tree-vrp.c (simplify_truth_ops_using_ranges): Fix types.
[gcc.git] / gcc / tree-vrp.c
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "flags.h"
27 #include "tree.h"
28 #include "basic-block.h"
29 #include "tree-flow.h"
30 #include "tree-pass.h"
31 #include "tree-dump.h"
32 #include "timevar.h"
33 #include "diagnostic.h"
34 #include "toplev.h"
35 #include "intl.h"
36 #include "cfgloop.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-ssa-propagate.h"
39 #include "tree-chrec.h"
40
41
42 /* Set of SSA names found live during the RPO traversal of the function
43 for still active basic-blocks. */
44 static sbitmap *live;
45
46 /* Return true if the SSA name NAME is live on the edge E. */
47
48 static bool
49 live_on_edge (edge e, tree name)
50 {
51 return (live[e->dest->index]
52 && TEST_BIT (live[e->dest->index], SSA_NAME_VERSION (name)));
53 }
54
55 /* Local functions. */
56 static int compare_values (tree val1, tree val2);
57 static int compare_values_warnv (tree val1, tree val2, bool *);
58 static void vrp_meet (value_range_t *, value_range_t *);
59 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
60 tree, tree, bool, bool *,
61 bool *);
62
63 /* Location information for ASSERT_EXPRs. Each instance of this
64 structure describes an ASSERT_EXPR for an SSA name. Since a single
65 SSA name may have more than one assertion associated with it, these
66 locations are kept in a linked list attached to the corresponding
67 SSA name. */
68 struct assert_locus_d
69 {
70 /* Basic block where the assertion would be inserted. */
71 basic_block bb;
72
73 /* Some assertions need to be inserted on an edge (e.g., assertions
74 generated by COND_EXPRs). In those cases, BB will be NULL. */
75 edge e;
76
77 /* Pointer to the statement that generated this assertion. */
78 gimple_stmt_iterator si;
79
80 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
81 enum tree_code comp_code;
82
83 /* Value being compared against. */
84 tree val;
85
86 /* Expression to compare. */
87 tree expr;
88
89 /* Next node in the linked list. */
90 struct assert_locus_d *next;
91 };
92
93 typedef struct assert_locus_d *assert_locus_t;
94
95 /* If bit I is present, it means that SSA name N_i has a list of
96 assertions that should be inserted in the IL. */
97 static bitmap need_assert_for;
98
99 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
100 holds a list of ASSERT_LOCUS_T nodes that describe where
101 ASSERT_EXPRs for SSA name N_I should be inserted. */
102 static assert_locus_t *asserts_for;
103
104 /* Value range array. After propagation, VR_VALUE[I] holds the range
105 of values that SSA name N_I may take. */
106 static value_range_t **vr_value;
107
108 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
109 number of executable edges we saw the last time we visited the
110 node. */
111 static int *vr_phi_edge_counts;
112
113 typedef struct {
114 gimple stmt;
115 tree vec;
116 } switch_update;
117
118 static VEC (edge, heap) *to_remove_edges;
119 DEF_VEC_O(switch_update);
120 DEF_VEC_ALLOC_O(switch_update, heap);
121 static VEC (switch_update, heap) *to_update_switch_stmts;
122
123
124 /* Return the maximum value for TYPEs base type. */
125
126 static inline tree
127 vrp_val_max (const_tree type)
128 {
129 if (!INTEGRAL_TYPE_P (type))
130 return NULL_TREE;
131
132 /* For integer sub-types the values for the base type are relevant. */
133 if (TREE_TYPE (type))
134 type = TREE_TYPE (type);
135
136 return TYPE_MAX_VALUE (type);
137 }
138
139 /* Return the minimum value for TYPEs base type. */
140
141 static inline tree
142 vrp_val_min (const_tree type)
143 {
144 if (!INTEGRAL_TYPE_P (type))
145 return NULL_TREE;
146
147 /* For integer sub-types the values for the base type are relevant. */
148 if (TREE_TYPE (type))
149 type = TREE_TYPE (type);
150
151 return TYPE_MIN_VALUE (type);
152 }
153
154 /* Return whether VAL is equal to the maximum value of its type. This
155 will be true for a positive overflow infinity. We can't do a
156 simple equality comparison with TYPE_MAX_VALUE because C typedefs
157 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
158 to the integer constant with the same value in the type. */
159
160 static inline bool
161 vrp_val_is_max (const_tree val)
162 {
163 tree type_max = vrp_val_max (TREE_TYPE (val));
164 return (val == type_max
165 || (type_max != NULL_TREE
166 && operand_equal_p (val, type_max, 0)));
167 }
168
169 /* Return whether VAL is equal to the minimum value of its type. This
170 will be true for a negative overflow infinity. */
171
172 static inline bool
173 vrp_val_is_min (const_tree val)
174 {
175 tree type_min = vrp_val_min (TREE_TYPE (val));
176 return (val == type_min
177 || (type_min != NULL_TREE
178 && operand_equal_p (val, type_min, 0)));
179 }
180
181
182 /* Return whether TYPE should use an overflow infinity distinct from
183 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
184 represent a signed overflow during VRP computations. An infinity
185 is distinct from a half-range, which will go from some number to
186 TYPE_{MIN,MAX}_VALUE. */
187
188 static inline bool
189 needs_overflow_infinity (const_tree type)
190 {
191 return (INTEGRAL_TYPE_P (type)
192 && !TYPE_OVERFLOW_WRAPS (type)
193 /* Integer sub-types never overflow as they are never
194 operands of arithmetic operators. */
195 && !(TREE_TYPE (type) && TREE_TYPE (type) != type));
196 }
197
198 /* Return whether TYPE can support our overflow infinity
199 representation: we use the TREE_OVERFLOW flag, which only exists
200 for constants. If TYPE doesn't support this, we don't optimize
201 cases which would require signed overflow--we drop them to
202 VARYING. */
203
204 static inline bool
205 supports_overflow_infinity (const_tree type)
206 {
207 tree min = vrp_val_min (type), max = vrp_val_max (type);
208 #ifdef ENABLE_CHECKING
209 gcc_assert (needs_overflow_infinity (type));
210 #endif
211 return (min != NULL_TREE
212 && CONSTANT_CLASS_P (min)
213 && max != NULL_TREE
214 && CONSTANT_CLASS_P (max));
215 }
216
217 /* VAL is the maximum or minimum value of a type. Return a
218 corresponding overflow infinity. */
219
220 static inline tree
221 make_overflow_infinity (tree val)
222 {
223 #ifdef ENABLE_CHECKING
224 gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
225 #endif
226 val = copy_node (val);
227 TREE_OVERFLOW (val) = 1;
228 return val;
229 }
230
231 /* Return a negative overflow infinity for TYPE. */
232
233 static inline tree
234 negative_overflow_infinity (tree type)
235 {
236 #ifdef ENABLE_CHECKING
237 gcc_assert (supports_overflow_infinity (type));
238 #endif
239 return make_overflow_infinity (vrp_val_min (type));
240 }
241
242 /* Return a positive overflow infinity for TYPE. */
243
244 static inline tree
245 positive_overflow_infinity (tree type)
246 {
247 #ifdef ENABLE_CHECKING
248 gcc_assert (supports_overflow_infinity (type));
249 #endif
250 return make_overflow_infinity (vrp_val_max (type));
251 }
252
253 /* Return whether VAL is a negative overflow infinity. */
254
255 static inline bool
256 is_negative_overflow_infinity (const_tree val)
257 {
258 return (needs_overflow_infinity (TREE_TYPE (val))
259 && CONSTANT_CLASS_P (val)
260 && TREE_OVERFLOW (val)
261 && vrp_val_is_min (val));
262 }
263
264 /* Return whether VAL is a positive overflow infinity. */
265
266 static inline bool
267 is_positive_overflow_infinity (const_tree val)
268 {
269 return (needs_overflow_infinity (TREE_TYPE (val))
270 && CONSTANT_CLASS_P (val)
271 && TREE_OVERFLOW (val)
272 && vrp_val_is_max (val));
273 }
274
275 /* Return whether VAL is a positive or negative overflow infinity. */
276
277 static inline bool
278 is_overflow_infinity (const_tree val)
279 {
280 return (needs_overflow_infinity (TREE_TYPE (val))
281 && CONSTANT_CLASS_P (val)
282 && TREE_OVERFLOW (val)
283 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
284 }
285
286 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
287
288 static inline bool
289 stmt_overflow_infinity (gimple stmt)
290 {
291 if (is_gimple_assign (stmt)
292 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
293 GIMPLE_SINGLE_RHS)
294 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
295 return false;
296 }
297
298 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
299 the same value with TREE_OVERFLOW clear. This can be used to avoid
300 confusing a regular value with an overflow value. */
301
302 static inline tree
303 avoid_overflow_infinity (tree val)
304 {
305 if (!is_overflow_infinity (val))
306 return val;
307
308 if (vrp_val_is_max (val))
309 return vrp_val_max (TREE_TYPE (val));
310 else
311 {
312 #ifdef ENABLE_CHECKING
313 gcc_assert (vrp_val_is_min (val));
314 #endif
315 return vrp_val_min (TREE_TYPE (val));
316 }
317 }
318
319
320 /* Return true if ARG is marked with the nonnull attribute in the
321 current function signature. */
322
323 static bool
324 nonnull_arg_p (const_tree arg)
325 {
326 tree t, attrs, fntype;
327 unsigned HOST_WIDE_INT arg_num;
328
329 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
330
331 /* The static chain decl is always non null. */
332 if (arg == cfun->static_chain_decl)
333 return true;
334
335 fntype = TREE_TYPE (current_function_decl);
336 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
337
338 /* If "nonnull" wasn't specified, we know nothing about the argument. */
339 if (attrs == NULL_TREE)
340 return false;
341
342 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
343 if (TREE_VALUE (attrs) == NULL_TREE)
344 return true;
345
346 /* Get the position number for ARG in the function signature. */
347 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
348 t;
349 t = TREE_CHAIN (t), arg_num++)
350 {
351 if (t == arg)
352 break;
353 }
354
355 gcc_assert (t == arg);
356
357 /* Now see if ARG_NUM is mentioned in the nonnull list. */
358 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
359 {
360 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
361 return true;
362 }
363
364 return false;
365 }
366
367
368 /* Set value range VR to VR_VARYING. */
369
370 static inline void
371 set_value_range_to_varying (value_range_t *vr)
372 {
373 vr->type = VR_VARYING;
374 vr->min = vr->max = NULL_TREE;
375 if (vr->equiv)
376 bitmap_clear (vr->equiv);
377 }
378
379
380 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
381
382 static void
383 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
384 tree max, bitmap equiv)
385 {
386 #if defined ENABLE_CHECKING
387 /* Check the validity of the range. */
388 if (t == VR_RANGE || t == VR_ANTI_RANGE)
389 {
390 int cmp;
391
392 gcc_assert (min && max);
393
394 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
395 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
396
397 cmp = compare_values (min, max);
398 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
399
400 if (needs_overflow_infinity (TREE_TYPE (min)))
401 gcc_assert (!is_overflow_infinity (min)
402 || !is_overflow_infinity (max));
403 }
404
405 if (t == VR_UNDEFINED || t == VR_VARYING)
406 gcc_assert (min == NULL_TREE && max == NULL_TREE);
407
408 if (t == VR_UNDEFINED || t == VR_VARYING)
409 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
410 #endif
411
412 vr->type = t;
413 vr->min = min;
414 vr->max = max;
415
416 /* Since updating the equivalence set involves deep copying the
417 bitmaps, only do it if absolutely necessary. */
418 if (vr->equiv == NULL
419 && equiv != NULL)
420 vr->equiv = BITMAP_ALLOC (NULL);
421
422 if (equiv != vr->equiv)
423 {
424 if (equiv && !bitmap_empty_p (equiv))
425 bitmap_copy (vr->equiv, equiv);
426 else
427 bitmap_clear (vr->equiv);
428 }
429 }
430
431
432 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
433 This means adjusting T, MIN and MAX representing the case of a
434 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
435 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
436 In corner cases where MAX+1 or MIN-1 wraps this will fall back
437 to varying.
438 This routine exists to ease canonicalization in the case where we
439 extract ranges from var + CST op limit. */
440
441 static void
442 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
443 tree min, tree max, bitmap equiv)
444 {
445 /* Nothing to canonicalize for symbolic or unknown or varying ranges. */
446 if ((t != VR_RANGE
447 && t != VR_ANTI_RANGE)
448 || TREE_CODE (min) != INTEGER_CST
449 || TREE_CODE (max) != INTEGER_CST)
450 {
451 set_value_range (vr, t, min, max, equiv);
452 return;
453 }
454
455 /* Wrong order for min and max, to swap them and the VR type we need
456 to adjust them. */
457 if (tree_int_cst_lt (max, min))
458 {
459 tree one = build_int_cst (TREE_TYPE (min), 1);
460 tree tmp = int_const_binop (PLUS_EXPR, max, one, 0);
461 max = int_const_binop (MINUS_EXPR, min, one, 0);
462 min = tmp;
463
464 /* There's one corner case, if we had [C+1, C] before we now have
465 that again. But this represents an empty value range, so drop
466 to varying in this case. */
467 if (tree_int_cst_lt (max, min))
468 {
469 set_value_range_to_varying (vr);
470 return;
471 }
472
473 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
474 }
475
476 /* Anti-ranges that can be represented as ranges should be so. */
477 if (t == VR_ANTI_RANGE)
478 {
479 bool is_min = vrp_val_is_min (min);
480 bool is_max = vrp_val_is_max (max);
481
482 if (is_min && is_max)
483 {
484 /* We cannot deal with empty ranges, drop to varying. */
485 set_value_range_to_varying (vr);
486 return;
487 }
488 else if (is_min
489 /* As a special exception preserve non-null ranges. */
490 && !(TYPE_UNSIGNED (TREE_TYPE (min))
491 && integer_zerop (max)))
492 {
493 tree one = build_int_cst (TREE_TYPE (max), 1);
494 min = int_const_binop (PLUS_EXPR, max, one, 0);
495 max = vrp_val_max (TREE_TYPE (max));
496 t = VR_RANGE;
497 }
498 else if (is_max)
499 {
500 tree one = build_int_cst (TREE_TYPE (min), 1);
501 max = int_const_binop (MINUS_EXPR, min, one, 0);
502 min = vrp_val_min (TREE_TYPE (min));
503 t = VR_RANGE;
504 }
505 }
506
507 set_value_range (vr, t, min, max, equiv);
508 }
509
510 /* Copy value range FROM into value range TO. */
511
512 static inline void
513 copy_value_range (value_range_t *to, value_range_t *from)
514 {
515 set_value_range (to, from->type, from->min, from->max, from->equiv);
516 }
517
518 /* Set value range VR to a single value. This function is only called
519 with values we get from statements, and exists to clear the
520 TREE_OVERFLOW flag so that we don't think we have an overflow
521 infinity when we shouldn't. */
522
523 static inline void
524 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
525 {
526 gcc_assert (is_gimple_min_invariant (val));
527 val = avoid_overflow_infinity (val);
528 set_value_range (vr, VR_RANGE, val, val, equiv);
529 }
530
531 /* Set value range VR to a non-negative range of type TYPE.
532 OVERFLOW_INFINITY indicates whether to use an overflow infinity
533 rather than TYPE_MAX_VALUE; this should be true if we determine
534 that the range is nonnegative based on the assumption that signed
535 overflow does not occur. */
536
537 static inline void
538 set_value_range_to_nonnegative (value_range_t *vr, tree type,
539 bool overflow_infinity)
540 {
541 tree zero;
542
543 if (overflow_infinity && !supports_overflow_infinity (type))
544 {
545 set_value_range_to_varying (vr);
546 return;
547 }
548
549 zero = build_int_cst (type, 0);
550 set_value_range (vr, VR_RANGE, zero,
551 (overflow_infinity
552 ? positive_overflow_infinity (type)
553 : TYPE_MAX_VALUE (type)),
554 vr->equiv);
555 }
556
557 /* Set value range VR to a non-NULL range of type TYPE. */
558
559 static inline void
560 set_value_range_to_nonnull (value_range_t *vr, tree type)
561 {
562 tree zero = build_int_cst (type, 0);
563 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
564 }
565
566
567 /* Set value range VR to a NULL range of type TYPE. */
568
569 static inline void
570 set_value_range_to_null (value_range_t *vr, tree type)
571 {
572 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
573 }
574
575
576 /* Set value range VR to a range of a truthvalue of type TYPE. */
577
578 static inline void
579 set_value_range_to_truthvalue (value_range_t *vr, tree type)
580 {
581 if (TYPE_PRECISION (type) == 1)
582 set_value_range_to_varying (vr);
583 else
584 set_value_range (vr, VR_RANGE,
585 build_int_cst (type, 0), build_int_cst (type, 1),
586 vr->equiv);
587 }
588
589
590 /* Set value range VR to VR_UNDEFINED. */
591
592 static inline void
593 set_value_range_to_undefined (value_range_t *vr)
594 {
595 vr->type = VR_UNDEFINED;
596 vr->min = vr->max = NULL_TREE;
597 if (vr->equiv)
598 bitmap_clear (vr->equiv);
599 }
600
601
602 /* Return value range information for VAR.
603
604 If we have no values ranges recorded (ie, VRP is not running), then
605 return NULL. Otherwise create an empty range if none existed for VAR. */
606
607 static value_range_t *
608 get_value_range (const_tree var)
609 {
610 value_range_t *vr;
611 tree sym;
612 unsigned ver = SSA_NAME_VERSION (var);
613
614 /* If we have no recorded ranges, then return NULL. */
615 if (! vr_value)
616 return NULL;
617
618 vr = vr_value[ver];
619 if (vr)
620 return vr;
621
622 /* Create a default value range. */
623 vr_value[ver] = vr = XCNEW (value_range_t);
624
625 /* Defer allocating the equivalence set. */
626 vr->equiv = NULL;
627
628 /* If VAR is a default definition, the variable can take any value
629 in VAR's type. */
630 sym = SSA_NAME_VAR (var);
631 if (SSA_NAME_IS_DEFAULT_DEF (var))
632 {
633 /* Try to use the "nonnull" attribute to create ~[0, 0]
634 anti-ranges for pointers. Note that this is only valid with
635 default definitions of PARM_DECLs. */
636 if (TREE_CODE (sym) == PARM_DECL
637 && POINTER_TYPE_P (TREE_TYPE (sym))
638 && nonnull_arg_p (sym))
639 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
640 else
641 set_value_range_to_varying (vr);
642 }
643
644 return vr;
645 }
646
647 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
648
649 static inline bool
650 vrp_operand_equal_p (const_tree val1, const_tree val2)
651 {
652 if (val1 == val2)
653 return true;
654 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
655 return false;
656 if (is_overflow_infinity (val1))
657 return is_overflow_infinity (val2);
658 return true;
659 }
660
661 /* Return true, if the bitmaps B1 and B2 are equal. */
662
663 static inline bool
664 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
665 {
666 return (b1 == b2
667 || (b1 && b2
668 && bitmap_equal_p (b1, b2)));
669 }
670
671 /* Update the value range and equivalence set for variable VAR to
672 NEW_VR. Return true if NEW_VR is different from VAR's previous
673 value.
674
675 NOTE: This function assumes that NEW_VR is a temporary value range
676 object created for the sole purpose of updating VAR's range. The
677 storage used by the equivalence set from NEW_VR will be freed by
678 this function. Do not call update_value_range when NEW_VR
679 is the range object associated with another SSA name. */
680
681 static inline bool
682 update_value_range (const_tree var, value_range_t *new_vr)
683 {
684 value_range_t *old_vr;
685 bool is_new;
686
687 /* Update the value range, if necessary. */
688 old_vr = get_value_range (var);
689 is_new = old_vr->type != new_vr->type
690 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
691 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
692 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
693
694 if (is_new)
695 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
696 new_vr->equiv);
697
698 BITMAP_FREE (new_vr->equiv);
699
700 return is_new;
701 }
702
703
704 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
705 point where equivalence processing can be turned on/off. */
706
707 static void
708 add_equivalence (bitmap *equiv, const_tree var)
709 {
710 unsigned ver = SSA_NAME_VERSION (var);
711 value_range_t *vr = vr_value[ver];
712
713 if (*equiv == NULL)
714 *equiv = BITMAP_ALLOC (NULL);
715 bitmap_set_bit (*equiv, ver);
716 if (vr && vr->equiv)
717 bitmap_ior_into (*equiv, vr->equiv);
718 }
719
720
721 /* Return true if VR is ~[0, 0]. */
722
723 static inline bool
724 range_is_nonnull (value_range_t *vr)
725 {
726 return vr->type == VR_ANTI_RANGE
727 && integer_zerop (vr->min)
728 && integer_zerop (vr->max);
729 }
730
731
732 /* Return true if VR is [0, 0]. */
733
734 static inline bool
735 range_is_null (value_range_t *vr)
736 {
737 return vr->type == VR_RANGE
738 && integer_zerop (vr->min)
739 && integer_zerop (vr->max);
740 }
741
742
743 /* Return true if value range VR involves at least one symbol. */
744
745 static inline bool
746 symbolic_range_p (value_range_t *vr)
747 {
748 return (!is_gimple_min_invariant (vr->min)
749 || !is_gimple_min_invariant (vr->max));
750 }
751
752 /* Return true if value range VR uses an overflow infinity. */
753
754 static inline bool
755 overflow_infinity_range_p (value_range_t *vr)
756 {
757 return (vr->type == VR_RANGE
758 && (is_overflow_infinity (vr->min)
759 || is_overflow_infinity (vr->max)));
760 }
761
762 /* Return false if we can not make a valid comparison based on VR;
763 this will be the case if it uses an overflow infinity and overflow
764 is not undefined (i.e., -fno-strict-overflow is in effect).
765 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
766 uses an overflow infinity. */
767
768 static bool
769 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
770 {
771 gcc_assert (vr->type == VR_RANGE);
772 if (is_overflow_infinity (vr->min))
773 {
774 *strict_overflow_p = true;
775 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
776 return false;
777 }
778 if (is_overflow_infinity (vr->max))
779 {
780 *strict_overflow_p = true;
781 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
782 return false;
783 }
784 return true;
785 }
786
787
788 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
789 ranges obtained so far. */
790
791 static bool
792 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
793 {
794 return (tree_expr_nonnegative_warnv_p (expr, strict_overflow_p)
795 || (TREE_CODE (expr) == SSA_NAME
796 && ssa_name_nonnegative_p (expr)));
797 }
798
799 /* Return true if the result of assignment STMT is know to be non-negative.
800 If the return value is based on the assumption that signed overflow is
801 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
802 *STRICT_OVERFLOW_P.*/
803
804 static bool
805 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
806 {
807 enum tree_code code = gimple_assign_rhs_code (stmt);
808 switch (get_gimple_rhs_class (code))
809 {
810 case GIMPLE_UNARY_RHS:
811 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
812 gimple_expr_type (stmt),
813 gimple_assign_rhs1 (stmt),
814 strict_overflow_p);
815 case GIMPLE_BINARY_RHS:
816 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
817 gimple_expr_type (stmt),
818 gimple_assign_rhs1 (stmt),
819 gimple_assign_rhs2 (stmt),
820 strict_overflow_p);
821 case GIMPLE_SINGLE_RHS:
822 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
823 strict_overflow_p);
824 case GIMPLE_INVALID_RHS:
825 gcc_unreachable ();
826 default:
827 gcc_unreachable ();
828 }
829 }
830
831 /* Return true if return value of call STMT is know to be non-negative.
832 If the return value is based on the assumption that signed overflow is
833 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
834 *STRICT_OVERFLOW_P.*/
835
836 static bool
837 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
838 {
839 tree arg0 = gimple_call_num_args (stmt) > 0 ?
840 gimple_call_arg (stmt, 0) : NULL_TREE;
841 tree arg1 = gimple_call_num_args (stmt) > 1 ?
842 gimple_call_arg (stmt, 1) : NULL_TREE;
843
844 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
845 gimple_call_fndecl (stmt),
846 arg0,
847 arg1,
848 strict_overflow_p);
849 }
850
851 /* Return true if STMT is know to to compute a non-negative value.
852 If the return value is based on the assumption that signed overflow is
853 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
854 *STRICT_OVERFLOW_P.*/
855
856 static bool
857 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
858 {
859 switch (gimple_code (stmt))
860 {
861 case GIMPLE_ASSIGN:
862 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
863 case GIMPLE_CALL:
864 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
865 default:
866 gcc_unreachable ();
867 }
868 }
869
870 /* Return true if the result of assignment STMT is know to be non-zero.
871 If the return value is based on the assumption that signed overflow is
872 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
873 *STRICT_OVERFLOW_P.*/
874
875 static bool
876 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
877 {
878 enum tree_code code = gimple_assign_rhs_code (stmt);
879 switch (get_gimple_rhs_class (code))
880 {
881 case GIMPLE_UNARY_RHS:
882 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
883 gimple_expr_type (stmt),
884 gimple_assign_rhs1 (stmt),
885 strict_overflow_p);
886 case GIMPLE_BINARY_RHS:
887 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
888 gimple_expr_type (stmt),
889 gimple_assign_rhs1 (stmt),
890 gimple_assign_rhs2 (stmt),
891 strict_overflow_p);
892 case GIMPLE_SINGLE_RHS:
893 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
894 strict_overflow_p);
895 case GIMPLE_INVALID_RHS:
896 gcc_unreachable ();
897 default:
898 gcc_unreachable ();
899 }
900 }
901
902 /* Return true if STMT is know to to compute a non-zero value.
903 If the return value is based on the assumption that signed overflow is
904 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
905 *STRICT_OVERFLOW_P.*/
906
907 static bool
908 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
909 {
910 switch (gimple_code (stmt))
911 {
912 case GIMPLE_ASSIGN:
913 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
914 case GIMPLE_CALL:
915 return gimple_alloca_call_p (stmt);
916 default:
917 gcc_unreachable ();
918 }
919 }
920
921 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
922 obtained so far. */
923
924 static bool
925 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
926 {
927 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
928 return true;
929
930 /* If we have an expression of the form &X->a, then the expression
931 is nonnull if X is nonnull. */
932 if (is_gimple_assign (stmt)
933 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
934 {
935 tree expr = gimple_assign_rhs1 (stmt);
936 tree base = get_base_address (TREE_OPERAND (expr, 0));
937
938 if (base != NULL_TREE
939 && TREE_CODE (base) == INDIRECT_REF
940 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
941 {
942 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
943 if (range_is_nonnull (vr))
944 return true;
945 }
946 }
947
948 return false;
949 }
950
951 /* Returns true if EXPR is a valid value (as expected by compare_values) --
952 a gimple invariant, or SSA_NAME +- CST. */
953
954 static bool
955 valid_value_p (tree expr)
956 {
957 if (TREE_CODE (expr) == SSA_NAME)
958 return true;
959
960 if (TREE_CODE (expr) == PLUS_EXPR
961 || TREE_CODE (expr) == MINUS_EXPR)
962 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
963 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
964
965 return is_gimple_min_invariant (expr);
966 }
967
968 /* Return
969 1 if VAL < VAL2
970 0 if !(VAL < VAL2)
971 -2 if those are incomparable. */
972 static inline int
973 operand_less_p (tree val, tree val2)
974 {
975 /* LT is folded faster than GE and others. Inline the common case. */
976 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
977 {
978 if (TYPE_UNSIGNED (TREE_TYPE (val)))
979 return INT_CST_LT_UNSIGNED (val, val2);
980 else
981 {
982 if (INT_CST_LT (val, val2))
983 return 1;
984 }
985 }
986 else
987 {
988 tree tcmp;
989
990 fold_defer_overflow_warnings ();
991
992 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
993
994 fold_undefer_and_ignore_overflow_warnings ();
995
996 if (!tcmp
997 || TREE_CODE (tcmp) != INTEGER_CST)
998 return -2;
999
1000 if (!integer_zerop (tcmp))
1001 return 1;
1002 }
1003
1004 /* val >= val2, not considering overflow infinity. */
1005 if (is_negative_overflow_infinity (val))
1006 return is_negative_overflow_infinity (val2) ? 0 : 1;
1007 else if (is_positive_overflow_infinity (val2))
1008 return is_positive_overflow_infinity (val) ? 0 : 1;
1009
1010 return 0;
1011 }
1012
1013 /* Compare two values VAL1 and VAL2. Return
1014
1015 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1016 -1 if VAL1 < VAL2,
1017 0 if VAL1 == VAL2,
1018 +1 if VAL1 > VAL2, and
1019 +2 if VAL1 != VAL2
1020
1021 This is similar to tree_int_cst_compare but supports pointer values
1022 and values that cannot be compared at compile time.
