TYPE (op0);
2680 wide_int max = wi::max_value (TYPE_PRECISION (type), UNSIGNED);
2681 tree inc = gimple_assign_rhs2 (op1_def);
2682 if (reversed)
2683 *new_cst = wide_int_to_tree (type, max + wi::to_wide (inc));
2684 else
2685 *new_cst = wide_int_to_tree (type, max - wi::to_wide (inc));
2686 return true;
2687 }
2688 }
2689 return false;
2690 }
2691
2692 /* OP0 CODE OP1 is a comparison. Examine the comparison and potentially
2693 OP1's defining statement to see if it ultimately has the form
2694 OP0 CODE (OP0 PLUS INTEGER_CST)
2695
2696 If so, return TRUE indicating this is an overflow test and store into
2697 *NEW_CST an updated constant that can be used in a narrowed range test.
2698
2699 These statements are left as-is in the IL to facilitate discovery of
2700 {ADD,SUB}_OVERFLOW sequences later in the optimizer pipeline. But
2701 the alternate range representation is often useful within VRP. */
2702
2703 bool
2704 overflow_comparison_p (tree_code code, tree name, tree val,
2705 bool use_equiv_p, tree *new_cst)
2706 {
2707 if (overflow_comparison_p_1 (code, name, val, use_equiv_p, false, new_cst))
2708 return true;
2709 return overflow_comparison_p_1 (swap_tree_comparison (code), val, name,
2710 use_equiv_p, true, new_cst);
2711 }
2712
2713
2714 /* Try to register an edge assertion for SSA name NAME on edge E for
2715 the condition COND contributing to the conditional jump pointed to by BSI.
2716 Invert the condition COND if INVERT is true. */
2717
2718 static void
2719 register_edge_assert_for_2 (tree name, edge e,
2720 enum tree_code cond_code,
2721 tree cond_op0, tree cond_op1, bool invert,
2722 vec<assert_info> &asserts)
2723 {
2724 tree val;
2725 enum tree_code comp_code;
2726
2727 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
2728 cond_op0,
2729 cond_op1,
2730 invert, &comp_code, &val))
2731 return;
2732
2733 /* Queue the assert. */
2734 tree x;
2735 if (overflow_comparison_p (comp_code, name, val, false, &x))
2736 {
2737 enum tree_code new_code = ((comp_code == GT_EXPR || comp_code == GE_EXPR)
2738 ? GT_EXPR : LE_EXPR);
2739 add_assert_info (asserts, name, name, new_code, x);
2740 }
2741 add_assert_info (asserts, name, name, comp_code, val);
2742
2743 /* In the case of NAME <= CST and NAME being defined as
2744 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
2745 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
2746 This catches range and anti-range tests. */
2747 if ((comp_code == LE_EXPR
2748 || comp_code == GT_EXPR)
2749 && TREE_CODE (val) == INTEGER_CST
2750 && TYPE_UNSIGNED (TREE_TYPE (val)))
2751 {
2752 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
2753 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
2754
2755 /* Extract CST2 from the (optional) addition. */
2756 if (is_gimple_assign (def_stmt)
2757 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
2758 {
2759 name2 = gimple_assign_rhs1 (def_stmt);
2760 cst2 = gimple_assign_rhs2 (def_stmt);
2761 if (TREE_CODE (name2) == SSA_NAME
2762 && TREE_CODE (cst2) == INTEGER_CST)
2763 def_stmt = SSA_NAME_DEF_STMT (name2);
2764 }
2765
2766 /* Extract NAME2 from the (optional) sign-changing cast. */
2767 if (gimple_assign_cast_p (def_stmt))
2768 {
2769 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
2770 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
2771 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
2772 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
2773 name3 = gimple_assign_rhs1 (def_stmt);
2774 }
2775
2776 /* If name3 is used later, create an ASSERT_EXPR for it. */
2777 if (name3 != NULL_TREE
2778 && TREE_CODE (name3) == SSA_NAME
2779 && (cst2 == NULL_TREE
2780 || TREE_CODE (cst2) == INTEGER_CST)
2781 && INTEGRAL_TYPE_P (TREE_TYPE (name3)))
2782 {
2783 tree tmp;
2784
2785 /* Build an expression for the range test. */
2786 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
2787 if (cst2 != NULL_TREE)
2788 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
2789 add_assert_info (asserts, name3, tmp, comp_code, val);
2790 }
2791
2792 /* If name2 is used later, create an ASSERT_EXPR for it. */
2793 if (name2 != NULL_TREE
2794 && TREE_CODE (name2) == SSA_NAME
2795 && TREE_CODE (cst2) == INTEGER_CST
2796 && INTEGRAL_TYPE_P (TREE_TYPE (name2)))
2797 {
2798 tree tmp;
2799
2800 /* Build an expression for the range test. */
2801 tmp = name2;
2802 if (TREE_TYPE (name) != TREE_TYPE (name2))
2803 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
2804 if (cst2 != NULL_TREE)
2805 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
2806 add_assert_info (asserts, name2, tmp, comp_code, val);
2807 }
2808 }
2809
2810 /* In the case of post-in/decrement tests like if (i++) ... and uses
2811 of the in/decremented value on the edge the extra name we want to
2812 assert for is not on the def chain of the name compared. Instead
2813 it is in the set of use stmts.
2814 Similar cases happen for conversions that were simplified through
2815 fold_{sign_changed,widened}_comparison. */
2816 if ((comp_code == NE_EXPR
2817 || comp_code == EQ_EXPR)
2818 && TREE_CODE (val) == INTEGER_CST)
2819 {
2820 imm_use_iterator ui;
2821 gimple *use_stmt;
2822 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
2823 {
2824 if (!is_gimple_assign (use_stmt))
2825 continue;
2826
2827 /* Cut off to use-stmts that are dominating the predecessor. */
2828 if (!dominated_by_p (CDI_DOMINATORS, e->src, gimple_bb (use_stmt)))
2829 continue;
2830
2831 tree name2 = gimple_assign_lhs (use_stmt);
2832 if (TREE_CODE (name2) != SSA_NAME)
2833 continue;
2834
2835 enum tree_code code = gimple_assign_rhs_code (use_stmt);
2836 tree cst;
2837 if (code == PLUS_EXPR
2838 || code == MINUS_EXPR)
2839 {
2840 cst = gimple_assign_rhs2 (use_stmt);
2841 if (TREE_CODE (cst) != INTEGER_CST)
2842 continue;
2843 cst = int_const_binop (code, val, cst);
2844 }
2845 else if (CONVERT_EXPR_CODE_P (code))
2846 {
2847 /* For truncating conversions we cannot record
2848 an inequality. */
2849 if (comp_code == NE_EXPR
2850 && (TYPE_PRECISION (TREE_TYPE (name2))
2851 < TYPE_PRECISION (TREE_TYPE (name))))
2852 continue;
2853 cst = fold_convert (TREE_TYPE (name2), val);
2854 }
2855 else
2856 continue;
2857
2858 if (TREE_OVERFLOW_P (cst))
2859 cst = drop_tree_overflow (cst);
2860 add_assert_info (asserts, name2, name2, comp_code, cst);
2861 }
2862 }
2863
2864 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
2865 && TREE_CODE (val) == INTEGER_CST)
2866 {
2867 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
2868 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
2869 tree val2 = NULL_TREE;
2870 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
2871 wide_int mask = wi::zero (prec);
2872 unsigned int nprec = prec;
2873 enum tree_code rhs_code = ERROR_MARK;
2874
2875 if (is_gimple_assign (def_stmt))
2876 rhs_code = gimple_assign_rhs_code (def_stmt);
2877
2878 /* In the case of NAME != CST1 where NAME = A +- CST2 we can
2879 assert that A != CST1 -+ CST2. */
2880 if ((comp_code == EQ_EXPR || comp_code == NE_EXPR)
2881 && (rhs_code == PLUS_EXPR || rhs_code == MINUS_EXPR))
2882 {
2883 tree op0 = gimple_assign_rhs1 (def_stmt);
2884 tree op1 = gimple_assign_rhs2 (def_stmt);
2885 if (TREE_CODE (op0) == SSA_NAME
2886 && TREE_CODE (op1) == INTEGER_CST)
2887 {
2888 enum tree_code reverse_op = (rhs_code == PLUS_EXPR
2889 ? MINUS_EXPR : PLUS_EXPR);
2890 op1 = int_const_binop (reverse_op, val, op1);
2891 if (TREE_OVERFLOW (op1))
2892 op1 = drop_tree_overflow (op1);
2893 add_assert_info (asserts, op0, op0, comp_code, op1);
2894 }
2895 }
2896
2897 /* Add asserts for NAME cmp CST and NAME being defined
2898 as NAME = (int) NAME2. */
2899 if (!TYPE_UNSIGNED (TREE_TYPE (val))
2900 && (comp_code == LE_EXPR || comp_code == LT_EXPR
2901 || comp_code == GT_EXPR || comp_code == GE_EXPR)
2902 && gimple_assign_cast_p (def_stmt))
2903 {
2904 name2 = gimple_assign_rhs1 (def_stmt);
2905 if (CONVERT_EXPR_CODE_P (rhs_code)
2906 && TREE_CODE (name2) == SSA_NAME
2907 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
2908 && TYPE_UNSIGNED (TREE_TYPE (name2))
2909 && prec == TYPE_PRECISION (TREE_TYPE (name2))
2910 && (comp_code == LE_EXPR || comp_code == GT_EXPR
2911 || !tree_int_cst_equal (val,
2912 TYPE_MIN_VALUE (TREE_TYPE (val)))))
2913 {
2914 tree tmp, cst;
2915 enum tree_code new_comp_code = comp_code;
2916
2917 cst = fold_convert (TREE_TYPE (name2),
2918 TYPE_MIN_VALUE (TREE_TYPE (val)));
2919 /* Build an expression for the range test. */
2920 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
2921 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
2922 fold_convert (TREE_TYPE (name2), val));
2923 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
2924 {
2925 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
2926 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
2927 build_int_cst (TREE_TYPE (name2), 1));
2928 }
2929 add_assert_info (asserts, name2, tmp, new_comp_code, cst);
2930 }
2931 }
2932
2933 /* Add asserts for NAME cmp CST and NAME being defined as
2934 NAME = NAME2 >> CST2.
2935
2936 Extract CST2 from the right shift. */
2937 if (rhs_code == RSHIFT_EXPR)
2938 {
2939 name2 = gimple_assign_rhs1 (def_stmt);
2940 cst2 = gimple_assign_rhs2 (def_stmt);
2941 if (TREE_CODE (name2) == SSA_NAME
2942 && tree_fits_uhwi_p (cst2)
2943 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
2944 && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
2945 && type_has_mode_precision_p (TREE_TYPE (val)))
2946 {
2947 mask = wi::mask (tree_to_uhwi (cst2), false, prec);
2948 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
2949 }
2950 }
2951 if (val2 != NULL_TREE
2952 && TREE_CODE (val2) == INTEGER_CST
2953 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
2954 TREE_TYPE (val),
2955 val2, cst2), val))
2956 {
2957 enum tree_code new_comp_code = comp_code;
2958 tree tmp, new_val;
2959
2960 tmp = name2;
2961 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
2962 {
2963 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
2964 {
2965 tree type = build_nonstandard_integer_type (prec, 1);
2966 tmp = build1 (NOP_EXPR, type, name2);
2967 val2 = fold_convert (type, val2);
2968 }
2969 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
2970 new_val = wide_int_to_tree (TREE_TYPE (tmp), mask);
2971 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
2972 }
2973 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
2974 {
2975 wide_int minval
2976 = wi::min_value (prec, TYPE_SIGN (TREE_TYPE (val)));
2977 new_val = val2;
2978 if (minval == wi::to_wide (new_val))
2979 new_val = NULL_TREE;
2980 }
2981 else
2982 {
2983 wide_int maxval
2984 = wi::max_value (prec, TYPE_SIGN (TREE_TYPE (val)));
2985 mask |= wi::to_wide (val2);
2986 if (wi::eq_p (mask, maxval))
2987 new_val = NULL_TREE;
2988 else
2989 new_val = wide_int_to_tree (TREE_TYPE (val2), mask);
2990 }
2991
2992 if (new_val)
2993 add_assert_info (asserts, name2, tmp, new_comp_code, new_val);
2994 }
2995
2996 /* If we have a conversion that doesn't change the value of the source
2997 simply register the same assert for it. */
2998 if (CONVERT_EXPR_CODE_P (rhs_code))
2999 {
3000 wide_int rmin, rmax;
3001 tree rhs1 = gimple_assign_rhs1 (def_stmt);
3002 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
3003 && TREE_CODE (rhs1) == SSA_NAME
3004 /* Make sure the relation preserves the upper/lower boundary of
3005 the range conservatively. */
3006 && (comp_code == NE_EXPR
3007 || comp_code == EQ_EXPR
3008 || (TYPE_SIGN (TREE_TYPE (name))
3009 == TYPE_SIGN (TREE_TYPE (rhs1)))
3010 || ((comp_code == LE_EXPR
3011 || comp_code == LT_EXPR)
3012 && !TYPE_UNSIGNED (TREE_TYPE (rhs1)))
3013 || ((comp_code == GE_EXPR
3014 || comp_code == GT_EXPR)
3015 && TYPE_UNSIGNED (TREE_TYPE (rhs1))))
3016 /* And the conversion does not alter the value we compare
3017 against and all values in rhs1 can be represented in
3018 the converted to type. */
3019 && int_fits_type_p (val, TREE_TYPE (rhs1))
3020 && ((TYPE_PRECISION (TREE_TYPE (name))
3021 > TYPE_PRECISION (TREE_TYPE (rhs1)))
3022 || (get_range_info (rhs1, &rmin, &rmax) == VR_RANGE
3023 && wi::fits_to_tree_p (rmin, TREE_TYPE (name))
3024 && wi::fits_to_tree_p (rmax, TREE_TYPE (name)))))
3025 add_assert_info (asserts, rhs1, rhs1,
3026 comp_code, fold_convert (TREE_TYPE (rhs1), val));
3027 }
3028
3029 /* Add asserts for NAME cmp CST and NAME being defined as
3030 NAME = NAME2 & CST2.
3031
3032 Extract CST2 from the and.
3033
3034 Also handle
3035 NAME = (unsigned) NAME2;
3036 casts where NAME's type is unsigned and has smaller precision
3037 than NAME2's type as if it was NAME = NAME2 & MASK. */
3038 names[0] = NULL_TREE;
3039 names[1] = NULL_TREE;
3040 cst2 = NULL_TREE;
3041 if (rhs_code == BIT_AND_EXPR
3042 || (CONVERT_EXPR_CODE_P (rhs_code)
3043 && INTEGRAL_TYPE_P (TREE_TYPE (val))
3044 && TYPE_UNSIGNED (TREE_TYPE (val))
3045 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
3046 > prec))
3047 {
3048 name2 = gimple_assign_rhs1 (def_stmt);
3049 if (rhs_code == BIT_AND_EXPR)
3050 cst2 = gimple_assign_rhs2 (def_stmt);
3051 else
3052 {
3053 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
3054 nprec = TYPE_PRECISION (TREE_TYPE (name2));
3055 }
3056 if (TREE_CODE (name2) == SSA_NAME
3057 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
3058 && TREE_CODE (cst2) == INTEGER_CST
3059 && !integer_zerop (cst2)
3060 && (nprec > 1
3061 || TYPE_UNSIGNED (TREE_TYPE (val))))
3062 {
3063 gimple *def_stmt2 = SSA_NAME_DEF_STMT (name2);
3064 if (gimple_assign_cast_p (def_stmt2))
3065 {
3066 names[1] = gimple_assign_rhs1 (def_stmt2);
3067 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
3068 || TREE_CODE (names[1]) != SSA_NAME
3069 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
3070 || (TYPE_PRECISION (TREE_TYPE (name2))
3071 != TYPE_PRECISION (TREE_TYPE (names[1]))))
3072 names[1] = NULL_TREE;
3073 }
3074 names[0] = name2;
3075 }
3076 }
3077 if (names[0] || names[1])
3078 {
3079 wide_int minv, maxv, valv, cst2v;
3080 wide_int tem, sgnbit;
3081 bool valid_p = false, valn, cst2n;
3082 enum tree_code ccode = comp_code;
3083
3084 valv = wide_int::from (wi::to_wide (val), nprec, UNSIGNED);
3085 cst2v = wide_int::from (wi::to_wide (cst2), nprec, UNSIGNED);
3086 valn = wi::neg_p (valv, TYPE_SIGN (TREE_TYPE (val)));
3087 cst2n = wi::neg_p (cst2v, TYPE_SIGN (TREE_TYPE (val)));
3088 /* If CST2 doesn't have most significant bit set,
3089 but VAL is negative, we have comparison like
3090 if ((x & 0x123) > -4) (always true). Just give up. */
3091 if (!cst2n && valn)
3092 ccode = ERROR_MARK;
3093 if (cst2n)
3094 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
3095 else
3096 sgnbit = wi::zero (nprec);
3097 minv = valv & cst2v;
3098 switch (ccode)
3099 {
3100 case EQ_EXPR:
3101 /* Minimum unsigned value for equality is VAL & CST2
3102 (should be equal to VAL, otherwise we probably should
3103 have folded the comparison into false) and
3104 maximum unsigned value is VAL | ~CST2. */
3105 maxv = valv | ~cst2v;
3106 valid_p = true;
3107 break;
3108
3109 case NE_EXPR:
3110 tem = valv | ~cst2v;
3111 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
3112 if (valv == 0)
3113 {
3114 cst2n = false;
3115 sgnbit = wi::zero (nprec);
3116 goto gt_expr;
3117 }
3118 /* If (VAL | ~CST2) is all ones, handle it as
3119 (X & CST2) < VAL. */
3120 if (tem == -1)
3121 {
3122 cst2n = false;
3123 valn = false;
3124 sgnbit = wi::zero (nprec);
3125 goto lt_expr;
3126 }
3127 if (!cst2n && wi::neg_p (cst2v))
3128 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
3129 if (sgnbit != 0)
3130 {
3131 if (valv == sgnbit)
3132 {
3133 cst2n = true;
3134 valn = true;
3135 goto gt_expr;
3136 }
3137 if (tem == wi::mask (nprec - 1, false, nprec))
3138 {
3139 cst2n = true;
3140 goto lt_expr;
3141 }
3142 if (!cst2n)
3143 sgnbit = wi::zero (nprec);
3144 }
3145 break;
3146
3147 case GE_EXPR:
3148 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
3149 is VAL and maximum unsigned value is ~0. For signed
3150 comparison, if CST2 doesn't have most significant bit
3151 set, handle it similarly. If CST2 has MSB set,
3152 the minimum is the same, and maximum is ~0U/2. */
3153 if (minv != valv)
3154 {
3155 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
3156 VAL. */
3157 minv = masked_increment (valv, cst2v, sgnbit, nprec);
3158 if (minv == valv)
3159 break;
3160 }
3161 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
3162 valid_p = true;
3163 break;
3164
3165 case GT_EXPR:
3166 gt_expr:
3167 /* Find out smallest MINV where MINV > VAL
3168 && (MINV & CST2) == MINV, if any. If VAL is signed and
3169 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
3170 minv = masked_increment (valv, cst2v, sgnbit, nprec);
3171 if (minv == valv)
3172 break;
3173 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
3174 valid_p = true;
3175 break;
3176
3177 case LE_EXPR:
3178 /* Minimum unsigned value for <= is 0 and maximum
3179 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
3180 Otherwise, find smallest VAL2 where VAL2 > VAL
3181 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
3182 as maximum.
