[17/77] Add an int_mode_for_size helper function
[gcc.git] / gcc / tree-vrp.c
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2017 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "insn-codes.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "optabs-tree.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "flags.h"
36 #include "fold-const.h"
37 #include "stor-layout.h"
38 #include "calls.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimple-walk.h"
44 #include "tree-cfg.h"
45 #include "tree-ssa-loop-manip.h"
46 #include "tree-ssa-loop-niter.h"
47 #include "tree-ssa-loop.h"
48 #include "tree-into-ssa.h"
49 #include "tree-ssa.h"
50 #include "intl.h"
51 #include "cfgloop.h"
52 #include "tree-scalar-evolution.h"
53 #include "tree-ssa-propagate.h"
54 #include "tree-chrec.h"
55 #include "tree-ssa-threadupdate.h"
56 #include "tree-ssa-scopedtables.h"
57 #include "tree-ssa-threadedge.h"
58 #include "omp-general.h"
59 #include "target.h"
60 #include "case-cfn-macros.h"
61 #include "params.h"
62 #include "alloc-pool.h"
63 #include "domwalk.h"
64 #include "tree-cfgcleanup.h"
65 #include "stringpool.h"
66 #include "attribs.h"
67
68 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
69
70 /* Allocation pools for tree-vrp allocations. */
71 static object_allocator<value_range> vrp_value_range_pool ("Tree VRP value ranges");
72 static bitmap_obstack vrp_equiv_obstack;
73
74 /* Set of SSA names found live during the RPO traversal of the function
75 for still active basic-blocks. */
76 static sbitmap *live;
77
78 /* Return true if the SSA name NAME is live on the edge E. */
79
80 static bool
81 live_on_edge (edge e, tree name)
82 {
83 return (live[e->dest->index]
84 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
85 }
86
87 /* Local functions. */
88 static int compare_values (tree val1, tree val2);
89 static int compare_values_warnv (tree val1, tree val2, bool *);
90 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
91 tree, tree, bool, bool *,
92 bool *);
93
94 struct assert_info
95 {
96 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
97 enum tree_code comp_code;
98
99 /* Name to register the assert for. */
100 tree name;
101
102 /* Value being compared against. */
103 tree val;
104
105 /* Expression to compare. */
106 tree expr;
107 };
108
109 /* Location information for ASSERT_EXPRs. Each instance of this
110 structure describes an ASSERT_EXPR for an SSA name. Since a single
111 SSA name may have more than one assertion associated with it, these
112 locations are kept in a linked list attached to the corresponding
113 SSA name. */
114 struct assert_locus
115 {
116 /* Basic block where the assertion would be inserted. */
117 basic_block bb;
118
119 /* Some assertions need to be inserted on an edge (e.g., assertions
120 generated by COND_EXPRs). In those cases, BB will be NULL. */
121 edge e;
122
123 /* Pointer to the statement that generated this assertion. */
124 gimple_stmt_iterator si;
125
126 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
127 enum tree_code comp_code;
128
129 /* Value being compared against. */
130 tree val;
131
132 /* Expression to compare. */
133 tree expr;
134
135 /* Next node in the linked list. */
136 assert_locus *next;
137 };
138
139 /* If bit I is present, it means that SSA name N_i has a list of
140 assertions that should be inserted in the IL. */
141 static bitmap need_assert_for;
142
143 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
144 holds a list of ASSERT_LOCUS_T nodes that describe where
145 ASSERT_EXPRs for SSA name N_I should be inserted. */
146 static assert_locus **asserts_for;
147
148 /* Value range array. After propagation, VR_VALUE[I] holds the range
149 of values that SSA name N_I may take. */
150 static unsigned num_vr_values;
151 static value_range **vr_value;
152 static bool values_propagated;
153
154 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
155 number of executable edges we saw the last time we visited the
156 node. */
157 static int *vr_phi_edge_counts;
158
159 struct switch_update {
160 gswitch *stmt;
161 tree vec;
162 };
163
164 static vec<edge> to_remove_edges;
165 static vec<switch_update> to_update_switch_stmts;
166
167
168 /* Return the maximum value for TYPE. */
169
170 static inline tree
171 vrp_val_max (const_tree type)
172 {
173 if (!INTEGRAL_TYPE_P (type))
174 return NULL_TREE;
175
176 return TYPE_MAX_VALUE (type);
177 }
178
179 /* Return the minimum value for TYPE. */
180
181 static inline tree
182 vrp_val_min (const_tree type)
183 {
184 if (!INTEGRAL_TYPE_P (type))
185 return NULL_TREE;
186
187 return TYPE_MIN_VALUE (type);
188 }
189
190 /* Return whether VAL is equal to the maximum value of its type.
191 We can't do a simple equality comparison with TYPE_MAX_VALUE because
192 C typedefs and Ada subtypes can produce types whose TYPE_MAX_VALUE
193 is not == to the integer constant with the same value in the type. */
194
195 static inline bool
196 vrp_val_is_max (const_tree val)
197 {
198 tree type_max = vrp_val_max (TREE_TYPE (val));
199 return (val == type_max
200 || (type_max != NULL_TREE
201 && operand_equal_p (val, type_max, 0)));
202 }
203
204 /* Return whether VAL is equal to the minimum value of its type. */
205
206 static inline bool
207 vrp_val_is_min (const_tree val)
208 {
209 tree type_min = vrp_val_min (TREE_TYPE (val));
210 return (val == type_min
211 || (type_min != NULL_TREE
212 && operand_equal_p (val, type_min, 0)));
213 }
214
215
216 /* Set value range VR to VR_UNDEFINED. */
217
218 static inline void
219 set_value_range_to_undefined (value_range *vr)
220 {
221 vr->type = VR_UNDEFINED;
222 vr->min = vr->max = NULL_TREE;
223 if (vr->equiv)
224 bitmap_clear (vr->equiv);
225 }
226
227
228 /* Set value range VR to VR_VARYING. */
229
230 static inline void
231 set_value_range_to_varying (value_range *vr)
232 {
233 vr->type = VR_VARYING;
234 vr->min = vr->max = NULL_TREE;
235 if (vr->equiv)
236 bitmap_clear (vr->equiv);
237 }
238
239
240 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
241
242 static void
243 set_value_range (value_range *vr, enum value_range_type t, tree min,
244 tree max, bitmap equiv)
245 {
246 /* Check the validity of the range. */
247 if (flag_checking
248 && (t == VR_RANGE || t == VR_ANTI_RANGE))
249 {
250 int cmp;
251
252 gcc_assert (min && max);
253
254 gcc_assert (!TREE_OVERFLOW_P (min) && !TREE_OVERFLOW_P (max));
255
256 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
257 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
258
259 cmp = compare_values (min, max);
260 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
261 }
262
263 if (flag_checking
264 && (t == VR_UNDEFINED || t == VR_VARYING))
265 {
266 gcc_assert (min == NULL_TREE && max == NULL_TREE);
267 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
268 }
269
270 vr->type = t;
271 vr->min = min;
272 vr->max = max;
273
274 /* Since updating the equivalence set involves deep copying the
275 bitmaps, only do it if absolutely necessary. */
276 if (vr->equiv == NULL
277 && equiv != NULL)
278 vr->equiv = BITMAP_ALLOC (&vrp_equiv_obstack);
279
280 if (equiv != vr->equiv)
281 {
282 if (equiv && !bitmap_empty_p (equiv))
283 bitmap_copy (vr->equiv, equiv);
284 else
285 bitmap_clear (vr->equiv);
286 }
287 }
288
289
290 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
291 This means adjusting T, MIN and MAX representing the case of a
292 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
293 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
294 In corner cases where MAX+1 or MIN-1 wraps this will fall back
295 to varying.
296 This routine exists to ease canonicalization in the case where we
297 extract ranges from var + CST op limit. */
298
299 static void
300 set_and_canonicalize_value_range (value_range *vr, enum value_range_type t,
301 tree min, tree max, bitmap equiv)
302 {
303 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
304 if (t == VR_UNDEFINED)
305 {
306 set_value_range_to_undefined (vr);
307 return;
308 }
309 else if (t == VR_VARYING)
310 {
311 set_value_range_to_varying (vr);
312 return;
313 }
314
315 /* Nothing to canonicalize for symbolic ranges. */
316 if (TREE_CODE (min) != INTEGER_CST
317 || TREE_CODE (max) != INTEGER_CST)
318 {
319 set_value_range (vr, t, min, max, equiv);
320 return;
321 }
322
323 /* Wrong order for min and max, to swap them and the VR type we need
324 to adjust them. */
325 if (tree_int_cst_lt (max, min))
326 {
327 tree one, tmp;
328
329 /* For one bit precision if max < min, then the swapped
330 range covers all values, so for VR_RANGE it is varying and
331 for VR_ANTI_RANGE empty range, so drop to varying as well. */
332 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
333 {
334 set_value_range_to_varying (vr);
335 return;
336 }
337
338 one = build_int_cst (TREE_TYPE (min), 1);
339 tmp = int_const_binop (PLUS_EXPR, max, one);
340 max = int_const_binop (MINUS_EXPR, min, one);
341 min = tmp;
342
343 /* There's one corner case, if we had [C+1, C] before we now have
344 that again. But this represents an empty value range, so drop
345 to varying in this case. */
346 if (tree_int_cst_lt (max, min))
347 {
348 set_value_range_to_varying (vr);
349 return;
350 }
351
352 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
353 }
354
355 /* Anti-ranges that can be represented as ranges should be so. */
356 if (t == VR_ANTI_RANGE)
357 {
358 bool is_min = vrp_val_is_min (min);
359 bool is_max = vrp_val_is_max (max);
360
361 if (is_min && is_max)
362 {
363 /* We cannot deal with empty ranges, drop to varying.
