tree-vrp.c (extract_range_from_assert): Set the range to VARYING for LT and GT if...
[gcc.git] / gcc / tree-vrp.c
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "cfgloop.h"
36 #include "tree-scalar-evolution.h"
37 #include "tree-ssa-propagate.h"
38 #include "tree-chrec.h"
39
40 /* Set of SSA names found during the dominator traversal of a
41 sub-graph in find_assert_locations. */
42 static sbitmap found_in_subgraph;
43
44 /* Local functions. */
45 static int compare_values (tree val1, tree val2);
46
47 /* Location information for ASSERT_EXPRs. Each instance of this
48 structure describes an ASSERT_EXPR for an SSA name. Since a single
49 SSA name may have more than one assertion associated with it, these
50 locations are kept in a linked list attached to the corresponding
51 SSA name. */
52 struct assert_locus_d
53 {
54 /* Basic block where the assertion would be inserted. */
55 basic_block bb;
56
57 /* Some assertions need to be inserted on an edge (e.g., assertions
58 generated by COND_EXPRs). In those cases, BB will be NULL. */
59 edge e;
60
61 /* Pointer to the statement that generated this assertion. */
62 block_stmt_iterator si;
63
64 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
65 enum tree_code comp_code;
66
67 /* Value being compared against. */
68 tree val;
69
70 /* Next node in the linked list. */
71 struct assert_locus_d *next;
72 };
73
74 typedef struct assert_locus_d *assert_locus_t;
75
76 /* If bit I is present, it means that SSA name N_i has a list of
77 assertions that should be inserted in the IL. */
78 static bitmap need_assert_for;
79
80 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
81 holds a list of ASSERT_LOCUS_T nodes that describe where
82 ASSERT_EXPRs for SSA name N_I should be inserted. */
83 static assert_locus_t *asserts_for;
84
85 /* Set of blocks visited in find_assert_locations. Used to avoid
86 visiting the same block more than once. */
87 static sbitmap blocks_visited;
88
89 /* Value range array. After propagation, VR_VALUE[I] holds the range
90 of values that SSA name N_I may take. */
91 static value_range_t **vr_value;
92
93
94 /* Return true if ARG is marked with the nonnull attribute in the
95 current function signature. */
96
97 static bool
98 nonnull_arg_p (tree arg)
99 {
100 tree t, attrs, fntype;
101 unsigned HOST_WIDE_INT arg_num;
102
103 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
104
105 fntype = TREE_TYPE (current_function_decl);
106 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
107
108 /* If "nonnull" wasn't specified, we know nothing about the argument. */
109 if (attrs == NULL_TREE)
110 return false;
111
112 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
113 if (TREE_VALUE (attrs) == NULL_TREE)
114 return true;
115
116 /* Get the position number for ARG in the function signature. */
117 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
118 t;
119 t = TREE_CHAIN (t), arg_num++)
120 {
121 if (t == arg)
122 break;
123 }
124
125 gcc_assert (t == arg);
126
127 /* Now see if ARG_NUM is mentioned in the nonnull list. */
128 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
129 {
130 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
131 return true;
132 }
133
134 return false;
135 }
136
137
138 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
139
140 static void
141 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
142 tree max, bitmap equiv)
143 {
144 #if defined ENABLE_CHECKING
145 /* Check the validity of the range. */
146 if (t == VR_RANGE || t == VR_ANTI_RANGE)
147 {
148 int cmp;
149
150 gcc_assert (min && max);
151
152 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
153 gcc_assert (min != TYPE_MIN_VALUE (TREE_TYPE (min))
154 || max != TYPE_MAX_VALUE (TREE_TYPE (max)));
155
156 cmp = compare_values (min, max);
157 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
158 }
159
160 if (t == VR_UNDEFINED || t == VR_VARYING)
161 gcc_assert (min == NULL_TREE && max == NULL_TREE);
162
163 if (t == VR_UNDEFINED || t == VR_VARYING)
164 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
165 #endif
166
167 vr->type = t;
168 vr->min = min;
169 vr->max = max;
170
171 /* Since updating the equivalence set involves deep copying the
172 bitmaps, only do it if absolutely necessary. */
173 if (vr->equiv == NULL)
174 vr->equiv = BITMAP_ALLOC (NULL);
175
176 if (equiv != vr->equiv)
177 {
178 if (equiv && !bitmap_empty_p (equiv))
179 bitmap_copy (vr->equiv, equiv);
180 else
181 bitmap_clear (vr->equiv);
182 }
183 }
184
185
186 /* Copy value range FROM into value range TO. */
187
188 static inline void
189 copy_value_range (value_range_t *to, value_range_t *from)
190 {
191 set_value_range (to, from->type, from->min, from->max, from->equiv);
192 }
193
194 /* Set value range VR to a non-negative range of type TYPE. */
195
196 static inline void
197 set_value_range_to_nonnegative (value_range_t *vr, tree type)
198 {
199 tree zero = build_int_cst (type, 0);
200 set_value_range (vr, VR_RANGE, zero, TYPE_MAX_VALUE (type), vr->equiv);
201 }
202
203 /* Set value range VR to a non-NULL range of type TYPE. */
204
205 static inline void
206 set_value_range_to_nonnull (value_range_t *vr, tree type)
207 {
208 tree zero = build_int_cst (type, 0);
209 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
210 }
211
212
213 /* Set value range VR to a NULL range of type TYPE. */
214
215 static inline void
216 set_value_range_to_null (value_range_t *vr, tree type)
217 {
218 tree zero = build_int_cst (type, 0);
219 set_value_range (vr, VR_RANGE, zero, zero, vr->equiv);
220 }
221
222
223 /* Set value range VR to VR_VARYING. */
224
225 static inline void
226 set_value_range_to_varying (value_range_t *vr)
227 {
228 vr->type = VR_VARYING;
229 vr->min = vr->max = NULL_TREE;
230 if (vr->equiv)
231 bitmap_clear (vr->equiv);
232 }
233
234
235 /* Set value range VR to VR_UNDEFINED. */
236
237 static inline void
238 set_value_range_to_undefined (value_range_t *vr)
239 {
240 vr->type = VR_UNDEFINED;
241 vr->min = vr->max = NULL_TREE;
242 if (vr->equiv)
243 bitmap_clear (vr->equiv);
244 }
245
246
247 /* Return value range information for VAR.
248
249 If we have no values ranges recorded (ie, VRP is not running), then
250 return NULL. Otherwise create an empty range if none existed for VAR. */
251
252 static value_range_t *
253 get_value_range (tree var)
254 {
255 value_range_t *vr;
256 tree sym;
257 unsigned ver = SSA_NAME_VERSION (var);
258
259 /* If we have no recorded ranges, then return NULL. */
260 if (! vr_value)
261 return NULL;
262
263 vr = vr_value[ver];
264 if (vr)
265 return vr;
266
267 /* Create a default value range. */
268 vr_value[ver] = vr = XNEW (value_range_t);
269 memset (vr, 0, sizeof (*vr));
270
271 /* Allocate an equivalence set. */
272 vr->equiv = BITMAP_ALLOC (NULL);
273
274 /* If VAR is a default definition, the variable can take any value
275 in VAR's type. */
276 sym = SSA_NAME_VAR (var);
277 if (var == default_def (sym))
278 {
279 /* Try to use the "nonnull" attribute to create ~[0, 0]
280 anti-ranges for pointers. Note that this is only valid with
281 default definitions of PARM_DECLs. */
282 if (TREE_CODE (sym) == PARM_DECL
283 && POINTER_TYPE_P (TREE_TYPE (sym))
284 && nonnull_arg_p (sym))
285 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
286 else
287 set_value_range_to_varying (vr);
288 }
289
290 return vr;
291 }
292
293
294 /* Update the value range and equivalence set for variable VAR to
295 NEW_VR. Return true if NEW_VR is different from VAR's previous
296 value.
297
298 NOTE: This function assumes that NEW_VR is a temporary value range
299 object created for the sole purpose of updating VAR's range. The
300 storage used by the equivalence set from NEW_VR will be freed by
301 this function. Do not call update_value_range when NEW_VR
302 is the range object associated with another SSA name. */
303
304 static inline bool
305 update_value_range (tree var, value_range_t *new_vr)
306 {
307 value_range_t *old_vr;
308 bool is_new;
309
310 /* Update the value range, if necessary. */
311 old_vr = get_value_range (var);
312 is_new = old_vr->type != new_vr->type
313 || old_vr->min != new_vr->min
314 || old_vr->max != new_vr->max
315 || (old_vr->equiv == NULL && new_vr->equiv)
316 || (old_vr->equiv && new_vr->equiv == NULL)
317 || (!bitmap_equal_p (old_vr->equiv, new_vr->equiv));
318
319 if (is_new)
320 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
321 new_vr->equiv);
322
323 BITMAP_FREE (new_vr->equiv);
324 new_vr->equiv = NULL;
325
326 return is_new;
327 }
328
329
330 /* Add VAR and VAR's equivalence set to EQUIV. */
331
332 static void
333 add_equivalence (bitmap equiv, tree var)
334 {
335 unsigned ver = SSA_NAME_VERSION (var);
336 value_range_t *vr = vr_value[ver];
337
338 bitmap_set_bit (equiv, ver);
339 if (vr && vr->equiv)
340 bitmap_ior_into (equiv, vr->equiv);
341 }
342
343
344 /* Return true if VR is ~[0, 0]. */
345
346 static inline bool
347 range_is_nonnull (value_range_t *vr)
348 {
349 return vr->type == VR_ANTI_RANGE
350 && integer_zerop (vr->min)
351 && integer_zerop (vr->max);
352 }
353
354
355 /* Return true if VR is [0, 0]. */
356
357 static inline bool
358 range_is_null (value_range_t *vr)
359 {
360 return vr->type == VR_RANGE
361 && integer_zerop (vr->min)
362 && integer_zerop (vr->max);
363 }
364
365
366 /* Return true if value range VR involves at least one symbol. */
367
368 static inline bool
369 symbolic_range_p (value_range_t *vr)
370 {
371 return (!is_gimple_min_invariant (vr->min)
372 || !is_gimple_min_invariant (vr->max));
373 }
374
375 /* Like tree_expr_nonnegative_p, but this function uses value ranges
376 obtained so far. */
377
378 static bool
379 vrp_expr_computes_nonnegative (tree expr)
380 {
381 return tree_expr_nonnegative_p (expr);
382 }
383
384 /* Like tree_expr_nonzero_p, but this function uses value ranges
385 obtained so far. */
386
387 static bool
388 vrp_expr_computes_nonzero (tree expr)
389 {
390 if (tree_expr_nonzero_p (expr))
391 return true;
392
393 /* If we have an expression of the form &X->a, then the expression
394 is nonnull if X is nonnull. */
395 if (TREE_CODE (expr) == ADDR_EXPR)
396 {
397 tree base = get_base_address (TREE_OPERAND (expr, 0));
398
399 if (base != NULL_TREE
400 && TREE_CODE (base) == INDIRECT_REF
401 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
402 {
403 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
404 if (range_is_nonnull (vr))
405 return true;
406 }
407 }
408
409 return false;
410 }
411
412 /* Returns true if EXPR is a valid value (as expected by compare_values) --
413 a gimple invariant, or SSA_NAME +- CST. */
414
415 static bool
416 valid_value_p (tree expr)
417 {
418 if (TREE_CODE (expr) == SSA_NAME)
419 return true;
420
421 if (TREE_CODE (expr) == PLUS_EXPR
422 || TREE_CODE (expr) == MINUS_EXPR)
423 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
424 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
425
426 return is_gimple_min_invariant (expr);
427 }
428
429 /* Compare two values VAL1 and VAL2. Return
430
431 -2 if VAL1 and VAL2 cannot be compared at compile-time,
432 -1 if VAL1 < VAL2,
433 0 if VAL1 == VAL2,
434 +1 if VAL1 > VAL2, and
435 +2 if VAL1 != VAL2
436
437 This is similar to tree_int_cst_compare but supports pointer values
438 and values that cannot be compared at compile time. */
439
440 static int
441 compare_values (tree val1, tree val2)
442 {
443 if (val1 == val2)
444 return 0;
445
446 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
447 both integers. */
448 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
449 == POINTER_TYPE_P (TREE_TYPE (val2)));
450
451 if ((TREE_CODE (val1) == SSA_NAME
452 || TREE_CODE (val1) == PLUS_EXPR
453 || TREE_CODE (val1) == MINUS_EXPR)
454 && (TREE_CODE (val2) == SSA_NAME
455 || TREE_CODE (val2) == PLUS_EXPR
456 || TREE_CODE (val2) == MINUS_EXPR))
457 {
458 tree n1, c1, n2, c2;
459 enum tree_code code1, code2;
460
461 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
462 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
463 same name, return -2. */
464 if (TREE_CODE (val1) == SSA_NAME)
465 {
466 code1 = SSA_NAME;
467 n1 = val1;
468 c1 = NULL_TREE;
469 }
470 else
471 {
472 code1 = TREE_CODE (val1);
473 n1 = TREE_OPERAND (val1, 0);
474 c1 = TREE_OPERAND (val1, 1);
475 if (tree_int_cst_sgn (c1) == -1)
476 {
477 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
478 if (!c1)
479 return -2;
480 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
481 }
482 }
483
484 if (TREE_CODE (val2) == SSA_NAME)
485 {
486 code2 = SSA_NAME;
487 n2 = val2;
488 c2 = NULL_TREE;
489 }
490 else
491 {
492 code2 = TREE_CODE (val2);
493 n2 = TREE_OPERAND (val2, 0);
494 c2 = TREE_OPERAND (val2, 1);
495 if (tree_int_cst_sgn (c2) == -1)
496 {
497 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
498 if (!c2)
499 return -2;
500 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
501 }
502 }
503
504 /* Both values must use the same name. */
505 if (n1 != n2)
506 return -2;
507
508 if (code1 == SSA_NAME
509 && code2 == SSA_NAME)
510 /* NAME == NAME */
511 return 0;
512
513 /* If overflow is defined we cannot simplify more. */
514 if (TYPE_UNSIGNED (TREE_TYPE (val1))
515 || flag_wrapv)
516 return -2;
517
518 if (code1 == SSA_NAME)
519 {
520 if (code2 == PLUS_EXPR)
521 /* NAME < NAME + CST */
522 return -1;
523 else if (code2 == MINUS_EXPR)
524 /* NAME > NAME - CST */
525 return 1;
526 }
527 else if (code1 == PLUS_EXPR)
528 {
529 if (code2 == SSA_NAME)
530 /* NAME + CST > NAME */
531 return 1;
532 else if (code2 == PLUS_EXPR)
533 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
534 return compare_values (c1, c2);
535 else if (code2 == MINUS_EXPR)
536 /* NAME + CST1 > NAME - CST2 */
537 return 1;
538 }
539 else if (code1 == MINUS_EXPR)
540 {
541 if (code2 == SSA_NAME)
542 /* NAME - CST < NAME */
543 return -1;
544 else if (code2 == PLUS_EXPR)
545 /* NAME - CST1 < NAME + CST2 */
546 return -1;
547 else if (code2 == MINUS_EXPR)
548 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
549 C1 and C2 are swapped in the call to compare_values. */
550 return compare_values (c2, c1);
551 }
552
553 gcc_unreachable ();
554 }
555
556 /* We cannot compare non-constants. */
557 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
558 return -2;
559
560 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
561 {
562 /* We cannot compare overflowed values. */
563 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
564 return -2;
565
566 return tree_int_cst_compare (val1, val2);
567 }
568 else
569 {
570 tree t;
571
572 /* First see if VAL1 and VAL2 are not the same. */
573 if (val1 == val2 || operand_equal_p (val1, val2, 0))
574 return 0;
575
576 /* If VAL1 is a lower address than VAL2, return -1. */
577 t = fold_binary (LT_EXPR, boolean_type_node, val1, val2);
578 if (t == boolean_true_node)
579 return -1;
580
581 /* If VAL1 is a higher address than VAL2, return +1. */
582 t = fold_binary (GT_EXPR, boolean_type_node, val1, val2);
583 if (t == boolean_true_node)
584 return 1;
585
586 /* If VAL1 is different than VAL2, return +2. */
587 t = fold_binary (NE_EXPR, boolean_type_node, val1, val2);
588 if (t == boolean_true_node)
589 return 2;
590
591 return -2;
592 }
593 }
594
595
596 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
597 0 if VAL is not inside VR,
598 -2 if we cannot tell either way.
599
600 FIXME, the current semantics of this functions are a bit quirky
601 when taken in the context of VRP. In here we do not care
602 about VR's type. If VR is the anti-range ~[3, 5] the call
603 value_inside_range (4, VR) will return 1.
604
605 This is counter-intuitive in a strict sense, but the callers
606 currently expect this. They are calling the function
607 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
608 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
609 themselves.
610
611 This also applies to value_ranges_intersect_p and
612 range_includes_zero_p. The semantics of VR_RANGE and
613 VR_ANTI_RANGE should be encoded here, but that also means
614 adapting the users of these functions to the new semantics. */
615
616 static inline int
617 value_inside_range (tree val, value_range_t *vr)
618 {
619 tree cmp1, cmp2;
620
621 cmp1 = fold_binary_to_constant (GE_EXPR, boolean_type_node, val, vr->min);
622 if (!cmp1)
623 return -2;
624
625 cmp2 = fold_binary_to_constant (LE_EXPR, boolean_type_node, val, vr->max);
626 if (!cmp2)
627 return -2;
628
629 return cmp1 == boolean_true_node && cmp2 == boolean_true_node;
630 }
631
632
633 /* Return true if value ranges VR0 and VR1 have a non-empty
634 intersection. */
635
636 static inline bool
637 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
638 {
639 return (value_inside_range (vr1->min, vr0) == 1
640 || value_inside_range (vr1->max, vr0) == 1
641 || value_inside_range (vr0->min, vr1) == 1
642 || value_inside_range (vr0->max, vr1) == 1);
643 }
644
645
646 /* Return true if VR includes the value zero, false otherwise. FIXME,
647 currently this will return false for an anti-range like ~[-4, 3].
