tree-vrp.c (zero_nonzero_bits_from_vr): Also return precise information for ranges...
[gcc.git] / gcc / tree-vrp.c
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Diego Novillo <dnovillo@redhat.com>.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "tree-pretty-print.h"
35 #include "gimple-pretty-print.h"
36 #include "diagnostic-core.h"
37 #include "intl.h"
38 #include "cfgloop.h"
39 #include "tree-scalar-evolution.h"
40 #include "tree-ssa-propagate.h"
41 #include "tree-chrec.h"
42 #include "gimple-fold.h"
43 #include "expr.h"
44 #include "optabs.h"
45
46
47 /* Type of value ranges. See value_range_d for a description of these
48 types. */
49 enum value_range_type { VR_UNDEFINED, VR_RANGE, VR_ANTI_RANGE, VR_VARYING };
50
51 /* Range of values that can be associated with an SSA_NAME after VRP
52 has executed. */
53 struct value_range_d
54 {
55 /* Lattice value represented by this range. */
56 enum value_range_type type;
57
58 /* Minimum and maximum values represented by this range. These
59 values should be interpreted as follows:
60
61 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
62 be NULL.
63
64 - If TYPE == VR_RANGE then MIN holds the minimum value and
65 MAX holds the maximum value of the range [MIN, MAX].
66
67 - If TYPE == ANTI_RANGE the variable is known to NOT
68 take any values in the range [MIN, MAX]. */
69 tree min;
70 tree max;
71
72 /* Set of SSA names whose value ranges are equivalent to this one.
73 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
74 bitmap equiv;
75 };
76
77 typedef struct value_range_d value_range_t;
78
79 /* Set of SSA names found live during the RPO traversal of the function
80 for still active basic-blocks. */
81 static sbitmap *live;
82
83 /* Return true if the SSA name NAME is live on the edge E. */
84
85 static bool
86 live_on_edge (edge e, tree name)
87 {
88 return (live[e->dest->index]
89 && TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
90 }
91
92 /* Local functions. */
93 static int compare_values (tree val1, tree val2);
94 static int compare_values_warnv (tree val1, tree val2, bool *);
95 static void vrp_meet (value_range_t *, value_range_t *);
96 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
97 tree, tree, bool, bool *,
98 bool *);
99
100 /* Location information for ASSERT_EXPRs. Each instance of this
101 structure describes an ASSERT_EXPR for an SSA name. Since a single
102 SSA name may have more than one assertion associated with it, these
103 locations are kept in a linked list attached to the corresponding
104 SSA name. */
105 struct assert_locus_d
106 {
107 /* Basic block where the assertion would be inserted. */
108 basic_block bb;
109
110 /* Some assertions need to be inserted on an edge (e.g., assertions
111 generated by COND_EXPRs). In those cases, BB will be NULL. */
112 edge e;
113
114 /* Pointer to the statement that generated this assertion. */
115 gimple_stmt_iterator si;
116
117 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
118 enum tree_code comp_code;
119
120 /* Value being compared against. */
121 tree val;
122
123 /* Expression to compare. */
124 tree expr;
125
126 /* Next node in the linked list. */
127 struct assert_locus_d *next;
128 };
129
130 typedef struct assert_locus_d *assert_locus_t;
131
132 /* If bit I is present, it means that SSA name N_i has a list of
133 assertions that should be inserted in the IL. */
134 static bitmap need_assert_for;
135
136 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
137 holds a list of ASSERT_LOCUS_T nodes that describe where
138 ASSERT_EXPRs for SSA name N_I should be inserted. */
139 static assert_locus_t *asserts_for;
140
141 /* Value range array. After propagation, VR_VALUE[I] holds the range
142 of values that SSA name N_I may take. */
143 static unsigned num_vr_values;
144 static value_range_t **vr_value;
145 static bool values_propagated;
146
147 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
148 number of executable edges we saw the last time we visited the
149 node. */
150 static int *vr_phi_edge_counts;
151
152 typedef struct {
153 gimple stmt;
154 tree vec;
155 } switch_update;
156
157 static VEC (edge, heap) *to_remove_edges;
158 DEF_VEC_O(switch_update);
159 DEF_VEC_ALLOC_O(switch_update, heap);
160 static VEC (switch_update, heap) *to_update_switch_stmts;
161
162
163 /* Return the maximum value for TYPE. */
164
165 static inline tree
166 vrp_val_max (const_tree type)
167 {
168 if (!INTEGRAL_TYPE_P (type))
169 return NULL_TREE;
170
171 return TYPE_MAX_VALUE (type);
172 }
173
174 /* Return the minimum value for TYPE. */
175
176 static inline tree
177 vrp_val_min (const_tree type)
178 {
179 if (!INTEGRAL_TYPE_P (type))
180 return NULL_TREE;
181
182 return TYPE_MIN_VALUE (type);
183 }
184
185 /* Return whether VAL is equal to the maximum value of its type. This
186 will be true for a positive overflow infinity. We can't do a
187 simple equality comparison with TYPE_MAX_VALUE because C typedefs
188 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
189 to the integer constant with the same value in the type. */
190
191 static inline bool
192 vrp_val_is_max (const_tree val)
193 {
194 tree type_max = vrp_val_max (TREE_TYPE (val));
195 return (val == type_max
196 || (type_max != NULL_TREE
197 && operand_equal_p (val, type_max, 0)));
198 }
199
200 /* Return whether VAL is equal to the minimum value of its type. This
201 will be true for a negative overflow infinity. */
202
203 static inline bool
204 vrp_val_is_min (const_tree val)
205 {
206 tree type_min = vrp_val_min (TREE_TYPE (val));
207 return (val == type_min
208 || (type_min != NULL_TREE
209 && operand_equal_p (val, type_min, 0)));
210 }
211
212
213 /* Return whether TYPE should use an overflow infinity distinct from
214 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
215 represent a signed overflow during VRP computations. An infinity
216 is distinct from a half-range, which will go from some number to
217 TYPE_{MIN,MAX}_VALUE. */
218
219 static inline bool
220 needs_overflow_infinity (const_tree type)
221 {
222 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
223 }
224
225 /* Return whether TYPE can support our overflow infinity
226 representation: we use the TREE_OVERFLOW flag, which only exists
227 for constants. If TYPE doesn't support this, we don't optimize
228 cases which would require signed overflow--we drop them to
229 VARYING. */
230
231 static inline bool
232 supports_overflow_infinity (const_tree type)
233 {
234 tree min = vrp_val_min (type), max = vrp_val_max (type);
235 #ifdef ENABLE_CHECKING
236 gcc_assert (needs_overflow_infinity (type));
237 #endif
238 return (min != NULL_TREE
239 && CONSTANT_CLASS_P (min)
240 && max != NULL_TREE
241 && CONSTANT_CLASS_P (max));
242 }
243
244 /* VAL is the maximum or minimum value of a type. Return a
245 corresponding overflow infinity. */
246
247 static inline tree
248 make_overflow_infinity (tree val)
249 {
250 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
251 val = copy_node (val);
252 TREE_OVERFLOW (val) = 1;
253 return val;
254 }
255
256 /* Return a negative overflow infinity for TYPE. */
257
258 static inline tree
259 negative_overflow_infinity (tree type)
260 {
261 gcc_checking_assert (supports_overflow_infinity (type));
262 return make_overflow_infinity (vrp_val_min (type));
263 }
264
265 /* Return a positive overflow infinity for TYPE. */
266
267 static inline tree
268 positive_overflow_infinity (tree type)
269 {
270 gcc_checking_assert (supports_overflow_infinity (type));
271 return make_overflow_infinity (vrp_val_max (type));
272 }
273
274 /* Return whether VAL is a negative overflow infinity. */
275
276 static inline bool
277 is_negative_overflow_infinity (const_tree val)
278 {
279 return (needs_overflow_infinity (TREE_TYPE (val))
280 && CONSTANT_CLASS_P (val)
281 && TREE_OVERFLOW (val)
282 && vrp_val_is_min (val));
283 }
284
285 /* Return whether VAL is a positive overflow infinity. */
286
287 static inline bool
288 is_positive_overflow_infinity (const_tree val)
289 {
290 return (needs_overflow_infinity (TREE_TYPE (val))
291 && CONSTANT_CLASS_P (val)
292 && TREE_OVERFLOW (val)
293 && vrp_val_is_max (val));
294 }
295
296 /* Return whether VAL is a positive or negative overflow infinity. */
297
298 static inline bool
299 is_overflow_infinity (const_tree val)
300 {
301 return (needs_overflow_infinity (TREE_TYPE (val))
302 && CONSTANT_CLASS_P (val)
303 && TREE_OVERFLOW (val)
304 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
305 }
306
307 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
308
309 static inline bool
310 stmt_overflow_infinity (gimple stmt)
311 {
312 if (is_gimple_assign (stmt)
313 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
314 GIMPLE_SINGLE_RHS)
315 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
316 return false;
317 }
318
319 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
320 the same value with TREE_OVERFLOW clear. This can be used to avoid
321 confusing a regular value with an overflow value. */
322
323 static inline tree
324 avoid_overflow_infinity (tree val)
325 {
326 if (!is_overflow_infinity (val))
327 return val;
328
329 if (vrp_val_is_max (val))
330 return vrp_val_max (TREE_TYPE (val));
331 else
332 {
333 gcc_checking_assert (vrp_val_is_min (val));
334 return vrp_val_min (TREE_TYPE (val));
335 }
336 }
337
338
339 /* Return true if ARG is marked with the nonnull attribute in the
340 current function signature. */
341
342 static bool
343 nonnull_arg_p (const_tree arg)
344 {
345 tree t, attrs, fntype;
346 unsigned HOST_WIDE_INT arg_num;
347
348 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
349
350 /* The static chain decl is always non null. */
351 if (arg == cfun->static_chain_decl)
352 return true;
353
354 fntype = TREE_TYPE (current_function_decl);
355 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
356
357 /* If "nonnull" wasn't specified, we know nothing about the argument. */
358 if (attrs == NULL_TREE)
359 return false;
360
361 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
362 if (TREE_VALUE (attrs) == NULL_TREE)
363 return true;
364
365 /* Get the position number for ARG in the function signature. */
366 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
367 t;
368 t = DECL_CHAIN (t), arg_num++)
369 {
370 if (t == arg)
371 break;
372 }
373
374 gcc_assert (t == arg);
375
376 /* Now see if ARG_NUM is mentioned in the nonnull list. */
377 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
378 {
379 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
380 return true;
381 }
382
383 return false;
384 }
385
386
387 /* Set value range VR to VR_VARYING. */
388
389 static inline void
390 set_value_range_to_varying (value_range_t *vr)
391 {
392 vr->type = VR_VARYING;
393 vr->min = vr->max = NULL_TREE;
394 if (vr->equiv)
395 bitmap_clear (vr->equiv);
396 }
397
398
399 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
400
401 static void
402 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
403 tree max, bitmap equiv)
404 {
405 #if defined ENABLE_CHECKING
406 /* Check the validity of the range. */
407 if (t == VR_RANGE || t == VR_ANTI_RANGE)
408 {
409 int cmp;
410
411 gcc_assert (min && max);
412
413 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
414 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
415
416 cmp = compare_values (min, max);
417 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
418
419 if (needs_overflow_infinity (TREE_TYPE (min)))
420 gcc_assert (!is_overflow_infinity (min)
421 || !is_overflow_infinity (max));
422 }
423
424 if (t == VR_UNDEFINED || t == VR_VARYING)
425 gcc_assert (min == NULL_TREE && max == NULL_TREE);
426
427 if (t == VR_UNDEFINED || t == VR_VARYING)
428 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
429 #endif
430
431 vr->type = t;
432 vr->min = min;
433 vr->max = max;
434
435 /* Since updating the equivalence set involves deep copying the
436 bitmaps, only do it if absolutely necessary. */
437 if (vr->equiv == NULL
438 && equiv != NULL)
439 vr->equiv = BITMAP_ALLOC (NULL);
440
441 if (equiv != vr->equiv)
442 {
443 if (equiv && !bitmap_empty_p (equiv))
444 bitmap_copy (vr->equiv, equiv);
445 else
446 bitmap_clear (vr->equiv);
447 }
448 }
449
450
451 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
452 This means adjusting T, MIN and MAX representing the case of a
453 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
454 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
455 In corner cases where MAX+1 or MIN-1 wraps this will fall back
456 to varying.
457 This routine exists to ease canonicalization in the case where we
458 extract ranges from var + CST op limit. */
459
460 static void
461 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
462 tree min, tree max, bitmap equiv)
463 {
464 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
465 if ((t != VR_RANGE
466 && t != VR_ANTI_RANGE)
467 || TREE_CODE (min) != INTEGER_CST
468 || TREE_CODE (max) != INTEGER_CST)
469 {
470 set_value_range (vr, t, min, max, equiv);
471 return;
472 }
473
474 /* Wrong order for min and max, to swap them and the VR type we need
475 to adjust them. */
476 if (tree_int_cst_lt (max, min))
477 {
478 tree one = build_int_cst (TREE_TYPE (min), 1);
479 tree tmp = int_const_binop (PLUS_EXPR, max, one);
480 max = int_const_binop (MINUS_EXPR, min, one);
481 min = tmp;
482
483 /* There's one corner case, if we had [C+1, C] before we now have
484 that again. But this represents an empty value range, so drop
485 to varying in this case. */
486 if (tree_int_cst_lt (max, min))
487 {
488 set_value_range_to_varying (vr);
489 return;
490 }
491
492 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
493 }
494
495 /* Anti-ranges that can be represented as ranges should be so. */
496 if (t == VR_ANTI_RANGE)
497 {
498 bool is_min = vrp_val_is_min (min);
499 bool is_max = vrp_val_is_max (max);
500
501 if (is_min && is_max)
502 {
503 /* We cannot deal with empty ranges, drop to varying. */
504 set_value_range_to_varying (vr);
505 return;
506 }
507 else if (is_min
508 /* As a special exception preserve non-null ranges. */
509 && !(TYPE_UNSIGNED (TREE_TYPE (min))
510 && integer_zerop (max)))
511 {
512 tree one = build_int_cst (TREE_TYPE (max), 1);
513 min = int_const_binop (PLUS_EXPR, max, one);
514 max = vrp_val_max (TREE_TYPE (max));
515 t = VR_RANGE;
516 }
517 else if (is_max)
518 {
519 tree one = build_int_cst (TREE_TYPE (min), 1);
520 max = int_const_binop (MINUS_EXPR, min, one);
521 min = vrp_val_min (TREE_TYPE (min));
522 t = VR_RANGE;
523 }
524 }
525
526 set_value_range (vr, t, min, max, equiv);
527 }
528
529 /* Copy value range FROM into value range TO. */
530
531 static inline void
532 copy_value_range (value_range_t *to, value_range_t *from)
533 {
534 set_value_range (to, from->type, from->min, from->max, from->equiv);
535 }
536
537 /* Set value range VR to a single value. This function is only called
538 with values we get from statements, and exists to clear the
539 TREE_OVERFLOW flag so that we don't think we have an overflow
540 infinity when we shouldn't. */
541
542 static inline void
543 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
544 {
545 gcc_assert (is_gimple_min_invariant (val));
546 val = avoid_overflow_infinity (val);
547 set_value_range (vr, VR_RANGE, val, val, equiv);
548 }
549
550 /* Set value range VR to a non-negative range of type TYPE.
551 OVERFLOW_INFINITY indicates whether to use an overflow infinity
552 rather than TYPE_MAX_VALUE; this should be true if we determine
553 that the range is nonnegative based on the assumption that signed
554 overflow does not occur. */
555
556 static inline void
557 set_value_range_to_nonnegative (value_range_t *vr, tree type,
558 bool overflow_infinity)
559 {
560 tree zero;
561
562 if (overflow_infinity && !supports_overflow_infinity (type))
563 {
564 set_value_range_to_varying (vr);
565 return;
566 }
567
568 zero = build_int_cst (type, 0);
569 set_value_range (vr, VR_RANGE, zero,
570 (overflow_infinity
571 ? positive_overflow_infinity (type)
572 : TYPE_MAX_VALUE (type)),
573 vr->equiv);
574 }
575
576 /* Set value range VR to a non-NULL range of type TYPE. */
577
578 static inline void
579 set_value_range_to_nonnull (value_range_t *vr, tree type)
580 {
581 tree zero = build_int_cst (type, 0);
582 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
583 }
584
585
586 /* Set value range VR to a NULL range of type TYPE. */
587
588 static inline void
589 set_value_range_to_null (value_range_t *vr, tree type)
590 {
591 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
592 }
593
594
595 /* Set value range VR to a range of a truthvalue of type TYPE. */
596
597 static inline void
598 set_value_range_to_truthvalue (value_range_t *vr, tree type)
599 {
600 if (TYPE_PRECISION (type) == 1)
601 set_value_range_to_varying (vr);
602 else
603 set_value_range (vr, VR_RANGE,
604 build_int_cst (type, 0), build_int_cst (type, 1),
605 vr->equiv);
606 }
607
608
609 /* Set value range VR to VR_UNDEFINED. */
610
611 static inline void
612 set_value_range_to_undefined (value_range_t *vr)
613 {
614 vr->type = VR_UNDEFINED;
615 vr->min = vr->max = NULL_TREE;
616 if (vr->equiv)
617 bitmap_clear (vr->equiv);
618 }
619
620
621 /* If abs (min) < abs (max), set VR to [-max, max], if
622 abs (min) >= abs (max), set VR to [-min, min]. */
623
624 static void
625 abs_extent_range (value_range_t *vr, tree min, tree max)
626 {
627 int cmp;
628
629 gcc_assert (TREE_CODE (min) == INTEGER_CST);
630 gcc_assert (TREE_CODE (max) == INTEGER_CST);
631 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
632 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
633 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
634 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
635 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
636 {
637 set_value_range_to_varying (vr);
638 return;
639 }
640 cmp = compare_values (min, max);
641 if (cmp == -1)
642 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
643 else if (cmp == 0 || cmp == 1)
644 {
645 max = min;
646 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
647 }
648 else
649 {
650 set_value_range_to_varying (vr);
651 return;
652 }
653 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
654 }
655
656
657 /* Return value range information for VAR.
658
659 If we have no values ranges recorded (ie, VRP is not running), then
660 return NULL. Otherwise create an empty range if none existed for VAR. */
661
662 static value_range_t *
663 get_value_range (const_tree var)
664 {
665 static const struct value_range_d vr_const_varying
666 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
667 value_range_t *vr;
668 tree sym;
669 unsigned ver = SSA_NAME_VERSION (var);
670
671 /* If we have no recorded ranges, then return NULL. */
672 if (! vr_value)
673 return NULL;
674
675 /* If we query the range for a new SSA name return an unmodifiable VARYING.
676 We should get here at most from the substitute-and-fold stage which
677 will never try to change values. */
678 if (ver >= num_vr_values)
679 return CONST_CAST (value_range_t *, &vr_const_varying);
680
681 vr = vr_value[ver];
682 if (vr)
683 return vr;
684
685 /* After propagation finished do not allocate new value-ranges. */
686 if (values_propagated)
687 return CONST_CAST (value_range_t *, &vr_const_varying);
688
689 /* Create a default value range. */
690 vr_value[ver] = vr = XCNEW (value_range_t);
691
692 /* Defer allocating the equivalence set. */
693 vr->equiv = NULL;
694
695 /* If VAR is a default definition of a parameter, the variable can
696 take any value in VAR's type. */
697 sym = SSA_NAME_VAR (var);
698 if (SSA_NAME_IS_DEFAULT_DEF (var)
699 && TREE_CODE (sym) == PARM_DECL)
700 {
701 /* Try to use the "nonnull" attribute to create ~[0, 0]
702 anti-ranges for pointers. Note that this is only valid with
703 default definitions of PARM_DECLs. */
704 if (POINTER_TYPE_P (TREE_TYPE (sym))
705 && nonnull_arg_p (sym))
706 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
707 else
708 set_value_range_to_varying (vr);
709 }
710
711 return vr;
712 }
713
714 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
715
716 static inline bool
717 vrp_operand_equal_p (const_tree val1, const_tree val2)
718 {
719 if (val1 == val2)
720 return true;
721 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
722 return false;
723 if (is_overflow_infinity (val1))
724 return is_overflow_infinity (val2);
725 return true;
726 }
727
728 /* Return true, if the bitmaps B1 and B2 are equal. */
729
730 static inline bool
731 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
732 {
733 return (b1 == b2
734 || ((!b1 || bitmap_empty_p (b1))
735 && (!b2 || bitmap_empty_p (b2)))
736 || (b1 && b2
737 && bitmap_equal_p (b1, b2)));
738 }
739
740 /* Update the value range and equivalence set for variable VAR to
741 NEW_VR. Return true if NEW_VR is different from VAR's previous
742 value.
743
744 NOTE: This function assumes that NEW_VR is a temporary value range
745 object created for the sole purpose of updating VAR's range. The
746 storage used by the equivalence set from NEW_VR will be freed by
747 this function. Do not call update_value_range when NEW_VR
748 is the range object associated with another SSA name. */
749
750 static inline bool
751 update_value_range (const_tree var, value_range_t *new_vr)
752 {
753 value_range_t *old_vr;
754 bool is_new;
755
756 /* Update the value range, if necessary. */
757 old_vr = get_value_range (var);
758 is_new = old_vr->type != new_vr->type
759 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
760 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
761 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
762
763 if (is_new)
764 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
765 new_vr->equiv);
766
767 BITMAP_FREE (new_vr->equiv);
768
769 return is_new;
770 }
771
772
773 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
774 point where equivalence processing can be turned on/off. */
775
776 static void
777 add_equivalence (bitmap *equiv, const_tree var)
778 {
779 unsigned ver = SSA_NAME_VERSION (var);
780 value_range_t *vr = vr_value[ver];
781
782 if (*equiv == NULL)
783 *equiv = BITMAP_ALLOC (NULL);
784 bitmap_set_bit (*equiv, ver);
785 if (vr && vr->equiv)
786 bitmap_ior_into (*equiv, vr->equiv);
787 }
788
789
790 /* Return true if VR is ~[0, 0]. */
791
792 static inline bool
793 range_is_nonnull (value_range_t *vr)
794 {
795 return vr->type == VR_ANTI_RANGE
796 && integer_zerop (vr->min)
797 && integer_zerop (vr->max);
798 }
799
800
801 /* Return true if VR is [0, 0]. */
802
803 static inline bool
804 range_is_null (value_range_t *vr)
805 {
806 return vr->type == VR_RANGE
807 && integer_zerop (vr->min)
808 && integer_zerop (vr->max);
809 }
810
811 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
812 a singleton. */
813
814 static inline bool
815 range_int_cst_p (value_range_t *vr)
816 {
817 return (vr->type == VR_RANGE
818 && TREE_CODE (vr->max) == INTEGER_CST
819 && TREE_CODE (vr->min) == INTEGER_CST
820 && !TREE_OVERFLOW (vr->max)
821 && !TREE_OVERFLOW (vr->min));
822 }
823
824 /* Return true if VR is a INTEGER_CST singleton. */
825
826 static inline bool
827 range_int_cst_singleton_p (value_range_t *vr)
828 {
829 return (range_int_cst_p (vr)
830 && tree_int_cst_equal (vr->min, vr->max));
831 }
832
833 /* Return true if value range VR involves at least one symbol. */
834
835 static inline bool
836 symbolic_range_p (value_range_t *vr)
837 {
838 return (!is_gimple_min_invariant (vr->min)
839 || !is_gimple_min_invariant (vr->max));
840 }
841
842 /* Return true if value range VR uses an overflow infinity. */
843
844 static inline bool
845 overflow_infinity_range_p (value_range_t *vr)
846 {
847 return (vr->type == VR_RANGE
848 && (is_overflow_infinity (vr->min)
849 || is_overflow_infinity (vr->max)));
850 }
851
852 /* Return false if we can not make a valid comparison based on VR;
853 this will be the case if it uses an overflow infinity and overflow
854 is not undefined (i.e., -fno-strict-overflow is in effect).
855 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
856 uses an overflow infinity. */
857
858 static bool
859 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
860 {
861 gcc_assert (vr->type == VR_RANGE);
862 if (is_overflow_infinity (vr->min))
863 {
864 *strict_overflow_p = true;
865 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
866 return false;
867 }
868 if (is_overflow_infinity (vr->max))
869 {
870 *strict_overflow_p = true;
871 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
872 return false;
873 }
874 return true;
875 }
876
877
878 /* Return true if the result of assignment STMT is know to be non-negative.
879 If the return value is based on the assumption that signed overflow is
880 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
881 *STRICT_OVERFLOW_P.*/
882
883 static bool
884 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
885 {
886 enum tree_code code = gimple_assign_rhs_code (stmt);
887 switch (get_gimple_rhs_class (code))
888 {
889 case GIMPLE_UNARY_RHS:
890 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
891 gimple_expr_type (stmt),
892 gimple_assign_rhs1 (stmt),
893 strict_overflow_p);
894 case GIMPLE_BINARY_RHS:
895 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
896 gimple_expr_type (stmt),
897 gimple_assign_rhs1 (stmt),
898 gimple_assign_rhs2 (stmt),
899 strict_overflow_p);
900 case GIMPLE_TERNARY_RHS:
901 return false;
902 case GIMPLE_SINGLE_RHS:
903 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
904 strict_overflow_p);
905 case GIMPLE_INVALID_RHS:
906 gcc_unreachable ();
907 default:
908 gcc_unreachable ();
909 }
910 }
911
912 /* Return true if return value of call STMT is know to be non-negative.
913 If the return value is based on the assumption that signed overflow is
914 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
915 *STRICT_OVERFLOW_P.*/
916
917 static bool
918 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
919 {
920 tree arg0 = gimple_call_num_args (stmt) > 0 ?
921 gimple_call_arg (stmt, 0) : NULL_TREE;
922 tree arg1 = gimple_call_num_args (stmt) > 1 ?
923 gimple_call_arg (stmt, 1) : NULL_TREE;
924
925 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
926 gimple_call_fndecl (stmt),
927 arg0,
928 arg1,
929 strict_overflow_p);
930 }
931
932 /* Return true if STMT is know to to compute a non-negative value.
933 If the return value is based on the assumption that signed overflow is
934 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
935 *STRICT_OVERFLOW_P.*/
936
937 static bool
938 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
939 {
940 switch (gimple_code (stmt))
941 {
942 case GIMPLE_ASSIGN:
943 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
944 case GIMPLE_CALL:
945 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
946 default:
947 gcc_unreachable ();
948 }
949 }
950
951 /* Return true if the result of assignment STMT is know to be non-zero.
952 If the return value is based on the assumption that signed overflow is
953 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
954 *STRICT_OVERFLOW_P.*/
955
956 static bool
957 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
958 {
959 enum tree_code code = gimple_assign_rhs_code (stmt);
960 switch (get_gimple_rhs_class (code))
961 {
962 case GIMPLE_UNARY_RHS:
963 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
964 gimple_expr_type (stmt),
965 gimple_assign_rhs1 (stmt),
966 strict_overflow_p);
967 case GIMPLE_BINARY_RHS:
968 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
969 gimple_expr_type (stmt),
970 gimple_assign_rhs1 (stmt),
971 gimple_assign_rhs2 (stmt),
972 strict_overflow_p);
973 case GIMPLE_TERNARY_RHS:
974 return false;
975 case GIMPLE_SINGLE_RHS:
976 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
977 strict_overflow_p);
978 case GIMPLE_INVALID_RHS:
979 gcc_unreachable ();
980 default:
981 gcc_unreachable ();
982 }
983 }
984
985 /* Return true if STMT is know to to compute a non-zero value.
986 If the return value is based on the assumption that signed overflow is
987 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
988 *STRICT_OVERFLOW_P.*/
989
990 static bool
991 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
992 {
993 switch (gimple_code (stmt))
994 {
995 case GIMPLE_ASSIGN:
996 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
997 case GIMPLE_CALL:
998 return gimple_alloca_call_p (stmt);
999 default:
1000 gcc_unreachable ();
1001 }
1002 }
1003
1004 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1005 obtained so far. */
1006
1007 static bool
1008 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
1009 {
1010 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1011 return true;
1012
1013 /* If we have an expression of the form &X->a, then the expression
1014 is nonnull if X is nonnull. */
1015 if (is_gimple_assign (stmt)
1016 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1017 {
1018 tree expr = gimple_assign_rhs1 (stmt);
1019 tree base = get_base_address (TREE_OPERAND (expr, 0));
1020
1021 if (base != NULL_TREE
1022 && TREE_CODE (base) == MEM_REF
1023 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1024 {
1025 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
1026 if (range_is_nonnull (vr))
1027 return true;
1028 }
1029 }
1030
1031 return false;
1032 }
1033
1034 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1035 a gimple invariant, or SSA_NAME +- CST. */
1036
1037 static bool
1038 valid_value_p (tree expr)
1039 {
1040 if (TREE_CODE (expr) == SSA_NAME)
1041 return true;
1042
1043 if (TREE_CODE (expr) == PLUS_EXPR
1044 || TREE_CODE (expr) == MINUS_EXPR)
1045 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1046 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1047
1048 return is_gimple_min_invariant (expr);
1049 }
1050
1051 /* Return
1052 1 if VAL < VAL2
1053 0 if !(VAL < VAL2)
1054 -2 if those are incomparable. */
1055 static inline int
1056 operand_less_p (tree val, tree val2)
1057 {
1058 /* LT is folded faster than GE and others. Inline the common case. */
1059 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1060 {
1061 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1062 return INT_CST_LT_UNSIGNED (val, val2);
1063 else
1064 {
1065 if (INT_CST_LT (val, val2))
1066 return 1;
1067 }
1068 }
1069 else
1070 {
1071 tree tcmp;
1072
1073 fold_defer_overflow_warnings ();
1074
1075 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1076
1077 fold_undefer_and_ignore_overflow_warnings ();
1078
1079 if (!tcmp
1080 || TREE_CODE (tcmp) != INTEGER_CST)
1081 return -2;
1082
1083 if (!integer_zerop (tcmp))
1084 return 1;
1085 }
1086
1087 /* val >= val2, not considering overflow infinity. */
1088 if (is_negative_overflow_infinity (val))
1089 return is_negative_overflow_infinity (val2) ? 0 : 1;
1090 else if (is_positive_overflow_infinity (val2))
1091 return is_positive_overflow_infinity (val) ? 0 : 1;
1092
1093 return 0;
1094 }
1095
1096 /* Compare two values VAL1 and VAL2. Return
1097
1098 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1099 -1 if VAL1 < VAL2,
1100 0 if VAL1 == VAL2,
1101 +1 if VAL1 > VAL2, and
1102 +2 if VAL1 != VAL2
1103
1104 This is similar to tree_int_cst_compare but supports pointer values
1105 and values that cannot be compared at compile time.