364 ??? This could be VR_UNDEFINED instead. */
365 set_value_range_to_varying (vr);
366 return;
367 }
368 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
369 && (is_min || is_max))
370 {
371 /* Non-empty boolean ranges can always be represented
372 as a singleton range. */
373 if (is_min)
374 min = max = vrp_val_max (TREE_TYPE (min));
375 else
376 min = max = vrp_val_min (TREE_TYPE (min));
377 t = VR_RANGE;
378 }
379 else if (is_min
380 /* As a special exception preserve non-null ranges. */
381 && !(TYPE_UNSIGNED (TREE_TYPE (min))
382 && integer_zerop (max)))
383 {
384 tree one = build_int_cst (TREE_TYPE (max), 1);
385 min = int_const_binop (PLUS_EXPR, max, one);
386 max = vrp_val_max (TREE_TYPE (max));
387 t = VR_RANGE;
388 }
389 else if (is_max)
390 {
391 tree one = build_int_cst (TREE_TYPE (min), 1);
392 max = int_const_binop (MINUS_EXPR, min, one);
393 min = vrp_val_min (TREE_TYPE (min));
394 t = VR_RANGE;
395 }
396 }
397
398 /* Do not drop [-INF(OVF), +INF(OVF)] to varying. (OVF) has to be sticky
399 to make sure VRP iteration terminates, otherwise we can get into
400 oscillations. */
401
402 set_value_range (vr, t, min, max, equiv);
403 }
404
405 /* Copy value range FROM into value range TO. */
406
407 static inline void
408 copy_value_range (value_range *to, value_range *from)
409 {
410 set_value_range (to, from->type, from->min, from->max, from->equiv);
411 }
412
413 /* Set value range VR to a single value. This function is only called
414 with values we get from statements, and exists to clear the
415 TREE_OVERFLOW flag. */
416
417 static inline void
418 set_value_range_to_value (value_range *vr, tree val, bitmap equiv)
419 {
420 gcc_assert (is_gimple_min_invariant (val));
421 if (TREE_OVERFLOW_P (val))
422 val = drop_tree_overflow (val);
423 set_value_range (vr, VR_RANGE, val, val, equiv);
424 }
425
426 /* Set value range VR to a non-negative range of type TYPE. */
427
428 static inline void
429 set_value_range_to_nonnegative (value_range *vr, tree type)
430 {
431 tree zero = build_int_cst (type, 0);
432 set_value_range (vr, VR_RANGE, zero, vrp_val_max (type), vr->equiv);
433 }
434
435 /* Set value range VR to a non-NULL range of type TYPE. */
436
437 static inline void
438 set_value_range_to_nonnull (value_range *vr, tree type)
439 {
440 tree zero = build_int_cst (type, 0);
441 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
442 }
443
444
445 /* Set value range VR to a NULL range of type TYPE. */
446
447 static inline void
448 set_value_range_to_null (value_range *vr, tree type)
449 {
450 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
451 }
452
453
454 /* Set value range VR to a range of a truthvalue of type TYPE. */
455
456 static inline void
457 set_value_range_to_truthvalue (value_range *vr, tree type)
458 {
459 if (TYPE_PRECISION (type) == 1)
460 set_value_range_to_varying (vr);
461 else
462 set_value_range (vr, VR_RANGE,
463 build_int_cst (type, 0), build_int_cst (type, 1),
464 vr->equiv);
465 }
466
467
468 /* If abs (min) < abs (max), set VR to [-max, max], if
469 abs (min) >= abs (max), set VR to [-min, min]. */
470
471 static void
472 abs_extent_range (value_range *vr, tree min, tree max)
473 {
474 int cmp;
475
476 gcc_assert (TREE_CODE (min) == INTEGER_CST);
477 gcc_assert (TREE_CODE (max) == INTEGER_CST);
478 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
479 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
480 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
481 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
482 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
483 {
484 set_value_range_to_varying (vr);
485 return;
486 }
487 cmp = compare_values (min, max);
488 if (cmp == -1)
489 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
490 else if (cmp == 0 || cmp == 1)
491 {
492 max = min;
493 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
494 }
495 else
496 {
497 set_value_range_to_varying (vr);
498 return;
499 }
500 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
501 }
502
503
504 /* Return value range information for VAR.
505
506 If we have no values ranges recorded (ie, VRP is not running), then
507 return NULL. Otherwise create an empty range if none existed for VAR. */
508
509 static value_range *
510 get_value_range (const_tree var)
511 {
512 static const value_range vr_const_varying
513 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
514 value_range *vr;
515 tree sym;
516 unsigned ver = SSA_NAME_VERSION (var);
517
518 /* If we have no recorded ranges, then return NULL. */
519 if (! vr_value)
520 return NULL;
521
522 /* If we query the range for a new SSA name return an unmodifiable VARYING.
523 We should get here at most from the substitute-and-fold stage which
524 will never try to change values. */
525 if (ver >= num_vr_values)
526 return CONST_CAST (value_range *, &vr_const_varying);
527
528 vr = vr_value[ver];
529 if (vr)
530 return vr;
531
532 /* After propagation finished do not allocate new value-ranges. */
533 if (values_propagated)
534 return CONST_CAST (value_range *, &vr_const_varying);
535
536 /* Create a default value range. */
537 vr_value[ver] = vr = vrp_value_range_pool.allocate ();
538 memset (vr, 0, sizeof (*vr));
539
540 /* Defer allocating the equivalence set. */
541 vr->equiv = NULL;
542
543 /* If VAR is a default definition of a parameter, the variable can
544 take any value in VAR's type. */
545 if (SSA_NAME_IS_DEFAULT_DEF (var))
546 {
547 sym = SSA_NAME_VAR (var);
548 if (TREE_CODE (sym) == PARM_DECL)
549 {
550 /* Try to use the "nonnull" attribute to create ~[0, 0]
551 anti-ranges for pointers. Note that this is only valid with
552 default definitions of PARM_DECLs. */
553 if (POINTER_TYPE_P (TREE_TYPE (sym))
554 && (nonnull_arg_p (sym)
555 || get_ptr_nonnull (var)))
556 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
557 else if (INTEGRAL_TYPE_P (TREE_TYPE (sym)))
558 {
559 wide_int min, max;
560 value_range_type rtype = get_range_info (var, &min, &max);
561 if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE)
562 set_value_range (vr, rtype,
563 wide_int_to_tree (TREE_TYPE (var), min),
564 wide_int_to_tree (TREE_TYPE (var), max),
565 NULL);
566 else
567 set_value_range_to_varying (vr);
568 }
569 else
570 set_value_range_to_varying (vr);
571 }
572 else if (TREE_CODE (sym) == RESULT_DECL
573 && DECL_BY_REFERENCE (sym))
574 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
575 }
576
577 return vr;
578 }
579
580 /* Set value-ranges of all SSA names defined by STMT to varying. */
581
582 static void
583 set_defs_to_varying (gimple *stmt)
584 {
585 ssa_op_iter i;
586 tree def;
587 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
588 {
589 value_range *vr = get_value_range (def);
590 /* Avoid writing to vr_const_varying get_value_range may return. */
591 if (vr->type != VR_VARYING)
592 set_value_range_to_varying (vr);
593 }
594 }
595
596
597 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
598
599 static inline bool
600 vrp_operand_equal_p (const_tree val1, const_tree val2)
601 {
602 if (val1 == val2)
603 return true;
604 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
605 return false;
606 return true;
607 }
608
609 /* Return true, if the bitmaps B1 and B2 are equal. */
610
611 static inline bool
612 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
613 {
614 return (b1 == b2
615 || ((!b1 || bitmap_empty_p (b1))
616 && (!b2 || bitmap_empty_p (b2)))
617 || (b1 && b2
618 && bitmap_equal_p (b1, b2)));
619 }
620
621 /* Update the value range and equivalence set for variable VAR to
622 NEW_VR. Return true if NEW_VR is different from VAR's previous
623 value.
624
625 NOTE: This function assumes that NEW_VR is a temporary value range
626 object created for the sole purpose of updating VAR's range. The
627 storage used by the equivalence set from NEW_VR will be freed by
628 this function. Do not call update_value_range when NEW_VR
629 is the range object associated with another SSA name. */
630
631 static inline bool
632 update_value_range (const_tree var, value_range *new_vr)
633 {
634 value_range *old_vr;
635 bool is_new;
636
637 /* If there is a value-range on the SSA name from earlier analysis
638 factor that in. */
639 if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
640 {
641 wide_int min, max;
642 value_range_type rtype = get_range_info (var, &min, &max);
643 if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE)
644 {
645 tree nr_min, nr_max;
646 nr_min = wide_int_to_tree (TREE_TYPE (var), min);
647 nr_max = wide_int_to_tree (TREE_TYPE (var), max);
648 value_range nr = VR_INITIALIZER;
649 set_and_canonicalize_value_range (&nr, rtype, nr_min, nr_max, NULL);
650 vrp_intersect_ranges (new_vr, &nr);
651 }
652 }
653
654 /* Update the value range, if necessary. */
655 old_vr = get_value_range (var);
656 is_new = old_vr->type != new_vr->type
657 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
658 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
659 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
660
661 if (is_new)
662 {
663 /* Do not allow transitions up the lattice. The following
664 is slightly more awkward than just new_vr->type < old_vr->type
665 because VR_RANGE and VR_ANTI_RANGE need to be considered
666 the same. We may not have is_new when transitioning to
667 UNDEFINED. If old_vr->type is VARYING, we shouldn't be
668 called. */
669 if (new_vr->type == VR_UNDEFINED)
670 {
671 BITMAP_FREE (new_vr->equiv);
672 set_value_range_to_varying (old_vr);
673 set_value_range_to_varying (new_vr);
674 return true;
675 }
676 else
677 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
678 new_vr->equiv);
679 }
680
681 BITMAP_FREE (new_vr->equiv);
682
683 return is_new;
684 }
685
686
687 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
688 point where equivalence processing can be turned on/off. */
689
690 static void
691 add_equivalence (bitmap *equiv, const_tree var)
692 {
693 unsigned ver = SSA_NAME_VERSION (var);
694 value_range *vr = get_value_range (var);
695
696 if (*equiv == NULL)
697 *equiv = BITMAP_ALLOC (&vrp_equiv_obstack);
698 bitmap_set_bit (*equiv, ver);
699 if (vr && vr->equiv)
700 bitmap_ior_into (*equiv, vr->equiv);
701 }
702
703
704 /* Return true if VR is ~[0, 0]. */
705
706 static inline bool
707 range_is_nonnull (value_range *vr)
708 {
709 return vr->type == VR_ANTI_RANGE
710 && integer_zerop (vr->min)
711 && integer_zerop (vr->max);
712 }
713
714
715 /* Return true if VR is [0, 0]. */
716
717 static inline bool
718 range_is_null (value_range *vr)
719 {
720 return vr->type == VR_RANGE
721 && integer_zerop (vr->min)
722 && integer_zerop (vr->max);
723 }
724
725 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
726 a singleton. */
727
728 static inline bool
729 range_int_cst_p (value_range *vr)
730 {
731 return (vr->type == VR_RANGE
732 && TREE_CODE (vr->max) == INTEGER_CST
733 && TREE_CODE (vr->min) == INTEGER_CST);
734 }
735
736 /* Return true if VR is a INTEGER_CST singleton. */
737
738 static inline bool
739 range_int_cst_singleton_p (value_range *vr)
740 {
741 return (range_int_cst_p (vr)
742 && tree_int_cst_equal (vr->min, vr->max));
743 }
744