3183 For signed comparison, if CST2 doesn't have most
3184 significant bit set, handle it similarly. If CST2 has
3185 MSB set, the maximum is the same and minimum is INT_MIN. */
3186 if (minv == valv)
3187 maxv = valv;
3188 else
3189 {
3190 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
3191 if (maxv == valv)
3192 break;
3193 maxv -= 1;
3194 }
3195 maxv |= ~cst2v;
3196 minv = sgnbit;
3197 valid_p = true;
3198 break;
3199
3200 case LT_EXPR:
3201 lt_expr:
3202 /* Minimum unsigned value for < is 0 and maximum
3203 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
3204 Otherwise, find smallest VAL2 where VAL2 > VAL
3205 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
3206 as maximum.
3207 For signed comparison, if CST2 doesn't have most
3208 significant bit set, handle it similarly. If CST2 has
3209 MSB set, the maximum is the same and minimum is INT_MIN. */
3210 if (minv == valv)
3211 {
3212 if (valv == sgnbit)
3213 break;
3214 maxv = valv;
3215 }
3216 else
3217 {
3218 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
3219 if (maxv == valv)
3220 break;
3221 }
3222 maxv -= 1;
3223 maxv |= ~cst2v;
3224 minv = sgnbit;
3225 valid_p = true;
3226 break;
3227
3228 default:
3229 break;
3230 }
3231 if (valid_p
3232 && (maxv - minv) != -1)
3233 {
3234 tree tmp, new_val, type;
3235 int i;
3236
3237 for (i = 0; i < 2; i++)
3238 if (names[i])
3239 {
3240 wide_int maxv2 = maxv;
3241 tmp = names[i];
3242 type = TREE_TYPE (names[i]);
3243 if (!TYPE_UNSIGNED (type))
3244 {
3245 type = build_nonstandard_integer_type (nprec, 1);
3246 tmp = build1 (NOP_EXPR, type, names[i]);
3247 }
3248 if (minv != 0)
3249 {
3250 tmp = build2 (PLUS_EXPR, type, tmp,
3251 wide_int_to_tree (type, -minv));
3252 maxv2 = maxv - minv;
3253 }
3254 new_val = wide_int_to_tree (type, maxv2);
3255 add_assert_info (asserts, names[i], tmp, LE_EXPR, new_val);
3256 }
3257 }
3258 }
3259 }
3260 }
3261
3262 /* OP is an operand of a truth value expression which is known to have
3263 a particular value. Register any asserts for OP and for any
3264 operands in OP's defining statement.
3265
3266 If CODE is EQ_EXPR, then we want to register OP is zero (false),
3267 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
3268
3269 static void
3270 register_edge_assert_for_1 (tree op, enum tree_code code,
3271 edge e, vec<assert_info> &asserts)
3272 {
3273 gimple *op_def;
3274 tree val;
3275 enum tree_code rhs_code;
3276
3277 /* We only care about SSA_NAMEs. */
3278 if (TREE_CODE (op) != SSA_NAME)
3279 return;
3280
3281 /* We know that OP will have a zero or nonzero value. */
3282 val = build_int_cst (TREE_TYPE (op), 0);
3283 add_assert_info (asserts, op, op, code, val);
3284
3285 /* Now look at how OP is set. If it's set from a comparison,
3286 a truth operation or some bit operations, then we may be able
3287 to register information about the operands of that assignment. */
3288 op_def = SSA_NAME_DEF_STMT (op);
3289 if (gimple_code (op_def) != GIMPLE_ASSIGN)
3290 return;
3291
3292 rhs_code = gimple_assign_rhs_code (op_def);
3293
3294 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
3295 {
3296 bool invert = (code == EQ_EXPR ? true : false);
3297 tree op0 = gimple_assign_rhs1 (op_def);
3298 tree op1 = gimple_assign_rhs2 (op_def);
3299
3300 if (TREE_CODE (op0) == SSA_NAME)
3301 register_edge_assert_for_2 (op0, e, rhs_code, op0, op1, invert, asserts);
3302 if (TREE_CODE (op1) == SSA_NAME)
3303 register_edge_assert_for_2 (op1, e, rhs_code, op0, op1, invert, asserts);
3304 }
3305 else if ((code == NE_EXPR
3306 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
3307 || (code == EQ_EXPR
3308 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
3309 {
3310 /* Recurse on each operand. */
3311 tree op0 = gimple_assign_rhs1 (op_def);
3312 tree op1 = gimple_assign_rhs2 (op_def);
3313 if (TREE_CODE (op0) == SSA_NAME
3314 && has_single_use (op0))
3315 register_edge_assert_for_1 (op0, code, e, asserts);
3316 if (TREE_CODE (op1) == SSA_NAME
3317 && has_single_use (op1))
3318 register_edge_assert_for_1 (op1, code, e, asserts);
3319 }
3320 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
3321 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
3322 {
3323 /* Recurse, flipping CODE. */
3324 code = invert_tree_comparison (code, false);
3325 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, asserts);
3326 }
3327 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
3328 {
3329 /* Recurse through the copy. */
3330 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, asserts);
3331 }
3332 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
3333 {
3334 /* Recurse through the type conversion, unless it is a narrowing
3335 conversion or conversion from non-integral type. */
3336 tree rhs = gimple_assign_rhs1 (op_def);
3337 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
3338 && (TYPE_PRECISION (TREE_TYPE (rhs))
3339 <= TYPE_PRECISION (TREE_TYPE (op))))
3340 register_edge_assert_for_1 (rhs, code, e, asserts);
3341 }
3342 }
3343
3344 /* Check if comparison
3345 NAME COND_OP INTEGER_CST
3346 has a form of
3347 (X & 11...100..0) COND_OP XX...X00...0
3348 Such comparison can yield assertions like
3349 X >= XX...X00...0
3350 X <= XX...X11...1
3351 in case of COND_OP being EQ_EXPR or
3352 X < XX...X00...0
3353 X > XX...X11...1
3354 in case of NE_EXPR. */
3355
3356 static bool
3357 is_masked_range_test (tree name, tree valt, enum tree_code cond_code,
3358 tree *new_name, tree *low, enum tree_code *low_code,
3359 tree *high, enum tree_code *high_code)
3360 {
3361 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
3362
3363 if (!is_gimple_assign (def_stmt)
3364 || gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
3365 return false;
3366
3367 tree t = gimple_assign_rhs1 (def_stmt);
3368 tree maskt = gimple_assign_rhs2 (def_stmt);
3369 if (TREE_CODE (t) != SSA_NAME || TREE_CODE (maskt) != INTEGER_CST)
3370 return false;
3371
3372 wi::tree_to_wide_ref mask = wi::to_wide (maskt);
3373 wide_int inv_mask = ~mask;
3374 /* Must have been removed by now so don't bother optimizing. */
3375 if (mask == 0 || inv_mask == 0)
3376 return false;
3377
3378 /* Assume VALT is INTEGER_CST. */
3379 wi::tree_to_wide_ref val = wi::to_wide (valt);
3380
3381 if ((inv_mask & (inv_mask + 1)) != 0
3382 || (val & mask) != val)
3383 return false;
3384
3385 bool is_range = cond_code == EQ_EXPR;
3386
3387 tree type = TREE_TYPE (t);
3388 wide_int min = wi::min_value (type),
3389 max = wi::max_value (type);
3390
3391 if (is_range)
3392 {
3393 *low_code = val == min ? ERROR_MARK : GE_EXPR;
3394 *high_code = val == max ? ERROR_MARK : LE_EXPR;
3395 }
3396 else
3397 {
3398 /* We can still generate assertion if one of alternatives
3399 is known to always be false. */
3400 if (val == min)
3401 {
3402 *low_code = (enum tree_code) 0;
3403 *high_code = GT_EXPR;
3404 }
3405 else if ((val | inv_mask) == max)
3406 {
3407 *low_code = LT_EXPR;
3408 *high_code = (enum tree_code) 0;
3409 }
3410 else
3411 return false;
3412 }
3413
3414 *new_name = t;
3415 *low = wide_int_to_tree (type, val);
3416 *high = wide_int_to_tree (type, val | inv_mask);
3417
3418 return true;
3419 }
3420
3421 /* Try to register an edge assertion for SSA name NAME on edge E for
3422 the condition COND contributing to the conditional jump pointed to by
3423 SI. */
3424
3425 void
3426 register_edge_assert_for (tree name, edge e,
3427 enum tree_code cond_code, tree cond_op0,
3428 tree cond_op1, vec<assert_info> &asserts)
3429 {
3430 tree val;
3431 enum tree_code comp_code;
3432 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
3433
3434 /* Do not attempt to infer anything in names that flow through
3435 abnormal edges. */
3436 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
3437 return;
3438
3439 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
3440 cond_op0, cond_op1,
3441 is_else_edge,
3442 &comp_code, &val))
3443 return;
3444
3445 /* Register ASSERT_EXPRs for name. */
3446 register_edge_assert_for_2 (name, e, cond_code, cond_op0,
3447 cond_op1, is_else_edge, asserts);
3448
3449
3450 /* If COND is effectively an equality test of an SSA_NAME against
3451 the value zero or one, then we may be able to assert values
3452 for SSA_NAMEs which flow into COND. */
3453
3454 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
3455 statement of NAME we can assert both operands of the BIT_AND_EXPR
3456 have nonzero value. */
3457 if (((comp_code == EQ_EXPR && integer_onep (val))
3458 || (comp_code == NE_EXPR && integer_zerop (val))))
3459 {
3460 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
3461
3462 if (is_gimple_assign (def_stmt)
3463 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
3464 {
3465 tree op0 = gimple_assign_rhs1 (def_stmt);
3466 tree op1 = gimple_assign_rhs2 (def_stmt);
3467 register_edge_assert_for_1 (op0, NE_EXPR, e, asserts);
3468 register_edge_assert_for_1 (op1, NE_EXPR, e, asserts);
3469 }
3470 }
3471
3472 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
3473 statement of NAME we can assert both operands of the BIT_IOR_EXPR
3474 have zero value. */
3475 if (((comp_code == EQ_EXPR && integer_zerop (val))
3476 || (comp_code == NE_EXPR && integer_onep (val))))
3477 {
3478 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
3479
3480 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
3481 necessarily zero value, or if type-precision is one. */
3482 if (is_gimple_assign (def_stmt)
3483 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
3484 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
3485 || comp_code == EQ_EXPR)))
3486 {
3487 tree op0 = gimple_assign_rhs1 (def_stmt);
3488 tree op1 = gimple_assign_rhs2 (def_stmt);
3489 register_edge_assert_for_1 (op0, EQ_EXPR, e, asserts);
3490 register_edge_assert_for_1 (op1, EQ_EXPR, e, asserts);
3491 }
3492 }
3493
3494 /* Sometimes we can infer ranges from (NAME & MASK) == VALUE. */
3495 if ((comp_code == EQ_EXPR || comp_code == NE_EXPR)
3496 && TREE_CODE (val) == INTEGER_CST)
3497 {
3498 enum tree_code low_code, high_code;
3499 tree low, high;
3500 if (is_masked_range_test (name, val, comp_code, &name, &low,
3501 &low_code, &high, &high_code))
3502 {
3503 if (low_code != ERROR_MARK)
3504 register_edge_assert_for_2 (name, e, low_code, name,
3505 low, /*invert*/false, asserts);
3506 if (high_code != ERROR_MARK)
3507 register_edge_assert_for_2 (name, e, high_code, name,
3508 high, /*invert*/false, asserts);
3509 }
3510 }
3511 }
3512
3513 /* Finish found ASSERTS for E and register them at GSI. */
3514
3515 static void
3516 finish_register_edge_assert_for (edge e, gimple_stmt_iterator gsi,
3517 vec<assert_info> &asserts)
3518 {
3519 for (unsigned i = 0; i < asserts.length (); ++i)
3520 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
3521 reachable from E. */
3522 if (live_on_edge (e, asserts[i].name))
3523 register_new_assert_for (asserts[i].name, asserts[i].expr,
3524 asserts[i].comp_code, asserts[i].val,
3525 NULL, e, gsi);
3526 }
3527
3528
3529
3530 /* Determine whether the outgoing edges of BB should receive an
3531 ASSERT_EXPR for each of the operands of BB's LAST statement.
3532 The last statement of BB must be a COND_EXPR.
3533
3534 If any of the sub-graphs rooted at BB have an interesting use of
3535 the predicate operands, an assert location node is added to the
3536 list of assertions for the corresponding operands. */
3537
3538 static void
3539 find_conditional_asserts (basic_block bb, gcond *last)
3540 {
3541 gimple_stmt_iterator bsi;
3542 tree op;
3543 edge_iterator ei;
3544 edge e;
3545 ssa_op_iter iter;
3546
3547 bsi = gsi_for_stmt (last);
3548
3549 /* Look for uses of the operands in each of the sub-graphs
3550 rooted at BB. We need to check each of the outgoing edges
3551 separately, so that we know what kind of ASSERT_EXPR to
3552 insert. */
3553 FOR_EACH_EDGE (e, ei, bb->succs)
3554 {
3555 if (e->dest == bb)
3556 continue;
3557
3558 /* Register the necessary assertions for each operand in the
3559 conditional predicate. */
3560 auto_vec<assert_info, 8> asserts;
3561 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3562 register_edge_assert_for (op, e,
3563 gimple_cond_code (last),
3564 gimple_cond_lhs (last),
3565 gimple_cond_rhs (last), asserts);
3566 finish_register_edge_assert_for (e, bsi, asserts);
3567 }
3568 }
3569
3570 struct case_info
3571 {
3572 tree expr;
3573 basic_block bb;
3574 };
3575
3576 /* Compare two case labels sorting first by the destination bb index
3577 and then by the case value. */
3578
3579 static int
3580 compare_case_labels (const void *p1, const void *p2)
3581 {
3582 const struct case_info *ci1 = (const struct case_info *) p1;
3583 const struct case_info *ci2 = (const struct case_info *) p2;
3584 int idx1 = ci1->bb->index;
3585 int idx2 = ci2->bb->index;
3586
3587 if (idx1 < idx2)
3588 return -1;
3589 else if (idx1 == idx2)
3590 {
3591 /* Make sure the default label is first in a group. */
3592 if (!CASE_LOW (ci1->expr))
3593 return -1;
3594 else if (!CASE_LOW (ci2->expr))
3595 return 1;
3596 else
3597 return tree_int_cst_compare (CASE_LOW (ci1->expr),
3598 CASE_LOW (ci2->expr));
3599 }
3600 else
3601 return 1;
3602 }
3603
3604 /* Determine whether the outgoing edges of BB should receive an
3605 ASSERT_EXPR for each of the operands of BB's LAST statement.
3606 The last statement of BB must be a SWITCH_EXPR.
3607
3608 If any of the sub-graphs rooted at BB have an interesting use of
3609 the predicate operands, an assert location node is added to the
3610 list of assertions for the corresponding operands. */
3611
3612 static void
3613 find_switch_asserts (basic_block bb, gswitch *last)
3614 {
3615 gimple_stmt_iterator bsi;
3616 tree op;
3617 edge e;
3618 struct case_info *ci;
3619 size_t n = gimple_switch_num_labels (last);
3620 #if GCC_VERSION >= 4000
3621 unsigned int idx;
3622 #else
3623 /* Work around GCC 3.4 bug (PR 37086). */
3624 volatile unsigned int idx;
3625 #endif
3626
3627 bsi = gsi_for_stmt (last);
3628 op = gimple_switch_index (last);
3629 if (TREE_CODE (op) != SSA_NAME)
3630 return;
3631
3632 /* Build a vector of case labels sorted by destination label. */
3633 ci = XNEWVEC (struct case_info, n);
3634 for (idx = 0; idx < n; ++idx)
3635 {
3636 ci[idx].expr = gimple_switch_label (last, idx);
3637 ci[idx].bb = label_to_block (cfun, CASE_LABEL (ci[idx].expr));
3638 }
3639 edge default_edge = find_edge (bb, ci[0].bb);
3640 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
3641
3642 for (idx = 0; idx < n; ++idx)
3643 {
3644 tree min, max;
3645 tree cl = ci[idx].expr;
3646 basic_block cbb = ci[idx].bb;
3647
3648 min = CASE_LOW (cl);
3649 max = CASE_HIGH (cl);
3650
3651 /* If there are multiple case labels with the same destination
3652 we need to combine them to a single value range for the edge. */
3653 if (idx + 1 < n && cbb == ci[idx + 1].bb)
3654 {
3655 /* Skip labels until the last of the group. */
3656 do {
3657 ++idx;
3658 } while (idx < n && cbb == ci[idx].bb);
3659 --idx;
3660
3661 /* Pick up the maximum of the case label range. */
3662 if (CASE_HIGH (ci[idx].expr))
3663 max = CASE_HIGH (ci[idx].expr);
3664 else
3665 max = CASE_LOW (ci[idx].expr);
3666 }
3667
3668 /* Can't extract a useful assertion out of a range that includes the
3669 default label. */
3670 if (min == NULL_TREE)
3671 continue;
3672
3673 /* Find the edge to register the assert expr on. */
3674 e = find_edge (bb, cbb);
3675
3676 /* Register the necessary assertions for the operand in the
3677 SWITCH_EXPR. */
3678 auto_vec<assert_info, 8> asserts;
3679 register_edge_assert_for (op, e,
3680 max ? GE_EXPR : EQ_EXPR,
3681 op, fold_convert (TREE_TYPE (op), min),
3682 asserts);
3683 if (max)
3684 register_edge_assert_for (op, e, LE_EXPR, op,
3685 fold_convert (TREE_TYPE (op), max),
3686 asserts);
3687 finish_register_edge_assert_for (e, bsi, asserts);
3688 }
3689
3690 XDELETEVEC (ci);
3691
3692 if (!live_on_edge (default_edge, op))
3693 return;
3694
3695 /* Now register along the default label assertions that correspond to the
3696 anti-range of each label. */
3697 int insertion_limit = PARAM_VALUE (PARAM_MAX_VRP_SWITCH_ASSERTIONS);
3698 if (insertion_limit == 0)
3699 return;
3700
3701 /* We can't do this if the default case shares a label with another case. */
3702 tree default_cl = gimple_switch_default_label (last);
3703 for (idx = 1; idx < n; idx++)
3704 {
3705 tree min, max;
3706 tree cl = gimple_switch_label (last, idx);
3707 if (CASE_LABEL (cl) == CASE_LABEL (default_cl))
3708 continue;
3709
3710 min = CASE_LOW (cl);
3711 max = CASE_HIGH (cl);
3712
3713 /* Combine contiguous case ranges to reduce the number of assertions
3714 to insert. */
3715 for (idx = idx + 1; idx < n; idx++)
3716 {
3717 tree next_min, next_max;
3718 tree next_cl = gimple_switch_label (last, idx);
3719 if (CASE_LABEL (next_cl) == CASE_LABEL (default_cl))
3720 break;
3721
3722 next_min = CASE_LOW (next_cl);
3723 next_max = CASE_HIGH (next_cl);
3724
3725 wide_int difference = (wi::to_wide (next_min)
3726 - wi::to_wide (max ? max : min));
3727 if (wi::eq_p (difference, 1))
3728 max = next_max ? next_max : next_min;
3729 else
3730 break;
3731 }
3732 idx--;
3733
3734 if (max == NULL_TREE)
3735 {
3736 /* Register the assertion OP != MIN. */
3737 auto_vec<assert_info, 8> asserts;
3738 min = fold_convert (TREE_TYPE (op), min);
3739 register_edge_assert_for (op, default_edge, NE_EXPR, op, min,
3740 asserts);
3741 finish_register_edge_assert_for (default_edge, bsi, asserts);
3742 }
3743 else
3744 {
3745 /* Register the assertion (unsigned)OP - MIN > (MAX - MIN),
3746 which will give OP the anti-range ~[MIN,MAX]. */
3747 tree uop = fold_convert (unsigned_type_for (TREE_TYPE (op)), op);
3748 min = fold_convert (TREE_TYPE (uop), min);
3749 max = fold_convert (TREE_TYPE (uop), max);
3750
3751 tree lhs = fold_build2 (MINUS_EXPR, TREE_TYPE (uop), uop, min);
3752 tree rhs = int_const_binop (MINUS_EXPR, max, min);
3753 register_new_assert_for (op, lhs, GT_EXPR, rhs,
3754 NULL, default_edge, bsi);
3755 }
3756
3757 if (--insertion_limit == 0)
3758 break;
3759 }
3760 }
3761
3762
3763 /* Traverse all the statements in block BB looking for statements that
3764 may generate useful assertions for the SSA names in their operand.