1023
1024 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1025 true if the return value is only valid if we assume that signed
1026 overflow is undefined. */
1027
1028 static int
1029 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1030 {
1031 if (val1 == val2)
1032 return 0;
1033
1034 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1035 both integers. */
1036 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1037 == POINTER_TYPE_P (TREE_TYPE (val2)));
1038 /* Convert the two values into the same type. This is needed because
1039 sizetype causes sign extension even for unsigned types. */
1040 val2 = fold_convert (TREE_TYPE (val1), val2);
1041 STRIP_USELESS_TYPE_CONVERSION (val2);
1042
1043 if ((TREE_CODE (val1) == SSA_NAME
1044 || TREE_CODE (val1) == PLUS_EXPR
1045 || TREE_CODE (val1) == MINUS_EXPR)
1046 && (TREE_CODE (val2) == SSA_NAME
1047 || TREE_CODE (val2) == PLUS_EXPR
1048 || TREE_CODE (val2) == MINUS_EXPR))
1049 {
1050 tree n1, c1, n2, c2;
1051 enum tree_code code1, code2;
1052
1053 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1054 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1055 same name, return -2. */
1056 if (TREE_CODE (val1) == SSA_NAME)
1057 {
1058 code1 = SSA_NAME;
1059 n1 = val1;
1060 c1 = NULL_TREE;
1061 }
1062 else
1063 {
1064 code1 = TREE_CODE (val1);
1065 n1 = TREE_OPERAND (val1, 0);
1066 c1 = TREE_OPERAND (val1, 1);
1067 if (tree_int_cst_sgn (c1) == -1)
1068 {
1069 if (is_negative_overflow_infinity (c1))
1070 return -2;
1071 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1072 if (!c1)
1073 return -2;
1074 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1075 }
1076 }
1077
1078 if (TREE_CODE (val2) == SSA_NAME)
1079 {
1080 code2 = SSA_NAME;
1081 n2 = val2;
1082 c2 = NULL_TREE;
1083 }
1084 else
1085 {
1086 code2 = TREE_CODE (val2);
1087 n2 = TREE_OPERAND (val2, 0);
1088 c2 = TREE_OPERAND (val2, 1);
1089 if (tree_int_cst_sgn (c2) == -1)
1090 {
1091 if (is_negative_overflow_infinity (c2))
1092 return -2;
1093 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1094 if (!c2)
1095 return -2;
1096 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1097 }
1098 }
1099
1100 /* Both values must use the same name. */
1101 if (n1 != n2)
1102 return -2;
1103
1104 if (code1 == SSA_NAME
1105 && code2 == SSA_NAME)
1106 /* NAME == NAME */
1107 return 0;
1108
1109 /* If overflow is defined we cannot simplify more. */
1110 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1111 return -2;
1112
1113 if (strict_overflow_p != NULL
1114 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1115 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1116 *strict_overflow_p = true;
1117
1118 if (code1 == SSA_NAME)
1119 {
1120 if (code2 == PLUS_EXPR)
1121 /* NAME < NAME + CST */
1122 return -1;
1123 else if (code2 == MINUS_EXPR)
1124 /* NAME > NAME - CST */
1125 return 1;
1126 }
1127 else if (code1 == PLUS_EXPR)
1128 {
1129 if (code2 == SSA_NAME)
1130 /* NAME + CST > NAME */
1131 return 1;
1132 else if (code2 == PLUS_EXPR)
1133 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1134 return compare_values_warnv (c1, c2, strict_overflow_p);
1135 else if (code2 == MINUS_EXPR)
1136 /* NAME + CST1 > NAME - CST2 */
1137 return 1;
1138 }
1139 else if (code1 == MINUS_EXPR)
1140 {
1141 if (code2 == SSA_NAME)
1142 /* NAME - CST < NAME */
1143 return -1;
1144 else if (code2 == PLUS_EXPR)
1145 /* NAME - CST1 < NAME + CST2 */
1146 return -1;
1147 else if (code2 == MINUS_EXPR)
1148 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1149 C1 and C2 are swapped in the call to compare_values. */
1150 return compare_values_warnv (c2, c1, strict_overflow_p);
1151 }
1152
1153 gcc_unreachable ();
1154 }
1155
1156 /* We cannot compare non-constants. */
1157 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1158 return -2;
1159
1160 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1161 {
1162 /* We cannot compare overflowed values, except for overflow
1163 infinities. */
1164 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1165 {
1166 if (strict_overflow_p != NULL)
1167 *strict_overflow_p = true;
1168 if (is_negative_overflow_infinity (val1))
1169 return is_negative_overflow_infinity (val2) ? 0 : -1;
1170 else if (is_negative_overflow_infinity (val2))
1171 return 1;
1172 else if (is_positive_overflow_infinity (val1))
1173 return is_positive_overflow_infinity (val2) ? 0 : 1;
1174 else if (is_positive_overflow_infinity (val2))
1175 return -1;
1176 return -2;
1177 }
1178
1179 return tree_int_cst_compare (val1, val2);
1180 }
1181 else
1182 {
1183 tree t;
1184
1185 /* First see if VAL1 and VAL2 are not the same. */
1186 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1187 return 0;
1188
1189 /* If VAL1 is a lower address than VAL2, return -1. */
1190 if (operand_less_p (val1, val2) == 1)
1191 return -1;
1192
1193 /* If VAL1 is a higher address than VAL2, return +1. */
1194 if (operand_less_p (val2, val1) == 1)
1195 return 1;
1196
1197 /* If VAL1 is different than VAL2, return +2.
1198 For integer constants we either have already returned -1 or 1
1199 or they are equivalent. We still might succeed in proving
1200 something about non-trivial operands. */
1201 if (TREE_CODE (val1) != INTEGER_CST
1202 || TREE_CODE (val2) != INTEGER_CST)
1203 {
1204 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1205 if (t && integer_onep (t))
1206 return 2;
1207 }
1208
1209 return -2;
1210 }
1211 }
1212
1213 /* Compare values like compare_values_warnv, but treat comparisons of
1214 nonconstants which rely on undefined overflow as incomparable. */
1215
1216 static int
1217 compare_values (tree val1, tree val2)
1218 {
1219 bool sop;
1220 int ret;
1221
1222 sop = false;
1223 ret = compare_values_warnv (val1, val2, &sop);
1224 if (sop
1225 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1226 ret = -2;
1227 return ret;
1228 }
1229
1230
1231 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
1232 0 if VAL is not inside VR,
1233 -2 if we cannot tell either way.
1234
1235 FIXME, the current semantics of this functions are a bit quirky
1236 when taken in the context of VRP. In here we do not care
1237 about VR's type. If VR is the anti-range ~[3, 5] the call
1238 value_inside_range (4, VR) will return 1.
1239
1240 This is counter-intuitive in a strict sense, but the callers
1241 currently expect this. They are calling the function
1242 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
1243 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
1244 themselves.
1245
1246 This also applies to value_ranges_intersect_p and
1247 range_includes_zero_p. The semantics of VR_RANGE and
1248 VR_ANTI_RANGE should be encoded here, but that also means
1249 adapting the users of these functions to the new semantics.
1250
1251 Benchmark compile/20001226-1.c compilation time after changing this
1252 function. */
1253
1254 static inline int
1255 value_inside_range (tree val, value_range_t * vr)
1256 {
1257 int cmp1, cmp2;
1258
1259 cmp1 = operand_less_p (val, vr->min);
1260 if (cmp1 == -2)
1261 return -2;
1262 if (cmp1 == 1)
1263 return 0;
1264
1265 cmp2 = operand_less_p (vr->max, val);
1266 if (cmp2 == -2)
1267 return -2;
1268
1269 return !cmp2;
1270 }
1271
1272
1273 /* Return true if value ranges VR0 and VR1 have a non-empty
1274 intersection.
1275
1276 Benchmark compile/20001226-1.c compilation time after changing this
1277 function.
1278 */
1279
1280 static inline bool
1281 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1282 {
1283 /* The value ranges do not intersect if the maximum of the first range is
1284 less than the minimum of the second range or vice versa.
1285 When those relations are unknown, we can't do any better. */
1286 if (operand_less_p (vr0->max, vr1->min) != 0)
1287 return false;
1288 if (operand_less_p (vr1->max, vr0->min) != 0)
1289 return false;
1290 return true;
1291 }
1292
1293
1294 /* Return true if VR includes the value zero, false otherwise. FIXME,
1295 currently this will return false for an anti-range like ~[-4, 3].
1296 This will be wrong when the semantics of value_inside_range are
1297 modified (currently the users of this function expect these
1298 semantics). */
1299
1300 static inline bool
1301 range_includes_zero_p (value_range_t *vr)
1302 {
1303 tree zero;
1304
1305 gcc_assert (vr->type != VR_UNDEFINED
1306 && vr->type != VR_VARYING
1307 && !symbolic_range_p (vr));
1308
1309 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1310 return (value_inside_range (zero, vr) == 1);
1311 }
1312
1313 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1314 false otherwise or if no value range information is available. */
1315
1316 bool
1317 ssa_name_nonnegative_p (const_tree t)
1318 {
1319 value_range_t *vr = get_value_range (t);
1320
1321 if (!vr)
1322 return false;
1323
1324 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1325 which would return a useful value should be encoded as a VR_RANGE. */
1326 if (vr->type == VR_RANGE)
1327 {
1328 int result = compare_values (vr->min, integer_zero_node);
1329
1330 return (result == 0 || result == 1);
1331 }
1332 return false;
1333 }
1334
1335 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
1336 false otherwise or if no value range information is available. */
1337
1338 bool
1339 ssa_name_nonzero_p (const_tree t)
1340 {
1341 value_range_t *vr = get_value_range (t);
1342
1343 if (!vr)
1344 return false;
1345
1346 /* A VR_RANGE which does not include zero is a nonzero value. */
1347 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
1348 return ! range_includes_zero_p (vr);
1349
1350 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
1351 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
1352 return range_includes_zero_p (vr);
1353
1354 return false;
1355 }
1356
1357 /* If OP has a value range with a single constant value return that,
1358 otherwise return NULL_TREE. This returns OP itself if OP is a
1359 constant. */
1360
1361 static tree
1362 op_with_constant_singleton_value_range (tree op)
1363 {
1364 value_range_t *vr;
1365
1366 if (is_gimple_min_invariant (op))
1367 return op;
1368
1369 if (TREE_CODE (op) != SSA_NAME)
1370 return NULL_TREE;
1371
1372 vr = get_value_range (op);
1373 if (vr->type == VR_RANGE
1374 && operand_equal_p (vr->min, vr->max, 0)
1375 && is_gimple_min_invariant (vr->min))
1376 return vr->min;
1377
1378 return NULL_TREE;
1379 }
1380
1381
1382 /* Extract value range information from an ASSERT_EXPR EXPR and store
1383 it in *VR_P. */
1384
1385 static void
1386 extract_range_from_assert (value_range_t *vr_p, tree expr)
1387 {
1388 tree var, cond, limit, min, max, type;
1389 value_range_t *var_vr, *limit_vr;
1390 enum tree_code cond_code;
1391
1392 var = ASSERT_EXPR_VAR (expr);
1393 cond = ASSERT_EXPR_COND (expr);
1394
1395 gcc_assert (COMPARISON_CLASS_P (cond));
1396
1397 /* Find VAR in the ASSERT_EXPR conditional. */
1398 if (var == TREE_OPERAND (cond, 0)
1399 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1400 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1401 {
1402 /* If the predicate is of the form VAR COMP LIMIT, then we just
1403 take LIMIT from the RHS and use the same comparison code. */
1404 cond_code = TREE_CODE (cond);
1405 limit = TREE_OPERAND (cond, 1);
1406 cond = TREE_OPERAND (cond, 0);
1407 }
1408 else
1409 {
1410 /* If the predicate is of the form LIMIT COMP VAR, then we need
1411 to flip around the comparison code to create the proper range
1412 for VAR. */
1413 cond_code = swap_tree_comparison (TREE_CODE (cond));
1414 limit = TREE_OPERAND (cond, 0);
1415 cond = TREE_OPERAND (cond, 1);
1416 }
1417
1418 limit = avoid_overflow_infinity (limit);
1419
1420 type = TREE_TYPE (limit);
1421 gcc_assert (limit != var);
1422
1423 /* For pointer arithmetic, we only keep track of pointer equality
1424 and inequality. */
1425 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1426 {
1427 set_value_range_to_varying (vr_p);
1428 return;
1429 }
1430
1431 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1432 try to use LIMIT's range to avoid creating symbolic ranges
1433 unnecessarily. */
1434 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1435
1436 /* LIMIT's range is only interesting if it has any useful information. */
1437 if (limit_vr
1438 && (limit_vr->type == VR_UNDEFINED
1439 || limit_vr->type == VR_VARYING
1440 || symbolic_range_p (limit_vr)))
1441 limit_vr = NULL;
1442
1443 /* Initially, the new range has the same set of equivalences of
1444 VAR's range. This will be revised before returning the final
1445 value. Since assertions may be chained via mutually exclusive
1446 predicates, we will need to trim the set of equivalences before
1447 we are done. */
1448 gcc_assert (vr_p->equiv == NULL);
1449 add_equivalence (&vr_p->equiv, var);
1450
1451 /* Extract a new range based on the asserted comparison for VAR and
1452 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1453 will only use it for equality comparisons (EQ_EXPR). For any
1454 other kind of assertion, we cannot derive a range from LIMIT's
1455 anti-range that can be used to describe the new range. For
1456 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1457 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1458 no single range for x_2 that could describe LE_EXPR, so we might
1459 as well build the range [b_4, +INF] for it.
1460 One special case we handle is extracting a range from a
1461 range test encoded as (unsigned)var + CST <= limit. */
1462 if (TREE_CODE (cond) == NOP_EXPR
1463 || TREE_CODE (cond) == PLUS_EXPR)
1464 {
1465 if (TREE_CODE (cond) == PLUS_EXPR)
1466 {
1467 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1468 TREE_OPERAND (cond, 1));
1469 max = int_const_binop (PLUS_EXPR, limit, min, 0);
1470 cond = TREE_OPERAND (cond, 0);
1471 }
1472 else
1473 {
1474 min = build_int_cst (TREE_TYPE (var), 0);
1475 max = limit;
1476 }
1477
1478 /* Make sure to not set TREE_OVERFLOW on the final type
1479 conversion. We are willingly interpreting large positive
1480 unsigned values as negative singed values here. */
1481 min = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (min),
1482 TREE_INT_CST_HIGH (min), 0, false);
1483 max = force_fit_type_double (TREE_TYPE (var), TREE_INT_CST_LOW (max),
1484 TREE_INT_CST_HIGH (max), 0, false);
1485
1486 /* We can transform a max, min range to an anti-range or
1487 vice-versa. Use set_and_canonicalize_value_range which does
1488 this for us. */
1489 if (cond_code == LE_EXPR)
1490 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1491 min, max, vr_p->equiv);
1492 else if (cond_code == GT_EXPR)
1493 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1494 min, max, vr_p->equiv);
1495 else
1496 gcc_unreachable ();
1497 }
1498 else if (cond_code == EQ_EXPR)
1499 {
1500 enum value_range_type range_type;
1501
1502 if (limit_vr)
1503 {
1504 range_type = limit_vr->type;
1505 min = limit_vr->min;
1506 max = limit_vr->max;
1507 }
1508 else
1509 {
1510 range_type = VR_RANGE;
1511 min = limit;
1512 max = limit;
1513 }
1514
1515 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1516
1517 /* When asserting the equality VAR == LIMIT and LIMIT is another
1518 SSA name, the new range will also inherit the equivalence set
1519 from LIMIT. */
1520 if (TREE_CODE (limit) == SSA_NAME)
1521 add_equivalence (&vr_p->equiv, limit);
1522 }
1523 else if (cond_code == NE_EXPR)
1524 {
1525 /* As described above, when LIMIT's range is an anti-range and
1526 this assertion is an inequality (NE_EXPR), then we cannot
1527 derive anything from the anti-range. For instance, if
1528 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1529 not imply that VAR's range is [0, 0]. So, in the case of
1530 anti-ranges, we just assert the inequality using LIMIT and
1531 not its anti-range.
1532
1533 If LIMIT_VR is a range, we can only use it to build a new
1534 anti-range if LIMIT_VR is a single-valued range. For
1535 instance, if LIMIT_VR is [0, 1], the predicate
1536 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1537 Rather, it means that for value 0 VAR should be ~[0, 0]
1538 and for value 1, VAR should be ~[1, 1]. We cannot
1539 represent these ranges.
1540
1541 The only situation in which we can build a valid
1542 anti-range is when LIMIT_VR is a single-valued range
1543 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1544 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1545 if (limit_vr
1546 && limit_vr->type == VR_RANGE
1547 && compare_values (limit_vr->min, limit_vr->max) == 0)
1548 {
1549 min = limit_vr->min;
1550 max = limit_vr->max;
1551 }
1552 else
1553 {
1554 /* In any other case, we cannot use LIMIT's range to build a
1555 valid anti-range. */
1556 min = max = limit;
1557 }
1558
1559 /* If MIN and MAX cover the whole range for their type, then
1560 just use the original LIMIT. */
1561 if (INTEGRAL_TYPE_P (type)
1562 && vrp_val_is_min (min)
1563 && vrp_val_is_max (max))
1564 min = max = limit;
1565
1566 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1567 }
1568 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1569 {
1570 min = TYPE_MIN_VALUE (type);
1571
1572 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1573 max = limit;
1574 else
1575 {
1576 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1577 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1578 LT_EXPR. */
1579 max = limit_vr->max;
1580 }
1581
1582 /* If the maximum value forces us to be out of bounds, simply punt.
1583 It would be pointless to try and do anything more since this
1584 all should be optimized away above us. */
1585 if ((cond_code == LT_EXPR
1586 && compare_values (max, min) == 0)
1587 || is_overflow_infinity (max))
1588 set_value_range_to_varying (vr_p);
1589 else
1590 {
1591 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1592 if (cond_code == LT_EXPR)
1593 {
1594 tree one = build_int_cst (type, 1);
1595 max = fold_build2 (MINUS_EXPR, type, max, one);
1596 if (EXPR_P (max))
1597 TREE_NO_WARNING (max) = 1;
1598 }
1599
1600 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1601 }
1602 }
1603 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1604 {
1605 max = TYPE_MAX_VALUE (type);
1606
1607 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1608 min = limit;
1609 else
1610 {
1611 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1612 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1613 GT_EXPR. */
1614 min = limit_vr->min;
1615 }
1616
1617 /* If the minimum value forces us to be out of bounds, simply punt.
1618 It would be pointless to try and do anything more since this
1619 all should be optimized away above us. */
1620 if ((cond_code == GT_EXPR
1621 && compare_values (min, max) == 0)
1622 || is_overflow_infinity (min))
1623 set_value_range_to_varying (vr_p);
1624 else
1625 {
1626 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1627 if (cond_code == GT_EXPR)
1628 {
1629 tree one = build_int_cst (type, 1);
1630 min = fold_build2 (PLUS_EXPR, type, min, one);
1631 if (EXPR_P (min))
1632 TREE_NO_WARNING (min) = 1;
1633 }
1634
1635 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1636 }
1637 }
1638 else
1639 gcc_unreachable ();
1640
1641 /* If VAR already had a known range, it may happen that the new
1642 range we have computed and VAR's range are not compatible. For
1643 instance,
1644
1645 if (p_5 == NULL)
1646 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1647 x_7 = p_6->fld;
1648 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1649
1650 While the above comes from a faulty program, it will cause an ICE
1651 later because p_8 and p_6 will have incompatible ranges and at
1652 the same time will be considered equivalent. A similar situation
1653 would arise from
1654
1655 if (i_5 > 10)
1656 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1657 if (i_5 < 5)
1658 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1659
1660 Again i_6 and i_7 will have incompatible ranges. It would be
1661 pointless to try and do anything with i_7's range because
1662 anything dominated by 'if (i_5 < 5)' will be optimized away.
1663 Note, due to the wa in which simulation proceeds, the statement
1664 i_7 = ASSERT_EXPR <...> we would never be visited because the
1665 conditional 'if (i_5 < 5)' always evaluates to false. However,
1666 this extra check does not hurt and may protect against future
1667 changes to VRP that may get into a situation similar to the
1668 NULL pointer dereference example.
1669
1670 Note that these compatibility tests are only needed when dealing
1671 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1672 are both anti-ranges, they will always be compatible, because two
1673 anti-ranges will always have a non-empty intersection. */
1674
1675 var_vr = get_value_range (var);
1676
1677 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1678 ranges or anti-ranges. */
1679 if (vr_p->type == VR_VARYING
1680 || vr_p->type == VR_UNDEFINED
1681 || var_vr->type == VR_VARYING
1682 || var_vr->type == VR_UNDEFINED
1683 || symbolic_range_p (vr_p)
1684 || symbolic_range_p (var_vr))
1685 return;
1686
1687 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1688 {
1689 /* If the two ranges have a non-empty intersection, we can
1690 refine the resulting range. Since the assert expression
1691 creates an equivalency and at the same time it asserts a
1692 predicate, we can take the intersection of the two ranges to
1693 get better precision. */
1694 if (value_ranges_intersect_p (var_vr, vr_p))
1695 {
1696 /* Use the larger of the two minimums. */
1697 if (compare_values (vr_p->min, var_vr->min) == -1)
1698 min = var_vr->min;
1699 else
1700 min = vr_p->min;
1701
1702 /* Use the smaller of the two maximums. */
1703 if (compare_values (vr_p->max, var_vr->max) == 1)
1704 max = var_vr->max;
1705 else
1706 max = vr_p->max;
1707
1708 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1709 }
1710 else
1711 {
1712 /* The two ranges do not intersect, set the new range to
1713 VARYING, because we will not be able to do anything
1714 meaningful with it. */
1715 set_value_range_to_varying (vr_p);
1716 }
1717 }
1718 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1719 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1720 {
1721 /* A range and an anti-range will cancel each other only if
1722 their ends are the same. For instance, in the example above,
1723 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1724 so VR_P should be set to VR_VARYING. */
1725 if (compare_values (var_vr->min, vr_p->min) == 0
1726 && compare_values (var_vr->max, vr_p->max) == 0)
1727 set_value_range_to_varying (vr_p);
1728 else
1729 {
1730 tree min, max, anti_min, anti_max, real_min, real_max;
1731 int cmp;
1732
1733 /* We want to compute the logical AND of the two ranges;
1734 there are three cases to consider.
1735
1736
1737 1. The VR_ANTI_RANGE range is completely within the
1738 VR_RANGE and the endpoints of the ranges are
1739 different. In that case the resulting range
1740 should be whichever range is more precise.
1741 Typically that will be the VR_RANGE.
1742
1743 2. The VR_ANTI_RANGE is completely disjoint from
1744 the VR_RANGE. In this case the resulting range
1745 should be the VR_RANGE.
1746
1747 3. There is some overlap between the VR_ANTI_RANGE
1748 and the VR_RANGE.
1749
1750 3a. If the high limit of the VR_ANTI_RANGE resides
1751 within the VR_RANGE, then the result is a new
1752 VR_RANGE starting at the high limit of the
1753 VR_ANTI_RANGE + 1 and extending to the
1754 high limit of the original VR_RANGE.
1755
1756 3b. If the low limit of the VR_ANTI_RANGE resides
1757 within the VR_RANGE, then the result is a new
1758 VR_RANGE starting at the low limit of the original
1759 VR_RANGE and extending to the low limit of the
1760 VR_ANTI_RANGE - 1. */
1761 if (vr_p->type == VR_ANTI_RANGE)
1762 {
1763 anti_min = vr_p->min;
1764 anti_max = vr_p->max;
1765 real_min = var_vr->min;
1766 real_max = var_vr->max;
1767 }
1768 else
1769 {
1770 anti_min = var_vr->min;
1771 anti_max = var_vr->max;
1772 real_min = vr_p->min;
1773 real_max = vr_p->max;
1774 }
1775
1776
1777 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1778 not including any endpoints. */
1779 if (compare_values (anti_max, real_max) == -1
1780 && compare_values (anti_min, real_min) == 1)
1781 {
1782 /* If the range is covering the whole valid range of
1783 the type keep the anti-range. */
1784 if (!vrp_val_is_min (real_min)
1785 || !vrp_val_is_max (real_max))
1786 set_value_range (vr_p, VR_RANGE, real_min,
1787 real_max, vr_p->equiv);
1788 }
1789 /* Case 2, VR_ANTI_RANGE completely disjoint from
1790 VR_RANGE. */
1791 else if (compare_values (anti_min, real_max) == 1
1792 || compare_values (anti_max, real_min) == -1)
1793 {
1794 set_value_range (vr_p, VR_RANGE, real_min,
1795 real_max, vr_p->equiv);
1796 }
1797 /* Case 3a, the anti-range extends into the low
1798 part of the real range. Thus creating a new
1799 low for the real range. */
1800 else if (((cmp = compare_values (anti_max, real_min)) == 1
1801 || cmp == 0)
1802 && compare_values (anti_max, real_max) == -1)
1803 {
1804 gcc_assert (!is_positive_overflow_infinity (anti_max));
1805 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1806 && vrp_val_is_max (anti_max))
1807 {
1808 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1809 {
1810 set_value_range_to_varying (vr_p);
1811 return;
1812 }
1813 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1814 }
1815 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1816 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1817 anti_max,
1818 build_int_cst (TREE_TYPE (var_vr->min), 1));
1819 else
1820 min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1821 anti_max, size_int (1));
1822 max = real_max;
1823 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1824 }
1825 /* Case 3b, the anti-range extends into the high
1826 part of the real range. Thus creating a new
1827 higher for the real range. */
1828 else if (compare_values (anti_min, real_min) == 1
1829 && ((cmp = compare_values (anti_min, real_max)) == -1
1830 || cmp == 0))
1831 {
1832 gcc_assert (!is_negative_overflow_infinity (anti_min));
1833 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1834 && vrp_val_is_min (anti_min))
1835 {
1836 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1837 {
1838 set_value_range_to_varying (vr_p);
1839 return;
1840 }
1841 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1842 }
1843 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1844 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1845 anti_min,
1846 build_int_cst (TREE_TYPE (var_vr->min), 1));
1847 else
1848 max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1849 anti_min,
1850 size_int (-1));
1851 min = real_min;
1852 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1853 }
1854 }
1855 }
1856 }
1857
1858
1859 /* Extract range information from SSA name VAR and store it in VR. If
1860 VAR has an interesting range, use it. Otherwise, create the
1861 range [VAR, VAR] and return it. This is useful in situations where
1862 we may have conditionals testing values of VARYING names. For
1863 instance,
1864
1865 x_3 = y_5;
1866 if (x_3 > y_5)
1867 ...