745 /* Return true if value range VR involves at least one symbol. */
746
747 static inline bool
748 symbolic_range_p (value_range *vr)
749 {
750 return (!is_gimple_min_invariant (vr->min)
751 || !is_gimple_min_invariant (vr->max));
752 }
753
754 /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
755 otherwise. We only handle additive operations and set NEG to true if the
756 symbol is negated and INV to the invariant part, if any. */
757
758 static tree
759 get_single_symbol (tree t, bool *neg, tree *inv)
760 {
761 bool neg_;
762 tree inv_;
763
764 *inv = NULL_TREE;
765 *neg = false;
766
767 if (TREE_CODE (t) == PLUS_EXPR
768 || TREE_CODE (t) == POINTER_PLUS_EXPR
769 || TREE_CODE (t) == MINUS_EXPR)
770 {
771 if (is_gimple_min_invariant (TREE_OPERAND (t, 0)))
772 {
773 neg_ = (TREE_CODE (t) == MINUS_EXPR);
774 inv_ = TREE_OPERAND (t, 0);
775 t = TREE_OPERAND (t, 1);
776 }
777 else if (is_gimple_min_invariant (TREE_OPERAND (t, 1)))
778 {
779 neg_ = false;
780 inv_ = TREE_OPERAND (t, 1);
781 t = TREE_OPERAND (t, 0);
782 }
783 else
784 return NULL_TREE;
785 }
786 else
787 {
788 neg_ = false;
789 inv_ = NULL_TREE;
790 }
791
792 if (TREE_CODE (t) == NEGATE_EXPR)
793 {
794 t = TREE_OPERAND (t, 0);
795 neg_ = !neg_;
796 }
797
798 if (TREE_CODE (t) != SSA_NAME)
799 return NULL_TREE;
800
801 if (inv_ && TREE_OVERFLOW_P (inv_))
802 inv_ = drop_tree_overflow (inv_);
803
804 *neg = neg_;
805 *inv = inv_;
806 return t;
807 }
808
809 /* The reverse operation: build a symbolic expression with TYPE
810 from symbol SYM, negated according to NEG, and invariant INV. */
811
812 static tree
813 build_symbolic_expr (tree type, tree sym, bool neg, tree inv)
814 {
815 const bool pointer_p = POINTER_TYPE_P (type);
816 tree t = sym;
817
818 if (neg)
819 t = build1 (NEGATE_EXPR, type, t);
820
821 if (integer_zerop (inv))
822 return t;
823
824 return build2 (pointer_p ? POINTER_PLUS_EXPR : PLUS_EXPR, type, t, inv);
825 }
826
827 /* Return true if value range VR involves exactly one symbol SYM. */
828
829 static bool
830 symbolic_range_based_on_p (value_range *vr, const_tree sym)
831 {
832 bool neg, min_has_symbol, max_has_symbol;
833 tree inv;
834
835 if (is_gimple_min_invariant (vr->min))
836 min_has_symbol = false;
837 else if (get_single_symbol (vr->min, &neg, &inv) == sym)
838 min_has_symbol = true;
839 else
840 return false;
841
842 if (is_gimple_min_invariant (vr->max))
843 max_has_symbol = false;
844 else if (get_single_symbol (vr->max, &neg, &inv) == sym)
845 max_has_symbol = true;
846 else
847 return false;
848
849 return (min_has_symbol || max_has_symbol);
850 }
851
852 /* Return true if the result of assignment STMT is know to be non-zero. */
853
854 static bool
855 gimple_assign_nonzero_p (gimple *stmt)
856 {
857 enum tree_code code = gimple_assign_rhs_code (stmt);
858 bool strict_overflow_p;
859 switch (get_gimple_rhs_class (code))
860 {
861 case GIMPLE_UNARY_RHS:
862 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
863 gimple_expr_type (stmt),
864 gimple_assign_rhs1 (stmt),
865 &strict_overflow_p);
866 case GIMPLE_BINARY_RHS:
867 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
868 gimple_expr_type (stmt),
869 gimple_assign_rhs1 (stmt),
870 gimple_assign_rhs2 (stmt),
871 &strict_overflow_p);
872 case GIMPLE_TERNARY_RHS:
873 return false;
874 case GIMPLE_SINGLE_RHS:
875 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
876 &strict_overflow_p);
877 case GIMPLE_INVALID_RHS:
878 gcc_unreachable ();
879 default:
880 gcc_unreachable ();
881 }
882 }
883
884 /* Return true if STMT is known to compute a non-zero value. */
885
886 static bool
887 gimple_stmt_nonzero_p (gimple *stmt)
888 {
889 switch (gimple_code (stmt))
890 {
891 case GIMPLE_ASSIGN:
892 return gimple_assign_nonzero_p (stmt);
893 case GIMPLE_CALL:
894 {
895 tree fndecl = gimple_call_fndecl (stmt);
896 if (!fndecl) return false;
897 if (flag_delete_null_pointer_checks && !flag_check_new
898 && DECL_IS_OPERATOR_NEW (fndecl)
899 && !TREE_NOTHROW (fndecl))
900 return true;
901 /* References are always non-NULL. */
902 if (flag_delete_null_pointer_checks
903 && TREE_CODE (TREE_TYPE (fndecl)) == REFERENCE_TYPE)
904 return true;
905 if (flag_delete_null_pointer_checks &&
906 lookup_attribute ("returns_nonnull",
907 TYPE_ATTRIBUTES (gimple_call_fntype (stmt))))
908 return true;
909
910 gcall *call_stmt = as_a<gcall *> (stmt);
911 unsigned rf = gimple_call_return_flags (call_stmt);
912 if (rf & ERF_RETURNS_ARG)
913 {
914 unsigned argnum = rf & ERF_RETURN_ARG_MASK;
915 if (argnum < gimple_call_num_args (call_stmt))
916 {
917 tree arg = gimple_call_arg (call_stmt, argnum);
918 if (SSA_VAR_P (arg)
919 && infer_nonnull_range_by_attribute (stmt, arg))
920 return true;
921 }
922 }
923 return gimple_alloca_call_p (stmt);
924 }
925 default:
926 gcc_unreachable ();
927 }
928 }
929
930 /* Like tree_expr_nonzero_p, but this function uses value ranges
931 obtained so far. */
932
933 static bool
934 vrp_stmt_computes_nonzero (gimple *stmt)
935 {
936 if (gimple_stmt_nonzero_p (stmt))
937 return true;
938
939 /* If we have an expression of the form &X->a, then the expression
940 is nonnull if X is nonnull. */
941 if (is_gimple_assign (stmt)
942 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
943 {
944 tree expr = gimple_assign_rhs1 (stmt);
945 tree base = get_base_address (TREE_OPERAND (expr, 0));
946
947 if (base != NULL_TREE
948 && TREE_CODE (base) == MEM_REF
949 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
950 {
951 value_range *vr = get_value_range (TREE_OPERAND (base, 0));
952 if (range_is_nonnull (vr))
953 return true;
954 }
955 }
956
957 return false;
958 }
959
960 /* Returns true if EXPR is a valid value (as expected by compare_values) --
961 a gimple invariant, or SSA_NAME +- CST. */
962
963 static bool
964 valid_value_p (tree expr)
965 {
966 if (TREE_CODE (expr) == SSA_NAME)
967 return true;
968
969 if (TREE_CODE (expr) == PLUS_EXPR
970 || TREE_CODE (expr) == MINUS_EXPR)
971 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
972 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
973
974 return is_gimple_min_invariant (expr);
975 }
976
977 /* Return
978 1 if VAL < VAL2
979 0 if !(VAL < VAL2)
980 -2 if those are incomparable. */
981 static inline int
982 operand_less_p (tree val, tree val2)
983 {
984 /* LT is folded faster than GE and others. Inline the common case. */
985 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
986 return tree_int_cst_lt (val, val2);
987 else
988 {
989 tree tcmp;
990
991 fold_defer_overflow_warnings ();
992
993 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
994
995 fold_undefer_and_ignore_overflow_warnings ();
996
997 if (!tcmp
998 || TREE_CODE (tcmp) != INTEGER_CST)
999 return -2;
1000
1001 if (!integer_zerop (tcmp))
1002 return 1;
1003 }
1004
1005 return 0;
1006 }
1007
1008 /* Compare two values VAL1 and VAL2. Return
1009
1010 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1011 -1 if VAL1 < VAL2,
1012 0 if VAL1 == VAL2,
1013 +1 if VAL1 > VAL2, and
1014 +2 if VAL1 != VAL2
1015
1016 This is similar to tree_int_cst_compare but supports pointer values
1017 and values that cannot be compared at compile time.
1018
1019 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1020 true if the return value is only valid if we assume that signed
1021 overflow is undefined. */
1022
1023 static int
1024 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1025 {
1026 if (val1 == val2)
1027 return 0;
1028
1029 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1030 both integers. */
1031 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1032 == POINTER_TYPE_P (TREE_TYPE (val2)));
1033
1034 /* Convert the two values into the same type. This is needed because
1035 sizetype causes sign extension even for unsigned types. */
1036 val2 = fold_convert (TREE_TYPE (val1), val2);
1037 STRIP_USELESS_TYPE_CONVERSION (val2);
1038
1039 const bool overflow_undefined
1040 = INTEGRAL_TYPE_P (TREE_TYPE (val1))
1041 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1));
1042 tree inv1, inv2;
1043 bool neg1, neg2;
1044 tree sym1 = get_single_symbol (val1, &neg1, &inv1);
1045 tree sym2 = get_single_symbol (val2, &neg2, &inv2);
1046
1047 /* If VAL1 and VAL2 are of the form '[-]NAME [+ CST]', return -1 or +1
1048 accordingly. If VAL1 and VAL2 don't use the same name, return -2. */
1049 if (sym1 && sym2)
1050 {
1051 /* Both values must use the same name with the same sign. */
1052 if (sym1 != sym2 || neg1 != neg2)
1053 return -2;
1054
1055 /* [-]NAME + CST == [-]NAME + CST. */
1056 if (inv1 == inv2)
1057 return 0;
1058
1059 /* If overflow is defined we cannot simplify more. */
1060 if (!overflow_undefined)
1061 return -2;
1062
1063 if (strict_overflow_p != NULL
1064 /* Symbolic range building sets TREE_NO_WARNING to declare
1065 that overflow doesn't happen. */
1066 && (!inv1 || !TREE_NO_WARNING (val1))
1067 && (!inv2 || !TREE_NO_WARNING (val2)))
1068 *strict_overflow_p = true;
1069
1070 if (!inv1)
1071 inv1 = build_int_cst (TREE_TYPE (val1), 0);
1072 if (!inv2)
1073 inv2 = build_int_cst (TREE_TYPE (val2), 0);
1074
1075 return wi::cmp (inv1, inv2, TYPE_SIGN (TREE_TYPE (val1)));
1076 }
1077
1078 const bool cst1 = is_gimple_min_invariant (val1);
1079 const bool cst2 = is_gimple_min_invariant (val2);
1080
1081 /* If one is of the form '[-]NAME + CST' and the other is constant, then
1082 it might be possible to say something depending on the constants. */
1083 if ((sym1 && inv1 && cst2) || (sym2 && inv2 && cst1))
1084 {
1085 if (!overflow_undefined)
1086 return -2;
1087
1088 if (strict_overflow_p != NULL
1089 /* Symbolic range building sets TREE_NO_WARNING to declare
1090 that overflow doesn't happen. */
1091 && (!sym1 || !TREE_NO_WARNING (val1))
1092 && (!sym2 || !TREE_NO_WARNING (val2)))
1093 *strict_overflow_p = true;
1094
1095 const signop sgn = TYPE_SIGN (TREE_TYPE (val1));
1096 tree cst = cst1 ? val1 : val2;
1097 tree inv = cst1 ? inv2 : inv1;
1098
1099 /* Compute the difference between the constants. If it overflows or
1100 underflows, this means that we can trivially compare the NAME with
1101 it and, consequently, the two values with each other. */
1102 wide_int diff = wi::sub (cst, inv);
1103 if (wi::cmp (0, inv, sgn) != wi::cmp (diff, cst, sgn))
1104 {
1105 const int res = wi::cmp (cst, inv, sgn);
1106 return cst1 ? res : -res;
1107 }
1108
1109 return -2;
1110 }
1111
1112 /* We cannot say anything more for non-constants. */
1113 if (!cst1 || !cst2)
1114 return -2;
1115
1116 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1117 {
1118 /* We cannot compare overflowed values. */
1119 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1120 return -2;
1121
1122 return tree_int_cst_compare (val1, val2);
1123 }
1124 else
1125 {
1126 tree t;
1127
1128 /* First see if VAL1 and VAL2 are not the same. */
1129 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1130 return 0;
1131
1132 /* If VAL1 is a lower address than VAL2, return -1. */
1133 if (operand_less_p (val1, val2) == 1)
1134 return -1;
1135
1136 /* If VAL1 is a higher address than VAL2, return +1. */
1137 if (operand_less_p (val2, val1) == 1)
1138 return 1;
1139
1140 /* If VAL1 is different than VAL2, return +2.