3765 If a statement produces a useful assertion A for name N_i, then the
3766 list of assertions already generated for N_i is scanned to
3767 determine if A is actually needed.
3768
3769 If N_i already had the assertion A at a location dominating the
3770 current location, then nothing needs to be done. Otherwise, the
3771 new location for A is recorded instead.
3772
3773 1- For every statement S in BB, all the variables used by S are
3774 added to bitmap FOUND_IN_SUBGRAPH.
3775
3776 2- If statement S uses an operand N in a way that exposes a known
3777 value range for N, then if N was not already generated by an
3778 ASSERT_EXPR, create a new assert location for N. For instance,
3779 if N is a pointer and the statement dereferences it, we can
3780 assume that N is not NULL.
3781
3782 3- COND_EXPRs are a special case of #2. We can derive range
3783 information from the predicate but need to insert different
3784 ASSERT_EXPRs for each of the sub-graphs rooted at the
3785 conditional block. If the last statement of BB is a conditional
3786 expression of the form 'X op Y', then
3787
3788 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
3789
3790 b) If the conditional is the only entry point to the sub-graph
3791 corresponding to the THEN_CLAUSE, recurse into it. On
3792 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
3793 an ASSERT_EXPR is added for the corresponding variable.
3794
3795 c) Repeat step (b) on the ELSE_CLAUSE.
3796
3797 d) Mark X and Y in FOUND_IN_SUBGRAPH.
3798
3799 For instance,
3800
3801 if (a == 9)
3802 b = a;
3803 else
3804 b = c + 1;
3805
3806 In this case, an assertion on the THEN clause is useful to
3807 determine that 'a' is always 9 on that edge. However, an assertion
3808 on the ELSE clause would be unnecessary.
3809
3810 4- If BB does not end in a conditional expression, then we recurse
3811 into BB's dominator children.
3812
3813 At the end of the recursive traversal, every SSA name will have a
3814 list of locations where ASSERT_EXPRs should be added. When a new
3815 location for name N is found, it is registered by calling
3816 register_new_assert_for. That function keeps track of all the
3817 registered assertions to prevent adding unnecessary assertions.
3818 For instance, if a pointer P_4 is dereferenced more than once in a
3819 dominator tree, only the location dominating all the dereference of
3820 P_4 will receive an ASSERT_EXPR. */
3821
3822 static void
3823 find_assert_locations_1 (basic_block bb, sbitmap live)
3824 {
3825 gimple *last;
3826
3827 last = last_stmt (bb);
3828
3829 /* If BB's last statement is a conditional statement involving integer
3830 operands, determine if we need to add ASSERT_EXPRs. */
3831 if (last
3832 && gimple_code (last) == GIMPLE_COND
3833 && !fp_predicate (last)
3834 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3835 find_conditional_asserts (bb, as_a <gcond *> (last));
3836
3837 /* If BB's last statement is a switch statement involving integer
3838 operands, determine if we need to add ASSERT_EXPRs. */
3839 if (last
3840 && gimple_code (last) == GIMPLE_SWITCH
3841 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3842 find_switch_asserts (bb, as_a <gswitch *> (last));
3843
3844 /* Traverse all the statements in BB marking used names and looking
3845 for statements that may infer assertions for their used operands. */
3846 for (gimple_stmt_iterator si = gsi_last_bb (bb); !gsi_end_p (si);
3847 gsi_prev (&si))
3848 {
3849 gimple *stmt;
3850 tree op;
3851 ssa_op_iter i;
3852
3853 stmt = gsi_stmt (si);
3854
3855 if (is_gimple_debug (stmt))
3856 continue;
3857
3858 /* See if we can derive an assertion for any of STMT's operands. */
3859 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3860 {
3861 tree value;
3862 enum tree_code comp_code;
3863
3864 /* If op is not live beyond this stmt, do not bother to insert
3865 asserts for it. */
3866 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
3867 continue;
3868
3869 /* If OP is used in such a way that we can infer a value
3870 range for it, and we don't find a previous assertion for
3871 it, create a new assertion location node for OP. */
3872 if (infer_value_range (stmt, op, &comp_code, &value))
3873 {
3874 /* If we are able to infer a nonzero value range for OP,
3875 then walk backwards through the use-def chain to see if OP
3876 was set via a typecast.
3877
3878 If so, then we can also infer a nonzero value range
3879 for the operand of the NOP_EXPR. */
3880 if (comp_code == NE_EXPR && integer_zerop (value))
3881 {
3882 tree t = op;
3883 gimple *def_stmt = SSA_NAME_DEF_STMT (t);
3884
3885 while (is_gimple_assign (def_stmt)
3886 && CONVERT_EXPR_CODE_P
3887 (gimple_assign_rhs_code (def_stmt))
3888 && TREE_CODE
3889 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
3890 && POINTER_TYPE_P
3891 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
3892 {
3893 t = gimple_assign_rhs1 (def_stmt);
3894 def_stmt = SSA_NAME_DEF_STMT (t);
3895
3896 /* Note we want to register the assert for the
3897 operand of the NOP_EXPR after SI, not after the
3898 conversion. */
3899 if (bitmap_bit_p (live, SSA_NAME_VERSION (t)))
3900 register_new_assert_for (t, t, comp_code, value,
3901 bb, NULL, si);
3902 }
3903 }
3904
3905 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
3906 }
3907 }
3908
3909 /* Update live. */
3910 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3911 bitmap_set_bit (live, SSA_NAME_VERSION (op));
3912 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
3913 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
3914 }
3915
3916 /* Traverse all PHI nodes in BB, updating live. */
3917 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
3918 gsi_next (&si))
3919 {
3920 use_operand_p arg_p;
3921 ssa_op_iter i;
3922 gphi *phi = si.phi ();
3923 tree res = gimple_phi_result (phi);
3924
3925 if (virtual_operand_p (res))
3926 continue;
3927
3928 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
3929 {
3930 tree arg = USE_FROM_PTR (arg_p);
3931 if (TREE_CODE (arg) == SSA_NAME)
3932 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
3933 }
3934
3935 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
3936 }
3937 }
3938
3939 /* Do an RPO walk over the function computing SSA name liveness
3940 on-the-fly and deciding on assert expressions to insert. */
3941
3942 static void
3943 find_assert_locations (void)
3944 {
3945 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
3946 int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
3947 int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3948 int rpo_cnt, i;
3949
3950 live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun));
3951 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3952 for (i = 0; i < rpo_cnt; ++i)
3953 bb_rpo[rpo[i]] = i;
3954
3955 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
3956 the order we compute liveness and insert asserts we otherwise
3957 fail to insert asserts into the loop latch. */
3958 loop_p loop;
3959 FOR_EACH_LOOP (loop, 0)
3960 {
3961 i = loop->latch->index;
3962 unsigned int j = single_succ_edge (loop->latch)->dest_idx;
3963 for (gphi_iterator gsi = gsi_start_phis (loop->header);
3964 !gsi_end_p (gsi); gsi_next (&gsi))
3965 {
3966 gphi *phi = gsi.phi ();
3967 if (virtual_operand_p (gimple_phi_result (phi)))
3968 continue;
3969 tree arg = gimple_phi_arg_def (phi, j);
3970 if (TREE_CODE (arg) == SSA_NAME)
3971 {
3972 if (live[i] == NULL)
3973 {
3974 live[i] = sbitmap_alloc (num_ssa_names);
3975 bitmap_clear (live[i]);
3976 }
3977 bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
3978 }
3979 }
3980 }
3981
3982 for (i = rpo_cnt - 1; i >= 0; --i)
3983 {
3984 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3985 edge e;
3986 edge_iterator ei;
3987
3988 if (!live[rpo[i]])
3989 {
3990 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
3991 bitmap_clear (live[rpo[i]]);
3992 }
3993
3994 /* Process BB and update the live information with uses in
3995 this block. */
3996 find_assert_locations_1 (bb, live[rpo[i]]);
3997
3998 /* Merge liveness into the predecessor blocks and free it. */
3999 if (!bitmap_empty_p (live[rpo[i]]))
4000 {
4001 int pred_rpo = i;
4002 FOR_EACH_EDGE (e, ei, bb->preds)
4003 {
4004 int pred = e->src->index;
4005 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
4006 continue;
4007
4008 if (!live[pred])
4009 {
4010 live[pred] = sbitmap_alloc (num_ssa_names);
4011 bitmap_clear (live[pred]);
4012 }
4013 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
4014
4015 if (bb_rpo[pred] < pred_rpo)
4016 pred_rpo = bb_rpo[pred];
4017 }
4018
4019 /* Record the RPO number of the last visited block that needs
4020 live information from this block. */
4021 last_rpo[rpo[i]] = pred_rpo;
4022 }
4023 else
4024 {
4025 sbitmap_free (live[rpo[i]]);
4026 live[rpo[i]] = NULL;
4027 }
4028
4029 /* We can free all successors live bitmaps if all their
4030 predecessors have been visited already. */
4031 FOR_EACH_EDGE (e, ei, bb->succs)
4032 if (last_rpo[e->dest->index] == i
4033 && live[e->dest->index])
4034 {
4035 sbitmap_free (live[e->dest->index]);
4036 live[e->dest->index] = NULL;
4037 }
4038 }
4039
4040 XDELETEVEC (rpo);
4041 XDELETEVEC (bb_rpo);
4042 XDELETEVEC (last_rpo);
4043 for (i = 0; i < last_basic_block_for_fn (cfun); ++i)
4044 if (live[i])
4045 sbitmap_free (live[i]);
4046 XDELETEVEC (live);
4047 }
4048
4049 /* Create an ASSERT_EXPR for NAME and insert it in the location
4050 indicated by LOC. Return true if we made any edge insertions. */
4051
4052 static bool
4053 process_assert_insertions_for (tree name, assert_locus *loc)
4054 {
4055 /* Build the comparison expression NAME_i COMP_CODE VAL. */
4056 gimple *stmt;
4057 tree cond;
4058 gimple *assert_stmt;
4059 edge_iterator ei;
4060 edge e;
4061
4062 /* If we have X <=> X do not insert an assert expr for that. */
4063 if (loc->expr == loc->val)
4064 return false;
4065
4066 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
4067 assert_stmt = build_assert_expr_for (cond, name);
4068 if (loc->e)
4069 {
4070 /* We have been asked to insert the assertion on an edge. This
4071 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4072 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
4073 || (gimple_code (gsi_stmt (loc->si))
4074 == GIMPLE_SWITCH));
4075
4076 gsi_insert_on_edge (loc->e, assert_stmt);
4077 return true;
4078 }
4079
4080 /* If the stmt iterator points at the end then this is an insertion
4081 at the beginning of a block. */
4082 if (gsi_end_p (loc->si))
4083 {
4084 gimple_stmt_iterator si = gsi_after_labels (loc->bb);
4085 gsi_insert_before (&si, assert_stmt, GSI_SAME_STMT);
4086 return false;
4087
4088 }
4089 /* Otherwise, we can insert right after LOC->SI iff the
4090 statement must not be the last statement in the block. */
4091 stmt = gsi_stmt (loc->si);
4092 if (!stmt_ends_bb_p (stmt))
4093 {
4094 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
4095 return false;
4096 }
4097
4098 /* If STMT must be the last statement in BB, we can only insert new
4099 assertions on the non-abnormal edge out of BB. Note that since
4100 STMT is not control flow, there may only be one non-abnormal/eh edge
4101 out of BB. */
4102 FOR_EACH_EDGE (e, ei, loc->bb->succs)
4103 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
4104 {
4105 gsi_insert_on_edge (e, assert_stmt);
4106 return true;
4107 }
4108
4109 gcc_unreachable ();
4110 }
4111
4112 /* Qsort helper for sorting assert locations. If stable is true, don't
4113 use iterative_hash_expr because it can be unstable for -fcompare-debug,
4114 on the other side some pointers might be NULL. */
4115
4116 template <bool stable>
4117 static int
4118 compare_assert_loc (const void *pa, const void *pb)
4119 {
4120 assert_locus * const a = *(assert_locus * const *)pa;
4121 assert_locus * const b = *(assert_locus * const *)pb;
4122
4123 /* If stable, some asserts might be optimized away already, sort
4124 them last. */
4125 if (stable)
4126 {
4127 if (a == NULL)
4128 return b != NULL;
4129 else if (b == NULL)
4130 return -1;
4131 }
4132
4133 if (a->e == NULL && b->e != NULL)
4134 return 1;
4135 else if (a->e != NULL && b->e == NULL)
4136 return -1;
4137
4138 /* After the above checks, we know that (a->e == NULL) == (b->e == NULL),
4139 no need to test both a->e and b->e. */
4140
4141 /* Sort after destination index. */
4142 if (a->e == NULL)
4143 ;
4144 else if (a->e->dest->index > b->e->dest->index)
4145 return 1;
4146 else if (a->e->dest->index < b->e->dest->index)
4147 return -1;
4148
4149 /* Sort after comp_code. */
4150 if (a->comp_code > b->comp_code)
4151 return 1;
4152 else if (a->comp_code < b->comp_code)
4153 return -1;
4154
4155 hashval_t ha, hb;
4156
4157 /* E.g. if a->val is ADDR_EXPR of a VAR_DECL, iterative_hash_expr
4158 uses DECL_UID of the VAR_DECL, so sorting might differ between
4159 -g and -g0. When doing the removal of redundant assert exprs
4160 and commonization to successors, this does not matter, but for
4161 the final sort needs to be stable. */
4162 if (stable)
4163 {
4164 ha = 0;
4165 hb = 0;
4166 }
4167 else
4168 {
4169 ha = iterative_hash_expr (a->expr, iterative_hash_expr (a->val, 0));
4170 hb = iterative_hash_expr (b->expr, iterative_hash_expr (b->val, 0));
4171 }
4172
4173 /* Break the tie using hashing and source/bb index. */
4174 if (ha == hb)
4175 return (a->e != NULL
4176 ? a->e->src->index - b->e->src->index
4177 : a->bb->index - b->bb->index);
4178 return ha > hb ? 1 : -1;
4179 }
4180
4181 /* Process all the insertions registered for every name N_i registered
4182 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4183 found in ASSERTS_FOR[i]. */
4184
4185 static void
4186 process_assert_insertions (void)
4187 {
4188 unsigned i;
4189 bitmap_iterator bi;
4190 bool update_edges_p = false;
4191 int num_asserts = 0;
4192
4193 if (dump_file && (dump_flags & TDF_DETAILS))
4194 dump_all_asserts (dump_file);
4195
4196 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4197 {
4198 assert_locus *loc = asserts_for[i];
4199 gcc_assert (loc);
4200
4201 auto_vec<assert_locus *, 16> asserts;
4202 for (; loc; loc = loc->next)
4203 asserts.safe_push (loc);
4204 asserts.qsort (compare_assert_loc<false>);
4205
4206 /* Push down common asserts to successors and remove redundant ones. */
4207 unsigned ecnt = 0;
4208 assert_locus *common = NULL;
4209 unsigned commonj = 0;
4210 for (unsigned j = 0; j < asserts.length (); ++j)
4211 {
4212 loc = asserts[j];
4213 if (! loc->e)
4214 common = NULL;
4215 else if (! common
4216 || loc->e->dest != common->e->dest
4217 || loc->comp_code != common->comp_code
4218 || ! operand_equal_p (loc->val, common->val, 0)
4219 || ! operand_equal_p (loc->expr, common->expr, 0))
4220 {
4221 commonj = j;
4222 common = loc;
4223 ecnt = 1;
4224 }
4225 else if (loc->e == asserts[j-1]->e)
4226 {
4227 /* Remove duplicate asserts. */
4228 if (commonj == j - 1)
4229 {
4230 commonj = j;
4231 common = loc;
4232 }
4233 free (asserts[j-1]);
4234 asserts[j-1] = NULL;
4235 }
4236 else
4237 {
4238 ecnt++;
4239 if (EDGE_COUNT (common->e->dest->preds) == ecnt)
4240 {
4241 /* We have the same assertion on all incoming edges of a BB.
4242 Insert it at the beginning of that block. */
4243 loc->bb = loc->e->dest;
4244 loc->e = NULL;
4245 loc->si = gsi_none ();
4246 common = NULL;
4247 /* Clear asserts commoned. */
4248 for (; commonj != j; ++commonj)
4249 if (asserts[commonj])
4250 {
4251 free (asserts[commonj]);
4252 asserts[commonj] = NULL;
4253 }
4254 }
4255 }
4256 }
4257
4258 /* The asserts vector sorting above might be unstable for
4259 -fcompare-debug, sort again to ensure a stable sort. */
4260 asserts.qsort (compare_assert_loc<true>);
4261 for (unsigned j = 0; j < asserts.length (); ++j)
4262 {
4263 loc = asserts[j];
4264 if (! loc)
4265 break;
4266 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
4267 num_asserts++;
4268 free (loc);
4269 }
4270 }
4271
4272 if (update_edges_p)
4273 gsi_commit_edge_inserts ();
4274
4275 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
4276 num_asserts);
4277 }
4278
4279
4280 /* Traverse the flowgraph looking for conditional jumps to insert range
4281 expressions. These range expressions are meant to provide information
4282 to optimizations that need to reason in terms of value ranges. They
4283 will not be expanded into RTL. For instance, given:
4284
4285 x = ...
4286 y = ...
4287 if (x < y)
4288 y = x - 2;
4289 else
4290 x = y + 3;
4291
4292 this pass will transform the code into:
4293
4294 x = ...
4295 y = ...