648 This will be wrong when the semantics of value_inside_range are
649 modified (currently the users of this function expect these
650 semantics). */
651
652 static inline bool
653 range_includes_zero_p (value_range_t *vr)
654 {
655 tree zero;
656
657 gcc_assert (vr->type != VR_UNDEFINED
658 && vr->type != VR_VARYING
659 && !symbolic_range_p (vr));
660
661 zero = build_int_cst (TREE_TYPE (vr->min), 0);
662 return (value_inside_range (zero, vr) == 1);
663 }
664
665 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
666 false otherwise or if no value range information is available. */
667
668 bool
669 ssa_name_nonnegative_p (tree t)
670 {
671 value_range_t *vr = get_value_range (t);
672
673 if (!vr)
674 return false;
675
676 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
677 which would return a useful value should be encoded as a VR_RANGE. */
678 if (vr->type == VR_RANGE)
679 {
680 int result = compare_values (vr->min, integer_zero_node);
681
682 return (result == 0 || result == 1);
683 }
684 return false;
685 }
686
687 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
688 false otherwise or if no value range information is available. */
689
690 bool
691 ssa_name_nonzero_p (tree t)
692 {
693 value_range_t *vr = get_value_range (t);
694
695 if (!vr)
696 return false;
697
698 /* A VR_RANGE which does not include zero is a nonzero value. */
699 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
700 return ! range_includes_zero_p (vr);
701
702 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
703 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
704 return range_includes_zero_p (vr);
705
706 return false;
707 }
708
709
710 /* When extracting ranges from X_i = ASSERT_EXPR <Y_j, pred>, we will
711 initially consider X_i and Y_j equivalent, so the equivalence set
712 of Y_j is added to the equivalence set of X_i. However, it is
713 possible to have a chain of ASSERT_EXPRs whose predicates are
714 actually incompatible. This is usually the result of nesting of
715 contradictory if-then-else statements. For instance, in PR 24670:
716
717 count_4 has range [-INF, 63]
718
719 if (count_4 != 0)
720 {
721 count_19 = ASSERT_EXPR <count_4, count_4 != 0>
722 if (count_19 > 63)
723 {
724 count_18 = ASSERT_EXPR <count_19, count_19 > 63>
725 if (count_18 <= 63)
726 ...
727 }
728 }
729
730 Notice that 'if (count_19 > 63)' is trivially false and will be
731 folded out at the end. However, during propagation, the flowgraph
732 is not cleaned up and so, VRP will evaluate predicates more
733 predicates than necessary, so it must support these
734 inconsistencies. The problem here is that because of the chaining
735 of ASSERT_EXPRs, the equivalency set for count_18 includes count_4.
736 Since count_4 has an incompatible range, we ICE when evaluating the
737 ranges in the equivalency set. So, we need to remove count_4 from
738 it. */
739
740 static void
741 fix_equivalence_set (value_range_t *vr_p)
742 {
743 bitmap_iterator bi;
744 unsigned i;
745 bitmap e = vr_p->equiv;
746 bitmap to_remove = BITMAP_ALLOC (NULL);
747
748 /* Only detect inconsistencies on numeric ranges. */
749 if (vr_p->type == VR_VARYING
750 || vr_p->type == VR_UNDEFINED
751 || symbolic_range_p (vr_p))
752 return;
753
754 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
755 {
756 value_range_t *equiv_vr = vr_value[i];
757
758 if (equiv_vr->type == VR_VARYING
759 || equiv_vr->type == VR_UNDEFINED
760 || symbolic_range_p (equiv_vr))
761 continue;
762
763 if (equiv_vr->type == VR_RANGE
764 && vr_p->type == VR_RANGE
765 && !value_ranges_intersect_p (vr_p, equiv_vr))
766 bitmap_set_bit (to_remove, i);
767 else if ((equiv_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
768 || (equiv_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
769 {
770 /* A range and an anti-range have an empty intersection if
771 their end points are the same. FIXME,
772 value_ranges_intersect_p should handle this
773 automatically. */
774 if (compare_values (equiv_vr->min, vr_p->min) == 0
775 && compare_values (equiv_vr->max, vr_p->max) == 0)
776 bitmap_set_bit (to_remove, i);
777 }
778 }
779
780 bitmap_and_compl_into (vr_p->equiv, to_remove);
781 BITMAP_FREE (to_remove);
782 }
783
784
785 /* Extract value range information from an ASSERT_EXPR EXPR and store
786 it in *VR_P. */
787
788 static void
789 extract_range_from_assert (value_range_t *vr_p, tree expr)
790 {
791 tree var, cond, limit, min, max, type;
792 value_range_t *var_vr, *limit_vr;
793 enum tree_code cond_code;
794
795 var = ASSERT_EXPR_VAR (expr);
796 cond = ASSERT_EXPR_COND (expr);
797
798 gcc_assert (COMPARISON_CLASS_P (cond));
799
800 /* Find VAR in the ASSERT_EXPR conditional. */
801 if (var == TREE_OPERAND (cond, 0))
802 {
803 /* If the predicate is of the form VAR COMP LIMIT, then we just
804 take LIMIT from the RHS and use the same comparison code. */
805 limit = TREE_OPERAND (cond, 1);
806 cond_code = TREE_CODE (cond);
807 }
808 else
809 {
810 /* If the predicate is of the form LIMIT COMP VAR, then we need
811 to flip around the comparison code to create the proper range
812 for VAR. */
813 limit = TREE_OPERAND (cond, 0);
814 cond_code = swap_tree_comparison (TREE_CODE (cond));
815 }
816
817 type = TREE_TYPE (limit);
818 gcc_assert (limit != var);
819
820 /* For pointer arithmetic, we only keep track of pointer equality
821 and inequality. */
822 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
823 {
824 set_value_range_to_varying (vr_p);
825 return;
826 }
827
828 /* If LIMIT is another SSA name and LIMIT has a range of its own,
829 try to use LIMIT's range to avoid creating symbolic ranges
830 unnecessarily. */
831 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
832
833 /* LIMIT's range is only interesting if it has any useful information. */
834 if (limit_vr
835 && (limit_vr->type == VR_UNDEFINED
836 || limit_vr->type == VR_VARYING
837 || symbolic_range_p (limit_vr)))
838 limit_vr = NULL;
839
840 /* Initially, the new range has the same set of equivalences of
841 VAR's range. This will be revised before returning the final
842 value. Since assertions may be chained via mutually exclusive
843 predicates, we will need to trim the set of equivalences before
844 we are done. */
845 gcc_assert (vr_p->equiv == NULL);
846 vr_p->equiv = BITMAP_ALLOC (NULL);
847 add_equivalence (vr_p->equiv, var);
848
849 /* Extract a new range based on the asserted comparison for VAR and
850 LIMIT's value range. Notice that if LIMIT has an anti-range, we
851 will only use it for equality comparisons (EQ_EXPR). For any
852 other kind of assertion, we cannot derive a range from LIMIT's
853 anti-range that can be used to describe the new range. For
854 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
855 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
856 no single range for x_2 that could describe LE_EXPR, so we might
857 as well build the range [b_4, +INF] for it. */
858 if (cond_code == EQ_EXPR)
859 {
860 enum value_range_type range_type;
861
862 if (limit_vr)
863 {
864 range_type = limit_vr->type;
865 min = limit_vr->min;
866 max = limit_vr->max;
867 }
868 else
869 {
870 range_type = VR_RANGE;
871 min = limit;
872 max = limit;
873 }
874
875 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
876
877 /* When asserting the equality VAR == LIMIT and LIMIT is another
878 SSA name, the new range will also inherit the equivalence set
879 from LIMIT. */
880 if (TREE_CODE (limit) == SSA_NAME)
881 add_equivalence (vr_p->equiv, limit);
882 }
883 else if (cond_code == NE_EXPR)
884 {
885 /* As described above, when LIMIT's range is an anti-range and
886 this assertion is an inequality (NE_EXPR), then we cannot
887 derive anything from the anti-range. For instance, if
888 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
889 not imply that VAR's range is [0, 0]. So, in the case of
890 anti-ranges, we just assert the inequality using LIMIT and
891 not its anti-range.
892
893 If LIMIT_VR is a range, we can only use it to build a new
894 anti-range if LIMIT_VR is a single-valued range. For
895 instance, if LIMIT_VR is [0, 1], the predicate
896 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
897 Rather, it means that for value 0 VAR should be ~[0, 0]
898 and for value 1, VAR should be ~[1, 1]. We cannot
899 represent these ranges.
900
901 The only situation in which we can build a valid
902 anti-range is when LIMIT_VR is a single-valued range
903 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
904 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
905 if (limit_vr
906 && limit_vr->type == VR_RANGE
907 && compare_values (limit_vr->min, limit_vr->max) == 0)
908 {
909 min = limit_vr->min;
910 max = limit_vr->max;
911 }
912 else
913 {
914 /* In any other case, we cannot use LIMIT's range to build a
915 valid anti-range. */
916 min = max = limit;
917 }
918
919 /* If MIN and MAX cover the whole range for their type, then
920 just use the original LIMIT. */
921 if (INTEGRAL_TYPE_P (type)
922 && min == TYPE_MIN_VALUE (type)
923 && max == TYPE_MAX_VALUE (type))
924 min = max = limit;
925
926 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
927 }
928 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
929 {
930 min = TYPE_MIN_VALUE (type);
931
932 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
933 max = limit;
934 else
935 {
936 /* If LIMIT_VR is of the form [N1, N2], we need to build the
937 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
938 LT_EXPR. */
939 max = limit_vr->max;
940 }
941
942 /* If the maximum value forces us to be out of bounds, simply punt.
943 It would be pointless to try and do anything more since this
944 all should be optimized away above us. */
945 if (cond_code == LT_EXPR && compare_values (max, min) == 0)
946 set_value_range_to_varying (vr_p);
947 else
948 {
949 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
950 if (cond_code == LT_EXPR)
951 {
952 tree one = build_int_cst (type, 1);
953 max = fold_build2 (MINUS_EXPR, type, max, one);
954 }
955
956 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
957 }
958 }
959 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
960 {
961 max = TYPE_MAX_VALUE (type);
962
963 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
964 min = limit;
965 else
966 {
967 /* If LIMIT_VR is of the form [N1, N2], we need to build the
968 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
969 GT_EXPR. */
970 min = limit_vr->min;
971 }
972
973 /* If the minimum value forces us to be out of bounds, simply punt.
974 It would be pointless to try and do anything more since this
975 all should be optimized away above us. */
976 if (cond_code == GT_EXPR && compare_values (min, max) == 0)
977 set_value_range_to_varying (vr_p);
978 else
979 {
980 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
981 if (cond_code == GT_EXPR)
982 {
983 tree one = build_int_cst (type, 1);
984 min = fold_build2 (PLUS_EXPR, type, min, one);
985 }
986
987 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
988 }
989 }
990 else
991 gcc_unreachable ();
992
993 /* If VAR already had a known range, it may happen that the new
994 range we have computed and VAR's range are not compatible. For
995 instance,
996
997 if (p_5 == NULL)
998 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
999 x_7 = p_6->fld;
1000 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1001
1002 While the above comes from a faulty program, it will cause an ICE
1003 later because p_8 and p_6 will have incompatible ranges and at
1004 the same time will be considered equivalent. A similar situation
1005 would arise from
1006
1007 if (i_5 > 10)
1008 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1009 if (i_5 < 5)
1010 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1011
1012 Again i_6 and i_7 will have incompatible ranges. It would be
1013 pointless to try and do anything with i_7's range because
1014 anything dominated by 'if (i_5 < 5)' will be optimized away.
1015 Note, due to the wa in which simulation proceeds, the statement
1016 i_7 = ASSERT_EXPR <...> we would never be visited because the
1017 conditional 'if (i_5 < 5)' always evaluates to false. However,
1018 this extra check does not hurt and may protect against future
1019 changes to VRP that may get into a situation similar to the
1020 NULL pointer dereference example.
1021
1022 Note that these compatibility tests are only needed when dealing
1023 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1024 are both anti-ranges, they will always be compatible, because two
1025 anti-ranges will always have a non-empty intersection. */
1026
1027 var_vr = get_value_range (var);
1028
1029 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1030 ranges or anti-ranges. */
1031 if (vr_p->type == VR_VARYING
1032 || vr_p->type == VR_UNDEFINED
1033 || var_vr->type == VR_VARYING
1034 || var_vr->type == VR_UNDEFINED
1035 || symbolic_range_p (vr_p)
1036 || symbolic_range_p (var_vr))
1037 goto done;
1038
1039 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1040 {
1041 /* If the two ranges have a non-empty intersection, we can
1042 refine the resulting range. Since the assert expression
1043 creates an equivalency and at the same time it asserts a
1044 predicate, we can take the intersection of the two ranges to
1045 get better precision. */
1046 if (value_ranges_intersect_p (var_vr, vr_p))
1047 {
1048 /* Use the larger of the two minimums. */
1049 if (compare_values (vr_p->min, var_vr->min) == -1)
1050 min = var_vr->min;
1051 else
1052 min = vr_p->min;
1053
1054 /* Use the smaller of the two maximums. */
1055 if (compare_values (vr_p->max, var_vr->max) == 1)
1056 max = var_vr->max;
1057 else
1058 max = vr_p->max;
1059
1060 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1061 }
1062 else
1063 {
1064 /* The two ranges do not intersect, set the new range to
1065 VARYING, because we will not be able to do anything
1066 meaningful with it. */
1067 set_value_range_to_varying (vr_p);
1068 }
1069 }
1070 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1071 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1072 {
1073 /* A range and an anti-range will cancel each other only if
1074 their ends are the same. For instance, in the example above,
1075 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1076 so VR_P should be set to VR_VARYING. */
1077 if (compare_values (var_vr->min, vr_p->min) == 0
1078 && compare_values (var_vr->max, vr_p->max) == 0)
1079 set_value_range_to_varying (vr_p);
1080 else
1081 {
1082 tree min, max, anti_min, anti_max, real_min, real_max;
1083
1084 /* We want to compute the logical AND of the two ranges;
1085 there are three cases to consider.
1086
1087
1088 1. The VR_ANTI_RANGE range is completely within the
1089 VR_RANGE and the endpoints of the ranges are
1090 different. In that case the resulting range
1091 should be whichever range is more precise.
1092 Typically that will be the VR_RANGE.
1093
1094 2. The VR_ANTI_RANGE is completely disjoint from
1095 the VR_RANGE. In this case the resulting range
1096 should be the VR_RANGE.
1097
1098 3. There is some overlap between the VR_ANTI_RANGE
1099 and the VR_RANGE.
1100
1101 3a. If the high limit of the VR_ANTI_RANGE resides
1102 within the VR_RANGE, then the result is a new
1103 VR_RANGE starting at the high limit of the
1104 the VR_ANTI_RANGE + 1 and extending to the
1105 high limit of the original VR_RANGE.
1106
1107 3b. If the low limit of the VR_ANTI_RANGE resides
1108 within the VR_RANGE, then the result is a new
1109 VR_RANGE starting at the low limit of the original
1110 VR_RANGE and extending to the low limit of the
1111 VR_ANTI_RANGE - 1. */
1112 if (vr_p->type == VR_ANTI_RANGE)
1113 {
1114 anti_min = vr_p->min;
1115 anti_max = vr_p->max;
1116 real_min = var_vr->min;
1117 real_max = var_vr->max;
1118 }
1119 else
1120 {
1121 anti_min = var_vr->min;
1122 anti_max = var_vr->max;
1123 real_min = vr_p->min;
1124 real_max = vr_p->max;
1125 }
1126
1127
1128 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1129 not including any endpoints. */
1130 if (compare_values (anti_max, real_max) == -1
1131 && compare_values (anti_min, real_min) == 1)
1132 {
1133 set_value_range (vr_p, VR_RANGE, real_min,
1134 real_max, vr_p->equiv);
1135 }
1136 /* Case 2, VR_ANTI_RANGE completely disjoint from
1137 VR_RANGE. */
1138 else if (compare_values (anti_min, real_max) == 1
1139 || compare_values (anti_max, real_min) == -1)
1140 {
1141 set_value_range (vr_p, VR_RANGE, real_min,
1142 real_max, vr_p->equiv);
1143 }
1144 /* Case 3a, the anti-range extends into the low
1145 part of the real range. Thus creating a new
1146 low for the real range. */
1147 else if ((compare_values (anti_max, real_min) == 1
1148 || compare_values (anti_max, real_min) == 0)
1149 && compare_values (anti_max, real_max) == -1)
1150 {
1151 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1152 anti_max,
1153 build_int_cst (TREE_TYPE (var_vr->min), 1));
1154 max = real_max;
1155 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1156 }
1157 /* Case 3b, the anti-range extends into the high
1158 part of the real range. Thus creating a new
1159 higher for the real range. */
1160 else if (compare_values (anti_min, real_min) == 1
1161 && (compare_values (anti_min, real_max) == -1
1162 || compare_values (anti_min, real_max) == 0))
1163 {
1164 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1165 anti_min,
1166 build_int_cst (TREE_TYPE (var_vr->min), 1));
1167 min = real_min;
1168 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1169 }
1170 }
1171 }
1172
1173 /* Remove names from the equivalence set that have ranges
1174 incompatible with VR_P. */
1175 done:
1176 fix_equivalence_set (vr_p);
1177 }
1178
1179
1180 /* Extract range information from SSA name VAR and store it in VR. If
1181 VAR has an interesting range, use it. Otherwise, create the
1182 range [VAR, VAR] and return it. This is useful in situations where
1183 we may have conditionals testing values of VARYING names. For
1184 instance,
1185
1186 x_3 = y_5;
1187 if (x_3 > y_5)
1188 ...
1189
1190 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1191 always false. */
1192
1193 static void
1194 extract_range_from_ssa_name (value_range_t *vr, tree var)
1195 {
1196 value_range_t *var_vr = get_value_range (var);
1197
1198 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1199 copy_value_range (vr, var_vr);
1200 else
1201 set_value_range (vr, VR_RANGE, var, var, NULL);
1202
1203 add_equivalence (vr->equiv, var);
1204 }
1205
1206
1207 /* Wrapper around int_const_binop. If the operation overflows and we
1208 are not using wrapping arithmetic, then adjust the result to be
1209 -INF or +INF depending on CODE, VAL1 and VAL2. */
1210
1211 static inline tree
1212 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1213 {
1214 tree res;
1215
1216 if (flag_wrapv)
1217 return int_const_binop (code, val1, val2, 0);
1218
1219 /* If we are not using wrapping arithmetic, operate symbolically
1220 on -INF and +INF. */
1221 res = int_const_binop (code, val1, val2, 0);
1222
1223 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1224 {
1225 int checkz = compare_values (res, val1);
1226 bool overflow = false;
1227
1228 /* Ensure that res = val1 [+*] val2 >= val1
1229 or that res = val1 - val2 <= val1. */
1230 if ((code == PLUS_EXPR
1231 && !(checkz == 1 || checkz == 0))
1232 || (code == MINUS_EXPR
1233 && !(checkz == 0 || checkz == -1)))
1234 {
1235 overflow = true;
1236 }
1237 /* Checking for multiplication overflow is done by dividing the
1238 output of the multiplication by the first input of the
1239 multiplication. If the result of that division operation is
1240 not equal to the second input of the multiplication, then the
1241 multiplication overflowed. */
1242 else if (code == MULT_EXPR && !integer_zerop (val1))
1243 {
1244 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1245 TYPE_MAX_VALUE (TREE_TYPE (val1)),
1246 val1, 0);
1247 int check = compare_values (tmp, val2);
1248
1249 if (check != 0)
1250 overflow = true;
1251 }
1252
1253 if (overflow)
1254 {
1255 res = copy_node (res);
1256 TREE_OVERFLOW (res) = 1;
1257 }
1258
1259 }
1260 else if (TREE_OVERFLOW (res)
1261 && !TREE_OVERFLOW (val1)
1262 && !TREE_OVERFLOW (val2))
1263 {
1264 /* If the operation overflowed but neither VAL1 nor VAL2 are
1265 overflown, return -INF or +INF depending on the operation
1266 and the combination of signs of the operands. */
1267 int sgn1 = tree_int_cst_sgn (val1);
1268 int sgn2 = tree_int_cst_sgn (val2);
1269
1270 /* Notice that we only need to handle the restricted set of
1271 operations handled by extract_range_from_binary_expr.