1141 For integer constants we either have already returned -1 or 1
1142 or they are equivalent. We still might succeed in proving
1143 something about non-trivial operands. */
1144 if (TREE_CODE (val1) != INTEGER_CST
1145 || TREE_CODE (val2) != INTEGER_CST)
1146 {
1147 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1148 if (t && integer_onep (t))
1149 return 2;
1150 }
1151
1152 return -2;
1153 }
1154 }
1155
1156 /* Compare values like compare_values_warnv. */
1157
1158 static int
1159 compare_values (tree val1, tree val2)
1160 {
1161 bool sop;
1162 return compare_values_warnv (val1, val2, &sop);
1163 }
1164
1165
1166 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1167 0 if VAL is not inside [MIN, MAX],
1168 -2 if we cannot tell either way.
1169
1170 Benchmark compile/20001226-1.c compilation time after changing this
1171 function. */
1172
1173 static inline int
1174 value_inside_range (tree val, tree min, tree max)
1175 {
1176 int cmp1, cmp2;
1177
1178 cmp1 = operand_less_p (val, min);
1179 if (cmp1 == -2)
1180 return -2;
1181 if (cmp1 == 1)
1182 return 0;
1183
1184 cmp2 = operand_less_p (max, val);
1185 if (cmp2 == -2)
1186 return -2;
1187
1188 return !cmp2;
1189 }
1190
1191
1192 /* Return true if value ranges VR0 and VR1 have a non-empty
1193 intersection.
1194
1195 Benchmark compile/20001226-1.c compilation time after changing this
1196 function.
1197 */
1198
1199 static inline bool
1200 value_ranges_intersect_p (value_range *vr0, value_range *vr1)
1201 {
1202 /* The value ranges do not intersect if the maximum of the first range is
1203 less than the minimum of the second range or vice versa.
1204 When those relations are unknown, we can't do any better. */
1205 if (operand_less_p (vr0->max, vr1->min) != 0)
1206 return false;
1207 if (operand_less_p (vr1->max, vr0->min) != 0)
1208 return false;
1209 return true;
1210 }
1211
1212
1213 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1214 include the value zero, -2 if we cannot tell. */
1215
1216 static inline int
1217 range_includes_zero_p (tree min, tree max)
1218 {
1219 tree zero = build_int_cst (TREE_TYPE (min), 0);
1220 return value_inside_range (zero, min, max);
1221 }
1222
1223 /* Return true if *VR is know to only contain nonnegative values. */
1224
1225 static inline bool
1226 value_range_nonnegative_p (value_range *vr)
1227 {
1228 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1229 which would return a useful value should be encoded as a
1230 VR_RANGE. */
1231 if (vr->type == VR_RANGE)
1232 {
1233 int result = compare_values (vr->min, integer_zero_node);
1234 return (result == 0 || result == 1);
1235 }
1236
1237 return false;
1238 }
1239
1240 /* If *VR has a value rante that is a single constant value return that,
1241 otherwise return NULL_TREE. */
1242
1243 static tree
1244 value_range_constant_singleton (value_range *vr)
1245 {
1246 if (vr->type == VR_RANGE
1247 && vrp_operand_equal_p (vr->min, vr->max)
1248 && is_gimple_min_invariant (vr->min))
1249 return vr->min;
1250
1251 return NULL_TREE;
1252 }
1253
1254 /* If OP has a value range with a single constant value return that,
1255 otherwise return NULL_TREE. This returns OP itself if OP is a
1256 constant. */
1257
1258 static tree
1259 op_with_constant_singleton_value_range (tree op)
1260 {
1261 if (is_gimple_min_invariant (op))
1262 return op;
1263
1264 if (TREE_CODE (op) != SSA_NAME)
1265 return NULL_TREE;
1266
1267 return value_range_constant_singleton (get_value_range (op));
1268 }
1269
1270 /* Return true if op is in a boolean [0, 1] value-range. */
1271
1272 static bool
1273 op_with_boolean_value_range_p (tree op)
1274 {
1275 value_range *vr;
1276
1277 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1278 return true;
1279
1280 if (integer_zerop (op)
1281 || integer_onep (op))
1282 return true;
1283
1284 if (TREE_CODE (op) != SSA_NAME)
1285 return false;
1286
1287 vr = get_value_range (op);
1288 return (vr->type == VR_RANGE
1289 && integer_zerop (vr->min)
1290 && integer_onep (vr->max));
1291 }
1292
1293 /* Extract value range information for VAR when (OP COND_CODE LIMIT) is
1294 true and store it in *VR_P. */
1295
1296 static void
1297 extract_range_for_var_from_comparison_expr (tree var, enum tree_code cond_code,
1298 tree op, tree limit,
1299 value_range *vr_p)
1300 {
1301 tree min, max, type;
1302 value_range *limit_vr;
1303 type = TREE_TYPE (var);
1304 gcc_assert (limit != var);
1305
1306 /* For pointer arithmetic, we only keep track of pointer equality
1307 and inequality. */
1308 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1309 {
1310 set_value_range_to_varying (vr_p);
1311 return;
1312 }
1313
1314 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1315 try to use LIMIT's range to avoid creating symbolic ranges
1316 unnecessarily. */
1317 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1318
1319 /* LIMIT's range is only interesting if it has any useful information. */
1320 if (! limit_vr
1321 || limit_vr->type == VR_UNDEFINED
1322 || limit_vr->type == VR_VARYING
1323 || (symbolic_range_p (limit_vr)
1324 && ! (limit_vr->type == VR_RANGE
1325 && (limit_vr->min == limit_vr->max
1326 || operand_equal_p (limit_vr->min, limit_vr->max, 0)))))
1327 limit_vr = NULL;
1328
1329 /* Initially, the new range has the same set of equivalences of
1330 VAR's range. This will be revised before returning the final
1331 value. Since assertions may be chained via mutually exclusive
1332 predicates, we will need to trim the set of equivalences before
1333 we are done. */
1334 gcc_assert (vr_p->equiv == NULL);
1335 add_equivalence (&vr_p->equiv, var);
1336
1337 /* Extract a new range based on the asserted comparison for VAR and
1338 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1339 will only use it for equality comparisons (EQ_EXPR). For any
1340 other kind of assertion, we cannot derive a range from LIMIT's
1341 anti-range that can be used to describe the new range. For
1342 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1343 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1344 no single range for x_2 that could describe LE_EXPR, so we might
1345 as well build the range [b_4, +INF] for it.
1346 One special case we handle is extracting a range from a
1347 range test encoded as (unsigned)var + CST <= limit. */
1348 if (TREE_CODE (op) == NOP_EXPR
1349 || TREE_CODE (op) == PLUS_EXPR)
1350 {
1351 if (TREE_CODE (op) == PLUS_EXPR)
1352 {
1353 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (op, 1)),
1354 TREE_OPERAND (op, 1));
1355 max = int_const_binop (PLUS_EXPR, limit, min);
1356 op = TREE_OPERAND (op, 0);
1357 }
1358 else
1359 {
1360 min = build_int_cst (TREE_TYPE (var), 0);
1361 max = limit;
1362 }
1363
1364 /* Make sure to not set TREE_OVERFLOW on the final type
1365 conversion. We are willingly interpreting large positive
1366 unsigned values as negative signed values here. */
1367 min = force_fit_type (TREE_TYPE (var), wi::to_widest (min), 0, false);
1368 max = force_fit_type (TREE_TYPE (var), wi::to_widest (max), 0, false);
1369
1370 /* We can transform a max, min range to an anti-range or
1371 vice-versa. Use set_and_canonicalize_value_range which does
1372 this for us. */
1373 if (cond_code == LE_EXPR)
1374 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1375 min, max, vr_p->equiv);
1376 else if (cond_code == GT_EXPR)
1377 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1378 min, max, vr_p->equiv);
1379 else
1380 gcc_unreachable ();
1381 }
1382 else if (cond_code == EQ_EXPR)
1383 {
1384 enum value_range_type range_type;
1385
1386 if (limit_vr)
1387 {
1388 range_type = limit_vr->type;
1389 min = limit_vr->min;
1390 max = limit_vr->max;
1391 }
1392 else
1393 {
1394 range_type = VR_RANGE;
1395 min = limit;
1396 max = limit;
1397 }
1398
1399 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1400
1401 /* When asserting the equality VAR == LIMIT and LIMIT is another
1402 SSA name, the new range will also inherit the equivalence set
1403 from LIMIT. */
1404 if (TREE_CODE (limit) == SSA_NAME)
1405 add_equivalence (&vr_p->equiv, limit);
1406 }
1407 else if (cond_code == NE_EXPR)
1408 {
1409 /* As described above, when LIMIT's range is an anti-range and
1410 this assertion is an inequality (NE_EXPR), then we cannot
1411 derive anything from the anti-range. For instance, if
1412 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1413 not imply that VAR's range is [0, 0]. So, in the case of
1414 anti-ranges, we just assert the inequality using LIMIT and
1415 not its anti-range.
1416
1417 If LIMIT_VR is a range, we can only use it to build a new
1418 anti-range if LIMIT_VR is a single-valued range. For
1419 instance, if LIMIT_VR is [0, 1], the predicate
1420 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1421 Rather, it means that for value 0 VAR should be ~[0, 0]
1422 and for value 1, VAR should be ~[1, 1]. We cannot
1423 represent these ranges.
1424
1425 The only situation in which we can build a valid
1426 anti-range is when LIMIT_VR is a single-valued range
1427 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1428 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1429 if (limit_vr
1430 && limit_vr->type == VR_RANGE
1431 && compare_values (limit_vr->min, limit_vr->max) == 0)
1432 {
1433 min = limit_vr->min;
1434 max = limit_vr->max;
1435 }
1436 else
1437 {
1438 /* In any other case, we cannot use LIMIT's range to build a
1439 valid anti-range. */
1440 min = max = limit;
1441 }
1442
1443 /* If MIN and MAX cover the whole range for their type, then
1444 just use the original LIMIT. */
1445 if (INTEGRAL_TYPE_P (type)
1446 && vrp_val_is_min (min)
1447 && vrp_val_is_max (max))
1448 min = max = limit;
1449
1450 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1451 min, max, vr_p->equiv);
1452 }
1453 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1454 {
1455 min = TYPE_MIN_VALUE (type);
1456
1457 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1458 max = limit;
1459 else
1460 {
1461 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1462 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1463 LT_EXPR. */
1464 max = limit_vr->max;
1465 }
1466
1467 /* If the maximum value forces us to be out of bounds, simply punt.