4296 if (x < y)
4297 {
4298 x = ASSERT_EXPR <x, x < y>
4299 y = x - 2
4300 }
4301 else
4302 {
4303 y = ASSERT_EXPR <y, x >= y>
4304 x = y + 3
4305 }
4306
4307 The idea is that once copy and constant propagation have run, other
4308 optimizations will be able to determine what ranges of values can 'x'
4309 take in different paths of the code, simply by checking the reaching
4310 definition of 'x'. */
4311
4312 static void
4313 insert_range_assertions (void)
4314 {
4315 need_assert_for = BITMAP_ALLOC (NULL);
4316 asserts_for = XCNEWVEC (assert_locus *, num_ssa_names);
4317
4318 calculate_dominance_info (CDI_DOMINATORS);
4319
4320 find_assert_locations ();
4321 if (!bitmap_empty_p (need_assert_for))
4322 {
4323 process_assert_insertions ();
4324 update_ssa (TODO_update_ssa_no_phi);
4325 }
4326
4327 if (dump_file && (dump_flags & TDF_DETAILS))
4328 {
4329 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
4330 dump_function_to_file (current_function_decl, dump_file, dump_flags);
4331 }
4332
4333 free (asserts_for);
4334 BITMAP_FREE (need_assert_for);
4335 }
4336
4337 class vrp_prop : public ssa_propagation_engine
4338 {
4339 public:
4340 enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
4341 enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
4342
4343 void vrp_initialize (void);
4344 void vrp_finalize (bool);
4345 void check_all_array_refs (void);
4346 void check_array_ref (location_t, tree, bool);
4347 void check_mem_ref (location_t, tree, bool);
4348 void search_for_addr_array (tree, location_t);
4349
4350 class vr_values vr_values;
4351 /* Temporary delegator to minimize code churn. */
4352 value_range *get_value_range (const_tree op)
4353 { return vr_values.get_value_range (op); }
4354 void set_defs_to_varying (gimple *stmt)
4355 { return vr_values.set_defs_to_varying (stmt); }
4356 void extract_range_from_stmt (gimple *stmt, edge *taken_edge_p,
4357 tree *output_p, value_range *vr)
4358 { vr_values.extract_range_from_stmt (stmt, taken_edge_p, output_p, vr); }
4359 bool update_value_range (const_tree op, value_range *vr)
4360 { return vr_values.update_value_range (op, vr); }
4361 void extract_range_basic (value_range *vr, gimple *stmt)
4362 { vr_values.extract_range_basic (vr, stmt); }
4363 void extract_range_from_phi_node (gphi *phi, value_range *vr)
4364 { vr_values.extract_range_from_phi_node (phi, vr); }
4365 };
4366 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4367 and "struct" hacks. If VRP can determine that the
4368 array subscript is a constant, check if it is outside valid
4369 range. If the array subscript is a RANGE, warn if it is
4370 non-overlapping with valid range.
4371 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4372
4373 void
4374 vrp_prop::check_array_ref (location_t location, tree ref,
4375 bool ignore_off_by_one)
4376 {
4377 const value_range *vr = NULL;
4378 tree low_sub, up_sub;
4379 tree low_bound, up_bound, up_bound_p1;
4380
4381 if (TREE_NO_WARNING (ref))
4382 return;
4383
4384 low_sub = up_sub = TREE_OPERAND (ref, 1);
4385 up_bound = array_ref_up_bound (ref);
4386
4387 if (!up_bound
4388 || TREE_CODE (up_bound) != INTEGER_CST
4389 || (warn_array_bounds < 2
4390 && array_at_struct_end_p (ref)))
4391 {
4392 /* Accesses to trailing arrays via pointers may access storage
4393 beyond the types array bounds. For such arrays, or for flexible
4394 array members, as well as for other arrays of an unknown size,
4395 replace the upper bound with a more permissive one that assumes
4396 the size of the largest object is PTRDIFF_MAX. */
4397 tree eltsize = array_ref_element_size (ref);
4398
4399 if (TREE_CODE (eltsize) != INTEGER_CST
4400 || integer_zerop (eltsize))
4401 {
4402 up_bound = NULL_TREE;
4403 up_bound_p1 = NULL_TREE;
4404 }
4405 else
4406 {
4407 tree maxbound = TYPE_MAX_VALUE (ptrdiff_type_node);
4408 tree arg = TREE_OPERAND (ref, 0);
4409 poly_int64 off;
4410
4411 if (get_addr_base_and_unit_offset (arg, &off) && known_gt (off, 0))
4412 maxbound = wide_int_to_tree (sizetype,
4413 wi::sub (wi::to_wide (maxbound),
4414 off));
4415 else
4416 maxbound = fold_convert (sizetype, maxbound);
4417
4418 up_bound_p1 = int_const_binop (TRUNC_DIV_EXPR, maxbound, eltsize);
4419
4420 up_bound = int_const_binop (MINUS_EXPR, up_bound_p1,
4421 build_int_cst (ptrdiff_type_node, 1));
4422 }
4423 }
4424 else
4425 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound,
4426 build_int_cst (TREE_TYPE (up_bound), 1));
4427
4428 low_bound = array_ref_low_bound (ref);
4429
4430 tree artype = TREE_TYPE (TREE_OPERAND (ref, 0));
4431
4432 bool warned = false;
4433
4434 /* Empty array. */
4435 if (up_bound && tree_int_cst_equal (low_bound, up_bound_p1))
4436 warned = warning_at (location, OPT_Warray_bounds,
4437 "array subscript %E is above array bounds of %qT",
4438 low_bound, artype);
4439
4440 if (TREE_CODE (low_sub) == SSA_NAME)
4441 {
4442 vr = get_value_range (low_sub);
4443 if (!vr->undefined_p () && !vr->varying_p ())
4444 {
4445 low_sub = vr->kind () == VR_RANGE ? vr->max () : vr->min ();
4446 up_sub = vr->kind () == VR_RANGE ? vr->min () : vr->max ();
4447 }
4448 }
4449
4450 if (vr && vr->kind () == VR_ANTI_RANGE)
4451 {
4452 if (up_bound
4453 && TREE_CODE (up_sub) == INTEGER_CST
4454 && (ignore_off_by_one
4455 ? tree_int_cst_lt (up_bound, up_sub)
4456 : tree_int_cst_le (up_bound, up_sub))
4457 && TREE_CODE (low_sub) == INTEGER_CST
4458 && tree_int_cst_le (low_sub, low_bound))
4459 warned = warning_at (location, OPT_Warray_bounds,
4460 "array subscript [%E, %E] is outside "
4461 "array bounds of %qT",
4462 low_sub, up_sub, artype);
4463 }
4464 else if (up_bound
4465 && TREE_CODE (up_sub) == INTEGER_CST
4466 && (ignore_off_by_one
4467 ? !tree_int_cst_le (up_sub, up_bound_p1)
4468 : !tree_int_cst_le (up_sub, up_bound)))
4469 {
4470 if (dump_file && (dump_flags & TDF_DETAILS))
4471 {
4472 fprintf (dump_file, "Array bound warning for ");
4473 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
4474 fprintf (dump_file, "\n");
4475 }
4476 warned = warning_at (location, OPT_Warray_bounds,
4477 "array subscript %E is above array bounds of %qT",
4478 up_sub, artype);
4479 }
4480 else if (TREE_CODE (low_sub) == INTEGER_CST
4481 && tree_int_cst_lt (low_sub, low_bound))
4482 {
4483 if (dump_file && (dump_flags & TDF_DETAILS))
4484 {
4485 fprintf (dump_file, "Array bound warning for ");
4486 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
4487 fprintf (dump_file, "\n");
4488 }
4489 warned = warning_at (location, OPT_Warray_bounds,
4490 "array subscript %E is below array bounds of %qT",
4491 low_sub, artype);
4492 }
4493
4494 if (warned)
4495 {
4496 ref = TREE_OPERAND (ref, 0);
4497
4498 if (DECL_P (ref))
4499 inform (DECL_SOURCE_LOCATION (ref), "while referencing %qD", ref);
4500
4501 TREE_NO_WARNING (ref) = 1;
4502 }
4503 }
4504
4505 /* Checks one MEM_REF in REF, located at LOCATION, for out-of-bounds
4506 references to string constants. If VRP can determine that the array
4507 subscript is a constant, check if it is outside valid range.
4508 If the array subscript is a RANGE, warn if it is non-overlapping
4509 with valid range.
4510 IGNORE_OFF_BY_ONE is true if the MEM_REF is inside an ADDR_EXPR
4511 (used to allow one-past-the-end indices for code that takes
4512 the address of the just-past-the-end element of an array). */
4513
4514 void
4515 vrp_prop::check_mem_ref (location_t location, tree ref,
4516 bool ignore_off_by_one)
4517 {
4518 if (TREE_NO_WARNING (ref))
4519 return;
4520
4521 tree arg = TREE_OPERAND (ref, 0);
4522 /* The constant and variable offset of the reference. */
4523 tree cstoff = TREE_OPERAND (ref, 1);
4524 tree varoff = NULL_TREE;
4525
4526 const offset_int maxobjsize = tree_to_shwi (max_object_size ());
4527
4528 /* The array or string constant bounds in bytes. Initially set
4529 to [-MAXOBJSIZE - 1, MAXOBJSIZE] until a tighter bound is
4530 determined. */
4531 offset_int arrbounds[2] = { -maxobjsize - 1, maxobjsize };
4532
4533 /* The minimum and maximum intermediate offset. For a reference
4534 to be valid, not only does the final offset/subscript must be
4535 in bounds but all intermediate offsets should be as well.
4536 GCC may be able to deal gracefully with such out-of-bounds
4537 offsets so the checking is only enbaled at -Warray-bounds=2
4538 where it may help detect bugs in uses of the intermediate
4539 offsets that could otherwise not be detectable. */
4540 offset_int ioff = wi::to_offset (fold_convert (ptrdiff_type_node, cstoff));
4541 offset_int extrema[2] = { 0, wi::abs (ioff) };
4542
4543 /* The range of the byte offset into the reference. */
4544 offset_int offrange[2] = { 0, 0 };
4545
4546 const value_range *vr = NULL;
4547
4548 /* Determine the offsets and increment OFFRANGE for the bounds of each.
4549 The loop computes the range of the final offset for expressions such
4550 as (A + i0 + ... + iN)[CSTOFF] where i0 through iN are SSA_NAMEs in
4551 some range. */
4552 while (TREE_CODE (arg) == SSA_NAME)
4553 {
4554 gimple *def = SSA_NAME_DEF_STMT (arg);
4555 if (!is_gimple_assign (def))
4556 break;
4557
4558 tree_code code = gimple_assign_rhs_code (def);
4559 if (code == POINTER_PLUS_EXPR)
4560 {
4561 arg = gimple_assign_rhs1 (def);
4562 varoff = gimple_assign_rhs2 (def);
4563 }
4564 else if (code == ASSERT_EXPR)
4565 {
4566 arg = TREE_OPERAND (gimple_assign_rhs1 (def), 0);
4567 continue;
4568 }
4569 else
4570 return;
4571
4572 /* VAROFF should always be a SSA_NAME here (and not even
4573 INTEGER_CST) but there's no point in taking chances. */
4574 if (TREE_CODE (varoff) != SSA_NAME)
4575 break;
4576
4577 vr = get_value_range (varoff);
4578 if (!vr || vr->undefined_p () || vr->varying_p ())
4579 break;
4580
4581 if (!vr->constant_p ())
4582 break;
4583
4584 if (vr->kind () == VR_RANGE)
4585 {
4586 offset_int min
4587 = wi::to_offset (fold_convert (ptrdiff_type_node, vr->min ()));
4588 offset_int max
4589 = wi::to_offset (fold_convert (ptrdiff_type_node, vr->max ()));
4590 if (min < max)
4591 {
4592 offrange[0] += min;
4593 offrange[1] += max;
4594 }
4595 else
4596 {
4597 /* When MIN >= MAX, the offset is effectively in a union
4598 of two ranges: [-MAXOBJSIZE -1, MAX] and [MIN, MAXOBJSIZE].
4599 Since there is no way to represent such a range across
4600 additions, conservatively add [-MAXOBJSIZE -1, MAXOBJSIZE]
4601 to OFFRANGE. */
4602 offrange[0] += arrbounds[0];
4603 offrange[1] += arrbounds[1];
4604 }
4605 }
4606 else
4607 {
4608 /* For an anti-range, analogously to the above, conservatively
4609 add [-MAXOBJSIZE -1, MAXOBJSIZE] to OFFRANGE. */
4610 offrange[0] += arrbounds[0];
4611 offrange[1] += arrbounds[1];
4612 }
4613
4614 /* Keep track of the minimum and maximum offset. */
4615 if (offrange[1] < 0 && offrange[1] < extrema[0])
4616 extrema[0] = offrange[1];
4617 if (offrange[0] > 0 && offrange[0] > extrema[1])
4618 extrema[1] = offrange[0];
4619
4620 if (offrange[0] < arrbounds[0])
4621 offrange[0] = arrbounds[0];
4622
4623 if (offrange[1] > arrbounds[1])
4624 offrange[1] = arrbounds[1];
4625 }
4626
4627 if (TREE_CODE (arg) == ADDR_EXPR)
4628 {
4629 arg = TREE_OPERAND (arg, 0);
4630 if (TREE_CODE (arg) != STRING_CST
4631 && TREE_CODE (arg) != VAR_DECL)
4632 return;
4633 }
4634 else
4635 return;
4636
4637 /* The type of the object being referred to. It can be an array,
4638 string literal, or a non-array type when the MEM_REF represents
4639 a reference/subscript via a pointer to an object that is not
4640 an element of an array. References to members of structs and
4641 unions are excluded because MEM_REF doesn't make it possible
4642 to identify the member where the reference originated.
4643 Incomplete types are excluded as well because their size is
4644 not known. */
4645 tree reftype = TREE_TYPE (arg);
4646 if (POINTER_TYPE_P (reftype)
4647 || !COMPLETE_TYPE_P (reftype)
4648 || TREE_CODE (TYPE_SIZE_UNIT (reftype)) != INTEGER_CST
4649 || RECORD_OR_UNION_TYPE_P (reftype))
4650 return;
4651
4652 offset_int eltsize;
4653 if (TREE_CODE (reftype) == ARRAY_TYPE)
4654 {
4655 eltsize = wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (reftype)));
4656
4657 if (tree dom = TYPE_DOMAIN (reftype))
4658 {
4659 tree bnds[] = { TYPE_MIN_VALUE (dom), TYPE_MAX_VALUE (dom) };
4660 if (array_at_struct_end_p (arg)
4661 || !bnds[0] || !bnds[1])
4662 {
4663 arrbounds[0] = 0;
4664 arrbounds[1] = wi::lrshift (maxobjsize, wi::floor_log2 (eltsize));
4665 }
4666 else
4667 {
4668 arrbounds[0] = wi::to_offset (bnds[0]) * eltsize;
4669 arrbounds[1] = (wi::to_offset (bnds[1]) + 1) * eltsize;
4670 }
4671 }
4672 else
4673 {
4674 arrbounds[0] = 0;
4675 arrbounds[1] = wi::lrshift (maxobjsize, wi::floor_log2 (eltsize));
4676 }
4677
4678 if (TREE_CODE (ref) == MEM_REF)
4679 {
4680 /* For MEM_REF determine a tighter bound of the non-array
4681 element type. */
4682 tree eltype = TREE_TYPE (reftype);
4683 while (TREE_CODE (eltype) == ARRAY_TYPE)
4684 eltype = TREE_TYPE (eltype);
4685 eltsize = wi::to_offset (TYPE_SIZE_UNIT (eltype));
4686 }
4687 }
4688 else
4689 {
4690 eltsize = 1;
4691 arrbounds[0] = 0;
4692 arrbounds[1] = wi::to_offset (TYPE_SIZE_UNIT (reftype));
4693 }
4694
4695 offrange[0] += ioff;
4696 offrange[1] += ioff;
4697
4698 /* Compute the more permissive upper bound when IGNORE_OFF_BY_ONE
4699 is set (when taking the address of the one-past-last element
4700 of an array) but always use the stricter bound in diagnostics. */
4701 offset_int ubound = arrbounds[1];
4702 if (ignore_off_by_one)
4703 ubound += 1;
4704
4705 if (offrange[0] >= ubound || offrange[1] < arrbounds[0])
4706 {
4707 /* Treat a reference to a non-array object as one to an array
4708 of a single element. */
4709 if (TREE_CODE (reftype) != ARRAY_TYPE)
4710 reftype = build_array_type_nelts (reftype, 1);
4711
4712 if (TREE_CODE (ref) == MEM_REF)
4713 {
4714 /* Extract the element type out of MEM_REF and use its size
4715 to compute the index to print in the diagnostic; arrays
4716 in MEM_REF don't mean anything. A type with no size like
4717 void is as good as having a size of 1. */
4718 tree type = TREE_TYPE (ref);
4719 while (TREE_CODE (type) == ARRAY_TYPE)
4720 type = TREE_TYPE (type);
4721 if (tree size = TYPE_SIZE_UNIT (type))
4722 {
4723 offrange[0] = offrange[0] / wi::to_offset (size);
4724 offrange[1] = offrange[1] / wi::to_offset (size);
4725 }
4726 }
4727 else
4728 {
4729 /* For anything other than MEM_REF, compute the index to
4730 print in the diagnostic as the offset over element size. */
4731 offrange[0] = offrange[0] / eltsize;
4732 offrange[1] = offrange[1] / eltsize;
4733 }
4734
4735 bool warned;
4736 if (offrange[0] == offrange[1])
4737 warned = warning_at (location, OPT_Warray_bounds,
4738 "array subscript %wi is outside array bounds "
4739 "of %qT",
4740 offrange[0].to_shwi (), reftype);
4741 else
4742 warned = warning_at (location, OPT_Warray_bounds,
4743 "array subscript [%wi, %wi] is outside "
4744 "array bounds of %qT",
4745 offrange[0].to_shwi (),
4746 offrange[1].to_shwi (), reftype);
4747 if (warned && DECL_P (arg))
4748 inform (DECL_SOURCE_LOCATION (arg), "while referencing %qD", arg);
4749
4750 if (warned)
4751 TREE_NO_WARNING (ref) = 1;
4752 return;
4753 }
4754
4755 if (warn_array_bounds < 2)
4756 return;
4757
4758 /* At level 2 check also intermediate offsets. */
4759 int i = 0;
4760 if (extrema[i] < -arrbounds[1] || extrema[i = 1] > ubound)
4761 {
4762 HOST_WIDE_INT tmpidx = extrema[i].to_shwi () / eltsize.to_shwi ();
4763
4764 if (warning_at (location, OPT_Warray_bounds,
4765 "intermediate array offset %wi is outside array bounds "
4766 "of %qT", tmpidx, reftype))
4767 TREE_NO_WARNING (ref) = 1;
4768 }
4769 }
4770
4771 /* Searches if the expr T, located at LOCATION computes
4772 address of an ARRAY_REF, and call check_array_ref on it. */
4773
4774 void
4775 vrp_prop::search_for_addr_array (tree t, location_t location)
4776 {
4777 /* Check each ARRAY_REF and MEM_REF in the reference chain. */
4778 do
4779 {
4780 if (TREE_CODE (t) == ARRAY_REF)
4781 check_array_ref (location, t, true /*ignore_off_by_one*/);
4782 else if (TREE_CODE (t) == MEM_REF)
4783 check_mem_ref (location, t, true /*ignore_off_by_one*/);
4784
4785 t = TREE_OPERAND (t, 0);
4786 }
4787 while (handled_component_p (t) || TREE_CODE (t) == MEM_REF);
4788
4789 if (TREE_CODE (t) != MEM_REF
4790 || TREE_CODE (TREE_OPERAND (t, 0)) != ADDR_EXPR
4791 || TREE_NO_WARNING (t))
4792 return;
4793
4794 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
4795 tree low_bound, up_bound, el_sz;
4796 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
4797 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
4798 || !TYPE_DOMAIN (TREE_TYPE (tem)))
4799 return;
4800
4801 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
4802 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
4803 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
4804 if (!low_bound
4805 || TREE_CODE (low_bound) != INTEGER_CST
4806 || !up_bound
4807 || TREE_CODE (up_bound) != INTEGER_CST
4808 || !el_sz
4809 || TREE_CODE (el_sz) != INTEGER_CST)
4810 return;
4811
4812 offset_int idx;
4813 if (!mem_ref_offset (t).is_constant (&idx))
4814 return;
4815
4816 bool warned = false;
4817 idx = wi::sdiv_trunc (idx, wi::to_offset (el_sz));
4818 if (idx < 0)
4819 {
4820 if (dump_file && (dump_flags & TDF_DETAILS))
4821 {
4822 fprintf (dump_file, "Array bound warning for ");
4823 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
4824 fprintf (dump_file, "\n");
4825 }
4826 warned = warning_at (location, OPT_Warray_bounds,
4827 "array subscript %wi is below "
4828 "array bounds of %qT",
4829 idx.to_shwi (), TREE_TYPE (tem));
4830 }
4831 else if (idx > (wi::to_offset (up_bound)
4832 - wi::to_offset (low_bound) + 1))
4833 {
4834 if (dump_file && (dump_flags & TDF_DETAILS))
4835 {
4836 fprintf (dump_file, "Array bound warning for ");
4837 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
4838 fprintf (dump_file, "\n");
4839 }
4840 warned = warning_at (location, OPT_Warray_bounds,
4841 "array subscript %wu is above "
4842 "array bounds of %qT",
4843 idx.to_uhwi (), TREE_TYPE (tem));
4844 }
4845
4846 if (warned)
4847 {
4848 if (DECL_P (t))
4849 inform (DECL_SOURCE_LOCATION (t), "while referencing %qD", t);
4850
4851 TREE_NO_WARNING (t) = 1;
4852 }
4853 }
4854
4855 /* walk_tree() callback that checks if *TP is
4856 an ARRAY_REF inside an ADDR_EXPR (in which an array
4857 subscript one outside the valid range is allowed). Call
4858 check_array_ref for each ARRAY_REF found. The location is
4859 passed in DATA. */
4860
4861 static tree
4862 check_array_bounds (tree *tp, int *walk_subtree, void *data)
4863 {
4864 tree t = *tp;
4865 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4866 location_t location;
4867
4868 if (EXPR_HAS_LOCATION (t))
4869 location = EXPR_LOCATION (t);
4870 else
4871 location = gimple_location (wi->stmt);
4872
4873 *walk_subtree = TRUE;
4874
4875 vrp_prop *vrp_prop = (class vrp_prop *)wi->info;
4876 if (TREE_CODE (t) == ARRAY_REF)
4877 vrp_prop->check_array_ref (location, t, false /*ignore_off_by_one*/);
4878 else if (TREE_CODE (t) == MEM_REF)
4879 vrp_prop->check_mem_ref (location, t, false /*ignore_off_by_one*/);
4880 else if (TREE_CODE (t) == ADDR_EXPR)
4881 {
4882 vrp_prop->search_for_addr_array (t, location);
4883 *walk_subtree = FALSE;
4884 }
4885
4886 return NULL_TREE;
4887 }
4888
4889 /* A dom_walker subclass for use by vrp_prop::check_all_array_refs,
4890 to walk over all statements of all reachable BBs and call
4891 check_array_bounds on them. */
4892
4893 class check_array_bounds_dom_walker : public dom_walker
4894 {
4895 public:
4896 check_array_bounds_dom_walker (vrp_prop *prop)
4897 : dom_walker (CDI_DOMINATORS,
4898 /* Discover non-executable edges, preserving EDGE_EXECUTABLE
4899 flags, so that we can merge in information on
4900 non-executable edges from vrp_folder . */
4901 REACHABLE_BLOCKS_PRESERVING_FLAGS),
4902 m_prop (prop) {}
4903 ~check_array_bounds_dom_walker () {}
4904
4905 edge before_dom_children (basic_block) FINAL OVERRIDE;
4906
4907 private:
4908 vrp_prop *m_prop;
4909 };
4910
4911 /* Implementation of dom_walker::before_dom_children.