1868
1869 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1870 always false. */
1871
1872 static void
1873 extract_range_from_ssa_name (value_range_t *vr, tree var)
1874 {
1875 value_range_t *var_vr = get_value_range (var);
1876
1877 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1878 copy_value_range (vr, var_vr);
1879 else
1880 set_value_range (vr, VR_RANGE, var, var, NULL);
1881
1882 add_equivalence (&vr->equiv, var);
1883 }
1884
1885
1886 /* Wrapper around int_const_binop. If the operation overflows and we
1887 are not using wrapping arithmetic, then adjust the result to be
1888 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1889 NULL_TREE if we need to use an overflow infinity representation but
1890 the type does not support it. */
1891
1892 static tree
1893 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1894 {
1895 tree res;
1896
1897 res = int_const_binop (code, val1, val2, 0);
1898
1899 /* If we are not using wrapping arithmetic, operate symbolically
1900 on -INF and +INF. */
1901 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1902 {
1903 int checkz = compare_values (res, val1);
1904 bool overflow = false;
1905
1906 /* Ensure that res = val1 [+*] val2 >= val1
1907 or that res = val1 - val2 <= val1. */
1908 if ((code == PLUS_EXPR
1909 && !(checkz == 1 || checkz == 0))
1910 || (code == MINUS_EXPR
1911 && !(checkz == 0 || checkz == -1)))
1912 {
1913 overflow = true;
1914 }
1915 /* Checking for multiplication overflow is done by dividing the
1916 output of the multiplication by the first input of the
1917 multiplication. If the result of that division operation is
1918 not equal to the second input of the multiplication, then the
1919 multiplication overflowed. */
1920 else if (code == MULT_EXPR && !integer_zerop (val1))
1921 {
1922 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1923 res,
1924 val1, 0);
1925 int check = compare_values (tmp, val2);
1926
1927 if (check != 0)
1928 overflow = true;
1929 }
1930
1931 if (overflow)
1932 {
1933 res = copy_node (res);
1934 TREE_OVERFLOW (res) = 1;
1935 }
1936
1937 }
1938 else if ((TREE_OVERFLOW (res)
1939 && !TREE_OVERFLOW (val1)
1940 && !TREE_OVERFLOW (val2))
1941 || is_overflow_infinity (val1)
1942 || is_overflow_infinity (val2))
1943 {
1944 /* If the operation overflowed but neither VAL1 nor VAL2 are
1945 overflown, return -INF or +INF depending on the operation
1946 and the combination of signs of the operands. */
1947 int sgn1 = tree_int_cst_sgn (val1);
1948 int sgn2 = tree_int_cst_sgn (val2);
1949
1950 if (needs_overflow_infinity (TREE_TYPE (res))
1951 && !supports_overflow_infinity (TREE_TYPE (res)))
1952 return NULL_TREE;
1953
1954 /* We have to punt on adding infinities of different signs,
1955 since we can't tell what the sign of the result should be.
1956 Likewise for subtracting infinities of the same sign. */
1957 if (((code == PLUS_EXPR && sgn1 != sgn2)
1958 || (code == MINUS_EXPR && sgn1 == sgn2))
1959 && is_overflow_infinity (val1)
1960 && is_overflow_infinity (val2))
1961 return NULL_TREE;
1962
1963 /* Don't try to handle division or shifting of infinities. */
1964 if ((code == TRUNC_DIV_EXPR
1965 || code == FLOOR_DIV_EXPR
1966 || code == CEIL_DIV_EXPR
1967 || code == EXACT_DIV_EXPR
1968 || code == ROUND_DIV_EXPR
1969 || code == RSHIFT_EXPR)
1970 && (is_overflow_infinity (val1)
1971 || is_overflow_infinity (val2)))
1972 return NULL_TREE;
1973
1974 /* Notice that we only need to handle the restricted set of
1975 operations handled by extract_range_from_binary_expr.
1976 Among them, only multiplication, addition and subtraction
1977 can yield overflow without overflown operands because we
1978 are working with integral types only... except in the
1979 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1980 for division too. */
1981
1982 /* For multiplication, the sign of the overflow is given
1983 by the comparison of the signs of the operands. */
1984 if ((code == MULT_EXPR && sgn1 == sgn2)
1985 /* For addition, the operands must be of the same sign
1986 to yield an overflow. Its sign is therefore that
1987 of one of the operands, for example the first. For
1988 infinite operands X + -INF is negative, not positive. */
1989 || (code == PLUS_EXPR
1990 && (sgn1 >= 0
1991 ? !is_negative_overflow_infinity (val2)
1992 : is_positive_overflow_infinity (val2)))
1993 /* For subtraction, non-infinite operands must be of
1994 different signs to yield an overflow. Its sign is
1995 therefore that of the first operand or the opposite of
1996 that of the second operand. A first operand of 0 counts
1997 as positive here, for the corner case 0 - (-INF), which
1998 overflows, but must yield +INF. For infinite operands 0
1999 - INF is negative, not positive. */
2000 || (code == MINUS_EXPR
2001 && (sgn1 >= 0
2002 ? !is_positive_overflow_infinity (val2)
2003 : is_negative_overflow_infinity (val2)))
2004 /* We only get in here with positive shift count, so the
2005 overflow direction is the same as the sign of val1.
2006 Actually rshift does not overflow at all, but we only
2007 handle the case of shifting overflowed -INF and +INF. */
2008 || (code == RSHIFT_EXPR
2009 && sgn1 >= 0)
2010 /* For division, the only case is -INF / -1 = +INF. */
2011 || code == TRUNC_DIV_EXPR
2012 || code == FLOOR_DIV_EXPR
2013 || code == CEIL_DIV_EXPR
2014 || code == EXACT_DIV_EXPR
2015 || code == ROUND_DIV_EXPR)
2016 return (needs_overflow_infinity (TREE_TYPE (res))
2017 ? positive_overflow_infinity (TREE_TYPE (res))
2018 : TYPE_MAX_VALUE (TREE_TYPE (res)));
2019 else
2020 return (needs_overflow_infinity (TREE_TYPE (res))
2021 ? negative_overflow_infinity (TREE_TYPE (res))
2022 : TYPE_MIN_VALUE (TREE_TYPE (res)));
2023 }
2024
2025 return res;
2026 }
2027
2028
2029 /* Extract range information from a binary expression EXPR based on
2030 the ranges of each of its operands and the expression code. */
2031
2032 static void
2033 extract_range_from_binary_expr (value_range_t *vr,
2034 enum tree_code code,
2035 tree expr_type, tree op0, tree op1)
2036 {
2037 enum value_range_type type;
2038 tree min, max;
2039 int cmp;
2040 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2041 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2042
2043 /* Not all binary expressions can be applied to ranges in a
2044 meaningful way. Handle only arithmetic operations. */
2045 if (code != PLUS_EXPR
2046 && code != MINUS_EXPR
2047 && code != POINTER_PLUS_EXPR
2048 && code != MULT_EXPR
2049 && code != TRUNC_DIV_EXPR
2050 && code != FLOOR_DIV_EXPR
2051 && code != CEIL_DIV_EXPR
2052 && code != EXACT_DIV_EXPR
2053 && code != ROUND_DIV_EXPR
2054 && code != RSHIFT_EXPR
2055 && code != MIN_EXPR
2056 && code != MAX_EXPR
2057 && code != BIT_AND_EXPR
2058 && code != BIT_IOR_EXPR
2059 && code != TRUTH_AND_EXPR
2060 && code != TRUTH_OR_EXPR)
2061 {
2062 /* We can still do constant propagation here. */
2063 tree const_op0 = op_with_constant_singleton_value_range (op0);
2064 tree const_op1 = op_with_constant_singleton_value_range (op1);
2065 if (const_op0 || const_op1)
2066 {
2067 tree tem = fold_binary (code, expr_type,
2068 const_op0 ? const_op0 : op0,
2069 const_op1 ? const_op1 : op1);
2070 if (tem
2071 && is_gimple_min_invariant (tem)
2072 && !is_overflow_infinity (tem))
2073 {
2074 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2075 return;
2076 }
2077 }
2078 set_value_range_to_varying (vr);
2079 return;
2080 }
2081
2082 /* Get value ranges for each operand. For constant operands, create
2083 a new value range with the operand to simplify processing. */
2084 if (TREE_CODE (op0) == SSA_NAME)
2085 vr0 = *(get_value_range (op0));
2086 else if (is_gimple_min_invariant (op0))
2087 set_value_range_to_value (&vr0, op0, NULL);
2088 else
2089 set_value_range_to_varying (&vr0);
2090
2091 if (TREE_CODE (op1) == SSA_NAME)
2092 vr1 = *(get_value_range (op1));
2093 else if (is_gimple_min_invariant (op1))
2094 set_value_range_to_value (&vr1, op1, NULL);
2095 else
2096 set_value_range_to_varying (&vr1);
2097
2098 /* If either range is UNDEFINED, so is the result. */
2099 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
2100 {
2101 set_value_range_to_undefined (vr);
2102 return;
2103 }
2104
2105 /* The type of the resulting value range defaults to VR0.TYPE. */
2106 type = vr0.type;
2107
2108 /* Refuse to operate on VARYING ranges, ranges of different kinds
2109 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2110 because we may be able to derive a useful range even if one of
2111 the operands is VR_VARYING or symbolic range. TODO, we may be
2112 able to derive anti-ranges in some cases. */
2113 if (code != BIT_AND_EXPR
2114 && code != TRUTH_AND_EXPR
2115 && code != TRUTH_OR_EXPR
2116 && (vr0.type == VR_VARYING
2117 || vr1.type == VR_VARYING
2118 || vr0.type != vr1.type
2119 || symbolic_range_p (&vr0)
2120 || symbolic_range_p (&vr1)))
2121 {
2122 set_value_range_to_varying (vr);
2123 return;
2124 }
2125
2126 /* Now evaluate the expression to determine the new range. */
2127 if (POINTER_TYPE_P (expr_type)
2128 || POINTER_TYPE_P (TREE_TYPE (op0))
2129 || POINTER_TYPE_P (TREE_TYPE (op1)))
2130 {
2131 if (code == MIN_EXPR || code == MAX_EXPR)
2132 {
2133 /* For MIN/MAX expressions with pointers, we only care about
2134 nullness, if both are non null, then the result is nonnull.
2135 If both are null, then the result is null. Otherwise they
2136 are varying. */
2137 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2138 set_value_range_to_nonnull (vr, expr_type);
2139 else if (range_is_null (&vr0) && range_is_null (&vr1))
2140 set_value_range_to_null (vr, expr_type);
2141 else
2142 set_value_range_to_varying (vr);
2143
2144 return;
2145 }
2146 gcc_assert (code == POINTER_PLUS_EXPR);
2147 /* For pointer types, we are really only interested in asserting
2148 whether the expression evaluates to non-NULL. */
2149 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2150 set_value_range_to_nonnull (vr, expr_type);
2151 else if (range_is_null (&vr0) && range_is_null (&vr1))
2152 set_value_range_to_null (vr, expr_type);
2153 else
2154 set_value_range_to_varying (vr);
2155
2156 return;
2157 }
2158
2159 /* For integer ranges, apply the operation to each end of the
2160 range and see what we end up with. */
2161 if (code == TRUTH_AND_EXPR
2162 || code == TRUTH_OR_EXPR)
2163 {
2164 /* If one of the operands is zero, we know that the whole
2165 expression evaluates zero. */
2166 if (code == TRUTH_AND_EXPR
2167 && ((vr0.type == VR_RANGE
2168 && integer_zerop (vr0.min)
2169 && integer_zerop (vr0.max))
2170 || (vr1.type == VR_RANGE
2171 && integer_zerop (vr1.min)
2172 && integer_zerop (vr1.max))))
2173 {
2174 type = VR_RANGE;
2175 min = max = build_int_cst (expr_type, 0);
2176 }
2177 /* If one of the operands is one, we know that the whole
2178 expression evaluates one. */
2179 else if (code == TRUTH_OR_EXPR
2180 && ((vr0.type == VR_RANGE
2181 && integer_onep (vr0.min)
2182 && integer_onep (vr0.max))
2183 || (vr1.type == VR_RANGE
2184 && integer_onep (vr1.min)
2185 && integer_onep (vr1.max))))
2186 {
2187 type = VR_RANGE;
2188 min = max = build_int_cst (expr_type, 1);
2189 }
2190 else if (vr0.type != VR_VARYING
2191 && vr1.type != VR_VARYING
2192 && vr0.type == vr1.type
2193 && !symbolic_range_p (&vr0)
2194 && !overflow_infinity_range_p (&vr0)
2195 && !symbolic_range_p (&vr1)
2196 && !overflow_infinity_range_p (&vr1))
2197 {
2198 /* Boolean expressions cannot be folded with int_const_binop. */
2199 min = fold_binary (code, expr_type, vr0.min, vr1.min);
2200 max = fold_binary (code, expr_type, vr0.max, vr1.max);
2201 }
2202 else
2203 {
2204 /* The result of a TRUTH_*_EXPR is always true or false. */
2205 set_value_range_to_truthvalue (vr, expr_type);
2206 return;
2207 }
2208 }
2209 else if (code == PLUS_EXPR
2210 || code == MIN_EXPR
2211 || code == MAX_EXPR)
2212 {
2213 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
2214 VR_VARYING. It would take more effort to compute a precise
2215 range for such a case. For example, if we have op0 == 1 and
2216 op1 == -1 with their ranges both being ~[0,0], we would have
2217 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
2218 Note that we are guaranteed to have vr0.type == vr1.type at
2219 this point. */
2220 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
2221 {
2222 set_value_range_to_varying (vr);
2223 return;
2224 }
2225
2226 /* For operations that make the resulting range directly
2227 proportional to the original ranges, apply the operation to
2228 the same end of each range. */
2229 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2230 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2231 }
2232 else if (code == MULT_EXPR
2233 || code == TRUNC_DIV_EXPR
2234 || code == FLOOR_DIV_EXPR
2235 || code == CEIL_DIV_EXPR
2236 || code == EXACT_DIV_EXPR
2237 || code == ROUND_DIV_EXPR
2238 || code == RSHIFT_EXPR)
2239 {
2240 tree val[4];
2241 size_t i;
2242 bool sop;
2243
2244 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2245 drop to VR_VARYING. It would take more effort to compute a
2246 precise range for such a case. For example, if we have
2247 op0 == 65536 and op1 == 65536 with their ranges both being
2248 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2249 we cannot claim that the product is in ~[0,0]. Note that we
2250 are guaranteed to have vr0.type == vr1.type at this
2251 point. */
2252 if (code == MULT_EXPR
2253 && vr0.type == VR_ANTI_RANGE
2254 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
2255 {
2256 set_value_range_to_varying (vr);
2257 return;
2258 }
2259
2260 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2261 then drop to VR_VARYING. Outside of this range we get undefined
2262 behavior from the shift operation. We cannot even trust
2263 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2264 shifts, and the operation at the tree level may be widened. */
2265 if (code == RSHIFT_EXPR)
2266 {
2267 if (vr1.type == VR_ANTI_RANGE
2268 || !vrp_expr_computes_nonnegative (op1, &sop)
2269 || (operand_less_p
2270 (build_int_cst (TREE_TYPE (vr1.max),
2271 TYPE_PRECISION (expr_type) - 1),
2272 vr1.max) != 0))
2273 {
2274 set_value_range_to_varying (vr);
2275 return;
2276 }
2277 }
2278
2279 /* Multiplications and divisions are a bit tricky to handle,
2280 depending on the mix of signs we have in the two ranges, we
2281 need to operate on different values to get the minimum and
2282 maximum values for the new range. One approach is to figure
2283 out all the variations of range combinations and do the
2284 operations.
2285
2286 However, this involves several calls to compare_values and it
2287 is pretty convoluted. It's simpler to do the 4 operations
2288 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2289 MAX1) and then figure the smallest and largest values to form
2290 the new range. */
2291
2292 /* Divisions by zero result in a VARYING value. */
2293 else if (code != MULT_EXPR
2294 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
2295 {
2296 set_value_range_to_varying (vr);
2297 return;
2298 }
2299
2300 /* Compute the 4 cross operations. */
2301 sop = false;
2302 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
2303 if (val[0] == NULL_TREE)
2304 sop = true;
2305
2306 if (vr1.max == vr1.min)
2307 val[1] = NULL_TREE;
2308 else
2309 {
2310 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
2311 if (val[1] == NULL_TREE)
2312 sop = true;
2313 }
2314
2315 if (vr0.max == vr0.min)
2316 val[2] = NULL_TREE;
2317 else
2318 {
2319 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
2320 if (val[2] == NULL_TREE)
2321 sop = true;
2322 }
2323
2324 if (vr0.min == vr0.max || vr1.min == vr1.max)
2325 val[3] = NULL_TREE;
2326 else
2327 {
2328 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
2329 if (val[3] == NULL_TREE)
2330 sop = true;
2331 }
2332
2333 if (sop)
2334 {
2335 set_value_range_to_varying (vr);
2336 return;
2337 }
2338
2339 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2340 of VAL[i]. */
2341 min = val[0];
2342 max = val[0];
2343 for (i = 1; i < 4; i++)
2344 {
2345 if (!is_gimple_min_invariant (min)
2346 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2347 || !is_gimple_min_invariant (max)
2348 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2349 break;
2350
2351 if (val[i])
2352 {
2353 if (!is_gimple_min_invariant (val[i])
2354 || (TREE_OVERFLOW (val[i])
2355 && !is_overflow_infinity (val[i])))
2356 {
2357 /* If we found an overflowed value, set MIN and MAX
2358 to it so that we set the resulting range to
2359 VARYING. */
2360 min = max = val[i];
2361 break;
2362 }
2363
2364 if (compare_values (val[i], min) == -1)
2365 min = val[i];
2366
2367 if (compare_values (val[i], max) == 1)
2368 max = val[i];
2369 }
2370 }
2371 }
2372 else if (code == MINUS_EXPR)
2373 {
2374 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2375 VR_VARYING. It would take more effort to compute a precise
2376 range for such a case. For example, if we have op0 == 1 and
2377 op1 == 1 with their ranges both being ~[0,0], we would have
2378 op0 - op1 == 0, so we cannot claim that the difference is in
2379 ~[0,0]. Note that we are guaranteed to have
2380 vr0.type == vr1.type at this point. */
2381 if (vr0.type == VR_ANTI_RANGE)
2382 {
2383 set_value_range_to_varying (vr);
2384 return;
2385 }
2386
2387 /* For MINUS_EXPR, apply the operation to the opposite ends of
2388 each range. */
2389 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2390 max = vrp_int_const_binop (code, vr0.max, vr1.min);
2391 }
2392 else if (code == BIT_AND_EXPR)
2393 {
2394 if (vr0.type == VR_RANGE
2395 && vr0.min == vr0.max
2396 && TREE_CODE (vr0.max) == INTEGER_CST
2397 && !TREE_OVERFLOW (vr0.max)
2398 && tree_int_cst_sgn (vr0.max) >= 0)
2399 {
2400 min = build_int_cst (expr_type, 0);
2401 max = vr0.max;
2402 }
2403 else if (vr1.type == VR_RANGE
2404 && vr1.min == vr1.max
2405 && TREE_CODE (vr1.max) == INTEGER_CST
2406 && !TREE_OVERFLOW (vr1.max)
2407 && tree_int_cst_sgn (vr1.max) >= 0)
2408 {
2409 type = VR_RANGE;
2410 min = build_int_cst (expr_type, 0);
2411 max = vr1.max;
2412 }
2413 else
2414 {
2415 set_value_range_to_varying (vr);
2416 return;
2417 }
2418 }
2419 else if (code == BIT_IOR_EXPR)
2420 {
2421 if (vr0.type == VR_RANGE
2422 && vr1.type == VR_RANGE
2423 && TREE_CODE (vr0.min) == INTEGER_CST
2424 && TREE_CODE (vr1.min) == INTEGER_CST
2425 && TREE_CODE (vr0.max) == INTEGER_CST
2426 && TREE_CODE (vr1.max) == INTEGER_CST
2427 && tree_int_cst_sgn (vr0.min) >= 0
2428 && tree_int_cst_sgn (vr1.min) >= 0)
2429 {
2430 double_int vr0_max = tree_to_double_int (vr0.max);
2431 double_int vr1_max = tree_to_double_int (vr1.max);
2432 double_int ior_max;
2433
2434 /* Set all bits to the right of the most significant one to 1.
2435 For example, [0, 4] | [4, 4] = [4, 7]. */
2436 ior_max.low = vr0_max.low | vr1_max.low;
2437 ior_max.high = vr0_max.high | vr1_max.high;
2438 if (ior_max.high != 0)
2439 {
2440 ior_max.low = ~0u;
2441 ior_max.high |= ((HOST_WIDE_INT) 1
2442 << floor_log2 (ior_max.high)) - 1;
2443 }
2444 else
2445 ior_max.low |= ((unsigned HOST_WIDE_INT) 1u
2446 << floor_log2 (ior_max.low)) - 1;
2447
2448 /* Both of these endpoints are conservative. */
2449 min = vrp_int_const_binop (MAX_EXPR, vr0.min, vr1.min);
2450 max = double_int_to_tree (expr_type, ior_max);
2451 }
2452 else
2453 {
2454 set_value_range_to_varying (vr);
2455 return;
2456 }
2457 }
2458 else
2459 gcc_unreachable ();
2460
2461 /* If either MIN or MAX overflowed, then set the resulting range to
2462 VARYING. But we do accept an overflow infinity
2463 representation. */
2464 if (min == NULL_TREE
2465 || !is_gimple_min_invariant (min)
2466 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2467 || max == NULL_TREE
2468 || !is_gimple_min_invariant (max)
2469 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2470 {
2471 set_value_range_to_varying (vr);
2472 return;
2473 }
2474
2475 /* We punt if:
2476 1) [-INF, +INF]
2477 2) [-INF, +-INF(OVF)]
2478 3) [+-INF(OVF), +INF]
2479 4) [+-INF(OVF), +-INF(OVF)]