1106
1107 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1108 true if the return value is only valid if we assume that signed
1109 overflow is undefined. */
1110
1111 static int
1112 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1113 {
1114 if (val1 == val2)
1115 return 0;
1116
1117 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1118 both integers. */
1119 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1120 == POINTER_TYPE_P (TREE_TYPE (val2)));
1121 /* Convert the two values into the same type. This is needed because
1122 sizetype causes sign extension even for unsigned types. */
1123 val2 = fold_convert (TREE_TYPE (val1), val2);
1124 STRIP_USELESS_TYPE_CONVERSION (val2);
1125
1126 if ((TREE_CODE (val1) == SSA_NAME
1127 || TREE_CODE (val1) == PLUS_EXPR
1128 || TREE_CODE (val1) == MINUS_EXPR)
1129 && (TREE_CODE (val2) == SSA_NAME
1130 || TREE_CODE (val2) == PLUS_EXPR
1131 || TREE_CODE (val2) == MINUS_EXPR))
1132 {
1133 tree n1, c1, n2, c2;
1134 enum tree_code code1, code2;
1135
1136 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1137 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1138 same name, return -2. */
1139 if (TREE_CODE (val1) == SSA_NAME)
1140 {
1141 code1 = SSA_NAME;
1142 n1 = val1;
1143 c1 = NULL_TREE;
1144 }
1145 else
1146 {
1147 code1 = TREE_CODE (val1);
1148 n1 = TREE_OPERAND (val1, 0);
1149 c1 = TREE_OPERAND (val1, 1);
1150 if (tree_int_cst_sgn (c1) == -1)
1151 {
1152 if (is_negative_overflow_infinity (c1))
1153 return -2;
1154 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1155 if (!c1)
1156 return -2;
1157 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1158 }
1159 }
1160
1161 if (TREE_CODE (val2) == SSA_NAME)
1162 {
1163 code2 = SSA_NAME;
1164 n2 = val2;
1165 c2 = NULL_TREE;
1166 }
1167 else
1168 {
1169 code2 = TREE_CODE (val2);
1170 n2 = TREE_OPERAND (val2, 0);
1171 c2 = TREE_OPERAND (val2, 1);
1172 if (tree_int_cst_sgn (c2) == -1)
1173 {
1174 if (is_negative_overflow_infinity (c2))
1175 return -2;
1176 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1177 if (!c2)
1178 return -2;
1179 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1180 }
1181 }
1182
1183 /* Both values must use the same name. */
1184 if (n1 != n2)
1185 return -2;
1186
1187 if (code1 == SSA_NAME
1188 && code2 == SSA_NAME)
1189 /* NAME == NAME */
1190 return 0;
1191
1192 /* If overflow is defined we cannot simplify more. */
1193 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1194 return -2;
1195
1196 if (strict_overflow_p != NULL
1197 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1198 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1199 *strict_overflow_p = true;
1200
1201 if (code1 == SSA_NAME)
1202 {
1203 if (code2 == PLUS_EXPR)
1204 /* NAME < NAME + CST */
1205 return -1;
1206 else if (code2 == MINUS_EXPR)
1207 /* NAME > NAME - CST */
1208 return 1;
1209 }
1210 else if (code1 == PLUS_EXPR)
1211 {
1212 if (code2 == SSA_NAME)
1213 /* NAME + CST > NAME */
1214 return 1;
1215 else if (code2 == PLUS_EXPR)
1216 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1217 return compare_values_warnv (c1, c2, strict_overflow_p);
1218 else if (code2 == MINUS_EXPR)
1219 /* NAME + CST1 > NAME - CST2 */
1220 return 1;
1221 }
1222 else if (code1 == MINUS_EXPR)
1223 {
1224 if (code2 == SSA_NAME)
1225 /* NAME - CST < NAME */
1226 return -1;
1227 else if (code2 == PLUS_EXPR)
1228 /* NAME - CST1 < NAME + CST2 */
1229 return -1;
1230 else if (code2 == MINUS_EXPR)
1231 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1232 C1 and C2 are swapped in the call to compare_values. */
1233 return compare_values_warnv (c2, c1, strict_overflow_p);
1234 }
1235
1236 gcc_unreachable ();
1237 }
1238
1239 /* We cannot compare non-constants. */
1240 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1241 return -2;
1242
1243 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1244 {
1245 /* We cannot compare overflowed values, except for overflow
1246 infinities. */
1247 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1248 {
1249 if (strict_overflow_p != NULL)
1250 *strict_overflow_p = true;
1251 if (is_negative_overflow_infinity (val1))
1252 return is_negative_overflow_infinity (val2) ? 0 : -1;
1253 else if (is_negative_overflow_infinity (val2))
1254 return 1;
1255 else if (is_positive_overflow_infinity (val1))
1256 return is_positive_overflow_infinity (val2) ? 0 : 1;
1257 else if (is_positive_overflow_infinity (val2))
1258 return -1;
1259 return -2;
1260 }
1261
1262 return tree_int_cst_compare (val1, val2);
1263 }
1264 else
1265 {
1266 tree t;
1267
1268 /* First see if VAL1 and VAL2 are not the same. */
1269 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1270 return 0;
1271
1272 /* If VAL1 is a lower address than VAL2, return -1. */
1273 if (operand_less_p (val1, val2) == 1)
1274 return -1;
1275
1276 /* If VAL1 is a higher address than VAL2, return +1. */
1277 if (operand_less_p (val2, val1) == 1)
1278 return 1;
1279
1280 /* If VAL1 is different than VAL2, return +2.
1281 For integer constants we either have already returned -1 or 1
1282 or they are equivalent. We still might succeed in proving
1283 something about non-trivial operands. */
1284 if (TREE_CODE (val1) != INTEGER_CST
1285 || TREE_CODE (val2) != INTEGER_CST)
1286 {
1287 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1288 if (t && integer_onep (t))
1289 return 2;
1290 }
1291
1292 return -2;
1293 }
1294 }
1295
1296 /* Compare values like compare_values_warnv, but treat comparisons of
1297 nonconstants which rely on undefined overflow as incomparable. */
1298
1299 static int
1300 compare_values (tree val1, tree val2)
1301 {
1302 bool sop;
1303 int ret;
1304
1305 sop = false;
1306 ret = compare_values_warnv (val1, val2, &sop);
1307 if (sop
1308 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1309 ret = -2;
1310 return ret;
1311 }
1312
1313
1314 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1315 0 if VAL is not inside VR,
1316 -2 if we cannot tell either way.
1317
1318 FIXME, the current semantics of this functions are a bit quirky
1319 when taken in the context of VRP. In here we do not care
1320 about VR's type. If VR is the anti-range ~[3, 5] the call
1321 value_inside_range (4, VR) will return 1.
1322
1323 This is counter-intuitive in a strict sense, but the callers
1324 currently expect this. They are calling the function
1325 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1326 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1327 themselves.
1328
1329 This also applies to value_ranges_intersect_p and
1330 range_includes_zero_p. The semantics of VR_RANGE and
1331 VR_ANTI_RANGE should be encoded here, but that also means
1332 adapting the users of these functions to the new semantics.
1333
1334 Benchmark compile/20001226-1.c compilation time after changing this
1335 function. */
1336
1337 static inline int
1338 value_inside_range (tree val, value_range_t * vr)
1339 {
1340 int cmp1, cmp2;
1341
1342 cmp1 = operand_less_p (val, vr->min);
1343 if (cmp1 == -2)
1344 return -2;
1345 if (cmp1 == 1)
1346 return 0;
1347
1348 cmp2 = operand_less_p (vr->max, val);
1349 if (cmp2 == -2)
1350 return -2;
1351
1352 return !cmp2;
1353 }
1354
1355
1356 /* Return true if value ranges VR0 and VR1 have a non-empty
1357 intersection.
1358
1359 Benchmark compile/20001226-1.c compilation time after changing this
1360 function.
1361 */
1362
1363 static inline bool
1364 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1365 {
1366 /* The value ranges do not intersect if the maximum of the first range is
1367 less than the minimum of the second range or vice versa.
1368 When those relations are unknown, we can't do any better. */
1369 if (operand_less_p (vr0->max, vr1->min) != 0)
1370 return false;
1371 if (operand_less_p (vr1->max, vr0->min) != 0)
1372 return false;
1373 return true;
1374 }
1375
1376
1377 /* Return true if VR includes the value zero, false otherwise. FIXME,
1378 currently this will return false for an anti-range like ~[-4, 3].
1379 This will be wrong when the semantics of value_inside_range are
1380 modified (currently the users of this function expect these
1381 semantics). */
1382
1383 static inline bool
1384 range_includes_zero_p (value_range_t *vr)
1385 {
1386 tree zero;
1387
1388 gcc_assert (vr->type != VR_UNDEFINED
1389 && vr->type != VR_VARYING
1390 && !symbolic_range_p (vr));
1391
1392 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1393 return (value_inside_range (zero, vr) == 1);
1394 }
1395
1396 /* Return true if *VR is know to only contain nonnegative values. */
1397
1398 static inline bool
1399 value_range_nonnegative_p (value_range_t *vr)
1400 {
1401 if (vr->type == VR_RANGE)
1402 {
1403 int result = compare_values (vr->min, integer_zero_node);
1404 return (result == 0 || result == 1);
1405 }
1406 else if (vr->type == VR_ANTI_RANGE)
1407 {
1408 int result = compare_values (vr->max, integer_zero_node);
1409 return result == -1;
1410 }
1411
1412 return false;
1413 }
1414
1415 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1416 false otherwise or if no value range information is available. */
1417
1418 bool
1419 ssa_name_nonnegative_p (const_tree t)
1420 {
1421 value_range_t *vr = get_value_range (t);
1422
1423 if (INTEGRAL_TYPE_P (t)
1424 && TYPE_UNSIGNED (t))
1425 return true;
1426
1427 if (!vr)
1428 return false;
1429
1430 return value_range_nonnegative_p (vr);
1431 }
1432
1433 /* If *VR has a value rante that is a single constant value return that,
1434 otherwise return NULL_TREE. */
1435
1436 static tree
1437 value_range_constant_singleton (value_range_t *vr)
1438 {
1439 if (vr->type == VR_RANGE
1440 && operand_equal_p (vr->min, vr->max, 0)
1441 && is_gimple_min_invariant (vr->min))
1442 return vr->min;
1443
1444 return NULL_TREE;
1445 }
1446
1447 /* If OP has a value range with a single constant value return that,
1448 otherwise return NULL_TREE. This returns OP itself if OP is a
1449 constant. */
1450
1451 static tree
1452 op_with_constant_singleton_value_range (tree op)
1453 {
1454 if (is_gimple_min_invariant (op))
1455 return op;
1456
1457 if (TREE_CODE (op) != SSA_NAME)
1458 return NULL_TREE;
1459
1460 return value_range_constant_singleton (get_value_range (op));
1461 }
1462
1463 /* Return true if op is in a boolean [0, 1] value-range. */
1464
1465 static bool
1466 op_with_boolean_value_range_p (tree op)
1467 {
1468 value_range_t *vr;
1469
1470 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1471 return true;
1472
1473 if (integer_zerop (op)
1474 || integer_onep (op))
1475 return true;
1476
1477 if (TREE_CODE (op) != SSA_NAME)
1478 return false;
1479
1480 vr = get_value_range (op);
1481 return (vr->type == VR_RANGE
1482 && integer_zerop (vr->min)
1483 && integer_onep (vr->max));
1484 }
1485
1486 /* Extract value range information from an ASSERT_EXPR EXPR and store
1487 it in *VR_P. */
1488
1489 static void
1490 extract_range_from_assert (value_range_t *vr_p, tree expr)
1491 {
1492 tree var, cond, limit, min, max, type;
1493 value_range_t *var_vr, *limit_vr;
1494 enum tree_code cond_code;
1495
1496 var = ASSERT_EXPR_VAR (expr);
1497 cond = ASSERT_EXPR_COND (expr);
1498
1499 gcc_assert (COMPARISON_CLASS_P (cond));
1500
1501 /* Find VAR in the ASSERT_EXPR conditional. */
1502 if (var == TREE_OPERAND (cond, 0)
1503 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1504 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1505 {
1506 /* If the predicate is of the form VAR COMP LIMIT, then we just
1507 take LIMIT from the RHS and use the same comparison code. */
1508 cond_code = TREE_CODE (cond);
1509 limit = TREE_OPERAND (cond, 1);
1510 cond = TREE_OPERAND (cond, 0);
1511 }
1512 else
1513 {
1514 /* If the predicate is of the form LIMIT COMP VAR, then we need
1515 to flip around the comparison code to create the proper range
1516 for VAR. */
1517 cond_code = swap_tree_comparison (TREE_CODE (cond));
1518 limit = TREE_OPERAND (cond, 0);
1519 cond = TREE_OPERAND (cond, 1);
1520 }
1521
1522 limit = avoid_overflow_infinity (limit);
1523
1524 type = TREE_TYPE (limit);
1525 gcc_assert (limit != var);
1526
1527 /* For pointer arithmetic, we only keep track of pointer equality
1528 and inequality. */
1529 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1530 {
1531 set_value_range_to_varying (vr_p);
1532 return;
1533 }
1534
1535 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1536 try to use LIMIT's range to avoid creating symbolic ranges
1537 unnecessarily. */
1538 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1539
1540 /* LIMIT's range is only interesting if it has any useful information. */
1541 if (limit_vr
1542 && (limit_vr->type == VR_UNDEFINED
1543 || limit_vr->type == VR_VARYING
1544 || symbolic_range_p (limit_vr)))
1545 limit_vr = NULL;
1546
1547 /* Initially, the new range has the same set of equivalences of
1548 VAR's range. This will be revised before returning the final
1549 value. Since assertions may be chained via mutually exclusive
1550 predicates, we will need to trim the set of equivalences before
1551 we are done. */
1552 gcc_assert (vr_p->equiv == NULL);
1553 add_equivalence (&vr_p->equiv, var);
1554
1555 /* Extract a new range based on the asserted comparison for VAR and
1556 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1557 will only use it for equality comparisons (EQ_EXPR). For any
1558 other kind of assertion, we cannot derive a range from LIMIT's
1559 anti-range that can be used to describe the new range. For
1560 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1561 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1562 no single range for x_2 that could describe LE_EXPR, so we might
1563 as well build the range [b_4, +INF] for it.
1564 One special case we handle is extracting a range from a
1565 range test encoded as (unsigned)var + CST <= limit. */
1566 if (TREE_CODE (cond) == NOP_EXPR
1567 || TREE_CODE (cond) == PLUS_EXPR)
1568 {
1569 if (TREE_CODE (cond) == PLUS_EXPR)
1570 {
1571 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1572 TREE_OPERAND (cond, 1));
1573 max = int_const_binop (PLUS_EXPR, limit, min);
1574 cond = TREE_OPERAND (cond, 0);
1575 }
1576 else
1577 {
1578 min = build_int_cst (TREE_TYPE (var), 0);
1579 max = limit;
1580 }
1581
1582 /* Make sure to not set TREE_OVERFLOW on the final type
1583 conversion. We are willingly interpreting large positive
1584 unsigned values as negative singed values here. */
1585 min = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (min),
1586 0, false);
1587 max = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (max),
1588 0, false);
1589
1590 /* We can transform a max, min range to an anti-range or
1591 vice-versa. Use set_and_canonicalize_value_range which does
1592 this for us. */
1593 if (cond_code == LE_EXPR)
1594 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1595 min, max, vr_p->equiv);
1596 else if (cond_code == GT_EXPR)
1597 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1598 min, max, vr_p->equiv);
1599 else
1600 gcc_unreachable ();
1601 }
1602 else if (cond_code == EQ_EXPR)
1603 {
1604 enum value_range_type range_type;
1605
1606 if (limit_vr)
1607 {
1608 range_type = limit_vr->type;
1609 min = limit_vr->min;
1610 max = limit_vr->max;
1611 }
1612 else
1613 {
1614 range_type = VR_RANGE;
1615 min = limit;
1616 max = limit;
1617 }
1618
1619 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1620
1621 /* When asserting the equality VAR == LIMIT and LIMIT is another
1622 SSA name, the new range will also inherit the equivalence set
1623 from LIMIT. */
1624 if (TREE_CODE (limit) == SSA_NAME)
1625 add_equivalence (&vr_p->equiv, limit);
1626 }
1627 else if (cond_code == NE_EXPR)
1628 {
1629 /* As described above, when LIMIT's range is an anti-range and
1630 this assertion is an inequality (NE_EXPR), then we cannot
1631 derive anything from the anti-range. For instance, if
1632 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1633 not imply that VAR's range is [0, 0]. So, in the case of
1634 anti-ranges, we just assert the inequality using LIMIT and
1635 not its anti-range.
1636
1637 If LIMIT_VR is a range, we can only use it to build a new
1638 anti-range if LIMIT_VR is a single-valued range. For
1639 instance, if LIMIT_VR is [0, 1], the predicate
1640 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1641 Rather, it means that for value 0 VAR should be ~[0, 0]
1642 and for value 1, VAR should be ~[1, 1]. We cannot
1643 represent these ranges.
1644
1645 The only situation in which we can build a valid
1646 anti-range is when LIMIT_VR is a single-valued range
1647 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1648 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1649 if (limit_vr
1650 && limit_vr->type == VR_RANGE
1651 && compare_values (limit_vr->min, limit_vr->max) == 0)
1652 {
1653 min = limit_vr->min;
1654 max = limit_vr->max;
1655 }
1656 else
1657 {
1658 /* In any other case, we cannot use LIMIT's range to build a
1659 valid anti-range. */
1660 min = max = limit;
1661 }
1662
1663 /* If MIN and MAX cover the whole range for their type, then
1664 just use the original LIMIT. */
1665 if (INTEGRAL_TYPE_P (type)
1666 && vrp_val_is_min (min)
1667 && vrp_val_is_max (max))
1668 min = max = limit;
1669
1670 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1671 }
1672 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1673 {
1674 min = TYPE_MIN_VALUE (type);
1675
1676 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1677 max = limit;
1678 else
1679 {
1680 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1681 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1682 LT_EXPR. */
1683 max = limit_vr->max;
1684 }
1685
1686 /* If the maximum value forces us to be out of bounds, simply punt.
1687 It would be pointless to try and do anything more since this
1688 all should be optimized away above us. */
1689 if ((cond_code == LT_EXPR
1690 && compare_values (max, min) == 0)
1691 || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
1692 set_value_range_to_varying (vr_p);
1693 else
1694 {
1695 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1696 if (cond_code == LT_EXPR)
1697 {
1698 tree one = build_int_cst (type, 1);
1699 max = fold_build2 (MINUS_EXPR, type, max, one);
1700 if (EXPR_P (max))
1701 TREE_NO_WARNING (max) = 1;
1702 }
1703
1704 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1705 }
1706 }
1707 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1708 {
1709 max = TYPE_MAX_VALUE (type);
1710
1711 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1712 min = limit;
1713 else
1714 {
1715 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1716 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1717 GT_EXPR. */
1718 min = limit_vr->min;
1719 }
1720
1721 /* If the minimum value forces us to be out of bounds, simply punt.
1722 It would be pointless to try and do anything more since this
1723 all should be optimized away above us. */
1724 if ((cond_code == GT_EXPR
1725 && compare_values (min, max) == 0)
1726 || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
1727 set_value_range_to_varying (vr_p);
1728 else
1729 {
1730 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1731 if (cond_code == GT_EXPR)
1732 {
1733 tree one = build_int_cst (type, 1);
1734 min = fold_build2 (PLUS_EXPR, type, min, one);
1735 if (EXPR_P (min))
1736 TREE_NO_WARNING (min) = 1;
1737 }
1738
1739 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1740 }
1741 }
1742 else
1743 gcc_unreachable ();
1744
1745 /* If VAR already had a known range, it may happen that the new
1746 range we have computed and VAR's range are not compatible. For
1747 instance,
1748
1749 if (p_5 == NULL)
1750 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1751 x_7 = p_6->fld;
1752 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1753
1754 While the above comes from a faulty program, it will cause an ICE
1755 later because p_8 and p_6 will have incompatible ranges and at
1756 the same time will be considered equivalent. A similar situation
1757 would arise from
1758
1759 if (i_5 > 10)
1760 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1761 if (i_5 < 5)
1762 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1763
1764 Again i_6 and i_7 will have incompatible ranges. It would be
1765 pointless to try and do anything with i_7's range because
1766 anything dominated by 'if (i_5 < 5)' will be optimized away.
1767 Note, due to the wa in which simulation proceeds, the statement
1768 i_7 = ASSERT_EXPR <...> we would never be visited because the
1769 conditional 'if (i_5 < 5)' always evaluates to false. However,
1770 this extra check does not hurt and may protect against future
1771 changes to VRP that may get into a situation similar to the
1772 NULL pointer dereference example.
1773
1774 Note that these compatibility tests are only needed when dealing
1775 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1776 are both anti-ranges, they will always be compatible, because two
1777 anti-ranges will always have a non-empty intersection. */
1778
1779 var_vr = get_value_range (var);
1780
1781 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1782 ranges or anti-ranges. */
1783 if (vr_p->type == VR_VARYING
1784 || vr_p->type == VR_UNDEFINED
1785 || var_vr->type == VR_VARYING
1786 || var_vr->type == VR_UNDEFINED
1787 || symbolic_range_p (vr_p)
1788 || symbolic_range_p (var_vr))
1789 return;
1790
1791 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1792 {
1793 /* If the two ranges have a non-empty intersection, we can
1794 refine the resulting range. Since the assert expression
1795 creates an equivalency and at the same time it asserts a
1796 predicate, we can take the intersection of the two ranges to
1797 get better precision. */
1798 if (value_ranges_intersect_p (var_vr, vr_p))
1799 {
1800 /* Use the larger of the two minimums. */
1801 if (compare_values (vr_p->min, var_vr->min) == -1)
1802 min = var_vr->min;
1803 else
1804 min = vr_p->min;
1805
1806 /* Use the smaller of the two maximums. */
1807 if (compare_values (vr_p->max, var_vr->max) == 1)
1808 max = var_vr->max;
1809 else
1810 max = vr_p->max;
1811
1812 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1813 }
1814 else
1815 {
1816 /* The two ranges do not intersect, set the new range to
1817 VARYING, because we will not be able to do anything
1818 meaningful with it. */
1819 set_value_range_to_varying (vr_p);
1820 }
1821 }
1822 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1823 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1824 {
1825 /* A range and an anti-range will cancel each other only if
1826 their ends are the same. For instance, in the example above,
1827 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1828 so VR_P should be set to VR_VARYING. */
1829 if (compare_values (var_vr->min, vr_p->min) == 0
1830 && compare_values (var_vr->max, vr_p->max) == 0)
1831 set_value_range_to_varying (vr_p);
1832 else
1833 {
1834 tree min, max, anti_min, anti_max, real_min, real_max;
1835 int cmp;
1836
1837 /* We want to compute the logical AND of the two ranges;
1838 there are three cases to consider.
1839
1840
1841 1. The VR_ANTI_RANGE range is completely within the
1842 VR_RANGE and the endpoints of the ranges are
1843 different. In that case the resulting range
1844 should be whichever range is more precise.
1845 Typically that will be the VR_RANGE.
1846
1847 2. The VR_ANTI_RANGE is completely disjoint from
1848 the VR_RANGE. In this case the resulting range
1849 should be the VR_RANGE.
1850
1851 3. There is some overlap between the VR_ANTI_RANGE
1852 and the VR_RANGE.
1853
1854 3a. If the high limit of the VR_ANTI_RANGE resides
1855 within the VR_RANGE, then the result is a new
1856 VR_RANGE starting at the high limit of the
1857 VR_ANTI_RANGE + 1 and extending to the
1858 high limit of the original VR_RANGE.
1859
1860 3b. If the low limit of the VR_ANTI_RANGE resides
1861 within the VR_RANGE, then the result is a new
1862 VR_RANGE starting at the low limit of the original
1863 VR_RANGE and extending to the low limit of the
1864 VR_ANTI_RANGE - 1. */
1865 if (vr_p->type == VR_ANTI_RANGE)
1866 {
1867 anti_min = vr_p->min;
1868 anti_max = vr_p->max;
1869 real_min = var_vr->min;
1870 real_max = var_vr->max;
1871 }
1872 else
1873 {
1874 anti_min = var_vr->min;
1875 anti_max = var_vr->max;
1876 real_min = vr_p->min;
1877 real_max = vr_p->max;
1878 }
1879
1880
1881 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1882 not including any endpoints. */
1883 if (compare_values (anti_max, real_max) == -1
1884 && compare_values (anti_min, real_min) == 1)
1885 {
1886 /* If the range is covering the whole valid range of
1887 the type keep the anti-range. */
1888 if (!vrp_val_is_min (real_min)
1889 || !vrp_val_is_max (real_max))
1890 set_value_range (vr_p, VR_RANGE, real_min,
1891 real_max, vr_p->equiv);
1892 }
1893 /* Case 2, VR_ANTI_RANGE completely disjoint from
1894 VR_RANGE. */
1895 else if (compare_values (anti_min, real_max) == 1
1896 || compare_values (anti_max, real_min) == -1)
1897 {
1898 set_value_range (vr_p, VR_RANGE, real_min,
1899 real_max, vr_p->equiv);
1900 }
1901 /* Case 3a, the anti-range extends into the low
1902 part of the real range. Thus creating a new
1903 low for the real range. */
1904 else if (((cmp = compare_values (anti_max, real_min)) == 1
1905 || cmp == 0)
1906 && compare_values (anti_max, real_max) == -1)
1907 {
1908 gcc_assert (!is_positive_overflow_infinity (anti_max));
1909 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1910 && vrp_val_is_max (anti_max))
1911 {
1912 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1913 {
1914 set_value_range_to_varying (vr_p);
1915 return;
1916 }
1917 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1918 }
1919 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1920 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1921 anti_max,
1922 build_int_cst (TREE_TYPE (var_vr->min), 1));
1923 else
1924 min = fold_build_pointer_plus_hwi (anti_max, 1);
1925 max = real_max;
1926 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1927 }
1928 /* Case 3b, the anti-range extends into the high
1929 part of the real range. Thus creating a new
1930 higher for the real range. */
1931 else if (compare_values (anti_min, real_min) == 1
1932 && ((cmp = compare_values (anti_min, real_max)) == -1
1933 || cmp == 0))
1934 {
1935 gcc_assert (!is_negative_overflow_infinity (anti_min));
1936 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1937 && vrp_val_is_min (anti_min))
1938 {
1939 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1940 {
1941 set_value_range_to_varying (vr_p);
1942 return;
1943 }
1944 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1945 }
1946 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1947 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1948 anti_min,
1949 build_int_cst (TREE_TYPE (var_vr->min), 1));
1950 else
1951 max = fold_build_pointer_plus_hwi (anti_min, -1);
1952 min = real_min;
1953 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1954 }
1955 }
1956 }
1957 }
1958
1959
1960 /* Extract range information from SSA name VAR and store it in VR. If
1961 VAR has an interesting range, use it. Otherwise, create the
1962 range [VAR, VAR] and return it. This is useful in situations where
1963 we may have conditionals testing values of VARYING names. For
1964 instance,
1965
1966 x_3 = y_5;
1967 if (x_3 > y_5)
1968 ...
1969
1970 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1971 always false. */
1972
1973 static void
1974 extract_range_from_ssa_name (value_range_t *vr, tree var)
1975 {
1976 value_range_t *var_vr = get_value_range (var);
1977
1978 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1979 copy_value_range (vr, var_vr);
1980 else
1981 set_value_range (vr, VR_RANGE, var, var, NULL);
1982
1983 add_equivalence (&vr->equiv, var);
1984 }
1985
1986
1987 /* Wrapper around int_const_binop. If the operation overflows and we
1988 are not using wrapping arithmetic, then adjust the result to be
1989 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1990 NULL_TREE if we need to use an overflow infinity representation but
1991 the type does not support it. */
1992
1993 static tree
1994 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1995 {
1996 tree res;
1997
1998 res = int_const_binop (code, val1, val2);
1999
2000 /* If we are using unsigned arithmetic, operate symbolically
2001 on -INF and +INF as int_const_binop only handles signed overflow. */
2002 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
2003 {
2004 int checkz = compare_values (res, val1);
2005 bool overflow = false;
2006
2007 /* Ensure that res = val1 [+*] val2 >= val1
2008 or that res = val1 - val2 <= val1. */
2009 if ((code == PLUS_EXPR
2010 && !(checkz == 1 || checkz == 0))
2011 || (code == MINUS_EXPR
2012 && !(checkz == 0 || checkz == -1)))
2013 {
2014 overflow = true;
2015 }
2016 /* Checking for multiplication overflow is done by dividing the
2017 output of the multiplication by the first input of the
2018 multiplication. If the result of that division operation is
2019 not equal to the second input of the multiplication, then the
2020 multiplication overflowed. */
2021 else if (code == MULT_EXPR && !integer_zerop (val1))
2022 {
2023 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
2024 res,
2025 val1);
2026 int check = compare_values (tmp, val2);
2027
2028 if (check != 0)
2029 overflow = true;
2030 }
2031
2032 if (overflow)
2033 {
2034 res = copy_node (res);
2035 TREE_OVERFLOW (res) = 1;
2036 }
2037
2038 }
2039 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
2040 /* If the singed operation wraps then int_const_binop has done
2041 everything we want. */
2042 ;
2043 else if ((TREE_OVERFLOW (res)
2044 && !TREE_OVERFLOW (val1)
2045 && !TREE_OVERFLOW (val2))
2046 || is_overflow_infinity (val1)
2047 || is_overflow_infinity (val2))
2048 {
2049 /* If the operation overflowed but neither VAL1 nor VAL2 are
2050 overflown, return -INF or +INF depending on the operation
2051 and the combination of signs of the operands. */
2052 int sgn1 = tree_int_cst_sgn (val1);
2053 int sgn2 = tree_int_cst_sgn (val2);
2054
2055 if (needs_overflow_infinity (TREE_TYPE (res))
2056 && !supports_overflow_infinity (TREE_TYPE (res)))
2057 return NULL_TREE;
2058
2059 /* We have to punt on adding infinities of different signs,
2060 since we can't tell what the sign of the result should be.
2061 Likewise for subtracting infinities of the same sign. */
2062 if (((code == PLUS_EXPR && sgn1 != sgn2)
2063 || (code == MINUS_EXPR && sgn1 == sgn2))
2064 && is_overflow_infinity (val1)
2065 && is_overflow_infinity (val2))
2066 return NULL_TREE;
2067
2068 /* Don't try to handle division or shifting of infinities. */
2069 if ((code == TRUNC_DIV_EXPR
2070 || code == FLOOR_DIV_EXPR
2071 || code == CEIL_DIV_EXPR
2072 || code == EXACT_DIV_EXPR
2073 || code == ROUND_DIV_EXPR
2074 || code == RSHIFT_EXPR)
2075 && (is_overflow_infinity (val1)
2076 || is_overflow_infinity (val2)))
2077 return NULL_TREE;
2078
2079 /* Notice that we only need to handle the restricted set of
2080 operations handled by extract_range_from_binary_expr.
2081 Among them, only multiplication, addition and subtraction
2082 can yield overflow without overflown operands because we
2083 are working with integral types only... except in the
2084 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2085 for division too. */
2086
2087 /* For multiplication, the sign of the overflow is given
2088 by the comparison of the signs of the operands. */
2089 if ((code == MULT_EXPR && sgn1 == sgn2)
2090 /* For addition, the operands must be of the same sign
2091 to yield an overflow. Its sign is therefore that
2092 of one of the operands, for example the first. For
2093 infinite operands X + -INF is negative, not positive. */
2094 || (code == PLUS_EXPR
2095 && (sgn1 >= 0
2096 ? !is_negative_overflow_infinity (val2)
2097 : is_positive_overflow_infinity (val2)))
2098 /* For subtraction, non-infinite operands must be of
2099 different signs to yield an overflow. Its sign is
2100 therefore that of the first operand or the opposite of
2101 that of the second operand. A first operand of 0 counts
2102 as positive here, for the corner case 0 - (-INF), which
2103 overflows, but must yield +INF. For infinite operands 0
2104 - INF is negative, not positive. */
2105 || (code == MINUS_EXPR
2106 && (sgn1 >= 0
2107 ? !is_positive_overflow_infinity (val2)
2108 : is_negative_overflow_infinity (val2)))
2109 /* We only get in here with positive shift count, so the
2110 overflow direction is the same as the sign of val1.