4912
4913 Walk over all statements of BB and call check_array_bounds on them,
4914 and determine if there's a unique successor edge. */
4915
4916 edge
4917 check_array_bounds_dom_walker::before_dom_children (basic_block bb)
4918 {
4919 gimple_stmt_iterator si;
4920 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4921 {
4922 gimple *stmt = gsi_stmt (si);
4923 struct walk_stmt_info wi;
4924 if (!gimple_has_location (stmt)
4925 || is_gimple_debug (stmt))
4926 continue;
4927
4928 memset (&wi, 0, sizeof (wi));
4929
4930 wi.info = m_prop;
4931
4932 walk_gimple_op (stmt, check_array_bounds, &wi);
4933 }
4934
4935 /* Determine if there's a unique successor edge, and if so, return
4936 that back to dom_walker, ensuring that we don't visit blocks that
4937 became unreachable during the VRP propagation
4938 (PR tree-optimization/83312). */
4939 return find_taken_edge (bb, NULL_TREE);
4940 }
4941
4942 /* Walk over all statements of all reachable BBs and call check_array_bounds
4943 on them. */
4944
4945 void
4946 vrp_prop::check_all_array_refs ()
4947 {
4948 check_array_bounds_dom_walker w (this);
4949 w.walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4950 }
4951
4952 /* Return true if all imm uses of VAR are either in STMT, or
4953 feed (optionally through a chain of single imm uses) GIMPLE_COND
4954 in basic block COND_BB. */
4955
4956 static bool
4957 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple *stmt, basic_block cond_bb)
4958 {
4959 use_operand_p use_p, use2_p;
4960 imm_use_iterator iter;
4961
4962 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
4963 if (USE_STMT (use_p) != stmt)
4964 {
4965 gimple *use_stmt = USE_STMT (use_p), *use_stmt2;
4966 if (is_gimple_debug (use_stmt))
4967 continue;
4968 while (is_gimple_assign (use_stmt)
4969 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
4970 && single_imm_use (gimple_assign_lhs (use_stmt),
4971 &use2_p, &use_stmt2))
4972 use_stmt = use_stmt2;
4973 if (gimple_code (use_stmt) != GIMPLE_COND
4974 || gimple_bb (use_stmt) != cond_bb)
4975 return false;
4976 }
4977 return true;
4978 }
4979
4980 /* Handle
4981 _4 = x_3 & 31;
4982 if (_4 != 0)
4983 goto <bb 6>;
4984 else
4985 goto <bb 7>;
4986 <bb 6>:
4987 __builtin_unreachable ();
4988 <bb 7>:
4989 x_5 = ASSERT_EXPR <x_3, ...>;
4990 If x_3 has no other immediate uses (checked by caller),
4991 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
4992 from the non-zero bitmask. */
4993
4994 void
4995 maybe_set_nonzero_bits (edge e, tree var)
4996 {
4997 basic_block cond_bb = e->src;
4998 gimple *stmt = last_stmt (cond_bb);
4999 tree cst;
5000
5001 if (stmt == NULL
5002 || gimple_code (stmt) != GIMPLE_COND
5003 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
5004 ? EQ_EXPR : NE_EXPR)
5005 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
5006 || !integer_zerop (gimple_cond_rhs (stmt)))
5007 return;
5008
5009 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
5010 if (!is_gimple_assign (stmt)
5011 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
5012 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
5013 return;
5014 if (gimple_assign_rhs1 (stmt) != var)
5015 {
5016 gimple *stmt2;
5017
5018 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
5019 return;
5020 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
5021 if (!gimple_assign_cast_p (stmt2)
5022 || gimple_assign_rhs1 (stmt2) != var
5023 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
5024 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
5025 != TYPE_PRECISION (TREE_TYPE (var))))
5026 return;
5027 }
5028 cst = gimple_assign_rhs2 (stmt);
5029 set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var),
5030 wi::to_wide (cst)));
5031 }
5032
5033 /* Convert range assertion expressions into the implied copies and
5034 copy propagate away the copies. Doing the trivial copy propagation
5035 here avoids the need to run the full copy propagation pass after
5036 VRP.
5037
5038 FIXME, this will eventually lead to copy propagation removing the
5039 names that had useful range information attached to them. For
5040 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5041 then N_i will have the range [3, +INF].
5042
5043 However, by converting the assertion into the implied copy
5044 operation N_i = N_j, we will then copy-propagate N_j into the uses
5045 of N_i and lose the range information. We may want to hold on to
5046 ASSERT_EXPRs a little while longer as the ranges could be used in
5047 things like jump threading.
5048
5049 The problem with keeping ASSERT_EXPRs around is that passes after
5050 VRP need to handle them appropriately.
5051
5052 Another approach would be to make the range information a first
5053 class property of the SSA_NAME so that it can be queried from
5054 any pass. This is made somewhat more complex by the need for
5055 multiple ranges to be associated with one SSA_NAME. */
5056
5057 static void
5058 remove_range_assertions (void)
5059 {
5060 basic_block bb;
5061 gimple_stmt_iterator si;
5062 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
5063 a basic block preceeded by GIMPLE_COND branching to it and
5064 __builtin_trap, -1 if not yet checked, 0 otherwise. */
5065 int is_unreachable;
5066
5067 /* Note that the BSI iterator bump happens at the bottom of the
5068 loop and no bump is necessary if we're removing the statement
5069 referenced by the current BSI. */
5070 FOR_EACH_BB_FN (bb, cfun)
5071 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
5072 {
5073 gimple *stmt = gsi_stmt (si);
5074
5075 if (is_gimple_assign (stmt)
5076 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
5077 {
5078 tree lhs = gimple_assign_lhs (stmt);
5079 tree rhs = gimple_assign_rhs1 (stmt);
5080 tree var;
5081
5082 var = ASSERT_EXPR_VAR (rhs);
5083
5084 if (TREE_CODE (var) == SSA_NAME
5085 && !POINTER_TYPE_P (TREE_TYPE (lhs))
5086 && SSA_NAME_RANGE_INFO (lhs))
5087 {
5088 if (is_unreachable == -1)
5089 {
5090 is_unreachable = 0;
5091 if (single_pred_p (bb)
5092 && assert_unreachable_fallthru_edge_p
5093 (single_pred_edge (bb)))
5094 is_unreachable = 1;
5095 }
5096 /* Handle
5097 if (x_7 >= 10 && x_7 < 20)
5098 __builtin_unreachable ();
5099 x_8 = ASSERT_EXPR <x_7, ...>;
5100 if the only uses of x_7 are in the ASSERT_EXPR and
5101 in the condition. In that case, we can copy the
5102 range info from x_8 computed in this pass also
5103 for x_7. */
5104 if (is_unreachable
5105 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
5106 single_pred (bb)))
5107 {
5108 set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
5109 SSA_NAME_RANGE_INFO (lhs)->get_min (),
5110 SSA_NAME_RANGE_INFO (lhs)->get_max ());
5111 maybe_set_nonzero_bits (single_pred_edge (bb), var);
5112 }
5113 }
5114
5115 /* Propagate the RHS into every use of the LHS. For SSA names
5116 also propagate abnormals as it merely restores the original
5117 IL in this case (an replace_uses_by would assert). */
5118 if (TREE_CODE (var) == SSA_NAME)
5119 {
5120 imm_use_iterator iter;
5121 use_operand_p use_p;
5122 gimple *use_stmt;
5123 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
5124 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5125 SET_USE (use_p, var);
5126 }
5127 else
5128 replace_uses_by (lhs, var);
5129
5130 /* And finally, remove the copy, it is not needed. */
5131 gsi_remove (&si, true);
5132 release_defs (stmt);
5133 }
5134 else
5135 {
5136 if (!is_gimple_debug (gsi_stmt (si)))
5137 is_unreachable = 0;
5138 gsi_next (&si);
5139 }
5140 }
5141 }
5142
5143 /* Return true if STMT is interesting for VRP. */
5144
5145 bool
5146 stmt_interesting_for_vrp (gimple *stmt)
5147 {
5148 if (gimple_code (stmt) == GIMPLE_PHI)
5149 {
5150 tree res = gimple_phi_result (stmt);
5151 return (!virtual_operand_p (res)
5152 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
5153 || POINTER_TYPE_P (TREE_TYPE (res))));
5154 }
5155 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
5156 {
5157 tree lhs = gimple_get_lhs (stmt);
5158
5159 /* In general, assignments with virtual operands are not useful
5160 for deriving ranges, with the obvious exception of calls to
5161 builtin functions. */
5162 if (lhs && TREE_CODE (lhs) == SSA_NAME
5163 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5164 || POINTER_TYPE_P (TREE_TYPE (lhs)))
5165 && (is_gimple_call (stmt)
5166 || !gimple_vuse (stmt)))
5167 return true;
5168 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
5169 switch (gimple_call_internal_fn (stmt))
5170 {
5171 case IFN_ADD_OVERFLOW:
5172 case IFN_SUB_OVERFLOW:
5173 case IFN_MUL_OVERFLOW:
5174 case IFN_ATOMIC_COMPARE_EXCHANGE:
5175 /* These internal calls return _Complex integer type,
5176 but are interesting to VRP nevertheless. */
5177 if (lhs && TREE_CODE (lhs) == SSA_NAME)
5178 return true;
5179 break;
5180 default:
5181 break;
5182 }
5183 }
5184 else if (gimple_code (stmt) == GIMPLE_COND
5185 || gimple_code (stmt) == GIMPLE_SWITCH)
5186 return true;
5187
5188 return false;
5189 }
5190
5191 /* Initialization required by ssa_propagate engine. */
5192
5193 void
5194 vrp_prop::vrp_initialize ()
5195 {
5196 basic_block bb;
5197
5198 FOR_EACH_BB_FN (bb, cfun)
5199 {
5200 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
5201 gsi_next (&si))
5202 {
5203 gphi *phi = si.phi ();
5204 if (!stmt_interesting_for_vrp (phi))
5205 {
5206 tree lhs = PHI_RESULT (phi);
5207 get_value_range (lhs)->set_varying ();
5208 prop_set_simulate_again (phi, false);
5209 }
5210 else
5211 prop_set_simulate_again (phi, true);
5212 }
5213
5214 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
5215 gsi_next (&si))
5216 {
5217 gimple *stmt = gsi_stmt (si);
5218
5219 /* If the statement is a control insn, then we do not
5220 want to avoid simulating the statement once. Failure
5221 to do so means that those edges will never get added. */
5222 if (stmt_ends_bb_p (stmt))
5223 prop_set_simulate_again (stmt, true);
5224 else if (!stmt_interesting_for_vrp (stmt))
5225 {
5226 set_defs_to_varying (stmt);
5227 prop_set_simulate_again (stmt, false);
5228 }
5229 else
5230 prop_set_simulate_again (stmt, true);
5231 }
5232 }
5233 }
5234
5235 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
5236 that includes the value VAL. The search is restricted to the range
5237 [START_IDX, n - 1] where n is the size of VEC.
5238
5239 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
5240 returned.
5241
5242 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
5243 it is placed in IDX and false is returned.
5244
5245 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
5246 returned. */
5247
5248 bool
5249 find_case_label_index (gswitch *stmt, size_t start_idx, tree val, size_t *idx)
5250 {
5251 size_t n = gimple_switch_num_labels (stmt);
5252 size_t low, high;
5253
5254 /* Find case label for minimum of the value range or the next one.
5255 At each iteration we are searching in [low, high - 1]. */
5256
5257 for (low = start_idx, high = n; high != low; )
5258 {
5259 tree t;
5260 int cmp;
5261 /* Note that i != high, so we never ask for n. */
5262 size_t i = (high + low) / 2;
5263 t = gimple_switch_label (stmt, i);
5264
5265 /* Cache the result of comparing CASE_LOW and val. */
5266 cmp = tree_int_cst_compare (CASE_LOW (t), val);
5267
5268 if (cmp == 0)
5269 {
5270 /* Ranges cannot be empty. */
5271 *idx = i;
5272 return true;
5273 }
5274 else if (cmp > 0)
5275 high = i;
5276 else
5277 {
5278 low = i + 1;
5279 if (CASE_HIGH (t) != NULL
5280 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
5281 {
5282 *idx = i;
5283 return true;
5284 }
5285 }
5286 }
5287
5288 *idx = high;
5289 return false;
5290 }
5291
5292 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
5293 for values between MIN and MAX. The first index is placed in MIN_IDX. The
5294 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
5295 then MAX_IDX < MIN_IDX.
5296 Returns true if the default label is not needed. */
5297
5298 bool
5299 find_case_label_range (gswitch *stmt, tree min, tree max, size_t *min_idx,
5300 size_t *max_idx)
5301 {
5302 size_t i, j;
5303 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
5304 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
5305
5306 if (i == j
5307 && min_take_default
5308 && max_take_default)
5309 {
5310 /* Only the default case label reached.
5311 Return an empty range. */
5312 *min_idx = 1;
5313 *max_idx = 0;
5314 return false;
5315 }
5316 else
5317 {
5318 bool take_default = min_take_default || max_take_default;
5319 tree low, high;
5320 size_t k;
5321
5322 if (max_take_default)
5323 j--;
5324
5325 /* If the case label range is continuous, we do not need
5326 the default case label. Verify that. */
5327 high = CASE_LOW (gimple_switch_label (stmt, i));
5328 if (CASE_HIGH (gimple_switch_label (stmt, i)))
5329 high = CASE_HIGH (gimple_switch_label (stmt, i));
5330 for (k = i + 1; k <= j; ++k)
5331 {
5332 low = CASE_LOW (gimple_switch_label (stmt, k));
5333 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
5334 {
5335 take_default = true;
5336 break;
5337 }
5338 high = low;
5339 if (CASE_HIGH (gimple_switch_label (stmt, k)))
5340 high = CASE_HIGH (gimple_switch_label (stmt, k));
5341 }
5342
5343 *min_idx = i;
5344 *max_idx = j;
5345 return !take_default;
5346 }
5347 }
5348
5349 /* Evaluate statement STMT. If the statement produces a useful range,
5350 return SSA_PROP_INTERESTING and record the SSA name with the
5351 interesting range into *OUTPUT_P.
5352
5353 If STMT is a conditional branch and we can determine its truth
5354 value, the taken edge is recorded in *TAKEN_EDGE_P.