1272 Among them, only multiplication, addition and subtraction
1273 can yield overflow without overflown operands because we
1274 are working with integral types only... except in the
1275 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1276 for division too. */
1277
1278 /* For multiplication, the sign of the overflow is given
1279 by the comparison of the signs of the operands. */
1280 if ((code == MULT_EXPR && sgn1 == sgn2)
1281 /* For addition, the operands must be of the same sign
1282 to yield an overflow. Its sign is therefore that
1283 of one of the operands, for example the first. */
1284 || (code == PLUS_EXPR && sgn1 > 0)
1285 /* For subtraction, the operands must be of different
1286 signs to yield an overflow. Its sign is therefore
1287 that of the first operand or the opposite of that
1288 of the second operand. A first operand of 0 counts
1289 as positive here, for the corner case 0 - (-INF),
1290 which overflows, but must yield +INF. */
1291 || (code == MINUS_EXPR && sgn1 >= 0)
1292 /* For division, the only case is -INF / -1 = +INF. */
1293 || code == TRUNC_DIV_EXPR
1294 || code == FLOOR_DIV_EXPR
1295 || code == CEIL_DIV_EXPR
1296 || code == EXACT_DIV_EXPR
1297 || code == ROUND_DIV_EXPR)
1298 return TYPE_MAX_VALUE (TREE_TYPE (res));
1299 else
1300 return TYPE_MIN_VALUE (TREE_TYPE (res));
1301 }
1302
1303 return res;
1304 }
1305
1306
1307 /* Extract range information from a binary expression EXPR based on
1308 the ranges of each of its operands and the expression code. */
1309
1310 static void
1311 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1312 {
1313 enum tree_code code = TREE_CODE (expr);
1314 enum value_range_type type;
1315 tree op0, op1, min, max;
1316 int cmp;
1317 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1318 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1319
1320 /* Not all binary expressions can be applied to ranges in a
1321 meaningful way. Handle only arithmetic operations. */
1322 if (code != PLUS_EXPR
1323 && code != MINUS_EXPR
1324 && code != MULT_EXPR
1325 && code != TRUNC_DIV_EXPR
1326 && code != FLOOR_DIV_EXPR
1327 && code != CEIL_DIV_EXPR
1328 && code != EXACT_DIV_EXPR
1329 && code != ROUND_DIV_EXPR
1330 && code != MIN_EXPR
1331 && code != MAX_EXPR
1332 && code != BIT_AND_EXPR
1333 && code != TRUTH_ANDIF_EXPR
1334 && code != TRUTH_ORIF_EXPR
1335 && code != TRUTH_AND_EXPR
1336 && code != TRUTH_OR_EXPR)
1337 {
1338 set_value_range_to_varying (vr);
1339 return;
1340 }
1341
1342 /* Get value ranges for each operand. For constant operands, create
1343 a new value range with the operand to simplify processing. */
1344 op0 = TREE_OPERAND (expr, 0);
1345 if (TREE_CODE (op0) == SSA_NAME)
1346 vr0 = *(get_value_range (op0));
1347 else if (is_gimple_min_invariant (op0))
1348 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1349 else
1350 set_value_range_to_varying (&vr0);
1351
1352 op1 = TREE_OPERAND (expr, 1);
1353 if (TREE_CODE (op1) == SSA_NAME)
1354 vr1 = *(get_value_range (op1));
1355 else if (is_gimple_min_invariant (op1))
1356 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
1357 else
1358 set_value_range_to_varying (&vr1);
1359
1360 /* If either range is UNDEFINED, so is the result. */
1361 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1362 {
1363 set_value_range_to_undefined (vr);
1364 return;
1365 }
1366
1367 /* The type of the resulting value range defaults to VR0.TYPE. */
1368 type = vr0.type;
1369
1370 /* Refuse to operate on VARYING ranges, ranges of different kinds
1371 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1372 because we may be able to derive a useful range even if one of
1373 the operands is VR_VARYING or symbolic range. TODO, we may be
1374 able to derive anti-ranges in some cases. */
1375 if (code != BIT_AND_EXPR
1376 && code != TRUTH_AND_EXPR
1377 && code != TRUTH_OR_EXPR
1378 && (vr0.type == VR_VARYING
1379 || vr1.type == VR_VARYING
1380 || vr0.type != vr1.type
1381 || symbolic_range_p (&vr0)
1382 || symbolic_range_p (&vr1)))
1383 {
1384 set_value_range_to_varying (vr);
1385 return;
1386 }
1387
1388 /* Now evaluate the expression to determine the new range. */
1389 if (POINTER_TYPE_P (TREE_TYPE (expr))
1390 || POINTER_TYPE_P (TREE_TYPE (op0))
1391 || POINTER_TYPE_P (TREE_TYPE (op1)))
1392 {
1393 /* For pointer types, we are really only interested in asserting
1394 whether the expression evaluates to non-NULL. FIXME, we used
1395 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1396 ivopts is generating expressions with pointer multiplication
1397 in them. */
1398 if (code == PLUS_EXPR)
1399 {
1400 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1401 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1402 else if (range_is_null (&vr0) && range_is_null (&vr1))
1403 set_value_range_to_null (vr, TREE_TYPE (expr));
1404 else
1405 set_value_range_to_varying (vr);
1406 }
1407 else
1408 {
1409 /* Subtracting from a pointer, may yield 0, so just drop the
1410 resulting range to varying. */
1411 set_value_range_to_varying (vr);
1412 }
1413
1414 return;
1415 }
1416
1417 /* For integer ranges, apply the operation to each end of the
1418 range and see what we end up with. */
1419 if (code == TRUTH_ANDIF_EXPR
1420 || code == TRUTH_ORIF_EXPR
1421 || code == TRUTH_AND_EXPR
1422 || code == TRUTH_OR_EXPR)
1423 {
1424 /* If one of the operands is zero, we know that the whole
1425 expression evaluates zero. */
1426 if (code == TRUTH_AND_EXPR
1427 && ((vr0.type == VR_RANGE
1428 && integer_zerop (vr0.min)
1429 && integer_zerop (vr0.max))
1430 || (vr1.type == VR_RANGE
1431 && integer_zerop (vr1.min)
1432 && integer_zerop (vr1.max))))
1433 {
1434 type = VR_RANGE;
1435 min = max = build_int_cst (TREE_TYPE (expr), 0);
1436 }
1437 /* If one of the operands is one, we know that the whole
1438 expression evaluates one. */
1439 else if (code == TRUTH_OR_EXPR
1440 && ((vr0.type == VR_RANGE
1441 && integer_onep (vr0.min)
1442 && integer_onep (vr0.max))
1443 || (vr1.type == VR_RANGE
1444 && integer_onep (vr1.min)
1445 && integer_onep (vr1.max))))
1446 {
1447 type = VR_RANGE;
1448 min = max = build_int_cst (TREE_TYPE (expr), 1);
1449 }
1450 else if (vr0.type != VR_VARYING
1451 && vr1.type != VR_VARYING
1452 && vr0.type == vr1.type
1453 && !symbolic_range_p (&vr0)
1454 && !symbolic_range_p (&vr1))
1455 {
1456 /* Boolean expressions cannot be folded with int_const_binop. */
1457 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1458 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1459 }
1460 else
1461 {
1462 set_value_range_to_varying (vr);
1463 return;
1464 }
1465 }
1466 else if (code == PLUS_EXPR
1467 || code == MIN_EXPR
1468 || code == MAX_EXPR)
1469 {
1470 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1471 VR_VARYING. It would take more effort to compute a precise
1472 range for such a case. For example, if we have op0 == 1 and
1473 op1 == -1 with their ranges both being ~[0,0], we would have
1474 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1475 Note that we are guaranteed to have vr0.type == vr1.type at
1476 this point. */
1477 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1478 {
1479 set_value_range_to_varying (vr);
1480 return;
1481 }
1482
1483 /* For operations that make the resulting range directly
1484 proportional to the original ranges, apply the operation to
1485 the same end of each range. */
1486 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1487 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1488 }
1489 else if (code == MULT_EXPR
1490 || code == TRUNC_DIV_EXPR
1491 || code == FLOOR_DIV_EXPR
1492 || code == CEIL_DIV_EXPR
1493 || code == EXACT_DIV_EXPR
1494 || code == ROUND_DIV_EXPR)
1495 {
1496 tree val[4];
1497 size_t i;
1498
1499 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1500 drop to VR_VARYING. It would take more effort to compute a
1501 precise range for such a case. For example, if we have
1502 op0 == 65536 and op1 == 65536 with their ranges both being
1503 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1504 we cannot claim that the product is in ~[0,0]. Note that we
1505 are guaranteed to have vr0.type == vr1.type at this
1506 point. */
1507 if (code == MULT_EXPR
1508 && vr0.type == VR_ANTI_RANGE
1509 && (flag_wrapv || TYPE_UNSIGNED (TREE_TYPE (op0))))
1510 {
1511 set_value_range_to_varying (vr);
1512 return;
1513 }
1514
1515 /* Multiplications and divisions are a bit tricky to handle,
1516 depending on the mix of signs we have in the two ranges, we
1517 need to operate on different values to get the minimum and
1518 maximum values for the new range. One approach is to figure
1519 out all the variations of range combinations and do the
1520 operations.
1521
1522 However, this involves several calls to compare_values and it
1523 is pretty convoluted. It's simpler to do the 4 operations
1524 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1525 MAX1) and then figure the smallest and largest values to form
1526 the new range. */
1527
1528 /* Divisions by zero result in a VARYING value. */
1529 if (code != MULT_EXPR
1530 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1531 {
1532 set_value_range_to_varying (vr);
1533 return;
1534 }
1535
1536 /* Compute the 4 cross operations. */
1537 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1538
1539 val[1] = (vr1.max != vr1.min)
1540 ? vrp_int_const_binop (code, vr0.min, vr1.max)
1541 : NULL_TREE;
1542
1543 val[2] = (vr0.max != vr0.min)
1544 ? vrp_int_const_binop (code, vr0.max, vr1.min)
1545 : NULL_TREE;
1546
1547 val[3] = (vr0.min != vr0.max && vr1.min != vr1.max)
1548 ? vrp_int_const_binop (code, vr0.max, vr1.max)
1549 : NULL_TREE;
1550
1551 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1552 of VAL[i]. */
1553 min = val[0];
1554 max = val[0];
1555 for (i = 1; i < 4; i++)
1556 {
1557 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1558 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1559 break;
1560
1561 if (val[i])
1562 {
1563 if (!is_gimple_min_invariant (val[i]) || TREE_OVERFLOW (val[i]))
1564 {
1565 /* If we found an overflowed value, set MIN and MAX
1566 to it so that we set the resulting range to
1567 VARYING. */
1568 min = max = val[i];
1569 break;
1570 }
1571
1572 if (compare_values (val[i], min) == -1)
1573 min = val[i];
1574
1575 if (compare_values (val[i], max) == 1)
1576 max = val[i];
1577 }
1578 }
1579 }
1580 else if (code == MINUS_EXPR)
1581 {
1582 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1583 VR_VARYING. It would take more effort to compute a precise
1584 range for such a case. For example, if we have op0 == 1 and
1585 op1 == 1 with their ranges both being ~[0,0], we would have
1586 op0 - op1 == 0, so we cannot claim that the difference is in
1587 ~[0,0]. Note that we are guaranteed to have
1588 vr0.type == vr1.type at this point. */
1589 if (vr0.type == VR_ANTI_RANGE)
1590 {
1591 set_value_range_to_varying (vr);
1592 return;
1593 }
1594
1595 /* For MINUS_EXPR, apply the operation to the opposite ends of
1596 each range. */
1597 min = vrp_int_const_binop (code, vr0.min, vr1.max);
1598 max = vrp_int_const_binop (code, vr0.max, vr1.min);
1599 }
1600 else if (code == BIT_AND_EXPR)
1601 {
1602 if (vr0.type == VR_RANGE
1603 && vr0.min == vr0.max
1604 && tree_expr_nonnegative_p (vr0.max)
1605 && TREE_CODE (vr0.max) == INTEGER_CST)
1606 {
1607 min = build_int_cst (TREE_TYPE (expr), 0);
1608 max = vr0.max;
1609 }
1610 else if (vr1.type == VR_RANGE
1611 && vr1.min == vr1.max
1612 && tree_expr_nonnegative_p (vr1.max)
1613 && TREE_CODE (vr1.max) == INTEGER_CST)
1614 {
1615 type = VR_RANGE;
1616 min = build_int_cst (TREE_TYPE (expr), 0);
1617 max = vr1.max;
1618 }
1619 else
1620 {
1621 set_value_range_to_varying (vr);
1622 return;
1623 }
1624 }
1625 else
1626 gcc_unreachable ();
1627
1628 /* If either MIN or MAX overflowed, then set the resulting range to
1629 VARYING. */
1630 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1631 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1632 {
1633 set_value_range_to_varying (vr);
1634 return;
1635 }
1636
1637 cmp = compare_values (min, max);
1638 if (cmp == -2 || cmp == 1)
1639 {
1640 /* If the new range has its limits swapped around (MIN > MAX),
1641 then the operation caused one of them to wrap around, mark
1642 the new range VARYING. */
1643 set_value_range_to_varying (vr);
1644 }
1645 else
1646 set_value_range (vr, type, min, max, NULL);
1647 }
1648
1649
1650 /* Extract range information from a unary expression EXPR based on
1651 the range of its operand and the expression code. */
1652
1653 static void
1654 extract_range_from_unary_expr (value_range_t *vr, tree expr)
1655 {
1656 enum tree_code code = TREE_CODE (expr);
1657 tree min, max, op0;
1658 int cmp;
1659 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1660
1661 /* Refuse to operate on certain unary expressions for which we
1662 cannot easily determine a resulting range. */
1663 if (code == FIX_TRUNC_EXPR
1664 || code == FIX_CEIL_EXPR
1665 || code == FIX_FLOOR_EXPR
1666 || code == FIX_ROUND_EXPR
1667 || code == FLOAT_EXPR
1668 || code == BIT_NOT_EXPR
1669 || code == NON_LVALUE_EXPR
1670 || code == CONJ_EXPR)
1671 {
1672 set_value_range_to_varying (vr);
1673 return;
1674 }
1675
1676 /* Get value ranges for the operand. For constant operands, create
1677 a new value range with the operand to simplify processing. */
1678 op0 = TREE_OPERAND (expr, 0);
1679 if (TREE_CODE (op0) == SSA_NAME)
1680 vr0 = *(get_value_range (op0));
1681 else if (is_gimple_min_invariant (op0))
1682 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1683 else
1684 set_value_range_to_varying (&vr0);
1685
1686 /* If VR0 is UNDEFINED, so is the result. */
1687 if (vr0.type == VR_UNDEFINED)
1688 {
1689 set_value_range_to_undefined (vr);
1690 return;
1691 }
1692
1693 /* Refuse to operate on symbolic ranges, or if neither operand is
1694 a pointer or integral type. */
1695 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
1696 && !POINTER_TYPE_P (TREE_TYPE (op0)))
1697 || (vr0.type != VR_VARYING
1698 && symbolic_range_p (&vr0)))
1699 {
1700 set_value_range_to_varying (vr);
1701 return;
1702 }
1703
1704 /* If the expression involves pointers, we are only interested in
1705 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
1706 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
1707 {
1708 if (range_is_nonnull (&vr0) || tree_expr_nonzero_p (expr))
1709 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1710 else if (range_is_null (&vr0))
1711 set_value_range_to_null (vr, TREE_TYPE (expr));
1712 else
1713 set_value_range_to_varying (vr);
1714
1715 return;
1716 }
1717
1718 /* Handle unary expressions on integer ranges. */
1719 if (code == NOP_EXPR || code == CONVERT_EXPR)
1720 {
1721 tree inner_type = TREE_TYPE (op0);
1722 tree outer_type = TREE_TYPE (expr);
1723
1724 /* If VR0 represents a simple range, then try to convert
1725 the min and max values for the range to the same type
1726 as OUTER_TYPE. If the results compare equal to VR0's
1727 min and max values and the new min is still less than
1728 or equal to the new max, then we can safely use the newly
1729 computed range for EXPR. This allows us to compute
1730 accurate ranges through many casts. */
1731 if (vr0.type == VR_RANGE
1732 || (vr0.type == VR_VARYING
1733 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)))
1734 {
1735 tree new_min, new_max, orig_min, orig_max;
1736
1737 /* Convert the input operand min/max to OUTER_TYPE. If
1738 the input has no range information, then use the min/max
1739 for the input's type. */
1740 if (vr0.type == VR_RANGE)
1741 {
1742 orig_min = vr0.min;
1743 orig_max = vr0.max;
1744 }
1745 else
1746 {
1747 orig_min = TYPE_MIN_VALUE (inner_type);
1748 orig_max = TYPE_MAX_VALUE (inner_type);
1749 }
1750
1751 new_min = fold_convert (outer_type, orig_min);
1752 new_max = fold_convert (outer_type, orig_max);
1753
1754 /* Verify the new min/max values are gimple values and
1755 that they compare equal to the original input's
1756 min/max values. */
1757 if (is_gimple_val (new_min)
1758 && is_gimple_val (new_max)
1759 && tree_int_cst_equal (new_min, orig_min)
1760 && tree_int_cst_equal (new_max, orig_max)
1761 && compare_values (new_min, new_max) <= 0
1762 && compare_values (new_min, new_max) >= -1)
1763 {
1764 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
1765 return;
1766 }
1767 }
1768
1769 /* When converting types of different sizes, set the result to
1770 VARYING. Things like sign extensions and precision loss may
1771 change the range. For instance, if x_3 is of type 'long long
1772 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
1773 is impossible to know at compile time whether y_5 will be
1774 ~[0, 0]. */
1775 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
1776 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
1777 {
1778 set_value_range_to_varying (vr);
1779 return;
1780 }
1781 }
1782
1783 /* Conversion of a VR_VARYING value to a wider type can result
1784 in a usable range. So wait until after we've handled conversions
1785 before dropping the result to VR_VARYING if we had a source
1786 operand that is VR_VARYING. */
1787 if (vr0.type == VR_VARYING)
1788 {
1789 set_value_range_to_varying (vr);
1790 return;
1791 }
1792
1793 /* Apply the operation to each end of the range and see what we end
1794 up with. */
1795 if (code == NEGATE_EXPR
1796 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1797 {
1798 /* NEGATE_EXPR flips the range around. */
1799 min = (vr0.max == TYPE_MAX_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
1800 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1801 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1802
1803 max = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
1804 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1805 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1806
1807 }
1808 else if (code == NEGATE_EXPR
1809 && TYPE_UNSIGNED (TREE_TYPE (expr)))
1810 {
1811 if (!range_includes_zero_p (&vr0))
1812 {
1813 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1814 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1815 }