2111 Actually rshift does not overflow at all, but we only
2112 handle the case of shifting overflowed -INF and +INF. */
2113 || (code == RSHIFT_EXPR
2114 && sgn1 >= 0)
2115 /* For division, the only case is -INF / -1 = +INF. */
2116 || code == TRUNC_DIV_EXPR
2117 || code == FLOOR_DIV_EXPR
2118 || code == CEIL_DIV_EXPR
2119 || code == EXACT_DIV_EXPR
2120 || code == ROUND_DIV_EXPR)
2121 return (needs_overflow_infinity (TREE_TYPE (res))
2122 ? positive_overflow_infinity (TREE_TYPE (res))
2123 : TYPE_MAX_VALUE (TREE_TYPE (res)));
2124 else
2125 return (needs_overflow_infinity (TREE_TYPE (res))
2126 ? negative_overflow_infinity (TREE_TYPE (res))
2127 : TYPE_MIN_VALUE (TREE_TYPE (res)));
2128 }
2129
2130 return res;
2131 }
2132
2133
2134 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
2135 bitmask if some bit is unset, it means for all numbers in the range
2136 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
2137 bitmask if some bit is set, it means for all numbers in the range
2138 the bit is 1, otherwise it might be 0 or 1. */
2139
2140 static bool
2141 zero_nonzero_bits_from_vr (value_range_t *vr,
2142 double_int *may_be_nonzero,
2143 double_int *must_be_nonzero)
2144 {
2145 *may_be_nonzero = double_int_minus_one;
2146 *must_be_nonzero = double_int_zero;
2147 if (!range_int_cst_p (vr))
2148 return false;
2149
2150 if (range_int_cst_singleton_p (vr))
2151 {
2152 *may_be_nonzero = tree_to_double_int (vr->min);
2153 *must_be_nonzero = *may_be_nonzero;
2154 }
2155 else if (tree_int_cst_sgn (vr->min) >= 0
2156 || tree_int_cst_sgn (vr->max) < 0)
2157 {
2158 double_int dmin = tree_to_double_int (vr->min);
2159 double_int dmax = tree_to_double_int (vr->max);
2160 double_int xor_mask = double_int_xor (dmin, dmax);
2161 *may_be_nonzero = double_int_ior (dmin, dmax);
2162 *must_be_nonzero = double_int_and (dmin, dmax);
2163 if (xor_mask.high != 0)
2164 {
2165 unsigned HOST_WIDE_INT mask
2166 = ((unsigned HOST_WIDE_INT) 1
2167 << floor_log2 (xor_mask.high)) - 1;
2168 may_be_nonzero->low = ALL_ONES;
2169 may_be_nonzero->high |= mask;
2170 must_be_nonzero->low = 0;
2171 must_be_nonzero->high &= ~mask;
2172 }
2173 else if (xor_mask.low != 0)
2174 {
2175 unsigned HOST_WIDE_INT mask
2176 = ((unsigned HOST_WIDE_INT) 1
2177 << floor_log2 (xor_mask.low)) - 1;
2178 may_be_nonzero->low |= mask;
2179 must_be_nonzero->low &= ~mask;
2180 }
2181 }
2182
2183 return true;
2184 }
2185
2186
2187 /* Extract range information from a binary operation CODE based on
2188 the ranges of each of its operands, *VR0 and *VR1 with resulting
2189 type EXPR_TYPE. The resulting range is stored in *VR. */
2190
2191 static void
2192 extract_range_from_binary_expr_1 (value_range_t *vr,
2193 enum tree_code code, tree expr_type,
2194 value_range_t *vr0_, value_range_t *vr1_)
2195 {
2196 value_range_t vr0 = *vr0_, vr1 = *vr1_;
2197 enum value_range_type type;
2198 tree min, max;
2199 int cmp;
2200
2201 /* Not all binary expressions can be applied to ranges in a
2202 meaningful way. Handle only arithmetic operations. */
2203 if (code != PLUS_EXPR
2204 && code != MINUS_EXPR
2205 && code != POINTER_PLUS_EXPR
2206 && code != MULT_EXPR
2207 && code != TRUNC_DIV_EXPR
2208 && code != FLOOR_DIV_EXPR
2209 && code != CEIL_DIV_EXPR
2210 && code != EXACT_DIV_EXPR
2211 && code != ROUND_DIV_EXPR
2212 && code != TRUNC_MOD_EXPR
2213 && code != RSHIFT_EXPR
2214 && code != MIN_EXPR
2215 && code != MAX_EXPR
2216 && code != BIT_AND_EXPR
2217 && code != BIT_IOR_EXPR
2218 && code != BIT_XOR_EXPR)
2219 {
2220 set_value_range_to_varying (vr);
2221 return;
2222 }
2223
2224 /* If both ranges are UNDEFINED, so is the result. */
2225 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2226 {
2227 set_value_range_to_undefined (vr);
2228 return;
2229 }
2230 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2231 code. At some point we may want to special-case operations that
2232 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2233 operand. */
2234 else if (vr0.type == VR_UNDEFINED)
2235 set_value_range_to_varying (&vr0);
2236 else if (vr1.type == VR_UNDEFINED)
2237 set_value_range_to_varying (&vr1);
2238
2239 /* The type of the resulting value range defaults to VR0.TYPE. */
2240 type = vr0.type;
2241
2242 /* Refuse to operate on VARYING ranges, ranges of different kinds
2243 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2244 because we may be able to derive a useful range even if one of
2245 the operands is VR_VARYING or symbolic range. Similarly for
2246 divisions. TODO, we may be able to derive anti-ranges in
2247 some cases. */
2248 if (code != BIT_AND_EXPR
2249 && code != BIT_IOR_EXPR
2250 && code != TRUNC_DIV_EXPR
2251 && code != FLOOR_DIV_EXPR
2252 && code != CEIL_DIV_EXPR
2253 && code != EXACT_DIV_EXPR
2254 && code != ROUND_DIV_EXPR
2255 && code != TRUNC_MOD_EXPR
2256 && (vr0.type == VR_VARYING
2257 || vr1.type == VR_VARYING
2258 || vr0.type != vr1.type
2259 || symbolic_range_p (&vr0)
2260 || symbolic_range_p (&vr1)))
2261 {
2262 set_value_range_to_varying (vr);
2263 return;
2264 }
2265
2266 /* Now evaluate the expression to determine the new range. */
2267 if (POINTER_TYPE_P (expr_type))
2268 {
2269 if (code == MIN_EXPR || code == MAX_EXPR)
2270 {
2271 /* For MIN/MAX expressions with pointers, we only care about
2272 nullness, if both are non null, then the result is nonnull.
2273 If both are null, then the result is null. Otherwise they
2274 are varying. */
2275 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2276 set_value_range_to_nonnull (vr, expr_type);
2277 else if (range_is_null (&vr0) && range_is_null (&vr1))
2278 set_value_range_to_null (vr, expr_type);
2279 else
2280 set_value_range_to_varying (vr);
2281 }
2282 else if (code == POINTER_PLUS_EXPR)
2283 {
2284 /* For pointer types, we are really only interested in asserting
2285 whether the expression evaluates to non-NULL. */
2286 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2287 set_value_range_to_nonnull (vr, expr_type);
2288 else if (range_is_null (&vr0) && range_is_null (&vr1))
2289 set_value_range_to_null (vr, expr_type);
2290 else
2291 set_value_range_to_varying (vr);
2292 }
2293 else if (code == BIT_AND_EXPR)
2294 {
2295 /* For pointer types, we are really only interested in asserting
2296 whether the expression evaluates to non-NULL. */
2297 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2298 set_value_range_to_nonnull (vr, expr_type);
2299 else if (range_is_null (&vr0) || range_is_null (&vr1))
2300 set_value_range_to_null (vr, expr_type);
2301 else
2302 set_value_range_to_varying (vr);
2303 }
2304 else
2305 set_value_range_to_varying (vr);
2306
2307 return;
2308 }
2309
2310 /* For integer ranges, apply the operation to each end of the
2311 range and see what we end up with. */
2312 if (code == PLUS_EXPR
2313 || code == MIN_EXPR
2314 || code == MAX_EXPR)
2315 {
2316 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2317 VR_VARYING. It would take more effort to compute a precise
2318 range for such a case. For example, if we have op0 == 1 and
2319 op1 == -1 with their ranges both being ~[0,0], we would have
2320 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2321 Note that we are guaranteed to have vr0.type == vr1.type at
2322 this point. */
2323 if (vr0.type == VR_ANTI_RANGE)
2324 {
2325 if (code == PLUS_EXPR)
2326 {
2327 set_value_range_to_varying (vr);
2328 return;
2329 }
2330 /* For MIN_EXPR and MAX_EXPR with two VR_ANTI_RANGEs,
2331 the resulting VR_ANTI_RANGE is the same - intersection
2332 of the two ranges. */
2333 min = vrp_int_const_binop (MAX_EXPR, vr0.min, vr1.min);
2334 max = vrp_int_const_binop (MIN_EXPR, vr0.max, vr1.max);
2335 }
2336 else
2337 {
2338 /* For operations that make the resulting range directly
2339 proportional to the original ranges, apply the operation to
2340 the same end of each range. */
2341 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2342 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2343 }
2344
2345 /* If both additions overflowed the range kind is still correct.
2346 This happens regularly with subtracting something in unsigned
2347 arithmetic.
2348 ??? See PR30318 for all the cases we do not handle. */
2349 if (code == PLUS_EXPR
2350 && (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2351 && (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2352 {
2353 min = build_int_cst_wide (TREE_TYPE (min),
2354 TREE_INT_CST_LOW (min),
2355 TREE_INT_CST_HIGH (min));
2356 max = build_int_cst_wide (TREE_TYPE (max),
2357 TREE_INT_CST_LOW (max),
2358 TREE_INT_CST_HIGH (max));
2359 }
2360 }
2361 else if (code == MULT_EXPR
2362 || code == TRUNC_DIV_EXPR
2363 || code == FLOOR_DIV_EXPR
2364 || code == CEIL_DIV_EXPR
2365 || code == EXACT_DIV_EXPR
2366 || code == ROUND_DIV_EXPR
2367 || code == RSHIFT_EXPR)
2368 {
2369 tree val[4];
2370 size_t i;
2371 bool sop;
2372
2373 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2374 drop to VR_VARYING. It would take more effort to compute a
2375 precise range for such a case. For example, if we have
2376 op0 == 65536 and op1 == 65536 with their ranges both being
2377 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2378 we cannot claim that the product is in ~[0,0]. Note that we
2379 are guaranteed to have vr0.type == vr1.type at this
2380 point. */
2381 if (code == MULT_EXPR
2382 && vr0.type == VR_ANTI_RANGE
2383 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2384 {
2385 set_value_range_to_varying (vr);
2386 return;
2387 }
2388
2389 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2390 then drop to VR_VARYING. Outside of this range we get undefined
2391 behavior from the shift operation. We cannot even trust
2392 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2393 shifts, and the operation at the tree level may be widened. */
2394 if (code == RSHIFT_EXPR)
2395 {
2396 if (vr1.type != VR_RANGE
2397 || !value_range_nonnegative_p (&vr1)
2398 || TREE_CODE (vr1.max) != INTEGER_CST
2399 || compare_tree_int (vr1.max,
2400 TYPE_PRECISION (expr_type) - 1) == 1)
2401 {
2402 set_value_range_to_varying (vr);
2403 return;
2404 }
2405 }
2406
2407 else if ((code == TRUNC_DIV_EXPR
2408 || code == FLOOR_DIV_EXPR
2409 || code == CEIL_DIV_EXPR
2410 || code == EXACT_DIV_EXPR
2411 || code == ROUND_DIV_EXPR)
2412 && (vr0.type != VR_RANGE || symbolic_range_p (&vr0)))
2413 {
2414 /* For division, if op1 has VR_RANGE but op0 does not, something
2415 can be deduced just from that range. Say [min, max] / [4, max]
2416 gives [min / 4, max / 4] range. */
2417 if (vr1.type == VR_RANGE
2418 && !symbolic_range_p (&vr1)
2419 && !range_includes_zero_p (&vr1))
2420 {
2421 vr0.type = type = VR_RANGE;
2422 vr0.min = vrp_val_min (expr_type);
2423 vr0.max = vrp_val_max (expr_type);
2424 }
2425 else
2426 {
2427 set_value_range_to_varying (vr);
2428 return;
2429 }
2430 }
2431
2432 /* For divisions, if flag_non_call_exceptions is true, we must
2433 not eliminate a division by zero. */
2434 if ((code == TRUNC_DIV_EXPR
2435 || code == FLOOR_DIV_EXPR
2436 || code == CEIL_DIV_EXPR
2437 || code == EXACT_DIV_EXPR
2438 || code == ROUND_DIV_EXPR)
2439 && cfun->can_throw_non_call_exceptions
2440 && (vr1.type != VR_RANGE
2441 || symbolic_range_p (&vr1)
2442 || range_includes_zero_p (&vr1)))
2443 {
2444 set_value_range_to_varying (vr);
2445 return;
2446 }
2447
2448 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2449 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2450 include 0. */
2451 if ((code == TRUNC_DIV_EXPR
2452 || code == FLOOR_DIV_EXPR
2453 || code == CEIL_DIV_EXPR
2454 || code == EXACT_DIV_EXPR
2455 || code == ROUND_DIV_EXPR)
2456 && vr0.type == VR_RANGE
2457 && (vr1.type != VR_RANGE
2458 || symbolic_range_p (&vr1)
2459 || range_includes_zero_p (&vr1)))
2460 {
2461 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2462 int cmp;
2463
2464 sop = false;
2465 min = NULL_TREE;
2466 max = NULL_TREE;
2467 if (TYPE_UNSIGNED (expr_type)
2468 || value_range_nonnegative_p (&vr1))
2469 {
2470 /* For unsigned division or when divisor is known
2471 to be non-negative, the range has to cover
2472 all numbers from 0 to max for positive max
2473 and all numbers from min to 0 for negative min. */
2474 cmp = compare_values (vr0.max, zero);
2475 if (cmp == -1)
2476 max = zero;
2477 else if (cmp == 0 || cmp == 1)
2478 max = vr0.max;
2479 else
2480 type = VR_VARYING;
2481 cmp = compare_values (vr0.min, zero);
2482 if (cmp == 1)
2483 min = zero;
2484 else if (cmp == 0 || cmp == -1)
2485 min = vr0.min;
2486 else
2487 type = VR_VARYING;
2488 }
2489 else
2490 {
2491 /* Otherwise the range is -max .. max or min .. -min
2492 depending on which bound is bigger in absolute value,
2493 as the division can change the sign. */
2494 abs_extent_range (vr, vr0.min, vr0.max);
2495 return;
2496 }
2497 if (type == VR_VARYING)
2498 {
2499 set_value_range_to_varying (vr);
2500 return;
2501 }
2502 }
2503
2504 /* Multiplications and divisions are a bit tricky to handle,
2505 depending on the mix of signs we have in the two ranges, we
2506 need to operate on different values to get the minimum and
2507 maximum values for the new range. One approach is to figure
2508 out all the variations of range combinations and do the
2509 operations.
2510
2511 However, this involves several calls to compare_values and it
2512 is pretty convoluted. It's simpler to do the 4 operations
2513 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2514 MAX1) and then figure the smallest and largest values to form
2515 the new range. */
2516 else
2517 {
2518 gcc_assert ((vr0.type == VR_RANGE
2519 || (code == MULT_EXPR && vr0.type == VR_ANTI_RANGE))
2520 && vr0.type == vr1.type);
2521
2522 /* Compute the 4 cross operations. */
2523 sop = false;
2524 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
2525 if (val[0] == NULL_TREE)
2526 sop = true;
2527
2528 if (vr1.max == vr1.min)
2529 val[1] = NULL_TREE;
2530 else
2531 {
2532 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
2533 if (val[1] == NULL_TREE)
2534 sop = true;
2535 }
2536
2537 if (vr0.max == vr0.min)
2538 val[2] = NULL_TREE;
2539 else
2540 {
2541 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
2542 if (val[2] == NULL_TREE)
2543 sop = true;
2544 }
2545
2546 if (vr0.min == vr0.max || vr1.min == vr1.max)
2547 val[3] = NULL_TREE;
2548 else
2549 {
2550 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
2551 if (val[3] == NULL_TREE)
2552 sop = true;
2553 }
2554
2555 if (sop)
2556 {
2557 set_value_range_to_varying (vr);
2558 return;
2559 }
2560
2561 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2562 of VAL[i]. */
2563 min = val[0];
2564 max = val[0];
2565 for (i = 1; i < 4; i++)
2566 {
2567 if (!is_gimple_min_invariant (min)
2568 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2569 || !is_gimple_min_invariant (max)
2570 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2571 break;
2572
2573 if (val[i])
2574 {
2575 if (!is_gimple_min_invariant (val[i])
2576 || (TREE_OVERFLOW (val[i])
2577 && !is_overflow_infinity (val[i])))
2578 {
2579 /* If we found an overflowed value, set MIN and MAX
2580 to it so that we set the resulting range to
2581 VARYING. */
2582 min = max = val[i];
2583 break;
2584 }
2585
2586 if (compare_values (val[i], min) == -1)
2587 min = val[i];
2588
2589 if (compare_values (val[i], max) == 1)
2590 max = val[i];
2591 }
2592 }
2593 }
2594 }
2595 else if (code == TRUNC_MOD_EXPR)
2596 {
2597 if (vr1.type != VR_RANGE
2598 || symbolic_range_p (&vr1)
2599 || range_includes_zero_p (&vr1)
2600 || vrp_val_is_min (vr1.min))
2601 {
2602 set_value_range_to_varying (vr);
2603 return;
2604 }
2605 type = VR_RANGE;
2606 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
2607 max = fold_unary_to_constant (ABS_EXPR, expr_type, vr1.min);
2608 if (tree_int_cst_lt (max, vr1.max))
2609 max = vr1.max;
2610 max = int_const_binop (MINUS_EXPR, max, integer_one_node);
2611 /* If the dividend is non-negative the modulus will be
2612 non-negative as well. */
2613 if (TYPE_UNSIGNED (expr_type)
2614 || value_range_nonnegative_p (&vr0))
2615 min = build_int_cst (TREE_TYPE (max), 0);
2616 else
2617 min = fold_unary_to_constant (NEGATE_EXPR, expr_type, max);
2618 }
2619 else if (code == MINUS_EXPR)
2620 {
2621 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2622 VR_VARYING. It would take more effort to compute a precise
2623 range for such a case. For example, if we have op0 == 1 and
2624 op1 == 1 with their ranges both being ~[0,0], we would have
2625 op0 - op1 == 0, so we cannot claim that the difference is in
2626 ~[0,0]. Note that we are guaranteed to have
2627 vr0.type == vr1.type at this point. */
2628 if (vr0.type == VR_ANTI_RANGE)
2629 {
2630 set_value_range_to_varying (vr);
2631 return;
2632 }
2633
2634 /* For MINUS_EXPR, apply the operation to the opposite ends of
2635 each range. */
2636 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2637 max = vrp_int_const_binop (code, vr0.max, vr1.min);
2638 }
2639 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
2640 {
2641 bool int_cst_range0, int_cst_range1;
2642 double_int may_be_nonzero0, may_be_nonzero1;
2643 double_int must_be_nonzero0, must_be_nonzero1;
2644
2645 int_cst_range0 = zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0,
2646 &must_be_nonzero0);
2647 int_cst_range1 = zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1,
2648 &must_be_nonzero1);
2649
2650 type = VR_RANGE;
2651 if (code == BIT_AND_EXPR)
2652 {
2653 double_int dmax;
2654 min = double_int_to_tree (expr_type,
2655 double_int_and (must_be_nonzero0,
2656 must_be_nonzero1));
2657 dmax = double_int_and (may_be_nonzero0, may_be_nonzero1);
2658 /* If both input ranges contain only negative values we can
2659 truncate the result range maximum to the minimum of the
2660 input range maxima. */
2661 if (int_cst_range0 && int_cst_range1
2662 && tree_int_cst_sgn (vr0.max) < 0
2663 && tree_int_cst_sgn (vr1.max) < 0)
2664 {
2665 dmax = double_int_min (dmax, tree_to_double_int (vr0.max),
2666 TYPE_UNSIGNED (expr_type));
2667 dmax = double_int_min (dmax, tree_to_double_int (vr1.max),
2668 TYPE_UNSIGNED (expr_type));
2669 }
2670 /* If either input range contains only non-negative values
2671 we can truncate the result range maximum to the respective
2672 maximum of the input range. */
2673 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
2674 dmax = double_int_min (dmax, tree_to_double_int (vr0.max),
2675 TYPE_UNSIGNED (expr_type));
2676 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
2677 dmax = double_int_min (dmax, tree_to_double_int (vr1.max),
2678 TYPE_UNSIGNED (expr_type));
2679 max = double_int_to_tree (expr_type, dmax);
2680 }
2681 else if (code == BIT_IOR_EXPR)
2682 {
2683 double_int dmin;
2684 max = double_int_to_tree (expr_type,
2685 double_int_ior (may_be_nonzero0,
2686 may_be_nonzero1));
2687 dmin = double_int_ior (must_be_nonzero0, must_be_nonzero1);
2688 /* If the input ranges contain only positive values we can
2689 truncate the minimum of the result range to the maximum
2690 of the input range minima. */
2691 if (int_cst_range0 && int_cst_range1
2692 && tree_int_cst_sgn (vr0.min) >= 0
2693 && tree_int_cst_sgn (vr1.min) >= 0)
2694 {
2695 dmin = double_int_max (dmin, tree_to_double_int (vr0.min),
2696 TYPE_UNSIGNED (expr_type));
2697 dmin = double_int_max (dmin, tree_to_double_int (vr1.min),
2698 TYPE_UNSIGNED (expr_type));
2699 }
2700 /* If either input range contains only negative values
2701 we can truncate the minimum of the result range to the
2702 respective minimum range. */
2703 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
2704 dmin = double_int_max (dmin, tree_to_double_int (vr0.min),
2705 TYPE_UNSIGNED (expr_type));
2706 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
2707 dmin = double_int_max (dmin, tree_to_double_int (vr1.min),
2708 TYPE_UNSIGNED (expr_type));
2709 min = double_int_to_tree (expr_type, dmin);
2710 }
2711 else if (code == BIT_XOR_EXPR)
2712 {
2713 double_int result_zero_bits, result_one_bits;
2714 result_zero_bits
2715 = double_int_ior (double_int_and (must_be_nonzero0,
2716 must_be_nonzero1),
2717 double_int_not
2718 (double_int_ior (may_be_nonzero0,
2719 may_be_nonzero1)));
2720 result_one_bits
2721 = double_int_ior (double_int_and
2722 (must_be_nonzero0,
2723 double_int_not (may_be_nonzero1)),
2724 double_int_and
2725 (must_be_nonzero1,
2726 double_int_not (may_be_nonzero0)));
2727 max = double_int_to_tree (expr_type,
2728 double_int_not (result_zero_bits));
2729 min = double_int_to_tree (expr_type, result_one_bits);
2730 /* If the range has all positive or all negative values the
2731 result is better than VARYING. */
2732 if (tree_int_cst_sgn (min) < 0
2733 || tree_int_cst_sgn (max) >= 0)
2734 ;
2735 else
2736 max = min = NULL_TREE;
2737 }
2738 else
2739 {
2740 set_value_range_to_varying (vr);
2741 return;
2742 }
2743 }
2744 else
2745 gcc_unreachable ();
2746
2747 /* If either MIN or MAX overflowed, then set the resulting range to
2748 VARYING. But we do accept an overflow infinity
2749 representation. */
2750 if (min == NULL_TREE
2751 || !is_gimple_min_invariant (min)
2752 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2753 || max == NULL_TREE
2754 || !is_gimple_min_invariant (max)
2755 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2756 {
2757 set_value_range_to_varying (vr);
2758 return;
2759 }
2760
2761 /* We punt if:
2762 1) [-INF, +INF]
2763 2) [-INF, +-INF(OVF)]
2764 3) [+-INF(OVF), +INF]
2765 4) [+-INF(OVF), +-INF(OVF)]
2766 We learn nothing when we have INF and INF(OVF) on both sides.
2767 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2768 overflow. */
2769 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2770 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2771 {
2772 set_value_range_to_varying (vr);
2773 return;
2774 }
2775
2776 cmp = compare_values (min, max);
2777 if (cmp == -2 || cmp == 1)
2778 {
2779 /* If the new range has its limits swapped around (MIN > MAX),
2780 then the operation caused one of them to wrap around, mark
2781 the new range VARYING. */
2782 set_value_range_to_varying (vr);
2783 }
2784 else
2785 set_value_range (vr, type, min, max, NULL);
2786 }
2787
2788 /* Extract range information from a binary expression OP0 CODE OP1 based on
2789 the ranges of each of its operands with resulting type EXPR_TYPE.