2480 We learn nothing when we have INF and INF(OVF) on both sides.
2481 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2482 overflow. */
2483 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2484 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2485 {
2486 set_value_range_to_varying (vr);
2487 return;
2488 }
2489
2490 cmp = compare_values (min, max);
2491 if (cmp == -2 || cmp == 1)
2492 {
2493 /* If the new range has its limits swapped around (MIN > MAX),
2494 then the operation caused one of them to wrap around, mark
2495 the new range VARYING. */
2496 set_value_range_to_varying (vr);
2497 }
2498 else
2499 set_value_range (vr, type, min, max, NULL);
2500 }
2501
2502
2503 /* Extract range information from a unary expression EXPR based on
2504 the range of its operand and the expression code. */
2505
2506 static void
2507 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
2508 tree type, tree op0)
2509 {
2510 tree min, max;
2511 int cmp;
2512 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2513
2514 /* Refuse to operate on certain unary expressions for which we
2515 cannot easily determine a resulting range. */
2516 if (code == FIX_TRUNC_EXPR
2517 || code == FLOAT_EXPR
2518 || code == BIT_NOT_EXPR
2519 || code == CONJ_EXPR)
2520 {
2521 /* We can still do constant propagation here. */
2522 if ((op0 = op_with_constant_singleton_value_range (op0)) != NULL_TREE)
2523 {
2524 tree tem = fold_unary (code, type, op0);
2525 if (tem
2526 && is_gimple_min_invariant (tem)
2527 && !is_overflow_infinity (tem))
2528 {
2529 set_value_range (vr, VR_RANGE, tem, tem, NULL);
2530 return;
2531 }
2532 }
2533 set_value_range_to_varying (vr);
2534 return;
2535 }
2536
2537 /* Get value ranges for the operand. For constant operands, create
2538 a new value range with the operand to simplify processing. */
2539 if (TREE_CODE (op0) == SSA_NAME)
2540 vr0 = *(get_value_range (op0));
2541 else if (is_gimple_min_invariant (op0))
2542 set_value_range_to_value (&vr0, op0, NULL);
2543 else
2544 set_value_range_to_varying (&vr0);
2545
2546 /* If VR0 is UNDEFINED, so is the result. */
2547 if (vr0.type == VR_UNDEFINED)
2548 {
2549 set_value_range_to_undefined (vr);
2550 return;
2551 }
2552
2553 /* Refuse to operate on symbolic ranges, or if neither operand is
2554 a pointer or integral type. */
2555 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2556 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2557 || (vr0.type != VR_VARYING
2558 && symbolic_range_p (&vr0)))
2559 {
2560 set_value_range_to_varying (vr);
2561 return;
2562 }
2563
2564 /* If the expression involves pointers, we are only interested in
2565 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2566 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (TREE_TYPE (op0)))
2567 {
2568 bool sop;
2569
2570 sop = false;
2571 if (range_is_nonnull (&vr0)
2572 || (tree_unary_nonzero_warnv_p (code, type, op0, &sop)
2573 && !sop))
2574 set_value_range_to_nonnull (vr, type);
2575 else if (range_is_null (&vr0))
2576 set_value_range_to_null (vr, type);
2577 else
2578 set_value_range_to_varying (vr);
2579
2580 return;
2581 }
2582
2583 /* Handle unary expressions on integer ranges. */
2584 if (CONVERT_EXPR_CODE_P (code)
2585 && INTEGRAL_TYPE_P (type)
2586 && INTEGRAL_TYPE_P (TREE_TYPE (op0)))
2587 {
2588 tree inner_type = TREE_TYPE (op0);
2589 tree outer_type = type;
2590
2591 /* Always use base-types here. This is important for the
2592 correct signedness. */
2593 if (TREE_TYPE (inner_type))
2594 inner_type = TREE_TYPE (inner_type);
2595 if (TREE_TYPE (outer_type))
2596 outer_type = TREE_TYPE (outer_type);
2597
2598 /* If VR0 is varying and we increase the type precision, assume
2599 a full range for the following transformation. */
2600 if (vr0.type == VR_VARYING
2601 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
2602 {
2603 vr0.type = VR_RANGE;
2604 vr0.min = TYPE_MIN_VALUE (inner_type);
2605 vr0.max = TYPE_MAX_VALUE (inner_type);
2606 }
2607
2608 /* If VR0 is a constant range or anti-range and the conversion is
2609 not truncating we can convert the min and max values and
2610 canonicalize the resulting range. Otherwise we can do the
2611 conversion if the size of the range is less than what the
2612 precision of the target type can represent and the range is
2613 not an anti-range. */
2614 if ((vr0.type == VR_RANGE
2615 || vr0.type == VR_ANTI_RANGE)
2616 && TREE_CODE (vr0.min) == INTEGER_CST
2617 && TREE_CODE (vr0.max) == INTEGER_CST
2618 && !is_overflow_infinity (vr0.min)
2619 && !is_overflow_infinity (vr0.max)
2620 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
2621 || (vr0.type == VR_RANGE
2622 && integer_zerop (int_const_binop (RSHIFT_EXPR,
2623 int_const_binop (MINUS_EXPR, vr0.max, vr0.min, 0),
2624 size_int (TYPE_PRECISION (outer_type)), 0)))))
2625 {
2626 tree new_min, new_max;
2627 new_min = force_fit_type_double (outer_type,
2628 TREE_INT_CST_LOW (vr0.min),
2629 TREE_INT_CST_HIGH (vr0.min), 0, 0);
2630 new_max = force_fit_type_double (outer_type,
2631 TREE_INT_CST_LOW (vr0.max),
2632 TREE_INT_CST_HIGH (vr0.max), 0, 0);
2633 set_and_canonicalize_value_range (vr, vr0.type,
2634 new_min, new_max, NULL);
2635 return;
2636 }
2637
2638 set_value_range_to_varying (vr);
2639 return;
2640 }
2641
2642 /* Conversion of a VR_VARYING value to a wider type can result
2643 in a usable range. So wait until after we've handled conversions
2644 before dropping the result to VR_VARYING if we had a source
2645 operand that is VR_VARYING. */
2646 if (vr0.type == VR_VARYING)
2647 {
2648 set_value_range_to_varying (vr);
2649 return;
2650 }
2651
2652 /* Apply the operation to each end of the range and see what we end
2653 up with. */
2654 if (code == NEGATE_EXPR
2655 && !TYPE_UNSIGNED (type))
2656 {
2657 /* NEGATE_EXPR flips the range around. We need to treat
2658 TYPE_MIN_VALUE specially. */
2659 if (is_positive_overflow_infinity (vr0.max))
2660 min = negative_overflow_infinity (type);
2661 else if (is_negative_overflow_infinity (vr0.max))
2662 min = positive_overflow_infinity (type);
2663 else if (!vrp_val_is_min (vr0.max))
2664 min = fold_unary_to_constant (code, type, vr0.max);
2665 else if (needs_overflow_infinity (type))
2666 {
2667 if (supports_overflow_infinity (type)
2668 && !is_overflow_infinity (vr0.min)
2669 && !vrp_val_is_min (vr0.min))
2670 min = positive_overflow_infinity (type);
2671 else
2672 {
2673 set_value_range_to_varying (vr);
2674 return;
2675 }
2676 }
2677 else
2678 min = TYPE_MIN_VALUE (type);
2679
2680 if (is_positive_overflow_infinity (vr0.min))
2681 max = negative_overflow_infinity (type);
2682 else if (is_negative_overflow_infinity (vr0.min))
2683 max = positive_overflow_infinity (type);
2684 else if (!vrp_val_is_min (vr0.min))
2685 max = fold_unary_to_constant (code, type, vr0.min);
2686 else if (needs_overflow_infinity (type))
2687 {
2688 if (supports_overflow_infinity (type))
2689 max = positive_overflow_infinity (type);
2690 else
2691 {
2692 set_value_range_to_varying (vr);
2693 return;
2694 }
2695 }
2696 else
2697 max = TYPE_MIN_VALUE (type);
2698 }
2699 else if (code == NEGATE_EXPR
2700 && TYPE_UNSIGNED (type))
2701 {
2702 if (!range_includes_zero_p (&vr0))
2703 {
2704 max = fold_unary_to_constant (code, type, vr0.min);
2705 min = fold_unary_to_constant (code, type, vr0.max);
2706 }
2707 else
2708 {
2709 if (range_is_null (&vr0))
2710 set_value_range_to_null (vr, type);
2711 else
2712 set_value_range_to_varying (vr);
2713 return;
2714 }
2715 }
2716 else if (code == ABS_EXPR
2717 && !TYPE_UNSIGNED (type))
2718 {
2719 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2720 useful range. */
2721 if (!TYPE_OVERFLOW_UNDEFINED (type)
2722 && ((vr0.type == VR_RANGE
2723 && vrp_val_is_min (vr0.min))
2724 || (vr0.type == VR_ANTI_RANGE
2725 && !vrp_val_is_min (vr0.min)
2726 && !range_includes_zero_p (&vr0))))
2727 {
2728 set_value_range_to_varying (vr);
2729 return;
2730 }
2731
2732 /* ABS_EXPR may flip the range around, if the original range
2733 included negative values. */
2734 if (is_overflow_infinity (vr0.min))
2735 min = positive_overflow_infinity (type);
2736 else if (!vrp_val_is_min (vr0.min))
2737 min = fold_unary_to_constant (code, type, vr0.min);
2738 else if (!needs_overflow_infinity (type))
2739 min = TYPE_MAX_VALUE (type);
2740 else if (supports_overflow_infinity (type))
2741 min = positive_overflow_infinity (type);
2742 else
2743 {
2744 set_value_range_to_varying (vr);
2745 return;
2746 }
2747
2748 if (is_overflow_infinity (vr0.max))
2749 max = positive_overflow_infinity (type);
2750 else if (!vrp_val_is_min (vr0.max))
2751 max = fold_unary_to_constant (code, type, vr0.max);
2752 else if (!needs_overflow_infinity (type))
2753 max = TYPE_MAX_VALUE (type);
2754 else if (supports_overflow_infinity (type)
2755 /* We shouldn't generate [+INF, +INF] as set_value_range
2756 doesn't like this and ICEs. */
2757 && !is_positive_overflow_infinity (min))
2758 max = positive_overflow_infinity (type);
2759 else
2760 {
2761 set_value_range_to_varying (vr);
2762 return;
2763 }
2764
2765 cmp = compare_values (min, max);
2766
2767 /* If a VR_ANTI_RANGEs contains zero, then we have
2768 ~[-INF, min(MIN, MAX)]. */
2769 if (vr0.type == VR_ANTI_RANGE)
2770 {
2771 if (range_includes_zero_p (&vr0))
2772 {
2773 /* Take the lower of the two values. */
2774 if (cmp != 1)
2775 max = min;
2776
2777 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2778 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2779 flag_wrapv is set and the original anti-range doesn't include
2780 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
2781 if (TYPE_OVERFLOW_WRAPS (type))
2782 {
2783 tree type_min_value = TYPE_MIN_VALUE (type);
2784
2785 min = (vr0.min != type_min_value
2786 ? int_const_binop (PLUS_EXPR, type_min_value,
2787 integer_one_node, 0)
2788 : type_min_value);
2789 }
2790 else
2791 {
2792 if (overflow_infinity_range_p (&vr0))
2793 min = negative_overflow_infinity (type);
2794 else
2795 min = TYPE_MIN_VALUE (type);
2796 }
2797 }
2798 else
2799 {
2800 /* All else has failed, so create the range [0, INF], even for
2801 flag_wrapv since TYPE_MIN_VALUE is in the original
2802 anti-range. */
2803 vr0.type = VR_RANGE;
2804 min = build_int_cst (type, 0);
2805 if (needs_overflow_infinity (type))
2806 {
2807 if (supports_overflow_infinity (type))
2808 max = positive_overflow_infinity (type);
2809 else
2810 {
2811 set_value_range_to_varying (vr);
2812 return;
2813 }
2814 }
2815 else
2816 max = TYPE_MAX_VALUE (type);
2817 }
2818 }
2819
2820 /* If the range contains zero then we know that the minimum value in the
2821 range will be zero. */
2822 else if (range_includes_zero_p (&vr0))
2823 {
2824 if (cmp == 1)
2825 max = min;
2826 min = build_int_cst (type, 0);
2827 }
2828 else
2829 {
2830 /* If the range was reversed, swap MIN and MAX. */
2831 if (cmp == 1)
2832 {
2833 tree t = min;
2834 min = max;
2835 max = t;
2836 }
2837 }
2838 }
2839 else
2840 {
2841 /* Otherwise, operate on each end of the range. */
2842 min = fold_unary_to_constant (code, type, vr0.min);
2843 max = fold_unary_to_constant (code, type, vr0.max);
2844
2845 if (needs_overflow_infinity (type))
2846 {
2847 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
2848
2849 /* If both sides have overflowed, we don't know
2850 anything. */
2851 if ((is_overflow_infinity (vr0.min)
2852 || TREE_OVERFLOW (min))
2853 && (is_overflow_infinity (vr0.max)
2854 || TREE_OVERFLOW (max)))
2855 {
2856 set_value_range_to_varying (vr);
2857 return;
2858 }
2859
2860 if (is_overflow_infinity (vr0.min))
2861 min = vr0.min;
2862 else if (TREE_OVERFLOW (min))
2863 {
2864 if (supports_overflow_infinity (type))
2865 min = (tree_int_cst_sgn (min) >= 0
2866 ? positive_overflow_infinity (TREE_TYPE (min))
2867 : negative_overflow_infinity (TREE_TYPE (min)));
2868 else
2869 {
2870 set_value_range_to_varying (vr);
2871 return;
2872 }
2873 }
2874
2875 if (is_overflow_infinity (vr0.max))
2876 max = vr0.max;
2877 else if (TREE_OVERFLOW (max))
2878 {
2879 if (supports_overflow_infinity (type))
2880 max = (tree_int_cst_sgn (max) >= 0
2881 ? positive_overflow_infinity (TREE_TYPE (max))
2882 : negative_overflow_infinity (TREE_TYPE (max)));
2883 else
2884 {
2885 set_value_range_to_varying (vr);
2886 return;
2887 }
2888 }
2889 }
2890 }
2891
2892 cmp = compare_values (min, max);
2893 if (cmp == -2 || cmp == 1)
2894 {
2895 /* If the new range has its limits swapped around (MIN > MAX),
2896 then the operation caused one of them to wrap around, mark
2897 the new range VARYING. */
2898 set_value_range_to_varying (vr);
2899 }
2900 else
2901 set_value_range (vr, vr0.type, min, max, NULL);
2902 }
2903
2904
2905 /* Extract range information from a conditional expression EXPR based on
2906 the ranges of each of its operands and the expression code. */
2907
2908 static void
2909 extract_range_from_cond_expr (value_range_t *vr, tree expr)
2910 {
2911 tree op0, op1;
2912 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2913 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2914
2915 /* Get value ranges for each operand. For constant operands, create
2916 a new value range with the operand to simplify processing. */
2917 op0 = COND_EXPR_THEN (expr);
2918 if (TREE_CODE (op0) == SSA_NAME)
2919 vr0 = *(get_value_range (op0));
2920 else if (is_gimple_min_invariant (op0))
2921 set_value_range_to_value (&vr0, op0, NULL);
2922 else
2923 set_value_range_to_varying (&vr0);
2924
2925 op1 = COND_EXPR_ELSE (expr);
2926 if (TREE_CODE (op1) == SSA_NAME)
2927 vr1 = *(get_value_range (op1));
2928 else if (is_gimple_min_invariant (op1))
2929 set_value_range_to_value (&vr1, op1, NULL);
2930 else
2931 set_value_range_to_varying (&vr1);
2932
2933 /* The resulting value range is the union of the operand ranges */
2934 vrp_meet (&vr0, &vr1);
2935 copy_value_range (vr, &vr0);
2936 }
2937
2938
2939 /* Extract range information from a comparison expression EXPR based
2940 on the range of its operand and the expression code. */
2941
2942 static void
2943 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
2944 tree type, tree op0, tree op1)
2945 {
2946 bool sop = false;
2947 tree val;
2948
2949 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
2950 NULL);
2951
2952 /* A disadvantage of using a special infinity as an overflow
2953 representation is that we lose the ability to record overflow
2954 when we don't have an infinity. So we have to ignore a result
2955 which relies on overflow. */
2956
2957 if (val && !is_overflow_infinity (val) && !sop)
2958 {
2959 /* Since this expression was found on the RHS of an assignment,
2960 its type may be different from _Bool. Convert VAL to EXPR's
2961 type. */
2962 val = fold_convert (type, val);
2963 if (is_gimple_min_invariant (val))
2964 set_value_range_to_value (vr, val, vr->equiv);
2965 else
2966 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
2967 }
2968 else
2969 /* The result of a comparison is always true or false. */
2970 set_value_range_to_truthvalue (vr, type);
2971 }
2972
2973 /* Try to derive a nonnegative or nonzero range out of STMT relying
2974 primarily on generic routines in fold in conjunction with range data.
2975 Store the result in *VR */
2976
2977 static void
2978 extract_range_basic (value_range_t *vr, gimple stmt)
2979 {
2980 bool sop = false;
2981 tree type = gimple_expr_type (stmt);
2982
2983 if (INTEGRAL_TYPE_P (type)
2984 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
2985 set_value_range_to_nonnegative (vr, type,
2986 sop || stmt_overflow_infinity (stmt));
2987 else if (vrp_stmt_computes_nonzero (stmt, &sop)
2988 && !sop)
2989 set_value_range_to_nonnull (vr, type);
2990 else
2991 set_value_range_to_varying (vr);
2992 }
2993
2994
2995 /* Try to compute a useful range out of assignment STMT and store it
2996 in *VR. */
2997
2998 static void
2999 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3000 {
3001 enum tree_code code = gimple_assign_rhs_code (stmt);
3002
3003 if (code == ASSERT_EXPR)
3004 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3005 else if (code == SSA_NAME)
3006 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3007 else if (TREE_CODE_CLASS (code) == tcc_binary
3008 || code == TRUTH_AND_EXPR
3009 || code == TRUTH_OR_EXPR
3010 || code == TRUTH_XOR_EXPR)
3011 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3012 gimple_expr_type (stmt),
3013 gimple_assign_rhs1 (stmt),
3014 gimple_assign_rhs2 (stmt));
3015 else if (TREE_CODE_CLASS (code) == tcc_unary)
3016 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3017 gimple_expr_type (stmt),
3018 gimple_assign_rhs1 (stmt));
3019 else if (code == COND_EXPR)
3020 extract_range_from_cond_expr (vr, gimple_assign_rhs1 (stmt));
3021 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3022 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3023 gimple_expr_type (stmt),
3024 gimple_assign_rhs1 (stmt),
3025 gimple_assign_rhs2 (stmt));
3026 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3027 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3028 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3029 else
3030 set_value_range_to_varying (vr);
3031
3032 if (vr->type == VR_VARYING)
3033 extract_range_basic (vr, stmt);
3034 }
3035
3036 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3037 would be profitable to adjust VR using scalar evolution information
3038 for VAR. If so, update VR with the new limits. */
3039
3040 static void
3041 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3042 gimple stmt, tree var)
3043 {
3044 tree init, step, chrec, tmin, tmax, min, max, type;
3045 enum ev_direction dir;
3046
3047 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3048 better opportunities than a regular range, but I'm not sure. */
3049 if (vr->type == VR_ANTI_RANGE)
3050 return;
3051
3052 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3053
3054 /* Like in PR19590, scev can return a constant function. */
3055 if (is_gimple_min_invariant (chrec))
3056 {
3057 set_value_range_to_value (vr, chrec, vr->equiv);
3058 return;
3059 }
3060
3061 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3062 return;
3063
3064 init = initial_condition_in_loop_num (chrec, loop->num);
3065 step = evolution_part_in_loop_num (chrec, loop->num);
3066
3067 /* If STEP is symbolic, we can't know whether INIT will be the
3068 minimum or maximum value in the range. Also, unless INIT is
3069 a simple expression, compare_values and possibly other functions
3070 in tree-vrp won't be able to handle it. */
3071 if (step == NULL_TREE
3072 || !is_gimple_min_invariant (step)
3073 || !valid_value_p (init))
3074 return;
3075
3076 dir = scev_direction (chrec);
3077 if (/* Do not adjust ranges if we do not know whether the iv increases
3078 or decreases, ... */
3079 dir == EV_DIR_UNKNOWN
3080 /* ... or if it may wrap. */
3081 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3082 true))
3083 return;
3084
3085 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3086 negative_overflow_infinity and positive_overflow_infinity,
3087 because we have concluded that the loop probably does not
3088 wrap. */
3089
3090 type = TREE_TYPE (var);
3091 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3092 tmin = lower_bound_in_type (type, type);
3093 else
3094 tmin = TYPE_MIN_VALUE (type);
3095 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3096 tmax = upper_bound_in_type (type, type);
3097 else
3098 tmax = TYPE_MAX_VALUE (type);
3099
3100 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3101 {
3102 min = tmin;
3103 max = tmax;
3104
3105 /* For VARYING or UNDEFINED ranges, just about anything we get
3106 from scalar evolutions should be better. */
3107
3108 if (dir == EV_DIR_DECREASES)
3109 max = init;
3110 else
3111 min = init;
3112
3113 /* If we would create an invalid range, then just assume we
3114 know absolutely nothing. This may be over-conservative,
3115 but it's clearly safe, and should happen only in unreachable
3116 parts of code, or for invalid programs. */
3117 if (compare_values (min, max) == 1)
3118 return;
3119
3120 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3121 }
3122 else if (vr->type == VR_RANGE)
3123 {
3124 min = vr->min;
3125 max = vr->max;
3126
3127 if (dir == EV_DIR_DECREASES)
3128 {
3129 /* INIT is the maximum value. If INIT is lower than VR->MAX
3130 but no smaller than VR->MIN, set VR->MAX to INIT. */
3131 if (compare_values (init, max) == -1)
3132 {
3133 max = init;
3134
3135 /* If we just created an invalid range with the minimum
3136 greater than the maximum, we fail conservatively.
3137 This should happen only in unreachable
3138 parts of code, or for invalid programs. */
3139 if (compare_values (min, max) == 1)
3140 return;
3141 }
3142
3143 /* According to the loop information, the variable does not
3144 overflow. If we think it does, probably because of an
3145 overflow due to arithmetic on a different INF value,
3146 reset now. */
3147 if (is_negative_overflow_infinity (min))
3148 min = tmin;
3149 }
3150 else
3151 {
3152 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3153 if (compare_values (init, min) == 1)
3154 {
3155 min = init;
3156
3157 /* Again, avoid creating invalid range by failing. */
3158 if (compare_values (min, max) == 1)
3159 return;
3160 }
3161
3162 if (is_positive_overflow_infinity (max))
3163 max = tmax;
3164 }
3165
3166 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3167 }
3168 }
3169
3170 /* Return true if VAR may overflow at STMT. This checks any available
3171 loop information to see if we can determine that VAR does not
3172 overflow. */
3173
3174 static bool
3175 vrp_var_may_overflow (tree var, gimple stmt)
3176 {
3177 struct loop *l;
3178 tree chrec, init, step;
3179
3180 if (current_loops == NULL)
3181 return true;
3182
3183 l = loop_containing_stmt (stmt);
3184 if (l == NULL)
3185 return true;
3186
3187 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
3188 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3189 return true;
3190
3191 init = initial_condition_in_loop_num (chrec, l->num);
3192 step = evolution_part_in_loop_num (chrec, l->num);
3193
3194 if (step == NULL_TREE
3195 || !is_gimple_min_invariant (step)
3196 || !valid_value_p (init))
3197 return true;
3198
3199 /* If we get here, we know something useful about VAR based on the
3200 loop information. If it wraps, it may overflow. */
3201
3202 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3203 true))
3204 return true;
3205
3206 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
3207 {
3208 print_generic_expr (dump_file, var, 0);
3209 fprintf (dump_file, ": loop information indicates does not overflow\n");
3210 }
3211
3212 return false;
3213 }
3214
3215
3216 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
3217
3218 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
3219 all the values in the ranges.
3220
3221 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
3222
3223 - Return NULL_TREE if it is not always possible to determine the
3224 value of the comparison.
3225
3226 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
3227 overflow infinity was used in the test. */
3228
3229
3230 static tree
3231 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
3232 bool *strict_overflow_p)
3233 {
3234 /* VARYING or UNDEFINED ranges cannot be compared. */
3235 if (vr0->type == VR_VARYING
3236 || vr0->type == VR_UNDEFINED
3237 || vr1->type == VR_VARYING
3238 || vr1->type == VR_UNDEFINED)
3239 return NULL_TREE;
3240
3241 /* Anti-ranges need to be handled separately. */
3242 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3243 {
3244 /* If both are anti-ranges, then we cannot compute any
3245 comparison. */
3246 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3247 return NULL_TREE;
3248
3249 /* These comparisons are never statically computable. */
3250 if (comp == GT_EXPR
3251 || comp == GE_EXPR
3252 || comp == LT_EXPR
3253 || comp == LE_EXPR)
3254 return NULL_TREE;
3255
3256 /* Equality can be computed only between a range and an
3257 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
3258 if (vr0->type == VR_RANGE)
3259 {
3260 /* To simplify processing, make VR0 the anti-range. */
3261 value_range_t *tmp = vr0;
3262 vr0 = vr1;
3263 vr1 = tmp;
3264 }
3265
3266 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
3267
3268 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
3269 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
3270 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3271
3272 return NULL_TREE;
3273 }
3274
3275 if (!usable_range_p (vr0, strict_overflow_p)
3276 || !usable_range_p (vr1, strict_overflow_p))
3277 return NULL_TREE;
3278
3279 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
3280 operands around and change the comparison code. */
3281 if (comp == GT_EXPR || comp == GE_EXPR)
3282 {
3283 value_range_t *tmp;
3284 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
3285 tmp = vr0;
3286 vr0 = vr1;
3287 vr1 = tmp;
3288 }
3289
3290 if (comp == EQ_EXPR)
3291 {
3292 /* Equality may only be computed if both ranges represent
3293 exactly one value. */
3294 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
3295 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
3296 {
3297 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
3298 strict_overflow_p);
3299 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
3300 strict_overflow_p);
3301 if (cmp_min == 0 && cmp_max == 0)
3302 return boolean_true_node;
3303 else if (cmp_min != -2 && cmp_max != -2)
3304 return boolean_false_node;
3305 }
3306 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
3307 else if (compare_values_warnv (vr0->min, vr1->max,
3308 strict_overflow_p) == 1
3309 || compare_values_warnv (vr1->min, vr0->max,
3310 strict_overflow_p) == 1)
3311 return boolean_false_node;
3312
3313 return NULL_TREE;
3314 }
3315 else if (comp == NE_EXPR)
3316 {
3317 int cmp1, cmp2;
3318
3319 /* If VR0 is completely to the left or completely to the right
3320 of VR1, they are always different. Notice that we need to
3321 make sure that both comparisons yield similar results to
3322 avoid comparing values that cannot be compared at
3323 compile-time. */
3324 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3325 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3326 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
3327 return boolean_true_node;
3328
3329 /* If VR0 and VR1 represent a single value and are identical,
3330 return false. */
3331 else if (compare_values_warnv (vr0->min, vr0->max,
3332 strict_overflow_p) == 0
3333 && compare_values_warnv (vr1->min, vr1->max,
3334 strict_overflow_p) == 0
3335 && compare_values_warnv (vr0->min, vr1->min,
3336 strict_overflow_p) == 0
3337 && compare_values_warnv (vr0->max, vr1->max,
3338 strict_overflow_p) == 0)
3339 return boolean_false_node;
3340
3341 /* Otherwise, they may or may not be different. */
3342 else
3343 return NULL_TREE;
3344 }
3345 else if (comp == LT_EXPR || comp == LE_EXPR)
3346 {
3347 int tst;
3348
3349 /* If VR0 is to the left of VR1, return true. */
3350 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
3351 if ((comp == LT_EXPR && tst == -1)
3352 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3353 {
3354 if (overflow_infinity_range_p (vr0)
3355 || overflow_infinity_range_p (vr1))
3356 *strict_overflow_p = true;
3357 return boolean_true_node;
3358 }
3359
3360 /* If VR0 is to the right of VR1, return false. */
3361 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
3362 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3363 || (comp == LE_EXPR && tst == 1))
3364 {
3365 if (overflow_infinity_range_p (vr0)
3366 || overflow_infinity_range_p (vr1))
3367 *strict_overflow_p = true;
3368 return boolean_false_node;
3369 }
3370
3371 /* Otherwise, we don't know. */
3372 return NULL_TREE;
3373 }
3374
3375 gcc_unreachable ();
3376 }
3377
3378
3379 /* Given a value range VR, a value VAL and a comparison code COMP, return
3380 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
3381 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
3382 always returns false. Return NULL_TREE if it is not always
3383 possible to determine the value of the comparison. Also set
3384 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
3385 infinity was used in the test. */
3386
3387 static tree
3388 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
3389 bool *strict_overflow_p)
3390 {
3391 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3392 return NULL_TREE;
3393
3394 /* Anti-ranges need to be handled separately. */
3395 if (vr->type == VR_ANTI_RANGE)
3396 {
3397 /* For anti-ranges, the only predicates that we can compute at
3398 compile time are equality and inequality. */
3399 if (comp == GT_EXPR
3400 || comp == GE_EXPR
3401 || comp == LT_EXPR
3402 || comp == LE_EXPR)
3403 return NULL_TREE;
3404
3405 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3406 if (value_inside_range (val, vr) == 1)
3407 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3408
3409 return NULL_TREE;
3410 }
3411
3412 if (!usable_range_p (vr, strict_overflow_p))
3413 return NULL_TREE;
3414
3415 if (comp == EQ_EXPR)
3416 {
3417 /* EQ_EXPR may only be computed if VR represents exactly
3418 one value. */
3419 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
3420 {
3421 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
3422 if (cmp == 0)
3423 return boolean_true_node;
3424 else if (cmp == -1 || cmp == 1 || cmp == 2)
3425 return boolean_false_node;
3426 }
3427 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3428 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3429 return boolean_false_node;
3430
3431 return NULL_TREE;
3432 }
3433 else if (comp == NE_EXPR)
3434 {
3435 /* If VAL is not inside VR, then they are always different. */
3436 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3437 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3438 return boolean_true_node;
3439
3440 /* If VR represents exactly one value equal to VAL, then return
3441 false. */
3442 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3443 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3444 return boolean_false_node;
3445
3446 /* Otherwise, they may or may not be different. */
3447 return NULL_TREE;
3448 }
3449 else if (comp == LT_EXPR || comp == LE_EXPR)
3450 {
3451 int tst;
3452
3453 /* If VR is to the left of VAL, return true. */
3454 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3455 if ((comp == LT_EXPR && tst == -1)
3456 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3457 {
3458 if (overflow_infinity_range_p (vr))
3459 *strict_overflow_p = true;
3460 return boolean_true_node;
3461 }
3462
3463 /* If VR is to the right of VAL, return false. */
3464 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3465 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3466 || (comp == LE_EXPR && tst == 1))
3467 {
3468 if (overflow_infinity_range_p (vr))
3469 *strict_overflow_p = true;
3470 return boolean_false_node;
3471 }
3472
3473 /* Otherwise, we don't know. */
3474 return NULL_TREE;
3475 }
3476 else if (comp == GT_EXPR || comp == GE_EXPR)
3477 {
3478 int tst;
3479
3480 /* If VR is to the right of VAL, return true. */
3481 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3482 if ((comp == GT_EXPR && tst == 1)
3483 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3484 {
3485 if (overflow_infinity_range_p (vr))
3486 *strict_overflow_p = true;
3487 return boolean_true_node;
3488 }
3489
3490 /* If VR is to the left of VAL, return false. */
3491 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3492 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3493 || (comp == GE_EXPR && tst == -1))
3494 {
3495 if (overflow_infinity_range_p (vr))
3496 *strict_overflow_p = true;
3497 return boolean_false_node;
3498 }
3499
3500 /* Otherwise, we don't know. */
3501 return NULL_TREE;
3502 }
3503
3504 gcc_unreachable ();
3505 }
3506
3507
3508 /* Debugging dumps. */
3509
3510 void dump_value_range (FILE *, value_range_t *);
3511 void debug_value_range (value_range_t *);
3512 void dump_all_value_ranges (FILE *);
3513 void debug_all_value_ranges (void);
3514 void dump_vr_equiv (FILE *, bitmap);
3515 void debug_vr_equiv (bitmap);
3516
3517
3518 /* Dump value range VR to FILE. */
3519
3520 void
3521 dump_value_range (FILE *file, value_range_t *vr)
3522 {
3523 if (vr == NULL)
3524 fprintf (file, "[]");
3525 else if (vr->type == VR_UNDEFINED)
3526 fprintf (file, "UNDEFINED");
3527 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3528 {
3529 tree type = TREE_TYPE (vr->min);
3530
3531 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3532
3533 if (is_negative_overflow_infinity (vr->min))
3534 fprintf (file, "-INF(OVF)");
3535 else if (INTEGRAL_TYPE_P (type)
3536 && !TYPE_UNSIGNED (type)
3537 && vrp_val_is_min (vr->min))
3538 fprintf (file, "-INF");
3539 else
3540 print_generic_expr (file, vr->min, 0);
3541
3542 fprintf (file, ", ");
3543
3544 if (is_positive_overflow_infinity (vr->max))
3545 fprintf (file, "+INF(OVF)");
3546 else if (INTEGRAL_TYPE_P (type)
3547 && vrp_val_is_max (vr->max))
3548 fprintf (file, "+INF");
3549 else
3550 print_generic_expr (file, vr->max, 0);
3551
3552 fprintf (file, "]");
3553
3554 if (vr->equiv)
3555 {
3556 bitmap_iterator bi;
3557 unsigned i, c = 0;
3558
3559 fprintf (file, " EQUIVALENCES: { ");
3560
3561 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3562 {
3563 print_generic_expr (file, ssa_name (i), 0);
3564 fprintf (file, " ");
3565 c++;
3566 }
3567
3568 fprintf (file, "} (%u elements)", c);
3569 }
3570 }
3571 else if (vr->type == VR_VARYING)
3572 fprintf (file, "VARYING");
3573 else
3574 fprintf (file, "INVALID RANGE");
3575 }
3576
3577
3578 /* Dump value range VR to stderr. */
3579
3580 void
3581 debug_value_range (value_range_t *vr)
3582 {
3583 dump_value_range (stderr, vr);
3584 fprintf (stderr, "\n");
3585 }
3586
3587
3588 /* Dump value ranges of all SSA_NAMEs to FILE. */
3589
3590 void
3591 dump_all_value_ranges (FILE *file)
3592 {
3593 size_t i;
3594
3595 for (i = 0; i < num_ssa_names; i++)
3596 {
3597 if (vr_value[i])
3598 {
3599 print_generic_expr (file, ssa_name (i), 0);
3600 fprintf (file, ": ");
3601 dump_value_range (file, vr_value[i]);
3602 fprintf (file, "\n");
3603 }
3604 }
3605
3606 fprintf (file, "\n");
3607 }
3608
3609
3610 /* Dump all value ranges to stderr. */
3611
3612 void
3613 debug_all_value_ranges (void)
3614 {
3615 dump_all_value_ranges (stderr);
3616 }
3617
3618
3619 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3620 create a new SSA name N and return the assertion assignment
3621 'V = ASSERT_EXPR <V, V OP W>'. */
3622
3623 static gimple
3624 build_assert_expr_for (tree cond, tree v)
3625 {
3626 tree n;
3627 gimple assertion;
3628
3629 gcc_assert (TREE_CODE (v) == SSA_NAME);
3630 n = duplicate_ssa_name (v, NULL);
3631
3632 if (COMPARISON_CLASS_P (cond))
3633 {
3634 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3635 assertion = gimple_build_assign (n, a);
3636 }
3637 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3638 {
3639 /* Given !V, build the assignment N = false. */
3640 tree op0 = TREE_OPERAND (cond, 0);
3641 gcc_assert (op0 == v);
3642 assertion = gimple_build_assign (n, boolean_false_node);
3643 }
3644 else if (TREE_CODE (cond) == SSA_NAME)
3645 {
3646 /* Given V, build the assignment N = true. */
3647 gcc_assert (v == cond);
3648 assertion = gimple_build_assign (n, boolean_true_node);
3649 }
3650 else
3651 gcc_unreachable ();
3652
3653 SSA_NAME_DEF_STMT (n) = assertion;
3654
3655 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3656 operand of the ASSERT_EXPR. Register the new name and the old one
3657 in the replacement table so that we can fix the SSA web after
3658 adding all the ASSERT_EXPRs. */
3659 register_new_name_mapping (n, v);
3660
3661 return assertion;
3662 }
3663
3664
3665 /* Return false if EXPR is a predicate expression involving floating
3666 point values. */
3667
3668 static inline bool
3669 fp_predicate (gimple stmt)
3670 {
3671 GIMPLE_CHECK (stmt, GIMPLE_COND);
3672
3673 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
3674 }
3675
3676
3677 /* If the range of values taken by OP can be inferred after STMT executes,
3678 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3679 describes the inferred range. Return true if a range could be
3680 inferred. */
3681
3682 static bool
3683 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
3684 {
3685 *val_p = NULL_TREE;
3686 *comp_code_p = ERROR_MARK;
3687
3688 /* Do not attempt to infer anything in names that flow through
3689 abnormal edges. */
3690 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
3691 return false;
3692
3693 /* Similarly, don't infer anything from statements that may throw
3694 exceptions. */
3695 if (stmt_could_throw_p (stmt))
3696 return false;
3697
3698 /* If STMT is the last statement of a basic block with no
3699 successors, there is no point inferring anything about any of its
3700 operands. We would not be able to find a proper insertion point
3701 for the assertion, anyway. */
3702 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
3703 return false;
3704
3705 /* We can only assume that a pointer dereference will yield
3706 non-NULL if -fdelete-null-pointer-checks is enabled. */
3707 if (flag_delete_null_pointer_checks
3708 && POINTER_TYPE_P (TREE_TYPE (op))
3709 && gimple_code (stmt) != GIMPLE_ASM)
3710 {
3711 unsigned num_uses, num_loads, num_stores;
3712
3713 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
3714 if (num_loads + num_stores > 0)
3715 {
3716 *val_p = build_int_cst (TREE_TYPE (op), 0);
3717 *comp_code_p = NE_EXPR;
3718 return true;
3719 }
3720 }
3721
3722 return false;
3723 }
3724
3725
3726 void dump_asserts_for (FILE *, tree);
3727 void debug_asserts_for (tree);
3728 void dump_all_asserts (FILE *);
3729 void debug_all_asserts (void);
3730
3731 /* Dump all the registered assertions for NAME to FILE. */
3732
3733 void
3734 dump_asserts_for (FILE *file, tree name)
3735 {
3736 assert_locus_t loc;
3737
3738 fprintf (file, "Assertions to be inserted for ");
3739 print_generic_expr (file, name, 0);
3740 fprintf (file, "\n");
3741
3742 loc = asserts_for[SSA_NAME_VERSION (name)];
3743 while (loc)
3744 {
3745 fprintf (file, "\t");
3746 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
3747 fprintf (file, "\n\tBB #%d", loc->bb->index);
3748 if (loc->e)
3749 {
3750 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3751 loc->e->dest->index);
3752 dump_edge_info (file, loc->e, 0);
3753 }
3754 fprintf (file, "\n\tPREDICATE: ");
3755 print_generic_expr (file, name, 0);
3756 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3757 print_generic_expr (file, loc->val, 0);
3758 fprintf (file, "\n\n");
3759 loc = loc->next;
3760 }
3761
3762 fprintf (file, "\n");
3763 }
3764
3765
3766 /* Dump all the registered assertions for NAME to stderr. */
3767
3768 void
3769 debug_asserts_for (tree name)
3770 {
3771 dump_asserts_for (stderr, name);
3772 }
3773
3774
3775 /* Dump all the registered assertions for all the names to FILE. */
3776
3777 void
3778 dump_all_asserts (FILE *file)
3779 {
3780 unsigned i;
3781 bitmap_iterator bi;
3782
3783 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3784 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3785 dump_asserts_for (file, ssa_name (i));
3786 fprintf (file, "\n");
3787 }
3788
3789
3790 /* Dump all the registered assertions for all the names to stderr. */
3791
3792 void
3793 debug_all_asserts (void)
3794 {
3795 dump_all_asserts (stderr);
3796 }
3797
3798
3799 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
3800 'EXPR COMP_CODE VAL' at a location that dominates block BB or
3801 E->DEST, then register this location as a possible insertion point
3802 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
3803
3804 BB, E and SI provide the exact insertion point for the new
3805 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
3806 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3807 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3808 must not be NULL. */
3809
3810 static void
3811 register_new_assert_for (tree name, tree expr,
3812 enum tree_code comp_code,
3813 tree val,
3814 basic_block bb,
3815 edge e,
3816 gimple_stmt_iterator si)
3817 {
3818 assert_locus_t n, loc, last_loc;
3819 bool found;
3820 basic_block dest_bb;
3821
3822 #if defined ENABLE_CHECKING
3823 gcc_assert (bb == NULL || e == NULL);
3824
3825 if (e == NULL)
3826 gcc_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
3827 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
3828 #endif
3829
3830 /* Never build an assert comparing against an integer constant with
3831 TREE_OVERFLOW set. This confuses our undefined overflow warning
3832 machinery. */
3833 if (TREE_CODE (val) == INTEGER_CST
3834 && TREE_OVERFLOW (val))
3835 val = build_int_cst_wide (TREE_TYPE (val),
3836 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
3837
3838 /* The new assertion A will be inserted at BB or E. We need to
3839 determine if the new location is dominated by a previously
3840 registered location for A. If we are doing an edge insertion,
3841 assume that A will be inserted at E->DEST. Note that this is not
3842 necessarily true.