5355
5356 If STMT produces a varying value, return SSA_PROP_VARYING. */
5357
5358 enum ssa_prop_result
5359 vrp_prop::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
5360 {
5361 tree lhs = gimple_get_lhs (stmt);
5362 value_range vr;
5363 extract_range_from_stmt (stmt, taken_edge_p, output_p, &vr);
5364
5365 if (*output_p)
5366 {
5367 if (update_value_range (*output_p, &vr))
5368 {
5369 if (dump_file && (dump_flags & TDF_DETAILS))
5370 {
5371 fprintf (dump_file, "Found new range for ");
5372 print_generic_expr (dump_file, *output_p);
5373 fprintf (dump_file, ": ");
5374 dump_value_range (dump_file, &vr);
5375 fprintf (dump_file, "\n");
5376 }
5377
5378 if (vr.varying_p ())
5379 return SSA_PROP_VARYING;
5380
5381 return SSA_PROP_INTERESTING;
5382 }
5383 return SSA_PROP_NOT_INTERESTING;
5384 }
5385
5386 if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
5387 switch (gimple_call_internal_fn (stmt))
5388 {
5389 case IFN_ADD_OVERFLOW:
5390 case IFN_SUB_OVERFLOW:
5391 case IFN_MUL_OVERFLOW:
5392 case IFN_ATOMIC_COMPARE_EXCHANGE:
5393 /* These internal calls return _Complex integer type,
5394 which VRP does not track, but the immediate uses
5395 thereof might be interesting. */
5396 if (lhs && TREE_CODE (lhs) == SSA_NAME)
5397 {
5398 imm_use_iterator iter;
5399 use_operand_p use_p;
5400 enum ssa_prop_result res = SSA_PROP_VARYING;
5401
5402 get_value_range (lhs)->set_varying ();
5403
5404 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
5405 {
5406 gimple *use_stmt = USE_STMT (use_p);
5407 if (!is_gimple_assign (use_stmt))
5408 continue;
5409 enum tree_code rhs_code = gimple_assign_rhs_code (use_stmt);
5410 if (rhs_code != REALPART_EXPR && rhs_code != IMAGPART_EXPR)
5411 continue;
5412 tree rhs1 = gimple_assign_rhs1 (use_stmt);
5413 tree use_lhs = gimple_assign_lhs (use_stmt);
5414 if (TREE_CODE (rhs1) != rhs_code
5415 || TREE_OPERAND (rhs1, 0) != lhs
5416 || TREE_CODE (use_lhs) != SSA_NAME
5417 || !stmt_interesting_for_vrp (use_stmt)
5418 || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs))
5419 || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs))
5420 || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs))))
5421 continue;
5422
5423 /* If there is a change in the value range for any of the
5424 REALPART_EXPR/IMAGPART_EXPR immediate uses, return
5425 SSA_PROP_INTERESTING. If there are any REALPART_EXPR
5426 or IMAGPART_EXPR immediate uses, but none of them have
5427 a change in their value ranges, return
5428 SSA_PROP_NOT_INTERESTING. If there are no
5429 {REAL,IMAG}PART_EXPR uses at all,
5430 return SSA_PROP_VARYING. */
5431 value_range new_vr;
5432 extract_range_basic (&new_vr, use_stmt);
5433 const value_range *old_vr = get_value_range (use_lhs);
5434 if (!old_vr->equal_p (new_vr, /*ignore_equivs=*/false))
5435 res = SSA_PROP_INTERESTING;
5436 else
5437 res = SSA_PROP_NOT_INTERESTING;
5438 new_vr.equiv_clear ();
5439 if (res == SSA_PROP_INTERESTING)
5440 {
5441 *output_p = lhs;
5442 return res;
5443 }
5444 }
5445
5446 return res;
5447 }
5448 break;
5449 default:
5450 break;
5451 }
5452
5453 /* All other statements produce nothing of interest for VRP, so mark
5454 their outputs varying and prevent further simulation. */
5455 set_defs_to_varying (stmt);
5456
5457 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
5458 }
5459
5460 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
5461 { VR1TYPE, VR0MIN, VR0MAX } and store the result
5462 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
5463 possible such range. The resulting range is not canonicalized. */
5464
5465 static void
5466 union_ranges (enum value_range_kind *vr0type,
5467 tree *vr0min, tree *vr0max,
5468 enum value_range_kind vr1type,
5469 tree vr1min, tree vr1max)
5470 {
5471 bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
5472 bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
5473
5474 /* [] is vr0, () is vr1 in the following classification comments. */
5475 if (mineq && maxeq)
5476 {
5477 /* [( )] */
5478 if (*vr0type == vr1type)
5479 /* Nothing to do for equal ranges. */
5480 ;
5481 else if ((*vr0type == VR_RANGE
5482 && vr1type == VR_ANTI_RANGE)
5483 || (*vr0type == VR_ANTI_RANGE
5484 && vr1type == VR_RANGE))
5485 {
5486 /* For anti-range with range union the result is varying. */
5487 goto give_up;
5488 }
5489 else
5490 gcc_unreachable ();
5491 }
5492 else if (operand_less_p (*vr0max, vr1min) == 1
5493 || operand_less_p (vr1max, *vr0min) == 1)
5494 {
5495 /* [ ] ( ) or ( ) [ ]
5496 If the ranges have an empty intersection, result of the union
5497 operation is the anti-range or if both are anti-ranges
5498 it covers all. */
5499 if (*vr0type == VR_ANTI_RANGE
5500 && vr1type == VR_ANTI_RANGE)
5501 goto give_up;
5502 else if (*vr0type == VR_ANTI_RANGE
5503 && vr1type == VR_RANGE)
5504 ;
5505 else if (*vr0type == VR_RANGE
5506 && vr1type == VR_ANTI_RANGE)
5507 {
5508 *vr0type = vr1type;
5509 *vr0min = vr1min;
5510 *vr0max = vr1max;
5511 }
5512 else if (*vr0type == VR_RANGE
5513 && vr1type == VR_RANGE)
5514 {
5515 /* The result is the convex hull of both ranges. */
5516 if (operand_less_p (*vr0max, vr1min) == 1)
5517 {
5518 /* If the result can be an anti-range, create one. */
5519 if (TREE_CODE (*vr0max) == INTEGER_CST
5520 && TREE_CODE (vr1min) == INTEGER_CST
5521 && vrp_val_is_min (*vr0min)
5522 && vrp_val_is_max (vr1max))
5523 {
5524 tree min = int_const_binop (PLUS_EXPR,
5525 *vr0max,
5526 build_int_cst (TREE_TYPE (*vr0max), 1));
5527 tree max = int_const_binop (MINUS_EXPR,
5528 vr1min,
5529 build_int_cst (TREE_TYPE (vr1min), 1));
5530 if (!operand_less_p (max, min))
5531 {
5532 *vr0type = VR_ANTI_RANGE;
5533 *vr0min = min;
5534 *vr0max = max;
5535 }
5536 else
5537 *vr0max = vr1max;
5538 }
5539 else
5540 *vr0max = vr1max;
5541 }
5542 else
5543 {
5544 /* If the result can be an anti-range, create one. */
5545 if (TREE_CODE (vr1max) == INTEGER_CST
5546 && TREE_CODE (*vr0min) == INTEGER_CST
5547 && vrp_val_is_min (vr1min)
5548 && vrp_val_is_max (*vr0max))
5549 {
5550 tree min = int_const_binop (PLUS_EXPR,
5551 vr1max,
5552 build_int_cst (TREE_TYPE (vr1max), 1));
5553 tree max = int_const_binop (MINUS_EXPR,
5554 *vr0min,
5555 build_int_cst (TREE_TYPE (*vr0min), 1));
5556 if (!operand_less_p (max, min))
5557 {
5558 *vr0type = VR_ANTI_RANGE;
5559 *vr0min = min;
5560 *vr0max = max;
5561 }
5562 else
5563 *vr0min = vr1min;
5564 }
5565 else
5566 *vr0min = vr1min;
5567 }
5568 }
5569 else
5570 gcc_unreachable ();
5571 }
5572 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
5573 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
5574 {
5575 /* [ ( ) ] or [( ) ] or [ ( )] */
5576 if (*vr0type == VR_RANGE
5577 && vr1type == VR_RANGE)
5578 ;
5579 else if (*vr0type == VR_ANTI_RANGE
5580 && vr1type == VR_ANTI_RANGE)
5581 {
5582 *vr0type = vr1type;
5583 *vr0min = vr1min;
5584 *vr0max = vr1max;
5585 }
5586 else if (*vr0type == VR_ANTI_RANGE
5587 && vr1type == VR_RANGE)
5588 {
5589 /* Arbitrarily choose the right or left gap. */
5590 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
5591 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
5592 build_int_cst (TREE_TYPE (vr1min), 1));
5593 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
5594 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
5595 build_int_cst (TREE_TYPE (vr1max), 1));
5596 else
5597 goto give_up;
5598 }
5599 else if (*vr0type == VR_RANGE
5600 && vr1type == VR_ANTI_RANGE)
5601 /* The result covers everything. */
5602 goto give_up;
5603 else
5604 gcc_unreachable ();
5605 }
5606 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
5607 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
5608 {
5609 /* ( [ ] ) or ([ ] ) or ( [ ]) */
5610 if (*vr0type == VR_RANGE
5611 && vr1type == VR_RANGE)
5612 {
5613 *vr0type = vr1type;
5614 *vr0min = vr1min;
5615 *vr0max = vr1max;
5616 }
5617 else if (*vr0type == VR_ANTI_RANGE
5618 && vr1type == VR_ANTI_RANGE)
5619 ;
5620 else if (*vr0type == VR_RANGE
5621 && vr1type == VR_ANTI_RANGE)
5622 {
5623 *vr0type = VR_ANTI_RANGE;
5624 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
5625 {
5626 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
5627 build_int_cst (TREE_TYPE (*vr0min), 1));
5628 *vr0min = vr1min;
5629 }
5630 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
5631 {
5632 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
5633 build_int_cst (TREE_TYPE (*vr0max), 1));
5634 *vr0max = vr1max;
5635 }
5636 else
5637 goto give_up;
5638 }
5639 else if (*vr0type == VR_ANTI_RANGE
5640 && vr1type == VR_RANGE)
5641 /* The result covers everything. */
5642 goto give_up;
5643 else
5644 gcc_unreachable ();
5645 }
5646 else if ((operand_less_p (vr1min, *vr0max) == 1
5647 || operand_equal_p (vr1min, *vr0max, 0))
5648 && operand_less_p (*vr0min, vr1min) == 1
5649 && operand_less_p (*vr0max, vr1max) == 1)
5650 {
5651 /* [ ( ] ) or [ ]( ) */
5652 if (*vr0type == VR_RANGE
5653 && vr1type == VR_RANGE)
5654 *vr0max = vr1max;
5655 else if (*vr0type == VR_ANTI_RANGE
5656 && vr1type == VR_ANTI_RANGE)
5657 *vr0min = vr1min;
5658 else if (*vr0type == VR_ANTI_RANGE
5659 && vr1type == VR_RANGE)
5660 {
5661 if (TREE_CODE (vr1min) == INTEGER_CST)
5662 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
5663 build_int_cst (TREE_TYPE (vr1min), 1));
5664 else
5665 goto give_up;
5666 }
5667 else if (*vr0type == VR_RANGE
5668 && vr1type == VR_ANTI_RANGE)
5669 {
5670 if (TREE_CODE (*vr0max) == INTEGER_CST)
5671 {
5672 *vr0type = vr1type;
5673 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
5674 build_int_cst (TREE_TYPE (*vr0max), 1));
5675 *vr0max = vr1max;
5676 }
5677 else
5678 goto give_up;
5679 }
5680 else
5681 gcc_unreachable ();
5682 }
5683 else if ((operand_less_p (*vr0min, vr1max) == 1
5684 || operand_equal_p (*vr0min, vr1max, 0))
5685 && operand_less_p (vr1min, *vr0min) == 1
5686 && operand_less_p (vr1max, *vr0max) == 1)
5687 {
5688 /* ( [ ) ] or ( )[ ] */
5689 if (*vr0type == VR_RANGE
5690 && vr1type == VR_RANGE)
5691 *vr0min = vr1min;
5692 else if (*vr0type == VR_ANTI_RANGE
5693 && vr1type == VR_ANTI_RANGE)
5694 *vr0max = vr1max;
5695 else if (*vr0type == VR_ANTI_RANGE
5696 && vr1type == VR_RANGE)
5697 {
5698 if (TREE_CODE (vr1max) == INTEGER_CST)
5699 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
5700 build_int_cst (TREE_TYPE (vr1max), 1));
5701 else
5702 goto give_up;
5703 }
5704 else if (*vr0type == VR_RANGE
5705 && vr1type == VR_ANTI_RANGE)
5706 {
5707 if (TREE_CODE (*vr0min) == INTEGER_CST)
5708 {
5709 *vr0type = vr1type;
5710 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
5711 build_int_cst (TREE_TYPE (*vr0min), 1));
5712 *vr0min = vr1min;
5713 }
5714 else
5715 goto give_up;
5716 }
5717 else
5718 gcc_unreachable ();
5719 }
5720 else
5721 goto give_up;
5722
5723 return;
5724
5725 give_up:
5726 *vr0type = VR_VARYING;
5727 *vr0min = NULL_TREE;
5728 *vr0max = NULL_TREE;
5729 }
5730
5731 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
5732 { VR1TYPE, VR0MIN, VR0MAX } and store the result
5733 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
5734 possible such range. The resulting range is not canonicalized. */
5735
5736 static void
5737 intersect_ranges (enum value_range_kind *vr0type,
5738 tree *vr0min, tree *vr0max,
5739 enum value_range_kind vr1type,
5740 tree vr1min, tree vr1max)
5741 {
5742 bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
5743 bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
5744
5745 /* [] is vr0, () is vr1 in the following classification comments. */
5746 if (mineq && maxeq)
5747 {
5748 /* [( )] */
5749 if (*vr0type == vr1type)
5750 /* Nothing to do for equal ranges. */
5751 ;
5752 else if ((*vr0type == VR_RANGE
5753 && vr1type == VR_ANTI_RANGE)
5754 || (*vr0type == VR_ANTI_RANGE
5755 && vr1type == VR_RANGE))
5756 {
5757 /* For anti-range with range intersection the result is empty. */
5758 *vr0type = VR_UNDEFINED;
5759 *vr0min = NULL_TREE;
5760 *vr0max = NULL_TREE;
5761 }
5762 else
5763 gcc_unreachable ();
5764 }
5765 else if (operand_less_p (*vr0max, vr1min) == 1
5766 || operand_less_p (vr1max, *vr0min) == 1)
5767 {
5768 /* [ ] ( ) or ( ) [ ]
5769 If the ranges have an empty intersection, the result of the
5770 intersect operation is the range for intersecting an
5771 anti-range with a range or empty when intersecting two ranges. */
5772 if (*vr0type == VR_RANGE
5773 && vr1type == VR_ANTI_RANGE)
5774 ;
5775 else if (*vr0type == VR_ANTI_RANGE
5776 && vr1type == VR_RANGE)
5777 {
5778 *vr0type = vr1type;
5779 *vr0min = vr1min;
5780 *vr0max = vr1max;
5781 }
5782 else if (*vr0type == VR_RANGE
5783 && vr1type == VR_RANGE)
5784 {
5785 *vr0type = VR_UNDEFINED;
5786 *vr0min = NULL_TREE;
5787 *vr0max = NULL_TREE;
5788 }
5789 else if (*vr0type == VR_ANTI_RANGE
5790 && vr1type == VR_ANTI_RANGE)
5791 {
5792 /* If the anti-ranges are adjacent to each other merge them. */
5793 if (TREE_CODE (*vr0max) == INTEGER_CST
5794 && TREE_CODE (vr1min) == INTEGER_CST
5795 && operand_less_p (*vr0max, vr1min) == 1
5796 && integer_onep (int_const_binop (MINUS_EXPR,
5797 vr1min, *vr0max)))
5798 *vr0max = vr1max;
5799 else if (TREE_CODE (vr1max) == INTEGER_CST
5800 && TREE_CODE (*vr0min) == INTEGER_CST
5801 && operand_less_p (vr1max, *vr0min) == 1
5802 && integer_onep (int_const_binop (MINUS_EXPR,
5803 *vr0min, vr1max)))
5804 *vr0min = vr1min;
5805 /* Else arbitrarily take VR0. */
5806 }
5807 }
5808 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
5809 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
5810 {
5811 /* [ ( ) ] or [( ) ] or [ ( )] */
5812 if (*vr0type == VR_RANGE
5813 && vr1type == VR_RANGE)
5814 {
5815 /* If both are ranges the result is the inner one. */
5816 *vr0type = vr1type;
5817 *vr0min = vr1min;
5818 *vr0max = vr1max;
5819 }
5820 else if (*vr0type == VR_RANGE
5821 && vr1type == VR_ANTI_RANGE)
5822 {
5823 /* Choose the right gap if the left one is empty. */
5824 if (mineq)
5825 {
5826 if (TREE_CODE (vr1max) != INTEGER_CST)
5827 *vr0min = vr1max;
5828 else if (TYPE_PRECISION (TREE_TYPE (vr1max)) == 1
5829 && !TYPE_UNSIGNED (TREE_TYPE (vr1max)))
5830 *vr0min
5831 = int_const_binop (MINUS_EXPR, vr1max,
5832 build_int_cst (TREE_TYPE (vr1max), -1));
5833 else
5834 *vr0min
5835 = int_const_binop (PLUS_EXPR, vr1max,
5836 build_int_cst (TREE_TYPE (vr1max), 1));
5837 }
5838 /* Choose the left gap if the right one is empty. */
5839 else if (maxeq)
5840 {
5841 if (TREE_CODE (vr1min) != INTEGER_CST)
5842 *vr0max = vr1min;
5843 else if (TYPE_PRECISION (TREE_TYPE (vr1min)) == 1
5844 && !TYPE_UNSIGNED (TREE_TYPE (vr1min)))
5845 *vr0max
5846 = int_const_binop (PLUS_EXPR, vr1min,
5847 build_int_cst (TREE_TYPE (vr1min), -1));
5848 else
5849 *vr0max
5850 = int_const_binop (MINUS_EXPR, vr1min,
5851 build_int_cst (TREE_TYPE (vr1min), 1));
5852 }
5853 /* Choose the anti-range if the range is effectively varying. */
5854 else if (vrp_val_is_min (*vr0min)
5855 && vrp_val_is_max (*vr0max))
5856 {
5857 *vr0type = vr1type;
5858 *vr0min = vr1min;
5859 *vr0max = vr1max;
5860 }
5861 /* Else choose the range. */
5862 }
5863 else if (*vr0type == VR_ANTI_RANGE
5864 && vr1type == VR_ANTI_RANGE)
5865 /* If both are anti-ranges the result is the outer one. */
5866 ;
5867 else if (*vr0type == VR_ANTI_RANGE
5868 && vr1type == VR_RANGE)
5869 {
5870 /* The intersection is empty. */
5871 *vr0type = VR_UNDEFINED;
5872 *vr0min = NULL_TREE;
5873 *vr0max = NULL_TREE;
5874 }
5875 else
5876 gcc_unreachable ();
5877 }
5878 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
5879 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
5880 {
5881 /* ( [ ] ) or ([ ] ) or ( [ ]) */
5882 if (*vr0type == VR_RANGE
5883 && vr1type == VR_RANGE)
5884 /* Choose the inner range. */
5885 ;
5886 else if (*vr0type == VR_ANTI_RANGE
5887 && vr1type == VR_RANGE)
5888 {
5889 /* Choose the right gap if the left is empty. */
5890 if (mineq)
5891 {
5892 *vr0type = VR_RANGE;
5893 if (TREE_CODE (*vr0max) != INTEGER_CST)
5894 *vr0min = *vr0max;
5895 else if (TYPE_PRECISION (TREE_TYPE (*vr0max)) == 1
5896 && !TYPE_UNSIGNED (TREE_TYPE (*vr0max)))
5897 *vr0min
5898 = int_const_binop (MINUS_EXPR, *vr0max,
5899 build_int_cst (TREE_TYPE (*vr0max), -1));
5900 else
5901 *vr0min
5902 = int_const_binop (PLUS_EXPR, *vr0max,
5903 build_int_cst (TREE_TYPE (*vr0max), 1));
5904 *vr0max = vr1max;
5905 }
5906 /* Choose the left gap if the right is empty. */
5907 else if (maxeq)
5908 {
5909 *vr0type = VR_RANGE;
5910 if (TREE_CODE (*vr0min) != INTEGER_CST)
5911 *vr0max = *vr0min;
5912 else if (TYPE_PRECISION (TREE_TYPE (*vr0min)) == 1
5913 && !TYPE_UNSIGNED (TREE_TYPE (*vr0min)))
5914 *vr0max
5915 = int_const_binop (PLUS_EXPR, *vr0min,
5916 build_int_cst (TREE_TYPE (*vr0min), -1));
5917 else
5918 *vr0max
5919 = int_const_binop (MINUS_EXPR, *vr0min,
5920 build_int_cst (TREE_TYPE (*vr0min), 1));
5921 *vr0min = vr1min;
5922 }
5923 /* Choose the anti-range if the range is effectively varying. */
5924 else if (vrp_val_is_min (vr1min)
5925 && vrp_val_is_max (vr1max))
5926 ;
5927 /* Choose the anti-range if it is ~[0,0], that range is special
5928 enough to special case when vr1's range is relatively wide.