2790 The resulting range is stored in *VR. */
2791
2792 static void
2793 extract_range_from_binary_expr (value_range_t *vr,
2794 enum tree_code code,
2795 tree expr_type, tree op0, tree op1)
2796 {
2797 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2798 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2799
2800 /* Get value ranges for each operand. For constant operands, create
2801 a new value range with the operand to simplify processing. */
2802 if (TREE_CODE (op0) == SSA_NAME)
2803 vr0 = *(get_value_range (op0));
2804 else if (is_gimple_min_invariant (op0))
2805 set_value_range_to_value (&vr0, op0, NULL);
2806 else
2807 set_value_range_to_varying (&vr0);
2808
2809 if (TREE_CODE (op1) == SSA_NAME)
2810 vr1 = *(get_value_range (op1));
2811 else if (is_gimple_min_invariant (op1))
2812 set_value_range_to_value (&vr1, op1, NULL);
2813 else
2814 set_value_range_to_varying (&vr1);
2815
2816 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
2817 }
2818
2819 /* Extract range information from a unary operation CODE based on
2820 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
2821 The The resulting range is stored in *VR. */
2822
2823 static void
2824 extract_range_from_unary_expr_1 (value_range_t *vr,
2825 enum tree_code code, tree type,
2826 value_range_t *vr0_, tree op0_type)
2827 {
2828 value_range_t vr0 = *vr0_;
2829 tree min, max;
2830 int cmp;
2831
2832 /* If VR0 is UNDEFINED, so is the result. */
2833 if (vr0.type == VR_UNDEFINED)
2834 {
2835 set_value_range_to_undefined (vr);
2836 return;
2837 }
2838
2839 /* Refuse to operate on certain unary expressions for which we
2840 cannot easily determine a resulting range. */
2841 if (code == FIX_TRUNC_EXPR
2842 || code == FLOAT_EXPR
2843 || code == CONJ_EXPR)
2844 {
2845 set_value_range_to_varying (vr);
2846 return;
2847 }
2848
2849 /* Refuse to operate on symbolic ranges, or if neither operand is
2850 a pointer or integral type. */
2851 if ((!INTEGRAL_TYPE_P (op0_type)
2852 && !POINTER_TYPE_P (op0_type))
2853 || (vr0.type != VR_VARYING
2854 && symbolic_range_p (&vr0)))
2855 {
2856 set_value_range_to_varying (vr);
2857 return;
2858 }
2859
2860 /* If the expression involves pointers, we are only interested in
2861 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2862 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (op0_type))
2863 {
2864 if (range_is_nonnull (&vr0))
2865 set_value_range_to_nonnull (vr, type);
2866 else if (range_is_null (&vr0))
2867 set_value_range_to_null (vr, type);
2868 else
2869 set_value_range_to_varying (vr);
2870 return;
2871 }
2872
2873 /* Handle unary expressions on integer ranges. */
2874 if (CONVERT_EXPR_CODE_P (code)
2875 && INTEGRAL_TYPE_P (type)
2876 && INTEGRAL_TYPE_P (op0_type))
2877 {
2878 tree inner_type = op0_type;
2879 tree outer_type = type;
2880
2881 /* If VR0 is varying and we increase the type precision, assume
2882 a full range for the following transformation. */
2883 if (vr0.type == VR_VARYING
2884 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
2885 {
2886 vr0.type = VR_RANGE;
2887 vr0.min = TYPE_MIN_VALUE (inner_type);
2888 vr0.max = TYPE_MAX_VALUE (inner_type);
2889 }
2890
2891 /* If VR0 is a constant range or anti-range and the conversion is
2892 not truncating we can convert the min and max values and
2893 canonicalize the resulting range. Otherwise we can do the
2894 conversion if the size of the range is less than what the
2895 precision of the target type can represent and the range is
2896 not an anti-range. */
2897 if ((vr0.type == VR_RANGE
2898 || vr0.type == VR_ANTI_RANGE)
2899 && TREE_CODE (vr0.min) == INTEGER_CST
2900 && TREE_CODE (vr0.max) == INTEGER_CST
2901 && (!is_overflow_infinity (vr0.min)
2902 || (vr0.type == VR_RANGE
2903 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
2904 && needs_overflow_infinity (outer_type)
2905 && supports_overflow_infinity (outer_type)))
2906 && (!is_overflow_infinity (vr0.max)
2907 || (vr0.type == VR_RANGE
2908 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
2909 && needs_overflow_infinity (outer_type)
2910 && supports_overflow_infinity (outer_type)))
2911 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
2912 || (vr0.type == VR_RANGE
2913 && integer_zerop (int_const_binop (RSHIFT_EXPR,
2914 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
2915 size_int (TYPE_PRECISION (outer_type)))))))
2916 {
2917 tree new_min, new_max;
2918 new_min = force_fit_type_double (outer_type,
2919 tree_to_double_int (vr0.min),
2920 0, false);
2921 new_max = force_fit_type_double (outer_type,
2922 tree_to_double_int (vr0.max),
2923 0, false);
2924 if (is_overflow_infinity (vr0.min))
2925 new_min = negative_overflow_infinity (outer_type);
2926 if (is_overflow_infinity (vr0.max))
2927 new_max = positive_overflow_infinity (outer_type);
2928 set_and_canonicalize_value_range (vr, vr0.type,
2929 new_min, new_max, NULL);
2930 return;
2931 }
2932
2933 set_value_range_to_varying (vr);
2934 return;
2935 }
2936
2937 /* Conversion of a VR_VARYING value to a wider type can result
2938 in a usable range. So wait until after we've handled conversions
2939 before dropping the result to VR_VARYING if we had a source
2940 operand that is VR_VARYING. */
2941 if (vr0.type == VR_VARYING)
2942 {
2943 set_value_range_to_varying (vr);
2944 return;
2945 }
2946
2947 /* Apply the operation to each end of the range and see what we end
2948 up with. */
2949 if (code == NEGATE_EXPR
2950 && !TYPE_UNSIGNED (type))
2951 {
2952 /* NEGATE_EXPR flips the range around. We need to treat
2953 TYPE_MIN_VALUE specially. */
2954 if (is_positive_overflow_infinity (vr0.max))
2955 min = negative_overflow_infinity (type);
2956 else if (is_negative_overflow_infinity (vr0.max))
2957 min = positive_overflow_infinity (type);
2958 else if (!vrp_val_is_min (vr0.max))
2959 min = fold_unary_to_constant (code, type, vr0.max);
2960 else if (needs_overflow_infinity (type))
2961 {
2962 if (supports_overflow_infinity (type)
2963 && !is_overflow_infinity (vr0.min)
2964 && !vrp_val_is_min (vr0.min))
2965 min = positive_overflow_infinity (type);
2966 else
2967 {
2968 set_value_range_to_varying (vr);
2969 return;
2970 }
2971 }
2972 else
2973 min = TYPE_MIN_VALUE (type);
2974
2975 if (is_positive_overflow_infinity (vr0.min))
2976 max = negative_overflow_infinity (type);
2977 else if (is_negative_overflow_infinity (vr0.min))
2978 max = positive_overflow_infinity (type);
2979 else if (!vrp_val_is_min (vr0.min))
2980 max = fold_unary_to_constant (code, type, vr0.min);
2981 else if (needs_overflow_infinity (type))
2982 {
2983 if (supports_overflow_infinity (type))
2984 max = positive_overflow_infinity (type);
2985 else
2986 {
2987 set_value_range_to_varying (vr);
2988 return;
2989 }
2990 }
2991 else
2992 max = TYPE_MIN_VALUE (type);
2993 }
2994 else if (code == NEGATE_EXPR
2995 && TYPE_UNSIGNED (type))
2996 {
2997 if (!range_includes_zero_p (&vr0))
2998 {
2999 max = fold_unary_to_constant (code, type, vr0.min);
3000 min = fold_unary_to_constant (code, type, vr0.max);
3001 }
3002 else
3003 {
3004 if (range_is_null (&vr0))
3005 set_value_range_to_null (vr, type);
3006 else
3007 set_value_range_to_varying (vr);
3008 return;
3009 }
3010 }
3011 else if (code == ABS_EXPR
3012 && !TYPE_UNSIGNED (type))
3013 {
3014 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3015 useful range. */
3016 if (!TYPE_OVERFLOW_UNDEFINED (type)
3017 && ((vr0.type == VR_RANGE
3018 && vrp_val_is_min (vr0.min))
3019 || (vr0.type == VR_ANTI_RANGE
3020 && !vrp_val_is_min (vr0.min)
3021 && !range_includes_zero_p (&vr0))))
3022 {
3023 set_value_range_to_varying (vr);
3024 return;
3025 }
3026
3027 /* ABS_EXPR may flip the range around, if the original range
3028 included negative values. */
3029 if (is_overflow_infinity (vr0.min))
3030 min = positive_overflow_infinity (type);
3031 else if (!vrp_val_is_min (vr0.min))
3032 min = fold_unary_to_constant (code, type, vr0.min);
3033 else if (!needs_overflow_infinity (type))
3034 min = TYPE_MAX_VALUE (type);
3035 else if (supports_overflow_infinity (type))
3036 min = positive_overflow_infinity (type);
3037 else
3038 {
3039 set_value_range_to_varying (vr);
3040 return;
3041 }
3042
3043 if (is_overflow_infinity (vr0.max))
3044 max = positive_overflow_infinity (type);
3045 else if (!vrp_val_is_min (vr0.max))
3046 max = fold_unary_to_constant (code, type, vr0.max);
3047 else if (!needs_overflow_infinity (type))
3048 max = TYPE_MAX_VALUE (type);
3049 else if (supports_overflow_infinity (type)
3050 /* We shouldn't generate [+INF, +INF] as set_value_range
3051 doesn't like this and ICEs. */
3052 && !is_positive_overflow_infinity (min))
3053 max = positive_overflow_infinity (type);
3054 else
3055 {
3056 set_value_range_to_varying (vr);
3057 return;
3058 }
3059
3060 cmp = compare_values (min, max);
3061
3062 /* If a VR_ANTI_RANGEs contains zero, then we have
3063 ~[-INF, min(MIN, MAX)]. */
3064 if (vr0.type == VR_ANTI_RANGE)
3065 {
3066 if (range_includes_zero_p (&vr0))
3067 {
3068 /* Take the lower of the two values. */
3069 if (cmp != 1)
3070 max = min;
3071
3072 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3073 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3074 flag_wrapv is set and the original anti-range doesn't include
3075 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3076 if (TYPE_OVERFLOW_WRAPS (type))
3077 {
3078 tree type_min_value = TYPE_MIN_VALUE (type);
3079
3080 min = (vr0.min != type_min_value
3081 ? int_const_binop (PLUS_EXPR, type_min_value,
3082 integer_one_node)
3083 : type_min_value);
3084 }
3085 else
3086 {
3087 if (overflow_infinity_range_p (&vr0))
3088 min = negative_overflow_infinity (type);
3089 else
3090 min = TYPE_MIN_VALUE (type);
3091 }
3092 }
3093 else
3094 {
3095 /* All else has failed, so create the range [0, INF], even for
3096 flag_wrapv since TYPE_MIN_VALUE is in the original
3097 anti-range. */
3098 vr0.type = VR_RANGE;
3099 min = build_int_cst (type, 0);
3100 if (needs_overflow_infinity (type))
3101 {
3102 if (supports_overflow_infinity (type))
3103 max = positive_overflow_infinity (type);
3104 else
3105 {
3106 set_value_range_to_varying (vr);
3107 return;
3108 }
3109 }
3110 else
3111 max = TYPE_MAX_VALUE (type);
3112 }
3113 }
3114
3115 /* If the range contains zero then we know that the minimum value in the
3116 range will be zero. */
3117 else if (range_includes_zero_p (&vr0))
3118 {
3119 if (cmp == 1)
3120 max = min;
3121 min = build_int_cst (type, 0);
3122 }
3123 else
3124 {
3125 /* If the range was reversed, swap MIN and MAX. */
3126 if (cmp == 1)
3127 {
3128 tree t = min;
3129 min = max;
3130 max = t;
3131 }
3132 }
3133 }
3134 else if (code == BIT_NOT_EXPR)
3135 {
3136 /* ~X is simply -1 - X, so re-use existing code that also handles
3137 anti-ranges fine. */
3138 value_range_t minusone = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3139 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3140 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3141 type, &minusone, &vr0);
3142 return;
3143 }
3144 else
3145 {
3146 /* Otherwise, operate on each end of the range. */
3147 min = fold_unary_to_constant (code, type, vr0.min);
3148 max = fold_unary_to_constant (code, type, vr0.max);
3149
3150 if (needs_overflow_infinity (type))
3151 {
3152 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
3153
3154 /* If both sides have overflowed, we don't know
3155 anything. */
3156 if ((is_overflow_infinity (vr0.min)
3157 || TREE_OVERFLOW (min))
3158 && (is_overflow_infinity (vr0.max)
3159 || TREE_OVERFLOW (max)))
3160 {
3161 set_value_range_to_varying (vr);
3162 return;
3163 }
3164
3165 if (is_overflow_infinity (vr0.min))
3166 min = vr0.min;
3167 else if (TREE_OVERFLOW (min))
3168 {
3169 if (supports_overflow_infinity (type))
3170 min = (tree_int_cst_sgn (min) >= 0
3171 ? positive_overflow_infinity (TREE_TYPE (min))
3172 : negative_overflow_infinity (TREE_TYPE (min)));
3173 else
3174 {
3175 set_value_range_to_varying (vr);
3176 return;
3177 }
3178 }
3179
3180 if (is_overflow_infinity (vr0.max))
3181 max = vr0.max;
3182 else if (TREE_OVERFLOW (max))
3183 {
3184 if (supports_overflow_infinity (type))
3185 max = (tree_int_cst_sgn (max) >= 0
3186 ? positive_overflow_infinity (TREE_TYPE (max))
3187 : negative_overflow_infinity (TREE_TYPE (max)));
3188 else
3189 {
3190 set_value_range_to_varying (vr);
3191 return;
3192 }
3193 }
3194 }
3195 }
3196
3197 cmp = compare_values (min, max);
3198 if (cmp == -2 || cmp == 1)
3199 {
3200 /* If the new range has its limits swapped around (MIN > MAX),
3201 then the operation caused one of them to wrap around, mark
3202 the new range VARYING. */
3203 set_value_range_to_varying (vr);
3204 }
3205 else
3206 set_value_range (vr, vr0.type, min, max, NULL);
3207 }
3208
3209
3210 /* Extract range information from a unary expression CODE OP0 based on
3211 the range of its operand with resulting type TYPE.
3212 The resulting range is stored in *VR. */
3213
3214 static void
3215 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
3216 tree type, tree op0)
3217 {
3218 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3219
3220 /* Get value ranges for the operand. For constant operands, create
3221 a new value range with the operand to simplify processing. */
3222 if (TREE_CODE (op0) == SSA_NAME)
3223 vr0 = *(get_value_range (op0));
3224 else if (is_gimple_min_invariant (op0))
3225 set_value_range_to_value (&vr0, op0, NULL);
3226 else
3227 set_value_range_to_varying (&vr0);
3228
3229 extract_range_from_unary_expr_1 (vr, code, type, &vr0, TREE_TYPE (op0));
3230 }
3231
3232
3233 /* Extract range information from a conditional expression EXPR based on
3234 the ranges of each of its operands and the expression code. */
3235
3236 static void
3237 extract_range_from_cond_expr (value_range_t *vr, tree expr)
3238 {
3239 tree op0, op1;
3240 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3241 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3242
3243 /* Get value ranges for each operand. For constant operands, create
3244 a new value range with the operand to simplify processing. */
3245 op0 = COND_EXPR_THEN (expr);
3246 if (TREE_CODE (op0) == SSA_NAME)
3247 vr0 = *(get_value_range (op0));
3248 else if (is_gimple_min_invariant (op0))
3249 set_value_range_to_value (&vr0, op0, NULL);
3250 else
3251 set_value_range_to_varying (&vr0);
3252
3253 op1 = COND_EXPR_ELSE (expr);
3254 if (TREE_CODE (op1) == SSA_NAME)
3255 vr1 = *(get_value_range (op1));
3256 else if (is_gimple_min_invariant (op1))
3257 set_value_range_to_value (&vr1, op1, NULL);
3258 else
3259 set_value_range_to_varying (&vr1);
3260
3261 /* The resulting value range is the union of the operand ranges */
3262 vrp_meet (&vr0, &vr1);
3263 copy_value_range (vr, &vr0);
3264 }
3265
3266
3267 /* Extract range information from a comparison expression EXPR based
3268 on the range of its operand and the expression code. */
3269
3270 static void
3271 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3272 tree type, tree op0, tree op1)
3273 {
3274 bool sop = false;
3275 tree val;
3276
3277 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3278 NULL);
3279
3280 /* A disadvantage of using a special infinity as an overflow
3281 representation is that we lose the ability to record overflow
3282 when we don't have an infinity. So we have to ignore a result
3283 which relies on overflow. */
3284
3285 if (val && !is_overflow_infinity (val) && !sop)
3286 {
3287 /* Since this expression was found on the RHS of an assignment,
3288 its type may be different from _Bool. Convert VAL to EXPR's
3289 type. */
3290 val = fold_convert (type, val);
3291 if (is_gimple_min_invariant (val))
3292 set_value_range_to_value (vr, val, vr->equiv);
3293 else
3294 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3295 }
3296 else
3297 /* The result of a comparison is always true or false. */
3298 set_value_range_to_truthvalue (vr, type);
3299 }
3300
3301 /* Try to derive a nonnegative or nonzero range out of STMT relying
3302 primarily on generic routines in fold in conjunction with range data.
3303 Store the result in *VR */
3304
3305 static void
3306 extract_range_basic (value_range_t *vr, gimple stmt)
3307 {
3308 bool sop = false;
3309 tree type = gimple_expr_type (stmt);
3310
3311 if (INTEGRAL_TYPE_P (type)
3312 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3313 set_value_range_to_nonnegative (vr, type,
3314 sop || stmt_overflow_infinity (stmt));
3315 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3316 && !sop)
3317 set_value_range_to_nonnull (vr, type);
3318 else
3319 set_value_range_to_varying (vr);
3320 }
3321
3322
3323 /* Try to compute a useful range out of assignment STMT and store it
3324 in *VR. */
3325
3326 static void
3327 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3328 {
3329 enum tree_code code = gimple_assign_rhs_code (stmt);
3330
3331 if (code == ASSERT_EXPR)
3332 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3333 else if (code == SSA_NAME)
3334 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3335 else if (TREE_CODE_CLASS (code) == tcc_binary)
3336 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3337 gimple_expr_type (stmt),
3338 gimple_assign_rhs1 (stmt),
3339 gimple_assign_rhs2 (stmt));
3340 else if (TREE_CODE_CLASS (code) == tcc_unary)
3341 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3342 gimple_expr_type (stmt),
3343 gimple_assign_rhs1 (stmt));
3344 else if (code == COND_EXPR)
3345 extract_range_from_cond_expr (vr, gimple_assign_rhs1 (stmt));
3346 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3347 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3348 gimple_expr_type (stmt),
3349 gimple_assign_rhs1 (stmt),
3350 gimple_assign_rhs2 (stmt));
3351 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3352 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3353 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3354 else
3355 set_value_range_to_varying (vr);
3356
3357 if (vr->type == VR_VARYING)
3358 extract_range_basic (vr, stmt);
3359 }
3360
3361 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3362 would be profitable to adjust VR using scalar evolution information
3363 for VAR. If so, update VR with the new limits. */
3364
3365 static void
3366 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3367 gimple stmt, tree var)
3368 {
3369 tree init, step, chrec, tmin, tmax, min, max, type, tem;
3370 enum ev_direction dir;
3371
3372 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3373 better opportunities than a regular range, but I'm not sure. */
3374 if (vr->type == VR_ANTI_RANGE)
3375 return;
3376
3377 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3378
3379 /* Like in PR19590, scev can return a constant function. */
3380 if (is_gimple_min_invariant (chrec))
3381 {
3382 set_value_range_to_value (vr, chrec, vr->equiv);
3383 return;
3384 }
3385
3386 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3387 return;
3388
3389 init = initial_condition_in_loop_num (chrec, loop->num);
3390 tem = op_with_constant_singleton_value_range (init);
3391 if (tem)
3392 init = tem;
3393 step = evolution_part_in_loop_num (chrec, loop->num);
3394 tem = op_with_constant_singleton_value_range (step);
3395 if (tem)
3396 step = tem;
3397
3398 /* If STEP is symbolic, we can't know whether INIT will be the
3399 minimum or maximum value in the range. Also, unless INIT is
3400 a simple expression, compare_values and possibly other functions
3401 in tree-vrp won't be able to handle it. */
3402 if (step == NULL_TREE
3403 || !is_gimple_min_invariant (step)
3404 || !valid_value_p (init))
3405 return;
3406
3407 dir = scev_direction (chrec);
3408 if (/* Do not adjust ranges if we do not know whether the iv increases
3409 or decreases, ... */
3410 dir == EV_DIR_UNKNOWN
3411 /* ... or if it may wrap. */
3412 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3413 true))
3414 return;
3415
3416 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3417 negative_overflow_infinity and positive_overflow_infinity,
3418 because we have concluded that the loop probably does not
3419 wrap. */
3420
3421 type = TREE_TYPE (var);
3422 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3423 tmin = lower_bound_in_type (type, type);
3424 else
3425 tmin = TYPE_MIN_VALUE (type);
3426 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3427 tmax = upper_bound_in_type (type, type);
3428 else
3429 tmax = TYPE_MAX_VALUE (type);
3430
3431 /* Try to use estimated number of iterations for the loop to constrain the
3432 final value in the evolution. */
3433 if (TREE_CODE (step) == INTEGER_CST
3434 && is_gimple_val (init)
3435 && (TREE_CODE (init) != SSA_NAME
3436 || get_value_range (init)->type == VR_RANGE))
3437 {
3438 double_int nit;
3439
3440 if (estimated_loop_iterations (loop, true, &nit))
3441 {
3442 value_range_t maxvr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3443 double_int dtmp;
3444 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (step));
3445 int overflow = 0;
3446
3447 dtmp = double_int_mul_with_sign (tree_to_double_int (step), nit,
3448 unsigned_p, &overflow);
3449 /* If the multiplication overflowed we can't do a meaningful
3450 adjustment. Likewise if the result doesn't fit in the type
3451 of the induction variable. For a signed type we have to
3452 check whether the result has the expected signedness which
3453 is that of the step as number of iterations is unsigned. */
3454 if (!overflow
3455 && double_int_fits_to_tree_p (TREE_TYPE (init), dtmp)
3456 && (unsigned_p
3457 || ((dtmp.high ^ TREE_INT_CST_HIGH (step)) >= 0)))
3458 {
3459 tem = double_int_to_tree (TREE_TYPE (init), dtmp);
3460 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
3461 TREE_TYPE (init), init, tem);
3462 /* Likewise if the addition did. */
3463 if (maxvr.type == VR_RANGE)
3464 {
3465 tmin = maxvr.min;
3466 tmax = maxvr.max;
3467 }
3468 }
3469 }
3470 }
3471
3472 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3473 {
3474 min = tmin;
3475 max = tmax;
3476
3477 /* For VARYING or UNDEFINED ranges, just about anything we get
3478 from scalar evolutions should be better. */
3479
3480 if (dir == EV_DIR_DECREASES)
3481 max = init;
3482 else
3483 min = init;
3484
3485 /* If we would create an invalid range, then just assume we
3486 know absolutely nothing. This may be over-conservative,
3487 but it's clearly safe, and should happen only in unreachable
3488 parts of code, or for invalid programs. */
3489 if (compare_values (min, max) == 1)
3490 return;
3491
3492 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3493 }
3494 else if (vr->type == VR_RANGE)
3495 {
3496 min = vr->min;
3497 max = vr->max;
3498
3499 if (dir == EV_DIR_DECREASES)
3500 {
3501 /* INIT is the maximum value. If INIT is lower than VR->MAX
3502 but no smaller than VR->MIN, set VR->MAX to INIT. */
3503 if (compare_values (init, max) == -1)
3504 max = init;
3505
3506 /* According to the loop information, the variable does not
3507 overflow. If we think it does, probably because of an
3508 overflow due to arithmetic on a different INF value,
3509 reset now. */
3510 if (is_negative_overflow_infinity (min)
3511 || compare_values (min, tmin) == -1)
3512 min = tmin;
3513
3514 }
3515 else
3516 {
3517 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3518 if (compare_values (init, min) == 1)
3519 min = init;
3520
3521 if (is_positive_overflow_infinity (max)
3522 || compare_values (tmax, max) == -1)
3523 max = tmax;
3524 }
3525
3526 /* If we just created an invalid range with the minimum
3527 greater than the maximum, we fail conservatively.
3528 This should happen only in unreachable
3529 parts of code, or for invalid programs. */
3530 if (compare_values (min, max) == 1)
3531 return;
3532
3533 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3534 }
3535 }
3536
3537 /* Return true if VAR may overflow at STMT. This checks any available
3538 loop information to see if we can determine that VAR does not
3539 overflow. */
3540
3541 static bool
3542 vrp_var_may_overflow (tree var, gimple stmt)
3543 {
3544 struct loop *l;
3545 tree chrec, init, step;
3546
3547 if (current_loops == NULL)
3548 return true;
3549
3550 l = loop_containing_stmt (stmt);
3551 if (l == NULL
3552 || !loop_outer (l))
3553 return true;
3554
3555 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
3556 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3557 return true;
3558
3559 init = initial_condition_in_loop_num (chrec, l->num);
3560 step = evolution_part_in_loop_num (chrec, l->num);
3561
3562 if (step == NULL_TREE
3563 || !is_gimple_min_invariant (step)
3564 || !valid_value_p (init))
3565 return true;
3566
3567 /* If we get here, we know something useful about VAR based on the
3568 loop information. If it wraps, it may overflow. */
3569
3570 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3571 true))
3572 return true;
3573
3574 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
3575 {
3576 print_generic_expr (dump_file, var, 0);
3577 fprintf (dump_file, ": loop information indicates does not overflow\n");
3578 }
3579
3580 return false;
3581 }
3582
3583
3584 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3585
3586 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3587 all the values in the ranges.
3588
3589 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3590
3591 - Return NULL_TREE if it is not always possible to determine the
3592 value of the comparison.
3593
3594 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3595 overflow infinity was used in the test. */
3596
3597
3598 static tree
3599 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
3600 bool *strict_overflow_p)
3601 {
3602 /* VARYING or UNDEFINED ranges cannot be compared. */
3603 if (vr0->type == VR_VARYING
3604 || vr0->type == VR_UNDEFINED
3605 || vr1->type == VR_VARYING
3606 || vr1->type == VR_UNDEFINED)
3607 return NULL_TREE;
3608
3609 /* Anti-ranges need to be handled separately. */
3610 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3611 {
3612 /* If both are anti-ranges, then we cannot compute any
3613 comparison. */
3614 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3615 return NULL_TREE;
3616
3617 /* These comparisons are never statically computable. */
3618 if (comp == GT_EXPR
3619 || comp == GE_EXPR
3620 || comp == LT_EXPR
3621 || comp == LE_EXPR)
3622 return NULL_TREE;
3623
3624 /* Equality can be computed only between a range and an
3625 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3626 if (vr0->type == VR_RANGE)
3627 {
3628 /* To simplify processing, make VR0 the anti-range. */
3629 value_range_t *tmp = vr0;
3630 vr0 = vr1;
3631 vr1 = tmp;
3632 }
3633
3634 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3635
3636 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3637 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
3638 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3639
3640 return NULL_TREE;
3641 }
3642
3643 if (!usable_range_p (vr0, strict_overflow_p)
3644 || !usable_range_p (vr1, strict_overflow_p))
3645 return NULL_TREE;
3646
3647 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3648 operands around and change the comparison code. */
3649 if (comp == GT_EXPR || comp == GE_EXPR)
3650 {
3651 value_range_t *tmp;
3652 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
3653 tmp = vr0;
3654 vr0 = vr1;
3655 vr1 = tmp;
3656 }
3657
3658 if (comp == EQ_EXPR)
3659 {
3660 /* Equality may only be computed if both ranges represent
3661 exactly one value. */
3662 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
3663 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
3664 {
3665 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
3666 strict_overflow_p);
3667 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
3668 strict_overflow_p);
3669 if (cmp_min == 0 && cmp_max == 0)
3670 return boolean_true_node;
3671 else if (cmp_min != -2 && cmp_max != -2)
3672 return boolean_false_node;
3673 }
3674 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3675 else if (compare_values_warnv (vr0->min, vr1->max,
3676 strict_overflow_p) == 1
3677 || compare_values_warnv (vr1->min, vr0->max,
3678 strict_overflow_p) == 1)
3679 return boolean_false_node;
3680
3681 return NULL_TREE;
3682 }
3683 else if (comp == NE_EXPR)
3684 {
3685 int cmp1, cmp2;
3686
3687 /* If VR0 is completely to the left or completely to the right
3688 of VR1, they are always different. Notice that we need to
3689 make sure that both comparisons yield similar results to
3690 avoid comparing values that cannot be compared at
3691 compile-time. */
3692 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3693 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3694 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
3695 return boolean_true_node;
3696
3697 /* If VR0 and VR1 represent a single value and are identical,
3698 return false. */
3699 else if (compare_values_warnv (vr0->min, vr0->max,
3700 strict_overflow_p) == 0
3701 && compare_values_warnv (vr1->min, vr1->max,
3702 strict_overflow_p) == 0
3703 && compare_values_warnv (vr0->min, vr1->min,
3704 strict_overflow_p) == 0
3705 && compare_values_warnv (vr0->max, vr1->max,
3706 strict_overflow_p) == 0)
3707 return boolean_false_node;
3708
3709 /* Otherwise, they may or may not be different. */
3710 else
3711 return NULL_TREE;
3712 }
3713 else if (comp == LT_EXPR || comp == LE_EXPR)
3714 {
3715 int tst;
3716
3717 /* If VR0 is to the left of VR1, return true. */
3718 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3719 if ((comp == LT_EXPR && tst == -1)
3720 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3721 {
3722 if (overflow_infinity_range_p (vr0)
3723 || overflow_infinity_range_p (vr1))
3724 *strict_overflow_p = true;
3725 return boolean_true_node;
3726 }
3727
3728 /* If VR0 is to the right of VR1, return false. */
3729 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3730 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3731 || (comp == LE_EXPR && tst == 1))
3732 {
3733 if (overflow_infinity_range_p (vr0)
3734 || overflow_infinity_range_p (vr1))
3735 *strict_overflow_p = true;
3736 return boolean_false_node;
3737 }
3738
3739 /* Otherwise, we don't know. */
3740 return NULL_TREE;
3741 }
3742
3743 gcc_unreachable ();
3744 }
3745
3746
3747 /* Given a value range VR, a value VAL and a comparison code COMP, return
3748 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3749 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3750 always returns false. Return NULL_TREE if it is not always
3751 possible to determine the value of the comparison. Also set
3752 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3753 infinity was used in the test. */
3754
3755 static tree
3756 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
3757 bool *strict_overflow_p)
3758 {
3759 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3760 return NULL_TREE;
3761
3762 /* Anti-ranges need to be handled separately. */
3763 if (vr->type == VR_ANTI_RANGE)
3764 {
3765 /* For anti-ranges, the only predicates that we can compute at
3766 compile time are equality and inequality. */
3767 if (comp == GT_EXPR
3768 || comp == GE_EXPR
3769 || comp == LT_EXPR
3770 || comp == LE_EXPR)
3771 return NULL_TREE;
3772
3773 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3774 if (value_inside_range (val, vr) == 1)
3775 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3776
3777 return NULL_TREE;
3778 }
3779
3780 if (!usable_range_p (vr, strict_overflow_p))
3781 return NULL_TREE;
3782
3783 if (comp == EQ_EXPR)
3784 {
3785 /* EQ_EXPR may only be computed if VR represents exactly
3786 one value. */
3787 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
3788 {
3789 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
3790 if (cmp == 0)
3791 return boolean_true_node;
3792 else if (cmp == -1 || cmp == 1 || cmp == 2)
3793 return boolean_false_node;
3794 }
3795 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3796 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3797 return boolean_false_node;
3798
3799 return NULL_TREE;
3800 }
3801 else if (comp == NE_EXPR)
3802 {
3803 /* If VAL is not inside VR, then they are always different. */
3804 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3805 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3806 return boolean_true_node;
3807
3808 /* If VR represents exactly one value equal to VAL, then return
3809 false. */
3810 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3811 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3812 return boolean_false_node;
3813
3814 /* Otherwise, they may or may not be different. */
3815 return NULL_TREE;
3816 }
3817 else if (comp == LT_EXPR || comp == LE_EXPR)
3818 {
3819 int tst;
3820
3821 /* If VR is to the left of VAL, return true. */
3822 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3823 if ((comp == LT_EXPR && tst == -1)
3824 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3825 {
3826 if (overflow_infinity_range_p (vr))
3827 *strict_overflow_p = true;
3828 return boolean_true_node;
3829 }
3830
3831 /* If VR is to the right of VAL, return false. */
3832 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3833 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3834 || (comp == LE_EXPR && tst == 1))
3835 {
3836 if (overflow_infinity_range_p (vr))
3837 *strict_overflow_p = true;
3838 return boolean_false_node;
3839 }
3840
3841 /* Otherwise, we don't know. */
3842 return NULL_TREE;
3843 }
3844 else if (comp == GT_EXPR || comp == GE_EXPR)
3845 {
3846 int tst;
3847
3848 /* If VR is to the right of VAL, return true. */
3849 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3850 if ((comp == GT_EXPR && tst == 1)
3851 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3852 {
3853 if (overflow_infinity_range_p (vr))
3854 *strict_overflow_p = true;
3855 return boolean_true_node;
3856 }
3857
3858 /* If VR is to the left of VAL, return false. */
3859 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3860 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3861 || (comp == GE_EXPR && tst == -1))
3862 {
3863 if (overflow_infinity_range_p (vr))
3864 *strict_overflow_p = true;
3865 return boolean_false_node;
3866 }
3867
3868 /* Otherwise, we don't know. */
3869 return NULL_TREE;
3870 }
3871
3872 gcc_unreachable ();
3873 }
3874
3875
3876 /* Debugging dumps. */
3877
3878 void dump_value_range (FILE *, value_range_t *);
3879 void debug_value_range (value_range_t *);
3880 void dump_all_value_ranges (FILE *);
3881 void debug_all_value_ranges (void);
3882 void dump_vr_equiv (FILE *, bitmap);
3883 void debug_vr_equiv (bitmap);
3884
3885
3886 /* Dump value range VR to FILE. */
3887
3888 void
3889 dump_value_range (FILE *file, value_range_t *vr)
3890 {
3891 if (vr == NULL)
3892 fprintf (file, "[]");
3893 else if (vr->type == VR_UNDEFINED)
3894 fprintf (file, "UNDEFINED");
3895 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3896 {
3897 tree type = TREE_TYPE (vr->min);
3898
3899 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3900
3901 if (is_negative_overflow_infinity (vr->min))
3902 fprintf (file, "-INF(OVF)");
3903 else if (INTEGRAL_TYPE_P (type)
3904 && !TYPE_UNSIGNED (type)
3905 && vrp_val_is_min (vr->min))
3906 fprintf (file, "-INF");
3907 else
3908 print_generic_expr (file, vr->min, 0);
3909
3910 fprintf (file, ", ");
3911
3912 if (is_positive_overflow_infinity (vr->max))
3913 fprintf (file, "+INF(OVF)");
3914 else if (INTEGRAL_TYPE_P (type)
3915 && vrp_val_is_max (vr->max))
3916 fprintf (file, "+INF");
3917 else
3918 print_generic_expr (file, vr->max, 0);
3919
3920 fprintf (file, "]");
3921
3922 if (vr->equiv)
3923 {
3924 bitmap_iterator bi;
3925 unsigned i, c = 0;
3926
3927 fprintf (file, " EQUIVALENCES: { ");
3928
3929 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3930 {
3931 print_generic_expr (file, ssa_name (i), 0);
3932 fprintf (file, " ");
3933 c++;
3934 }
3935
3936 fprintf (file, "} (%u elements)", c);
3937 }
3938 }
3939 else if (vr->type == VR_VARYING)
3940 fprintf (file, "VARYING");
3941 else
3942 fprintf (file, "INVALID RANGE");
3943 }
3944
3945
3946 /* Dump value range VR to stderr. */
3947
3948 DEBUG_FUNCTION void
3949 debug_value_range (value_range_t *vr)
3950 {
3951 dump_value_range (stderr, vr);
3952 fprintf (stderr, "\n");
3953 }
3954
3955
3956 /* Dump value ranges of all SSA_NAMEs to FILE. */
3957
3958 void
3959 dump_all_value_ranges (FILE *file)
3960 {
3961 size_t i;
3962
3963 for (i = 0; i < num_vr_values; i++)
3964 {
3965 if (vr_value[i])
3966 {
3967 print_generic_expr (file, ssa_name (i), 0);
3968 fprintf (file, ": ");
3969 dump_value_range (file, vr_value[i]);
3970 fprintf (file, "\n");
3971 }
3972 }
3973
3974 fprintf (file, "\n");
3975 }
3976
3977
3978 /* Dump all value ranges to stderr. */
3979
3980 DEBUG_FUNCTION void
3981 debug_all_value_ranges (void)
3982 {
3983 dump_all_value_ranges (stderr);
3984 }
3985
3986
3987 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3988 create a new SSA name N and return the assertion assignment
3989 'V = ASSERT_EXPR <V, V OP W>'. */
3990
3991 static gimple
3992 build_assert_expr_for (tree cond, tree v)
3993 {
3994 tree n;
3995 gimple assertion;
3996
3997 gcc_assert (TREE_CODE (v) == SSA_NAME);
3998 n = duplicate_ssa_name (v, NULL);
3999
4000 if (COMPARISON_CLASS_P (cond))
4001 {
4002 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
4003 assertion = gimple_build_assign (n, a);
4004 }
4005 else if (TREE_CODE (cond) == SSA_NAME)
4006 {
4007 /* Given V, build the assignment N = true. */
4008 gcc_assert (v == cond);
4009 assertion = gimple_build_assign (n, boolean_true_node);
4010 }
4011 else
4012 gcc_unreachable ();
4013
4014 SSA_NAME_DEF_STMT (n) = assertion;
4015
4016 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4017 operand of the ASSERT_EXPR. Register the new name and the old one
4018 in the replacement table so that we can fix the SSA web after
4019 adding all the ASSERT_EXPRs. */
4020 register_new_name_mapping (n, v);
4021
4022 return assertion;
4023 }
4024
4025
4026 /* Return false if EXPR is a predicate expression involving floating
4027 point values. */
4028
4029 static inline bool
4030 fp_predicate (gimple stmt)
4031 {
4032 GIMPLE_CHECK (stmt, GIMPLE_COND);
4033
4034 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4035 }
4036
4037
4038 /* If the range of values taken by OP can be inferred after STMT executes,
4039 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4040 describes the inferred range. Return true if a range could be
4041 inferred. */
4042
4043 static bool
4044 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
4045 {
4046 *val_p = NULL_TREE;
4047 *comp_code_p = ERROR_MARK;
4048
4049 /* Do not attempt to infer anything in names that flow through
4050 abnormal edges. */
4051 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4052 return false;
4053
4054 /* Similarly, don't infer anything from statements that may throw
4055 exceptions. */
4056 if (stmt_could_throw_p (stmt))
4057 return false;
4058
4059 /* If STMT is the last statement of a basic block with no
4060 successors, there is no point inferring anything about any of its
4061 operands. We would not be able to find a proper insertion point
4062 for the assertion, anyway. */
4063 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
4064 return false;
4065
4066 /* We can only assume that a pointer dereference will yield
4067 non-NULL if -fdelete-null-pointer-checks is enabled. */
4068 if (flag_delete_null_pointer_checks
4069 && POINTER_TYPE_P (TREE_TYPE (op))
4070 && gimple_code (stmt) != GIMPLE_ASM)
4071 {
4072 unsigned num_uses, num_loads, num_stores;
4073
4074 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
4075 if (num_loads + num_stores > 0)
4076 {
4077 *val_p = build_int_cst (TREE_TYPE (op), 0);
4078 *comp_code_p = NE_EXPR;
4079 return true;
4080 }
4081 }
4082
4083 return false;
4084 }
4085
4086
4087 void dump_asserts_for (FILE *, tree);
4088 void debug_asserts_for (tree);
4089 void dump_all_asserts (FILE *);
4090 void debug_all_asserts (void);
4091
4092 /* Dump all the registered assertions for NAME to FILE. */
4093
4094 void
4095 dump_asserts_for (FILE *file, tree name)
4096 {
4097 assert_locus_t loc;
4098
4099 fprintf (file, "Assertions to be inserted for ");
4100 print_generic_expr (file, name, 0);
4101 fprintf (file, "\n");
4102
4103 loc = asserts_for[SSA_NAME_VERSION (name)];
4104 while (loc)
4105 {
4106 fprintf (file, "\t");
4107 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4108 fprintf (file, "\n\tBB #%d", loc->bb->index);
4109 if (loc->e)
4110 {
4111 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4112 loc->e->dest->index);
4113 dump_edge_info (file, loc->e, 0);
4114 }
4115 fprintf (file, "\n\tPREDICATE: ");
4116 print_generic_expr (file, name, 0);
4117 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
4118 print_generic_expr (file, loc->val, 0);
4119 fprintf (file, "\n\n");
4120 loc = loc->next;
4121 }
4122
4123 fprintf (file, "\n");
4124 }
4125
4126
4127 /* Dump all the registered assertions for NAME to stderr. */
4128
4129 DEBUG_FUNCTION void
4130 debug_asserts_for (tree name)
4131 {
4132 dump_asserts_for (stderr, name);
4133 }
4134
4135
4136 /* Dump all the registered assertions for all the names to FILE. */
4137
4138 void
4139 dump_all_asserts (FILE *file)
4140 {
4141 unsigned i;
4142 bitmap_iterator bi;
4143
4144 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4145 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4146 dump_asserts_for (file, ssa_name (i));
4147 fprintf (file, "\n");
4148 }
4149
4150
4151 /* Dump all the registered assertions for all the names to stderr. */
4152
4153 DEBUG_FUNCTION void
4154 debug_all_asserts (void)
4155 {
4156 dump_all_asserts (stderr);
4157 }
4158
4159
4160 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4161 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4162 E->DEST, then register this location as a possible insertion point
4163 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4164
4165 BB, E and SI provide the exact insertion point for the new
4166 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4167 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4168 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4169 must not be NULL. */
4170
4171 static void
4172 register_new_assert_for (tree name, tree expr,
4173 enum tree_code comp_code,
4174 tree val,
4175 basic_block bb,
4176 edge e,
4177 gimple_stmt_iterator si)
4178 {
4179 assert_locus_t n, loc, last_loc;
4180 basic_block dest_bb;
4181
4182 gcc_checking_assert (bb == NULL || e == NULL);
4183
4184 if (e == NULL)
4185 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4186 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4187
4188 /* Never build an assert comparing against an integer constant with
4189 TREE_OVERFLOW set. This confuses our undefined overflow warning
4190 machinery. */
4191 if (TREE_CODE (val) == INTEGER_CST
4192 && TREE_OVERFLOW (val))
4193 val = build_int_cst_wide (TREE_TYPE (val),
4194 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
4195
4196 /* The new assertion A will be inserted at BB or E. We need to
4197 determine if the new location is dominated by a previously
4198 registered location for A. If we are doing an edge insertion,
4199 assume that A will be inserted at E->DEST. Note that this is not
4200 necessarily true.