1816 else
1817 {
1818 if (range_is_null (&vr0))
1819 set_value_range_to_null (vr, TREE_TYPE (expr));
1820 else
1821 set_value_range_to_varying (vr);
1822 return;
1823 }
1824 }
1825 else if (code == ABS_EXPR
1826 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1827 {
1828 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
1829 useful range. */
1830 if (flag_wrapv
1831 && ((vr0.type == VR_RANGE
1832 && vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1833 || (vr0.type == VR_ANTI_RANGE
1834 && vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr))
1835 && !range_includes_zero_p (&vr0))))
1836 {
1837 set_value_range_to_varying (vr);
1838 return;
1839 }
1840
1841 /* ABS_EXPR may flip the range around, if the original range
1842 included negative values. */
1843 min = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1844 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1845 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1846
1847 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1848
1849 cmp = compare_values (min, max);
1850
1851 /* If a VR_ANTI_RANGEs contains zero, then we have
1852 ~[-INF, min(MIN, MAX)]. */
1853 if (vr0.type == VR_ANTI_RANGE)
1854 {
1855 if (range_includes_zero_p (&vr0))
1856 {
1857 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
1858
1859 /* Take the lower of the two values. */
1860 if (cmp != 1)
1861 max = min;
1862
1863 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
1864 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
1865 flag_wrapv is set and the original anti-range doesn't include
1866 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
1867 min = (flag_wrapv && vr0.min != type_min_value
1868 ? int_const_binop (PLUS_EXPR,
1869 type_min_value,
1870 integer_one_node, 0)
1871 : type_min_value);
1872 }
1873 else
1874 {
1875 /* All else has failed, so create the range [0, INF], even for
1876 flag_wrapv since TYPE_MIN_VALUE is in the original
1877 anti-range. */
1878 vr0.type = VR_RANGE;
1879 min = build_int_cst (TREE_TYPE (expr), 0);
1880 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
1881 }
1882 }
1883
1884 /* If the range contains zero then we know that the minimum value in the
1885 range will be zero. */
1886 else if (range_includes_zero_p (&vr0))
1887 {
1888 if (cmp == 1)
1889 max = min;
1890 min = build_int_cst (TREE_TYPE (expr), 0);
1891 }
1892 else
1893 {
1894 /* If the range was reversed, swap MIN and MAX. */
1895 if (cmp == 1)
1896 {
1897 tree t = min;
1898 min = max;
1899 max = t;
1900 }
1901 }
1902 }
1903 else
1904 {
1905 /* Otherwise, operate on each end of the range. */
1906 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1907 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1908 }
1909
1910 cmp = compare_values (min, max);
1911 if (cmp == -2 || cmp == 1)
1912 {
1913 /* If the new range has its limits swapped around (MIN > MAX),
1914 then the operation caused one of them to wrap around, mark
1915 the new range VARYING. */
1916 set_value_range_to_varying (vr);
1917 }
1918 else
1919 set_value_range (vr, vr0.type, min, max, NULL);
1920 }
1921
1922
1923 /* Extract range information from a comparison expression EXPR based
1924 on the range of its operand and the expression code. */
1925
1926 static void
1927 extract_range_from_comparison (value_range_t *vr, tree expr)
1928 {
1929 tree val = vrp_evaluate_conditional (expr, false);
1930 if (val)
1931 {
1932 /* Since this expression was found on the RHS of an assignment,
1933 its type may be different from _Bool. Convert VAL to EXPR's
1934 type. */
1935 val = fold_convert (TREE_TYPE (expr), val);
1936 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
1937 }
1938 else
1939 set_value_range_to_varying (vr);
1940 }
1941
1942
1943 /* Try to compute a useful range out of expression EXPR and store it
1944 in *VR. */
1945
1946 static void
1947 extract_range_from_expr (value_range_t *vr, tree expr)
1948 {
1949 enum tree_code code = TREE_CODE (expr);
1950
1951 if (code == ASSERT_EXPR)
1952 extract_range_from_assert (vr, expr);
1953 else if (code == SSA_NAME)
1954 extract_range_from_ssa_name (vr, expr);
1955 else if (TREE_CODE_CLASS (code) == tcc_binary
1956 || code == TRUTH_ANDIF_EXPR
1957 || code == TRUTH_ORIF_EXPR
1958 || code == TRUTH_AND_EXPR
1959 || code == TRUTH_OR_EXPR
1960 || code == TRUTH_XOR_EXPR)
1961 extract_range_from_binary_expr (vr, expr);
1962 else if (TREE_CODE_CLASS (code) == tcc_unary)
1963 extract_range_from_unary_expr (vr, expr);
1964 else if (TREE_CODE_CLASS (code) == tcc_comparison)
1965 extract_range_from_comparison (vr, expr);
1966 else if (is_gimple_min_invariant (expr))
1967 set_value_range (vr, VR_RANGE, expr, expr, NULL);
1968 else
1969 set_value_range_to_varying (vr);
1970
1971 /* If we got a varying range from the tests above, try a final
1972 time to derive a nonnegative or nonzero range. This time
1973 relying primarily on generic routines in fold in conjunction
1974 with range data. */
1975 if (vr->type == VR_VARYING)
1976 {
1977 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
1978 && vrp_expr_computes_nonnegative (expr))
1979 set_value_range_to_nonnegative (vr, TREE_TYPE (expr));
1980 else if (vrp_expr_computes_nonzero (expr))
1981 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1982 }
1983 }
1984
1985 /* Given a range VR, a LOOP and a variable VAR, determine whether it
1986 would be profitable to adjust VR using scalar evolution information
1987 for VAR. If so, update VR with the new limits. */
1988
1989 static void
1990 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
1991 tree var)
1992 {
1993 tree init, step, chrec;
1994 enum ev_direction dir;
1995
1996 /* TODO. Don't adjust anti-ranges. An anti-range may provide
1997 better opportunities than a regular range, but I'm not sure. */
1998 if (vr->type == VR_ANTI_RANGE)
1999 return;
2000
2001 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
2002 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2003 return;
2004
2005 init = initial_condition_in_loop_num (chrec, loop->num);
2006 step = evolution_part_in_loop_num (chrec, loop->num);
2007
2008 /* If STEP is symbolic, we can't know whether INIT will be the
2009 minimum or maximum value in the range. Also, unless INIT is
2010 a simple expression, compare_values and possibly other functions
2011 in tree-vrp won't be able to handle it. */
2012 if (step == NULL_TREE
2013 || !is_gimple_min_invariant (step)
2014 || !valid_value_p (init))
2015 return;
2016
2017 dir = scev_direction (chrec);
2018 if (/* Do not adjust ranges if we do not know whether the iv increases
2019 or decreases, ... */
2020 dir == EV_DIR_UNKNOWN
2021 /* ... or if it may wrap. */
2022 || scev_probably_wraps_p (init, step, stmt,
2023 current_loops->parray[CHREC_VARIABLE (chrec)],
2024 true))
2025 return;
2026
2027 if (!POINTER_TYPE_P (TREE_TYPE (init))
2028 && (vr->type == VR_VARYING || vr->type == VR_UNDEFINED))
2029 {
2030 /* For VARYING or UNDEFINED ranges, just about anything we get
2031 from scalar evolutions should be better. */
2032 tree min = TYPE_MIN_VALUE (TREE_TYPE (init));
2033 tree max = TYPE_MAX_VALUE (TREE_TYPE (init));
2034
2035 if (dir == EV_DIR_DECREASES)
2036 max = init;
2037 else
2038 min = init;
2039
2040 /* If we would create an invalid range, then just assume we
2041 know absolutely nothing. This may be over-conservative,
2042 but it's clearly safe. */
2043 if (compare_values (min, max) == 1)
2044 return;
2045
2046 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2047 }
2048 else if (vr->type == VR_RANGE)
2049 {
2050 tree min = vr->min;
2051 tree max = vr->max;
2052
2053 if (dir == EV_DIR_DECREASES)
2054 {
2055 /* INIT is the maximum value. If INIT is lower than VR->MAX
2056 but no smaller than VR->MIN, set VR->MAX to INIT. */
2057 if (compare_values (init, max) == -1)
2058 {
2059 max = init;
2060
2061 /* If we just created an invalid range with the minimum
2062 greater than the maximum, take the minimum all the
2063 way to -INF. */
2064 if (compare_values (min, max) == 1)
2065 min = TYPE_MIN_VALUE (TREE_TYPE (min));
2066 }
2067 }
2068 else
2069 {
2070 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
2071 if (compare_values (init, min) == 1)
2072 {
2073 min = init;
2074
2075 /* If we just created an invalid range with the minimum
2076 greater than the maximum, take the maximum all the
2077 way to +INF. */
2078 if (compare_values (min, max) == 1)
2079 max = TYPE_MAX_VALUE (TREE_TYPE (max));
2080 }
2081 }
2082
2083 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2084 }
2085 }
2086
2087
2088 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2089
2090 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2091 all the values in the ranges.
2092
2093 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2094
2095 - Return NULL_TREE if it is not always possible to determine the
2096 value of the comparison. */
2097
2098
2099 static tree
2100 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
2101 {
2102 /* VARYING or UNDEFINED ranges cannot be compared. */
2103 if (vr0->type == VR_VARYING
2104 || vr0->type == VR_UNDEFINED
2105 || vr1->type == VR_VARYING
2106 || vr1->type == VR_UNDEFINED)
2107 return NULL_TREE;
2108
2109 /* Anti-ranges need to be handled separately. */
2110 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2111 {
2112 /* If both are anti-ranges, then we cannot compute any
2113 comparison. */
2114 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2115 return NULL_TREE;
2116
2117 /* These comparisons are never statically computable. */
2118 if (comp == GT_EXPR
2119 || comp == GE_EXPR
2120 || comp == LT_EXPR
2121 || comp == LE_EXPR)
2122 return NULL_TREE;
2123
2124 /* Equality can be computed only between a range and an
2125 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2126 if (vr0->type == VR_RANGE)
2127 {
2128 /* To simplify processing, make VR0 the anti-range. */
2129 value_range_t *tmp = vr0;
2130 vr0 = vr1;
2131 vr1 = tmp;
2132 }
2133
2134 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2135
2136 if (compare_values (vr0->min, vr1->min) == 0
2137 && compare_values (vr0->max, vr1->max) == 0)
2138 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2139
2140 return NULL_TREE;
2141 }
2142
2143 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2144 operands around and change the comparison code. */
2145 if (comp == GT_EXPR || comp == GE_EXPR)
2146 {
2147 value_range_t *tmp;
2148 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2149 tmp = vr0;
2150 vr0 = vr1;
2151 vr1 = tmp;
2152 }
2153
2154 if (comp == EQ_EXPR)
2155 {
2156 /* Equality may only be computed if both ranges represent
2157 exactly one value. */
2158 if (compare_values (vr0->min, vr0->max) == 0
2159 && compare_values (vr1->min, vr1->max) == 0)
2160 {
2161 int cmp_min = compare_values (vr0->min, vr1->min);
2162 int cmp_max = compare_values (vr0->max, vr1->max);
2163 if (cmp_min == 0 && cmp_max == 0)
2164 return boolean_true_node;
2165 else if (cmp_min != -2 && cmp_max != -2)
2166 return boolean_false_node;
2167 }
2168 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
2169 else if (compare_values (vr0->min, vr1->max) == 1
2170 || compare_values (vr1->min, vr0->max) == 1)
2171 return boolean_false_node;
2172
2173 return NULL_TREE;
2174 }
2175 else if (comp == NE_EXPR)
2176 {
2177 int cmp1, cmp2;
2178
2179 /* If VR0 is completely to the left or completely to the right
2180 of VR1, they are always different. Notice that we need to
2181 make sure that both comparisons yield similar results to
2182 avoid comparing values that cannot be compared at
2183 compile-time. */
2184 cmp1 = compare_values (vr0->max, vr1->min);
2185 cmp2 = compare_values (vr0->min, vr1->max);
2186 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2187 return boolean_true_node;
2188
2189 /* If VR0 and VR1 represent a single value and are identical,
2190 return false. */
2191 else if (compare_values (vr0->min, vr0->max) == 0
2192 && compare_values (vr1->min, vr1->max) == 0
2193 && compare_values (vr0->min, vr1->min) == 0
2194 && compare_values (vr0->max, vr1->max) == 0)
2195 return boolean_false_node;
2196
2197 /* Otherwise, they may or may not be different. */
2198 else
2199 return NULL_TREE;
2200 }
2201 else if (comp == LT_EXPR || comp == LE_EXPR)
2202 {
2203 int tst;
2204
2205 /* If VR0 is to the left of VR1, return true. */
2206 tst = compare_values (vr0->max, vr1->min);
2207 if ((comp == LT_EXPR && tst == -1)
2208 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2209 return boolean_true_node;
2210
2211 /* If VR0 is to the right of VR1, return false. */
2212 tst = compare_values (vr0->min, vr1->max);
2213 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2214 || (comp == LE_EXPR && tst == 1))
2215 return boolean_false_node;
2216
2217 /* Otherwise, we don't know. */
2218 return NULL_TREE;
2219 }
2220
2221 gcc_unreachable ();
2222 }
2223
2224
2225 /* Given a value range VR, a value VAL and a comparison code COMP, return
2226 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2227 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2228 always returns false. Return NULL_TREE if it is not always
2229 possible to determine the value of the comparison. */
2230
2231 static tree
2232 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
2233 {
2234 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2235 return NULL_TREE;
2236
2237 /* Anti-ranges need to be handled separately. */
2238 if (vr->type == VR_ANTI_RANGE)
2239 {
2240 /* For anti-ranges, the only predicates that we can compute at
2241 compile time are equality and inequality. */
2242 if (comp == GT_EXPR
2243 || comp == GE_EXPR
2244 || comp == LT_EXPR
2245 || comp == LE_EXPR)
2246 return NULL_TREE;
2247
2248 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
2249 if (value_inside_range (val, vr) == 1)
2250 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2251
2252 return NULL_TREE;
2253 }
2254
2255 if (comp == EQ_EXPR)
2256 {
2257 /* EQ_EXPR may only be computed if VR represents exactly
2258 one value. */
2259 if (compare_values (vr->min, vr->max) == 0)
2260 {
2261 int cmp = compare_values (vr->min, val);
2262 if (cmp == 0)
2263 return boolean_true_node;
2264 else if (cmp == -1 || cmp == 1 || cmp == 2)
2265 return boolean_false_node;
2266 }
2267 else if (compare_values (val, vr->min) == -1
2268 || compare_values (vr->max, val) == -1)
2269 return boolean_false_node;
2270
2271 return NULL_TREE;
2272 }
2273 else if (comp == NE_EXPR)
2274 {
2275 /* If VAL is not inside VR, then they are always different. */
2276 if (compare_values (vr->max, val) == -1
2277 || compare_values (vr->min, val) == 1)
2278 return boolean_true_node;
2279
2280 /* If VR represents exactly one value equal to VAL, then return
2281 false. */
2282 if (compare_values (vr->min, vr->max) == 0
2283 && compare_values (vr->min, val) == 0)
2284 return boolean_false_node;
2285
2286 /* Otherwise, they may or may not be different. */
2287 return NULL_TREE;
2288 }
2289 else if (comp == LT_EXPR || comp == LE_EXPR)
2290 {
2291 int tst;
2292
2293 /* If VR is to the left of VAL, return true. */
2294 tst = compare_values (vr->max, val);
2295 if ((comp == LT_EXPR && tst == -1)
2296 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2297 return boolean_true_node;
2298
2299 /* If VR is to the right of VAL, return false. */
2300 tst = compare_values (vr->min, val);
2301 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2302 || (comp == LE_EXPR && tst == 1))
2303 return boolean_false_node;
2304
2305 /* Otherwise, we don't know. */
2306 return NULL_TREE;
2307 }
2308 else if (comp == GT_EXPR || comp == GE_EXPR)
2309 {
2310 int tst;
2311
2312 /* If VR is to the right of VAL, return true. */
2313 tst = compare_values (vr->min, val);
2314 if ((comp == GT_EXPR && tst == 1)
2315 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
2316 return boolean_true_node;
2317
2318 /* If VR is to the left of VAL, return false. */
2319 tst = compare_values (vr->max, val);
2320 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
2321 || (comp == GE_EXPR && tst == -1))
2322 return boolean_false_node;
2323
2324 /* Otherwise, we don't know. */
2325 return NULL_TREE;
2326 }
2327
2328 gcc_unreachable ();
2329 }
2330
2331
2332 /* Debugging dumps. */
2333
2334 void dump_value_range (FILE *, value_range_t *);
2335 void debug_value_range (value_range_t *);
2336 void dump_all_value_ranges (FILE *);
2337 void debug_all_value_ranges (void);
2338 void dump_vr_equiv (FILE *, bitmap);
2339 void debug_vr_equiv (bitmap);
2340
2341
2342 /* Dump value range VR to FILE. */
2343
2344 void
2345 dump_value_range (FILE *file, value_range_t *vr)
2346 {
2347 if (vr == NULL)
2348 fprintf (file, "[]");
2349 else if (vr->type == VR_UNDEFINED)
2350 fprintf (file, "UNDEFINED");
2351 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
2352 {
2353 tree type = TREE_TYPE (vr->min);
2354
2355 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
2356
2357 if (INTEGRAL_TYPE_P (type)
2358 && !TYPE_UNSIGNED (type)
2359 && vr->min == TYPE_MIN_VALUE (type))
2360 fprintf (file, "-INF");
2361 else
2362 print_generic_expr (file, vr->min, 0);
2363
2364 fprintf (file, ", ");
2365
2366 if (INTEGRAL_TYPE_P (type)
2367 && vr->max == TYPE_MAX_VALUE (type))
2368 fprintf (file, "+INF");
2369 else
2370 print_generic_expr (file, vr->max, 0);
2371
2372 fprintf (file, "]");
2373
2374 if (vr->equiv)
2375 {
2376 bitmap_iterator bi;
2377 unsigned i, c = 0;
2378
2379 fprintf (file, " EQUIVALENCES: { ");
2380
2381 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2382 {
2383 print_generic_expr (file, ssa_name (i), 0);
2384 fprintf (file, " ");
2385 c++;
2386 }
2387
2388 fprintf (file, "} (%u elements)", c);
2389 }
2390 }
2391 else if (vr->type == VR_VARYING)
2392 fprintf (file, "VARYING");
2393 else
2394 fprintf (file, "INVALID RANGE");
2395 }
2396
2397
2398 /* Dump value range VR to stderr. */
2399
2400 void
2401 debug_value_range (value_range_t *vr)
2402 {
2403 dump_value_range (stderr, vr);
2404 }
2405
2406
2407 /* Dump value ranges of all SSA_NAMEs to FILE. */
2408
2409 void
2410 dump_all_value_ranges (FILE *file)