3843
3844 If E is a critical edge, it will be split. But even if E is
3845 split, the new block will dominate the same set of blocks that
3846 E->DEST dominates.
3847
3848 The reverse, however, is not true, blocks dominated by E->DEST
3849 will not be dominated by the new block created to split E. So,
3850 if the insertion location is on a critical edge, we will not use
3851 the new location to move another assertion previously registered
3852 at a block dominated by E->DEST. */
3853 dest_bb = (bb) ? bb : e->dest;
3854
3855 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3856 VAL at a block dominating DEST_BB, then we don't need to insert a new
3857 one. Similarly, if the same assertion already exists at a block
3858 dominated by DEST_BB and the new location is not on a critical
3859 edge, then update the existing location for the assertion (i.e.,
3860 move the assertion up in the dominance tree).
3861
3862 Note, this is implemented as a simple linked list because there
3863 should not be more than a handful of assertions registered per
3864 name. If this becomes a performance problem, a table hashed by
3865 COMP_CODE and VAL could be implemented. */
3866 loc = asserts_for[SSA_NAME_VERSION (name)];
3867 last_loc = loc;
3868 found = false;
3869 while (loc)
3870 {
3871 if (loc->comp_code == comp_code
3872 && (loc->val == val
3873 || operand_equal_p (loc->val, val, 0))
3874 && (loc->expr == expr
3875 || operand_equal_p (loc->expr, expr, 0)))
3876 {
3877 /* If the assertion NAME COMP_CODE VAL has already been
3878 registered at a basic block that dominates DEST_BB, then
3879 we don't need to insert the same assertion again. Note
3880 that we don't check strict dominance here to avoid
3881 replicating the same assertion inside the same basic
3882 block more than once (e.g., when a pointer is
3883 dereferenced several times inside a block).
3884
3885 An exception to this rule are edge insertions. If the
3886 new assertion is to be inserted on edge E, then it will
3887 dominate all the other insertions that we may want to
3888 insert in DEST_BB. So, if we are doing an edge
3889 insertion, don't do this dominance check. */
3890 if (e == NULL
3891 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
3892 return;
3893
3894 /* Otherwise, if E is not a critical edge and DEST_BB
3895 dominates the existing location for the assertion, move
3896 the assertion up in the dominance tree by updating its
3897 location information. */
3898 if ((e == NULL || !EDGE_CRITICAL_P (e))
3899 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
3900 {
3901 loc->bb = dest_bb;
3902 loc->e = e;
3903 loc->si = si;
3904 return;
3905 }
3906 }
3907
3908 /* Update the last node of the list and move to the next one. */
3909 last_loc = loc;
3910 loc = loc->next;
3911 }
3912
3913 /* If we didn't find an assertion already registered for
3914 NAME COMP_CODE VAL, add a new one at the end of the list of
3915 assertions associated with NAME. */
3916 n = XNEW (struct assert_locus_d);
3917 n->bb = dest_bb;
3918 n->e = e;
3919 n->si = si;
3920 n->comp_code = comp_code;
3921 n->val = val;
3922 n->expr = expr;
3923 n->next = NULL;
3924
3925 if (last_loc)
3926 last_loc->next = n;
3927 else
3928 asserts_for[SSA_NAME_VERSION (name)] = n;
3929
3930 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
3931 }
3932
3933 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
3934 Extract a suitable test code and value and store them into *CODE_P and
3935 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
3936
3937 If no extraction was possible, return FALSE, otherwise return TRUE.
3938
3939 If INVERT is true, then we invert the result stored into *CODE_P. */
3940
3941 static bool
3942 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
3943 tree cond_op0, tree cond_op1,
3944 bool invert, enum tree_code *code_p,
3945 tree *val_p)
3946 {
3947 enum tree_code comp_code;
3948 tree val;
3949
3950 /* Otherwise, we have a comparison of the form NAME COMP VAL
3951 or VAL COMP NAME. */
3952 if (name == cond_op1)
3953 {
3954 /* If the predicate is of the form VAL COMP NAME, flip
3955 COMP around because we need to register NAME as the
3956 first operand in the predicate. */
3957 comp_code = swap_tree_comparison (cond_code);
3958 val = cond_op0;
3959 }
3960 else
3961 {
3962 /* The comparison is of the form NAME COMP VAL, so the
3963 comparison code remains unchanged. */
3964 comp_code = cond_code;
3965 val = cond_op1;
3966 }
3967
3968 /* Invert the comparison code as necessary. */
3969 if (invert)
3970 comp_code = invert_tree_comparison (comp_code, 0);
3971
3972 /* VRP does not handle float types. */
3973 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
3974 return false;
3975
3976 /* Do not register always-false predicates.
3977 FIXME: this works around a limitation in fold() when dealing with
3978 enumerations. Given 'enum { N1, N2 } x;', fold will not
3979 fold 'if (x > N2)' to 'if (0)'. */
3980 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
3981 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
3982 {
3983 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
3984 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
3985
3986 if (comp_code == GT_EXPR
3987 && (!max
3988 || compare_values (val, max) == 0))
3989 return false;
3990
3991 if (comp_code == LT_EXPR
3992 && (!min
3993 || compare_values (val, min) == 0))
3994 return false;
3995 }
3996 *code_p = comp_code;
3997 *val_p = val;
3998 return true;
3999 }
4000
4001 /* Try to register an edge assertion for SSA name NAME on edge E for
4002 the condition COND contributing to the conditional jump pointed to by BSI.
4003 Invert the condition COND if INVERT is true.
4004 Return true if an assertion for NAME could be registered. */
4005
4006 static bool
4007 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4008 enum tree_code cond_code,
4009 tree cond_op0, tree cond_op1, bool invert)
4010 {
4011 tree val;
4012 enum tree_code comp_code;
4013 bool retval = false;
4014
4015 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4016 cond_op0,
4017 cond_op1,
4018 invert, &comp_code, &val))
4019 return false;
4020
4021 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4022 reachable from E. */
4023 if (live_on_edge (e, name)
4024 && !has_single_use (name))
4025 {
4026 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4027 retval = true;
4028 }
4029
4030 /* In the case of NAME <= CST and NAME being defined as
4031 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4032 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4033 This catches range and anti-range tests. */
4034 if ((comp_code == LE_EXPR
4035 || comp_code == GT_EXPR)
4036 && TREE_CODE (val) == INTEGER_CST
4037 && TYPE_UNSIGNED (TREE_TYPE (val)))
4038 {
4039 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4040 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4041
4042 /* Extract CST2 from the (optional) addition. */
4043 if (is_gimple_assign (def_stmt)
4044 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4045 {
4046 name2 = gimple_assign_rhs1 (def_stmt);
4047 cst2 = gimple_assign_rhs2 (def_stmt);
4048 if (TREE_CODE (name2) == SSA_NAME
4049 && TREE_CODE (cst2) == INTEGER_CST)
4050 def_stmt = SSA_NAME_DEF_STMT (name2);
4051 }
4052
4053 /* Extract NAME2 from the (optional) sign-changing cast. */
4054 if (gimple_assign_cast_p (def_stmt))
4055 {
4056 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4057 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4058 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4059 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4060 name3 = gimple_assign_rhs1 (def_stmt);
4061 }
4062
4063 /* If name3 is used later, create an ASSERT_EXPR for it. */
4064 if (name3 != NULL_TREE
4065 && TREE_CODE (name3) == SSA_NAME
4066 && (cst2 == NULL_TREE
4067 || TREE_CODE (cst2) == INTEGER_CST)
4068 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4069 && live_on_edge (e, name3)
4070 && !has_single_use (name3))
4071 {
4072 tree tmp;
4073
4074 /* Build an expression for the range test. */
4075 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4076 if (cst2 != NULL_TREE)
4077 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4078
4079 if (dump_file)
4080 {
4081 fprintf (dump_file, "Adding assert for ");
4082 print_generic_expr (dump_file, name3, 0);
4083 fprintf (dump_file, " from ");
4084 print_generic_expr (dump_file, tmp, 0);
4085 fprintf (dump_file, "\n");
4086 }
4087
4088 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4089
4090 retval = true;
4091 }
4092
4093 /* If name2 is used later, create an ASSERT_EXPR for it. */
4094 if (name2 != NULL_TREE
4095 && TREE_CODE (name2) == SSA_NAME
4096 && TREE_CODE (cst2) == INTEGER_CST
4097 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4098 && live_on_edge (e, name2)
4099 && !has_single_use (name2))
4100 {
4101 tree tmp;
4102
4103 /* Build an expression for the range test. */
4104 tmp = name2;
4105 if (TREE_TYPE (name) != TREE_TYPE (name2))
4106 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4107 if (cst2 != NULL_TREE)
4108 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4109
4110 if (dump_file)
4111 {
4112 fprintf (dump_file, "Adding assert for ");
4113 print_generic_expr (dump_file, name2, 0);
4114 fprintf (dump_file, " from ");
4115 print_generic_expr (dump_file, tmp, 0);
4116 fprintf (dump_file, "\n");
4117 }
4118
4119 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4120
4121 retval = true;
4122 }
4123 }
4124
4125 return retval;
4126 }
4127
4128 /* OP is an operand of a truth value expression which is known to have
4129 a particular value. Register any asserts for OP and for any
4130 operands in OP's defining statement.
4131
4132 If CODE is EQ_EXPR, then we want to register OP is zero (false),
4133 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
4134
4135 static bool
4136 register_edge_assert_for_1 (tree op, enum tree_code code,
4137 edge e, gimple_stmt_iterator bsi)
4138 {
4139 bool retval = false;
4140 gimple op_def;
4141 tree val;
4142 enum tree_code rhs_code;
4143
4144 /* We only care about SSA_NAMEs. */
4145 if (TREE_CODE (op) != SSA_NAME)
4146 return false;
4147
4148 /* We know that OP will have a zero or nonzero value. If OP is used
4149 more than once go ahead and register an assert for OP.
4150
4151 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
4152 it will always be set for OP (because OP is used in a COND_EXPR in
4153 the subgraph). */
4154 if (!has_single_use (op))
4155 {
4156 val = build_int_cst (TREE_TYPE (op), 0);
4157 register_new_assert_for (op, op, code, val, NULL, e, bsi);
4158 retval = true;
4159 }
4160
4161 /* Now look at how OP is set. If it's set from a comparison,
4162 a truth operation or some bit operations, then we may be able
4163 to register information about the operands of that assignment. */
4164 op_def = SSA_NAME_DEF_STMT (op);
4165 if (gimple_code (op_def) != GIMPLE_ASSIGN)
4166 return retval;
4167
4168 rhs_code = gimple_assign_rhs_code (op_def);
4169
4170 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
4171 {
4172 bool invert = (code == EQ_EXPR ? true : false);
4173 tree op0 = gimple_assign_rhs1 (op_def);
4174 tree op1 = gimple_assign_rhs2 (op_def);
4175
4176 if (TREE_CODE (op0) == SSA_NAME)
4177 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
4178 invert);
4179 if (TREE_CODE (op1) == SSA_NAME)
4180 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
4181 invert);
4182 }
4183 else if ((code == NE_EXPR
4184 && (gimple_assign_rhs_code (op_def) == TRUTH_AND_EXPR
4185 || gimple_assign_rhs_code (op_def) == BIT_AND_EXPR))
4186 || (code == EQ_EXPR
4187 && (gimple_assign_rhs_code (op_def) == TRUTH_OR_EXPR
4188 || gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR)))
4189 {
4190 /* Recurse on each operand. */
4191 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4192 code, e, bsi);
4193 retval |= register_edge_assert_for_1 (gimple_assign_rhs2 (op_def),
4194 code, e, bsi);
4195 }
4196 else if (gimple_assign_rhs_code (op_def) == TRUTH_NOT_EXPR)
4197 {
4198 /* Recurse, flipping CODE. */
4199 code = invert_tree_comparison (code, false);
4200 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4201 code, e, bsi);
4202 }
4203 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
4204 {
4205 /* Recurse through the copy. */
4206 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4207 code, e, bsi);
4208 }
4209 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
4210 {
4211 /* Recurse through the type conversion. */
4212 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
4213 code, e, bsi);
4214 }
4215
4216 return retval;
4217 }
4218
4219 /* Try to register an edge assertion for SSA name NAME on edge E for
4220 the condition COND contributing to the conditional jump pointed to by SI.
4221 Return true if an assertion for NAME could be registered. */
4222
4223 static bool
4224 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
4225 enum tree_code cond_code, tree cond_op0,
4226 tree cond_op1)
4227 {
4228 tree val;
4229 enum tree_code comp_code;
4230 bool retval = false;
4231 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
4232
4233 /* Do not attempt to infer anything in names that flow through
4234 abnormal edges. */
4235 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
4236 return false;
4237
4238 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4239 cond_op0, cond_op1,
4240 is_else_edge,
4241 &comp_code, &val))
4242 return false;
4243
4244 /* Register ASSERT_EXPRs for name. */
4245 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
4246 cond_op1, is_else_edge);
4247
4248
4249 /* If COND is effectively an equality test of an SSA_NAME against
4250 the value zero or one, then we may be able to assert values
4251 for SSA_NAMEs which flow into COND. */
4252
4253 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
4254 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
4255 have nonzero value. */
4256 if (((comp_code == EQ_EXPR && integer_onep (val))
4257 || (comp_code == NE_EXPR && integer_zerop (val))))
4258 {
4259 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4260
4261 if (is_gimple_assign (def_stmt)
4262 && (gimple_assign_rhs_code (def_stmt) == TRUTH_AND_EXPR
4263 || gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR))
4264 {
4265 tree op0 = gimple_assign_rhs1 (def_stmt);
4266 tree op1 = gimple_assign_rhs2 (def_stmt);
4267 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
4268 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
4269 }
4270 }
4271
4272 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
4273 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
4274 have zero value. */
4275 if (((comp_code == EQ_EXPR && integer_zerop (val))
4276 || (comp_code == NE_EXPR && integer_onep (val))))
4277 {
4278 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4279
4280 if (is_gimple_assign (def_stmt)
4281 && (gimple_assign_rhs_code (def_stmt) == TRUTH_OR_EXPR
4282 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
4283 necessarily zero value. */
4284 || (comp_code == EQ_EXPR
4285 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR))))
4286 {
4287 tree op0 = gimple_assign_rhs1 (def_stmt);
4288 tree op1 = gimple_assign_rhs2 (def_stmt);
4289 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
4290 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
4291 }
4292 }
4293
4294 return retval;
4295 }
4296
4297
4298 /* Determine whether the outgoing edges of BB should receive an
4299 ASSERT_EXPR for each of the operands of BB's LAST statement.
4300 The last statement of BB must be a COND_EXPR.
4301
4302 If any of the sub-graphs rooted at BB have an interesting use of
4303 the predicate operands, an assert location node is added to the
4304 list of assertions for the corresponding operands. */
4305
4306 static bool
4307 find_conditional_asserts (basic_block bb, gimple last)
4308 {
4309 bool need_assert;
4310 gimple_stmt_iterator bsi;
4311 tree op;
4312 edge_iterator ei;
4313 edge e;
4314 ssa_op_iter iter;
4315
4316 need_assert = false;
4317 bsi = gsi_for_stmt (last);
4318
4319 /* Look for uses of the operands in each of the sub-graphs
4320 rooted at BB. We need to check each of the outgoing edges
4321 separately, so that we know what kind of ASSERT_EXPR to
4322 insert. */
4323 FOR_EACH_EDGE (e, ei, bb->succs)
4324 {
4325 if (e->dest == bb)
4326 continue;
4327
4328 /* Register the necessary assertions for each operand in the
4329 conditional predicate. */
4330 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
4331 {
4332 need_assert |= register_edge_assert_for (op, e, bsi,
4333 gimple_cond_code (last),
4334 gimple_cond_lhs (last),
4335 gimple_cond_rhs (last));
4336 }
4337 }
4338
4339 return need_assert;
4340 }
4341
4342 /* Compare two case labels sorting first by the destination label uid
4343 and then by the case value. */
4344
4345 static int
4346 compare_case_labels (const void *p1, const void *p2)
4347 {
4348 const_tree const case1 = *(const_tree const*)p1;
4349 const_tree const case2 = *(const_tree const*)p2;
4350 unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
4351 unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
4352
4353 if (uid1 < uid2)
4354 return -1;
4355 else if (uid1 == uid2)
4356 {
4357 /* Make sure the default label is first in a group. */
4358 if (!CASE_LOW (case1))
4359 return -1;
4360 else if (!CASE_LOW (case2))
4361 return 1;
4362 else
4363 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
4364 }
4365 else
4366 return 1;
4367 }
4368
4369 /* Determine whether the outgoing edges of BB should receive an
4370 ASSERT_EXPR for each of the operands of BB's LAST statement.
4371 The last statement of BB must be a SWITCH_EXPR.
4372
4373 If any of the sub-graphs rooted at BB have an interesting use of
4374 the predicate operands, an assert location node is added to the
4375 list of assertions for the corresponding operands. */
4376
4377 static bool
4378 find_switch_asserts (basic_block bb, gimple last)
4379 {
4380 bool need_assert;
4381 gimple_stmt_iterator bsi;
4382 tree op;
4383 edge e;
4384 tree vec2;
4385 size_t n = gimple_switch_num_labels(last);
4386 #if GCC_VERSION >= 4000
4387 unsigned int idx;
4388 #else
4389 /* Work around GCC 3.4 bug (PR 37086). */
4390 volatile unsigned int idx;
4391 #endif
4392
4393 need_assert = false;
4394 bsi = gsi_for_stmt (last);
4395 op = gimple_switch_index (last);
4396 if (TREE_CODE (op) != SSA_NAME)
4397 return false;
4398
4399 /* Build a vector of case labels sorted by destination label. */
4400 vec2 = make_tree_vec (n);
4401 for (idx = 0; idx < n; ++idx)
4402 TREE_VEC_ELT (vec2, idx) = gimple_switch_label (last, idx);
4403 qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
4404
4405 for (idx = 0; idx < n; ++idx)
4406 {
4407 tree min, max;
4408 tree cl = TREE_VEC_ELT (vec2, idx);
4409
4410 min = CASE_LOW (cl);
4411 max = CASE_HIGH (cl);
4412
4413 /* If there are multiple case labels with the same destination
4414 we need to combine them to a single value range for the edge. */
4415 if (idx + 1 < n
4416 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
4417 {
4418 /* Skip labels until the last of the group. */
4419 do {
4420 ++idx;
4421 } while (idx < n
4422 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
4423 --idx;
4424
4425 /* Pick up the maximum of the case label range. */
4426 if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
4427 max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
4428 else
4429 max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
4430 }
4431
4432 /* Nothing to do if the range includes the default label until we
4433 can register anti-ranges. */
4434 if (min == NULL_TREE)
4435 continue;
4436
4437 /* Find the edge to register the assert expr on. */
4438 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
4439
4440 /* Register the necessary assertions for the operand in the
4441 SWITCH_EXPR. */
4442 need_assert |= register_edge_assert_for (op, e, bsi,
4443 max ? GE_EXPR : EQ_EXPR,
4444 op,
4445 fold_convert (TREE_TYPE (op),
4446 min));
4447 if (max)
4448 {
4449 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
4450 op,
4451 fold_convert (TREE_TYPE (op),
4452 max));
4453 }
4454 }
4455
4456 return need_assert;
4457 }
4458
4459
4460 /* Traverse all the statements in block BB looking for statements that
4461 may generate useful assertions for the SSA names in their operand.
4462 If a statement produces a useful assertion A for name N_i, then the
4463 list of assertions already generated for N_i is scanned to
4464 determine if A is actually needed.
4465
4466 If N_i already had the assertion A at a location dominating the
4467 current location, then nothing needs to be done. Otherwise, the
4468 new location for A is recorded instead.
4469
4470 1- For every statement S in BB, all the variables used by S are
4471 added to bitmap FOUND_IN_SUBGRAPH.
4472
4473 2- If statement S uses an operand N in a way that exposes a known
4474 value range for N, then if N was not already generated by an
4475 ASSERT_EXPR, create a new assert location for N. For instance,
4476 if N is a pointer and the statement dereferences it, we can
4477 assume that N is not NULL.
4478
4479 3- COND_EXPRs are a special case of #2. We can derive range
4480 information from the predicate but need to insert different
4481 ASSERT_EXPRs for each of the sub-graphs rooted at the
4482 conditional block. If the last statement of BB is a conditional
4483 expression of the form 'X op Y', then
4484
4485 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
4486
4487 b) If the conditional is the only entry point to the sub-graph
4488 corresponding to the THEN_CLAUSE, recurse into it. On
4489 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4490 an ASSERT_EXPR is added for the corresponding variable.
4491
4492 c) Repeat step (b) on the ELSE_CLAUSE.
4493
4494 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4495
4496 For instance,
4497
4498 if (a == 9)
4499 b = a;
4500 else
4501 b = c + 1;
4502
4503 In this case, an assertion on the THEN clause is useful to
4504 determine that 'a' is always 9 on that edge. However, an assertion
4505 on the ELSE clause would be unnecessary.
4506
4507 4- If BB does not end in a conditional expression, then we recurse
4508 into BB's dominator children.
4509
4510 At the end of the recursive traversal, every SSA name will have a
4511 list of locations where ASSERT_EXPRs should be added. When a new
4512 location for name N is found, it is registered by calling
4513 register_new_assert_for. That function keeps track of all the
4514 registered assertions to prevent adding unnecessary assertions.