4201
4202 If E is a critical edge, it will be split. But even if E is
4203 split, the new block will dominate the same set of blocks that
4204 E->DEST dominates.
4205
4206 The reverse, however, is not true, blocks dominated by E->DEST
4207 will not be dominated by the new block created to split E. So,
4208 if the insertion location is on a critical edge, we will not use
4209 the new location to move another assertion previously registered
4210 at a block dominated by E->DEST. */
4211 dest_bb = (bb) ? bb : e->dest;
4212
4213 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4214 VAL at a block dominating DEST_BB, then we don't need to insert a new
4215 one. Similarly, if the same assertion already exists at a block
4216 dominated by DEST_BB and the new location is not on a critical
4217 edge, then update the existing location for the assertion (i.e.,
4218 move the assertion up in the dominance tree).
4219
4220 Note, this is implemented as a simple linked list because there
4221 should not be more than a handful of assertions registered per
4222 name. If this becomes a performance problem, a table hashed by
4223 COMP_CODE and VAL could be implemented. */
4224 loc = asserts_for[SSA_NAME_VERSION (name)];
4225 last_loc = loc;
4226 while (loc)
4227 {
4228 if (loc->comp_code == comp_code
4229 && (loc->val == val
4230 || operand_equal_p (loc->val, val, 0))
4231 && (loc->expr == expr
4232 || operand_equal_p (loc->expr, expr, 0)))
4233 {
4234 /* If the assertion NAME COMP_CODE VAL has already been
4235 registered at a basic block that dominates DEST_BB, then
4236 we don't need to insert the same assertion again. Note
4237 that we don't check strict dominance here to avoid
4238 replicating the same assertion inside the same basic
4239 block more than once (e.g., when a pointer is
4240 dereferenced several times inside a block).
4241
4242 An exception to this rule are edge insertions. If the
4243 new assertion is to be inserted on edge E, then it will
4244 dominate all the other insertions that we may want to
4245 insert in DEST_BB. So, if we are doing an edge
4246 insertion, don't do this dominance check. */
4247 if (e == NULL
4248 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
4249 return;
4250
4251 /* Otherwise, if E is not a critical edge and DEST_BB
4252 dominates the existing location for the assertion, move
4253 the assertion up in the dominance tree by updating its
4254 location information. */
4255 if ((e == NULL || !EDGE_CRITICAL_P (e))
4256 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4257 {
4258 loc->bb = dest_bb;
4259 loc->e = e;
4260 loc->si = si;
4261 return;
4262 }
4263 }
4264
4265 /* Update the last node of the list and move to the next one. */
4266 last_loc = loc;
4267 loc = loc->next;
4268 }
4269
4270 /* If we didn't find an assertion already registered for
4271 NAME COMP_CODE VAL, add a new one at the end of the list of
4272 assertions associated with NAME. */
4273 n = XNEW (struct assert_locus_d);
4274 n->bb = dest_bb;
4275 n->e = e;
4276 n->si = si;
4277 n->comp_code = comp_code;
4278 n->val = val;
4279 n->expr = expr;
4280 n->next = NULL;
4281
4282 if (last_loc)
4283 last_loc->next = n;
4284 else
4285 asserts_for[SSA_NAME_VERSION (name)] = n;
4286
4287 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4288 }
4289
4290 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4291 Extract a suitable test code and value and store them into *CODE_P and
4292 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4293
4294 If no extraction was possible, return FALSE, otherwise return TRUE.
4295
4296 If INVERT is true, then we invert the result stored into *CODE_P. */
4297
4298 static bool
4299 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4300 tree cond_op0, tree cond_op1,
4301 bool invert, enum tree_code *code_p,
4302 tree *val_p)
4303 {
4304 enum tree_code comp_code;
4305 tree val;
4306
4307 /* Otherwise, we have a comparison of the form NAME COMP VAL
4308 or VAL COMP NAME. */
4309 if (name == cond_op1)
4310 {
4311 /* If the predicate is of the form VAL COMP NAME, flip
4312 COMP around because we need to register NAME as the
4313 first operand in the predicate. */
4314 comp_code = swap_tree_comparison (cond_code);
4315 val = cond_op0;
4316 }
4317 else
4318 {
4319 /* The comparison is of the form NAME COMP VAL, so the
4320 comparison code remains unchanged. */
4321 comp_code = cond_code;
4322 val = cond_op1;
4323 }
4324
4325 /* Invert the comparison code as necessary. */
4326 if (invert)
4327 comp_code = invert_tree_comparison (comp_code, 0);
4328
4329 /* VRP does not handle float types. */
4330 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4331 return false;
4332
4333 /* Do not register always-false predicates.
4334 FIXME: this works around a limitation in fold() when dealing with
4335 enumerations. Given 'enum { N1, N2 } x;', fold will not
4336 fold 'if (x > N2)' to 'if (0)'. */
4337 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4338 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4339 {
4340 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4341 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4342
4343 if (comp_code == GT_EXPR
4344 && (!max
4345 || compare_values (val, max) == 0))
4346 return false;
4347
4348 if (comp_code == LT_EXPR
4349 && (!min
4350 || compare_values (val, min) == 0))
4351 return false;
4352 }
4353 *code_p = comp_code;
4354 *val_p = val;
4355 return true;
4356 }
4357
4358 /* Try to register an edge assertion for SSA name NAME on edge E for
4359 the condition COND contributing to the conditional jump pointed to by BSI.
4360 Invert the condition COND if INVERT is true.
4361 Return true if an assertion for NAME could be registered. */
4362
4363 static bool
4364 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4365 enum tree_code cond_code,
4366 tree cond_op0, tree cond_op1, bool invert)
4367 {
4368 tree val;
4369 enum tree_code comp_code;
4370 bool retval = false;
4371
4372 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4373 cond_op0,
4374 cond_op1,
4375 invert, &comp_code, &val))
4376 return false;
4377
4378 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4379 reachable from E. */
4380 if (live_on_edge (e, name)
4381 && !has_single_use (name))
4382 {
4383 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4384 retval = true;
4385 }
4386
4387 /* In the case of NAME <= CST and NAME being defined as
4388 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4389 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4390 This catches range and anti-range tests. */
4391 if ((comp_code == LE_EXPR
4392 || comp_code == GT_EXPR)
4393 && TREE_CODE (val) == INTEGER_CST
4394 && TYPE_UNSIGNED (TREE_TYPE (val)))
4395 {
4396 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4397 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4398
4399 /* Extract CST2 from the (optional) addition. */
4400 if (is_gimple_assign (def_stmt)
4401 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4402 {
4403 name2 = gimple_assign_rhs1 (def_stmt);
4404 cst2 = gimple_assign_rhs2 (def_stmt);
4405 if (TREE_CODE (name2) == SSA_NAME
4406 && TREE_CODE (cst2) == INTEGER_CST)
4407 def_stmt = SSA_NAME_DEF_STMT (name2);
4408 }
4409
4410 /* Extract NAME2 from the (optional) sign-changing cast. */
4411 if (gimple_assign_cast_p (def_stmt))
4412 {
4413 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4414 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4415 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4416 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4417 name3 = gimple_assign_rhs1 (def_stmt);
4418 }
4419
4420 /* If name3 is used later, create an ASSERT_EXPR for it. */
4421 if (name3 != NULL_TREE
4422 && TREE_CODE (name3) == SSA_NAME
4423 && (cst2 == NULL_TREE
4424 || TREE_CODE (cst2) == INTEGER_CST)
4425 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4426 && live_on_edge (e, name3)
4427 && !has_single_use (name3))
4428 {
4429 tree tmp;
4430
4431 /* Build an expression for the range test. */
4432 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4433 if (cst2 != NULL_TREE)
4434 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4435
4436 if (dump_file)
4437 {
4438 fprintf (dump_file, "Adding assert for ");
4439 print_generic_expr (dump_file, name3, 0);
4440 fprintf (dump_file, " from ");
4441 print_generic_expr (dump_file, tmp, 0);
4442 fprintf (dump_file, "\n");
4443 }
4444
4445 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4446
4447 retval = true;
4448 }
4449
4450 /* If name2 is used later, create an ASSERT_EXPR for it. */
4451 if (name2 != NULL_TREE
4452 && TREE_CODE (name2) == SSA_NAME
4453 && TREE_CODE (cst2) == INTEGER_CST
4454 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4455 && live_on_edge (e, name2)
4456 && !has_single_use (name2))
4457 {
4458 tree tmp;
4459
4460 /* Build an expression for the range test. */
4461 tmp = name2;
4462 if (TREE_TYPE (name) != TREE_TYPE (name2))
4463 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4464 if (cst2 != NULL_TREE)
4465 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4466
4467 if (dump_file)
4468 {
4469 fprintf (dump_file, "Adding assert for ");
4470 print_generic_expr (dump_file, name2, 0);
4471 fprintf (dump_file, " from ");
4472 print_generic_expr (dump_file, tmp, 0);
4473 fprintf (dump_file, "\n");
4474 }
4475
4476 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4477
4478 retval = true;
4479 }
4480 }
4481
4482 return retval;
4483 }
4484
4485 /* OP is an operand of a truth value expression which is known to have
4486 a particular value. Register any asserts for OP and for any
4487 operands in OP's defining statement.
4488
4489 If CODE is EQ_EXPR, then we want to register OP is zero (false),
4490 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
4491
4492 static bool
4493 register_edge_assert_for_1 (tree op, enum tree_code code,
4494 edge e, gimple_stmt_iterator bsi)
4495 {
4496 bool retval = false;
4497 gimple op_def;
4498 tree val;
4499 enum tree_code rhs_code;
4500
4501 /* We only care about SSA_NAMEs. */
4502 if (TREE_CODE (op) != SSA_NAME)
4503 return false;
4504
4505 /* We know that OP will have a zero or nonzero value. If OP is used
4506 more than once go ahead and register an assert for OP.
4507
4508 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4509 it will always be set for OP (because OP is used in a COND_EXPR in
4510 the subgraph). */
4511 if (!has_single_use (op))
4512 {
4513 val = build_int_cst (TREE_TYPE (op), 0);
4514 register_new_assert_for (op, op, code, val, NULL, e, bsi);
4515 retval = true;
4516 }
4517
4518 /* Now look at how OP is set. If it's set from a comparison,
4519 a truth operation or some bit operations, then we may be able
4520 to register information about the operands of that assignment. */
4521 op_def = SSA_NAME_DEF_STMT (op);
4522 if (gimple_code (op_def) != GIMPLE_ASSIGN)
4523 return retval;
4524
4525 rhs_code = gimple_assign_rhs_code (op_def);
4526
4527 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
4528 {
4529 bool invert = (code == EQ_EXPR ? true : false);
4530 tree op0 = gimple_assign_rhs1 (op_def);
4531 tree op1 = gimple_assign_rhs2 (op_def);
4532
4533 if (TREE_CODE (op0) == SSA_NAME)
4534 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
4535 invert);
4536 if (TREE_CODE (op1) == SSA_NAME)
4537 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
4538 invert);
4539 }
4540 else if ((code == NE_EXPR
4541 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
4542 || (code == EQ_EXPR
4543 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
4544 {
4545 /* Recurse on each operand. */
4546 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4547 code, e, bsi);
4548 retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
4549 code, e, bsi);
4550 }
4551 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
4552 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
4553 {
4554 /* Recurse, flipping CODE. */
4555 code = invert_tree_comparison (code, false);
4556 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4557 code, e, bsi);
4558 }
4559 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
4560 {
4561 /* Recurse through the copy. */
4562 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4563 code, e, bsi);
4564 }
4565 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
4566 {
4567 /* Recurse through the type conversion. */
4568 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4569 code, e, bsi);
4570 }
4571
4572 return retval;
4573 }
4574
4575 /* Try to register an edge assertion for SSA name NAME on edge E for
4576 the condition COND contributing to the conditional jump pointed to by SI.
4577 Return true if an assertion for NAME could be registered. */
4578
4579 static bool
4580 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
4581 enum tree_code cond_code, tree cond_op0,
4582 tree cond_op1)
4583 {
4584 tree val;
4585 enum tree_code comp_code;
4586 bool retval = false;
4587 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
4588
4589 /* Do not attempt to infer anything in names that flow through
4590 abnormal edges. */
4591 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
4592 return false;
4593
4594 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4595 cond_op0, cond_op1,
4596 is_else_edge,
4597 &comp_code, &val))
4598 return false;
4599
4600 /* Register ASSERT_EXPRs for name. */
4601 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
4602 cond_op1, is_else_edge);
4603
4604
4605 /* If COND is effectively an equality test of an SSA_NAME against
4606 the value zero or one, then we may be able to assert values
4607 for SSA_NAMEs which flow into COND. */
4608
4609 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
4610 statement of NAME we can assert both operands of the BIT_AND_EXPR
4611 have nonzero value. */
4612 if (((comp_code == EQ_EXPR && integer_onep (val))
4613 || (comp_code == NE_EXPR && integer_zerop (val))))
4614 {
4615 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4616
4617 if (is_gimple_assign (def_stmt)
4618 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
4619 {
4620 tree op0 = gimple_assign_rhs1 (def_stmt);
4621 tree op1 = gimple_assign_rhs2 (def_stmt);
4622 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
4623 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
4624 }
4625 }
4626
4627 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
4628 statement of NAME we can assert both operands of the BIT_IOR_EXPR
4629 have zero value. */
4630 if (((comp_code == EQ_EXPR && integer_zerop (val))
4631 || (comp_code == NE_EXPR && integer_onep (val))))
4632 {
4633 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4634
4635 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4636 necessarily zero value, or if type-precision is one. */
4637 if (is_gimple_assign (def_stmt)
4638 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
4639 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
4640 || comp_code == EQ_EXPR)))
4641 {
4642 tree op0 = gimple_assign_rhs1 (def_stmt);
4643 tree op1 = gimple_assign_rhs2 (def_stmt);
4644 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
4645 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
4646 }
4647 }
4648
4649 return retval;
4650 }
4651
4652
4653 /* Determine whether the outgoing edges of BB should receive an
4654 ASSERT_EXPR for each of the operands of BB's LAST statement.
4655 The last statement of BB must be a COND_EXPR.
4656
4657 If any of the sub-graphs rooted at BB have an interesting use of
4658 the predicate operands, an assert location node is added to the
4659 list of assertions for the corresponding operands. */
4660
4661 static bool
4662 find_conditional_asserts (basic_block bb, gimple last)
4663 {
4664 bool need_assert;
4665 gimple_stmt_iterator bsi;
4666 tree op;
4667 edge_iterator ei;
4668 edge e;
4669 ssa_op_iter iter;
4670
4671 need_assert = false;
4672 bsi = gsi_for_stmt (last);
4673
4674 /* Look for uses of the operands in each of the sub-graphs
4675 rooted at BB. We need to check each of the outgoing edges
4676 separately, so that we know what kind of ASSERT_EXPR to
4677 insert. */
4678 FOR_EACH_EDGE (e, ei, bb->succs)
4679 {
4680 if (e->dest == bb)
4681 continue;
4682
4683 /* Register the necessary assertions for each operand in the
4684 conditional predicate. */
4685 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4686 {
4687 need_assert |= register_edge_assert_for (op, e, bsi,
4688 gimple_cond_code (last),
4689 gimple_cond_lhs (last),
4690 gimple_cond_rhs (last));
4691 }
4692 }
4693
4694 return need_assert;
4695 }
4696
4697 struct case_info
4698 {
4699 tree expr;
4700 basic_block bb;
4701 };
4702
4703 /* Compare two case labels sorting first by the destination bb index
4704 and then by the case value. */
4705
4706 static int
4707 compare_case_labels (const void *p1, const void *p2)
4708 {
4709 const struct case_info *ci1 = (const struct case_info *) p1;
4710 const struct case_info *ci2 = (const struct case_info *) p2;
4711 int idx1 = ci1->bb->index;
4712 int idx2 = ci2->bb->index;
4713
4714 if (idx1 < idx2)
4715 return -1;
4716 else if (idx1 == idx2)
4717 {
4718 /* Make sure the default label is first in a group. */
4719 if (!CASE_LOW (ci1->expr))
4720 return -1;
4721 else if (!CASE_LOW (ci2->expr))
4722 return 1;
4723 else
4724 return tree_int_cst_compare (CASE_LOW (ci1->expr),
4725 CASE_LOW (ci2->expr));
4726 }
4727 else
4728 return 1;
4729 }
4730
4731 /* Determine whether the outgoing edges of BB should receive an
4732 ASSERT_EXPR for each of the operands of BB's LAST statement.
4733 The last statement of BB must be a SWITCH_EXPR.
4734
4735 If any of the sub-graphs rooted at BB have an interesting use of
4736 the predicate operands, an assert location node is added to the
4737 list of assertions for the corresponding operands. */
4738
4739 static bool
4740 find_switch_asserts (basic_block bb, gimple last)
4741 {
4742 bool need_assert;
4743 gimple_stmt_iterator bsi;
4744 tree op;
4745 edge e;
4746 struct case_info *ci;
4747 size_t n = gimple_switch_num_labels (last);
4748 #if GCC_VERSION >= 4000
4749 unsigned int idx;
4750 #else
4751 /* Work around GCC 3.4 bug (PR 37086). */
4752 volatile unsigned int idx;
4753 #endif
4754
4755 need_assert = false;
4756 bsi = gsi_for_stmt (last);
4757 op = gimple_switch_index (last);
4758 if (TREE_CODE (op) != SSA_NAME)
4759 return false;
4760
4761 /* Build a vector of case labels sorted by destination label. */
4762 ci = XNEWVEC (struct case_info, n);
4763 for (idx = 0; idx < n; ++idx)
4764 {
4765 ci[idx].expr = gimple_switch_label (last, idx);
4766 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
4767 }
4768 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
4769
4770 for (idx = 0; idx < n; ++idx)
4771 {
4772 tree min, max;
4773 tree cl = ci[idx].expr;
4774 basic_block cbb = ci[idx].bb;
4775
4776 min = CASE_LOW (cl);
4777 max = CASE_HIGH (cl);
4778
4779 /* If there are multiple case labels with the same destination
4780 we need to combine them to a single value range for the edge. */
4781 if (idx + 1 < n && cbb == ci[idx + 1].bb)
4782 {
4783 /* Skip labels until the last of the group. */
4784 do {
4785 ++idx;
4786 } while (idx < n && cbb == ci[idx].bb);
4787 --idx;
4788
4789 /* Pick up the maximum of the case label range. */
4790 if (CASE_HIGH (ci[idx].expr))
4791 max = CASE_HIGH (ci[idx].expr);
4792 else
4793 max = CASE_LOW (ci[idx].expr);
4794 }
4795
4796 /* Nothing to do if the range includes the default label until we
4797 can register anti-ranges. */
4798 if (min == NULL_TREE)
4799 continue;
4800
4801 /* Find the edge to register the assert expr on. */
4802 e = find_edge (bb, cbb);
4803
4804 /* Register the necessary assertions for the operand in the
4805 SWITCH_EXPR. */
4806 need_assert |= register_edge_assert_for (op, e, bsi,
4807 max ? GE_EXPR : EQ_EXPR,
4808 op,
4809 fold_convert (TREE_TYPE (op),
4810 min));
4811 if (max)
4812 {
4813 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
4814 op,
4815 fold_convert (TREE_TYPE (op),
4816 max));
4817 }
4818 }
4819
4820 XDELETEVEC (ci);
4821 return need_assert;
4822 }
4823
4824
4825 /* Traverse all the statements in block BB looking for statements that
4826 may generate useful assertions for the SSA names in their operand.
4827 If a statement produces a useful assertion A for name N_i, then the
4828 list of assertions already generated for N_i is scanned to
4829 determine if A is actually needed.
4830
4831 If N_i already had the assertion A at a location dominating the
4832 current location, then nothing needs to be done. Otherwise, the
4833 new location for A is recorded instead.
4834
4835 1- For every statement S in BB, all the variables used by S are
4836 added to bitmap FOUND_IN_SUBGRAPH.
4837
4838 2- If statement S uses an operand N in a way that exposes a known
4839 value range for N, then if N was not already generated by an
4840 ASSERT_EXPR, create a new assert location for N. For instance,
4841 if N is a pointer and the statement dereferences it, we can
4842 assume that N is not NULL.
4843
4844 3- COND_EXPRs are a special case of #2. We can derive range
4845 information from the predicate but need to insert different
4846 ASSERT_EXPRs for each of the sub-graphs rooted at the
4847 conditional block. If the last statement of BB is a conditional
4848 expression of the form 'X op Y', then
4849
4850 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4851
4852 b) If the conditional is the only entry point to the sub-graph
4853 corresponding to the THEN_CLAUSE, recurse into it. On
4854 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4855 an ASSERT_EXPR is added for the corresponding variable.
4856
4857 c) Repeat step (b) on the ELSE_CLAUSE.
4858
4859 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4860
4861 For instance,
4862
4863 if (a == 9)
4864 b = a;
4865 else
4866 b = c + 1;
4867
4868 In this case, an assertion on the THEN clause is useful to
4869 determine that 'a' is always 9 on that edge. However, an assertion
4870 on the ELSE clause would be unnecessary.
4871
4872 4- If BB does not end in a conditional expression, then we recurse
4873 into BB's dominator children.
4874
4875 At the end of the recursive traversal, every SSA name will have a
4876 list of locations where ASSERT_EXPRs should be added. When a new
4877 location for name N is found, it is registered by calling
4878 register_new_assert_for. That function keeps track of all the
4879 registered assertions to prevent adding unnecessary assertions.
4880 For instance, if a pointer P_4 is dereferenced more than once in a
4881 dominator tree, only the location dominating all the dereference of
4882 P_4 will receive an ASSERT_EXPR.
4883
4884 If this function returns true, then it means that there are names
4885 for which we need to generate ASSERT_EXPRs. Those assertions are
4886 inserted by process_assert_insertions. */
4887
4888 static bool
4889 find_assert_locations_1 (basic_block bb, sbitmap live)
4890 {
4891 gimple_stmt_iterator si;
4892 gimple last;
4893 gimple phi;
4894 bool need_assert;
4895
4896 need_assert = false;
4897 last = last_stmt (bb);
4898
4899 /* If BB's last statement is a conditional statement involving integer
4900 operands, determine if we need to add ASSERT_EXPRs. */
4901 if (last
4902 && gimple_code (last) == GIMPLE_COND
4903 && !fp_predicate (last)
4904 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4905 need_assert |= find_conditional_asserts (bb, last);
4906
4907 /* If BB's last statement is a switch statement involving integer
4908 operands, determine if we need to add ASSERT_EXPRs. */
4909 if (last
4910 && gimple_code (last) == GIMPLE_SWITCH
4911 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4912 need_assert |= find_switch_asserts (bb, last);
4913
4914 /* Traverse all the statements in BB marking used names and looking
4915 for statements that may infer assertions for their used operands. */
4916 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4917 {
4918 gimple stmt;
4919 tree op;
4920 ssa_op_iter i;
4921
4922 stmt = gsi_stmt (si);
4923
4924 if (is_gimple_debug (stmt))
4925 continue;
4926
4927 /* See if we can derive an assertion for any of STMT's operands. */
4928 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4929 {
4930 tree value;
4931 enum tree_code comp_code;
4932
4933 /* Mark OP in our live bitmap. */
4934 SET_BIT (live, SSA_NAME_VERSION (op));
4935
4936 /* If OP is used in such a way that we can infer a value
4937 range for it, and we don't find a previous assertion for
4938 it, create a new assertion location node for OP. */
4939 if (infer_value_range (stmt, op, &comp_code, &value))
4940 {
4941 /* If we are able to infer a nonzero value range for OP,
4942 then walk backwards through the use-def chain to see if OP
4943 was set via a typecast.
4944
4945 If so, then we can also infer a nonzero value range
4946 for the operand of the NOP_EXPR. */
4947 if (comp_code == NE_EXPR && integer_zerop (value))
4948 {
4949 tree t = op;
4950 gimple def_stmt = SSA_NAME_DEF_STMT (t);
4951
4952 while (is_gimple_assign (def_stmt)
4953 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
4954 && TREE_CODE
4955 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
4956 && POINTER_TYPE_P
4957 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
4958 {
4959 t = gimple_assign_rhs1 (def_stmt);
4960 def_stmt = SSA_NAME_DEF_STMT (t);
4961
4962 /* Note we want to register the assert for the
4963 operand of the NOP_EXPR after SI, not after the
4964 conversion. */
4965 if (! has_single_use (t))
4966 {
4967 register_new_assert_for (t, t, comp_code, value,
4968 bb, NULL, si);
4969 need_assert = true;
4970 }
4971 }
4972 }
4973
4974 /* If OP is used only once, namely in this STMT, don't
4975 bother creating an ASSERT_EXPR for it. Such an
4976 ASSERT_EXPR would do nothing but increase compile time. */
4977 if (!has_single_use (op))
4978 {
4979 register_new_assert_for (op, op, comp_code, value,
4980 bb, NULL, si);
4981 need_assert = true;
4982 }
4983 }
4984 }
4985 }
4986
4987 /* Traverse all PHI nodes in BB marking used operands. */
4988 for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
4989 {
4990 use_operand_p arg_p;
4991 ssa_op_iter i;
4992 phi = gsi_stmt (si);
4993
4994 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4995 {
4996 tree arg = USE_FROM_PTR (arg_p);
4997 if (TREE_CODE (arg) == SSA_NAME)
4998 SET_BIT (live, SSA_NAME_VERSION (arg));
4999 }
5000 }
5001
5002 return need_assert;
5003 }
5004
5005 /* Do an RPO walk over the function computing SSA name liveness
5006 on-the-fly and deciding on assert expressions to insert.