2411 {
2412 size_t i;
2413
2414 for (i = 0; i < num_ssa_names; i++)
2415 {
2416 if (vr_value[i])
2417 {
2418 print_generic_expr (file, ssa_name (i), 0);
2419 fprintf (file, ": ");
2420 dump_value_range (file, vr_value[i]);
2421 fprintf (file, "\n");
2422 }
2423 }
2424
2425 fprintf (file, "\n");
2426 }
2427
2428
2429 /* Dump all value ranges to stderr. */
2430
2431 void
2432 debug_all_value_ranges (void)
2433 {
2434 dump_all_value_ranges (stderr);
2435 }
2436
2437
2438 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2439 create a new SSA name N and return the assertion assignment
2440 'V = ASSERT_EXPR <V, V OP W>'. */
2441
2442 static tree
2443 build_assert_expr_for (tree cond, tree v)
2444 {
2445 tree n, assertion;
2446
2447 gcc_assert (TREE_CODE (v) == SSA_NAME);
2448 n = duplicate_ssa_name (v, NULL_TREE);
2449
2450 if (COMPARISON_CLASS_P (cond))
2451 {
2452 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
2453 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, a);
2454 }
2455 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
2456 {
2457 /* Given !V, build the assignment N = false. */
2458 tree op0 = TREE_OPERAND (cond, 0);
2459 gcc_assert (op0 == v);
2460 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_false_node);
2461 }
2462 else if (TREE_CODE (cond) == SSA_NAME)
2463 {
2464 /* Given V, build the assignment N = true. */
2465 gcc_assert (v == cond);
2466 assertion = build2 (MODIFY_EXPR, TREE_TYPE (v), n, boolean_true_node);
2467 }
2468 else
2469 gcc_unreachable ();
2470
2471 SSA_NAME_DEF_STMT (n) = assertion;
2472
2473 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2474 operand of the ASSERT_EXPR. Register the new name and the old one
2475 in the replacement table so that we can fix the SSA web after
2476 adding all the ASSERT_EXPRs. */
2477 register_new_name_mapping (n, v);
2478
2479 return assertion;
2480 }
2481
2482
2483 /* Return false if EXPR is a predicate expression involving floating
2484 point values. */
2485
2486 static inline bool
2487 fp_predicate (tree expr)
2488 {
2489 return (COMPARISON_CLASS_P (expr)
2490 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
2491 }
2492
2493
2494 /* If the range of values taken by OP can be inferred after STMT executes,
2495 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2496 describes the inferred range. Return true if a range could be
2497 inferred. */
2498
2499 static bool
2500 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
2501 {
2502 *val_p = NULL_TREE;
2503 *comp_code_p = ERROR_MARK;
2504
2505 /* Do not attempt to infer anything in names that flow through
2506 abnormal edges. */
2507 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
2508 return false;
2509
2510 /* Similarly, don't infer anything from statements that may throw
2511 exceptions. */
2512 if (tree_could_throw_p (stmt))
2513 return false;
2514
2515 /* If STMT is the last statement of a basic block with no
2516 successors, there is no point inferring anything about any of its
2517 operands. We would not be able to find a proper insertion point
2518 for the assertion, anyway. */
2519 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
2520 return false;
2521
2522 /* We can only assume that a pointer dereference will yield
2523 non-NULL if -fdelete-null-pointer-checks is enabled. */
2524 if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
2525 {
2526 bool is_store;
2527 unsigned num_uses, num_derefs;
2528
2529 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
2530 if (num_derefs > 0)
2531 {
2532 *val_p = build_int_cst (TREE_TYPE (op), 0);
2533 *comp_code_p = NE_EXPR;
2534 return true;
2535 }
2536 }
2537
2538 return false;
2539 }
2540
2541
2542 void dump_asserts_for (FILE *, tree);
2543 void debug_asserts_for (tree);
2544 void dump_all_asserts (FILE *);
2545 void debug_all_asserts (void);
2546
2547 /* Dump all the registered assertions for NAME to FILE. */
2548
2549 void
2550 dump_asserts_for (FILE *file, tree name)
2551 {
2552 assert_locus_t loc;
2553
2554 fprintf (file, "Assertions to be inserted for ");
2555 print_generic_expr (file, name, 0);
2556 fprintf (file, "\n");
2557
2558 loc = asserts_for[SSA_NAME_VERSION (name)];
2559 while (loc)
2560 {
2561 fprintf (file, "\t");
2562 print_generic_expr (file, bsi_stmt (loc->si), 0);
2563 fprintf (file, "\n\tBB #%d", loc->bb->index);
2564 if (loc->e)
2565 {
2566 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
2567 loc->e->dest->index);
2568 dump_edge_info (file, loc->e, 0);
2569 }
2570 fprintf (file, "\n\tPREDICATE: ");
2571 print_generic_expr (file, name, 0);
2572 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
2573 print_generic_expr (file, loc->val, 0);
2574 fprintf (file, "\n\n");
2575 loc = loc->next;
2576 }
2577
2578 fprintf (file, "\n");
2579 }
2580
2581
2582 /* Dump all the registered assertions for NAME to stderr. */
2583
2584 void
2585 debug_asserts_for (tree name)
2586 {
2587 dump_asserts_for (stderr, name);
2588 }
2589
2590
2591 /* Dump all the registered assertions for all the names to FILE. */
2592
2593 void
2594 dump_all_asserts (FILE *file)
2595 {
2596 unsigned i;
2597 bitmap_iterator bi;
2598
2599 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
2600 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2601 dump_asserts_for (file, ssa_name (i));
2602 fprintf (file, "\n");
2603 }
2604
2605
2606 /* Dump all the registered assertions for all the names to stderr. */
2607
2608 void
2609 debug_all_asserts (void)
2610 {
2611 dump_all_asserts (stderr);
2612 }
2613
2614
2615 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2616 'NAME COMP_CODE VAL' at a location that dominates block BB or
2617 E->DEST, then register this location as a possible insertion point
2618 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
2619
2620 BB, E and SI provide the exact insertion point for the new
2621 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2622 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2623 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2624 must not be NULL. */
2625
2626 static void
2627 register_new_assert_for (tree name,
2628 enum tree_code comp_code,
2629 tree val,
2630 basic_block bb,
2631 edge e,
2632 block_stmt_iterator si)
2633 {
2634 assert_locus_t n, loc, last_loc;
2635 bool found;
2636 basic_block dest_bb;
2637
2638 #if defined ENABLE_CHECKING
2639 gcc_assert (bb == NULL || e == NULL);
2640
2641 if (e == NULL)
2642 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
2643 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
2644 #endif
2645
2646 /* The new assertion A will be inserted at BB or E. We need to
2647 determine if the new location is dominated by a previously
2648 registered location for A. If we are doing an edge insertion,
2649 assume that A will be inserted at E->DEST. Note that this is not
2650 necessarily true.
2651
2652 If E is a critical edge, it will be split. But even if E is
2653 split, the new block will dominate the same set of blocks that
2654 E->DEST dominates.
2655
2656 The reverse, however, is not true, blocks dominated by E->DEST
2657 will not be dominated by the new block created to split E. So,
2658 if the insertion location is on a critical edge, we will not use
2659 the new location to move another assertion previously registered
2660 at a block dominated by E->DEST. */
2661 dest_bb = (bb) ? bb : e->dest;
2662
2663 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2664 VAL at a block dominating DEST_BB, then we don't need to insert a new
2665 one. Similarly, if the same assertion already exists at a block
2666 dominated by DEST_BB and the new location is not on a critical
2667 edge, then update the existing location for the assertion (i.e.,
2668 move the assertion up in the dominance tree).
2669
2670 Note, this is implemented as a simple linked list because there
2671 should not be more than a handful of assertions registered per
2672 name. If this becomes a performance problem, a table hashed by
2673 COMP_CODE and VAL could be implemented. */
2674 loc = asserts_for[SSA_NAME_VERSION (name)];
2675 last_loc = loc;
2676 found = false;
2677 while (loc)
2678 {
2679 if (loc->comp_code == comp_code
2680 && (loc->val == val
2681 || operand_equal_p (loc->val, val, 0)))
2682 {
2683 /* If the assertion NAME COMP_CODE VAL has already been
2684 registered at a basic block that dominates DEST_BB, then
2685 we don't need to insert the same assertion again. Note
2686 that we don't check strict dominance here to avoid
2687 replicating the same assertion inside the same basic
2688 block more than once (e.g., when a pointer is
2689 dereferenced several times inside a block).
2690
2691 An exception to this rule are edge insertions. If the
2692 new assertion is to be inserted on edge E, then it will
2693 dominate all the other insertions that we may want to
2694 insert in DEST_BB. So, if we are doing an edge
2695 insertion, don't do this dominance check. */
2696 if (e == NULL
2697 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
2698 return;
2699
2700 /* Otherwise, if E is not a critical edge and DEST_BB
2701 dominates the existing location for the assertion, move
2702 the assertion up in the dominance tree by updating its
2703 location information. */
2704 if ((e == NULL || !EDGE_CRITICAL_P (e))
2705 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
2706 {
2707 loc->bb = dest_bb;
2708 loc->e = e;
2709 loc->si = si;
2710 return;
2711 }
2712 }
2713
2714 /* Update the last node of the list and move to the next one. */
2715 last_loc = loc;
2716 loc = loc->next;
2717 }
2718
2719 /* If we didn't find an assertion already registered for
2720 NAME COMP_CODE VAL, add a new one at the end of the list of
2721 assertions associated with NAME. */
2722 n = XNEW (struct assert_locus_d);
2723 n->bb = dest_bb;
2724 n->e = e;
2725 n->si = si;
2726 n->comp_code = comp_code;
2727 n->val = val;
2728 n->next = NULL;
2729
2730 if (last_loc)
2731 last_loc->next = n;
2732 else
2733 asserts_for[SSA_NAME_VERSION (name)] = n;
2734
2735 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
2736 }
2737
2738
2739 /* Try to register an edge assertion for SSA name NAME on edge E for
2740 the conditional jump pointed to by SI. Return true if an assertion
2741 for NAME could be registered. */
2742
2743 static bool
2744 register_edge_assert_for (tree name, edge e, block_stmt_iterator si)
2745 {
2746 tree val, stmt;
2747 enum tree_code comp_code;
2748
2749 stmt = bsi_stmt (si);
2750
2751 /* Do not attempt to infer anything in names that flow through
2752 abnormal edges. */
2753 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2754 return false;
2755
2756 /* If NAME was not found in the sub-graph reachable from E, then
2757 there's nothing to do. */
2758 if (!TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
2759 return false;
2760
2761 /* We found a use of NAME in the sub-graph rooted at E->DEST.
2762 Register an assertion for NAME according to the value that NAME
2763 takes on edge E. */
2764 if (TREE_CODE (stmt) == COND_EXPR)
2765 {
2766 /* If BB ends in a COND_EXPR then NAME then we should insert
2767 the original predicate on EDGE_TRUE_VALUE and the
2768 opposite predicate on EDGE_FALSE_VALUE. */
2769 tree cond = COND_EXPR_COND (stmt);
2770 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
2771
2772 /* Predicates may be a single SSA name or NAME OP VAL. */
2773 if (cond == name)
2774 {
2775 /* If the predicate is a name, it must be NAME, in which
2776 case we create the predicate NAME == true or
2777 NAME == false accordingly. */
2778 comp_code = EQ_EXPR;
2779 val = (is_else_edge) ? boolean_false_node : boolean_true_node;
2780 }
2781 else
2782 {
2783 /* Otherwise, we have a comparison of the form NAME COMP VAL
2784 or VAL COMP NAME. */
2785 if (name == TREE_OPERAND (cond, 1))
2786 {
2787 /* If the predicate is of the form VAL COMP NAME, flip
2788 COMP around because we need to register NAME as the
2789 first operand in the predicate. */
2790 comp_code = swap_tree_comparison (TREE_CODE (cond));
2791 val = TREE_OPERAND (cond, 0);
2792 }
2793 else
2794 {
2795 /* The comparison is of the form NAME COMP VAL, so the
2796 comparison code remains unchanged. */
2797 comp_code = TREE_CODE (cond);
2798 val = TREE_OPERAND (cond, 1);
2799 }
2800
2801 /* If we are inserting the assertion on the ELSE edge, we
2802 need to invert the sign comparison. */
2803 if (is_else_edge)
2804 comp_code = invert_tree_comparison (comp_code, 0);
2805
2806 /* Do not register always-false predicates. FIXME, this
2807 works around a limitation in fold() when dealing with
2808 enumerations. Given 'enum { N1, N2 } x;', fold will not
2809 fold 'if (x > N2)' to 'if (0)'. */
2810 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
2811 && (INTEGRAL_TYPE_P (TREE_TYPE (val))
2812 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (val))))
2813 {
2814 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
2815 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
2816
2817 if (comp_code == GT_EXPR && compare_values (val, max) == 0)
2818 return false;
2819
2820 if (comp_code == LT_EXPR && compare_values (val, min) == 0)
2821 return false;
2822 }
2823 }
2824 }
2825 else
2826 {
2827 /* FIXME. Handle SWITCH_EXPR. */
2828 gcc_unreachable ();
2829 }
2830
2831 register_new_assert_for (name, comp_code, val, NULL, e, si);
2832 return true;
2833 }
2834
2835
2836 static bool find_assert_locations (basic_block bb);
2837
2838 /* Determine whether the outgoing edges of BB should receive an
2839 ASSERT_EXPR for each of the operands of BB's last statement. The
2840 last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
2841
2842 If any of the sub-graphs rooted at BB have an interesting use of
2843 the predicate operands, an assert location node is added to the
2844 list of assertions for the corresponding operands. */
2845
2846 static bool
2847 find_conditional_asserts (basic_block bb)
2848 {
2849 bool need_assert;
2850 block_stmt_iterator last_si;
2851 tree op, last;
2852 edge_iterator ei;
2853 edge e;
2854 ssa_op_iter iter;
2855
2856 need_assert = false;
2857 last_si = bsi_last (bb);
2858 last = bsi_stmt (last_si);
2859
2860 /* Look for uses of the operands in each of the sub-graphs
2861 rooted at BB. We need to check each of the outgoing edges
2862 separately, so that we know what kind of ASSERT_EXPR to
2863 insert. */
2864 FOR_EACH_EDGE (e, ei, bb->succs)
2865 {
2866 if (e->dest == bb)
2867 continue;
2868
2869 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
2870 Otherwise, when we finish traversing each of the sub-graphs, we
2871 won't know whether the variables were found in the sub-graphs or
2872 if they had been found in a block upstream from BB.
2873
2874 This is actually a bad idea is some cases, particularly jump
2875 threading. Consider a CFG like the following:
2876
2877 0
2878 /|
2879 1 |
2880 \|
2881 2
2882 / \
2883 3 4
2884
2885 Assume that one or more operands in the conditional at the
2886 end of block 0 are used in a conditional in block 2, but not
2887 anywhere in block 1. In this case we will not insert any
2888 assert statements in block 1, which may cause us to miss
2889 opportunities to optimize, particularly for jump threading. */
2890 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2891 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2892
2893 /* Traverse the strictly dominated sub-graph rooted at E->DEST
2894 to determine if any of the operands in the conditional
2895 predicate are used. */
2896 if (e->dest != bb)
2897 need_assert |= find_assert_locations (e->dest);
2898
2899 /* Register the necessary assertions for each operand in the
2900 conditional predicate. */
2901 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2902 need_assert |= register_edge_assert_for (op, e, last_si);
2903 }
2904
2905 /* Finally, indicate that we have found the operands in the
2906 conditional. */
2907 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2908 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2909
2910 return need_assert;
2911 }
2912
2913
2914 /* Traverse all the statements in block BB looking for statements that
2915 may generate useful assertions for the SSA names in their operand.
2916 If a statement produces a useful assertion A for name N_i, then the
2917 list of assertions already generated for N_i is scanned to
2918 determine if A is actually needed.
2919
2920 If N_i already had the assertion A at a location dominating the
2921 current location, then nothing needs to be done. Otherwise, the
2922 new location for A is recorded instead.
2923
2924 1- For every statement S in BB, all the variables used by S are
2925 added to bitmap FOUND_IN_SUBGRAPH.
2926
2927 2- If statement S uses an operand N in a way that exposes a known
2928 value range for N, then if N was not already generated by an
2929 ASSERT_EXPR, create a new assert location for N. For instance,
2930 if N is a pointer and the statement dereferences it, we can
2931 assume that N is not NULL.
2932
2933 3- COND_EXPRs are a special case of #2. We can derive range
2934 information from the predicate but need to insert different
2935 ASSERT_EXPRs for each of the sub-graphs rooted at the
2936 conditional block. If the last statement of BB is a conditional
2937 expression of the form 'X op Y', then
2938
2939 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
2940
2941 b) If the conditional is the only entry point to the sub-graph
2942 corresponding to the THEN_CLAUSE, recurse into it. On
2943 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
2944 an ASSERT_EXPR is added for the corresponding variable.
2945
2946 c) Repeat step (b) on the ELSE_CLAUSE.
2947
2948 d) Mark X and Y in FOUND_IN_SUBGRAPH.
2949
2950 For instance,
2951
2952 if (a == 9)
2953 b = a;
2954 else
2955 b = c + 1;
2956
2957 In this case, an assertion on the THEN clause is useful to
2958 determine that 'a' is always 9 on that edge. However, an assertion
2959 on the ELSE clause would be unnecessary.
2960
2961 4- If BB does not end in a conditional expression, then we recurse
2962 into BB's dominator children.