4515 For instance, if a pointer P_4 is dereferenced more than once in a
4516 dominator tree, only the location dominating all the dereference of
4517 P_4 will receive an ASSERT_EXPR.
4518
4519 If this function returns true, then it means that there are names
4520 for which we need to generate ASSERT_EXPRs. Those assertions are
4521 inserted by process_assert_insertions. */
4522
4523 static bool
4524 find_assert_locations_1 (basic_block bb, sbitmap live)
4525 {
4526 gimple_stmt_iterator si;
4527 gimple last;
4528 gimple phi;
4529 bool need_assert;
4530
4531 need_assert = false;
4532 last = last_stmt (bb);
4533
4534 /* If BB's last statement is a conditional statement involving integer
4535 operands, determine if we need to add ASSERT_EXPRs. */
4536 if (last
4537 && gimple_code (last) == GIMPLE_COND
4538 && !fp_predicate (last)
4539 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4540 need_assert |= find_conditional_asserts (bb, last);
4541
4542 /* If BB's last statement is a switch statement involving integer
4543 operands, determine if we need to add ASSERT_EXPRs. */
4544 if (last
4545 && gimple_code (last) == GIMPLE_SWITCH
4546 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4547 need_assert |= find_switch_asserts (bb, last);
4548
4549 /* Traverse all the statements in BB marking used names and looking
4550 for statements that may infer assertions for their used operands. */
4551 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4552 {
4553 gimple stmt;
4554 tree op;
4555 ssa_op_iter i;
4556
4557 stmt = gsi_stmt (si);
4558
4559 /* See if we can derive an assertion for any of STMT's operands. */
4560 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4561 {
4562 tree value;
4563 enum tree_code comp_code;
4564
4565 /* Mark OP in our live bitmap. */
4566 SET_BIT (live, SSA_NAME_VERSION (op));
4567
4568 /* If OP is used in such a way that we can infer a value
4569 range for it, and we don't find a previous assertion for
4570 it, create a new assertion location node for OP. */
4571 if (infer_value_range (stmt, op, &comp_code, &value))
4572 {
4573 /* If we are able to infer a nonzero value range for OP,
4574 then walk backwards through the use-def chain to see if OP
4575 was set via a typecast.
4576
4577 If so, then we can also infer a nonzero value range
4578 for the operand of the NOP_EXPR. */
4579 if (comp_code == NE_EXPR && integer_zerop (value))
4580 {
4581 tree t = op;
4582 gimple def_stmt = SSA_NAME_DEF_STMT (t);
4583
4584 while (is_gimple_assign (def_stmt)
4585 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
4586 && TREE_CODE
4587 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
4588 && POINTER_TYPE_P
4589 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
4590 {
4591 t = gimple_assign_rhs1 (def_stmt);
4592 def_stmt = SSA_NAME_DEF_STMT (t);
4593
4594 /* Note we want to register the assert for the
4595 operand of the NOP_EXPR after SI, not after the
4596 conversion. */
4597 if (! has_single_use (t))
4598 {
4599 register_new_assert_for (t, t, comp_code, value,
4600 bb, NULL, si);
4601 need_assert = true;
4602 }
4603 }
4604 }
4605
4606 /* If OP is used only once, namely in this STMT, don't
4607 bother creating an ASSERT_EXPR for it. Such an
4608 ASSERT_EXPR would do nothing but increase compile time. */
4609 if (!has_single_use (op))
4610 {
4611 register_new_assert_for (op, op, comp_code, value,
4612 bb, NULL, si);
4613 need_assert = true;
4614 }
4615 }
4616 }
4617 }
4618
4619 /* Traverse all PHI nodes in BB marking used operands. */
4620 for (si = gsi_start_phis (bb); !gsi_end_p(si); gsi_next (&si))
4621 {
4622 use_operand_p arg_p;
4623 ssa_op_iter i;
4624 phi = gsi_stmt (si);
4625
4626 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4627 {
4628 tree arg = USE_FROM_PTR (arg_p);
4629 if (TREE_CODE (arg) == SSA_NAME)
4630 SET_BIT (live, SSA_NAME_VERSION (arg));
4631 }
4632 }
4633
4634 return need_assert;
4635 }
4636
4637 /* Do an RPO walk over the function computing SSA name liveness
4638 on-the-fly and deciding on assert expressions to insert.
4639 Returns true if there are assert expressions to be inserted. */
4640
4641 static bool
4642 find_assert_locations (void)
4643 {
4644 int *rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4645 int *bb_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4646 int *last_rpo = XCNEWVEC (int, last_basic_block + NUM_FIXED_BLOCKS);
4647 int rpo_cnt, i;
4648 bool need_asserts;
4649
4650 live = XCNEWVEC (sbitmap, last_basic_block + NUM_FIXED_BLOCKS);
4651 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
4652 for (i = 0; i < rpo_cnt; ++i)
4653 bb_rpo[rpo[i]] = i;
4654
4655 need_asserts = false;
4656 for (i = rpo_cnt-1; i >= 0; --i)
4657 {
4658 basic_block bb = BASIC_BLOCK (rpo[i]);
4659 edge e;
4660 edge_iterator ei;
4661
4662 if (!live[rpo[i]])
4663 {
4664 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
4665 sbitmap_zero (live[rpo[i]]);
4666 }
4667
4668 /* Process BB and update the live information with uses in
4669 this block. */
4670 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
4671
4672 /* Merge liveness into the predecessor blocks and free it. */
4673 if (!sbitmap_empty_p (live[rpo[i]]))
4674 {
4675 int pred_rpo = i;
4676 FOR_EACH_EDGE (e, ei, bb->preds)
4677 {
4678 int pred = e->src->index;
4679 if (e->flags & EDGE_DFS_BACK)
4680 continue;
4681
4682 if (!live[pred])
4683 {
4684 live[pred] = sbitmap_alloc (num_ssa_names);
4685 sbitmap_zero (live[pred]);
4686 }
4687 sbitmap_a_or_b (live[pred], live[pred], live[rpo[i]]);
4688
4689 if (bb_rpo[pred] < pred_rpo)
4690 pred_rpo = bb_rpo[pred];
4691 }
4692
4693 /* Record the RPO number of the last visited block that needs
4694 live information from this block. */
4695 last_rpo[rpo[i]] = pred_rpo;
4696 }
4697 else
4698 {
4699 sbitmap_free (live[rpo[i]]);
4700 live[rpo[i]] = NULL;
4701 }
4702
4703 /* We can free all successors live bitmaps if all their
4704 predecessors have been visited already. */
4705 FOR_EACH_EDGE (e, ei, bb->succs)
4706 if (last_rpo[e->dest->index] == i
4707 && live[e->dest->index])
4708 {
4709 sbitmap_free (live[e->dest->index]);
4710 live[e->dest->index] = NULL;
4711 }
4712 }
4713
4714 XDELETEVEC (rpo);
4715 XDELETEVEC (bb_rpo);
4716 XDELETEVEC (last_rpo);
4717 for (i = 0; i < last_basic_block + NUM_FIXED_BLOCKS; ++i)
4718 if (live[i])
4719 sbitmap_free (live[i]);
4720 XDELETEVEC (live);
4721
4722 return need_asserts;
4723 }
4724
4725 /* Create an ASSERT_EXPR for NAME and insert it in the location
4726 indicated by LOC. Return true if we made any edge insertions. */
4727
4728 static bool
4729 process_assert_insertions_for (tree name, assert_locus_t loc)
4730 {
4731 /* Build the comparison expression NAME_i COMP_CODE VAL. */
4732 gimple stmt;
4733 tree cond;
4734 gimple assert_stmt;
4735 edge_iterator ei;
4736 edge e;
4737
4738 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
4739 assert_stmt = build_assert_expr_for (cond, name);
4740 if (loc->e)
4741 {
4742 /* We have been asked to insert the assertion on an edge. This
4743 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4744 #if defined ENABLE_CHECKING
4745 gcc_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
4746 || gimple_code (gsi_stmt (loc->si)) == GIMPLE_SWITCH);
4747 #endif
4748
4749 gsi_insert_on_edge (loc->e, assert_stmt);
4750 return true;
4751 }
4752
4753 /* Otherwise, we can insert right after LOC->SI iff the
4754 statement must not be the last statement in the block. */
4755 stmt = gsi_stmt (loc->si);
4756 if (!stmt_ends_bb_p (stmt))
4757 {
4758 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
4759 return false;
4760 }
4761
4762 /* If STMT must be the last statement in BB, we can only insert new
4763 assertions on the non-abnormal edge out of BB. Note that since
4764 STMT is not control flow, there may only be one non-abnormal edge
4765 out of BB. */
4766 FOR_EACH_EDGE (e, ei, loc->bb->succs)
4767 if (!(e->flags & EDGE_ABNORMAL))
4768 {
4769 gsi_insert_on_edge (e, assert_stmt);
4770 return true;
4771 }
4772
4773 gcc_unreachable ();
4774 }
4775
4776
4777 /* Process all the insertions registered for every name N_i registered
4778 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4779 found in ASSERTS_FOR[i]. */
4780
4781 static void
4782 process_assert_insertions (void)
4783 {
4784 unsigned i;
4785 bitmap_iterator bi;
4786 bool update_edges_p = false;
4787 int num_asserts = 0;
4788
4789 if (dump_file && (dump_flags & TDF_DETAILS))
4790 dump_all_asserts (dump_file);
4791
4792 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4793 {
4794 assert_locus_t loc = asserts_for[i];
4795 gcc_assert (loc);
4796
4797 while (loc)
4798 {
4799 assert_locus_t next = loc->next;
4800 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
4801 free (loc);
4802 loc = next;
4803 num_asserts++;
4804 }
4805 }
4806
4807 if (update_edges_p)
4808 gsi_commit_edge_inserts ();
4809
4810 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
4811 num_asserts);
4812 }
4813
4814
4815 /* Traverse the flowgraph looking for conditional jumps to insert range
4816 expressions. These range expressions are meant to provide information
4817 to optimizations that need to reason in terms of value ranges. They
4818 will not be expanded into RTL. For instance, given:
4819
4820 x = ...
4821 y = ...
4822 if (x < y)
4823 y = x - 2;
4824 else
4825 x = y + 3;
4826
4827 this pass will transform the code into:
4828
4829 x = ...
4830 y = ...
4831 if (x < y)
4832 {
4833 x = ASSERT_EXPR <x, x < y>
4834 y = x - 2
4835 }
4836 else
4837 {
4838 y = ASSERT_EXPR <y, x <= y>
4839 x = y + 3
4840 }
4841
4842 The idea is that once copy and constant propagation have run, other
4843 optimizations will be able to determine what ranges of values can 'x'
4844 take in different paths of the code, simply by checking the reaching
4845 definition of 'x'. */
4846
4847 static void
4848 insert_range_assertions (void)
4849 {
4850 need_assert_for = BITMAP_ALLOC (NULL);
4851 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
4852
4853 calculate_dominance_info (CDI_DOMINATORS);
4854
4855 if (find_assert_locations ())
4856 {
4857 process_assert_insertions ();
4858 update_ssa (TODO_update_ssa_no_phi);
4859 }
4860
4861 if (dump_file && (dump_flags & TDF_DETAILS))
4862 {
4863 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
4864 dump_function_to_file (current_function_decl, dump_file, dump_flags);
4865 }
4866
4867 free (asserts_for);
4868 BITMAP_FREE (need_assert_for);
4869 }
4870
4871 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4872 and "struct" hacks. If VRP can determine that the
4873 array subscript is a constant, check if it is outside valid
4874 range. If the array subscript is a RANGE, warn if it is
4875 non-overlapping with valid range.
4876 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4877
4878 static void
4879 check_array_ref (tree ref, const location_t *location, bool ignore_off_by_one)
4880 {
4881 value_range_t* vr = NULL;
4882 tree low_sub, up_sub;
4883 tree low_bound, up_bound = array_ref_up_bound (ref);
4884
4885 low_sub = up_sub = TREE_OPERAND (ref, 1);
4886
4887 if (!up_bound || TREE_NO_WARNING (ref)
4888 || TREE_CODE (up_bound) != INTEGER_CST
4889 /* Can not check flexible arrays. */
4890 || (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
4891 && TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
4892 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
4893 /* Accesses after the end of arrays of size 0 (gcc
4894 extension) and 1 are likely intentional ("struct
4895 hack"). */
4896 || compare_tree_int (up_bound, 1) <= 0)
4897 return;
4898
4899 low_bound = array_ref_low_bound (ref);
4900
4901 if (TREE_CODE (low_sub) == SSA_NAME)
4902 {
4903 vr = get_value_range (low_sub);
4904 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4905 {
4906 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
4907 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
4908 }
4909 }
4910
4911 if (vr && vr->type == VR_ANTI_RANGE)
4912 {
4913 if (TREE_CODE (up_sub) == INTEGER_CST
4914 && tree_int_cst_lt (up_bound, up_sub)
4915 && TREE_CODE (low_sub) == INTEGER_CST
4916 && tree_int_cst_lt (low_sub, low_bound))
4917 {
4918 warning (OPT_Warray_bounds,
4919 "%Harray subscript is outside array bounds", location);
4920 TREE_NO_WARNING (ref) = 1;
4921 }
4922 }
4923 else if (TREE_CODE (up_sub) == INTEGER_CST
4924 && tree_int_cst_lt (up_bound, up_sub)
4925 && !tree_int_cst_equal (up_bound, up_sub)
4926 && (!ignore_off_by_one
4927 || !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
4928 up_bound,
4929 integer_one_node,
4930 0),
4931 up_sub)))
4932 {
4933 warning (OPT_Warray_bounds, "%Harray subscript is above array bounds",
4934 location);
4935 TREE_NO_WARNING (ref) = 1;
4936 }
4937 else if (TREE_CODE (low_sub) == INTEGER_CST
4938 && tree_int_cst_lt (low_sub, low_bound))
4939 {
4940 warning (OPT_Warray_bounds, "%Harray subscript is below array bounds",
4941 location);
4942 TREE_NO_WARNING (ref) = 1;
4943 }
4944 }
4945
4946 /* Searches if the expr T, located at LOCATION computes
4947 address of an ARRAY_REF, and call check_array_ref on it. */
4948
4949 static void
4950 search_for_addr_array(tree t, const location_t *location)
4951 {
4952 while (TREE_CODE (t) == SSA_NAME)
4953 {
4954 gimple g = SSA_NAME_DEF_STMT (t);
4955
4956 if (gimple_code (g) != GIMPLE_ASSIGN)
4957 return;
4958
4959 if (get_gimple_rhs_class (gimple_assign_rhs_code (g)) !=
4960 GIMPLE_SINGLE_RHS)
4961 return;
4962
4963 t = gimple_assign_rhs1 (g);
4964 }
4965
4966
4967 /* We are only interested in addresses of ARRAY_REF's. */
4968 if (TREE_CODE (t) != ADDR_EXPR)
4969 return;
4970
4971 /* Check each ARRAY_REFs in the reference chain. */
4972 do
4973 {
4974 if (TREE_CODE (t) == ARRAY_REF)
4975 check_array_ref (t, location, true /*ignore_off_by_one*/);
4976
4977 t = TREE_OPERAND(t,0);
4978 }
4979 while (handled_component_p (t));
4980 }
4981
4982 /* walk_tree() callback that checks if *TP is
4983 an ARRAY_REF inside an ADDR_EXPR (in which an array
4984 subscript one outside the valid range is allowed). Call
4985 check_array_ref for each ARRAY_REF found. The location is
4986 passed in DATA. */
4987
4988 static tree
4989 check_array_bounds (tree *tp, int *walk_subtree, void *data)
4990 {
4991 tree t = *tp;
4992 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4993 const location_t *location = (const location_t *) wi->info;
4994
4995 *walk_subtree = TRUE;
4996
4997 if (TREE_CODE (t) == ARRAY_REF)
4998 check_array_ref (t, location, false /*ignore_off_by_one*/);
4999
5000 if (TREE_CODE (t) == INDIRECT_REF
5001 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
5002 search_for_addr_array (TREE_OPERAND (t, 0), location);
5003
5004 if (TREE_CODE (t) == ADDR_EXPR)
5005 *walk_subtree = FALSE;
5006
5007 return NULL_TREE;
5008 }
5009
5010 /* Walk over all statements of all reachable BBs and call check_array_bounds
5011 on them. */
5012
5013 static void
5014 check_all_array_refs (void)
5015 {
5016 basic_block bb;
5017 gimple_stmt_iterator si;
5018
5019 FOR_EACH_BB (bb)
5020 {
5021 /* Skip bb's that are clearly unreachable. */
5022 if (single_pred_p (bb))
5023 {
5024 basic_block pred_bb = EDGE_PRED (bb, 0)->src;
5025 gimple ls = NULL;
5026
5027 if (!gsi_end_p (gsi_last_bb (pred_bb)))
5028 ls = gsi_stmt (gsi_last_bb (pred_bb));
5029
5030 if (ls && gimple_code (ls) == GIMPLE_COND
5031 && ((gimple_cond_false_p (ls)
5032 && (EDGE_PRED (bb, 0)->flags & EDGE_TRUE_VALUE))
5033 || (gimple_cond_true_p (ls)
5034 && (EDGE_PRED (bb, 0)->flags & EDGE_FALSE_VALUE))))
5035 continue;
5036 }
5037 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5038 {
5039 gimple stmt = gsi_stmt (si);
5040 const location_t *location = gimple_location_ptr (stmt);
5041 struct walk_stmt_info wi;
5042 if (!gimple_has_location (stmt))
5043 continue;
5044
5045 if (is_gimple_call (stmt))
5046 {
5047 size_t i;
5048 size_t n = gimple_call_num_args (stmt);
5049 for (i = 0; i < n; i++)
5050 {
5051 tree arg = gimple_call_arg (stmt, i);
5052 search_for_addr_array (arg, location);
5053 }
5054 }
5055 else
5056 {
5057 memset (&wi, 0, sizeof (wi));
5058 wi.info = CONST_CAST (void *, (const void *) location);
5059
5060 walk_gimple_op (gsi_stmt (si),
5061 check_array_bounds,
5062 &wi);
5063 }
5064 }
5065 }
5066 }
5067
5068 /* Convert range assertion expressions into the implied copies and
5069 copy propagate away the copies. Doing the trivial copy propagation
5070 here avoids the need to run the full copy propagation pass after
5071 VRP.
5072
5073 FIXME, this will eventually lead to copy propagation removing the
5074 names that had useful range information attached to them. For
5075 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
5076 then N_i will have the range [3, +INF].
5077
5078 However, by converting the assertion into the implied copy
5079 operation N_i = N_j, we will then copy-propagate N_j into the uses
5080 of N_i and lose the range information. We may want to hold on to
5081 ASSERT_EXPRs a little while longer as the ranges could be used in
5082 things like jump threading.
5083
5084 The problem with keeping ASSERT_EXPRs around is that passes after
5085 VRP need to handle them appropriately.
5086
5087 Another approach would be to make the range information a first
5088 class property of the SSA_NAME so that it can be queried from
5089 any pass. This is made somewhat more complex by the need for
5090 multiple ranges to be associated with one SSA_NAME. */
5091
5092 static void
5093 remove_range_assertions (void)
5094 {
5095 basic_block bb;
5096 gimple_stmt_iterator si;
5097
5098 /* Note that the BSI iterator bump happens at the bottom of the
5099 loop and no bump is necessary if we're removing the statement
5100 referenced by the current BSI. */
5101 FOR_EACH_BB (bb)
5102 for (si = gsi_start_bb (bb); !gsi_end_p (si);)
5103 {
5104 gimple stmt = gsi_stmt (si);
5105 gimple use_stmt;
5106
5107 if (is_gimple_assign (stmt)
5108 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
5109 {
5110 tree rhs = gimple_assign_rhs1 (stmt);
5111 tree var;
5112 tree cond = fold (ASSERT_EXPR_COND (rhs));
5113 use_operand_p use_p;
5114 imm_use_iterator iter;
5115
5116 gcc_assert (cond != boolean_false_node);
5117
5118 /* Propagate the RHS into every use of the LHS. */
5119 var = ASSERT_EXPR_VAR (rhs);
5120 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
5121 gimple_assign_lhs (stmt))
5122 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5123 {
5124 SET_USE (use_p, var);
5125 gcc_assert (TREE_CODE (var) == SSA_NAME);
5126 }
5127
5128 /* And finally, remove the copy, it is not needed. */
5129 gsi_remove (&si, true);
5130 release_defs (stmt);
5131 }
5132 else
5133 gsi_next (&si);
5134 }
5135 }
5136
5137
5138 /* Return true if STMT is interesting for VRP. */
5139
5140 static bool
5141 stmt_interesting_for_vrp (gimple stmt)
5142 {
5143 if (gimple_code (stmt) == GIMPLE_PHI
5144 && is_gimple_reg (gimple_phi_result (stmt))
5145 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))
5146 || POINTER_TYPE_P (TREE_TYPE (gimple_phi_result (stmt)))))
5147 return true;
5148 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
5149 {
5150 tree lhs = gimple_get_lhs (stmt);
5151
5152 /* In general, assignments with virtual operands are not useful
5153 for deriving ranges, with the obvious exception of calls to
5154 builtin functions. */
5155 if (lhs && TREE_CODE (lhs) == SSA_NAME
5156 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5157 || POINTER_TYPE_P (TREE_TYPE (lhs)))
5158 && ((is_gimple_call (stmt)
5159 && gimple_call_fndecl (stmt) != NULL_TREE
5160 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
5161 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
5162 return true;
5163 }
5164 else if (gimple_code (stmt) == GIMPLE_COND
5165 || gimple_code (stmt) == GIMPLE_SWITCH)
5166 return true;
5167
5168 return false;
5169 }
5170
5171
5172 /* Initialize local data structures for VRP. */
5173
5174 static void
5175 vrp_initialize (void)
5176 {
5177 basic_block bb;
5178
5179 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
5180 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
5181
5182 FOR_EACH_BB (bb)
5183 {
5184 gimple_stmt_iterator si;
5185
5186 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5187 {
5188 gimple phi = gsi_stmt (si);
5189 if (!stmt_interesting_for_vrp (phi))
5190 {
5191 tree lhs = PHI_RESULT (phi);
5192 set_value_range_to_varying (get_value_range (lhs));
5193 prop_set_simulate_again (phi, false);
5194 }
5195 else
5196 prop_set_simulate_again (phi, true);
5197 }
5198
5199 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
5200 {
5201 gimple stmt = gsi_stmt (si);
5202
5203 if (!stmt_interesting_for_vrp (stmt))
5204 {
5205 ssa_op_iter i;
5206 tree def;
5207 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
5208 set_value_range_to_varying (get_value_range (def));
5209 prop_set_simulate_again (stmt, false);
5210 }
5211 else
5212 {
5213 prop_set_simulate_again (stmt, true);
5214 }
5215 }
5216 }
5217 }
5218
5219
5220 /* Visit assignment STMT. If it produces an interesting range, record
5221 the SSA name in *OUTPUT_P. */
5222
5223 static enum ssa_prop_result
5224 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
5225 {
5226 tree def, lhs;
5227 ssa_op_iter iter;
5228 enum gimple_code code = gimple_code (stmt);
5229 lhs = gimple_get_lhs (stmt);
5230
5231 /* We only keep track of ranges in integral and pointer types. */
5232 if (TREE_CODE (lhs) == SSA_NAME
5233 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5234 /* It is valid to have NULL MIN/MAX values on a type. See
5235 build_range_type. */
5236 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
5237 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
5238 || POINTER_TYPE_P (TREE_TYPE (lhs))))
5239 {
5240 struct loop *l;
5241 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5242
5243 if (code == GIMPLE_CALL)
5244 extract_range_basic (&new_vr, stmt);
5245 else
5246 extract_range_from_assignment (&new_vr, stmt);
5247
5248 /* If STMT is inside a loop, we may be able to know something
5249 else about the range of LHS by examining scalar evolution
5250 information. */
5251 if (current_loops && (l = loop_containing_stmt (stmt)))
5252 adjust_range_with_scev (&new_vr, l, stmt, lhs);
5253
5254 if (update_value_range (lhs, &new_vr))
5255 {
5256 *output_p = lhs;
5257
5258 if (dump_file && (dump_flags & TDF_DETAILS))
5259 {
5260 fprintf (dump_file, "Found new range for ");
5261 print_generic_expr (dump_file, lhs, 0);
5262 fprintf (dump_file, ": ");
5263 dump_value_range (dump_file, &new_vr);
5264 fprintf (dump_file, "\n\n");
5265 }
5266
5267 if (new_vr.type == VR_VARYING)
5268 return SSA_PROP_VARYING;
5269
5270 return SSA_PROP_INTERESTING;
5271 }
5272
5273 return SSA_PROP_NOT_INTERESTING;
5274 }
5275
5276 /* Every other statement produces no useful ranges. */
5277 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5278 set_value_range_to_varying (get_value_range (def));
5279
5280 return SSA_PROP_VARYING;
5281 }
5282
5283 /* Helper that gets the value range of the SSA_NAME with version I
5284 or a symbolic range containing the SSA_NAME only if the value range
5285 is varying or undefined. */
5286
5287 static inline value_range_t
5288 get_vr_for_comparison (int i)
5289 {
5290 value_range_t vr = *(vr_value[i]);
5291
5292 /* If name N_i does not have a valid range, use N_i as its own
5293 range. This allows us to compare against names that may
5294 have N_i in their ranges. */
5295 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
5296 {
5297 vr.type = VR_RANGE;
5298 vr.min = ssa_name (i);
5299 vr.max = ssa_name (i);
5300 }
5301
5302 return vr;
5303 }
5304
5305 /* Compare all the value ranges for names equivalent to VAR with VAL
5306 using comparison code COMP. Return the same value returned by
5307 compare_range_with_value, including the setting of
5308 *STRICT_OVERFLOW_P. */
5309
5310 static tree
5311 compare_name_with_value (enum tree_code comp, tree var, tree val,
5312 bool *strict_overflow_p)
5313 {
5314 bitmap_iterator bi;
5315 unsigned i;
5316 bitmap e;
5317 tree retval, t;
5318 int used_strict_overflow;
5319 bool sop;
5320 value_range_t equiv_vr;
5321
5322 /* Get the set of equivalences for VAR. */
5323 e = get_value_range (var)->equiv;
5324
5325 /* Start at -1. Set it to 0 if we do a comparison without relying
5326 on overflow, or 1 if all comparisons rely on overflow. */
5327 used_strict_overflow = -1;
5328
5329 /* Compare vars' value range with val. */
5330 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
5331 sop = false;
5332 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
5333 if (retval)
5334 used_strict_overflow = sop ? 1 : 0;
5335
5336 /* If the equiv set is empty we have done all work we need to do. */
5337 if (e == NULL)
5338 {
5339 if (retval
5340 && used_strict_overflow > 0)
5341 *strict_overflow_p = true;
5342 return retval;
5343 }
5344
5345 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
5346 {
5347 equiv_vr = get_vr_for_comparison (i);
5348 sop = false;
5349 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
5350 if (t)
5351 {
5352 /* If we get different answers from different members
5353 of the equivalence set this check must be in a dead
5354 code region. Folding it to a trap representation
5355 would be correct here. For now just return don't-know. */
5356 if (retval != NULL
5357 && t != retval)
5358 {
5359 retval = NULL_TREE;
5360 break;
5361 }
5362 retval = t;
5363
5364 if (!sop)
5365 used_strict_overflow = 0;
5366 else if (used_strict_overflow < 0)
5367 used_strict_overflow = 1;
5368 }
5369 }
5370
5371 if (retval
5372 && used_strict_overflow > 0)
5373 *strict_overflow_p = true;
5374
5375 return retval;
5376 }
5377
5378
5379 /* Given a comparison code COMP and names N1 and N2, compare all the
5380 ranges equivalent to N1 against all the ranges equivalent to N2
5381 to determine the value of N1 COMP N2. Return the same value
5382 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
5383 whether we relied on an overflow infinity in the comparison. */
5384
5385
5386 static tree
5387 compare_names (enum tree_code comp, tree n1, tree n2,
5388 bool *strict_overflow_p)
5389 {
5390 tree t, retval;
5391 bitmap e1, e2;
5392 bitmap_iterator bi1, bi2;
5393 unsigned i1, i2;
5394 int used_strict_overflow;
5395 static bitmap_obstack *s_obstack = NULL;
5396 static bitmap s_e1 = NULL, s_e2 = NULL;
5397
5398 /* Compare the ranges of every name equivalent to N1 against the
5399 ranges of every name equivalent to N2. */
5400 e1 = get_value_range (n1)->equiv;
5401 e2 = get_value_range (n2)->equiv;
5402
5403 /* Use the fake bitmaps if e1 or e2 are not available. */
5404 if (s_obstack == NULL)
5405 {
5406 s_obstack = XNEW (bitmap_obstack);
5407 bitmap_obstack_initialize (s_obstack);
5408 s_e1 = BITMAP_ALLOC (s_obstack);
5409 s_e2 = BITMAP_ALLOC (s_obstack);
5410 }
5411 if (e1 == NULL)
5412 e1 = s_e1;
5413 if (e2 == NULL)
5414 e2 = s_e2;
5415
5416 /* Add N1 and N2 to their own set of equivalences to avoid
5417 duplicating the body of the loop just to check N1 and N2
5418 ranges. */
5419 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
5420 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
5421
5422 /* If the equivalence sets have a common intersection, then the two
5423 names can be compared without checking their ranges. */
5424 if (bitmap_intersect_p (e1, e2))
5425 {
5426 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5427 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5428
5429 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
5430 ? boolean_true_node
5431 : boolean_false_node;
5432 }
5433
5434 /* Start at -1. Set it to 0 if we do a comparison without relying
5435 on overflow, or 1 if all comparisons rely on overflow. */
5436 used_strict_overflow = -1;
5437
5438 /* Otherwise, compare all the equivalent ranges. First, add N1 and
5439 N2 to their own set of equivalences to avoid duplicating the body
5440 of the loop just to check N1 and N2 ranges. */
5441 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
5442 {
5443 value_range_t vr1 = get_vr_for_comparison (i1);
5444
5445 t = retval = NULL_TREE;
5446 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
5447 {
5448 bool sop = false;
5449
5450 value_range_t vr2 = get_vr_for_comparison (i2);
5451
5452 t = compare_ranges (comp, &vr1, &vr2, &sop);
5453 if (t)
5454 {
5455 /* If we get different answers from different members
5456 of the equivalence set this check must be in a dead
5457 code region. Folding it to a trap representation
5458 would be correct here. For now just return don't-know. */
5459 if (retval != NULL
5460 && t != retval)
5461 {
5462 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5463 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5464 return NULL_TREE;
5465 }
5466 retval = t;
5467
5468 if (!sop)
5469 used_strict_overflow = 0;
5470 else if (used_strict_overflow < 0)
5471 used_strict_overflow = 1;
5472 }
5473 }
5474
5475 if (retval)
5476 {
5477 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5478 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5479 if (used_strict_overflow > 0)
5480 *strict_overflow_p = true;
5481 return retval;
5482 }
5483 }
5484
5485 /* None of the equivalent ranges are useful in computing this
5486 comparison. */
5487 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
5488 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
5489 return NULL_TREE;
5490 }
5491
5492 /* Helper function for vrp_evaluate_conditional_warnv. */
5493
5494 static tree
5495 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
5496 tree op0, tree op1,
5497 bool * strict_overflow_p)
5498 {
5499 value_range_t *vr0, *vr1;
5500
5501 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5502 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5503
5504 if (vr0 && vr1)
5505 return compare_ranges (code, vr0, vr1, strict_overflow_p);
5506 else if (vr0 && vr1 == NULL)
5507 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
5508 else if (vr0 == NULL && vr1)
5509 return (compare_range_with_value
5510 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
5511 return NULL;
5512 }
5513
5514 /* Helper function for vrp_evaluate_conditional_warnv. */
5515
5516 static tree
5517 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
5518 tree op1, bool use_equiv_p,
5519 bool *strict_overflow_p, bool *only_ranges)
5520 {
5521 tree ret;
5522 if (only_ranges)
5523 *only_ranges = true;
5524
5525 /* We only deal with integral and pointer types. */
5526 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
5527 && !POINTER_TYPE_P (TREE_TYPE (op0)))
5528 return NULL_TREE;
5529
5530 if (use_equiv_p)
5531 {
5532 if (only_ranges
5533 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
5534 (code, op0, op1, strict_overflow_p)))
5535 return ret;
5536 *only_ranges = false;
5537 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
5538 return compare_names (code, op0, op1, strict_overflow_p);
5539 else if (TREE_CODE (op0) == SSA_NAME)
5540 return compare_name_with_value (code, op0, op1, strict_overflow_p);
5541 else if (TREE_CODE (op1) == SSA_NAME)
5542 return (compare_name_with_value
5543 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
5544 }
5545 else
5546 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
5547 strict_overflow_p);
5548 return NULL_TREE;
5549 }
5550
5551 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
5552 information. Return NULL if the conditional can not be evaluated.