5007 Returns true if there are assert expressions to be inserted. */
5008
5009 static bool
5010 find_assert_locations (void)
5011 {
5012 int *rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
5013 int *bb_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
5014 int *last_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
5015 int rpo_cnt, i;
5016 bool need_asserts;
5017
5018 live = XCNEWVEC (sbitmap, last_basic_block + NUM_FIXED_BLOCKS);
5019 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
5020 for (i = 0; i < rpo_cnt; ++i)
5021 bb_rpo[rpo[i]] = i;
5022
5023 need_asserts = false;
5024 for (i = rpo_cnt-1; i >= 0; --i)
5025 {
5026 basic_block bb = BASIC_BLOCK (rpo[i]);
5027 edge e;
5028 edge_iterator ei;
5029
5030 if (!live[rpo[i]])
5031 {
5032 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
5033 sbitmap_zero (live[rpo[i]]);
5034 }
5035
5036 /* Process BB and update the live information with uses in
5037 this block. */
5038 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
5039
5040 /* Merge liveness into the predecessor blocks and free it. */
5041 if (!sbitmap_empty_p (live[rpo[i]]))
5042 {
5043 int pred_rpo = i;
5044 FOR_EACH_EDGE (e, ei, bb->preds)
5045 {
5046 int pred = e->src->index;
5047 if (e->flags & EDGE_DFS_BACK)
5048 continue;
5049
5050 if (!live[pred])
5051 {
5052 live[pred] = sbitmap_alloc (num_ssa_names);
5053 sbitmap_zero (live[pred]);
5054 }
5055 sbitmap_a_or_b (live[pred], live[pred], live[rpo[i]]);
5056
5057 if (bb_rpo[pred] < pred_rpo)
5058 pred_rpo = bb_rpo[pred];
5059 }
5060
5061 /* Record the RPO number of the last visited block that needs
5062 live information from this block. */
5063 last_rpo[rpo[i]] = pred_rpo;
5064 }
5065 else
5066 {
5067 sbitmap_free (live[rpo[i]]);
5068 live[rpo[i]] = NULL;
5069 }
5070
5071 /* We can free all successors live bitmaps if all their
5072 predecessors have been visited already. */
5073 FOR_EACH_EDGE (e, ei, bb->succs)
5074 if (last_rpo[e->dest->index] == i
5075 && live[e->dest->index])
5076 {
5077 sbitmap_free (live[e->dest->index]);
5078 live[e->dest->index] = NULL;
5079 }
5080 }
5081
5082 XDELETEVEC (rpo);
5083 XDELETEVEC (bb_rpo);
5084 XDELETEVEC (last_rpo);
5085 for (i = 0; i < last_basic_block + NUM_FIXED_BLOCKS; ++i)
5086 if (live[i])
5087 sbitmap_free (live[i]);
5088 XDELETEVEC (live);
5089
5090 return need_asserts;
5091 }
5092
5093 /* Create an ASSERT_EXPR for NAME and insert it in the location
5094 indicated by LOC. Return true if we made any edge insertions. */
5095
5096 static bool
5097 process_assert_insertions_for (tree name, assert_locus_t loc)
5098 {
5099 /* Build the comparison expression NAME_i COMP_CODE VAL. */
5100 gimple stmt;
5101 tree cond;
5102 gimple assert_stmt;
5103 edge_iterator ei;
5104 edge e;
5105
5106 /* If we have X <=> X do not insert an assert expr for that. */
5107 if (loc->expr == loc->val)
5108 return false;
5109
5110 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
5111 assert_stmt = build_assert_expr_for (cond, name);
5112 if (loc->e)
5113 {
5114 /* We have been asked to insert the assertion on an edge. This
5115 is used only by COND_EXPR and SWITCH_EXPR assertions. */
5116 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
5117 || (gimple_code (gsi_stmt (loc->si))
5118 == GIMPLE_SWITCH));
5119
5120 gsi_insert_on_edge (loc->e, assert_stmt);
5121 return true;
5122 }
5123
5124 /* Otherwise, we can insert right after LOC->SI iff the
5125 statement must not be the last statement in the block. */
5126 stmt = gsi_stmt (loc->si);
5127 if (!stmt_ends_bb_p (stmt))
5128 {
5129 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
5130 return false;
5131 }
5132
5133 /* If STMT must be the last statement in BB, we can only insert new
5134 assertions on the non-abnormal edge out of BB. Note that since
5135 STMT is not control flow, there may only be one non-abnormal edge
5136 out of BB. */
5137 FOR_EACH_EDGE (e, ei, loc->bb->succs)
5138 if (!(e->flags & EDGE_ABNORMAL))
5139 {
5140 gsi_insert_on_edge (e, assert_stmt);
5141 return true;
5142 }
5143
5144 gcc_unreachable ();
5145 }
5146
5147
5148 /* Process all the insertions registered for every name N_i registered
5149 in NEED_ASSERT_FOR. The list of assertions to be inserted are
5150 found in ASSERTS_FOR[i]. */
5151
5152 static void
5153 process_assert_insertions (void)
5154 {
5155 unsigned i;
5156 bitmap_iterator bi;
5157 bool update_edges_p = false;
5158 int num_asserts = 0;
5159
5160 if (dump_file && (dump_flags & TDF_DETAILS))
5161 dump_all_asserts (dump_file);
5162
5163 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
5164 {
5165 assert_locus_t loc = asserts_for[i];
5166 gcc_assert (loc);
5167
5168 while (loc)
5169 {
5170 assert_locus_t next = loc->next;
5171 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
5172 free (loc);
5173 loc = next;
5174 num_asserts++;
5175 }
5176 }
5177
5178 if (update_edges_p)
5179 gsi_commit_edge_inserts ();
5180
5181 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
5182 num_asserts);
5183 }
5184
5185
5186 /* Traverse the flowgraph looking for conditional jumps to insert range
5187 expressions. These range expressions are meant to provide information
5188 to optimizations that need to reason in terms of value ranges. They
5189 will not be expanded into RTL. For instance, given:
5190
5191 x = ...
5192 y = ...
5193 if (x < y)
5194 y = x - 2;
5195 else
5196 x = y + 3;
5197
5198 this pass will transform the code into:
5199
5200 x = ...
5201 y = ...
5202 if (x < y)
5203 {
5204 x = ASSERT_EXPR <x, x < y>
5205 y = x - 2
5206 }
5207 else
5208 {
5209 y = ASSERT_EXPR <y, x <= y>
5210 x = y + 3
5211 }
5212
5213 The idea is that once copy and constant propagation have run, other
5214 optimizations will be able to determine what ranges of values can 'x'
5215 take in different paths of the code, simply by checking the reaching
5216 definition of 'x'. */
5217
5218 static void
5219 insert_range_assertions (void)
5220 {
5221 need_assert_for = BITMAP_ALLOC (NULL);
5222 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
5223
5224 calculate_dominance_info (CDI_DOMINATORS);
5225
5226 if (find_assert_locations ())
5227 {
5228 process_assert_insertions ();
5229 update_ssa (TODO_update_ssa_no_phi);
5230 }
5231
5232 if (dump_file && (dump_flags & TDF_DETAILS))
5233 {
5234 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
5235 dump_function_to_file (current_function_decl, dump_file, dump_flags);
5236 }
5237
5238 free (asserts_for);
5239 BITMAP_FREE (need_assert_for);
5240 }
5241
5242 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
5243 and "struct" hacks. If VRP can determine that the
5244 array subscript is a constant, check if it is outside valid
5245 range. If the array subscript is a RANGE, warn if it is
5246 non-overlapping with valid range.
5247 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
5248
5249 static void
5250 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
5251 {
5252 value_range_t* vr = NULL;
5253 tree low_sub, up_sub;
5254 tree low_bound, up_bound, up_bound_p1;
5255 tree base;
5256
5257 if (TREE_NO_WARNING (ref))
5258 return;
5259
5260 low_sub = up_sub = TREE_OPERAND (ref, 1);
5261 up_bound = array_ref_up_bound (ref);
5262
5263 /* Can not check flexible arrays. */
5264 if (!up_bound
5265 || TREE_CODE (up_bound) != INTEGER_CST)
5266 return;
5267
5268 /* Accesses to trailing arrays via pointers may access storage
5269 beyond the types array bounds. */
5270 base = get_base_address (ref);
5271 if (base && TREE_CODE (base) == MEM_REF)
5272 {
5273 tree cref, next = NULL_TREE;
5274
5275 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
5276 return;
5277
5278 cref = TREE_OPERAND (ref, 0);
5279 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
5280 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
5281 next && TREE_CODE (next) != FIELD_DECL;
5282 next = DECL_CHAIN (next))
5283 ;
5284
5285 /* If this is the last field in a struct type or a field in a
5286 union type do not warn. */
5287 if (!next)
5288 return;
5289 }
5290
5291 low_bound = array_ref_low_bound (ref);
5292 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound, integer_one_node);
5293
5294 if (TREE_CODE (low_sub) == SSA_NAME)
5295 {
5296 vr = get_value_range (low_sub);
5297 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
5298 {
5299 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
5300 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
5301 }
5302 }
5303
5304 if (vr && vr->type == VR_ANTI_RANGE)
5305 {
5306 if (TREE_CODE (up_sub) == INTEGER_CST
5307 && tree_int_cst_lt (up_bound, up_sub)
5308 && TREE_CODE (low_sub) == INTEGER_CST
5309 && tree_int_cst_lt (low_sub, low_bound))
5310 {
5311 warning_at (location, OPT_Warray_bounds,
5312 "array subscript is outside array bounds");
5313 TREE_NO_WARNING (ref) = 1;
5314 }
5315 }
5316 else if (TREE_CODE (up_sub) == INTEGER_CST
5317 && (ignore_off_by_one
5318 ? (tree_int_cst_lt (up_bound, up_sub)
5319 && !tree_int_cst_equal (up_bound_p1, up_sub))
5320 : (tree_int_cst_lt (up_bound, up_sub)
5321 || tree_int_cst_equal (up_bound_p1, up_sub))))
5322 {
5323 warning_at (location, OPT_Warray_bounds,
5324 "array subscript is above array bounds");
5325 TREE_NO_WARNING (ref) = 1;
5326 }
5327 else if (TREE_CODE (low_sub) == INTEGER_CST
5328 && tree_int_cst_lt (low_sub, low_bound))
5329 {
5330 warning_at (location, OPT_Warray_bounds,
5331 "array subscript is below array bounds");
5332 TREE_NO_WARNING (ref) = 1;
5333 }
5334 }
5335
5336 /* Searches if the expr T, located at LOCATION computes
5337 address of an ARRAY_REF, and call check_array_ref on it. */
5338
5339 static void
5340 search_for_addr_array (tree t, location_t location)
5341 {
5342 while (TREE_CODE (t) == SSA_NAME)
5343 {
5344 gimple g = SSA_NAME_DEF_STMT (t);
5345
5346 if (gimple_code (g) != GIMPLE_ASSIGN)
5347 return;
5348
5349 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
5350 != GIMPLE_SINGLE_RHS)
5351 return;
5352
5353 t = gimple_assign_rhs1 (g);
5354 }
5355
5356
5357 /* We are only interested in addresses of ARRAY_REF's. */
5358 if (TREE_CODE (t) != ADDR_EXPR)
5359 return;
5360
5361 /* Check each ARRAY_REFs in the reference chain. */
5362 do
5363 {
5364 if (TREE_CODE (t) == ARRAY_REF)
5365 check_array_ref (location, t, true /*ignore_off_by_one*/);
5366
5367 t = TREE_OPERAND (t, 0);
5368 }
5369 while (handled_component_p (t));
5370
5371 if (TREE_CODE (t) == MEM_REF
5372 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
5373 && !TREE_NO_WARNING (t))
5374 {
5375 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
5376 tree low_bound, up_bound, el_sz;
5377 double_int idx;
5378 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
5379 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
5380 || !TYPE_DOMAIN (TREE_TYPE (tem)))
5381 return;
5382
5383 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
5384 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
5385 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
5386 if (!low_bound
5387 || TREE_CODE (low_bound) != INTEGER_CST
5388 || !up_bound
5389 || TREE_CODE (up_bound) != INTEGER_CST
5390 || !el_sz
5391 || TREE_CODE (el_sz) != INTEGER_CST)
5392 return;
5393
5394 idx = mem_ref_offset (t);
5395 idx = double_int_sdiv (idx, tree_to_double_int (el_sz), TRUNC_DIV_EXPR);
5396 if (double_int_scmp (idx, double_int_zero) < 0)
5397 {
5398 warning_at (location, OPT_Warray_bounds,
5399 "array subscript is below array bounds");
5400 TREE_NO_WARNING (t) = 1;
5401 }
5402 else if (double_int_scmp (idx,
5403 double_int_add
5404 (double_int_add
5405 (tree_to_double_int (up_bound),
5406 double_int_neg
5407 (tree_to_double_int (low_bound))),
5408 double_int_one)) > 0)
5409 {
5410 warning_at (location, OPT_Warray_bounds,
5411 "array subscript is above array bounds");
5412 TREE_NO_WARNING (t) = 1;
5413 }
5414 }
5415 }
5416
5417 /* walk_tree() callback that checks if *TP is
5418 an ARRAY_REF inside an ADDR_EXPR (in which an array
5419 subscript one outside the valid range is allowed). Call
5420 check_array_ref for each ARRAY_REF found. The location is
5421 passed in DATA. */
5422
5423 static tree
5424 check_array_bounds (tree *tp, int *walk_subtree, void *data)
5425 {
5426 tree t = *tp;
5427 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
5428 location_t location;
5429
5430 if (EXPR_HAS_LOCATION (t))
5431 location = EXPR_LOCATION (t);
5432 else
5433 {
5434 location_t *locp = (location_t *) wi->info;
5435 location = *locp;
5436 }
5437
5438 *walk_subtree = TRUE;
5439
5440 if (TREE_CODE (t) == ARRAY_REF)
5441 check_array_ref (location, t, false /*ignore_off_by_one*/);
5442
5443 if (TREE_CODE (t) == MEM_REF
5444 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
5445 search_for_addr_array (TREE_OPERAND (t, 0), location);
5446
5447 if (TREE_CODE (t) == ADDR_EXPR)
5448 *walk_subtree = FALSE;
5449
5450 return NULL_TREE;
5451 }
5452
5453 /* Walk over all statements of all reachable BBs and call check_array_bounds
5454 on them. */
5455
5456 static void
5457 check_all_array_refs (void)
5458 {
5459 basic_block bb;
5460 gimple_stmt_iterator si;
5461
5462 FOR_EACH_BB (bb)
5463 {
5464 edge_iterator ei;
5465 edge e;
5466 bool executable = false;
5467
5468 /* Skip blocks that were found to be unreachable. */
5469 FOR_EACH_EDGE (e, ei, bb->preds)
5470 executable |= !!(e->flags & EDGE_EXECUTABLE);
5471 if (!executable)
5472 continue;
5473
5474 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5475 {
5476 gimple stmt = gsi_stmt (si);
5477 struct walk_stmt_info wi;
5478 if (!gimple_has_location (stmt))
5479 continue;
5480
5481 if (is_gimple_call (stmt))
5482 {
5483 size_t i;
5484 size_t n = gimple_call_num_args (stmt);
5485 for (i = 0; i < n; i++)
5486 {
5487 tree arg = gimple_call_arg (stmt, i);
5488 search_for_addr_array (arg, gimple_location (stmt));
5489 }
5490 }
5491 else
5492 {
5493 memset (&wi, 0, sizeof (wi));
5494 wi.info = CONST_CAST (void *, (const void *)
5495 gimple_location_ptr (stmt));
5496
5497 walk_gimple_op (gsi_stmt (si),
5498 check_array_bounds,
5499 &wi);
5500 }
5501 }
5502 }
5503 }
5504
5505 /* Convert range assertion expressions into the implied copies and
5506 copy propagate away the copies. Doing the trivial copy propagation
5507 here avoids the need to run the full copy propagation pass after
5508 VRP.
5509
5510 FIXME, this will eventually lead to copy propagation removing the
5511 names that had useful range information attached to them. For
5512 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5513 then N_i will have the range [3, +INF].
5514
5515 However, by converting the assertion into the implied copy
5516 operation N_i = N_j, we will then copy-propagate N_j into the uses
5517 of N_i and lose the range information. We may want to hold on to
5518 ASSERT_EXPRs a little while longer as the ranges could be used in
5519 things like jump threading.
5520
5521 The problem with keeping ASSERT_EXPRs around is that passes after
5522 VRP need to handle them appropriately.
5523
5524 Another approach would be to make the range information a first
5525 class property of the SSA_NAME so that it can be queried from
5526 any pass. This is made somewhat more complex by the need for
5527 multiple ranges to be associated with one SSA_NAME. */
5528
5529 static void
5530 remove_range_assertions (void)
5531 {
5532 basic_block bb;
5533 gimple_stmt_iterator si;
5534
5535 /* Note that the BSI iterator bump happens at the bottom of the
5536 loop and no bump is necessary if we're removing the statement
5537 referenced by the current BSI. */
5538 FOR_EACH_BB (bb)
5539 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
5540 {
5541 gimple stmt = gsi_stmt (si);
5542 gimple use_stmt;
5543
5544 if (is_gimple_assign (stmt)
5545 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
5546 {
5547 tree rhs = gimple_assign_rhs1 (stmt);
5548 tree var;
5549 tree cond = fold (ASSERT_EXPR_COND (rhs));
5550 use_operand_p use_p;
5551 imm_use_iterator iter;
5552
5553 gcc_assert (cond != boolean_false_node);
5554
5555 /* Propagate the RHS into every use of the LHS. */
5556 var = ASSERT_EXPR_VAR (rhs);
5557 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
5558 gimple_assign_lhs (stmt))
5559 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5560 {
5561 SET_USE (use_p, var);
5562 gcc_assert (TREE_CODE (var) == SSA_NAME);
5563 }
5564
5565 /* And finally, remove the copy, it is not needed. */
5566 gsi_remove (&si, true);
5567 release_defs (stmt);
5568 }
5569 else
5570 gsi_next (&si);
5571 }
5572 }
5573
5574
5575 /* Return true if STMT is interesting for VRP. */
5576
5577 static bool
5578 stmt_interesting_for_vrp (gimple stmt)
5579 {
5580 if (gimple_code (stmt) == GIMPLE_PHI
5581 && is_gimple_reg (gimple_phi_result (stmt))
5582 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))
5583 || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))))
5584 return true;
5585 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
5586 {
5587 tree lhs = gimple_get_lhs (stmt);
5588
5589 /* In general, assignments with virtual operands are not useful
5590 for deriving ranges, with the obvious exception of calls to
5591 builtin functions. */
5592 if (lhs && TREE_CODE (lhs) == SSA_NAME
5593 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5594 || POINTER_TYPE_P (TREE_TYPE (lhs)))
5595 && ((is_gimple_call (stmt)
5596 && gimple_call_fndecl (stmt) != NULL_TREE
5597 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
5598 || !gimple_vuse (stmt)))
5599 return true;
5600 }
5601 else if (gimple_code (stmt) == GIMPLE_COND
5602 || gimple_code (stmt) == GIMPLE_SWITCH)
5603 return true;
5604
5605 return false;
5606 }
5607
5608
5609 /* Initialize local data structures for VRP. */
5610
5611 static void
5612 vrp_initialize (void)
5613 {
5614 basic_block bb;
5615
5616 values_propagated = false;
5617 num_vr_values = num_ssa_names;
5618 vr_value = XCNEWVEC (value_range_t *, num_vr_values);
5619 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
5620
5621 FOR_EACH_BB (bb)
5622 {
5623 gimple_stmt_iterator si;
5624
5625 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5626 {
5627 gimple phi = gsi_stmt (si);
5628 if (!stmt_interesting_for_vrp (phi))
5629 {
5630 tree lhs = PHI_RESULT (phi);
5631 set_value_range_to_varying (get_value_range (lhs));
5632 prop_set_simulate_again (phi, false);
5633 }
5634 else
5635 prop_set_simulate_again (phi, true);
5636 }
5637
5638 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5639 {
5640 gimple stmt = gsi_stmt (si);
5641
5642 /* If the statement is a control insn, then we do not
5643 want to avoid simulating the statement once. Failure
5644 to do so means that those edges will never get added. */
5645 if (stmt_ends_bb_p (stmt))
5646 prop_set_simulate_again (stmt, true);
5647 else if (!stmt_interesting_for_vrp (stmt))
5648 {
5649 ssa_op_iter i;
5650 tree def;
5651 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
5652 set_value_range_to_varying (get_value_range (def));
5653 prop_set_simulate_again (stmt, false);
5654 }
5655 else
5656 prop_set_simulate_again (stmt, true);
5657 }
5658 }
5659 }
5660
5661 /* Return the singleton value-range for NAME or NAME. */
5662
5663 static inline tree
5664 vrp_valueize (tree name)
5665 {
5666 if (TREE_CODE (name) == SSA_NAME)
5667 {
5668 value_range_t *vr = get_value_range (name);
5669 if (vr->type == VR_RANGE
5670 && (vr->min == vr->max
5671 || operand_equal_p (vr->min, vr->max, 0)))
5672 return vr->min;
5673 }
5674 return name;
5675 }
5676
5677 /* Visit assignment STMT. If it produces an interesting range, record
5678 the SSA name in *OUTPUT_P. */
5679
5680 static enum ssa_prop_result
5681 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
5682 {
5683 tree def, lhs;
5684 ssa_op_iter iter;
5685 enum gimple_code code = gimple_code (stmt);
5686 lhs = gimple_get_lhs (stmt);
5687
5688 /* We only keep track of ranges in integral and pointer types. */
5689 if (TREE_CODE (lhs) == SSA_NAME
5690 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5691 /* It is valid to have NULL MIN/MAX values on a type. See
5692 build_range_type. */
5693 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
5694 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
5695 || POINTER_TYPE_P (TREE_TYPE (lhs))))
5696 {
5697 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5698
5699 /* Try folding the statement to a constant first. */
5700 tree tem = gimple_fold_stmt_to_constant (stmt, vrp_valueize);
5701 if (tem && !is_overflow_infinity (tem))
5702 set_value_range (&new_vr, VR_RANGE, tem, tem, NULL);
5703 /* Then dispatch to value-range extracting functions. */
5704 else if (code == GIMPLE_CALL)
5705 extract_range_basic (&new_vr, stmt);
5706 else
5707 extract_range_from_assignment (&new_vr, stmt);
5708
5709 if (update_value_range (lhs, &new_vr))
5710 {
5711 *output_p = lhs;
5712
5713 if (dump_file && (dump_flags & TDF_DETAILS))
5714 {
5715 fprintf (dump_file, "Found new range for ");
5716 print_generic_expr (dump_file, lhs, 0);
5717 fprintf (dump_file, ": ");
5718 dump_value_range (dump_file, &new_vr);
5719 fprintf (dump_file, "\n\n");
5720 }
5721
5722 if (new_vr.type == VR_VARYING)
5723 return SSA_PROP_VARYING;
5724
5725 return SSA_PROP_INTERESTING;
5726 }
5727
5728 return SSA_PROP_NOT_INTERESTING;
5729 }
5730
5731 /* Every other statement produces no useful ranges. */
5732 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5733 set_value_range_to_varying (get_value_range (def));
5734
5735 return SSA_PROP_VARYING;
5736 }
5737
5738 /* Helper that gets the value range of the SSA_NAME with version I
5739 or a symbolic range containing the SSA_NAME only if the value range
5740 is varying or undefined. */
5741
5742 static inline value_range_t
5743 get_vr_for_comparison (int i)
5744 {
5745 value_range_t vr = *get_value_range (ssa_name (i));
5746
5747 /* If name N_i does not have a valid range, use N_i as its own
5748 range. This allows us to compare against names that may
5749 have N_i in their ranges. */
5750 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
5751 {
5752 vr.type = VR_RANGE;
5753 vr.min = ssa_name (i);
5754 vr.max = ssa_name (i);
5755 }
5756
5757 return vr;
5758 }
5759
5760 /* Compare all the value ranges for names equivalent to VAR with VAL
5761 using comparison code COMP. Return the same value returned by
5762 compare_range_with_value, including the setting of
5763 *STRICT_OVERFLOW_P. */
5764
5765 static tree
5766 compare_name_with_value (enum tree_code comp, tree var, tree val,
5767 bool *strict_overflow_p)
5768 {
5769 bitmap_iterator bi;
5770 unsigned i;
5771 bitmap e;
5772 tree retval, t;
5773 int used_strict_overflow;
5774 bool sop;
5775 value_range_t equiv_vr;
5776
5777 /* Get the set of equivalences for VAR. */
5778 e = get_value_range (var)->equiv;
5779
5780 /* Start at -1. Set it to 0 if we do a comparison without relying
5781 on overflow, or 1 if all comparisons rely on overflow. */
5782 used_strict_overflow = -1;
5783
5784 /* Compare vars' value range with val. */
5785 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
5786 sop = false;
5787 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
5788 if (retval)
5789 used_strict_overflow = sop ? 1 : 0;
5790
5791 /* If the equiv set is empty we have done all work we need to do. */
5792 if (e == NULL)
5793 {
5794 if (retval
5795 && used_strict_overflow > 0)
5796 *strict_overflow_p = true;
5797 return retval;
5798 }
5799
5800 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
5801 {
5802 equiv_vr = get_vr_for_comparison (i);
5803 sop = false;
5804 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
5805 if (t)
5806 {
5807 /* If we get different answers from different members
5808 of the equivalence set this check must be in a dead
5809 code region. Folding it to a trap representation
5810 would be correct here. For now just return don't-know. */
5811 if (retval != NULL
5812 && t != retval)
5813 {
5814 retval = NULL_TREE;
5815 break;
5816 }
5817 retval = t;
5818
5819 if (!sop)
5820 used_strict_overflow = 0;
5821 else if (used_strict_overflow < 0)
5822 used_strict_overflow = 1;
5823 }
5824 }
5825
5826 if (retval
5827 && used_strict_overflow > 0)
5828 *strict_overflow_p = true;
5829
5830 return retval;
5831 }
5832
5833
5834 /* Given a comparison code COMP and names N1 and N2, compare all the
5835 ranges equivalent to N1 against all the ranges equivalent to N2
5836 to determine the value of N1 COMP N2. Return the same value
5837 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5838 whether we relied on an overflow infinity in the comparison. */
5839
5840
5841 static tree
5842 compare_names (enum tree_code comp, tree n1, tree n2,
5843 bool *strict_overflow_p)
5844 {
5845 tree t, retval;
5846 bitmap e1, e2;
5847 bitmap_iterator bi1, bi2;
5848 unsigned i1, i2;
5849 int used_strict_overflow;
5850 static bitmap_obstack *s_obstack = NULL;
5851 static bitmap s_e1 = NULL, s_e2 = NULL;
5852
5853 /* Compare the ranges of every name equivalent to N1 against the
5854 ranges of every name equivalent to N2. */
5855 e1 = get_value_range (n1)->equiv;
5856 e2 = get_value_range (n2)->equiv;
5857
5858 /* Use the fake bitmaps if e1 or e2 are not available. */
5859 if (s_obstack == NULL)
5860 {
5861 s_obstack = XNEW (bitmap_obstack);
5862 bitmap_obstack_initialize (s_obstack);
5863 s_e1 = BITMAP_ALLOC (s_obstack);
5864 s_e2 = BITMAP_ALLOC (s_obstack);
5865 }
5866 if (e1 == NULL)
5867 e1 = s_e1;
5868 if (e2 == NULL)
5869 e2 = s_e2;
5870
5871 /* Add N1 and N2 to their own set of equivalences to avoid
5872 duplicating the body of the loop just to check N1 and N2
5873 ranges. */
5874 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
5875 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
5876
5877 /* If the equivalence sets have a common intersection, then the two
5878 names can be compared without checking their ranges. */
5879 if (bitmap_intersect_p (e1, e2))
5880 {
5881 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5882 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5883
5884 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
5885 ? boolean_true_node
5886 : boolean_false_node;
5887 }
5888
5889 /* Start at -1. Set it to 0 if we do a comparison without relying
5890 on overflow, or 1 if all comparisons rely on overflow. */
5891 used_strict_overflow = -1;
5892
5893 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5894 N2 to their own set of equivalences to avoid duplicating the body
5895 of the loop just to check N1 and N2 ranges. */
5896 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
5897 {
5898 value_range_t vr1 = get_vr_for_comparison (i1);
5899
5900 t = retval = NULL_TREE;
5901 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
5902 {
5903 bool sop = false;
5904
5905 value_range_t vr2 = get_vr_for_comparison (i2);
5906
5907 t = compare_ranges (comp, &vr1, &vr2, &sop);
5908 if (t)
5909 {
5910 /* If we get different answers from different members
5911 of the equivalence set this check must be in a dead
5912 code region. Folding it to a trap representation
5913 would be correct here. For now just return don't-know. */
5914 if (retval != NULL
5915 && t != retval)
5916 {
5917 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5918 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5919 return NULL_TREE;
5920 }
5921 retval = t;
5922
5923 if (!sop)
5924 used_strict_overflow = 0;
5925 else if (used_strict_overflow < 0)
5926 used_strict_overflow = 1;
5927 }
5928 }
5929
5930 if (retval)
5931 {
5932 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5933 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5934 if (used_strict_overflow > 0)
5935 *strict_overflow_p = true;
5936 return retval;
5937 }
5938 }
5939
5940 /* None of the equivalent ranges are useful in computing this
5941 comparison. */
5942 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5943 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5944 return NULL_TREE;
5945 }
5946
5947 /* Helper function for vrp_evaluate_conditional_warnv. */
5948
5949 static tree
5950 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
5951 tree op0, tree op1,
5952 bool * strict_overflow_p)
5953 {
5954 value_range_t *vr0, *vr1;
5955
5956 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5957 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5958
5959 if (vr0 && vr1)
5960 return compare_ranges (code, vr0, vr1, strict_overflow_p);
5961 else if (vr0 && vr1 == NULL)
5962 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
5963 else if (vr0 == NULL && vr1)
5964 return (compare_range_with_value
5965 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
5966 return NULL;
5967 }
5968
5969 /* Helper function for vrp_evaluate_conditional_warnv. */
5970
5971 static tree
5972 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
5973 tree op1, bool use_equiv_p,
5974 bool *strict_overflow_p, bool *only_ranges)
5975 {
5976 tree ret;
5977 if (only_ranges)
5978 *only_ranges = true;
5979
5980 /* We only deal with integral and pointer types. */
5981 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
5982 && !POINTER_TYPE_P (TREE_TYPE (op0)))
5983 return NULL_TREE;
5984
5985 if (use_equiv_p)
5986 {
5987 if (only_ranges
5988 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
5989 (code, op0, op1, strict_overflow_p)))
5990 return ret;
5991 *only_ranges = false;
5992 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
5993 return compare_names (code, op0, op1, strict_overflow_p);
5994 else if (TREE_CODE (op0) == SSA_NAME)
5995 return compare_name_with_value (code, op0, op1, strict_overflow_p);
5996 else if (TREE_CODE (op1) == SSA_NAME)
5997 return (compare_name_with_value
5998 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
5999 }
6000 else
6001 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
6002 strict_overflow_p);
6003 return NULL_TREE;
6004 }
6005
6006 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
6007 information. Return NULL if the conditional can not be evaluated.