5929 At least for types bigger than int - this covers pointers
5930 and arguments to functions like ctz. */
5931 else if (*vr0min == *vr0max
5932 && integer_zerop (*vr0min)
5933 && ((TYPE_PRECISION (TREE_TYPE (*vr0min))
5934 >= TYPE_PRECISION (integer_type_node))
5935 || POINTER_TYPE_P (TREE_TYPE (*vr0min)))
5936 && TREE_CODE (vr1max) == INTEGER_CST
5937 && TREE_CODE (vr1min) == INTEGER_CST
5938 && (wi::clz (wi::to_wide (vr1max) - wi::to_wide (vr1min))
5939 < TYPE_PRECISION (TREE_TYPE (*vr0min)) / 2))
5940 ;
5941 /* Else choose the range. */
5942 else
5943 {
5944 *vr0type = vr1type;
5945 *vr0min = vr1min;
5946 *vr0max = vr1max;
5947 }
5948 }
5949 else if (*vr0type == VR_ANTI_RANGE
5950 && vr1type == VR_ANTI_RANGE)
5951 {
5952 /* If both are anti-ranges the result is the outer one. */
5953 *vr0type = vr1type;
5954 *vr0min = vr1min;
5955 *vr0max = vr1max;
5956 }
5957 else if (vr1type == VR_ANTI_RANGE
5958 && *vr0type == VR_RANGE)
5959 {
5960 /* The intersection is empty. */
5961 *vr0type = VR_UNDEFINED;
5962 *vr0min = NULL_TREE;
5963 *vr0max = NULL_TREE;
5964 }
5965 else
5966 gcc_unreachable ();
5967 }
5968 else if ((operand_less_p (vr1min, *vr0max) == 1
5969 || operand_equal_p (vr1min, *vr0max, 0))
5970 && operand_less_p (*vr0min, vr1min) == 1)
5971 {
5972 /* [ ( ] ) or [ ]( ) */
5973 if (*vr0type == VR_ANTI_RANGE
5974 && vr1type == VR_ANTI_RANGE)
5975 *vr0max = vr1max;
5976 else if (*vr0type == VR_RANGE
5977 && vr1type == VR_RANGE)
5978 *vr0min = vr1min;
5979 else if (*vr0type == VR_RANGE
5980 && vr1type == VR_ANTI_RANGE)
5981 {
5982 if (TREE_CODE (vr1min) == INTEGER_CST)
5983 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
5984 build_int_cst (TREE_TYPE (vr1min), 1));
5985 else
5986 *vr0max = vr1min;
5987 }
5988 else if (*vr0type == VR_ANTI_RANGE
5989 && vr1type == VR_RANGE)
5990 {
5991 *vr0type = VR_RANGE;
5992 if (TREE_CODE (*vr0max) == INTEGER_CST)
5993 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
5994 build_int_cst (TREE_TYPE (*vr0max), 1));
5995 else
5996 *vr0min = *vr0max;
5997 *vr0max = vr1max;
5998 }
5999 else
6000 gcc_unreachable ();
6001 }
6002 else if ((operand_less_p (*vr0min, vr1max) == 1
6003 || operand_equal_p (*vr0min, vr1max, 0))
6004 && operand_less_p (vr1min, *vr0min) == 1)
6005 {
6006 /* ( [ ) ] or ( )[ ] */
6007 if (*vr0type == VR_ANTI_RANGE
6008 && vr1type == VR_ANTI_RANGE)
6009 *vr0min = vr1min;
6010 else if (*vr0type == VR_RANGE
6011 && vr1type == VR_RANGE)
6012 *vr0max = vr1max;
6013 else if (*vr0type == VR_RANGE
6014 && vr1type == VR_ANTI_RANGE)
6015 {
6016 if (TREE_CODE (vr1max) == INTEGER_CST)
6017 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
6018 build_int_cst (TREE_TYPE (vr1max), 1));
6019 else
6020 *vr0min = vr1max;
6021 }
6022 else if (*vr0type == VR_ANTI_RANGE
6023 && vr1type == VR_RANGE)
6024 {
6025 *vr0type = VR_RANGE;
6026 if (TREE_CODE (*vr0min) == INTEGER_CST)
6027 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
6028 build_int_cst (TREE_TYPE (*vr0min), 1));
6029 else
6030 *vr0max = *vr0min;
6031 *vr0min = vr1min;
6032 }
6033 else
6034 gcc_unreachable ();
6035 }
6036
6037 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
6038 result for the intersection. That's always a conservative
6039 correct estimate unless VR1 is a constant singleton range
6040 in which case we choose that. */
6041 if (vr1type == VR_RANGE
6042 && is_gimple_min_invariant (vr1min)
6043 && vrp_operand_equal_p (vr1min, vr1max))
6044 {
6045 *vr0type = vr1type;
6046 *vr0min = vr1min;
6047 *vr0max = vr1max;
6048 }
6049 }
6050
6051
6052 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
6053 in *VR0. This may not be the smallest possible such range. */
6054
6055 void
6056 value_range::intersect_helper (value_range *vr0, const value_range *vr1)
6057 {
6058 /* If either range is VR_VARYING the other one wins. */
6059 if (vr1->varying_p ())
6060 return;
6061 if (vr0->varying_p ())
6062 {
6063 vr0->deep_copy (vr1);
6064 return;
6065 }
6066
6067 /* When either range is VR_UNDEFINED the resulting range is
6068 VR_UNDEFINED, too. */
6069 if (vr0->undefined_p ())
6070 return;
6071 if (vr1->undefined_p ())
6072 {
6073 vr0->set_undefined ();
6074 return;
6075 }
6076
6077 value_range_kind vr0type = vr0->kind ();
6078 tree vr0min = vr0->min ();
6079 tree vr0max = vr0->max ();
6080 intersect_ranges (&vr0type, &vr0min, &vr0max,
6081 vr1->kind (), vr1->min (), vr1->max ());
6082 /* Make sure to canonicalize the result though as the inversion of a
6083 VR_RANGE can still be a VR_RANGE. Work on a temporary so we can
6084 fall back to vr0 when this turns things to varying. */
6085 value_range tem;
6086 tem.set_and_canonicalize (vr0type, vr0min, vr0max);
6087 /* If that failed, use the saved original VR0. */
6088 if (tem.varying_p ())
6089 return;
6090 vr0->update (tem.kind (), tem.min (), tem.max ());
6091
6092 /* If the result is VR_UNDEFINED there is no need to mess with
6093 the equivalencies. */
6094 if (vr0->undefined_p ())
6095 return;
6096
6097 /* The resulting set of equivalences for range intersection is the union of
6098 the two sets. */
6099 if (vr0->m_equiv && vr1->m_equiv && vr0->m_equiv != vr1->m_equiv)
6100 bitmap_ior_into (vr0->m_equiv, vr1->m_equiv);
6101 else if (vr1->m_equiv && !vr0->m_equiv)
6102 {
6103 /* All equivalence bitmaps are allocated from the same obstack. So
6104 we can use the obstack associated with VR to allocate vr0->equiv. */
6105 vr0->m_equiv = BITMAP_ALLOC (vr1->m_equiv->obstack);
6106 bitmap_copy (m_equiv, vr1->m_equiv);
6107 }
6108 }
6109
6110 void
6111 value_range::intersect (const value_range *other)
6112 {
6113 if (dump_file && (dump_flags & TDF_DETAILS))
6114 {
6115 fprintf (dump_file, "Intersecting\n ");
6116 dump_value_range (dump_file, this);
6117 fprintf (dump_file, "\nand\n ");
6118 dump_value_range (dump_file, other);
6119 fprintf (dump_file, "\n");
6120 }
6121 intersect_helper (this, other);
6122 if (dump_file && (dump_flags & TDF_DETAILS))
6123 {
6124 fprintf (dump_file, "to\n ");
6125 dump_value_range (dump_file, this);
6126 fprintf (dump_file, "\n");
6127 }
6128 }
6129
6130 /* Helper for meet operation for value ranges. Given two value ranges VR0 and
6131 VR1, return a range that contains both VR0 and VR1. This may not be the
6132 smallest possible such range. */
6133
6134 value_range_base
6135 value_range_base::union_helper (const value_range_base *vr0,
6136 const value_range_base *vr1)
6137 {
6138 /* VR0 has the resulting range if VR1 is undefined or VR0 is varying. */
6139 if (vr1->undefined_p ()
6140 || vr0->varying_p ())
6141 return *vr0;
6142
6143 /* VR1 has the resulting range if VR0 is undefined or VR1 is varying. */
6144 if (vr0->undefined_p ()
6145 || vr1->varying_p ())
6146 return *vr1;
6147
6148 value_range_kind vr0type = vr0->kind ();
6149 tree vr0min = vr0->min ();
6150 tree vr0max = vr0->max ();
6151 union_ranges (&vr0type, &vr0min, &vr0max,
6152 vr1->kind (), vr1->min (), vr1->max ());
6153
6154 /* Work on a temporary so we can still use vr0 when union returns varying. */
6155 value_range tem;
6156 tem.set_and_canonicalize (vr0type, vr0min, vr0max);
6157
6158 /* Failed to find an efficient meet. Before giving up and setting
6159 the result to VARYING, see if we can at least derive a useful
6160 anti-range. */
6161 if (tem.varying_p ()
6162 && range_includes_zero_p (vr0) == 0
6163 && range_includes_zero_p (vr1) == 0)
6164 {
6165 tem.set_nonnull (vr0->type ());
6166 return tem;
6167 }
6168
6169 return tem;
6170 }
6171
6172
6173 /* Meet operation for value ranges. Given two value ranges VR0 and
6174 VR1, store in VR0 a range that contains both VR0 and VR1. This
6175 may not be the smallest possible such range. */
6176
6177 void
6178 value_range_base::union_ (const value_range_base *other)
6179 {
6180 if (dump_file && (dump_flags & TDF_DETAILS))
6181 {
6182 fprintf (dump_file, "Meeting\n ");
6183 dump_value_range (dump_file, this);
6184 fprintf (dump_file, "\nand\n ");
6185 dump_value_range (dump_file, other);
6186 fprintf (dump_file, "\n");
6187 }
6188
6189 *this = union_helper (this, other);
6190
6191 if (dump_file && (dump_flags & TDF_DETAILS))
6192 {
6193 fprintf (dump_file, "to\n ");
6194 dump_value_range (dump_file, this);
6195 fprintf (dump_file, "\n");
6196 }
6197 }
6198
6199 void
6200 value_range::union_ (const value_range *other)
6201 {
6202 if (dump_file && (dump_flags & TDF_DETAILS))
6203 {
6204 fprintf (dump_file, "Meeting\n ");
6205 dump_value_range (dump_file, this);
6206 fprintf (dump_file, "\nand\n ");
6207 dump_value_range (dump_file, other);
6208 fprintf (dump_file, "\n");
6209 }
6210
6211 /* If THIS is undefined we want to pick up equivalences from OTHER.
6212 Just special-case this here rather than trying to fixup after the fact. */
6213 if (this->undefined_p ())
6214 this->deep_copy (other);
6215 else
6216 {
6217 value_range_base tem = union_helper (this, other);
6218 this->update (tem.kind (), tem.min (), tem.max ());
6219
6220 /* The resulting set of equivalences is always the intersection of
6221 the two sets. */
6222 if (this->m_equiv && other->m_equiv && this->m_equiv != other->m_equiv)
6223 bitmap_and_into (this->m_equiv, other->m_equiv);
6224 else if (this->m_equiv && !other->m_equiv)
6225 bitmap_clear (this->m_equiv);
6226 }
6227
6228 if (dump_file && (dump_flags & TDF_DETAILS))
6229 {
6230 fprintf (dump_file, "to\n ");
6231 dump_value_range (dump_file, this);
6232 fprintf (dump_file, "\n");
6233 }
6234 }
6235
6236 /* Visit all arguments for PHI node PHI that flow through executable
6237 edges. If a valid value range can be derived from all the incoming
6238 value ranges, set a new range for the LHS of PHI. */
6239
6240 enum ssa_prop_result
6241 vrp_prop::visit_phi (gphi *phi)
6242 {
6243 tree lhs = PHI_RESULT (phi);
6244 value_range vr_result;
6245 extract_range_from_phi_node (phi, &vr_result);
6246 if (update_value_range (lhs, &vr_result))
6247 {
6248 if (dump_file && (dump_flags & TDF_DETAILS))
6249 {
6250 fprintf (dump_file, "Found new range for ");
6251 print_generic_expr (dump_file, lhs);
6252 fprintf (dump_file, ": ");
6253 dump_value_range (dump_file, &vr_result);
6254 fprintf (dump_file, "\n");
6255 }
6256
6257 if (vr_result.varying_p ())
6258 return SSA_PROP_VARYING;
6259
6260 return SSA_PROP_INTERESTING;
6261 }
6262
6263 /* Nothing changed, don't add outgoing edges. */
6264 return SSA_PROP_NOT_INTERESTING;
6265 }
6266
6267 class vrp_folder : public substitute_and_fold_engine
6268 {
6269 public:
6270 tree get_value (tree) FINAL OVERRIDE;
6271 bool fold_stmt (gimple_stmt_iterator *) FINAL OVERRIDE;
6272 bool fold_predicate_in (gimple_stmt_iterator *);
6273
6274 class vr_values *vr_values;
6275
6276 /* Delegators. */
6277 tree vrp_evaluate_conditional (tree_code code, tree op0,
6278 tree op1, gimple *stmt)
6279 { return vr_values->vrp_evaluate_conditional (code, op0, op1, stmt); }
6280 bool simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
6281 { return vr_values->simplify_stmt_using_ranges (gsi); }
6282 tree op_with_constant_singleton_value_range (tree op)
6283 { return vr_values->op_with_constant_singleton_value_range (op); }
6284 };
6285
6286 /* If the statement pointed by SI has a predicate whose value can be
6287 computed using the value range information computed by VRP, compute
6288 its value and return true. Otherwise, return false. */
6289
6290 bool
6291 vrp_folder::fold_predicate_in (gimple_stmt_iterator *si)
6292 {
6293 bool assignment_p = false;
6294 tree val;
6295 gimple *stmt = gsi_stmt (*si);
6296
6297 if (is_gimple_assign (stmt)
6298 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
6299 {
6300 assignment_p = true;
6301 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
6302 gimple_assign_rhs1 (stmt),
6303 gimple_assign_rhs2 (stmt),
6304 stmt);
6305 }
6306 else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
6307 val = vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
6308 gimple_cond_lhs (cond_stmt),
6309 gimple_cond_rhs (cond_stmt),
6310 stmt);
6311 else
6312 return false;
6313
6314 if (val)
6315 {
6316 if (assignment_p)
6317 val = fold_convert (gimple_expr_type (stmt), val);
6318
6319 if (dump_file)
6320 {
6321 fprintf (dump_file, "Folding predicate ");
6322 print_gimple_expr (dump_file, stmt, 0);
6323 fprintf (dump_file, " to ");
6324 print_generic_expr (dump_file, val);
6325 fprintf (dump_file, "\n");
6326 }
6327
6328 if (is_gimple_assign (stmt))
6329 gimple_assign_set_rhs_from_tree (si, val);
6330 else
6331 {
6332 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
6333 gcond *cond_stmt = as_a <gcond *> (stmt);
6334 if (integer_zerop (val))
6335 gimple_cond_make_false (cond_stmt);
6336 else if (integer_onep (val))
6337 gimple_cond_make_true (cond_stmt);
6338 else
6339 gcc_unreachable ();
6340 }
6341
6342 return true;
6343 }
6344
6345 return false;
6346 }
6347
6348 /* Callback for substitute_and_fold folding the stmt at *SI. */
6349
6350 bool
6351 vrp_folder::fold_stmt (gimple_stmt_iterator *si)
6352 {
6353 if (fold_predicate_in (si))
6354 return true;
6355
6356 return simplify_stmt_using_ranges (si);
6357 }
6358
6359 /* If OP has a value range with a single constant value return that,
6360 otherwise return NULL_TREE. This returns OP itself if OP is a
6361 constant.