5553 The ranges of all the names equivalent with the operands in COND
5554 will be used when trying to compute the value. If the result is
5555 based on undefined signed overflow, issue a warning if
5556 appropriate. */
5557
5558 tree
5559 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
5560 {
5561 bool sop;
5562 tree ret;
5563 bool only_ranges;
5564
5565 sop = false;
5566 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
5567 &only_ranges);
5568
5569 if (ret && sop)
5570 {
5571 enum warn_strict_overflow_code wc;
5572 const char* warnmsg;
5573
5574 if (is_gimple_min_invariant (ret))
5575 {
5576 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
5577 warnmsg = G_("assuming signed overflow does not occur when "
5578 "simplifying conditional to constant");
5579 }
5580 else
5581 {
5582 wc = WARN_STRICT_OVERFLOW_COMPARISON;
5583 warnmsg = G_("assuming signed overflow does not occur when "
5584 "simplifying conditional");
5585 }
5586
5587 if (issue_strict_overflow_warning (wc))
5588 {
5589 location_t location;
5590
5591 if (!gimple_has_location (stmt))
5592 location = input_location;
5593 else
5594 location = gimple_location (stmt);
5595 warning (OPT_Wstrict_overflow, "%H%s", &location, warnmsg);
5596 }
5597 }
5598
5599 if (warn_type_limits
5600 && ret && only_ranges
5601 && TREE_CODE_CLASS (code) == tcc_comparison
5602 && TREE_CODE (op0) == SSA_NAME)
5603 {
5604 /* If the comparison is being folded and the operand on the LHS
5605 is being compared against a constant value that is outside of
5606 the natural range of OP0's type, then the predicate will
5607 always fold regardless of the value of OP0. If -Wtype-limits
5608 was specified, emit a warning. */
5609 const char *warnmsg = NULL;
5610 tree type = TREE_TYPE (op0);
5611 value_range_t *vr0 = get_value_range (op0);
5612
5613 if (vr0->type != VR_VARYING
5614 && INTEGRAL_TYPE_P (type)
5615 && vrp_val_is_min (vr0->min)
5616 && vrp_val_is_max (vr0->max)
5617 && is_gimple_min_invariant (op1))
5618 {
5619 if (integer_zerop (ret))
5620 warnmsg = G_("comparison always false due to limited range of "
5621 "data type");
5622 else
5623 warnmsg = G_("comparison always true due to limited range of "
5624 "data type");
5625 }
5626
5627 if (warnmsg)
5628 {
5629 location_t location;
5630
5631 if (!gimple_has_location (stmt))
5632 location = input_location;
5633 else
5634 location = gimple_location (stmt);
5635
5636 warning (OPT_Wtype_limits, "%H%s", &location, warnmsg);
5637 }
5638 }
5639
5640 return ret;
5641 }
5642
5643
5644 /* Visit conditional statement STMT. If we can determine which edge
5645 will be taken out of STMT's basic block, record it in
5646 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5647 SSA_PROP_VARYING. */
5648
5649 static enum ssa_prop_result
5650 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
5651 {
5652 tree val;
5653 bool sop;
5654
5655 *taken_edge_p = NULL;
5656
5657 if (dump_file && (dump_flags & TDF_DETAILS))
5658 {
5659 tree use;
5660 ssa_op_iter i;
5661
5662 fprintf (dump_file, "\nVisiting conditional with predicate: ");
5663 print_gimple_stmt (dump_file, stmt, 0, 0);
5664 fprintf (dump_file, "\nWith known ranges\n");
5665
5666 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
5667 {
5668 fprintf (dump_file, "\t");
5669 print_generic_expr (dump_file, use, 0);
5670 fprintf (dump_file, ": ");
5671 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
5672 }
5673
5674 fprintf (dump_file, "\n");
5675 }
5676
5677 /* Compute the value of the predicate COND by checking the known
5678 ranges of each of its operands.
5679
5680 Note that we cannot evaluate all the equivalent ranges here
5681 because those ranges may not yet be final and with the current
5682 propagation strategy, we cannot determine when the value ranges
5683 of the names in the equivalence set have changed.
5684
5685 For instance, given the following code fragment
5686
5687 i_5 = PHI <8, i_13>
5688 ...
5689 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
5690 if (i_14 == 1)
5691 ...
5692
5693 Assume that on the first visit to i_14, i_5 has the temporary
5694 range [8, 8] because the second argument to the PHI function is
5695 not yet executable. We derive the range ~[0, 0] for i_14 and the
5696 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
5697 the first time, since i_14 is equivalent to the range [8, 8], we
5698 determine that the predicate is always false.
5699
5700 On the next round of propagation, i_13 is determined to be
5701 VARYING, which causes i_5 to drop down to VARYING. So, another
5702 visit to i_14 is scheduled. In this second visit, we compute the
5703 exact same range and equivalence set for i_14, namely ~[0, 0] and
5704 { i_5 }. But we did not have the previous range for i_5
5705 registered, so vrp_visit_assignment thinks that the range for
5706 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
5707 is not visited again, which stops propagation from visiting
5708 statements in the THEN clause of that if().
5709
5710 To properly fix this we would need to keep the previous range
5711 value for the names in the equivalence set. This way we would've
5712 discovered that from one visit to the other i_5 changed from
5713 range [8, 8] to VR_VARYING.
5714
5715 However, fixing this apparent limitation may not be worth the
5716 additional checking. Testing on several code bases (GCC, DLV,
5717 MICO, TRAMP3D and SPEC2000) showed that doing this results in
5718 4 more predicates folded in SPEC. */
5719 sop = false;
5720
5721 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
5722 gimple_cond_lhs (stmt),
5723 gimple_cond_rhs (stmt),
5724 false, &sop, NULL);
5725 if (val)
5726 {
5727 if (!sop)
5728 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
5729 else
5730 {
5731 if (dump_file && (dump_flags & TDF_DETAILS))
5732 fprintf (dump_file,
5733 "\nIgnoring predicate evaluation because "
5734 "it assumes that signed overflow is undefined");
5735 val = NULL_TREE;
5736 }
5737 }
5738
5739 if (dump_file && (dump_flags & TDF_DETAILS))
5740 {
5741 fprintf (dump_file, "\nPredicate evaluates to: ");
5742 if (val == NULL_TREE)
5743 fprintf (dump_file, "DON'T KNOW\n");
5744 else
5745 print_generic_stmt (dump_file, val, 0);
5746 }
5747
5748 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
5749 }
5750
5751 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
5752 that includes the value VAL. The search is restricted to the range
5753 [START_IDX, n - 1] where n is the size of VEC.
5754
5755 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
5756 returned.
5757
5758 If there is no CASE_LABEL for VAL and the is one that is larger than VAL,
5759 it is placed in IDX and false is returned.
5760
5761 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
5762 returned. */
5763
5764 static bool
5765 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
5766 {
5767 size_t n = gimple_switch_num_labels (stmt);
5768 size_t low, high;
5769
5770 /* Find case label for minimum of the value range or the next one.
5771 At each iteration we are searching in [low, high - 1]. */
5772
5773 for (low = start_idx, high = n; high != low; )
5774 {
5775 tree t;
5776 int cmp;
5777 /* Note that i != high, so we never ask for n. */
5778 size_t i = (high + low) / 2;
5779 t = gimple_switch_label (stmt, i);
5780
5781 /* Cache the result of comparing CASE_LOW and val. */
5782 cmp = tree_int_cst_compare (CASE_LOW (t), val);
5783
5784 if (cmp == 0)
5785 {
5786 /* Ranges cannot be empty. */
5787 *idx = i;
5788 return true;
5789 }
5790 else if (cmp > 0)
5791 high = i;
5792 else
5793 {
5794 low = i + 1;
5795 if (CASE_HIGH (t) != NULL
5796 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
5797 {
5798 *idx = i;
5799 return true;
5800 }
5801 }
5802 }
5803
5804 *idx = high;
5805 return false;
5806 }
5807
5808 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
5809 for values between MIN and MAX. The first index is placed in MIN_IDX. The
5810 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
5811 then MAX_IDX < MIN_IDX.
5812 Returns true if the default label is not needed. */
5813
5814 static bool
5815 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
5816 size_t *max_idx)
5817 {
5818 size_t i, j;
5819 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
5820 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
5821
5822 if (i == j
5823 && min_take_default
5824 && max_take_default)
5825 {
5826 /* Only the default case label reached.
5827 Return an empty range. */
5828 *min_idx = 1;
5829 *max_idx = 0;
5830 return false;
5831 }
5832 else
5833 {
5834 bool take_default = min_take_default || max_take_default;
5835 tree low, high;
5836 size_t k;
5837
5838 if (max_take_default)
5839 j--;
5840
5841 /* If the case label range is continuous, we do not need
5842 the default case label. Verify that. */
5843 high = CASE_LOW (gimple_switch_label (stmt, i));
5844 if (CASE_HIGH (gimple_switch_label (stmt, i)))
5845 high = CASE_HIGH (gimple_switch_label (stmt, i));
5846 for (k = i + 1; k <= j; ++k)
5847 {
5848 low = CASE_LOW (gimple_switch_label (stmt, k));
5849 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high, 0)))
5850 {
5851 take_default = true;
5852 break;
5853 }
5854 high = low;
5855 if (CASE_HIGH (gimple_switch_label (stmt, k)))
5856 high = CASE_HIGH (gimple_switch_label (stmt, k));
5857 }
5858
5859 *min_idx = i;
5860 *max_idx = j;
5861 return !take_default;
5862 }
5863 }
5864
5865 /* Visit switch statement STMT. If we can determine which edge
5866 will be taken out of STMT's basic block, record it in
5867 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5868 SSA_PROP_VARYING. */
5869
5870 static enum ssa_prop_result
5871 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
5872 {
5873 tree op, val;
5874 value_range_t *vr;
5875 size_t i = 0, j = 0, n;
5876 bool take_default;
5877
5878 *taken_edge_p = NULL;
5879 op = gimple_switch_index (stmt);
5880 if (TREE_CODE (op) != SSA_NAME)
5881 return SSA_PROP_VARYING;
5882
5883 vr = get_value_range (op);
5884 if (dump_file && (dump_flags & TDF_DETAILS))
5885 {
5886 fprintf (dump_file, "\nVisiting switch expression with operand ");
5887 print_generic_expr (dump_file, op, 0);
5888 fprintf (dump_file, " with known range ");
5889 dump_value_range (dump_file, vr);
5890 fprintf (dump_file, "\n");
5891 }
5892
5893 if (vr->type != VR_RANGE
5894 || symbolic_range_p (vr))
5895 return SSA_PROP_VARYING;
5896
5897 /* Find the single edge that is taken from the switch expression. */
5898 n = gimple_switch_num_labels (stmt);
5899
5900 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
5901
5902 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
5903 label */
5904 if (j < i)
5905 {
5906 gcc_assert (take_default);
5907 val = gimple_switch_default_label (stmt);
5908 }
5909 else
5910 {
5911 /* Check if labels with index i to j and maybe the default label
5912 are all reaching the same label. */
5913
5914 val = gimple_switch_label (stmt, i);
5915 if (take_default
5916 && CASE_LABEL (gimple_switch_default_label (stmt))
5917 != CASE_LABEL (val))
5918 {
5919 if (dump_file && (dump_flags & TDF_DETAILS))
5920 fprintf (dump_file, " not a single destination for this "
5921 "range\n");
5922 return SSA_PROP_VARYING;
5923 }
5924 for (++i; i <= j; ++i)
5925 {
5926 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
5927 {
5928 if (dump_file && (dump_flags & TDF_DETAILS))
5929 fprintf (dump_file, " not a single destination for this "
5930 "range\n");
5931 return SSA_PROP_VARYING;
5932 }
5933 }
5934 }
5935
5936 *taken_edge_p = find_edge (gimple_bb (stmt),
5937 label_to_block (CASE_LABEL (val)));
5938
5939 if (dump_file && (dump_flags & TDF_DETAILS))
5940 {
5941 fprintf (dump_file, " will take edge to ");
5942 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
5943 }
5944
5945 return SSA_PROP_INTERESTING;
5946 }
5947
5948
5949 /* Evaluate statement STMT. If the statement produces a useful range,
5950 return SSA_PROP_INTERESTING and record the SSA name with the
5951 interesting range into *OUTPUT_P.
5952
5953 If STMT is a conditional branch and we can determine its truth
5954 value, the taken edge is recorded in *TAKEN_EDGE_P.
5955
5956 If STMT produces a varying value, return SSA_PROP_VARYING. */
5957
5958 static enum ssa_prop_result
5959 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
5960 {
5961 tree def;
5962 ssa_op_iter iter;
5963
5964 if (dump_file && (dump_flags & TDF_DETAILS))
5965 {
5966 fprintf (dump_file, "\nVisiting statement:\n");
5967 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
5968 fprintf (dump_file, "\n");
5969 }
5970
5971 if (is_gimple_assign (stmt) || is_gimple_call (stmt))
5972 {
5973 /* In general, assignments with virtual operands are not useful
5974 for deriving ranges, with the obvious exception of calls to
5975 builtin functions. */
5976
5977 if ((is_gimple_call (stmt)
5978 && gimple_call_fndecl (stmt) != NULL_TREE
5979 && DECL_IS_BUILTIN (gimple_call_fndecl (stmt)))
5980 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
5981 return vrp_visit_assignment_or_call (stmt, output_p);
5982 }
5983 else if (gimple_code (stmt) == GIMPLE_COND)
5984 return vrp_visit_cond_stmt (stmt, taken_edge_p);
5985 else if (gimple_code (stmt) == GIMPLE_SWITCH)
5986 return vrp_visit_switch_stmt (stmt, taken_edge_p);
5987
5988 /* All other statements produce nothing of interest for VRP, so mark
5989 their outputs varying and prevent further simulation. */
5990 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5991 set_value_range_to_varying (get_value_range (def));
5992
5993 return SSA_PROP_VARYING;
5994 }
5995
5996
5997 /* Meet operation for value ranges. Given two value ranges VR0 and
5998 VR1, store in VR0 a range that contains both VR0 and VR1. This
5999 may not be the smallest possible such range. */
6000
6001 static void
6002 vrp_meet (value_range_t *vr0, value_range_t *vr1)
6003 {
6004 if (vr0->type == VR_UNDEFINED)
6005 {
6006 copy_value_range (vr0, vr1);
6007 return;
6008 }
6009
6010 if (vr1->type == VR_UNDEFINED)
6011 {
6012 /* Nothing to do. VR0 already has the resulting range. */
6013 return;
6014 }
6015
6016 if (vr0->type == VR_VARYING)
6017 {
6018 /* Nothing to do. VR0 already has the resulting range. */
6019 return;
6020 }
6021
6022 if (vr1->type == VR_VARYING)
6023 {
6024 set_value_range_to_varying (vr0);
6025 return;
6026 }
6027
6028 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
6029 {
6030 int cmp;
6031 tree min, max;
6032
6033 /* Compute the convex hull of the ranges. The lower limit of
6034 the new range is the minimum of the two ranges. If they
6035 cannot be compared, then give up. */
6036 cmp = compare_values (vr0->min, vr1->min);
6037 if (cmp == 0 || cmp == 1)
6038 min = vr1->min;
6039 else if (cmp == -1)
6040 min = vr0->min;
6041 else
6042 goto give_up;
6043
6044 /* Similarly, the upper limit of the new range is the maximum
6045 of the two ranges. If they cannot be compared, then
6046 give up. */
6047 cmp = compare_values (vr0->max, vr1->max);
6048 if (cmp == 0 || cmp == -1)
6049 max = vr1->max;
6050 else if (cmp == 1)
6051 max = vr0->max;
6052 else
6053 goto give_up;
6054
6055 /* Check for useless ranges. */
6056 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
6057 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
6058 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
6059 goto give_up;
6060
6061 /* The resulting set of equivalences is the intersection of
6062 the two sets. */
6063 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6064 bitmap_and_into (vr0->equiv, vr1->equiv);
6065 else if (vr0->equiv && !vr1->equiv)
6066 bitmap_clear (vr0->equiv);
6067
6068 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
6069 }
6070 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
6071 {
6072 /* Two anti-ranges meet only if their complements intersect.
6073 Only handle the case of identical ranges. */
6074 if (compare_values (vr0->min, vr1->min) == 0
6075 && compare_values (vr0->max, vr1->max) == 0
6076 && compare_values (vr0->min, vr0->max) == 0)
6077 {
6078 /* The resulting set of equivalences is the intersection of
6079 the two sets. */
6080 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6081 bitmap_and_into (vr0->equiv, vr1->equiv);
6082 else if (vr0->equiv && !vr1->equiv)
6083 bitmap_clear (vr0->equiv);
6084 }
6085 else
6086 goto give_up;
6087 }
6088 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
6089 {
6090 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
6091 only handle the case where the ranges have an empty intersection.