6008 The ranges of all the names equivalent with the operands in COND
6009 will be used when trying to compute the value. If the result is
6010 based on undefined signed overflow, issue a warning if
6011 appropriate. */
6012
6013 static tree
6014 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
6015 {
6016 bool sop;
6017 tree ret;
6018 bool only_ranges;
6019
6020 /* Some passes and foldings leak constants with overflow flag set
6021 into the IL. Avoid doing wrong things with these and bail out. */
6022 if ((TREE_CODE (op0) == INTEGER_CST
6023 && TREE_OVERFLOW (op0))
6024 || (TREE_CODE (op1) == INTEGER_CST
6025 && TREE_OVERFLOW (op1)))
6026 return NULL_TREE;
6027
6028 sop = false;
6029 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
6030 &only_ranges);
6031
6032 if (ret && sop)
6033 {
6034 enum warn_strict_overflow_code wc;
6035 const char* warnmsg;
6036
6037 if (is_gimple_min_invariant (ret))
6038 {
6039 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
6040 warnmsg = G_("assuming signed overflow does not occur when "
6041 "simplifying conditional to constant");
6042 }
6043 else
6044 {
6045 wc = WARN_STRICT_OVERFLOW_COMPARISON;
6046 warnmsg = G_("assuming signed overflow does not occur when "
6047 "simplifying conditional");
6048 }
6049
6050 if (issue_strict_overflow_warning (wc))
6051 {
6052 location_t location;
6053
6054 if (!gimple_has_location (stmt))
6055 location = input_location;
6056 else
6057 location = gimple_location (stmt);
6058 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
6059 }
6060 }
6061
6062 if (warn_type_limits
6063 && ret && only_ranges
6064 && TREE_CODE_CLASS (code) == tcc_comparison
6065 && TREE_CODE (op0) == SSA_NAME)
6066 {
6067 /* If the comparison is being folded and the operand on the LHS
6068 is being compared against a constant value that is outside of
6069 the natural range of OP0's type, then the predicate will
6070 always fold regardless of the value of OP0. If -Wtype-limits
6071 was specified, emit a warning. */
6072 tree type = TREE_TYPE (op0);
6073 value_range_t *vr0 = get_value_range (op0);
6074
6075 if (vr0->type != VR_VARYING
6076 && INTEGRAL_TYPE_P (type)
6077 && vrp_val_is_min (vr0->min)
6078 && vrp_val_is_max (vr0->max)
6079 && is_gimple_min_invariant (op1))
6080 {
6081 location_t location;
6082
6083 if (!gimple_has_location (stmt))
6084 location = input_location;
6085 else
6086 location = gimple_location (stmt);
6087
6088 warning_at (location, OPT_Wtype_limits,
6089 integer_zerop (ret)
6090 ? G_("comparison always false "
6091 "due to limited range of data type")
6092 : G_("comparison always true "
6093 "due to limited range of data type"));
6094 }
6095 }
6096
6097 return ret;
6098 }
6099
6100
6101 /* Visit conditional statement STMT. If we can determine which edge
6102 will be taken out of STMT's basic block, record it in
6103 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6104 SSA_PROP_VARYING. */
6105
6106 static enum ssa_prop_result
6107 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
6108 {
6109 tree val;
6110 bool sop;
6111
6112 *taken_edge_p = NULL;
6113
6114 if (dump_file && (dump_flags & TDF_DETAILS))
6115 {
6116 tree use;
6117 ssa_op_iter i;
6118
6119 fprintf (dump_file, "\nVisiting conditional with predicate: ");
6120 print_gimple_stmt (dump_file, stmt, 0, 0);
6121 fprintf (dump_file, "\nWith known ranges\n");
6122
6123 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
6124 {
6125 fprintf (dump_file, "\t");
6126 print_generic_expr (dump_file, use, 0);
6127 fprintf (dump_file, ": ");
6128 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
6129 }
6130
6131 fprintf (dump_file, "\n");
6132 }
6133
6134 /* Compute the value of the predicate COND by checking the known
6135 ranges of each of its operands.
6136
6137 Note that we cannot evaluate all the equivalent ranges here
6138 because those ranges may not yet be final and with the current
6139 propagation strategy, we cannot determine when the value ranges
6140 of the names in the equivalence set have changed.
6141
6142 For instance, given the following code fragment
6143
6144 i_5 = PHI <8, i_13>
6145 ...
6146 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
6147 if (i_14 == 1)
6148 ...
6149
6150 Assume that on the first visit to i_14, i_5 has the temporary
6151 range [8, 8] because the second argument to the PHI function is
6152 not yet executable. We derive the range ~[0, 0] for i_14 and the
6153 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
6154 the first time, since i_14 is equivalent to the range [8, 8], we
6155 determine that the predicate is always false.
6156
6157 On the next round of propagation, i_13 is determined to be
6158 VARYING, which causes i_5 to drop down to VARYING. So, another
6159 visit to i_14 is scheduled. In this second visit, we compute the
6160 exact same range and equivalence set for i_14, namely ~[0, 0] and
6161 { i_5 }. But we did not have the previous range for i_5
6162 registered, so vrp_visit_assignment thinks that the range for
6163 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
6164 is not visited again, which stops propagation from visiting
6165 statements in the THEN clause of that if().
6166
6167 To properly fix this we would need to keep the previous range
6168 value for the names in the equivalence set. This way we would've
6169 discovered that from one visit to the other i_5 changed from
6170 range [8, 8] to VR_VARYING.
6171
6172 However, fixing this apparent limitation may not be worth the
6173 additional checking. Testing on several code bases (GCC, DLV,
6174 MICO, TRAMP3D and SPEC2000) showed that doing this results in
6175 4 more predicates folded in SPEC. */
6176 sop = false;
6177
6178 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
6179 gimple_cond_lhs (stmt),
6180 gimple_cond_rhs (stmt),
6181 false, &sop, NULL);
6182 if (val)
6183 {
6184 if (!sop)
6185 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
6186 else
6187 {
6188 if (dump_file && (dump_flags & TDF_DETAILS))
6189 fprintf (dump_file,
6190 "\nIgnoring predicate evaluation because "
6191 "it assumes that signed overflow is undefined");
6192 val = NULL_TREE;
6193 }
6194 }
6195
6196 if (dump_file && (dump_flags & TDF_DETAILS))
6197 {
6198 fprintf (dump_file, "\nPredicate evaluates to: ");
6199 if (val == NULL_TREE)
6200 fprintf (dump_file, "DON'T KNOW\n");
6201 else
6202 print_generic_stmt (dump_file, val, 0);
6203 }
6204
6205 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
6206 }
6207
6208 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
6209 that includes the value VAL. The search is restricted to the range
6210 [START_IDX, n - 1] where n is the size of VEC.
6211
6212 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
6213 returned.
6214
6215 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
6216 it is placed in IDX and false is returned.
6217
6218 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
6219 returned. */
6220
6221 static bool
6222 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
6223 {
6224 size_t n = gimple_switch_num_labels (stmt);
6225 size_t low, high;
6226
6227 /* Find case label for minimum of the value range or the next one.
6228 At each iteration we are searching in [low, high - 1]. */
6229
6230 for (low = start_idx, high = n; high != low; )
6231 {
6232 tree t;
6233 int cmp;
6234 /* Note that i != high, so we never ask for n. */
6235 size_t i = (high + low) / 2;
6236 t = gimple_switch_label (stmt, i);
6237
6238 /* Cache the result of comparing CASE_LOW and val. */
6239 cmp = tree_int_cst_compare (CASE_LOW (t), val);
6240
6241 if (cmp == 0)
6242 {
6243 /* Ranges cannot be empty. */
6244 *idx = i;
6245 return true;
6246 }
6247 else if (cmp > 0)
6248 high = i;
6249 else
6250 {
6251 low = i + 1;
6252 if (CASE_HIGH (t) != NULL
6253 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
6254 {
6255 *idx = i;
6256 return true;
6257 }
6258 }
6259 }
6260
6261 *idx = high;
6262 return false;
6263 }
6264
6265 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
6266 for values between MIN and MAX. The first index is placed in MIN_IDX. The
6267 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
6268 then MAX_IDX < MIN_IDX.
6269 Returns true if the default label is not needed. */
6270
6271 static bool
6272 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
6273 size_t *max_idx)
6274 {
6275 size_t i, j;
6276 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
6277 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
6278
6279 if (i == j
6280 && min_take_default
6281 && max_take_default)
6282 {
6283 /* Only the default case label reached.
6284 Return an empty range. */
6285 *min_idx = 1;
6286 *max_idx = 0;
6287 return false;
6288 }
6289 else
6290 {
6291 bool take_default = min_take_default || max_take_default;
6292 tree low, high;
6293 size_t k;
6294
6295 if (max_take_default)
6296 j--;
6297
6298 /* If the case label range is continuous, we do not need
6299 the default case label. Verify that. */
6300 high = CASE_LOW (gimple_switch_label (stmt, i));
6301 if (CASE_HIGH (gimple_switch_label (stmt, i)))
6302 high = CASE_HIGH (gimple_switch_label (stmt, i));
6303 for (k = i + 1; k <= j; ++k)
6304 {
6305 low = CASE_LOW (gimple_switch_label (stmt, k));
6306 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
6307 {
6308 take_default = true;
6309 break;
6310 }
6311 high = low;
6312 if (CASE_HIGH (gimple_switch_label (stmt, k)))
6313 high = CASE_HIGH (gimple_switch_label (stmt, k));
6314 }
6315
6316 *min_idx = i;
6317 *max_idx = j;
6318 return !take_default;
6319 }
6320 }
6321
6322 /* Visit switch statement STMT. If we can determine which edge
6323 will be taken out of STMT's basic block, record it in
6324 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
6325 SSA_PROP_VARYING. */
6326
6327 static enum ssa_prop_result
6328 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
6329 {
6330 tree op, val;
6331 value_range_t *vr;
6332 size_t i = 0, j = 0;
6333 bool take_default;
6334
6335 *taken_edge_p = NULL;
6336 op = gimple_switch_index (stmt);
6337 if (TREE_CODE (op) != SSA_NAME)
6338 return SSA_PROP_VARYING;
6339
6340 vr = get_value_range (op);
6341 if (dump_file && (dump_flags & TDF_DETAILS))
6342 {
6343 fprintf (dump_file, "\nVisiting switch expression with operand ");
6344 print_generic_expr (dump_file, op, 0);
6345 fprintf (dump_file, " with known range ");
6346 dump_value_range (dump_file, vr);
6347 fprintf (dump_file, "\n");
6348 }
6349
6350 if (vr->type != VR_RANGE
6351 || symbolic_range_p (vr))
6352 return SSA_PROP_VARYING;
6353
6354 /* Find the single edge that is taken from the switch expression. */
6355 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
6356
6357 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
6358 label */
6359 if (j < i)
6360 {
6361 gcc_assert (take_default);
6362 val = gimple_switch_default_label (stmt);
6363 }
6364 else
6365 {
6366 /* Check if labels with index i to j and maybe the default label
6367 are all reaching the same label. */
6368
6369 val = gimple_switch_label (stmt, i);
6370 if (take_default
6371 && CASE_LABEL (gimple_switch_default_label (stmt))
6372 != CASE_LABEL (val))
6373 {
6374 if (dump_file && (dump_flags & TDF_DETAILS))
6375 fprintf (dump_file, " not a single destination for this "
6376 "range\n");
6377 return SSA_PROP_VARYING;
6378 }
6379 for (++i; i <= j; ++i)
6380 {
6381 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
6382 {
6383 if (dump_file && (dump_flags & TDF_DETAILS))
6384 fprintf (dump_file, " not a single destination for this "
6385 "range\n");
6386 return SSA_PROP_VARYING;
6387 }
6388 }
6389 }
6390
6391 *taken_edge_p = find_edge (gimple_bb (stmt),
6392 label_to_block (CASE_LABEL (val)));
6393
6394 if (dump_file && (dump_flags & TDF_DETAILS))
6395 {
6396 fprintf (dump_file, " will take edge to ");
6397 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
6398 }
6399
6400 return SSA_PROP_INTERESTING;
6401 }
6402
6403
6404 /* Evaluate statement STMT. If the statement produces a useful range,
6405 return SSA_PROP_INTERESTING and record the SSA name with the
6406 interesting range into *OUTPUT_P.
6407
6408 If STMT is a conditional branch and we can determine its truth
6409 value, the taken edge is recorded in *TAKEN_EDGE_P.
6410
6411 If STMT produces a varying value, return SSA_PROP_VARYING. */
6412
6413 static enum ssa_prop_result
6414 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
6415 {
6416 tree def;
6417 ssa_op_iter iter;
6418
6419 if (dump_file && (dump_flags & TDF_DETAILS))
6420 {
6421 fprintf (dump_file, "\nVisiting statement:\n");
6422 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
6423 fprintf (dump_file, "\n");
6424 }
6425
6426 if (!stmt_interesting_for_vrp (stmt))
6427 gcc_assert (stmt_ends_bb_p (stmt));
6428 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6429 {
6430 /* In general, assignments with virtual operands are not useful
6431 for deriving ranges, with the obvious exception of calls to
6432 builtin functions. */
6433 if ((is_gimple_call (stmt)
6434 && gimple_call_fndecl (stmt) != NULL_TREE
6435 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
6436 || !gimple_vuse (stmt))
6437 return vrp_visit_assignment_or_call (stmt, output_p);
6438 }
6439 else if (gimple_code (stmt) == GIMPLE_COND)
6440 return vrp_visit_cond_stmt (stmt, taken_edge_p);
6441 else if (gimple_code (stmt) == GIMPLE_SWITCH)
6442 return vrp_visit_switch_stmt (stmt, taken_edge_p);
6443
6444 /* All other statements produce nothing of interest for VRP, so mark
6445 their outputs varying and prevent further simulation. */
6446 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6447 set_value_range_to_varying (get_value_range (def));
6448
6449 return SSA_PROP_VARYING;
6450 }
6451
6452
6453 /* Meet operation for value ranges. Given two value ranges VR0 and
6454 VR1, store in VR0 a range that contains both VR0 and VR1. This
6455 may not be the smallest possible such range. */
6456
6457 static void
6458 vrp_meet (value_range_t *vr0, value_range_t *vr1)
6459 {
6460 if (vr0->type == VR_UNDEFINED)
6461 {
6462 copy_value_range (vr0, vr1);
6463 return;
6464 }
6465
6466 if (vr1->type == VR_UNDEFINED)
6467 {
6468 /* Nothing to do. VR0 already has the resulting range. */
6469 return;
6470 }
6471
6472 if (vr0->type == VR_VARYING)
6473 {
6474 /* Nothing to do. VR0 already has the resulting range. */
6475 return;
6476 }
6477
6478 if (vr1->type == VR_VARYING)
6479 {
6480 set_value_range_to_varying (vr0);
6481 return;
6482 }
6483
6484 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
6485 {
6486 int cmp;
6487 tree min, max;
6488
6489 /* Compute the convex hull of the ranges. The lower limit of
6490 the new range is the minimum of the two ranges. If they
6491 cannot be compared, then give up. */
6492 cmp = compare_values (vr0->min, vr1->min);
6493 if (cmp == 0 || cmp == 1)
6494 min = vr1->min;
6495 else if (cmp == -1)
6496 min = vr0->min;
6497 else
6498 goto give_up;
6499
6500 /* Similarly, the upper limit of the new range is the maximum
6501 of the two ranges. If they cannot be compared, then
6502 give up. */
6503 cmp = compare_values (vr0->max, vr1->max);
6504 if (cmp == 0 || cmp == -1)
6505 max = vr1->max;
6506 else if (cmp == 1)
6507 max = vr0->max;
6508 else
6509 goto give_up;
6510
6511 /* Check for useless ranges. */
6512 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
6513 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
6514 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
6515 goto give_up;
6516
6517 /* The resulting set of equivalences is the intersection of
6518 the two sets. */
6519 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6520 bitmap_and_into (vr0->equiv, vr1->equiv);
6521 else if (vr0->equiv && !vr1->equiv)
6522 bitmap_clear (vr0->equiv);
6523
6524 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
6525 }
6526 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
6527 {
6528 /* Two anti-ranges meet only if their complements intersect.
6529 Only handle the case of identical ranges. */
6530 if (compare_values (vr0->min, vr1->min) == 0
6531 && compare_values (vr0->max, vr1->max) == 0
6532 && compare_values (vr0->min, vr0->max) == 0)
6533 {
6534 /* The resulting set of equivalences is the intersection of
6535 the two sets. */
6536 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6537 bitmap_and_into (vr0->equiv, vr1->equiv);
6538 else if (vr0->equiv && !vr1->equiv)
6539 bitmap_clear (vr0->equiv);
6540 }
6541 else
6542 goto give_up;
6543 }
6544 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
6545 {
6546 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6547 only handle the case where the ranges have an empty intersection.
6548 The result of the meet operation is the anti-range. */
6549 if (!symbolic_range_p (vr0)
6550 && !symbolic_range_p (vr1)
6551 && !value_ranges_intersect_p (vr0, vr1))
6552 {
6553 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
6554 set. We need to compute the intersection of the two
6555 equivalence sets. */
6556 if (vr1->type == VR_ANTI_RANGE)
6557 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
6558
6559 /* The resulting set of equivalences is the intersection of
6560 the two sets. */
6561 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6562 bitmap_and_into (vr0->equiv, vr1->equiv);
6563 else if (vr0->equiv && !vr1->equiv)
6564 bitmap_clear (vr0->equiv);
6565 }
6566 else
6567 goto give_up;
6568 }
6569 else
6570 gcc_unreachable ();
6571
6572 return;
6573
6574 give_up:
6575 /* Failed to find an efficient meet. Before giving up and setting
6576 the result to VARYING, see if we can at least derive a useful
6577 anti-range. FIXME, all this nonsense about distinguishing
6578 anti-ranges from ranges is necessary because of the odd
6579 semantics of range_includes_zero_p and friends. */
6580 if (!symbolic_range_p (vr0)
6581 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
6582 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
6583 && !symbolic_range_p (vr1)
6584 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
6585 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
6586 {
6587 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
6588
6589 /* Since this meet operation did not result from the meeting of
6590 two equivalent names, VR0 cannot have any equivalences. */
6591 if (vr0->equiv)
6592 bitmap_clear (vr0->equiv);
6593 }
6594 else
6595 set_value_range_to_varying (vr0);
6596 }
6597
6598
6599 /* Visit all arguments for PHI node PHI that flow through executable
6600 edges. If a valid value range can be derived from all the incoming
6601 value ranges, set a new range for the LHS of PHI. */
6602
6603 static enum ssa_prop_result
6604 vrp_visit_phi_node (gimple phi)
6605 {
6606 size_t i;
6607 tree lhs = PHI_RESULT (phi);
6608 value_range_t *lhs_vr = get_value_range (lhs);
6609 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6610 int edges, old_edges;
6611 struct loop *l;
6612
6613 if (dump_file && (dump_flags & TDF_DETAILS))
6614 {
6615 fprintf (dump_file, "\nVisiting PHI node: ");
6616 print_gimple_stmt (dump_file, phi, 0, dump_flags);
6617 }
6618
6619 edges = 0;
6620 for (i = 0; i < gimple_phi_num_args (phi); i++)
6621 {
6622 edge e = gimple_phi_arg_edge (phi, i);
6623
6624 if (dump_file && (dump_flags & TDF_DETAILS))
6625 {
6626 fprintf (dump_file,
6627 "\n Argument #%d (%d -> %d %sexecutable)\n",
6628 (int) i, e->src->index, e->dest->index,
6629 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
6630 }
6631
6632 if (e->flags & EDGE_EXECUTABLE)
6633 {
6634 tree arg = PHI_ARG_DEF (phi, i);
6635 value_range_t vr_arg;
6636
6637 ++edges;
6638
6639 if (TREE_CODE (arg) == SSA_NAME)
6640 {
6641 vr_arg = *(get_value_range (arg));
6642 }
6643 else
6644 {
6645 if (is_overflow_infinity (arg))
6646 {
6647 arg = copy_node (arg);
6648 TREE_OVERFLOW (arg) = 0;
6649 }
6650
6651 vr_arg.type = VR_RANGE;
6652 vr_arg.min = arg;
6653 vr_arg.max = arg;
6654 vr_arg.equiv = NULL;
6655 }
6656
6657 if (dump_file && (dump_flags & TDF_DETAILS))
6658 {
6659 fprintf (dump_file, "\t");
6660 print_generic_expr (dump_file, arg, dump_flags);
6661 fprintf (dump_file, "\n\tValue: ");
6662 dump_value_range (dump_file, &vr_arg);
6663 fprintf (dump_file, "\n");
6664 }
6665
6666 vrp_meet (&vr_result, &vr_arg);
6667
6668 if (vr_result.type == VR_VARYING)
6669 break;
6670 }
6671 }
6672
6673 if (vr_result.type == VR_VARYING)
6674 goto varying;
6675 else if (vr_result.type == VR_UNDEFINED)
6676 goto update_range;
6677
6678 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
6679 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
6680
6681 /* To prevent infinite iterations in the algorithm, derive ranges
6682 when the new value is slightly bigger or smaller than the
6683 previous one. We don't do this if we have seen a new executable
6684 edge; this helps us avoid an overflow infinity for conditionals
6685 which are not in a loop. */
6686 if (edges > 0
6687 && gimple_phi_num_args (phi) > 1
6688 && edges == old_edges)
6689 {
6690 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
6691 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
6692
6693 /* For non VR_RANGE or for pointers fall back to varying if
6694 the range changed. */
6695 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
6696 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6697 && (cmp_min != 0 || cmp_max != 0))
6698 goto varying;
6699
6700 /* If the new minimum is smaller or larger than the previous
6701 one, go all the way to -INF. In the first case, to avoid
6702 iterating millions of times to reach -INF, and in the
6703 other case to avoid infinite bouncing between different
6704 minimums. */
6705 if (cmp_min > 0 || cmp_min < 0)
6706 {
6707 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
6708 || !vrp_var_may_overflow (lhs, phi))
6709 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
6710 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
6711 vr_result.min =
6712 negative_overflow_infinity (TREE_TYPE (vr_result.min));
6713 }
6714
6715 /* Similarly, if the new maximum is smaller or larger than
6716 the previous one, go all the way to +INF. */
6717 if (cmp_max < 0 || cmp_max > 0)
6718 {
6719 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
6720 || !vrp_var_may_overflow (lhs, phi))
6721 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
6722 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
6723 vr_result.max =
6724 positive_overflow_infinity (TREE_TYPE (vr_result.max));
6725 }
6726
6727 /* If we dropped either bound to +-INF then if this is a loop
6728 PHI node SCEV may known more about its value-range. */
6729 if ((cmp_min > 0 || cmp_min < 0
6730 || cmp_max < 0 || cmp_max > 0)
6731 && current_loops
6732 && (l = loop_containing_stmt (phi))
6733 && l->header == gimple_bb (phi))
6734 adjust_range_with_scev (&vr_result, l, phi, lhs);
6735
6736 /* If we will end up with a (-INF, +INF) range, set it to
6737 VARYING. Same if the previous max value was invalid for
6738 the type and we end up with vr_result.min > vr_result.max. */
6739 if ((vrp_val_is_max (vr_result.max)
6740 && vrp_val_is_min (vr_result.min))
6741 || compare_values (vr_result.min,
6742 vr_result.max) > 0)
6743 goto varying;
6744 }
6745
6746 /* If the new range is different than the previous value, keep
6747 iterating. */
6748 update_range:
6749 if (update_value_range (lhs, &vr_result))
6750 {
6751 if (dump_file && (dump_flags & TDF_DETAILS))
6752 {
6753 fprintf (dump_file, "Found new range for ");
6754 print_generic_expr (dump_file, lhs, 0);
6755 fprintf (dump_file, ": ");
6756 dump_value_range (dump_file, &vr_result);
6757 fprintf (dump_file, "\n\n");
6758 }
6759
6760 return SSA_PROP_INTERESTING;
6761 }
6762
6763 /* Nothing changed, don't add outgoing edges. */
6764 return SSA_PROP_NOT_INTERESTING;
6765
6766 /* No match found. Set the LHS to VARYING. */
6767 varying:
6768 set_value_range_to_varying (lhs_vr);
6769 return SSA_PROP_VARYING;
6770 }
6771
6772 /* Simplify boolean operations if the source is known
6773 to be already a boolean. */
6774 static bool
6775 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
6776 {
6777 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6778 tree lhs, op0, op1;
6779 bool need_conversion;
6780
6781 /* We handle only !=/== case here. */
6782 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
6783
6784 op0 = gimple_assign_rhs1 (stmt);
6785 if (!op_with_boolean_value_range_p (op0))
6786 return false;
6787
6788 op1 = gimple_assign_rhs2 (stmt);
6789 if (!op_with_boolean_value_range_p (op1))
6790 return false;
6791
6792 /* Reduce number of cases to handle to NE_EXPR. As there is no
6793 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
6794 if (rhs_code == EQ_EXPR)
6795 {
6796 if (TREE_CODE (op1) == INTEGER_CST)
6797 op1 = int_const_binop (BIT_XOR_EXPR, op1, integer_one_node);
6798 else
6799 return false;
6800 }
6801
6802 lhs = gimple_assign_lhs (stmt);
6803 need_conversion
6804 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
6805
6806 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
6807 if (need_conversion
6808 && !TYPE_UNSIGNED (TREE_TYPE (op0))
6809 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
6810 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
6811 return false;
6812
6813 /* For A != 0 we can substitute A itself. */
6814 if (integer_zerop (op1))
6815 gimple_assign_set_rhs_with_ops (gsi,
6816 need_conversion
6817 ? NOP_EXPR : TREE_CODE (op0),
6818 op0, NULL_TREE);
6819 /* For A != B we substitute A ^ B. Either with conversion. */
6820 else if (need_conversion)
6821 {
6822 gimple newop;
6823 tree tem = create_tmp_reg (TREE_TYPE (op0), NULL);
6824 newop = gimple_build_assign_with_ops (BIT_XOR_EXPR, tem, op0, op1);
6825 tem = make_ssa_name (tem, newop);
6826 gimple_assign_set_lhs (newop, tem);
6827 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
6828 update_stmt (newop);
6829 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem, NULL_TREE);
6830 }
6831 /* Or without. */
6832 else
6833 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
6834 update_stmt (gsi_stmt (*gsi));
6835
6836 return true;
6837 }
6838
6839 /* Simplify a division or modulo operator to a right shift or
6840 bitwise and if the first operand is unsigned or is greater
6841 than zero and the second operand is an exact power of two. */
6842
6843 static bool
6844 simplify_div_or_mod_using_ranges (gimple stmt)
6845 {
6846 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6847 tree val = NULL;
6848 tree op0 = gimple_assign_rhs1 (stmt);
6849 tree op1 = gimple_assign_rhs2 (stmt);
6850 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
6851
6852 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
6853 {
6854 val = integer_one_node;
6855 }
6856 else
6857 {
6858 bool sop = false;
6859
6860 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6861
6862 if (val
6863 && sop
6864 && integer_onep (val)
6865 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6866 {
6867 location_t location;
6868
6869 if (!gimple_has_location (stmt))
6870 location = input_location;
6871 else
6872 location = gimple_location (stmt);
6873 warning_at (location, OPT_Wstrict_overflow,
6874 "assuming signed overflow does not occur when "
6875 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
6876 }
6877 }
6878
6879 if (val && integer_onep (val))
6880 {
6881 tree t;
6882
6883 if (rhs_code == TRUNC_DIV_EXPR)
6884 {
6885 t = build_int_cst (integer_type_node, tree_log2 (op1));
6886 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
6887 gimple_assign_set_rhs1 (stmt, op0);
6888 gimple_assign_set_rhs2 (stmt, t);
6889 }
6890 else
6891 {
6892 t = build_int_cst (TREE_TYPE (op1), 1);
6893 t = int_const_binop (MINUS_EXPR, op1, t);
6894 t = fold_convert (TREE_TYPE (op0), t);
6895
6896 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
6897 gimple_assign_set_rhs1 (stmt, op0);
6898 gimple_assign_set_rhs2 (stmt, t);
6899 }
6900
6901 update_stmt (stmt);
6902 return true;
6903 }
6904
6905 return false;
6906 }
6907
6908 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6909 ABS_EXPR. If the operand is <= 0, then simplify the
6910 ABS_EXPR into a NEGATE_EXPR. */
6911
6912 static bool
6913 simplify_abs_using_ranges (gimple stmt)
6914 {
6915 tree val = NULL;
6916 tree op = gimple_assign_rhs1 (stmt);
6917 tree type = TREE_TYPE (op);
6918 value_range_t *vr = get_value_range (op);
6919
6920 if (TYPE_UNSIGNED (type))
6921 {
6922 val = integer_zero_node;
6923 }
6924 else if (vr)
6925 {
6926 bool sop = false;
6927
6928 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
6929 if (!val)
6930 {
6931 sop = false;
6932 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
6933 &sop);
6934
6935 if (val)
6936 {
6937 if (integer_zerop (val))
6938 val = integer_one_node;
6939 else if (integer_onep (val))
6940 val = integer_zero_node;
6941 }
6942 }
6943
6944 if (val
6945 && (integer_onep (val) || integer_zerop (val)))
6946 {
6947 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6948 {
6949 location_t location;
6950
6951 if (!gimple_has_location (stmt))
6952 location = input_location;
6953 else
6954 location = gimple_location (stmt);
6955 warning_at (location, OPT_Wstrict_overflow,
6956 "assuming signed overflow does not occur when "
6957 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
6958 }
6959
6960 gimple_assign_set_rhs1 (stmt, op);
6961 if (integer_onep (val))
6962 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
6963 else
6964 gimple_assign_set_rhs_code (stmt, SSA_NAME);
6965 update_stmt (stmt);
6966 return true;
6967 }
6968 }
6969
6970 return false;
6971 }
6972
6973 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
6974 If all the bits that are being cleared by & are already
6975 known to be zero from VR, or all the bits that are being
6976 set by | are already known to be one from VR, the bit
6977 operation is redundant. */
6978
6979 static bool
6980 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
6981 {
6982 tree op0 = gimple_assign_rhs1 (stmt);
6983 tree op1 = gimple_assign_rhs2 (stmt);
6984 tree op = NULL_TREE;
6985 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6986 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6987 double_int may_be_nonzero0, may_be_nonzero1;
6988 double_int must_be_nonzero0, must_be_nonzero1;
6989 double_int mask;
6990
6991 if (TREE_CODE (op0) == SSA_NAME)
6992 vr0 = *(get_value_range (op0));
6993 else if (is_gimple_min_invariant (op0))
6994 set_value_range_to_value (&vr0, op0, NULL);
6995 else
6996 return false;
6997
6998 if (TREE_CODE (op1) == SSA_NAME)
6999 vr1 = *(get_value_range (op1));
7000 else if (is_gimple_min_invariant (op1))
7001 set_value_range_to_value (&vr1, op1, NULL);
7002 else
7003 return false;
7004
7005 if (!zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0, &must_be_nonzero0))
7006 return false;
7007 if (!zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1, &must_be_nonzero1))
7008 return false;
7009
7010 switch (gimple_assign_rhs_code (stmt))
7011 {
7012 case BIT_AND_EXPR:
7013 mask = double_int_and_not (may_be_nonzero0, must_be_nonzero1);
7014 if (double_int_zero_p (mask))
7015 {
7016 op = op0;
7017 break;
7018 }
7019 mask = double_int_and_not (may_be_nonzero1, must_be_nonzero0);
7020 if (double_int_zero_p (mask))
7021 {
7022 op = op1;
7023 break;
7024 }
7025 break;
7026 case BIT_IOR_EXPR:
7027 mask = double_int_and_not (may_be_nonzero0, must_be_nonzero1);
7028 if (double_int_zero_p (mask))
7029 {
7030 op = op1;
7031 break;
7032 }
7033 mask = double_int_and_not (may_be_nonzero1, must_be_nonzero0);
7034 if (double_int_zero_p (mask))
7035 {
7036 op = op0;
7037 break;
7038 }
7039 break;
7040 default:
7041 gcc_unreachable ();
7042 }
7043
7044 if (op == NULL_TREE)
7045 return false;
7046
7047 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op, NULL);
7048 update_stmt (gsi_stmt (*gsi));
7049 return true;
7050 }
7051
7052 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
7053 a known value range VR.