2963
2964 At the end of the recursive traversal, every SSA name will have a
2965 list of locations where ASSERT_EXPRs should be added. When a new
2966 location for name N is found, it is registered by calling
2967 register_new_assert_for. That function keeps track of all the
2968 registered assertions to prevent adding unnecessary assertions.
2969 For instance, if a pointer P_4 is dereferenced more than once in a
2970 dominator tree, only the location dominating all the dereference of
2971 P_4 will receive an ASSERT_EXPR.
2972
2973 If this function returns true, then it means that there are names
2974 for which we need to generate ASSERT_EXPRs. Those assertions are
2975 inserted by process_assert_insertions.
2976
2977 TODO. Handle SWITCH_EXPR. */
2978
2979 static bool
2980 find_assert_locations (basic_block bb)
2981 {
2982 block_stmt_iterator si;
2983 tree last, phi;
2984 bool need_assert;
2985 basic_block son;
2986
2987 if (TEST_BIT (blocks_visited, bb->index))
2988 return false;
2989
2990 SET_BIT (blocks_visited, bb->index);
2991
2992 need_assert = false;
2993
2994 /* Traverse all PHI nodes in BB marking used operands. */
2995 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2996 {
2997 use_operand_p arg_p;
2998 ssa_op_iter i;
2999
3000 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
3001 {
3002 tree arg = USE_FROM_PTR (arg_p);
3003 if (TREE_CODE (arg) == SSA_NAME)
3004 {
3005 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
3006 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
3007 }
3008 }
3009 }
3010
3011 /* Traverse all the statements in BB marking used names and looking
3012 for statements that may infer assertions for their used operands. */
3013 last = NULL_TREE;
3014 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3015 {
3016 tree stmt, op;
3017 ssa_op_iter i;
3018
3019 stmt = bsi_stmt (si);
3020
3021 /* See if we can derive an assertion for any of STMT's operands. */
3022 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3023 {
3024 tree value;
3025 enum tree_code comp_code;
3026
3027 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
3028 the sub-graph of a conditional block, when we return from
3029 this recursive walk, our parent will use the
3030 FOUND_IN_SUBGRAPH bitset to determine if one of the
3031 operands it was looking for was present in the sub-graph. */
3032 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3033
3034 /* If OP is used in such a way that we can infer a value
3035 range for it, and we don't find a previous assertion for
3036 it, create a new assertion location node for OP. */
3037 if (infer_value_range (stmt, op, &comp_code, &value))
3038 {
3039 /* If we are able to infer a nonzero value range for OP,
3040 then walk backwards through the use-def chain to see if OP
3041 was set via a typecast.
3042
3043 If so, then we can also infer a nonzero value range
3044 for the operand of the NOP_EXPR. */
3045 if (comp_code == NE_EXPR && integer_zerop (value))
3046 {
3047 tree t = op;
3048 tree def_stmt = SSA_NAME_DEF_STMT (t);
3049
3050 while (TREE_CODE (def_stmt) == MODIFY_EXPR
3051 && TREE_CODE (TREE_OPERAND (def_stmt, 1)) == NOP_EXPR
3052 && TREE_CODE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0)) == SSA_NAME
3053 && POINTER_TYPE_P (TREE_TYPE (TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0))))
3054 {
3055 t = TREE_OPERAND (TREE_OPERAND (def_stmt, 1), 0);
3056 def_stmt = SSA_NAME_DEF_STMT (t);
3057
3058 /* Note we want to register the assert for the
3059 operand of the NOP_EXPR after SI, not after the
3060 conversion. */
3061 if (! has_single_use (t))
3062 {
3063 register_new_assert_for (t, comp_code, value,
3064 bb, NULL, si);
3065 need_assert = true;
3066 }
3067 }
3068 }
3069
3070 /* If OP is used only once, namely in this STMT, don't
3071 bother creating an ASSERT_EXPR for it. Such an
3072 ASSERT_EXPR would do nothing but increase compile time. */
3073 if (!has_single_use (op))
3074 {
3075 register_new_assert_for (op, comp_code, value, bb, NULL, si);
3076 need_assert = true;
3077 }
3078 }
3079 }
3080
3081 /* Remember the last statement of the block. */
3082 last = stmt;
3083 }
3084
3085 /* If BB's last statement is a conditional expression
3086 involving integer operands, recurse into each of the sub-graphs
3087 rooted at BB to determine if we need to add ASSERT_EXPRs. */
3088 if (last
3089 && TREE_CODE (last) == COND_EXPR
3090 && !fp_predicate (COND_EXPR_COND (last))
3091 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3092 need_assert |= find_conditional_asserts (bb);
3093
3094 /* Recurse into the dominator children of BB. */
3095 for (son = first_dom_son (CDI_DOMINATORS, bb);
3096 son;
3097 son = next_dom_son (CDI_DOMINATORS, son))
3098 need_assert |= find_assert_locations (son);
3099
3100 return need_assert;
3101 }
3102
3103
3104 /* Create an ASSERT_EXPR for NAME and insert it in the location
3105 indicated by LOC. Return true if we made any edge insertions. */
3106
3107 static bool
3108 process_assert_insertions_for (tree name, assert_locus_t loc)
3109 {
3110 /* Build the comparison expression NAME_i COMP_CODE VAL. */
3111 tree stmt, cond, assert_expr;
3112 edge_iterator ei;
3113 edge e;
3114
3115 cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
3116 assert_expr = build_assert_expr_for (cond, name);
3117
3118 if (loc->e)
3119 {
3120 /* We have been asked to insert the assertion on an edge. This
3121 is used only by COND_EXPR and SWITCH_EXPR assertions. */
3122 #if defined ENABLE_CHECKING
3123 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
3124 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
3125 #endif
3126
3127 bsi_insert_on_edge (loc->e, assert_expr);
3128 return true;
3129 }
3130
3131 /* Otherwise, we can insert right after LOC->SI iff the
3132 statement must not be the last statement in the block. */
3133 stmt = bsi_stmt (loc->si);
3134 if (!stmt_ends_bb_p (stmt))
3135 {
3136 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
3137 return false;
3138 }
3139
3140 /* If STMT must be the last statement in BB, we can only insert new
3141 assertions on the non-abnormal edge out of BB. Note that since
3142 STMT is not control flow, there may only be one non-abnormal edge
3143 out of BB. */
3144 FOR_EACH_EDGE (e, ei, loc->bb->succs)
3145 if (!(e->flags & EDGE_ABNORMAL))
3146 {
3147 bsi_insert_on_edge (e, assert_expr);
3148 return true;
3149 }
3150
3151 gcc_unreachable ();
3152 }
3153
3154
3155 /* Process all the insertions registered for every name N_i registered
3156 in NEED_ASSERT_FOR. The list of assertions to be inserted are
3157 found in ASSERTS_FOR[i]. */
3158
3159 static void
3160 process_assert_insertions (void)
3161 {
3162 unsigned i;
3163 bitmap_iterator bi;
3164 bool update_edges_p = false;
3165 int num_asserts = 0;
3166
3167 if (dump_file && (dump_flags & TDF_DETAILS))
3168 dump_all_asserts (dump_file);
3169
3170 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3171 {
3172 assert_locus_t loc = asserts_for[i];
3173 gcc_assert (loc);
3174
3175 while (loc)
3176 {
3177 assert_locus_t next = loc->next;
3178 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
3179 free (loc);
3180 loc = next;
3181 num_asserts++;
3182 }
3183 }
3184
3185 if (update_edges_p)
3186 bsi_commit_edge_inserts ();
3187
3188 if (dump_file && (dump_flags & TDF_STATS))
3189 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
3190 num_asserts);
3191 }
3192
3193
3194 /* Traverse the flowgraph looking for conditional jumps to insert range
3195 expressions. These range expressions are meant to provide information
3196 to optimizations that need to reason in terms of value ranges. They
3197 will not be expanded into RTL. For instance, given:
3198
3199 x = ...
3200 y = ...
3201 if (x < y)
3202 y = x - 2;
3203 else
3204 x = y + 3;
3205
3206 this pass will transform the code into:
3207
3208 x = ...
3209 y = ...
3210 if (x < y)
3211 {
3212 x = ASSERT_EXPR <x, x < y>
3213 y = x - 2
3214 }
3215 else
3216 {
3217 y = ASSERT_EXPR <y, x <= y>
3218 x = y + 3
3219 }
3220
3221 The idea is that once copy and constant propagation have run, other
3222 optimizations will be able to determine what ranges of values can 'x'
3223 take in different paths of the code, simply by checking the reaching
3224 definition of 'x'. */
3225
3226 static void
3227 insert_range_assertions (void)
3228 {
3229 edge e;
3230 edge_iterator ei;
3231 bool update_ssa_p;
3232
3233 found_in_subgraph = sbitmap_alloc (num_ssa_names);
3234 sbitmap_zero (found_in_subgraph);
3235
3236 blocks_visited = sbitmap_alloc (last_basic_block);
3237 sbitmap_zero (blocks_visited);
3238
3239 need_assert_for = BITMAP_ALLOC (NULL);
3240 asserts_for = XNEWVEC (assert_locus_t, num_ssa_names);
3241 memset (asserts_for, 0, num_ssa_names * sizeof (assert_locus_t));
3242
3243 calculate_dominance_info (CDI_DOMINATORS);
3244
3245 update_ssa_p = false;
3246 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3247 if (find_assert_locations (e->dest))
3248 update_ssa_p = true;
3249
3250 if (update_ssa_p)
3251 {
3252 process_assert_insertions ();
3253 update_ssa (TODO_update_ssa_no_phi);
3254 }
3255
3256 if (dump_file && (dump_flags & TDF_DETAILS))
3257 {
3258 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
3259 dump_function_to_file (current_function_decl, dump_file, dump_flags);
3260 }
3261
3262 sbitmap_free (found_in_subgraph);
3263 free (asserts_for);
3264 BITMAP_FREE (need_assert_for);
3265 }
3266
3267
3268 /* Convert range assertion expressions into the implied copies and
3269 copy propagate away the copies. Doing the trivial copy propagation
3270 here avoids the need to run the full copy propagation pass after
3271 VRP.
3272
3273 FIXME, this will eventually lead to copy propagation removing the
3274 names that had useful range information attached to them. For
3275 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
3276 then N_i will have the range [3, +INF].
3277
3278 However, by converting the assertion into the implied copy
3279 operation N_i = N_j, we will then copy-propagate N_j into the uses
3280 of N_i and lose the range information. We may want to hold on to
3281 ASSERT_EXPRs a little while longer as the ranges could be used in
3282 things like jump threading.
3283
3284 The problem with keeping ASSERT_EXPRs around is that passes after
3285 VRP need to handle them appropriately.
3286
3287 Another approach would be to make the range information a first
3288 class property of the SSA_NAME so that it can be queried from
3289 any pass. This is made somewhat more complex by the need for
3290 multiple ranges to be associated with one SSA_NAME. */
3291
3292 static void
3293 remove_range_assertions (void)
3294 {
3295 basic_block bb;
3296 block_stmt_iterator si;
3297
3298 /* Note that the BSI iterator bump happens at the bottom of the
3299 loop and no bump is necessary if we're removing the statement
3300 referenced by the current BSI. */
3301 FOR_EACH_BB (bb)
3302 for (si = bsi_start (bb); !bsi_end_p (si);)
3303 {
3304 tree stmt = bsi_stmt (si);
3305 tree use_stmt;
3306
3307 if (TREE_CODE (stmt) == MODIFY_EXPR
3308 && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
3309 {
3310 tree rhs = TREE_OPERAND (stmt, 1), var;
3311 tree cond = fold (ASSERT_EXPR_COND (rhs));
3312 use_operand_p use_p;
3313 imm_use_iterator iter;
3314
3315 gcc_assert (cond != boolean_false_node);
3316
3317 /* Propagate the RHS into every use of the LHS. */
3318 var = ASSERT_EXPR_VAR (rhs);
3319 FOR_EACH_IMM_USE_STMT (use_stmt, iter, TREE_OPERAND (stmt, 0))
3320 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3321 {
3322 SET_USE (use_p, var);
3323 gcc_assert (TREE_CODE (var) == SSA_NAME);
3324 }
3325
3326 /* And finally, remove the copy, it is not needed. */
3327 bsi_remove (&si, true);
3328 }
3329 else
3330 bsi_next (&si);
3331 }
3332
3333 sbitmap_free (blocks_visited);
3334 }
3335
3336
3337 /* Return true if STMT is interesting for VRP. */
3338
3339 static bool
3340 stmt_interesting_for_vrp (tree stmt)
3341 {
3342 if (TREE_CODE (stmt) == PHI_NODE
3343 && is_gimple_reg (PHI_RESULT (stmt))
3344 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
3345 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
3346 return true;
3347 else if (TREE_CODE (stmt) == MODIFY_EXPR)
3348 {
3349 tree lhs = TREE_OPERAND (stmt, 0);
3350 tree rhs = TREE_OPERAND (stmt, 1);
3351
3352 /* In general, assignments with virtual operands are not useful
3353 for deriving ranges, with the obvious exception of calls to
3354 builtin functions. */
3355 if (TREE_CODE (lhs) == SSA_NAME
3356 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3357 || POINTER_TYPE_P (TREE_TYPE (lhs)))
3358 && ((TREE_CODE (rhs) == CALL_EXPR
3359 && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
3360 && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
3361 && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
3362 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
3363 return true;
3364 }
3365 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3366 return true;
3367
3368 return false;
3369 }
3370
3371
3372 /* Initialize local data structures for VRP. */
3373
3374 static void
3375 vrp_initialize (void)
3376 {
3377 basic_block bb;
3378
3379 vr_value = XNEWVEC (value_range_t *, num_ssa_names);
3380 memset (vr_value, 0, num_ssa_names * sizeof (value_range_t *));
3381
3382 FOR_EACH_BB (bb)
3383 {
3384 block_stmt_iterator si;
3385 tree phi;
3386
3387 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3388 {
3389 if (!stmt_interesting_for_vrp (phi))
3390 {
3391 tree lhs = PHI_RESULT (phi);
3392 set_value_range_to_varying (get_value_range (lhs));
3393 DONT_SIMULATE_AGAIN (phi) = true;
3394 }
3395 else
3396 DONT_SIMULATE_AGAIN (phi) = false;
3397 }
3398
3399 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3400 {
3401 tree stmt = bsi_stmt (si);
3402
3403 if (!stmt_interesting_for_vrp (stmt))
3404 {
3405 ssa_op_iter i;
3406 tree def;
3407 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
3408 set_value_range_to_varying (get_value_range (def));
3409 DONT_SIMULATE_AGAIN (stmt) = true;
3410 }
3411 else
3412 {
3413 DONT_SIMULATE_AGAIN (stmt) = false;
3414 }
3415 }
3416 }
3417 }
3418
3419
3420 /* Visit assignment STMT. If it produces an interesting range, record
3421 the SSA name in *OUTPUT_P. */
3422
3423 static enum ssa_prop_result
3424 vrp_visit_assignment (tree stmt, tree *output_p)
3425 {
3426 tree lhs, rhs, def;
3427 ssa_op_iter iter;
3428
3429 lhs = TREE_OPERAND (stmt, 0);
3430 rhs = TREE_OPERAND (stmt, 1);
3431
3432 /* We only keep track of ranges in integral and pointer types. */
3433 if (TREE_CODE (lhs) == SSA_NAME
3434 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3435 /* It is valid to have NULL MIN/MAX values on a type. See
3436 build_range_type. */
3437 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
3438 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
3439 || POINTER_TYPE_P (TREE_TYPE (lhs))))
3440 {
3441 struct loop *l;
3442 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3443
3444 extract_range_from_expr (&new_vr, rhs);
3445
3446 /* If STMT is inside a loop, we may be able to know something
3447 else about the range of LHS by examining scalar evolution
3448 information. */
3449 if (current_loops && (l = loop_containing_stmt (stmt)))
3450 adjust_range_with_scev (&new_vr, l, stmt, lhs);
3451
3452 if (update_value_range (lhs, &new_vr))
3453 {
3454 *output_p = lhs;
3455
3456 if (dump_file && (dump_flags & TDF_DETAILS))
3457 {
3458 fprintf (dump_file, "Found new range for ");
3459 print_generic_expr (dump_file, lhs, 0);
3460 fprintf (dump_file, ": ");
3461 dump_value_range (dump_file, &new_vr);
3462 fprintf (dump_file, "\n\n");
3463 }
3464
3465 if (new_vr.type == VR_VARYING)
3466 return SSA_PROP_VARYING;
3467
3468 return SSA_PROP_INTERESTING;
3469 }
3470
3471 return SSA_PROP_NOT_INTERESTING;
3472 }
3473
3474 /* Every other statement produces no useful ranges. */
3475 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3476 set_value_range_to_varying (get_value_range (def));
3477
3478 return SSA_PROP_VARYING;
3479 }
3480
3481
3482 /* Compare all the value ranges for names equivalent to VAR with VAL
3483 using comparison code COMP. Return the same value returned by
3484 compare_range_with_value. */
3485
3486 static tree
3487 compare_name_with_value (enum tree_code comp, tree var, tree val)
3488 {
3489 bitmap_iterator bi;
3490 unsigned i;
3491 bitmap e;
3492 tree retval, t;
3493
3494 t = retval = NULL_TREE;
3495
3496 /* Get the set of equivalences for VAR. */
3497 e = get_value_range (var)->equiv;
3498
3499 /* Add VAR to its own set of equivalences so that VAR's value range
3500 is processed by this loop (otherwise, we would have to replicate
3501 the body of the loop just to check VAR's value range). */
3502 bitmap_set_bit (e, SSA_NAME_VERSION (var));
3503
3504 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
3505 {
3506 value_range_t equiv_vr = *(vr_value[i]);
3507
3508 /* If name N_i does not have a valid range, use N_i as its own
3509 range. This allows us to compare against names that may
3510 have N_i in their ranges. */
3511 if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
3512 {
3513 equiv_vr.type = VR_RANGE;
3514 equiv_vr.min = ssa_name (i);
3515 equiv_vr.max = ssa_name (i);
3516 }
3517
3518 t = compare_range_with_value (comp, &equiv_vr, val);
3519 if (t)
3520 {
3521 /* All the ranges should compare the same against VAL. */
3522 gcc_assert (retval == NULL || t == retval);
3523 retval = t;
3524 }
3525 }
3526
3527 /* Remove VAR from its own equivalence set. */
3528 bitmap_clear_bit (e, SSA_NAME_VERSION (var));
3529
3530 if (retval)
3531 return retval;
3532
3533 /* We couldn't find a non-NULL value for the predicate. */
3534 return NULL_TREE;
3535 }
3536
3537
3538 /* Given a comparison code COMP and names N1 and N2, compare all the
3539 ranges equivalent to N1 against all the ranges equivalent to N2
3540 to determine the value of N1 COMP N2. Return the same value
3541 returned by compare_ranges. */
3542
3543 static tree
3544 compare_names (enum tree_code comp, tree n1, tree n2)
3545 {
3546 tree t, retval;
3547 bitmap e1, e2;
3548 bitmap_iterator bi1, bi2;
3549 unsigned i1, i2;
3550
3551 /* Compare the ranges of every name equivalent to N1 against the
3552 ranges of every name equivalent to N2. */
3553 e1 = get_value_range (n1)->equiv;
3554 e2 = get_value_range (n2)->equiv;
3555
3556 /* Add N1 and N2 to their own set of equivalences to avoid
3557 duplicating the body of the loop just to check N1 and N2
3558 ranges. */
3559 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
3560 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
3561
3562 /* If the equivalence sets have a common intersection, then the two
3563 names can be compared without checking their ranges. */
3564 if (bitmap_intersect_p (e1, e2))
3565 {
3566 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3567 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3568
3569 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
3570 ? boolean_true_node
3571 : boolean_false_node;
3572 }
3573
3574 /* Otherwise, compare all the equivalent ranges. First, add N1 and
3575 N2 to their own set of equivalences to avoid duplicating the body
3576 of the loop just to check N1 and N2 ranges. */
3577 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
3578 {
3579 value_range_t vr1 = *(vr_value[i1]);
3580
3581 /* If the range is VARYING or UNDEFINED, use the name itself. */
3582 if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
3583 {
3584 vr1.type = VR_RANGE;
3585 vr1.min = ssa_name (i1);
3586 vr1.max = ssa_name (i1);
3587 }
3588
3589 t = retval = NULL_TREE;
3590 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
3591 {
3592 value_range_t vr2 = *(vr_value[i2]);
3593
3594 if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
3595 {
3596 vr2.type = VR_RANGE;
3597 vr2.min = ssa_name (i2);
3598 vr2.max = ssa_name (i2);
3599 }
3600
3601 t = compare_ranges (comp, &vr1, &vr2);
3602 if (t)
3603 {
3604 /* All the ranges in the equivalent sets should compare
3605 the same. */
3606 gcc_assert (retval == NULL || t == retval);
3607 retval = t;
3608 }
3609 }
3610
3611 if (retval)
3612 {
3613 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3614 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3615 return retval;
3616 }
3617 }
3618
3619 /* None of the equivalent ranges are useful in computing this
3620 comparison. */
3621 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3622 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3623 return NULL_TREE;
3624 }
3625
3626
3627 /* Given a conditional predicate COND, try to determine if COND yields
3628 true or false based on the value ranges of its operands. Return
3629 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
3630 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
3631 NULL if the conditional cannot be evaluated at compile time.
3632
3633 If USE_EQUIV_P is true, the ranges of all the names equivalent with
3634 the operands in COND are used when trying to compute its value.