6092 The result of the meet operation is the anti-range. */
6093 if (!symbolic_range_p (vr0)
6094 && !symbolic_range_p (vr1)
6095 && !value_ranges_intersect_p (vr0, vr1))
6096 {
6097 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
6098 set. We need to compute the intersection of the two
6099 equivalence sets. */
6100 if (vr1->type == VR_ANTI_RANGE)
6101 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
6102
6103 /* The resulting set of equivalences is the intersection of
6104 the two sets. */
6105 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
6106 bitmap_and_into (vr0->equiv, vr1->equiv);
6107 else if (vr0->equiv && !vr1->equiv)
6108 bitmap_clear (vr0->equiv);
6109 }
6110 else
6111 goto give_up;
6112 }
6113 else
6114 gcc_unreachable ();
6115
6116 return;
6117
6118 give_up:
6119 /* Failed to find an efficient meet. Before giving up and setting
6120 the result to VARYING, see if we can at least derive a useful
6121 anti-range. FIXME, all this nonsense about distinguishing
6122 anti-ranges from ranges is necessary because of the odd
6123 semantics of range_includes_zero_p and friends. */
6124 if (!symbolic_range_p (vr0)
6125 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
6126 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
6127 && !symbolic_range_p (vr1)
6128 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
6129 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
6130 {
6131 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
6132
6133 /* Since this meet operation did not result from the meeting of
6134 two equivalent names, VR0 cannot have any equivalences. */
6135 if (vr0->equiv)
6136 bitmap_clear (vr0->equiv);
6137 }
6138 else
6139 set_value_range_to_varying (vr0);
6140 }
6141
6142
6143 /* Visit all arguments for PHI node PHI that flow through executable
6144 edges. If a valid value range can be derived from all the incoming
6145 value ranges, set a new range for the LHS of PHI. */
6146
6147 static enum ssa_prop_result
6148 vrp_visit_phi_node (gimple phi)
6149 {
6150 size_t i;
6151 tree lhs = PHI_RESULT (phi);
6152 value_range_t *lhs_vr = get_value_range (lhs);
6153 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
6154 int edges, old_edges;
6155
6156 copy_value_range (&vr_result, lhs_vr);
6157
6158 if (dump_file && (dump_flags & TDF_DETAILS))
6159 {
6160 fprintf (dump_file, "\nVisiting PHI node: ");
6161 print_gimple_stmt (dump_file, phi, 0, dump_flags);
6162 }
6163
6164 edges = 0;
6165 for (i = 0; i < gimple_phi_num_args (phi); i++)
6166 {
6167 edge e = gimple_phi_arg_edge (phi, i);
6168
6169 if (dump_file && (dump_flags & TDF_DETAILS))
6170 {
6171 fprintf (dump_file,
6172 "\n Argument #%d (%d -> %d %sexecutable)\n",
6173 (int) i, e->src->index, e->dest->index,
6174 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
6175 }
6176
6177 if (e->flags & EDGE_EXECUTABLE)
6178 {
6179 tree arg = PHI_ARG_DEF (phi, i);
6180 value_range_t vr_arg;
6181
6182 ++edges;
6183
6184 if (TREE_CODE (arg) == SSA_NAME)
6185 {
6186 vr_arg = *(get_value_range (arg));
6187 }
6188 else
6189 {
6190 if (is_overflow_infinity (arg))
6191 {
6192 arg = copy_node (arg);
6193 TREE_OVERFLOW (arg) = 0;
6194 }
6195
6196 vr_arg.type = VR_RANGE;
6197 vr_arg.min = arg;
6198 vr_arg.max = arg;
6199 vr_arg.equiv = NULL;
6200 }
6201
6202 if (dump_file && (dump_flags & TDF_DETAILS))
6203 {
6204 fprintf (dump_file, "\t");
6205 print_generic_expr (dump_file, arg, dump_flags);
6206 fprintf (dump_file, "\n\tValue: ");
6207 dump_value_range (dump_file, &vr_arg);
6208 fprintf (dump_file, "\n");
6209 }
6210
6211 vrp_meet (&vr_result, &vr_arg);
6212
6213 if (vr_result.type == VR_VARYING)
6214 break;
6215 }
6216 }
6217
6218 if (vr_result.type == VR_VARYING)
6219 goto varying;
6220
6221 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
6222 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
6223
6224 /* To prevent infinite iterations in the algorithm, derive ranges
6225 when the new value is slightly bigger or smaller than the
6226 previous one. We don't do this if we have seen a new executable
6227 edge; this helps us avoid an overflow infinity for conditionals
6228 which are not in a loop. */
6229 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
6230 && edges <= old_edges)
6231 {
6232 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
6233 {
6234 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
6235 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
6236
6237 /* If the new minimum is smaller or larger than the previous
6238 one, go all the way to -INF. In the first case, to avoid
6239 iterating millions of times to reach -INF, and in the
6240 other case to avoid infinite bouncing between different
6241 minimums. */
6242 if (cmp_min > 0 || cmp_min < 0)
6243 {
6244 /* If we will end up with a (-INF, +INF) range, set it
6245 to VARYING. */
6246 if (vrp_val_is_max (vr_result.max))
6247 goto varying;
6248
6249 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
6250 || !vrp_var_may_overflow (lhs, phi))
6251 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
6252 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
6253 vr_result.min =
6254 negative_overflow_infinity (TREE_TYPE (vr_result.min));
6255 else
6256 goto varying;
6257 }
6258
6259 /* Similarly, if the new maximum is smaller or larger than
6260 the previous one, go all the way to +INF. */
6261 if (cmp_max < 0 || cmp_max > 0)
6262 {
6263 /* If we will end up with a (-INF, +INF) range, set it
6264 to VARYING. */
6265 if (vrp_val_is_min (vr_result.min))
6266 goto varying;
6267
6268 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
6269 || !vrp_var_may_overflow (lhs, phi))
6270 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
6271 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
6272 vr_result.max =
6273 positive_overflow_infinity (TREE_TYPE (vr_result.max));
6274 else
6275 goto varying;
6276 }
6277 }
6278 }
6279
6280 /* If the new range is different than the previous value, keep
6281 iterating. */
6282 if (update_value_range (lhs, &vr_result))
6283 return SSA_PROP_INTERESTING;
6284
6285 /* Nothing changed, don't add outgoing edges. */
6286 return SSA_PROP_NOT_INTERESTING;
6287
6288 /* No match found. Set the LHS to VARYING. */
6289 varying:
6290 set_value_range_to_varying (lhs_vr);
6291 return SSA_PROP_VARYING;
6292 }
6293
6294 /* Simplify boolean operations if the source is known
6295 to be already a boolean. */
6296 static bool
6297 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
6298 {
6299 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6300 tree val = NULL;
6301 tree op0, op1;
6302 value_range_t *vr;
6303 bool sop = false;
6304 bool need_conversion;
6305
6306 op0 = gimple_assign_rhs1 (stmt);
6307 vr = get_value_range (op0);
6308 if (TYPE_PRECISION (TREE_TYPE (op0)) != 1)
6309 {
6310 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6311 if (!val || !integer_onep (val))
6312 return false;
6313
6314 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6315 if (!val || !integer_onep (val))
6316 return false;
6317 }
6318
6319 if (rhs_code == TRUTH_NOT_EXPR)
6320 {
6321 rhs_code = NE_EXPR;
6322 op1 = build_int_cst (TREE_TYPE (op0), 1);
6323 }
6324 else
6325 {
6326 op1 = gimple_assign_rhs2 (stmt);
6327
6328 /* Reduce number of cases to handle. */
6329 if (is_gimple_min_invariant (op1))
6330 {
6331 /* Exclude anything that should have been already folded. */
6332 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR
6333 || rhs_code == TRUTH_XOR_EXPR);
6334 gcc_assert (integer_zerop (op1) || integer_onep (op1));
6335
6336 /* Limit the number of cases we have to consider. */
6337 if (rhs_code == EQ_EXPR)
6338 {
6339 rhs_code = NE_EXPR;
6340 op1 = fold_unary (TRUTH_NOT_EXPR, TREE_TYPE (op1), op1);
6341 }
6342 }
6343 else
6344 {
6345 /* Punt on A == B as there is no BIT_XNOR_EXPR. */
6346 if (rhs_code == EQ_EXPR)
6347 return false;
6348
6349 if (TYPE_PRECISION (TREE_TYPE (op1)) != 1)
6350 {
6351 vr = get_value_range (op1);
6352 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6353 if (!val || !integer_onep (val))
6354 return false;
6355
6356 val = compare_range_with_value (LE_EXPR, vr, integer_one_node, &sop);
6357 if (!val || !integer_onep (val))
6358 return false;
6359 }
6360 }
6361 }
6362
6363 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6364 {
6365 location_t location;
6366
6367 if (!gimple_has_location (stmt))
6368 location = input_location;
6369 else
6370 location = gimple_location (stmt);
6371
6372 if (rhs_code == TRUTH_AND_EXPR || rhs_code == TRUTH_OR_EXPR)
6373 warning_at (location, OPT_Wstrict_overflow,
6374 _("assuming signed overflow does not occur when "
6375 "simplifying && or || to & or |"));
6376 else
6377 warning_at (location, OPT_Wstrict_overflow,
6378 _("assuming signed overflow does not occur when "
6379 "simplifying ==, != or ! to identity or ^"));
6380 }
6381
6382 need_conversion =
6383 !useless_type_conversion_p (TREE_TYPE (gimple_assign_lhs (stmt)),
6384 TREE_TYPE (op0));
6385
6386 switch (rhs_code)
6387 {
6388 case TRUTH_AND_EXPR:
6389 rhs_code = BIT_AND_EXPR;
6390 break;
6391 case TRUTH_OR_EXPR:
6392 rhs_code = BIT_IOR_EXPR;
6393 break;
6394 case TRUTH_XOR_EXPR:
6395 case NE_EXPR:
6396 if (integer_zerop (op1))
6397 {
6398 gimple_assign_set_rhs_with_ops (gsi,
6399 need_conversion ? NOP_EXPR : SSA_NAME,
6400 op0, NULL);
6401 update_stmt (gsi_stmt (*gsi));
6402 return true;
6403 }
6404
6405 rhs_code = BIT_XOR_EXPR;
6406 break;
6407 default:
6408 gcc_unreachable ();
6409 }
6410
6411 if (need_conversion)
6412 return false;
6413
6414 gimple_assign_set_rhs_with_ops (gsi, rhs_code, op0, op1);
6415 update_stmt (gsi_stmt (*gsi));
6416 return true;
6417 }
6418
6419 /* Simplify a division or modulo operator to a right shift or
6420 bitwise and if the first operand is unsigned or is greater
6421 than zero and the second operand is an exact power of two. */
6422
6423 static bool
6424 simplify_div_or_mod_using_ranges (gimple stmt)
6425 {
6426 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6427 tree val = NULL;
6428 tree op0 = gimple_assign_rhs1 (stmt);
6429 tree op1 = gimple_assign_rhs2 (stmt);
6430 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
6431
6432 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
6433 {
6434 val = integer_one_node;
6435 }
6436 else
6437 {
6438 bool sop = false;
6439
6440 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
6441
6442 if (val
6443 && sop
6444 && integer_onep (val)
6445 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6446 {
6447 location_t location;
6448
6449 if (!gimple_has_location (stmt))
6450 location = input_location;
6451 else
6452 location = gimple_location (stmt);
6453 warning (OPT_Wstrict_overflow,
6454 ("%Hassuming signed overflow does not occur when "
6455 "simplifying / or %% to >> or &"),
6456 &location);
6457 }
6458 }
6459
6460 if (val && integer_onep (val))
6461 {
6462 tree t;
6463
6464 if (rhs_code == TRUNC_DIV_EXPR)
6465 {
6466 t = build_int_cst (NULL_TREE, tree_log2 (op1));
6467 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
6468 gimple_assign_set_rhs1 (stmt, op0);
6469 gimple_assign_set_rhs2 (stmt, t);
6470 }
6471 else
6472 {
6473 t = build_int_cst (TREE_TYPE (op1), 1);
6474 t = int_const_binop (MINUS_EXPR, op1, t, 0);
6475 t = fold_convert (TREE_TYPE (op0), t);
6476
6477 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
6478 gimple_assign_set_rhs1 (stmt, op0);
6479 gimple_assign_set_rhs2 (stmt, t);
6480 }
6481
6482 update_stmt (stmt);
6483 return true;
6484 }
6485
6486 return false;
6487 }
6488
6489 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
6490 ABS_EXPR. If the operand is <= 0, then simplify the
6491 ABS_EXPR into a NEGATE_EXPR. */
6492
6493 static bool
6494 simplify_abs_using_ranges (gimple stmt)
6495 {
6496 tree val = NULL;
6497 tree op = gimple_assign_rhs1 (stmt);
6498 tree type = TREE_TYPE (op);
6499 value_range_t *vr = get_value_range (op);
6500
6501 if (TYPE_UNSIGNED (type))
6502 {
6503 val = integer_zero_node;
6504 }
6505 else if (vr)
6506 {
6507 bool sop = false;
6508
6509 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
6510 if (!val)
6511 {
6512 sop = false;
6513 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
6514 &sop);
6515
6516 if (val)
6517 {
6518 if (integer_zerop (val))
6519 val = integer_one_node;
6520 else if (integer_onep (val))
6521 val = integer_zero_node;
6522 }
6523 }
6524
6525 if (val
6526 && (integer_onep (val) || integer_zerop (val)))
6527 {
6528 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
6529 {
6530 location_t location;
6531
6532 if (!gimple_has_location (stmt))
6533 location = input_location;
6534 else
6535 location = gimple_location (stmt);
6536 warning (OPT_Wstrict_overflow,
6537 ("%Hassuming signed overflow does not occur when "
6538 "simplifying abs (X) to X or -X"),
6539 &location);
6540 }
6541
6542 gimple_assign_set_rhs1 (stmt, op);
6543 if (integer_onep (val))
6544 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
6545 else
6546 gimple_assign_set_rhs_code (stmt, SSA_NAME);
6547 update_stmt (stmt);
6548 return true;
6549 }
6550 }
6551
6552 return false;
6553 }
6554
6555 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
6556 a known value range VR.
6557
6558 If there is one and only one value which will satisfy the
6559 conditional, then return that value. Else return NULL. */
6560
6561 static tree
6562 test_for_singularity (enum tree_code cond_code, tree op0,
6563 tree op1, value_range_t *vr)
6564 {
6565 tree min = NULL;
6566 tree max = NULL;
6567
6568 /* Extract minimum/maximum values which satisfy the
6569 the conditional as it was written. */
6570 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
6571 {
6572 /* This should not be negative infinity; there is no overflow
6573 here. */
6574 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
6575
6576 max = op1;
6577 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
6578 {
6579 tree one = build_int_cst (TREE_TYPE (op0), 1);
6580 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
6581 if (EXPR_P (max))
6582 TREE_NO_WARNING (max) = 1;
6583 }
6584 }
6585 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
6586 {
6587 /* This should not be positive infinity; there is no overflow
6588 here. */
6589 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
6590
6591 min = op1;
6592 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
6593 {
6594 tree one = build_int_cst (TREE_TYPE (op0), 1);
6595 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
6596 if (EXPR_P (min))
6597 TREE_NO_WARNING (min) = 1;
6598 }
6599 }
6600
6601 /* Now refine the minimum and maximum values using any
6602 value range information we have for op0. */
6603 if (min && max)
6604 {
6605 if (compare_values (vr->min, min) == -1)
6606 min = min;
6607 else
6608 min = vr->min;
6609 if (compare_values (vr->max, max) == 1)
6610 max = max;
6611 else
6612 max = vr->max;
6613
6614 /* If the new min/max values have converged to a single value,
6615 then there is only one value which can satisfy the condition,
6616 return that value. */
6617 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
6618 return min;
6619 }
6620 return NULL;
6621 }
6622
6623 /* Simplify a conditional using a relational operator to an equality
6624 test if the range information indicates only one value can satisfy
6625 the original conditional. */
6626
6627 static bool
6628 simplify_cond_using_ranges (gimple stmt)
6629 {
6630 tree op0 = gimple_cond_lhs (stmt);
6631 tree op1 = gimple_cond_rhs (stmt);
6632 enum tree_code cond_code = gimple_cond_code (stmt);
6633
6634 if (cond_code != NE_EXPR
6635 && cond_code != EQ_EXPR
6636 && TREE_CODE (op0) == SSA_NAME
6637 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
6638 && is_gimple_min_invariant (op1))
6639 {
6640 value_range_t *vr = get_value_range (op0);
6641
6642 /* If we have range information for OP0, then we might be
6643 able to simplify this conditional. */
6644 if (vr->type == VR_RANGE)
6645 {
6646 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
6647
6648 if (new_tree)
6649 {
6650 if (dump_file)
6651 {
6652 fprintf (dump_file, "Simplified relational ");
6653 print_gimple_stmt (dump_file, stmt, 0, 0);
6654 fprintf (dump_file, " into ");
6655 }
6656
6657 gimple_cond_set_code (stmt, EQ_EXPR);
6658 gimple_cond_set_lhs (stmt, op0);
6659 gimple_cond_set_rhs (stmt, new_tree);
6660
6661 update_stmt (stmt);
6662
6663 if (dump_file)
6664 {
6665 print_gimple_stmt (dump_file, stmt, 0, 0);
6666 fprintf (dump_file, "\n");
6667 }
6668
6669 return true;
6670 }
6671
6672 /* Try again after inverting the condition. We only deal
6673 with integral types here, so no need to worry about
6674 issues with inverting FP comparisons. */
6675 cond_code = invert_tree_comparison (cond_code, false);
6676 new_tree = test_for_singularity (cond_code, op0, op1, vr);
6677
6678 if (new_tree)
6679 {
6680 if (dump_file)
6681 {
6682 fprintf (dump_file, "Simplified relational ");
6683 print_gimple_stmt (dump_file, stmt, 0, 0);
6684 fprintf (dump_file, " into ");
6685 }
6686
6687 gimple_cond_set_code (stmt, NE_EXPR);
6688 gimple_cond_set_lhs (stmt, op0);
6689 gimple_cond_set_rhs (stmt, new_tree);
6690
6691 update_stmt (stmt);
6692
6693 if (dump_file)
6694 {
6695 print_gimple_stmt (dump_file, stmt, 0, 0);
6696 fprintf (dump_file, "\n");
6697 }
6698
6699 return true;
6700 }
6701 }
6702 }
6703
6704 return false;
6705 }
6706
6707 /* Simplify a switch statement using the value range of the switch
6708 argument. */
6709
6710 static bool
6711 simplify_switch_using_ranges (gimple stmt)
6712 {
6713 tree op = gimple_switch_index (stmt);
6714 value_range_t *vr;
6715 bool take_default;
6716 edge e;
6717 edge_iterator ei;
6718 size_t i = 0, j = 0, n, n2;
6719 tree vec2;
6720 switch_update su;
6721
6722 if (TREE_CODE (op) != SSA_NAME)
6723 return false;
6724
6725 vr = get_value_range (op);
6726
6727 /* We can only handle integer ranges. */
6728 if (vr->type != VR_RANGE
6729 || symbolic_range_p (vr))
6730 return false;
6731
6732 /* Find case label for min/max of the value range. */
6733 n = gimple_switch_num_labels (stmt);
6734 take_default = !find_case_label_range (stmt, vr->min, vr->max, &i, &j);
6735
6736 /* Bail out if this is just all edges taken. */
6737 if (i == 1
6738 && j == n - 1
6739 && take_default)
6740 return false;
6741
6742 /* Build a new vector of taken case labels. */
6743 vec2 = make_tree_vec (j - i + 1 + (int)take_default);
6744 n2 = 0;
6745
6746 /* Add the default edge, if necessary. */
6747 if (take_default)
6748 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
6749
6750 for (; i <= j; ++i, ++n2)
6751 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
6752
6753 /* Mark needed edges. */
6754 for (i = 0; i < n2; ++i)
6755 {
6756 e = find_edge (gimple_bb (stmt),
6757 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
6758 e->aux = (void *)-1;
6759 }
6760
6761 /* Queue not needed edges for later removal. */
6762 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
6763 {
6764 if (e->aux == (void *)-1)
6765 {
6766 e->aux = NULL;
6767 continue;
6768 }
6769
6770 if (dump_file && (dump_flags & TDF_DETAILS))
6771 {
6772 fprintf (dump_file, "removing unreachable case label\n");
6773 }
6774 VEC_safe_push (edge, heap, to_remove_edges, e);
6775 }
6776
6777 /* And queue an update for the stmt. */
6778 su.stmt = stmt;
6779 su.vec = vec2;
6780 VEC_safe_push (switch_update, heap, to_update_switch_stmts, &su);
6781 return false;
6782 }
6783
6784 /* Simplify STMT using ranges if possible. */
6785
6786 bool
6787 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
6788 {
6789 gimple stmt = gsi_stmt (*gsi);
6790 if (is_gimple_assign (stmt))
6791 {
6792 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
6793
6794 switch (rhs_code)
6795 {
6796 case EQ_EXPR:
6797 case NE_EXPR:
6798 case TRUTH_NOT_EXPR:
6799 case TRUTH_AND_EXPR:
6800 case TRUTH_OR_EXPR:
6801 case TRUTH_XOR_EXPR:
6802 /* Transform EQ_EXPR, NE_EXPR, TRUTH_NOT_EXPR into BIT_XOR_EXPR
6803 or identity if the RHS is zero or one, and the LHS are known
6804 to be boolean values. Transform all TRUTH_*_EXPR into
6805 BIT_*_EXPR if both arguments are known to be boolean values. */
6806 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
6807 return simplify_truth_ops_using_ranges (gsi, stmt);
6808 break;
6809
6810 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
6811 and BIT_AND_EXPR respectively if the first operand is greater
6812 than zero and the second operand is an exact power of two. */
6813 case TRUNC_DIV_EXPR:
6814 case TRUNC_MOD_EXPR:
6815 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6816 && integer_pow2p (gimple_assign_rhs2 (stmt)))
6817 return simplify_div_or_mod_using_ranges (stmt);
6818 break;
6819
6820 /* Transform ABS (X) into X or -X as appropriate. */
6821 case ABS_EXPR:
6822 if (TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
6823 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_rhs1 (stmt))))
6824 return simplify_abs_using_ranges (stmt);
6825 break;
6826
6827 default:
6828 break;
6829 }
6830 }
6831 else if (gimple_code (stmt) == GIMPLE_COND)
6832 return simplify_cond_using_ranges (stmt);
6833 else if (gimple_code (stmt) == GIMPLE_SWITCH)
6834 return simplify_switch_using_ranges (stmt);
6835
6836 return false;
6837 }
6838
6839 /* Stack of dest,src equivalency pairs that need to be restored after
6840 each attempt to thread a block's incoming edge to an outgoing edge.
6841
6842 A NULL entry is used to mark the end of pairs which need to be
6843 restored. */
6844 static VEC(tree,heap) *stack;
6845
6846 /* A trivial wrapper so that we can present the generic jump threading
6847 code with a simple API for simplifying statements. STMT is the
6848 statement we want to simplify, WITHIN_STMT provides the location
6849 for any overflow warnings. */
6850
6851 static tree
6852 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
6853 {
6854 /* We only use VRP information to simplify conditionals. This is
6855 overly conservative, but it's unclear if doing more would be
6856 worth the compile time cost. */
6857 if (gimple_code (stmt) != GIMPLE_COND)
6858 return NULL;
6859
6860 return vrp_evaluate_conditional (gimple_cond_code (stmt),
6861 gimple_cond_lhs (stmt),
6862 gimple_cond_rhs (stmt), within_stmt);
6863 }
6864
6865 /* Blocks which have more than one predecessor and more than
6866 one successor present jump threading opportunities, i.e.,
6867 when the block is reached from a specific predecessor, we
6868 may be able to determine which of the outgoing edges will
6869 be traversed. When this optimization applies, we are able
6870 to avoid conditionals at runtime and we may expose secondary
6871 optimization opportunities.
6872
6873 This routine is effectively a driver for the generic jump
6874 threading code. It basically just presents the generic code
6875 with edges that may be suitable for jump threading.
6876
6877 Unlike DOM, we do not iterate VRP if jump threading was successful.
6878 While iterating may expose new opportunities for VRP, it is expected
6879 those opportunities would be very limited and the compile time cost
6880 to expose those opportunities would be significant.
6881
6882 As jump threading opportunities are discovered, they are registered
6883 for later realization. */
6884
6885 static void
6886 identify_jump_threads (void)
6887 {
6888 basic_block bb;
6889 gimple dummy;
6890 int i;
6891 edge e;
6892
6893 /* Ugh. When substituting values earlier in this pass we can
6894 wipe the dominance information. So rebuild the dominator
6895 information as we need it within the jump threading code. */
6896 calculate_dominance_info (CDI_DOMINATORS);
6897
6898 /* We do not allow VRP information to be used for jump threading
6899 across a back edge in the CFG. Otherwise it becomes too
6900 difficult to avoid eliminating loop exit tests. Of course
6901 EDGE_DFS_BACK is not accurate at this time so we have to
6902 recompute it. */
6903 mark_dfs_back_edges ();
6904
6905 /* Do not thread across edges we are about to remove. Just marking
6906 them as EDGE_DFS_BACK will do. */
6907 for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
6908 e->flags |= EDGE_DFS_BACK;
6909
6910 /* Allocate our unwinder stack to unwind any temporary equivalences
6911 that might be recorded. */
6912 stack = VEC_alloc (tree, heap, 20);
6913
6914 /* To avoid lots of silly node creation, we create a single
6915 conditional and just modify it in-place when attempting to
6916 thread jumps. */
6917 dummy = gimple_build_cond (EQ_EXPR,
6918 integer_zero_node, integer_zero_node,
6919 NULL, NULL);
6920
6921 /* Walk through all the blocks finding those which present a
6922 potential jump threading opportunity. We could set this up
6923 as a dominator walker and record data during the walk, but
6924 I doubt it's worth the effort for the classes of jump
6925 threading opportunities we are trying to identify at this
6926 point in compilation. */
6927 FOR_EACH_BB (bb)
6928 {
6929 gimple last;
6930
6931 /* If the generic jump threading code does not find this block
6932 interesting, then there is nothing to do. */
6933 if (! potentially_threadable_block (bb))
6934 continue;
6935
6936 /* We only care about blocks ending in a COND_EXPR. While there
6937 may be some value in handling SWITCH_EXPR here, I doubt it's
6938 terribly important. */
6939 last = gsi_stmt (gsi_last_bb (bb));
6940 if (gimple_code (last) != GIMPLE_COND)
6941 continue;
6942
6943 /* We're basically looking for any kind of conditional with
6944 integral type arguments. */
6945 if (TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
6946 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
6947 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
6948 || is_gimple_min_invariant (gimple_cond_rhs (last)))
6949 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_rhs (last))))
6950 {
6951 edge_iterator ei;
6952
6953 /* We've got a block with multiple predecessors and multiple
6954 successors which also ends in a suitable conditional. For
6955 each predecessor, see if we can thread it to a specific
6956 successor. */
6957 FOR_EACH_EDGE (e, ei, bb->preds)
6958 {
6959 /* Do not thread across back edges or abnormal edges
6960 in the CFG. */
6961 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
6962 continue;
6963
6964 thread_across_edge (dummy, e, true, &stack,
6965 simplify_stmt_for_jump_threading);
6966 }
6967 }
6968 }
6969
6970 /* We do not actually update the CFG or SSA graphs at this point as
6971 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
6972 handle ASSERT_EXPRs gracefully. */
6973 }
6974
6975 /* We identified all the jump threading opportunities earlier, but could
6976 not transform the CFG at that time. This routine transforms the
6977 CFG and arranges for the dominator tree to be rebuilt if necessary.
6978
6979 Note the SSA graph update will occur during the normal TODO
6980 processing by the pass manager. */
6981 static void
6982 finalize_jump_threads (void)
6983 {
6984 thread_through_all_blocks (false);
6985 VEC_free (tree, heap, stack);
6986 }
6987
6988
6989 /* Traverse all the blocks folding conditionals with known ranges. */
6990
6991 static void
6992 vrp_finalize (void)
6993 {
6994 size_t i;
6995 prop_value_t *single_val_range;
6996 bool do_value_subst_p;
6997
6998 if (dump_file)
6999 {
7000 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
7001 dump_all_value_ranges (dump_file);
7002 fprintf (dump_file, "\n");
7003 }
7004
7005 /* We may have ended with ranges that have exactly one value. Those
7006 values can be substituted as any other copy/const propagated
7007 value using substitute_and_fold. */
7008 single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
7009
7010 do_value_subst_p = false;
7011 for (i = 0; i < num_ssa_names; i++)
7012 if (vr_value[i]
7013 && vr_value[i]->type == VR_RANGE
7014 && vr_value[i]->min == vr_value[i]->max)
7015 {
7016 single_val_range[i].value = vr_value[i]->min;
7017 do_value_subst_p = true;
7018 }
7019
7020 if (!do_value_subst_p)
7021 {
7022 /* We found no single-valued ranges, don't waste time trying to
7023 do single value substitution in substitute_and_fold. */
7024 free (single_val_range);
7025 single_val_range = NULL;
7026 }
7027
7028 substitute_and_fold (single_val_range, true);
7029
7030 if (warn_array_bounds)
7031 check_all_array_refs ();
7032
7033 /* We must identify jump threading opportunities before we release
7034 the datastructures built by VRP. */
7035 identify_jump_threads ();
7036
7037 /* Free allocated memory. */
7038 for (i = 0; i < num_ssa_names; i++)
7039 if (vr_value[i])
7040 {
7041 BITMAP_FREE (vr_value[i]->equiv);
7042 free (vr_value[i]);
7043 }
7044
7045 free (single_val_range);
7046 free (vr_value);
7047 free (vr_phi_edge_counts);
7048
7049 /* So that we can distinguish between VRP data being available
7050 and not available. */
7051 vr_value = NULL;
7052 vr_phi_edge_counts = NULL;
7053 }
7054
7055
7056 /* Main entry point to VRP (Value Range Propagation). This pass is
7057 loosely based on J. R. C. Patterson, ``Accurate Static Branch
7058 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
7059 Programming Language Design and Implementation, pp. 67-78, 1995.
7060 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
7061
7062 This is essentially an SSA-CCP pass modified to deal with ranges
7063 instead of constants.
7064
7065 While propagating ranges, we may find that two or more SSA name
7066 have equivalent, though distinct ranges. For instance,
7067
7068 1 x_9 = p_3->a;
7069 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
7070 3 if (p_4 == q_2)
7071 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
7072 5 endif
7073 6 if (q_2)
7074
7075 In the code above, pointer p_5 has range [q_2, q_2], but from the
7076 code we can also determine that p_5 cannot be NULL and, if q_2 had
7077 a non-varying range, p_5's range should also be compatible with it.
7078
7079 These equivalences are created by two expressions: ASSERT_EXPR and
7080 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
7081 result of another assertion, then we can use the fact that p_5 and
7082 p_4 are equivalent when evaluating p_5's range.
7083
7084 Together with value ranges, we also propagate these equivalences
7085 between names so that we can take advantage of information from
7086 multiple ranges when doing final replacement. Note that this
7087 equivalency relation is transitive but not symmetric.
7088
7089 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
7090 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
7091 in contexts where that assertion does not hold (e.g., in line 6).
7092
7093 TODO, the main difference between this pass and Patterson's is that
7094 we do not propagate edge probabilities. We only compute whether
7095 edges can be taken or not. That is, instead of having a spectrum
7096 of jump probabilities between 0 and 1, we only deal with 0, 1 and
7097 DON'T KNOW. In the future, it may be worthwhile to propagate
7098 probabilities to aid branch prediction. */
7099
7100 static unsigned int
7101 execute_vrp (void)
7102 {
7103 int i;
7104 edge e;
7105 switch_update *su;
7106
7107 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
7108 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
7109 scev_initialize ();
7110
7111 insert_range_assertions ();
7112
7113 to_remove_edges = VEC_alloc (edge, heap, 10);
7114 to_update_switch_stmts = VEC_alloc (switch_update, heap, 5);
7115
7116 vrp_initialize ();
7117 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
7118 vrp_finalize ();
7119
7120 /* ASSERT_EXPRs must be removed before finalizing jump threads
7121 as finalizing jump threads calls the CFG cleanup code which
7122 does not properly handle ASSERT_EXPRs. */
7123 remove_range_assertions ();
7124
7125 /* If we exposed any new variables, go ahead and put them into
7126 SSA form now, before we handle jump threading. This simplifies
7127 interactions between rewriting of _DECL nodes into SSA form
7128 and rewriting SSA_NAME nodes into SSA form after block
7129 duplication and CFG manipulation. */
7130 update_ssa (TODO_update_ssa);
7131
7132 finalize_jump_threads ();
7133
7134 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
7135 CFG in a broken state and requires a cfg_cleanup run. */
7136 for (i = 0; VEC_iterate (edge, to_remove_edges, i, e); ++i)
7137 remove_edge (e);
7138 /* Update SWITCH_EXPR case label vector. */
7139 for (i = 0; VEC_iterate (switch_update, to_update_switch_stmts, i, su); ++i)
7140 {
7141 size_t j;
7142 size_t n = TREE_VEC_LENGTH (su->vec);
7143 gimple_switch_set_num_labels (su->stmt, n);
7144 for (j = 0; j < n; j++)
7145 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
7146 }
7147
7148 if (VEC_length (edge, to_remove_edges) > 0)
7149 free_dominance_info (CDI_DOMINATORS);
7150
7151 VEC_free (edge, heap, to_remove_edges);
7152 VEC_free (switch_update, heap, to_update_switch_stmts);
7153
7154 scev_finalize ();
7155 loop_optimizer_finalize ();
7156 return 0;
7157 }
7158
7159 static bool
7160 gate_vrp (void)
7161 {
7162 return flag_tree_vrp != 0;
7163 }
7164
7165 struct gimple_opt_pass pass_vrp =
7166 {
7167 {
7168 GIMPLE_PASS,
7169 "vrp", /* name */
7170 gate_vrp, /* gate */
7171 execute_vrp, /* execute */
7172 NULL, /* sub */
7173 NULL, /* next */
7174 0, /* static_pass_number */
7175 TV_TREE_VRP, /* tv_id */
7176 PROP_ssa | PROP_alias, /* properties_required */
7177 0, /* properties_provided */
7178 0, /* properties_destroyed */
7179 0, /* todo_flags_start */
7180 TODO_cleanup_cfg
7181 | TODO_ggc_collect
7182 | TODO_verify_ssa
7183 | TODO_dump_func
7184 | TODO_update_ssa /* todo_flags_finish */
7185 }
7186 };