1468 It would be pointless to try and do anything more since this
1469 all should be optimized away above us. */
1470 if (cond_code == LT_EXPR
1471 && compare_values (max, min) == 0)
1472 set_value_range_to_varying (vr_p);
1473 else
1474 {
1475 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1476 if (cond_code == LT_EXPR)
1477 {
1478 if (TYPE_PRECISION (TREE_TYPE (max)) == 1
1479 && !TYPE_UNSIGNED (TREE_TYPE (max)))
1480 max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
1481 build_int_cst (TREE_TYPE (max), -1));
1482 else
1483 max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
1484 build_int_cst (TREE_TYPE (max), 1));
1485 /* Signal to compare_values_warnv this expr doesn't overflow. */
1486 if (EXPR_P (max))
1487 TREE_NO_WARNING (max) = 1;
1488 }
1489
1490 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1491 }
1492 }
1493 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1494 {
1495 max = TYPE_MAX_VALUE (type);
1496
1497 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1498 min = limit;
1499 else
1500 {
1501 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1502 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1503 GT_EXPR. */
1504 min = limit_vr->min;
1505 }
1506
1507 /* If the minimum value forces us to be out of bounds, simply punt.
1508 It would be pointless to try and do anything more since this
1509 all should be optimized away above us. */
1510 if (cond_code == GT_EXPR
1511 && compare_values (min, max) == 0)
1512 set_value_range_to_varying (vr_p);
1513 else
1514 {
1515 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1516 if (cond_code == GT_EXPR)
1517 {
1518 if (TYPE_PRECISION (TREE_TYPE (min)) == 1
1519 && !TYPE_UNSIGNED (TREE_TYPE (min)))
1520 min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
1521 build_int_cst (TREE_TYPE (min), -1));
1522 else
1523 min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
1524 build_int_cst (TREE_TYPE (min), 1));
1525 /* Signal to compare_values_warnv this expr doesn't overflow. */
1526 if (EXPR_P (min))
1527 TREE_NO_WARNING (min) = 1;
1528 }
1529
1530 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1531 }
1532 }
1533 else
1534 gcc_unreachable ();
1535
1536 /* Finally intersect the new range with what we already know about var. */
1537 vrp_intersect_ranges (vr_p, get_value_range (var));
1538 }
1539
1540 /* Extract value range information from an ASSERT_EXPR EXPR and store
1541 it in *VR_P. */
1542
1543 static void
1544 extract_range_from_assert (value_range *vr_p, tree expr)
1545 {
1546 tree var = ASSERT_EXPR_VAR (expr);
1547 tree cond = ASSERT_EXPR_COND (expr);
1548 tree limit, op;
1549 enum tree_code cond_code;
1550 gcc_assert (COMPARISON_CLASS_P (cond));
1551
1552 /* Find VAR in the ASSERT_EXPR conditional. */
1553 if (var == TREE_OPERAND (cond, 0)
1554 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1555 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1556 {
1557 /* If the predicate is of the form VAR COMP LIMIT, then we just
1558 take LIMIT from the RHS and use the same comparison code. */
1559 cond_code = TREE_CODE (cond);
1560 limit = TREE_OPERAND (cond, 1);
1561 op = TREE_OPERAND (cond, 0);
1562 }
1563 else
1564 {
1565 /* If the predicate is of the form LIMIT COMP VAR, then we need
1566 to flip around the comparison code to create the proper range
1567 for VAR. */
1568 cond_code = swap_tree_comparison (TREE_CODE (cond));
1569 limit = TREE_OPERAND (cond, 0);
1570 op = TREE_OPERAND (cond, 1);
1571 }
1572 extract_range_for_var_from_comparison_expr (var, cond_code, op,
1573 limit, vr_p);
1574 }
1575
1576 /* Extract range information from SSA name VAR and store it in VR. If
1577 VAR has an interesting range, use it. Otherwise, create the
1578 range [VAR, VAR] and return it. This is useful in situations where
1579 we may have conditionals testing values of VARYING names. For
1580 instance,
1581
1582 x_3 = y_5;
1583 if (x_3 > y_5)
1584 ...
1585
1586 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1587 always false. */
1588
1589 static void
1590 extract_range_from_ssa_name (value_range *vr, tree var)
1591 {
1592 value_range *var_vr = get_value_range (var);
1593
1594 if (var_vr->type != VR_VARYING)
1595 copy_value_range (vr, var_vr);
1596 else
1597 set_value_range (vr, VR_RANGE, var, var, NULL);
1598
1599 add_equivalence (&vr->equiv, var);
1600 }
1601
1602
1603 /* Wrapper around int_const_binop. If the operation overflows and
1604 overflow is undefined, then adjust the result to be
1605 -INF or +INF depending on CODE, VAL1 and VAL2. Sets *OVERFLOW_P
1606 to whether the operation overflowed. For division by zero
1607 the result is indeterminate but *OVERFLOW_P is set. */
1608
1609 static wide_int
1610 vrp_int_const_binop (enum tree_code code, tree val1, tree val2,
1611 bool *overflow_p)
1612 {
1613 bool overflow = false;
1614 signop sign = TYPE_SIGN (TREE_TYPE (val1));
1615 wide_int res;
1616
1617 *overflow_p = false;
1618
1619 switch (code)
1620 {
1621 case RSHIFT_EXPR:
1622 case LSHIFT_EXPR:
1623 {
1624 wide_int wval2 = wi::to_wide (val2, TYPE_PRECISION (TREE_TYPE (val1)));
1625 if (wi::neg_p (wval2))
1626 {
1627 wval2 = -wval2;
1628 if (code == RSHIFT_EXPR)
1629 code = LSHIFT_EXPR;
1630 else
1631 code = RSHIFT_EXPR;
1632 }
1633
1634 if (code == RSHIFT_EXPR)
1635 /* It's unclear from the C standard whether shifts can overflow.
1636 The following code ignores overflow; perhaps a C standard
1637 interpretation ruling is needed. */
1638 res = wi::rshift (val1, wval2, sign);
1639 else
1640 res = wi::lshift (val1, wval2);
1641 break;
1642 }
1643
1644 case MULT_EXPR:
1645 res = wi::mul (val1, val2, sign, &overflow);
1646 break;
1647
1648 case TRUNC_DIV_EXPR:
1649 case EXACT_DIV_EXPR:
1650 if (val2 == 0)
1651 {
1652 *overflow_p = true;
1653 return res;
1654 }
1655 else
1656 res = wi::div_trunc (val1, val2, sign, &overflow);
1657 break;
1658
1659 case FLOOR_DIV_EXPR:
1660 if (val2 == 0)
1661 {
1662 *overflow_p = true;
1663 return res;
1664 }
1665 res = wi::div_floor (val1, val2, sign, &overflow);
1666 break;
1667
1668 case CEIL_DIV_EXPR:
1669 if (val2 == 0)
1670 {
1671 *overflow_p = true;
1672 return res;
1673 }
1674 res = wi::div_ceil (val1, val2, sign, &overflow);
1675 break;
1676
1677 case ROUND_DIV_EXPR:
1678 if (val2 == 0)
1679 {
1680 *overflow_p = 0;
1681 return res;
1682 }
1683 res = wi::div_round (val1, val2, sign, &overflow);
1684 break;
1685
1686 default:
1687 gcc_unreachable ();
1688 }
1689
1690 if (overflow
1691 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1692 {
1693 /* If the operation overflowed return -INF or +INF depending
1694 on the operation and the combination of signs of the operands. */
1695 int sgn1 = tree_int_cst_sgn (val1);
1696 int sgn2 = tree_int_cst_sgn (val2);
1697
1698 /* Notice that we only need to handle the restricted set of
1699 operations handled by extract_range_from_binary_expr.
1700 Among them, only multiplication, addition and subtraction
1701 can yield overflow without overflown operands because we
1702 are working with integral types only... except in the
1703 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1704 for division too. */
1705
1706 /* For multiplication, the sign of the overflow is given
1707 by the comparison of the signs of the operands. */
1708 if ((code == MULT_EXPR && sgn1 == sgn2)
1709 /* For addition, the operands must be of the same sign
1710 to yield an overflow. Its sign is therefore that
1711 of one of the operands, for example the first. */
1712 || (code == PLUS_EXPR && sgn1 >= 0)
1713 /* For subtraction, operands must be of
1714 different signs to yield an overflow. Its sign is
1715 therefore that of the first operand or the opposite of
1716 that of the second operand. A first operand of 0 counts
1717 as positive here, for the corner case 0 - (-INF), which
1718 overflows, but must yield +INF. */
1719 || (code == MINUS_EXPR && sgn1 >= 0)
1720 /* For division, the only case is -INF / -1 = +INF. */
1721 || code == TRUNC_DIV_EXPR
1722 || code == FLOOR_DIV_EXPR
1723 || code == CEIL_DIV_EXPR
1724 || code == EXACT_DIV_EXPR
1725 || code == ROUND_DIV_EXPR)
1726 return wi::max_value (TYPE_PRECISION (TREE_TYPE (val1)),
1727 TYPE_SIGN (TREE_TYPE (val1)));
1728 else
1729 return wi::min_value (TYPE_PRECISION (TREE_TYPE (val1)),
1730 TYPE_SIGN (TREE_TYPE (val1)));
1731 }
1732
1733 *overflow_p = overflow;
1734
1735 return res;
1736 }
1737
1738
1739 /* For range VR compute two wide_int bitmasks. In *MAY_BE_NONZERO
1740 bitmask if some bit is unset, it means for all numbers in the range
1741 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
1742 bitmask if some bit is set, it means for all numbers in the range
1743 the bit is 1, otherwise it might be 0 or 1. */
1744
1745 static bool
1746 zero_nonzero_bits_from_vr (const tree expr_type,
1747 value_range *vr,
1748 wide_int *may_be_nonzero,
1749 wide_int *must_be_nonzero)
1750 {
1751 *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
1752 *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
1753 if (!range_int_cst_p (vr))
1754 return false;
1755
1756 if (range_int_cst_singleton_p (vr))
1757 {
1758 *may_be_nonzero = vr->min;
1759 *must_be_nonzero = *may_be_nonzero;
1760 }
1761 else if (tree_int_cst_sgn (vr->min) >= 0
1762 || tree_int_cst_sgn (vr->max) < 0)
1763 {
1764 wide_int xor_mask = wi::bit_xor (vr->min, vr->max);
1765 *may_be_nonzero = wi::bit_or (vr->min, vr->max);
1766 *must_be_nonzero = wi::bit_and (vr->min, vr->max);
1767 if (xor_mask != 0)
1768 {
1769 wide_int mask = wi::mask (wi::floor_log2 (xor_mask), false,
1770 may_be_nonzero->get_precision ());
1771 *may_be_nonzero = *may_be_nonzero | mask;
1772 *must_be_nonzero = must_be_nonzero->and_not (mask);
1773 }
1774 }
1775
1776 return true;
1777 }
1778
1779 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
1780 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
1781 false otherwise. If *AR can be represented with a single range
1782 *VR1 will be VR_UNDEFINED. */
1783
1784 static bool
1785 ranges_from_anti_range (value_range *ar,
1786 value_range *vr0, value_range *vr1)
1787 {
1788 tree type = TREE_TYPE (ar->min);
1789
1790 vr0->type = VR_UNDEFINED;
1791 vr1->type = VR_UNDEFINED;
1792
1793 if (ar->type != VR_ANTI_RANGE
1794 || TREE_CODE (ar->min) != INTEGER_CST
1795 || TREE_CODE (ar->max) != INTEGER_CST
1796 || !vrp_val_min (type)
1797 || !vrp_val_max (type))
1798 return false;
1799
1800 if (!vrp_val_is_min (ar->min))
1801 {
1802 vr0->type = VR_RANGE;
1803 vr0->min = vrp_val_min (type);
1804 vr0->max = wide_int_to_tree (type, wi::sub (ar->min, 1));
1805 }
1806 if (!vrp_val_is_max (ar->max))
1807 {
1808 vr1->type = VR_RANGE;
1809 vr1->min = wide_int_to_tree (type, wi::add (ar->max, 1));
1810 vr1->max = vrp_val_max (type);
1811 }
1812 if (vr0->type == VR_UNDEFINED)
1813 {
1814 *vr0 = *vr1;
1815 vr1->type = VR_UNDEFINED;
1816 }
1817
1818 return vr0->type != VR_UNDEFINED;
1819 }
1820
1821 /* Helper to extract a value-range *VR for a multiplicative operation
1822 *VR0 CODE *VR1. */
1823
1824 static void
1825 extract_range_from_multiplicative_op_1 (value_range *vr,
1826 enum tree_code code,
1827 value_range *vr0, value_range *vr1)
1828 {
1829 enum value_range_type rtype;
1830 wide_int val, min, max;
1831 bool sop;
1832 tree type;
1833
1834 /* Multiplications, divisions and shifts are a bit tricky to handle,
1835 depending on the mix of signs we have in the two ranges, we
1836 need to operate on different values to get the minimum and
1837 maximum values for the new range. One approach is to figure
1838 out all the variations of range combinations and do the
1839 operations.