3635 This is only used during final substitution. During propagation,
3636 we only check the range of each variable and not its equivalents. */
3637
3638 tree
3639 vrp_evaluate_conditional (tree cond, bool use_equiv_p)
3640 {
3641 gcc_assert (TREE_CODE (cond) == SSA_NAME
3642 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
3643
3644 if (TREE_CODE (cond) == SSA_NAME)
3645 {
3646 value_range_t *vr;
3647 tree retval;
3648
3649 if (use_equiv_p)
3650 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node);
3651 else
3652 {
3653 value_range_t *vr = get_value_range (cond);
3654 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node);
3655 }
3656
3657 /* If COND has a known boolean range, return it. */
3658 if (retval)
3659 return retval;
3660
3661 /* Otherwise, if COND has a symbolic range of exactly one value,
3662 return it. */
3663 vr = get_value_range (cond);
3664 if (vr->type == VR_RANGE && vr->min == vr->max)
3665 return vr->min;
3666 }
3667 else
3668 {
3669 tree op0 = TREE_OPERAND (cond, 0);
3670 tree op1 = TREE_OPERAND (cond, 1);
3671
3672 /* We only deal with integral and pointer types. */
3673 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
3674 && !POINTER_TYPE_P (TREE_TYPE (op0)))
3675 return NULL_TREE;
3676
3677 if (use_equiv_p)
3678 {
3679 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
3680 return compare_names (TREE_CODE (cond), op0, op1);
3681 else if (TREE_CODE (op0) == SSA_NAME)
3682 return compare_name_with_value (TREE_CODE (cond), op0, op1);
3683 else if (TREE_CODE (op1) == SSA_NAME)
3684 return compare_name_with_value (
3685 swap_tree_comparison (TREE_CODE (cond)), op1, op0);
3686 }
3687 else
3688 {
3689 value_range_t *vr0, *vr1;
3690
3691 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
3692 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
3693
3694 if (vr0 && vr1)
3695 return compare_ranges (TREE_CODE (cond), vr0, vr1);
3696 else if (vr0 && vr1 == NULL)
3697 return compare_range_with_value (TREE_CODE (cond), vr0, op1);
3698 else if (vr0 == NULL && vr1)
3699 return compare_range_with_value (
3700 swap_tree_comparison (TREE_CODE (cond)), vr1, op0);
3701 }
3702 }
3703
3704 /* Anything else cannot be computed statically. */
3705 return NULL_TREE;
3706 }
3707
3708
3709 /* Visit conditional statement STMT. If we can determine which edge
3710 will be taken out of STMT's basic block, record it in
3711 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
3712 SSA_PROP_VARYING. */
3713
3714 static enum ssa_prop_result
3715 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
3716 {
3717 tree cond, val;
3718
3719 *taken_edge_p = NULL;
3720
3721 /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
3722 add ASSERT_EXPRs for them. */
3723 if (TREE_CODE (stmt) == SWITCH_EXPR)
3724 return SSA_PROP_VARYING;
3725
3726 cond = COND_EXPR_COND (stmt);
3727
3728 if (dump_file && (dump_flags & TDF_DETAILS))
3729 {
3730 tree use;
3731 ssa_op_iter i;
3732
3733 fprintf (dump_file, "\nVisiting conditional with predicate: ");
3734 print_generic_expr (dump_file, cond, 0);
3735 fprintf (dump_file, "\nWith known ranges\n");
3736
3737 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
3738 {
3739 fprintf (dump_file, "\t");
3740 print_generic_expr (dump_file, use, 0);
3741 fprintf (dump_file, ": ");
3742 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
3743 }
3744
3745 fprintf (dump_file, "\n");
3746 }
3747
3748 /* Compute the value of the predicate COND by checking the known
3749 ranges of each of its operands.
3750
3751 Note that we cannot evaluate all the equivalent ranges here
3752 because those ranges may not yet be final and with the current
3753 propagation strategy, we cannot determine when the value ranges
3754 of the names in the equivalence set have changed.
3755
3756 For instance, given the following code fragment
3757
3758 i_5 = PHI <8, i_13>
3759 ...
3760 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
3761 if (i_14 == 1)
3762 ...
3763
3764 Assume that on the first visit to i_14, i_5 has the temporary
3765 range [8, 8] because the second argument to the PHI function is
3766 not yet executable. We derive the range ~[0, 0] for i_14 and the
3767 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
3768 the first time, since i_14 is equivalent to the range [8, 8], we
3769 determine that the predicate is always false.
3770
3771 On the next round of propagation, i_13 is determined to be
3772 VARYING, which causes i_5 to drop down to VARYING. So, another
3773 visit to i_14 is scheduled. In this second visit, we compute the
3774 exact same range and equivalence set for i_14, namely ~[0, 0] and
3775 { i_5 }. But we did not have the previous range for i_5
3776 registered, so vrp_visit_assignment thinks that the range for
3777 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
3778 is not visited again, which stops propagation from visiting
3779 statements in the THEN clause of that if().
3780
3781 To properly fix this we would need to keep the previous range
3782 value for the names in the equivalence set. This way we would've
3783 discovered that from one visit to the other i_5 changed from
3784 range [8, 8] to VR_VARYING.
3785
3786 However, fixing this apparent limitation may not be worth the
3787 additional checking. Testing on several code bases (GCC, DLV,
3788 MICO, TRAMP3D and SPEC2000) showed that doing this results in
3789 4 more predicates folded in SPEC. */
3790 val = vrp_evaluate_conditional (cond, false);
3791 if (val)
3792 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
3793
3794 if (dump_file && (dump_flags & TDF_DETAILS))
3795 {
3796 fprintf (dump_file, "\nPredicate evaluates to: ");
3797 if (val == NULL_TREE)
3798 fprintf (dump_file, "DON'T KNOW\n");
3799 else
3800 print_generic_stmt (dump_file, val, 0);
3801 }
3802
3803 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
3804 }
3805
3806
3807 /* Evaluate statement STMT. If the statement produces a useful range,
3808 return SSA_PROP_INTERESTING and record the SSA name with the
3809 interesting range into *OUTPUT_P.
3810
3811 If STMT is a conditional branch and we can determine its truth
3812 value, the taken edge is recorded in *TAKEN_EDGE_P.
3813
3814 If STMT produces a varying value, return SSA_PROP_VARYING. */
3815
3816 static enum ssa_prop_result
3817 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
3818 {
3819 tree def;
3820 ssa_op_iter iter;
3821 stmt_ann_t ann;
3822
3823 if (dump_file && (dump_flags & TDF_DETAILS))
3824 {
3825 fprintf (dump_file, "\nVisiting statement:\n");
3826 print_generic_stmt (dump_file, stmt, dump_flags);
3827 fprintf (dump_file, "\n");
3828 }
3829
3830 ann = stmt_ann (stmt);
3831 if (TREE_CODE (stmt) == MODIFY_EXPR)
3832 {
3833 tree rhs = TREE_OPERAND (stmt, 1);
3834
3835 /* In general, assignments with virtual operands are not useful
3836 for deriving ranges, with the obvious exception of calls to
3837 builtin functions. */
3838 if ((TREE_CODE (rhs) == CALL_EXPR
3839 && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
3840 && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
3841 && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
3842 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
3843 return vrp_visit_assignment (stmt, output_p);
3844 }
3845 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3846 return vrp_visit_cond_stmt (stmt, taken_edge_p);
3847
3848 /* All other statements produce nothing of interest for VRP, so mark
3849 their outputs varying and prevent further simulation. */
3850 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3851 set_value_range_to_varying (get_value_range (def));
3852
3853 return SSA_PROP_VARYING;
3854 }
3855
3856
3857 /* Meet operation for value ranges. Given two value ranges VR0 and
3858 VR1, store in VR0 the result of meeting VR0 and VR1.
3859
3860 The meeting rules are as follows:
3861
3862 1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
3863
3864 2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
3865 union of VR0 and VR1. */
3866
3867 static void
3868 vrp_meet (value_range_t *vr0, value_range_t *vr1)
3869 {
3870 if (vr0->type == VR_UNDEFINED)
3871 {
3872 copy_value_range (vr0, vr1);
3873 return;
3874 }
3875
3876 if (vr1->type == VR_UNDEFINED)
3877 {
3878 /* Nothing to do. VR0 already has the resulting range. */
3879 return;
3880 }
3881
3882 if (vr0->type == VR_VARYING)
3883 {
3884 /* Nothing to do. VR0 already has the resulting range. */
3885 return;
3886 }
3887
3888 if (vr1->type == VR_VARYING)
3889 {
3890 set_value_range_to_varying (vr0);
3891 return;
3892 }
3893
3894 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
3895 {
3896 /* If VR0 and VR1 have a non-empty intersection, compute the
3897 union of both ranges. */
3898 if (value_ranges_intersect_p (vr0, vr1))
3899 {
3900 int cmp;
3901 tree min, max;
3902
3903 /* The lower limit of the new range is the minimum of the
3904 two ranges. If they cannot be compared, the result is
3905 VARYING. */
3906 cmp = compare_values (vr0->min, vr1->min);
3907 if (cmp == 0 || cmp == 1)
3908 min = vr1->min;
3909 else if (cmp == -1)
3910 min = vr0->min;
3911 else
3912 {
3913 set_value_range_to_varying (vr0);
3914 return;
3915 }
3916
3917 /* Similarly, the upper limit of the new range is the
3918 maximum of the two ranges. If they cannot be compared,
3919 the result is VARYING. */
3920 cmp = compare_values (vr0->max, vr1->max);
3921 if (cmp == 0 || cmp == -1)
3922 max = vr1->max;
3923 else if (cmp == 1)
3924 max = vr0->max;
3925 else
3926 {
3927 set_value_range_to_varying (vr0);
3928 return;
3929 }
3930
3931 /* The resulting set of equivalences is the intersection of
3932 the two sets. */
3933 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3934 bitmap_and_into (vr0->equiv, vr1->equiv);
3935 else if (vr0->equiv && !vr1->equiv)
3936 bitmap_clear (vr0->equiv);
3937
3938 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
3939 }
3940 else
3941 goto no_meet;
3942 }
3943 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3944 {
3945 /* Two anti-ranges meet only if they are both identical. */
3946 if (compare_values (vr0->min, vr1->min) == 0
3947 && compare_values (vr0->max, vr1->max) == 0
3948 && compare_values (vr0->min, vr0->max) == 0)
3949 {
3950 /* The resulting set of equivalences is the intersection of
3951 the two sets. */
3952 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3953 bitmap_and_into (vr0->equiv, vr1->equiv);
3954 else if (vr0->equiv && !vr1->equiv)
3955 bitmap_clear (vr0->equiv);
3956 }
3957 else
3958 goto no_meet;
3959 }
3960 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3961 {
3962 /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
3963 meet only if the ranges have an empty intersection. The
3964 result of the meet operation is the anti-range. */
3965 if (!symbolic_range_p (vr0)
3966 && !symbolic_range_p (vr1)
3967 && !value_ranges_intersect_p (vr0, vr1))
3968 {
3969 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
3970 set. We need to compute the intersection of the two
3971 equivalence sets. */
3972 if (vr1->type == VR_ANTI_RANGE)
3973 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
3974
3975 /* The resulting set of equivalences is the intersection of
3976 the two sets. */
3977 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3978 bitmap_and_into (vr0->equiv, vr1->equiv);
3979 else if (vr0->equiv && !vr1->equiv)
3980 bitmap_clear (vr0->equiv);
3981 }
3982 else
3983 goto no_meet;
3984 }
3985 else
3986 gcc_unreachable ();
3987
3988 return;
3989
3990 no_meet:
3991 /* The two range VR0 and VR1 do not meet. Before giving up and
3992 setting the result to VARYING, see if we can at least derive a
3993 useful anti-range. FIXME, all this nonsense about distinguishing
3994 anti-ranges from ranges is necessary because of the odd
3995 semantics of range_includes_zero_p and friends. */
3996 if (!symbolic_range_p (vr0)
3997 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
3998 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
3999 && !symbolic_range_p (vr1)
4000 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
4001 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
4002 {
4003 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
4004
4005 /* Since this meet operation did not result from the meeting of
4006 two equivalent names, VR0 cannot have any equivalences. */
4007 if (vr0->equiv)
4008 bitmap_clear (vr0->equiv);
4009 }
4010 else
4011 set_value_range_to_varying (vr0);
4012 }
4013
4014
4015 /* Visit all arguments for PHI node PHI that flow through executable
4016 edges. If a valid value range can be derived from all the incoming
4017 value ranges, set a new range for the LHS of PHI. */
4018
4019 static enum ssa_prop_result
4020 vrp_visit_phi_node (tree phi)
4021 {
4022 int i;
4023 tree lhs = PHI_RESULT (phi);
4024 value_range_t *lhs_vr = get_value_range (lhs);
4025 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4026
4027 copy_value_range (&vr_result, lhs_vr);
4028
4029 if (dump_file && (dump_flags & TDF_DETAILS))
4030 {
4031 fprintf (dump_file, "\nVisiting PHI node: ");
4032 print_generic_expr (dump_file, phi, dump_flags);
4033 }
4034
4035 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
4036 {
4037 edge e = PHI_ARG_EDGE (phi, i);
4038
4039 if (dump_file && (dump_flags & TDF_DETAILS))
4040 {
4041 fprintf (dump_file,
4042 "\n Argument #%d (%d -> %d %sexecutable)\n",
4043 i, e->src->index, e->dest->index,
4044 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
4045 }
4046
4047 if (e->flags & EDGE_EXECUTABLE)
4048 {
4049 tree arg = PHI_ARG_DEF (phi, i);
4050 value_range_t vr_arg;
4051
4052 if (TREE_CODE (arg) == SSA_NAME)
4053 vr_arg = *(get_value_range (arg));
4054 else
4055 {
4056 vr_arg.type = VR_RANGE;
4057 vr_arg.min = arg;
4058 vr_arg.max = arg;
4059 vr_arg.equiv = NULL;
4060 }
4061
4062 if (dump_file && (dump_flags & TDF_DETAILS))
4063 {
4064 fprintf (dump_file, "\t");
4065 print_generic_expr (dump_file, arg, dump_flags);
4066 fprintf (dump_file, "\n\tValue: ");
4067 dump_value_range (dump_file, &vr_arg);
4068 fprintf (dump_file, "\n");
4069 }
4070
4071 vrp_meet (&vr_result, &vr_arg);
4072
4073 if (vr_result.type == VR_VARYING)
4074 break;
4075 }
4076 }
4077
4078 if (vr_result.type == VR_VARYING)
4079 goto varying;
4080
4081 /* To prevent infinite iterations in the algorithm, derive ranges
4082 when the new value is slightly bigger or smaller than the
4083 previous one. */
4084 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE)
4085 {
4086 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
4087 {
4088 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
4089 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
4090
4091 /* If the new minimum is smaller or larger than the previous
4092 one, go all the way to -INF. In the first case, to avoid
4093 iterating millions of times to reach -INF, and in the
4094 other case to avoid infinite bouncing between different
4095 minimums. */
4096 if (cmp_min > 0 || cmp_min < 0)
4097 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
4098
4099 /* Similarly, if the new maximum is smaller or larger than
4100 the previous one, go all the way to +INF. */
4101 if (cmp_max < 0 || cmp_max > 0)
4102 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
4103
4104 /* If we ended up with a (-INF, +INF) range, set it to
4105 VARYING. */
4106 if (vr_result.min == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))
4107 && vr_result.max == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)))
4108 goto varying;
4109 }
4110 }
4111
4112 /* If the new range is different than the previous value, keep
4113 iterating. */
4114 if (update_value_range (lhs, &vr_result))
4115 return SSA_PROP_INTERESTING;
4116
4117 /* Nothing changed, don't add outgoing edges. */
4118 return SSA_PROP_NOT_INTERESTING;
4119
4120 /* No match found. Set the LHS to VARYING. */
4121 varying:
4122 set_value_range_to_varying (lhs_vr);
4123 return SSA_PROP_VARYING;
4124 }
4125
4126 /* Simplify a division or modulo operator to a right shift or
4127 bitwise and if the first operand is unsigned or is greater
4128 than zero and the second operand is an exact power of two. */
4129
4130 static void
4131 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
4132 {
4133 tree val = NULL;
4134 tree op = TREE_OPERAND (rhs, 0);
4135 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4136
4137 if (TYPE_UNSIGNED (TREE_TYPE (op)))
4138 {
4139 val = integer_one_node;
4140 }
4141 else
4142 {
4143 val = compare_range_with_value (GT_EXPR, vr, integer_zero_node);
4144 }
4145
4146 if (val && integer_onep (val))
4147 {
4148 tree t;
4149 tree op0 = TREE_OPERAND (rhs, 0);
4150 tree op1 = TREE_OPERAND (rhs, 1);
4151
4152 if (rhs_code == TRUNC_DIV_EXPR)
4153 {
4154 t = build_int_cst (NULL_TREE, tree_log2 (op1));
4155 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
4156 }
4157 else
4158 {
4159 t = build_int_cst (TREE_TYPE (op1), 1);
4160 t = int_const_binop (MINUS_EXPR, op1, t, 0);
4161 t = fold_convert (TREE_TYPE (op0), t);
4162 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
4163 }
4164
4165 TREE_OPERAND (stmt, 1) = t;
4166 update_stmt (stmt);
4167 }
4168 }
4169
4170 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
4171 ABS_EXPR. If the operand is <= 0, then simplify the
4172 ABS_EXPR into a NEGATE_EXPR. */
4173
4174 static void
4175 simplify_abs_using_ranges (tree stmt, tree rhs)
4176 {
4177 tree val = NULL;
4178 tree op = TREE_OPERAND (rhs, 0);
4179 tree type = TREE_TYPE (op);
4180 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4181
4182 if (TYPE_UNSIGNED (type))
4183 {
4184 val = integer_zero_node;
4185 }
4186 else if (vr)
4187 {
4188 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node);
4189 if (!val)
4190 {
4191 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node);
4192
4193 if (val)
4194 {
4195 if (integer_zerop (val))
4196 val = integer_one_node;
4197 else if (integer_onep (val))
4198 val = integer_zero_node;
4199 }
4200 }
4201
4202 if (val
4203 && (integer_onep (val) || integer_zerop (val)))
4204 {
4205 tree t;
4206
4207 if (integer_onep (val))
4208 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
4209 else
4210 t = op;
4211
4212 TREE_OPERAND (stmt, 1) = t;
4213 update_stmt (stmt);
4214 }
4215 }
4216 }
4217
4218 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
4219 a known value range VR.