7054
7055 If there is one and only one value which will satisfy the
7056 conditional, then return that value. Else return NULL. */
7057
7058 static tree
7059 test_for_singularity (enum tree_code cond_code, tree op0,
7060 tree op1, value_range_t *vr)
7061 {
7062 tree min = NULL;
7063 tree max = NULL;
7064
7065 /* Extract minimum/maximum values which satisfy the
7066 the conditional as it was written. */
7067 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
7068 {
7069 /* This should not be negative infinity; there is no overflow
7070 here. */
7071 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
7072
7073 max = op1;
7074 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
7075 {
7076 tree one = build_int_cst (TREE_TYPE (op0), 1);
7077 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
7078 if (EXPR_P (max))
7079 TREE_NO_WARNING (max) = 1;
7080 }
7081 }
7082 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
7083 {
7084 /* This should not be positive infinity; there is no overflow
7085 here. */
7086 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
7087
7088 min = op1;
7089 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
7090 {
7091 tree one = build_int_cst (TREE_TYPE (op0), 1);
7092 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
7093 if (EXPR_P (min))
7094 TREE_NO_WARNING (min) = 1;
7095 }
7096 }
7097
7098 /* Now refine the minimum and maximum values using any
7099 value range information we have for op0. */
7100 if (min && max)
7101 {
7102 if (compare_values (vr->min, min) == 1)
7103 min = vr->min;
7104 if (compare_values (vr->max, max) == -1)
7105 max = vr->max;
7106
7107 /* If the new min/max values have converged to a single value,
7108 then there is only one value which can satisfy the condition,
7109 return that value. */
7110 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
7111 return min;
7112 }
7113 return NULL;
7114 }
7115
7116 /* Simplify a conditional using a relational operator to an equality
7117 test if the range information indicates only one value can satisfy
7118 the original conditional. */
7119
7120 static bool
7121 simplify_cond_using_ranges (gimple stmt)
7122 {
7123 tree op0 = gimple_cond_lhs (stmt);
7124 tree op1 = gimple_cond_rhs (stmt);
7125 enum tree_code cond_code = gimple_cond_code (stmt);
7126
7127 if (cond_code != NE_EXPR
7128 && cond_code != EQ_EXPR
7129 && TREE_CODE (op0) == SSA_NAME
7130 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
7131 && is_gimple_min_invariant (op1))
7132 {
7133 value_range_t *vr = get_value_range (op0);
7134
7135 /* If we have range information for OP0, then we might be
7136 able to simplify this conditional. */
7137 if (vr->type == VR_RANGE)
7138 {
7139 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
7140
7141 if (new_tree)
7142 {
7143 if (dump_file)
7144 {
7145 fprintf (dump_file, "Simplified relational ");
7146 print_gimple_stmt (dump_file, stmt, 0, 0);
7147 fprintf (dump_file, " into ");
7148 }
7149
7150 gimple_cond_set_code (stmt, EQ_EXPR);
7151 gimple_cond_set_lhs (stmt, op0);
7152 gimple_cond_set_rhs (stmt, new_tree);
7153
7154 update_stmt (stmt);
7155
7156 if (dump_file)
7157 {
7158 print_gimple_stmt (dump_file, stmt, 0, 0);
7159 fprintf (dump_file, "\n");
7160 }
7161
7162 return true;
7163 }
7164
7165 /* Try again after inverting the condition. We only deal
7166 with integral types here, so no need to worry about
7167 issues with inverting FP comparisons. */
7168 cond_code = invert_tree_comparison (cond_code, false);
7169 new_tree = test_for_singularity (cond_code, op0, op1, vr);
7170
7171 if (new_tree)
7172 {
7173 if (dump_file)
7174 {
7175 fprintf (dump_file, "Simplified relational ");
7176 print_gimple_stmt (dump_file, stmt, 0, 0);
7177 fprintf (dump_file, " into ");
7178 }
7179
7180 gimple_cond_set_code (stmt, NE_EXPR);
7181 gimple_cond_set_lhs (stmt, op0);
7182 gimple_cond_set_rhs (stmt, new_tree);
7183
7184 update_stmt (stmt);
7185
7186 if (dump_file)
7187 {
7188 print_gimple_stmt (dump_file, stmt, 0, 0);
7189 fprintf (dump_file, "\n");
7190 }
7191
7192 return true;
7193 }
7194 }
7195 }
7196
7197 return false;
7198 }
7199
7200 /* Simplify a switch statement using the value range of the switch
7201 argument. */
7202
7203 static bool
7204 simplify_switch_using_ranges (gimple stmt)
7205 {
7206 tree op = gimple_switch_index (stmt);
7207 value_range_t *vr;
7208 bool take_default;
7209 edge e;
7210 edge_iterator ei;
7211 size_t i = 0, j = 0, n, n2;
7212 tree vec2;
7213 switch_update su;
7214
7215 if (TREE_CODE (op) == SSA_NAME)
7216 {
7217 vr = get_value_range (op);
7218
7219 /* We can only handle integer ranges. */
7220 if (vr->type != VR_RANGE
7221 || symbolic_range_p (vr))
7222 return false;
7223
7224 /* Find case label for min/max of the value range. */
7225 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
7226 }
7227 else if (TREE_CODE (op) == INTEGER_CST)
7228 {
7229 take_default = !find_case_label_index (stmt, 1, op, &i);
7230 if (take_default)
7231 {
7232 i = 1;
7233 j = 0;
7234 }
7235 else
7236 {
7237 j = i;
7238 }
7239 }
7240 else
7241 return false;
7242
7243 n = gimple_switch_num_labels (stmt);
7244
7245 /* Bail out if this is just all edges taken. */
7246 if (i == 1
7247 && j == n - 1
7248 && take_default)
7249 return false;
7250
7251 /* Build a new vector of taken case labels. */
7252 vec2 = make_tree_vec (j - i + 1 + (int)take_default);
7253 n2 = 0;
7254
7255 /* Add the default edge, if necessary. */
7256 if (take_default)
7257 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
7258
7259 for (; i <= j; ++i, ++n2)
7260 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
7261
7262 /* Mark needed edges. */
7263 for (i = 0; i < n2; ++i)
7264 {
7265 e = find_edge (gimple_bb (stmt),
7266 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
7267 e->aux = (void *)-1;
7268 }
7269
7270 /* Queue not needed edges for later removal. */
7271 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
7272 {
7273 if (e->aux == (void *)-1)
7274 {
7275 e->aux = NULL;
7276 continue;
7277 }
7278
7279 if (dump_file && (dump_flags & TDF_DETAILS))
7280 {
7281 fprintf (dump_file, "removing unreachable case label\n");
7282 }
7283 VEC_safe_push (edge, heap, to_remove_edges, e);
7284 e->flags &= ~EDGE_EXECUTABLE;
7285 }
7286
7287 /* And queue an update for the stmt. */
7288 su.stmt = stmt;
7289 su.vec = vec2;
7290 VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
7291 return false;
7292 }
7293
7294 /* Simplify an integral conversion from an SSA name in STMT. */
7295
7296 static bool
7297 simplify_conversion_using_ranges (gimple stmt)
7298 {
7299 tree innerop, middleop, finaltype;
7300 gimple def_stmt;
7301 value_range_t *innervr;
7302 double_int innermin, innermax, middlemin, middlemax;
7303
7304 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
7305 if (!INTEGRAL_TYPE_P (finaltype))
7306 return false;
7307 middleop = gimple_assign_rhs1 (stmt);
7308 def_stmt = SSA_NAME_DEF_STMT (middleop);
7309 if (!is_gimple_assign (def_stmt)
7310 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
7311 return false;
7312 innerop = gimple_assign_rhs1 (def_stmt);
7313 if (TREE_CODE (innerop) != SSA_NAME)
7314 return false;
7315
7316 /* Get the value-range of the inner operand. */
7317 innervr = get_value_range (innerop);
7318 if (innervr->type != VR_RANGE
7319 || TREE_CODE (innervr->min) != INTEGER_CST
7320 || TREE_CODE (innervr->max) != INTEGER_CST)
7321 return false;
7322
7323 /* Simulate the conversion chain to check if the result is equal if
7324 the middle conversion is removed. */
7325 innermin = tree_to_double_int (innervr->min);
7326 innermax = tree_to_double_int (innervr->max);
7327 middlemin = double_int_ext (innermin, TYPE_PRECISION (TREE_TYPE (middleop)),
7328 TYPE_UNSIGNED (TREE_TYPE (middleop)));
7329 middlemax = double_int_ext (innermax, TYPE_PRECISION (TREE_TYPE (middleop)),
7330 TYPE_UNSIGNED (TREE_TYPE (middleop)));
7331 /* If the middle values do not represent a proper range fail. */
7332 if (double_int_cmp (middlemin, middlemax,
7333 TYPE_UNSIGNED (TREE_TYPE (middleop))) > 0)
7334 return false;
7335 if (!double_int_equal_p (double_int_ext (middlemin,
7336 TYPE_PRECISION (finaltype),
7337 TYPE_UNSIGNED (finaltype)),
7338 double_int_ext (innermin,
7339 TYPE_PRECISION (finaltype),
7340 TYPE_UNSIGNED (finaltype)))
7341 || !double_int_equal_p (double_int_ext (middlemax,
7342 TYPE_PRECISION (finaltype),
7343 TYPE_UNSIGNED (finaltype)),
7344 double_int_ext (innermax,
7345 TYPE_PRECISION (finaltype),
7346 TYPE_UNSIGNED (finaltype))))
7347 return false;
7348
7349 gimple_assign_set_rhs1 (stmt, innerop);
7350 update_stmt (stmt);
7351 return true;
7352 }
7353
7354 /* Return whether the value range *VR fits in an integer type specified
7355 by PRECISION and UNSIGNED_P. */
7356
7357 static bool
7358 range_fits_type_p (value_range_t *vr, unsigned precision, bool unsigned_p)
7359 {
7360 tree src_type;
7361 unsigned src_precision;
7362 double_int tem;
7363
7364 /* We can only handle integral and pointer types. */
7365 src_type = TREE_TYPE (vr->min);
7366 if (!INTEGRAL_TYPE_P (src_type)
7367 && !POINTER_TYPE_P (src_type))
7368 return false;
7369
7370 /* An extension is always fine, so is an identity transform. */
7371 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
7372 if (src_precision < precision
7373 || (src_precision == precision
7374 && TYPE_UNSIGNED (src_type) == unsigned_p))
7375 return true;
7376
7377 /* Now we can only handle ranges with constant bounds. */
7378 if (vr->type != VR_RANGE
7379 || TREE_CODE (vr->min) != INTEGER_CST
7380 || TREE_CODE (vr->max) != INTEGER_CST)
7381 return false;
7382
7383 /* For precision-preserving sign-changes the MSB of the double-int
7384 has to be clear. */
7385 if (src_precision == precision
7386 && (TREE_INT_CST_HIGH (vr->min) | TREE_INT_CST_HIGH (vr->max)) < 0)
7387 return false;
7388
7389 /* Then we can perform the conversion on both ends and compare
7390 the result for equality. */
7391 tem = double_int_ext (tree_to_double_int (vr->min), precision, unsigned_p);
7392 if (!double_int_equal_p (tree_to_double_int (vr->min), tem))
7393 return false;
7394 tem = double_int_ext (tree_to_double_int (vr->max), precision, unsigned_p);
7395 if (!double_int_equal_p (tree_to_double_int (vr->max), tem))
7396 return false;
7397
7398 return true;
7399 }
7400
7401 /* Simplify a conversion from integral SSA name to float in STMT. */
7402
7403 static bool
7404 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
7405 {
7406 tree rhs1 = gimple_assign_rhs1 (stmt);
7407 value_range_t *vr = get_value_range (rhs1);
7408 enum machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
7409 enum machine_mode mode;
7410 tree tem;
7411 gimple conv;
7412
7413 /* We can only handle constant ranges. */
7414 if (vr->type != VR_RANGE
7415 || TREE_CODE (vr->min) != INTEGER_CST
7416 || TREE_CODE (vr->max) != INTEGER_CST)
7417 return false;
7418
7419 /* First check if we can use a signed type in place of an unsigned. */
7420 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
7421 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
7422 != CODE_FOR_nothing)
7423 && range_fits_type_p (vr, GET_MODE_PRECISION
7424 (TYPE_MODE (TREE_TYPE (rhs1))), 0))
7425 mode = TYPE_MODE (TREE_TYPE (rhs1));
7426 /* If we can do the conversion in the current input mode do nothing. */
7427 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
7428 TYPE_UNSIGNED (TREE_TYPE (rhs1))))
7429 return false;
7430 /* Otherwise search for a mode we can use, starting from the narrowest
7431 integer mode available. */
7432 else
7433 {
7434 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
7435 do
7436 {
7437 /* If we cannot do a signed conversion to float from mode
7438 or if the value-range does not fit in the signed type
7439 try with a wider mode. */
7440 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
7441 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), 0))
7442 break;
7443
7444 mode = GET_MODE_WIDER_MODE (mode);
7445 /* But do not widen the input. Instead leave that to the
7446 optabs expansion code. */
7447 if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
7448 return false;
7449 }
7450 while (mode != VOIDmode);
7451 if (mode == VOIDmode)
7452 return false;
7453 }
7454
7455 /* It works, insert a truncation or sign-change before the
7456 float conversion. */
7457 tem = create_tmp_var (build_nonstandard_integer_type
7458 (GET_MODE_PRECISION (mode), 0), NULL);
7459 conv = gimple_build_assign_with_ops (NOP_EXPR, tem, rhs1, NULL_TREE);
7460 tem = make_ssa_name (tem, conv);
7461 gimple_assign_set_lhs (conv, tem);
7462 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
7463 gimple_assign_set_rhs1 (stmt, tem);
7464 update_stmt (stmt);
7465
7466 return true;
7467 }
7468
7469 /* Simplify STMT using ranges if possible. */
7470
7471 static bool
7472 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
7473 {
7474 gimple stmt = gsi_stmt (*gsi);
7475 if (is_gimple_assign (stmt))
7476 {
7477 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
7478 tree rhs1 = gimple_assign_rhs1 (stmt);
7479
7480 switch (rhs_code)
7481 {
7482 case EQ_EXPR:
7483 case NE_EXPR:
7484 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
7485 if the RHS is zero or one, and the LHS are known to be boolean
7486 values. */
7487 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7488 return simplify_truth_ops_using_ranges (gsi, stmt);
7489 break;
7490
7491 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
7492 and BIT_AND_EXPR respectively if the first operand is greater
7493 than zero and the second operand is an exact power of two. */
7494 case TRUNC_DIV_EXPR:
7495 case TRUNC_MOD_EXPR:
7496 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
7497 && integer_pow2p (gimple_assign_rhs2 (stmt)))
7498 return simplify_div_or_mod_using_ranges (stmt);
7499 break;
7500
7501 /* Transform ABS (X) into X or -X as appropriate. */
7502 case ABS_EXPR:
7503 if (TREE_CODE (rhs1) == SSA_NAME
7504 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7505 return simplify_abs_using_ranges (stmt);
7506 break;
7507
7508 case BIT_AND_EXPR:
7509 case BIT_IOR_EXPR:
7510 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
7511 if all the bits being cleared are already cleared or
7512 all the bits being set are already set. */
7513 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7514 return simplify_bit_ops_using_ranges (gsi, stmt);
7515 break;
7516
7517 CASE_CONVERT:
7518 if (TREE_CODE (rhs1) == SSA_NAME
7519 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7520 return simplify_conversion_using_ranges (stmt);
7521 break;
7522
7523 case FLOAT_EXPR:
7524 if (TREE_CODE (rhs1) == SSA_NAME
7525 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
7526 return simplify_float_conversion_using_ranges (gsi, stmt);
7527 break;
7528
7529 default:
7530 break;
7531 }
7532 }
7533 else if (gimple_code (stmt) == GIMPLE_COND)
7534 return simplify_cond_using_ranges (stmt);
7535 else if (gimple_code (stmt) == GIMPLE_SWITCH)
7536 return simplify_switch_using_ranges (stmt);
7537
7538 return false;
7539 }
7540
7541 /* If the statement pointed by SI has a predicate whose value can be
7542 computed using the value range information computed by VRP, compute
7543 its value and return true. Otherwise, return false. */
7544
7545 static bool
7546 fold_predicate_in (gimple_stmt_iterator *si)
7547 {
7548 bool assignment_p = false;
7549 tree val;
7550 gimple stmt = gsi_stmt (*si);
7551
7552 if (is_gimple_assign (stmt)
7553 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
7554 {
7555 assignment_p = true;
7556 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
7557 gimple_assign_rhs1 (stmt),
7558 gimple_assign_rhs2 (stmt),
7559 stmt);
7560 }
7561 else if (gimple_code (stmt) == GIMPLE_COND)
7562 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
7563 gimple_cond_lhs (stmt),
7564 gimple_cond_rhs (stmt),
7565 stmt);
7566 else
7567 return false;
7568
7569 if (val)
7570 {
7571 if (assignment_p)
7572 val = fold_convert (gimple_expr_type (stmt), val);
7573
7574 if (dump_file)
7575 {
7576 fprintf (dump_file, "Folding predicate ");
7577 print_gimple_expr (dump_file, stmt, 0, 0);
7578 fprintf (dump_file, " to ");
7579 print_generic_expr (dump_file, val, 0);
7580 fprintf (dump_file, "\n");
7581 }
7582
7583 if (is_gimple_assign (stmt))
7584 gimple_assign_set_rhs_from_tree (si, val);
7585 else
7586 {
7587 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
7588 if (integer_zerop (val))
7589 gimple_cond_make_false (stmt);
7590 else if (integer_onep (val))
7591 gimple_cond_make_true (stmt);
7592 else
7593 gcc_unreachable ();
7594 }
7595
7596 return true;
7597 }
7598
7599 return false;
7600 }
7601
7602 /* Callback for substitute_and_fold folding the stmt at *SI. */
7603
7604 static bool
7605 vrp_fold_stmt (gimple_stmt_iterator *si)
7606 {
7607 if (fold_predicate_in (si))
7608 return true;
7609
7610 return simplify_stmt_using_ranges (si);
7611 }
7612
7613 /* Stack of dest,src equivalency pairs that need to be restored after
7614 each attempt to thread a block's incoming edge to an outgoing edge.
7615
7616 A NULL entry is used to mark the end of pairs which need to be
7617 restored. */
7618 static VEC(tree,heap) *stack;
7619
7620 /* A trivial wrapper so that we can present the generic jump threading
7621 code with a simple API for simplifying statements. STMT is the
7622 statement we want to simplify, WITHIN_STMT provides the location
7623 for any overflow warnings. */
7624
7625 static tree
7626 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
7627 {
7628 /* We only use VRP information to simplify conditionals. This is
7629 overly conservative, but it's unclear if doing more would be
7630 worth the compile time cost. */
7631 if (gimple_code (stmt) != GIMPLE_COND)
7632 return NULL;
7633
7634 return vrp_evaluate_conditional (gimple_cond_code (stmt),
7635 gimple_cond_lhs (stmt),
7636 gimple_cond_rhs (stmt), within_stmt);
7637 }
7638
7639 /* Blocks which have more than one predecessor and more than
7640 one successor present jump threading opportunities, i.e.,
7641 when the block is reached from a specific predecessor, we
7642 may be able to determine which of the outgoing edges will
7643 be traversed. When this optimization applies, we are able
7644 to avoid conditionals at runtime and we may expose secondary
7645 optimization opportunities.
7646
7647 This routine is effectively a driver for the generic jump
7648 threading code. It basically just presents the generic code
7649 with edges that may be suitable for jump threading.
7650
7651 Unlike DOM, we do not iterate VRP if jump threading was successful.
7652 While iterating may expose new opportunities for VRP, it is expected
7653 those opportunities would be very limited and the compile time cost
7654 to expose those opportunities would be significant.
7655
7656 As jump threading opportunities are discovered, they are registered
7657 for later realization. */
7658
7659 static void
7660 identify_jump_threads (void)
7661 {
7662 basic_block bb;
7663 gimple dummy;
7664 int i;
7665 edge e;
7666
7667 /* Ugh. When substituting values earlier in this pass we can
7668 wipe the dominance information. So rebuild the dominator
7669 information as we need it within the jump threading code. */
7670 calculate_dominance_info (CDI_DOMINATORS);
7671
7672 /* We do not allow VRP information to be used for jump threading
7673 across a back edge in the CFG. Otherwise it becomes too
7674 difficult to avoid eliminating loop exit tests. Of course
7675 EDGE_DFS_BACK is not accurate at this time so we have to
7676 recompute it. */
7677 mark_dfs_back_edges ();
7678
7679 /* Do not thread across edges we are about to remove. Just marking
7680 them as EDGE_DFS_BACK will do. */
7681 FOR_EACH_VEC_ELT (edge, to_remove_edges, i, e)
7682 e->flags |= EDGE_DFS_BACK;
7683
7684 /* Allocate our unwinder stack to unwind any temporary equivalences
7685 that might be recorded. */
7686 stack = VEC_alloc (tree, heap, 20);
7687
7688 /* To avoid lots of silly node creation, we create a single
7689 conditional and just modify it in-place when attempting to
7690 thread jumps. */
7691 dummy = gimple_build_cond (EQ_EXPR,
7692 integer_zero_node, integer_zero_node,
7693 NULL, NULL);
7694
7695 /* Walk through all the blocks finding those which present a
7696 potential jump threading opportunity. We could set this up
7697 as a dominator walker and record data during the walk, but
7698 I doubt it's worth the effort for the classes of jump
7699 threading opportunities we are trying to identify at this
7700 point in compilation. */
7701 FOR_EACH_BB (bb)
7702 {
7703 gimple last;
7704
7705 /* If the generic jump threading code does not find this block
7706 interesting, then there is nothing to do. */
7707 if (! potentially_threadable_block (bb))
7708 continue;
7709
7710 /* We only care about blocks ending in a COND_EXPR. While there
7711 may be some value in handling SWITCH_EXPR here, I doubt it's
7712 terribly important. */
7713 last = gsi_stmt (gsi_last_bb (bb));
7714
7715 /* We're basically looking for a switch or any kind of conditional with
7716 integral or pointer type arguments. Note the type of the second
7717 argument will be the same as the first argument, so no need to
7718 check it explicitly. */
7719 if (gimple_code (last) == GIMPLE_SWITCH
7720 || (gimple_code (last) == GIMPLE_COND
7721 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
7722 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
7723 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
7724 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
7725 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
7726 {
7727 edge_iterator ei;
7728
7729 /* We've got a block with multiple predecessors and multiple
7730 successors which also ends in a suitable conditional or
7731 switch statement. For each predecessor, see if we can thread
7732 it to a specific successor. */
7733 FOR_EACH_EDGE (e, ei, bb->preds)
7734 {
7735 /* Do not thread across back edges or abnormal edges
7736 in the CFG. */
7737 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
7738 continue;
7739
7740 thread_across_edge (dummy, e, true, &stack,
7741 simplify_stmt_for_jump_threading);
7742 }
7743 }
7744 }
7745
7746 /* We do not actually update the CFG or SSA graphs at this point as
7747 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
7748 handle ASSERT_EXPRs gracefully. */
7749 }
7750
7751 /* We identified all the jump threading opportunities earlier, but could
7752 not transform the CFG at that time. This routine transforms the
7753 CFG and arranges for the dominator tree to be rebuilt if necessary.
7754
7755 Note the SSA graph update will occur during the normal TODO
7756 processing by the pass manager. */
7757 static void
7758 finalize_jump_threads (void)
7759 {
7760 thread_through_all_blocks (false);
7761 VEC_free (tree, heap, stack);
7762 }
7763
7764
7765 /* Traverse all the blocks folding conditionals with known ranges. */
7766
7767 static void
7768 vrp_finalize (void)
7769 {
7770 size_t i;
7771
7772 values_propagated = true;
7773
7774 if (dump_file)
7775 {
7776 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
7777 dump_all_value_ranges (dump_file);
7778 fprintf (dump_file, "\n");
7779 }
7780
7781 substitute_and_fold (op_with_constant_singleton_value_range,
7782 vrp_fold_stmt, false);
7783
7784 if (warn_array_bounds)
7785 check_all_array_refs ();
7786
7787 /* We must identify jump threading opportunities before we release
7788 the datastructures built by VRP. */
7789 identify_jump_threads ();
7790
7791 /* Free allocated memory. */
7792 for (i = 0; i < num_vr_values; i++)
7793 if (vr_value[i])
7794 {
7795 BITMAP_FREE (vr_value[i]->equiv);
7796 free (vr_value[i]);
7797 }
7798
7799 free (vr_value);
7800 free (vr_phi_edge_counts);
7801
7802 /* So that we can distinguish between VRP data being available
7803 and not available. */
7804 vr_value = NULL;
7805 vr_phi_edge_counts = NULL;
7806 }
7807
7808
7809 /* Main entry point to VRP (Value Range Propagation). This pass is
7810 loosely based on J. R. C. Patterson, ``Accurate Static Branch
7811 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
7812 Programming Language Design and Implementation, pp. 67-78, 1995.
7813 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
7814
7815 This is essentially an SSA-CCP pass modified to deal with ranges
7816 instead of constants.
7817
7818 While propagating ranges, we may find that two or more SSA name
7819 have equivalent, though distinct ranges. For instance,
7820
7821 1 x_9 = p_3->a;
7822 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
7823 3 if (p_4 == q_2)
7824 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
7825 5 endif
7826 6 if (q_2)
7827
7828 In the code above, pointer p_5 has range [q_2, q_2], but from the
7829 code we can also determine that p_5 cannot be NULL and, if q_2 had
7830 a non-varying range, p_5's range should also be compatible with it.
7831
7832 These equivalences are created by two expressions: ASSERT_EXPR and
7833 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
7834 result of another assertion, then we can use the fact that p_5 and
7835 p_4 are equivalent when evaluating p_5's range.
7836
7837 Together with value ranges, we also propagate these equivalences
7838 between names so that we can take advantage of information from
7839 multiple ranges when doing final replacement. Note that this
7840 equivalency relation is transitive but not symmetric.
7841
7842 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
7843 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
7844 in contexts where that assertion does not hold (e.g., in line 6).
7845
7846 TODO, the main difference between this pass and Patterson's is that
7847 we do not propagate edge probabilities. We only compute whether
7848 edges can be taken or not. That is, instead of having a spectrum
7849 of jump probabilities between 0 and 1, we only deal with 0, 1 and
7850 DON'T KNOW. In the future, it may be worthwhile to propagate
7851 probabilities to aid branch prediction. */
7852
7853 static unsigned int
7854 execute_vrp (void)
7855 {
7856 int i;
7857 edge e;
7858 switch_update *su;
7859
7860 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
7861 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
7862 scev_initialize ();
7863
7864 insert_range_assertions ();
7865
7866 /* Estimate number of iterations - but do not use undefined behavior
7867 for this. We can't do this lazily as other functions may compute
7868 this using undefined behavior. */
7869 free_numbers_of_iterations_estimates ();
7870 estimate_numbers_of_iterations (false);
7871
7872 to_remove_edges = VEC_alloc (edge, heap, 10);
7873 to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
7874 threadedge_initialize_values ();
7875
7876 vrp_initialize ();
7877 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
7878 vrp_finalize ();
7879
7880 free_numbers_of_iterations_estimates ();
7881
7882 /* ASSERT_EXPRs must be removed before finalizing jump threads
7883 as finalizing jump threads calls the CFG cleanup code which
7884 does not properly handle ASSERT_EXPRs. */
7885 remove_range_assertions ();
7886
7887 /* If we exposed any new variables, go ahead and put them into
7888 SSA form now, before we handle jump threading. This simplifies
7889 interactions between rewriting of _DECL nodes into SSA form
7890 and rewriting SSA_NAME nodes into SSA form after block
7891 duplication and CFG manipulation. */
7892 update_ssa (TODO_update_ssa);
7893
7894 finalize_jump_threads ();
7895
7896 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
7897 CFG in a broken state and requires a cfg_cleanup run. */
7898 FOR_EACH_VEC_ELT (edge, to_remove_edges, i, e)
7899 remove_edge (e);
7900 /* Update SWITCH_EXPR case label vector. */
7901 FOR_EACH_VEC_ELT (switch_update, to_update_switch_stmts, i, su)
7902 {
7903 size_t j;
7904 size_t n = TREE_VEC_LENGTH (su->vec);
7905 tree label;
7906 gimple_switch_set_num_labels (su->stmt, n);
7907 for (j = 0; j < n; j++)
7908 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
7909 /* As we may have replaced the default label with a regular one
7910 make sure to make it a real default label again. This ensures
7911 optimal expansion. */
7912 label = gimple_switch_default_label (su->stmt);
7913 CASE_LOW (label) = NULL_TREE;
7914 CASE_HIGH (label) = NULL_TREE;
7915 }
7916
7917 if (VEC_length (edge, to_remove_edges) > 0)
7918 free_dominance_info (CDI_DOMINATORS);
7919
7920 VEC_free (edge, heap, to_remove_edges);
7921 VEC_free (switch_update, heap, to_update_switch_stmts);
7922 threadedge_finalize_values ();
7923
7924 scev_finalize ();
7925 loop_optimizer_finalize ();
7926 return 0;
7927 }
7928
7929 static bool
7930 gate_vrp (void)
7931 {
7932 return flag_tree_vrp != 0;
7933 }
7934
7935 struct gimple_opt_pass pass_vrp =
7936 {
7937 {
7938 GIMPLE_PASS,
7939 "vrp", /* name */
7940 gate_vrp, /* gate */
7941 execute_vrp, /* execute */
7942 NULL, /* sub */
7943 NULL, /* next */
7944 0, /* static_pass_number */
7945 TV_TREE_VRP, /* tv_id */
7946 PROP_ssa, /* properties_required */
7947 0, /* properties_provided */
7948 0, /* properties_destroyed */
7949 0, /* todo_flags_start */
7950 TODO_cleanup_cfg
7951 | TODO_update_ssa
7952 | TODO_verify_ssa
7953 | TODO_verify_flow
7954 | TODO_ggc_collect /* todo_flags_finish */
7955 }
7956 };