1840
1841 However, this involves several calls to compare_values and it
1842 is pretty convoluted. It's simpler to do the 4 operations
1843 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1844 MAX1) and then figure the smallest and largest values to form
1845 the new range. */
1846 gcc_assert (code == MULT_EXPR
1847 || code == TRUNC_DIV_EXPR
1848 || code == FLOOR_DIV_EXPR
1849 || code == CEIL_DIV_EXPR
1850 || code == EXACT_DIV_EXPR
1851 || code == ROUND_DIV_EXPR
1852 || code == RSHIFT_EXPR
1853 || code == LSHIFT_EXPR);
1854 gcc_assert ((vr0->type == VR_RANGE
1855 || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
1856 && vr0->type == vr1->type);
1857
1858 rtype = vr0->type;
1859 type = TREE_TYPE (vr0->min);
1860 signop sgn = TYPE_SIGN (type);
1861
1862 /* Compute the 4 cross operations and their minimum and maximum value. */
1863 sop = false;
1864 val = vrp_int_const_binop (code, vr0->min, vr1->min, &sop);
1865 if (! sop)
1866 min = max = val;
1867
1868 if (vr1->max == vr1->min)
1869 ;
1870 else if (! sop)
1871 {
1872 val = vrp_int_const_binop (code, vr0->min, vr1->max, &sop);
1873 if (! sop)
1874 {
1875 if (wi::lt_p (val, min, sgn))
1876 min = val;
1877 else if (wi::gt_p (val, max, sgn))
1878 max = val;
1879 }
1880 }
1881
1882 if (vr0->max == vr0->min)
1883 ;
1884 else if (! sop)
1885 {
1886 val = vrp_int_const_binop (code, vr0->max, vr1->min, &sop);
1887 if (! sop)
1888 {
1889 if (wi::lt_p (val, min, sgn))
1890 min = val;
1891 else if (wi::gt_p (val, max, sgn))
1892 max = val;
1893 }
1894 }
1895
1896 if (vr0->min == vr0->max || vr1->min == vr1->max)
1897 ;
1898 else if (! sop)
1899 {
1900 val = vrp_int_const_binop (code, vr0->max, vr1->max, &sop);
1901 if (! sop)
1902 {
1903 if (wi::lt_p (val, min, sgn))
1904 min = val;
1905 else if (wi::gt_p (val, max, sgn))
1906 max = val;
1907 }
1908 }
1909
1910 /* If either operation overflowed, drop to VARYING. */
1911 if (sop)
1912 {
1913 set_value_range_to_varying (vr);
1914 return;
1915 }
1916
1917 /* If the new range has its limits swapped around (MIN > MAX),
1918 then the operation caused one of them to wrap around, mark
1919 the new range VARYING. */
1920 if (wi::gt_p (min, max, sgn))
1921 {
1922 set_value_range_to_varying (vr);
1923 return;
1924 }
1925
1926 /* We punt for [-INF, +INF].
1927 We learn nothing when we have INF on both sides.
1928 Note that we do accept [-INF, -INF] and [+INF, +INF]. */
1929 if (wi::eq_p (min, wi::min_value (TYPE_PRECISION (type), sgn))
1930 && wi::eq_p (max, wi::max_value (TYPE_PRECISION (type), sgn)))
1931 {
1932 set_value_range_to_varying (vr);
1933 return;
1934 }
1935
1936 set_value_range (vr, rtype,
1937 wide_int_to_tree (type, min),
1938 wide_int_to_tree (type, max), NULL);
1939 }
1940
1941 /* Extract range information from a binary operation CODE based on
1942 the ranges of each of its operands *VR0 and *VR1 with resulting
1943 type EXPR_TYPE. The resulting range is stored in *VR. */
1944
1945 static void
1946 extract_range_from_binary_expr_1 (value_range *vr,
1947 enum tree_code code, tree expr_type,
1948 value_range *vr0_, value_range *vr1_)
1949 {
1950 value_range vr0 = *vr0_, vr1 = *vr1_;
1951 value_range vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
1952 enum value_range_type type;
1953 tree min = NULL_TREE, max = NULL_TREE;
1954 int cmp;
1955
1956 if (!INTEGRAL_TYPE_P (expr_type)
1957 && !POINTER_TYPE_P (expr_type))
1958 {
1959 set_value_range_to_varying (vr);
1960 return;
1961 }
1962
1963 /* Not all binary expressions can be applied to ranges in a
1964 meaningful way. Handle only arithmetic operations. */
1965 if (code != PLUS_EXPR
1966 && code != MINUS_EXPR
1967 && code != POINTER_PLUS_EXPR
1968 && code != MULT_EXPR
1969 && code != TRUNC_DIV_EXPR
1970 && code != FLOOR_DIV_EXPR
1971 && code != CEIL_DIV_EXPR
1972 && code != EXACT_DIV_EXPR
1973 && code != ROUND_DIV_EXPR
1974 && code != TRUNC_MOD_EXPR
1975 && code != RSHIFT_EXPR
1976 && code != LSHIFT_EXPR
1977 && code != MIN_EXPR
1978 && code != MAX_EXPR
1979 && code != BIT_AND_EXPR
1980 && code != BIT_IOR_EXPR
1981 && code != BIT_XOR_EXPR)
1982 {
1983 set_value_range_to_varying (vr);
1984 return;
1985 }
1986
1987 /* If both ranges are UNDEFINED, so is the result. */
1988 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
1989 {
1990 set_value_range_to_undefined (vr);
1991 return;
1992 }
1993 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
1994 code. At some point we may want to special-case operations that
1995 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
1996 operand. */
1997 else if (vr0.type == VR_UNDEFINED)
1998 set_value_range_to_varying (&vr0);
1999 else if (vr1.type == VR_UNDEFINED)
2000 set_value_range_to_varying (&vr1);
2001
2002 /* We get imprecise results from ranges_from_anti_range when
2003 code is EXACT_DIV_EXPR. We could mask out bits in the resulting
2004 range, but then we also need to hack up vrp_meet. It's just
2005 easier to special case when vr0 is ~[0,0] for EXACT_DIV_EXPR. */
2006 if (code == EXACT_DIV_EXPR
2007 && vr0.type == VR_ANTI_RANGE
2008 && vr0.min == vr0.max
2009 && integer_zerop (vr0.min))
2010 {
2011 set_value_range_to_nonnull (vr, expr_type);
2012 return;
2013 }
2014
2015 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2016 and express ~[] op X as ([]' op X) U ([]'' op X). */
2017 if (vr0.type == VR_ANTI_RANGE
2018 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2019 {
2020 extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
2021 if (vrtem1.type != VR_UNDEFINED)
2022 {
2023 value_range vrres = VR_INITIALIZER;
2024 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2025 &vrtem1, vr1_);
2026 vrp_meet (vr, &vrres);
2027 }
2028 return;
2029 }
2030 /* Likewise for X op ~[]. */
2031 if (vr1.type == VR_ANTI_RANGE
2032 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
2033 {
2034 extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
2035 if (vrtem1.type != VR_UNDEFINED)
2036 {
2037 value_range vrres = VR_INITIALIZER;
2038 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2039 vr0_, &vrtem1);
2040 vrp_meet (vr, &vrres);
2041 }
2042 return;
2043 }
2044
2045 /* The type of the resulting value range defaults to VR0.TYPE. */
2046 type = vr0.type;
2047
2048 /* Refuse to operate on VARYING ranges, ranges of different kinds
2049 and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
2050 because we may be able to derive a useful range even if one of
2051 the operands is VR_VARYING or symbolic range. Similarly for
2052 divisions, MIN/MAX and PLUS/MINUS.
2053
2054 TODO, we may be able to derive anti-ranges in some cases. */
2055 if (code != BIT_AND_EXPR
2056 && code != BIT_IOR_EXPR
2057 && code != TRUNC_DIV_EXPR
2058 && code != FLOOR_DIV_EXPR
2059 && code != CEIL_DIV_EXPR
2060 && code != EXACT_DIV_EXPR
2061 && code != ROUND_DIV_EXPR
2062 && code != TRUNC_MOD_EXPR
2063 && code != MIN_EXPR
2064 && code != MAX_EXPR
2065 && code != PLUS_EXPR
2066 && code != MINUS_EXPR
2067 && code != RSHIFT_EXPR
2068 && (vr0.type == VR_VARYING
2069 || vr1.type == VR_VARYING
2070 || vr0.type != vr1.type
2071 || symbolic_range_p (&vr0)
2072 || symbolic_range_p (&vr1)))
2073 {
2074 set_value_range_to_varying (vr);
2075 return;
2076 }
2077
2078 /* Now evaluate the expression to determine the new range. */
2079 if (POINTER_TYPE_P (expr_type))
2080 {
2081 if (code == MIN_EXPR || code == MAX_EXPR)
2082 {
2083 /* For MIN/MAX expressions with pointers, we only care about
2084 nullness, if both are non null, then the result is nonnull.