4220
4221 If there is one and only one value which will satisfy the
4222 conditional, then return that value. Else return NULL. */
4223
4224 static tree
4225 test_for_singularity (enum tree_code cond_code, tree op0,
4226 tree op1, value_range_t *vr)
4227 {
4228 tree min = NULL;
4229 tree max = NULL;
4230
4231 /* Extract minimum/maximum values which satisfy the
4232 the conditional as it was written. */
4233 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
4234 {
4235 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
4236
4237 max = op1;
4238 if (cond_code == LT_EXPR)
4239 {
4240 tree one = build_int_cst (TREE_TYPE (op0), 1);
4241 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
4242 }
4243 }
4244 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
4245 {
4246 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
4247
4248 min = op1;
4249 if (cond_code == GT_EXPR)
4250 {
4251 tree one = build_int_cst (TREE_TYPE (op0), 1);
4252 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
4253 }
4254 }
4255
4256 /* Now refine the minimum and maximum values using any
4257 value range information we have for op0. */
4258 if (min && max)
4259 {
4260 if (compare_values (vr->min, min) == -1)
4261 min = min;
4262 else
4263 min = vr->min;
4264 if (compare_values (vr->max, max) == 1)
4265 max = max;
4266 else
4267 max = vr->max;
4268
4269 /* If the new min/max values have converged to a single value,
4270 then there is only one value which can satisfy the condition,
4271 return that value. */
4272 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
4273 return min;
4274 }
4275 return NULL;
4276 }
4277
4278 /* Simplify a conditional using a relational operator to an equality
4279 test if the range information indicates only one value can satisfy
4280 the original conditional. */
4281
4282 static void
4283 simplify_cond_using_ranges (tree stmt)
4284 {
4285 tree cond = COND_EXPR_COND (stmt);
4286 tree op0 = TREE_OPERAND (cond, 0);
4287 tree op1 = TREE_OPERAND (cond, 1);
4288 enum tree_code cond_code = TREE_CODE (cond);
4289
4290 if (cond_code != NE_EXPR
4291 && cond_code != EQ_EXPR
4292 && TREE_CODE (op0) == SSA_NAME
4293 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
4294 && is_gimple_min_invariant (op1))
4295 {
4296 value_range_t *vr = get_value_range (op0);
4297
4298 /* If we have range information for OP0, then we might be
4299 able to simplify this conditional. */
4300 if (vr->type == VR_RANGE)
4301 {
4302 tree new = test_for_singularity (cond_code, op0, op1, vr);
4303
4304 if (new)
4305 {
4306 if (dump_file)
4307 {
4308 fprintf (dump_file, "Simplified relational ");
4309 print_generic_expr (dump_file, cond, 0);
4310 fprintf (dump_file, " into ");
4311 }
4312
4313 COND_EXPR_COND (stmt)
4314 = build2 (EQ_EXPR, boolean_type_node, op0, new);
4315 update_stmt (stmt);
4316
4317 if (dump_file)
4318 {
4319 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4320 fprintf (dump_file, "\n");
4321 }
4322 return;
4323
4324 }
4325
4326 /* Try again after inverting the condition. We only deal
4327 with integral types here, so no need to worry about
4328 issues with inverting FP comparisons. */
4329 cond_code = invert_tree_comparison (cond_code, false);
4330 new = test_for_singularity (cond_code, op0, op1, vr);
4331
4332 if (new)
4333 {
4334 if (dump_file)
4335 {
4336 fprintf (dump_file, "Simplified relational ");
4337 print_generic_expr (dump_file, cond, 0);
4338 fprintf (dump_file, " into ");
4339 }
4340
4341 COND_EXPR_COND (stmt)
4342 = build2 (NE_EXPR, boolean_type_node, op0, new);
4343 update_stmt (stmt);
4344
4345 if (dump_file)
4346 {
4347 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4348 fprintf (dump_file, "\n");
4349 }
4350 return;
4351
4352 }
4353 }
4354 }
4355 }
4356
4357 /* Simplify STMT using ranges if possible. */
4358
4359 void
4360 simplify_stmt_using_ranges (tree stmt)
4361 {
4362 if (TREE_CODE (stmt) == MODIFY_EXPR)
4363 {
4364 tree rhs = TREE_OPERAND (stmt, 1);
4365 enum tree_code rhs_code = TREE_CODE (rhs);
4366
4367 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
4368 and BIT_AND_EXPR respectively if the first operand is greater
4369 than zero and the second operand is an exact power of two. */
4370 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
4371 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
4372 && integer_pow2p (TREE_OPERAND (rhs, 1)))
4373 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
4374
4375 /* Transform ABS (X) into X or -X as appropriate. */
4376 if (rhs_code == ABS_EXPR
4377 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
4378 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
4379 simplify_abs_using_ranges (stmt, rhs);
4380 }
4381 else if (TREE_CODE (stmt) == COND_EXPR
4382 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
4383 {
4384 simplify_cond_using_ranges (stmt);
4385 }
4386 }
4387
4388 /* Stack of dest,src equivalency pairs that need to be restored after
4389 each attempt to thread a block's incoming edge to an outgoing edge.
4390
4391 A NULL entry is used to mark the end of pairs which need to be
4392 restored. */
4393 static VEC(tree,heap) *stack;
4394
4395 /* A trivial wrapper so that we can present the generic jump
4396 threading code with a simple API for simplifying statements. */
4397 static tree
4398 simplify_stmt_for_jump_threading (tree stmt)
4399 {
4400 /* We only use VRP information to simplify conditionals. This is
4401 overly conservative, but it's unclear if doing more would be
4402 worth the compile time cost. */
4403 if (TREE_CODE (stmt) != COND_EXPR)
4404 return NULL;
4405
4406 return vrp_evaluate_conditional (COND_EXPR_COND (stmt), true);
4407 }
4408
4409 /* Blocks which have more than one predecessor and more than
4410 one successor present jump threading opportunities. ie,
4411 when the block is reached from a specific predecessor, we
4412 may be able to determine which of the outgoing edges will
4413 be traversed. When this optimization applies, we are able
4414 to avoid conditionals at runtime and we may expose secondary
4415 optimization opportunities.
4416
4417 This routine is effectively a driver for the generic jump
4418 threading code. It basically just presents the generic code
4419 with edges that may be suitable for jump threading.
4420
4421 Unlike DOM, we do not iterate VRP if jump threading was successful.
4422 While iterating may expose new opportunities for VRP, it is expected
4423 those opportunities would be very limited and the compile time cost
4424 to expose those opportunities would be significant.
4425
4426 As jump threading opportunities are discovered, they are registered
4427 for later realization. */
4428
4429 static void
4430 identify_jump_threads (void)
4431 {
4432 basic_block bb;
4433 tree dummy;
4434
4435 /* Ugh. When substituting values earlier in this pass we can
4436 wipe the dominance information. So rebuild the dominator
4437 information as we need it within the jump threading code. */
4438 calculate_dominance_info (CDI_DOMINATORS);
4439
4440 /* We do not allow VRP information to be used for jump threading
4441 across a back edge in the CFG. Otherwise it becomes too
4442 difficult to avoid eliminating loop exit tests. Of course
4443 EDGE_DFS_BACK is not accurate at this time so we have to
4444 recompute it. */
4445 mark_dfs_back_edges ();
4446
4447 /* Allocate our unwinder stack to unwind any temporary equivalences
4448 that might be recorded. */
4449 stack = VEC_alloc (tree, heap, 20);
4450
4451 /* To avoid lots of silly node creation, we create a single
4452 conditional and just modify it in-place when attempting to
4453 thread jumps. */
4454 dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
4455 dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
4456
4457 /* Walk through all the blocks finding those which present a
4458 potential jump threading opportunity. We could set this up
4459 as a dominator walker and record data during the walk, but
4460 I doubt it's worth the effort for the classes of jump
4461 threading opportunities we are trying to identify at this
4462 point in compilation. */
4463 FOR_EACH_BB (bb)
4464 {
4465 tree last, cond;
4466
4467 /* If the generic jump threading code does not find this block
4468 interesting, then there is nothing to do. */
4469 if (! potentially_threadable_block (bb))
4470 continue;
4471
4472 /* We only care about blocks ending in a COND_EXPR. While there
4473 may be some value in handling SWITCH_EXPR here, I doubt it's
4474 terribly important. */
4475 last = bsi_stmt (bsi_last (bb));
4476 if (TREE_CODE (last) != COND_EXPR)
4477 continue;
4478
4479 /* We're basically looking for any kind of conditional with
4480 integral type arguments. */
4481 cond = COND_EXPR_COND (last);
4482 if ((TREE_CODE (cond) == SSA_NAME
4483 && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
4484 || (COMPARISON_CLASS_P (cond)
4485 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
4486 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
4487 && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
4488 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
4489 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
4490 {
4491 edge_iterator ei;
4492 edge e;
4493
4494 /* We've got a block with multiple predecessors and multiple
4495 successors which also ends in a suitable conditional. For
4496 each predecessor, see if we can thread it to a specific
4497 successor. */
4498 FOR_EACH_EDGE (e, ei, bb->preds)
4499 {
4500 /* Do not thread across back edges or abnormal edges
4501 in the CFG. */
4502 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
4503 continue;
4504
4505 thread_across_edge (dummy, e, true,
4506 &stack,
4507 simplify_stmt_for_jump_threading);
4508 }
4509 }
4510 }
4511
4512 /* We do not actually update the CFG or SSA graphs at this point as
4513 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
4514 handle ASSERT_EXPRs gracefully. */
4515 }
4516
4517 /* We identified all the jump threading opportunities earlier, but could
4518 not transform the CFG at that time. This routine transforms the
4519 CFG and arranges for the dominator tree to be rebuilt if necessary.
4520
4521 Note the SSA graph update will occur during the normal TODO
4522 processing by the pass manager. */
4523 static void
4524 finalize_jump_threads (void)
4525 {
4526 bool cfg_altered = false;
4527 cfg_altered = thread_through_all_blocks ();
4528
4529 /* If we threaded jumps, then we need to recompute the dominance
4530 information, to safely do that we must clean up the CFG first. */
4531 if (cfg_altered)
4532 {
4533 free_dominance_info (CDI_DOMINATORS);
4534 cleanup_tree_cfg ();
4535 calculate_dominance_info (CDI_DOMINATORS);
4536 }
4537 VEC_free (tree, heap, stack);
4538 }
4539
4540
4541 /* Traverse all the blocks folding conditionals with known ranges. */
4542
4543 static void
4544 vrp_finalize (void)
4545 {
4546 size_t i;
4547 prop_value_t *single_val_range;
4548 bool do_value_subst_p;
4549
4550 if (dump_file)
4551 {
4552 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
4553 dump_all_value_ranges (dump_file);
4554 fprintf (dump_file, "\n");
4555 }
4556
4557 /* We may have ended with ranges that have exactly one value. Those
4558 values can be substituted as any other copy/const propagated
4559 value using substitute_and_fold. */
4560 single_val_range = XNEWVEC (prop_value_t, num_ssa_names);
4561 memset (single_val_range, 0, num_ssa_names * sizeof (*single_val_range));
4562
4563 do_value_subst_p = false;
4564 for (i = 0; i < num_ssa_names; i++)
4565 if (vr_value[i]
4566 && vr_value[i]->type == VR_RANGE
4567 && vr_value[i]->min == vr_value[i]->max)
4568 {
4569 single_val_range[i].value = vr_value[i]->min;
4570 do_value_subst_p = true;
4571 }
4572
4573 if (!do_value_subst_p)
4574 {
4575 /* We found no single-valued ranges, don't waste time trying to
4576 do single value substitution in substitute_and_fold. */
4577 free (single_val_range);
4578 single_val_range = NULL;
4579 }
4580
4581 substitute_and_fold (single_val_range, true);
4582
4583 /* We must identify jump threading opportunities before we release
4584 the datastructures built by VRP. */
4585 identify_jump_threads ();
4586
4587 /* Free allocated memory. */
4588 for (i = 0; i < num_ssa_names; i++)
4589 if (vr_value[i])
4590 {
4591 BITMAP_FREE (vr_value[i]->equiv);
4592 free (vr_value[i]);
4593 }
4594
4595 free (single_val_range);
4596 free (vr_value);
4597
4598 /* So that we can distinguish between VRP data being available
4599 and not available. */
4600 vr_value = NULL;
4601 }
4602
4603
4604 /* Main entry point to VRP (Value Range Propagation). This pass is
4605 loosely based on J. R. C. Patterson, ``Accurate Static Branch
4606 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
4607 Programming Language Design and Implementation, pp. 67-78, 1995.
4608 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
4609
4610 This is essentially an SSA-CCP pass modified to deal with ranges
4611 instead of constants.
4612
4613 While propagating ranges, we may find that two or more SSA name
4614 have equivalent, though distinct ranges. For instance,
4615
4616 1 x_9 = p_3->a;
4617 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
4618 3 if (p_4 == q_2)
4619 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
4620 5 endif
4621 6 if (q_2)
4622
4623 In the code above, pointer p_5 has range [q_2, q_2], but from the
4624 code we can also determine that p_5 cannot be NULL and, if q_2 had
4625 a non-varying range, p_5's range should also be compatible with it.
4626
4627 These equivalences are created by two expressions: ASSERT_EXPR and
4628 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
4629 result of another assertion, then we can use the fact that p_5 and
4630 p_4 are equivalent when evaluating p_5's range.
4631
4632 Together with value ranges, we also propagate these equivalences
4633 between names so that we can take advantage of information from
4634 multiple ranges when doing final replacement. Note that this
4635 equivalency relation is transitive but not symmetric.
4636
4637 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
4638 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
4639 in contexts where that assertion does not hold (e.g., in line 6).
4640
4641 TODO, the main difference between this pass and Patterson's is that
4642 we do not propagate edge probabilities. We only compute whether
4643 edges can be taken or not. That is, instead of having a spectrum
4644 of jump probabilities between 0 and 1, we only deal with 0, 1 and
4645 DON'T KNOW. In the future, it may be worthwhile to propagate
4646 probabilities to aid branch prediction. */
4647
4648 static unsigned int
4649 execute_vrp (void)
4650 {
4651 insert_range_assertions ();
4652
4653 current_loops = loop_optimizer_init (LOOPS_NORMAL);
4654 if (current_loops)
4655 scev_initialize (current_loops);
4656
4657 vrp_initialize ();
4658 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
4659 vrp_finalize ();
4660
4661 if (current_loops)
4662 {
4663 scev_finalize ();
4664 loop_optimizer_finalize (current_loops);
4665 current_loops = NULL;
4666 }
4667
4668 /* ASSERT_EXPRs must be removed before finalizing jump threads
4669 as finalizing jump threads calls the CFG cleanup code which
4670 does not properly handle ASSERT_EXPRs. */
4671 remove_range_assertions ();
4672
4673 /* If we exposed any new variables, go ahead and put them into
4674 SSA form now, before we handle jump threading. This simplifies
4675 interactions between rewriting of _DECL nodes into SSA form
4676 and rewriting SSA_NAME nodes into SSA form after block
4677 duplication and CFG manipulation. */
4678 update_ssa (TODO_update_ssa);
4679
4680 finalize_jump_threads ();
4681 return 0;
4682 }
4683
4684 static bool
4685 gate_vrp (void)
4686 {
4687 return flag_tree_vrp != 0;
4688 }
4689
4690 struct tree_opt_pass pass_vrp =
4691 {
4692 "vrp", /* name */
4693 gate_vrp, /* gate */
4694 execute_vrp, /* execute */
4695 NULL, /* sub */
4696 NULL, /* next */
4697 0, /* static_pass_number */
4698 TV_TREE_VRP, /* tv_id */
4699 PROP_ssa | PROP_alias, /* properties_required */
4700 0, /* properties_provided */
4701 PROP_smt_usage, /* properties_destroyed */
4702 0, /* todo_flags_start */
4703 TODO_cleanup_cfg
4704 | TODO_ggc_collect
4705 | TODO_verify_ssa
4706 | TODO_dump_func
4707 | TODO_update_ssa
4708 | TODO_update_smt_usage, /* todo_flags_finish */
4709 0 /* letter */
4710 };