6362
6363 Implemented as a pure wrapper right now, but this will change. */
6364
6365 tree
6366 vrp_folder::get_value (tree op)
6367 {
6368 return op_with_constant_singleton_value_range (op);
6369 }
6370
6371 /* Return the LHS of any ASSERT_EXPR where OP appears as the first
6372 argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
6373 BB. If no such ASSERT_EXPR is found, return OP. */
6374
6375 static tree
6376 lhs_of_dominating_assert (tree op, basic_block bb, gimple *stmt)
6377 {
6378 imm_use_iterator imm_iter;
6379 gimple *use_stmt;
6380 use_operand_p use_p;
6381
6382 if (TREE_CODE (op) == SSA_NAME)
6383 {
6384 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
6385 {
6386 use_stmt = USE_STMT (use_p);
6387 if (use_stmt != stmt
6388 && gimple_assign_single_p (use_stmt)
6389 && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ASSERT_EXPR
6390 && TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == op
6391 && dominated_by_p (CDI_DOMINATORS, bb, gimple_bb (use_stmt)))
6392 return gimple_assign_lhs (use_stmt);
6393 }
6394 }
6395 return op;
6396 }
6397
6398 /* A hack. */
6399 static class vr_values *x_vr_values;
6400
6401 /* A trivial wrapper so that we can present the generic jump threading
6402 code with a simple API for simplifying statements. STMT is the
6403 statement we want to simplify, WITHIN_STMT provides the location
6404 for any overflow warnings. */
6405
6406 static tree
6407 simplify_stmt_for_jump_threading (gimple *stmt, gimple *within_stmt,
6408 class avail_exprs_stack *avail_exprs_stack ATTRIBUTE_UNUSED,
6409 basic_block bb)
6410 {
6411 /* First see if the conditional is in the hash table. */
6412 tree cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, false, true);
6413 if (cached_lhs && is_gimple_min_invariant (cached_lhs))
6414 return cached_lhs;
6415
6416 vr_values *vr_values = x_vr_values;
6417 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
6418 {
6419 tree op0 = gimple_cond_lhs (cond_stmt);
6420 op0 = lhs_of_dominating_assert (op0, bb, stmt);
6421
6422 tree op1 = gimple_cond_rhs (cond_stmt);
6423 op1 = lhs_of_dominating_assert (op1, bb, stmt);
6424
6425 return vr_values->vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
6426 op0, op1, within_stmt);
6427 }
6428
6429 /* We simplify a switch statement by trying to determine which case label
6430 will be taken. If we are successful then we return the corresponding
6431 CASE_LABEL_EXPR. */
6432 if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt))
6433 {
6434 tree op = gimple_switch_index (switch_stmt);
6435 if (TREE_CODE (op) != SSA_NAME)
6436 return NULL_TREE;
6437
6438 op = lhs_of_dominating_assert (op, bb, stmt);
6439
6440 const value_range *vr = vr_values->get_value_range (op);
6441 if (vr->undefined_p ()
6442 || vr->varying_p ()
6443 || vr->symbolic_p ())
6444 return NULL_TREE;
6445
6446 if (vr->kind () == VR_RANGE)
6447 {
6448 size_t i, j;
6449 /* Get the range of labels that contain a part of the operand's
6450 value range. */
6451 find_case_label_range (switch_stmt, vr->min (), vr->max (), &i, &j);
6452
6453 /* Is there only one such label? */
6454 if (i == j)
6455 {
6456 tree label = gimple_switch_label (switch_stmt, i);
6457
6458 /* The i'th label will be taken only if the value range of the
6459 operand is entirely within the bounds of this label. */
6460 if (CASE_HIGH (label) != NULL_TREE
6461 ? (tree_int_cst_compare (CASE_LOW (label), vr->min ()) <= 0
6462 && tree_int_cst_compare (CASE_HIGH (label),
6463 vr->max ()) >= 0)
6464 : (tree_int_cst_equal (CASE_LOW (label), vr->min ())
6465 && tree_int_cst_equal (vr->min (), vr->max ())))
6466 return label;
6467 }
6468
6469 /* If there are no such labels then the default label will be
6470 taken. */
6471 if (i > j)
6472 return gimple_switch_label (switch_stmt, 0);
6473 }
6474
6475 if (vr->kind () == VR_ANTI_RANGE)
6476 {
6477 unsigned n = gimple_switch_num_labels (switch_stmt);
6478 tree min_label = gimple_switch_label (switch_stmt, 1);
6479 tree max_label = gimple_switch_label (switch_stmt, n - 1);
6480
6481 /* The default label will be taken only if the anti-range of the
6482 operand is entirely outside the bounds of all the (non-default)
6483 case labels. */
6484 if (tree_int_cst_compare (vr->min (), CASE_LOW (min_label)) <= 0
6485 && (CASE_HIGH (max_label) != NULL_TREE
6486 ? tree_int_cst_compare (vr->max (),
6487 CASE_HIGH (max_label)) >= 0
6488 : tree_int_cst_compare (vr->max (),
6489 CASE_LOW (max_label)) >= 0))
6490 return gimple_switch_label (switch_stmt, 0);
6491 }
6492
6493 return NULL_TREE;
6494 }
6495
6496 if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
6497 {
6498 tree lhs = gimple_assign_lhs (assign_stmt);
6499 if (TREE_CODE (lhs) == SSA_NAME
6500 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6501 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6502 && stmt_interesting_for_vrp (stmt))
6503 {
6504 edge dummy_e;
6505 tree dummy_tree;
6506 value_range new_vr;
6507 vr_values->extract_range_from_stmt (stmt, &dummy_e,
6508 &dummy_tree, &new_vr);
6509 tree singleton;
6510 if (new_vr.singleton_p (&singleton))
6511 return singleton;
6512 }
6513 }
6514
6515 return NULL_TREE;
6516 }
6517
6518 class vrp_dom_walker : public dom_walker
6519 {
6520 public:
6521 vrp_dom_walker (cdi_direction direction,
6522 class const_and_copies *const_and_copies,
6523 class avail_exprs_stack *avail_exprs_stack)
6524 : dom_walker (direction, REACHABLE_BLOCKS),
6525 m_const_and_copies (const_and_copies),
6526 m_avail_exprs_stack (avail_exprs_stack),
6527 m_dummy_cond (NULL) {}
6528
6529 virtual edge before_dom_children (basic_block);
6530 virtual void after_dom_children (basic_block);
6531
6532 class vr_values *vr_values;
6533
6534 private:
6535 class const_and_copies *m_const_and_copies;
6536 class avail_exprs_stack *m_avail_exprs_stack;
6537
6538 gcond *m_dummy_cond;
6539
6540 };
6541
6542 /* Called before processing dominator children of BB. We want to look
6543 at ASSERT_EXPRs and record information from them in the appropriate
6544 tables.
6545
6546 We could look at other statements here. It's not seen as likely
6547 to significantly increase the jump threads we discover. */
6548
6549 edge
6550 vrp_dom_walker::before_dom_children (basic_block bb)
6551 {
6552 gimple_stmt_iterator gsi;
6553
6554 m_avail_exprs_stack->push_marker ();
6555 m_const_and_copies->push_marker ();
6556 for (gsi = gsi_start_nondebug_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6557 {
6558 gimple *stmt = gsi_stmt (gsi);
6559 if (gimple_assign_single_p (stmt)
6560 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
6561 {
6562 tree rhs1 = gimple_assign_rhs1 (stmt);
6563 tree cond = TREE_OPERAND (rhs1, 1);
6564 tree inverted = invert_truthvalue (cond);
6565 vec<cond_equivalence> p;
6566 p.create (3);
6567 record_conditions (&p, cond, inverted);
6568 for (unsigned int i = 0; i < p.length (); i++)
6569 m_avail_exprs_stack->record_cond (&p[i]);
6570
6571 tree lhs = gimple_assign_lhs (stmt);
6572 m_const_and_copies->record_const_or_copy (lhs,
6573 TREE_OPERAND (rhs1, 0));
6574 p.release ();
6575 continue;
6576 }
6577 break;
6578 }
6579 return NULL;
6580 }
6581
6582 /* Called after processing dominator children of BB. This is where we
6583 actually call into the threader. */
6584 void
6585 vrp_dom_walker::after_dom_children (basic_block bb)
6586 {
6587 if (!m_dummy_cond)
6588 m_dummy_cond = gimple_build_cond (NE_EXPR,
6589 integer_zero_node, integer_zero_node,
6590 NULL, NULL);
6591
6592 x_vr_values = vr_values;
6593 thread_outgoing_edges (bb, m_dummy_cond, m_const_and_copies,
6594 m_avail_exprs_stack, NULL,
6595 simplify_stmt_for_jump_threading);
6596 x_vr_values = NULL;
6597
6598 m_avail_exprs_stack->pop_to_marker ();
6599 m_const_and_copies->pop_to_marker ();
6600 }
6601
6602 /* Blocks which have more than one predecessor and more than
6603 one successor present jump threading opportunities, i.e.,
6604 when the block is reached from a specific predecessor, we
6605 may be able to determine which of the outgoing edges will
6606 be traversed. When this optimization applies, we are able
6607 to avoid conditionals at runtime and we may expose secondary
6608 optimization opportunities.
6609
6610 This routine is effectively a driver for the generic jump
6611 threading code. It basically just presents the generic code
6612 with edges that may be suitable for jump threading.
6613
6614 Unlike DOM, we do not iterate VRP if jump threading was successful.
6615 While iterating may expose new opportunities for VRP, it is expected
6616 those opportunities would be very limited and the compile time cost
6617 to expose those opportunities would be significant.
6618
6619 As jump threading opportunities are discovered, they are registered
6620 for later realization. */
6621
6622 static void
6623 identify_jump_threads (class vr_values *vr_values)
6624 {
6625 /* Ugh. When substituting values earlier in this pass we can
6626 wipe the dominance information. So rebuild the dominator
6627 information as we need it within the jump threading code. */
6628 calculate_dominance_info (CDI_DOMINATORS);
6629
6630 /* We do not allow VRP information to be used for jump threading
6631 across a back edge in the CFG. Otherwise it becomes too
6632 difficult to avoid eliminating loop exit tests. Of course
6633 EDGE_DFS_BACK is not accurate at this time so we have to
6634 recompute it. */
6635 mark_dfs_back_edges ();
6636
6637 /* Allocate our unwinder stack to unwind any temporary equivalences
6638 that might be recorded. */
6639 const_and_copies *equiv_stack = new const_and_copies ();
6640
6641 hash_table<expr_elt_hasher> *avail_exprs
6642 = new hash_table<expr_elt_hasher> (1024);
6643 avail_exprs_stack *avail_exprs_stack
6644 = new class avail_exprs_stack (avail_exprs);
6645
6646 vrp_dom_walker walker (CDI_DOMINATORS, equiv_stack, avail_exprs_stack);
6647 walker.vr_values = vr_values;
6648 walker.walk (cfun->cfg->x_entry_block_ptr);
6649
6650 /* We do not actually update the CFG or SSA graphs at this point as
6651 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
6652 handle ASSERT_EXPRs gracefully. */
6653 delete equiv_stack;
6654 delete avail_exprs;
6655 delete avail_exprs_stack;
6656 }
6657
6658 /* Traverse all the blocks folding conditionals with known ranges. */
6659
6660 void
6661 vrp_prop::vrp_finalize (bool warn_array_bounds_p)
6662 {
6663 size_t i;
6664
6665 /* We have completed propagating through the lattice. */
6666 vr_values.set_lattice_propagation_complete ();
6667
6668 if (dump_file)
6669 {
6670 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
6671 vr_values.dump_all_value_ranges (dump_file);
6672 fprintf (dump_file, "\n");
6673 }
6674
6675 /* Set value range to non pointer SSA_NAMEs. */
6676 for (i = 0; i < num_ssa_names; i++)
6677 {
6678 tree name = ssa_name (i);
6679 if (!name)
6680 continue;
6681
6682 const value_range *vr = get_value_range (name);
6683 if (!name || !vr->constant_p ())
6684 continue;
6685
6686 if (POINTER_TYPE_P (TREE_TYPE (name))
6687 && range_includes_zero_p (vr) == 0)
6688 set_ptr_nonnull (name);
6689 else if (!POINTER_TYPE_P (TREE_TYPE (name)))
6690 set_range_info (name, *vr);
6691 }
6692
6693 /* If we're checking array refs, we want to merge information on
6694 the executability of each edge between vrp_folder and the
6695 check_array_bounds_dom_walker: each can clear the
6696 EDGE_EXECUTABLE flag on edges, in different ways.
6697
6698 Hence, if we're going to call check_all_array_refs, set
6699 the flag on every edge now, rather than in
6700 check_array_bounds_dom_walker's ctor; vrp_folder may clear
6701 it from some edges. */
6702 if (warn_array_bounds && warn_array_bounds_p)
6703 set_all_edges_as_executable (cfun);
6704
6705 class vrp_folder vrp_folder;
6706 vrp_folder.vr_values = &vr_values;
6707 vrp_folder.substitute_and_fold ();
6708
6709 if (warn_array_bounds && warn_array_bounds_p)
6710 check_all_array_refs ();
6711 }
6712
6713 /* Main entry point to VRP (Value Range Propagation). This pass is
6714 loosely based on J. R. C. Patterson, ``Accurate Static Branch
6715 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
6716 Programming Language Design and Implementation, pp. 67-78, 1995.
6717 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
6718
6719 This is essentially an SSA-CCP pass modified to deal with ranges
6720 instead of constants.
6721
6722 While propagating ranges, we may find that two or more SSA name
6723 have equivalent, though distinct ranges. For instance,
6724
6725 1 x_9 = p_3->a;
6726 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
6727 3 if (p_4 == q_2)
6728 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
6729 5 endif
6730 6 if (q_2)
6731
6732 In the code above, pointer p_5 has range [q_2, q_2], but from the
6733 code we can also determine that p_5 cannot be NULL and, if q_2 had
6734 a non-varying range, p_5's range should also be compatible with it.
6735
6736 These equivalences are created by two expressions: ASSERT_EXPR and
6737 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
6738 result of another assertion, then we can use the fact that p_5 and
6739 p_4 are equivalent when evaluating p_5's range.
6740
6741 Together with value ranges, we also propagate these equivalences
6742 between names so that we can take advantage of information from
6743 multiple ranges when doing final replacement. Note that this
6744 equivalency relation is transitive but not symmetric.
6745
6746 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
6747 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
6748 in contexts where that assertion does not hold (e.g., in line 6).
6749
6750 TODO, the main difference between this pass and Patterson's is that
6751 we do not propagate edge probabilities. We only compute whether
6752 edges can be taken or not. That is, instead of having a spectrum
6753 of jump probabilities between 0 and 1, we only deal with 0, 1 and
6754 DON'T KNOW. In the future, it may be worthwhile to propagate
6755 probabilities to aid branch prediction. */
6756
6757 static unsigned int
6758 execute_vrp (bool warn_array_bounds_p)
6759 {
6760
6761 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
6762 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
6763 scev_initialize ();
6764
6765 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
6766 Inserting assertions may split edges which will invalidate
6767 EDGE_DFS_BACK. */
6768 insert_range_assertions ();
6769
6770 threadedge_initialize_values ();
6771
6772 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
6773 mark_dfs_back_edges ();
6774
6775 class vrp_prop vrp_prop;
6776 vrp_prop.vrp_initialize ();
6777 vrp_prop.ssa_propagate ();
6778 vrp_prop.vrp_finalize (warn_array_bounds_p);
6779
6780 /* We must identify jump threading opportunities before we release
6781 the datastructures built by VRP. */
6782 identify_jump_threads (&vrp_prop.vr_values);
6783
6784 /* A comparison of an SSA_NAME against a constant where the SSA_NAME
6785 was set by a type conversion can often be rewritten to use the
6786 RHS of the type conversion.
6787
6788 However, doing so inhibits jump threading through the comparison.
6789 So that transformation is not performed until after jump threading
6790 is complete. */
6791 basic_block bb;
6792 FOR_EACH_BB_FN (bb, cfun)
6793 {
6794 gimple *last = last_stmt (bb);
6795 if (last && gimple_code (last) == GIMPLE_COND)
6796 vrp_prop.vr_values.simplify_cond_using_ranges_2 (as_a <gcond *> (last));
6797 }
6798
6799 free_numbers_of_iterations_estimates (cfun);
6800
6801 /* ASSERT_EXPRs must be removed before finalizing jump threads
6802 as finalizing jump threads calls the CFG cleanup code which
6803 does not properly handle ASSERT_EXPRs. */
6804 remove_range_assertions ();
6805
6806 /* If we exposed any new variables, go ahead and put them into
6807 SSA form now, before we handle jump threading. This simplifies
6808 interactions between rewriting of _DECL nodes into SSA form
6809 and rewriting SSA_NAME nodes into SSA form after block
6810 duplication and CFG manipulation. */
6811 update_ssa (TODO_update_ssa);
6812
6813 /* We identified all the jump threading opportunities earlier, but could
6814 not transform the CFG at that time. This routine transforms the
6815 CFG and arranges for the dominator tree to be rebuilt if necessary.
6816
6817 Note the SSA graph update will occur during the normal TODO
6818 processing by the pass manager. */
6819 thread_through_all_blocks (false);
6820
6821 vrp_prop.vr_values.cleanup_edges_and_switches ();
6822 threadedge_finalize_values ();
6823
6824 scev_finalize ();
6825 loop_optimizer_finalize ();
6826 return 0;
6827 }
6828
6829 namespace {
6830
6831 const pass_data pass_data_vrp =
6832 {
6833 GIMPLE_PASS, /* type */
6834 "vrp", /* name */
6835 OPTGROUP_NONE, /* optinfo_flags */
6836 TV_TREE_VRP, /* tv_id */
6837 PROP_ssa, /* properties_required */
6838 0, /* properties_provided */
6839 0, /* properties_destroyed */
6840 0, /* todo_flags_start */
6841 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
6842 };
6843
6844 class pass_vrp : public gimple_opt_pass
6845 {
6846 public:
6847 pass_vrp (gcc::context *ctxt)
6848 : gimple_opt_pass (pass_data_vrp, ctxt), warn_array_bounds_p (false)
6849 {}
6850
6851 /* opt_pass methods: */
6852 opt_pass * clone () { return new pass_vrp (m_ctxt); }
6853 void set_pass_param (unsigned int n, bool param)
6854 {
6855 gcc_assert (n == 0);
6856 warn_array_bounds_p = param;
6857 }
6858 virtual bool gate (function *) { return flag_tree_vrp != 0; }
6859 virtual unsigned int execute (function *)
6860 { return execute_vrp (warn_array_bounds_p); }
6861
6862 private:
6863 bool warn_array_bounds_p;
6864 }; // class pass_vrp
6865
6866 } // anon namespace
6867
6868 gimple_opt_pass *
6869 make_pass_vrp (gcc::context *ctxt)
6870 {
6871 return new pass_vrp (ctxt);
6872 }
6873
6874
6875 /* Worker for determine_value_range. */
6876
6877 static void
6878 determine_value_range_1 (value_range_base *vr, tree expr)
6879 {
6880 if (BINARY_CLASS_P (expr))
6881 {
6882 value_range_base vr0, vr1;
6883 determine_value_range_1 (&vr0, TREE_OPERAND (expr, 0));
6884 determine_value_range_1 (&vr1, TREE_OPERAND (expr, 1));
6885 extract_range_from_binary_expr (vr, TREE_CODE (expr), TREE_TYPE (expr),
6886 &vr0, &vr1);
6887 }
6888 else if (UNARY_CLASS_P (expr))
6889 {
6890 value_range_base vr0;
6891 determine_value_range_1 (&vr0, TREE_OPERAND (expr, 0));
6892 extract_range_from_unary_expr (vr, TREE_CODE (expr), TREE_TYPE (expr),
6893 &vr0, TREE_TYPE (TREE_OPERAND (expr, 0)));
6894 }
6895 else if (TREE_CODE (expr) == INTEGER_CST)
6896 vr->set (expr);
6897 else
6898 {
6899 value_range_kind kind;
6900 wide_int min, max;
6901 /* For SSA names try to extract range info computed by VRP. Otherwise
6902 fall back to varying. */
6903 if (TREE_CODE (expr) == SSA_NAME
6904 && INTEGRAL_TYPE_P (TREE_TYPE (expr))
6905 && (kind = get_range_info (expr, &min, &max)) != VR_VARYING)
6906 vr->set (kind, wide_int_to_tree (TREE_TYPE (expr), min),
6907 wide_int_to_tree (TREE_TYPE (expr), max));
6908 else
6909 vr->set_varying ();
6910 }
6911 }
6912
6913 /* Compute a value-range for EXPR and set it in *MIN and *MAX. Return
6914 the determined range type. */
6915
6916 value_range_kind
6917 determine_value_range (tree expr, wide_int *min, wide_int *max)
6918 {
6919 value_range_base vr;
6920 determine_value_range_1 (&vr, expr);
6921 if (vr.constant_p ())
6922 {
6923 *min = wi::to_wide (vr.min ());
6924 *max = wi::to_wide (vr.max ());
6925 return vr.kind ();
6926 }
6927
6928 return VR_VARYING;
6929 }