2085 If both are null, then the result is null. Otherwise they
2086 are varying. */
2087 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2088 set_value_range_to_nonnull (vr, expr_type);
2089 else if (range_is_null (&vr0) && range_is_null (&vr1))
2090 set_value_range_to_null (vr, expr_type);
2091 else
2092 set_value_range_to_varying (vr);
2093 }
2094 else if (code == POINTER_PLUS_EXPR)
2095 {
2096 /* For pointer types, we are really only interested in asserting
2097 whether the expression evaluates to non-NULL. */
2098 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2099 set_value_range_to_nonnull (vr, expr_type);
2100 else if (range_is_null (&vr0) && range_is_null (&vr1))
2101 set_value_range_to_null (vr, expr_type);
2102 else
2103 set_value_range_to_varying (vr);
2104 }
2105 else if (code == BIT_AND_EXPR)
2106 {
2107 /* For pointer types, we are really only interested in asserting
2108 whether the expression evaluates to non-NULL. */
2109 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2110 set_value_range_to_nonnull (vr, expr_type);
2111 else if (range_is_null (&vr0) || range_is_null (&vr1))
2112 set_value_range_to_null (vr, expr_type);
2113 else
2114 set_value_range_to_varying (vr);
2115 }
2116 else
2117 set_value_range_to_varying (vr);
2118
2119 return;
2120 }
2121
2122 /* For integer ranges, apply the operation to each end of the
2123 range and see what we end up with. */
2124 if (code == PLUS_EXPR || code == MINUS_EXPR)
2125 {
2126 const bool minus_p = (code == MINUS_EXPR);
2127 tree min_op0 = vr0.min;
2128 tree min_op1 = minus_p ? vr1.max : vr1.min;
2129 tree max_op0 = vr0.max;
2130 tree max_op1 = minus_p ? vr1.min : vr1.max;
2131 tree sym_min_op0 = NULL_TREE;
2132 tree sym_min_op1 = NULL_TREE;
2133 tree sym_max_op0 = NULL_TREE;
2134 tree sym_max_op1 = NULL_TREE;
2135 bool neg_min_op0, neg_min_op1, neg_max_op0, neg_max_op1;
2136
2137 /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
2138 single-symbolic ranges, try to compute the precise resulting range,
2139 but only if we know that this resulting range will also be constant
2140 or single-symbolic. */
2141 if (vr0.type == VR_RANGE && vr1.type == VR_RANGE
2142 && (TREE_CODE (min_op0) == INTEGER_CST
2143 || (sym_min_op0
2144 = get_single_symbol (min_op0, &neg_min_op0, &min_op0)))
2145 && (TREE_CODE (min_op1) == INTEGER_CST
2146 || (sym_min_op1
2147 = get_single_symbol (min_op1, &neg_min_op1, &min_op1)))
2148 && (!(sym_min_op0 && sym_min_op1)
2149 || (sym_min_op0 == sym_min_op1
2150 && neg_min_op0 == (minus_p ? neg_min_op1 : !neg_min_op1)))
2151 && (TREE_CODE (max_op0) == INTEGER_CST
2152 || (sym_max_op0
2153 = get_single_symbol (max_op0, &neg_max_op0, &max_op0)))
2154 && (TREE_CODE (max_op1) == INTEGER_CST
2155 || (sym_max_op1
2156 = get_single_symbol (max_op1, &neg_max_op1, &max_op1)))
2157 && (!(sym_max_op0 && sym_max_op1)
2158 || (sym_max_op0 == sym_max_op1
2159 && neg_max_op0 == (minus_p ? neg_max_op1 : !neg_max_op1))))
2160 {
2161 const signop sgn = TYPE_SIGN (expr_type);
2162 const unsigned int prec = TYPE_PRECISION (expr_type);
2163 wide_int type_min, type_max, wmin, wmax;
2164 int min_ovf = 0;
2165 int max_ovf = 0;
2166
2167 /* Get the lower and upper bounds of the type. */
2168 if (TYPE_OVERFLOW_WRAPS (expr_type))
2169 {
2170 type_min = wi::min_value (prec, sgn);
2171 type_max = wi::max_value (prec, sgn);
2172 }
2173 else
2174 {
2175 type_min = vrp_val_min (expr_type);
2176 type_max = vrp_val_max (expr_type);
2177 }
2178
2179 /* Combine the lower bounds, if any. */
2180 if (min_op0 && min_op1)
2181 {
2182 if (minus_p)
2183 {
2184 wmin = wi::sub (min_op0, min_op1);
2185
2186 /* Check for overflow. */
2187 if (wi::cmp (0, min_op1, sgn)
2188 != wi::cmp (wmin, min_op0, sgn))
2189 min_ovf = wi::cmp (min_op0, min_op1, sgn);
2190 }
2191 else
2192 {
2193 wmin = wi::add (min_op0, min_op1);
2194
2195 /* Check for overflow. */
2196 if (wi::cmp (min_op1, 0, sgn)
2197 != wi::cmp (wmin, min_op0, sgn))
2198 min_ovf = wi::cmp (min_op0, wmin, sgn);
2199 }
2200 }
2201 else if (min_op0)
2202 wmin = min_op0;
2203 else if (min_op1)
2204 {
2205 if (minus_p)
2206 {
2207 wmin = wi::neg (min_op1);
2208
2209 /* Check for overflow. */
2210 if (sgn == SIGNED && wi::neg_p (min_op1) && wi::neg_p (wmin))
2211 min_ovf = 1;
2212 else if (sgn == UNSIGNED && wi::ne_p (min_op1, 0))
2213 min_ovf = -1;
2214 }
2215 else
2216 wmin = min_op1;
2217 }
2218 else
2219 wmin = wi::shwi (0, prec);
2220
2221 /* Combine the upper bounds, if any. */
2222 if (max_op0 && max_op1)
2223 {
2224 if (minus_p)
2225 {
2226 wmax = wi::sub (max_op0, max_op1);
2227
2228 /* Check for overflow. */
2229 if (wi::cmp (0, max_op1, sgn)
2230 != wi::cmp (wmax, max_op0, sgn))
2231 max_ovf = wi::cmp (max_op0, max_op1, sgn);
2232 }
2233 else
2234 {
2235 wmax = wi::add (max_op0, max_op1);
2236
2237 if (wi::cmp (max_op1, 0, sgn)
2238 != wi::cmp (wmax, max_op0, sgn))
2239 max_ovf = wi::cmp (max_op0, wmax, sgn);
2240 }
2241 }
2242 else if (max_op0)
2243 wmax = max_op0;
2244 else if (max_op1)
2245 {
2246 if (minus_p)
2247 {
2248 wmax = wi::neg (max_op1);
2249
2250 /* Check for overflow. */
2251 if (sgn == SIGNED && wi::neg_p (max_op1) && wi::neg_p (wmax))
2252 max_ovf = 1;
2253 else if (sgn == UNSIGNED && wi::ne_p (max_op1, 0))
2254 max_ovf = -1;
2255 }
2256 else
2257 wmax = max_op1;
2258 }
2259 else
2260 wmax = wi::shwi (0, prec);
2261
2262 /* Check for type overflow. */
2263 if (min_ovf == 0)
2264 {
2265 if (wi::cmp (wmin, type_min, sgn) == -1)
2266 min_ovf = -1;
2267 else if (wi::cmp (wmin, type_max, sgn) == 1)
2268 min_ovf = 1;
2269 }
2270 if (max_ovf == 0)
2271 {
2272 if (wi::cmp (wmax, type_min, sgn) == -1)
2273 max_ovf = -1;
2274 else if (wi::cmp (wmax, type_max, sgn) == 1)
2275 max_ovf = 1;
2276 }
2277
2278 /* If we have overflow for the constant part and the resulting
2279 range will be symbolic, drop to VR_VARYING. */
2280 if ((min_ovf && sym_min_op0 != sym_min_op1)
2281 || (max_ovf && sym_max_op0 != sym_max_op1))
2282 {
2283 set_value_range_to_varying (vr);
2284 return;
2285 }
2286
2287 if (TYPE_OVERFLOW_WRAPS (expr_type))
2288 {
2289 /* If overflow wraps, truncate the values and adjust the
2290 range kind and bounds appropriately. */
2291 wide_int tmin = wide_int::from (wmin, prec, sgn);
2292 wide_int tmax = wide_int::from (wmax, prec, sgn);
2293 if (min_ovf == max_ovf)
2294 {
2295 /* No overflow or both overflow or underflow. The
2296 range kind stays VR_RANGE. */
2297 min = wide_int_to_tree (expr_type, tmin);
2298 max = wide_int_to_tree (expr_type, tmax);
2299 }
2300 else if ((min_ovf == -1 && max_ovf == 0)
2301 || (max_ovf == 1 && min_ovf == 0))
2302 {
2303 /* Min underflow or max overflow. The range kind
2304 changes to VR_ANTI_RANGE. */
2305 bool covers = false;
2306 wide_int tem = tmin;
2307 type = VR_ANTI_RANGE;
2308 tmin = tmax + 1;
2309 if (wi::cmp (tmin, tmax, sgn) < 0)
2310 covers = true;
2311 tmax = tem - 1;
2312 if (wi::cmp (tmax, tem, sgn) > 0)
2313 covers = true;
2314 /* If the anti-range would cover nothing, drop to varying.
2315 Likewise if the anti-range bounds are outside of the
2316 types values. */
2317 if (covers || wi::cmp (tmin, tmax, sgn) > 0)
2318 {
2319 set_value_range_to_varying (vr);
2320 return;
2321 }
2322 min = wide_int_to_tree (expr_type, tmin);
2323 max = wide_int_to_tree (expr_type, tmax);
2324 }
2325 else
2326 {
2327 /* Other underflow and/or overflow, drop to VR_VARYING. */
2328 set_value_range_to_varying (vr);
2329 return;
2330 }
2331 }
2332 else
2333 {
2334 /* If overflow does not wrap, saturate to the types min/max
2335 value. */
2336 if (min_ovf == -1)
2337 min = wide_int_to_tree (expr_type, type_min);
2338 else if (min_ovf == 1)
2339 min = wide_int_to_tree (expr_type, type_max);
2340 else
2341 min = wide_int_to_tree (expr_type, wmin);
2342
2343 if (max_ovf == -1)
2344 max = wide_int_to_tree (expr_type, type_min);
2345 else if (max_ovf == 1)
2346 max = wide_int_to_tree (expr_type, type_max);
2347 else
2348 max = wide_int_to_tree (expr_type, wmax);
2349 }
2350
2351 /* If the result lower bound is constant, we're done;
2352 otherwise, build the symbolic lower bound. */
2353 if (sym_min_op0 == sym_min_op1)
2354 ;
2355 else if (sym_min_op0)
2356 min = build_symbolic_expr (expr_type, sym_min_op0,
2357 neg_min_op0, min);
2358 else if (sym_min_op1)
2359 {
2360 /* We may not negate if that might introduce
2361 undefined overflow. */
2362 if (! minus_p
2363 || neg_min_op1
2364 || TYPE_OVERFLOW_WRAPS (expr_type))
2365 min = build_symbolic_expr (expr_type, sym_min_op1,
2366 neg_min_op1 ^ minus_p, min);
2367 else
2368 min = NULL_TREE;
2369 }
2370
2371 /* Likewise for the upper bound. */
2372 if (sym_max_op0 == sym_max_op1)
2373 ;
2374 else if (sym_max_op0)
2375 max = build_symbolic_expr (expr_type, sym_max_op0,
2376 neg_max_op0, max);
2377 else if (sym_max_op1)
2378 {
2379 /* We may not negate if that might introduce
2380 undefined overflow. */
2381 if (! minus_p
2382 || neg_max_op1
2383 || TYPE_OVERFLOW_WRAPS (expr_type))
2384 max = build_symbolic_expr (expr_type, sym_max_op1,
2385 neg_max_op1 ^ minus_p, max);
2386 else
2387 max = NULL_TREE;
2388 }
2389 }
2390 else
2391 {
2392 /* For other cases, for example if we have a PLUS_EXPR with two
2393 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2394 to compute a precise range for such a case.
2395 ??? General even mixed range kind operations can be expressed
2396 by for example transforming ~[3, 5] + [1, 2] to range-only
2397 operations and a union primitive:
2398 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2399 [-INF+1, 4] U [6, +INF(OVF)]
2400 though usually the union is not exactly representable with
2401 a single range or anti-range as the above is
2402 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2403 but one could use a scheme similar to equivalences for this. */
2404 set_value_range_to_varying (vr);
2405 return;
2406 }
2407 }
2408 else if (code == MIN_EXPR
2409 || code == MAX_EXPR)
2410 {
2411 if (vr0.type == VR_RANGE
2412 && !symbolic_range_p (&vr0))
2413 {
2414 type = VR_RANGE;
2415 if (vr1.type == VR_RANGE
2416 && !symbolic_range_p (&vr1))
2417 {
2418 /* For operations that make the resulting range directly
2419 proportional to the original ranges, apply the operation to
2420 the same end of each range. */
2421 min = int_const_binop (code, vr0.min, vr1.min);
2422 max = int_const_binop (code, vr0.max, vr1.max);
2423 }
2424 else if (code == MIN_EXPR)
2425 {
2426 min = vrp_val_min (expr_type);
2427 max = vr0.max;
2428 }
2429 else if (code == MAX_EXPR)
2430 {
2431 min = vr0.min;
2432 max = vrp_val_max (expr_type);
2433 }
2434 }
2435 else if (vr1.type == VR_RANGE
2436 && !symbolic_range_p (&vr1))
2437 {
2438 type = VR_RANGE;
2439 if (code == MIN_EXPR)
2440 {
2441 min = vrp_val_min (expr_type);
2442 max = vr1.max;
2443 }
2444 else if (code == MAX_EXPR)
2445 {
2446 min = vr1.min;
2447 max = vrp_val_max (expr_type);
2448 }
2449 }
2450 else
2451 {
2452 set_value_range_to_varying (vr);
2453 return;
2454 }
2455 }
2456 else if (code == MULT_EXPR)
2457 {
2458 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2459 drop to varying. This test requires 2*prec bits if both
2460 operands are signed and 2*prec + 2 bits if either is not. */
2461
2462 signop sign = TYPE_SIGN (expr_type);
2463 unsigned int prec = TYPE_PRECISION (expr_type);
2464
2465 if (range_int_cst_p (&vr0)
2466 && range_int_cst_p (&vr1)
2467 && TYPE_OVERFLOW_WRAPS (expr_type))
2468 {
2469 typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION * 2) vrp_int;
2470 typedef generic_wide_int
2471 <wi::extended_tree <WIDE_INT_MAX_PRECISION * 2> > vrp_int_cst;
2472 vrp_int sizem1 = wi::mask <vrp_int> (prec, false);
2473 vrp_int size = sizem1 + 1;
2474
2475 /* Extend the values using the sign of the result to PREC2.
2476 From here on out, everthing is just signed math no matter
2477 what the input types were. */
2478 vrp_int min0 = vrp_int_cst (vr0.min);
2479 vrp_int max0 = vrp_int_cst (vr0.max);
2480 vrp_int min1 = vrp_int_cst (vr1.min);
2481 vrp_int max1 = vrp_int_cst (vr1.max);
2482 /* Canonicalize the intervals. */
2483 if (sign == UNSIGNED)
2484 {
2485 if (wi::ltu_p (size, min0 + max0))
2486 {
2487 min0 -= size;
2488 max0 -= size;
2489 }
2490
2491 if (wi::ltu_p (size, min1 + max1))
2492 {
2493 min1 -= size;
2494 max1 -= size;
2495 }
2496 }
2497
2498 vrp_int prod0 = min0 * min1;
2499 vrp_int prod1 = min0 * max1;
2500 vrp_int prod2 = max0 * min1;
2501 vrp_int prod3 = max0 * max1;
2502
2503 /* Sort the 4 products so that min is in prod0 and max is in
2504 prod3. */
2505 /* min0min1 > max0max1 */
2506 if (prod0 > prod3)
2507 std::swap (prod0, prod3);
2508
2509 /* min0max1 > max0min1 */
2510 if (prod1 > prod2)
2511 std::swap (prod1, prod2);
2512
2513 if (prod0 > prod1)
2514 std::swap (prod0, prod1);
2515
2516 if (prod2 > prod3)
2517 std::swap (prod2, prod3);
2518
2519 /* diff = max - min. */
2520 prod2 = prod3 - prod0;
2521 if (wi::geu_p (prod2, sizem1))
2522 {
2523 /* the range covers all values. */
2524 set_value_range_to_varying (vr);
2525 return;
2526 }
2527
2528 /* The following should handle the wrapping and selecting
2529 VR_ANTI_RANGE for us. */
2530 min = wide_int_to_tree (expr_type, prod0);
2531 max = wide_int_to_tree (expr_type, prod3);
2532 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
2533 return;
2534 }
2535
2536 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2537 drop to VR_VARYING. It would take more effort to compute a
2538 precise range for such a case. For example, if we have
2539 op0 == 65536 and op1 == 65536 with their ranges both being
2540 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2541 we cannot claim that the product is in ~[0,0]. Note that we
2542 are guaranteed to have vr0.type == vr1.type at this
2543 point. */
2544 if (vr0.type == VR_ANTI_RANGE
2545 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2546 {
2547 set_value_range_to_varying (vr);
2548 return;
2549 }
2550
2551 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2552 return;
2553 }
2554 else if (code == RSHIFT_EXPR
2555 || code == LSHIFT_EXPR)
2556 {
2557 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2558 then drop to VR_VARYING. Outside of this range we get undefined
2559 behavior from the shift operation. We cannot even trust
2560 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2561 shifts, and the operation at the tree level may be widened. */
2562 if (range_int_cst_p (&vr1)
2563 && compare_tree_int (vr1.min, 0) >= 0
2564 && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
2565 {
2566 if (code == RSHIFT_EXPR)
2567 {
2568 /* Even if vr0 is VARYING or otherwise not usable, we can derive
2569 useful ranges just from the shift count. E.g.
2570 x >> 63 for signed 64-bit x is always [-1, 0]. */
2571 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2572 {
2573 vr0.type = type = VR_RANGE;
2574 vr0.min = vrp_val_min (expr_type);
2575 vr0.max = vrp_val_max (expr_type);
2576 }
2577 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2578 return;
2579 }
2580 /* We can map lshifts by constants to MULT_EXPR handling. */
2581 else if (code == LSHIFT_EXPR
2582 && range_int_cst_singleton_p (&vr1))
2583 {
2584 bool saved_flag_wrapv;
2585 value_range vr1p = VR_INITIALIZER;
2586 vr1p.type = VR_RANGE;
2587 vr1p.min = (wide_int_to_tree
2588 (expr_type,
2589 wi::set_bit_in_zero (tree_to_shwi (vr1.min),
2590 TYPE_PRECISION (expr_type))));
2591 vr1p.max = vr1p.min;
2592 /* We have to use a wrapping multiply though as signed overflow
2593 on lshifts is implementation defined in C89. */
2594 saved_flag_wrapv = flag_wrapv;
2595 flag_wrapv = 1;
2596 extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
2597 &vr0, &vr1p);
2598 flag_wrapv = saved_flag_wrapv;
2599 return;
2600 }
2601 else if (code == LSHIFT_EXPR
2602 && range_int_cst_p (&vr0))
2603 {
2604 int prec = TYPE_PRECISION (expr_type);
2605 int overflow_pos = prec;
2606 int bound_shift;
2607 wide_int low_bound, high_bound;
2608 bool uns = TYPE_UNSIGNED (expr_type);
2609 bool in_bounds = false;
2610
2611 if (!uns)
2612 overflow_pos -= 1;
2613
2614 bound_shift = overflow_pos - tree_to_shwi (vr1.max);
2615 /* If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
2616 overflow. However, for that to happen, vr1.max needs to be
2617 zero, which means vr1 is a singleton range of zero, which
2618 means it should be handled by the previous LSHIFT_EXPR
2619 if-clause. */
2620 wide_int bound = wi::set_bit_in_zero (bound_shift, prec);
2621 wide_int complement = ~(bound - 1);
2622
2623 if (uns)
2624 {
2625 low_bound = bound;
2626 high_bound = complement;
2627 if (wi::ltu_p (vr0.max, low_bound))
2628 {
2629 /* [5, 6] << [1, 2] == [10, 24]. */
2630 /* We're shifting out only zeroes, the value increases
2631 monotonically. */
2632 in_bounds = true;
2633 }
2634 else if (wi::ltu_p (high_bound, vr0.min))
2635 {
2636 /* [0xffffff00, 0xffffffff] << [1, 2]
2637 == [0xfffffc00, 0xfffffffe]. */
2638 /* We're shifting out only ones, the value decreases
2639 monotonically. */
2640 in_bounds = true;
2641 }
2642 }
2643 else
2644 {
2645 /* [-1, 1] << [1, 2] == [-4, 4]. */
2646 low_bound = complement;
2647 high_bound = bound;
2648 if (wi::lts_p (vr0.max, high_bound)
2649 && wi::lts_p (low_bound, vr0.min))
2650 {
2651 /* For non-negative numbers, we're shifting out only
2652 zeroes, the value increases monotonically.
2653 For negative numbers, we're shifting out only ones, the
2654 value decreases monotomically. */
2655 in_bounds = true;
2656 }
2657 }
2658
2659 if (in_bounds)
2660 {
2661 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2662 return;
2663 }
2664 }
2665 }
2666 set_value_range_to_varying (vr);
2667 return;
2668 }
2669 else if (code == TRUNC_DIV_EXPR
2670 || code == FLOOR_DIV_EXPR
2671 || code == CEIL_DIV_EXPR
2672 || code == EXACT_DIV_EXPR
2673 || code == ROUND_DIV_EXPR)
2674 {
2675 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2676 {
2677 /* For division, if op1 has VR_RANGE but op0 does not, something
2678 can be deduced just from that range. Say [min, max] / [4, max]
2679 gives [min / 4, max / 4] range. */
2680 if (vr1.type == VR_RANGE
2681 && !symbolic_range_p (&vr1)
2682 && range_includes_zero_p (vr1.min, vr1.max) == 0)
2683 {
2684 vr0.type = type = VR_RANGE;
2685 vr0.min = vrp_val_min (expr_type);
2686 vr0.max = vrp_val_max (expr_type);
2687 }
2688 else
2689 {
2690 set_value_range_to_varying (vr);
2691 return;
2692 }
2693 }
2694
2695 /* For divisions, if flag_non_call_exceptions is true, we must
2696 not eliminate a division by zero. */
2697 if (cfun->can_throw_non_call_exceptions
2698 && (vr1.type != VR_RANGE
2699 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2700 {
2701 set_value_range_to_varying (vr);
2702 return;
2703 }
2704
2705 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2706 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2707 include 0. */
2708 if (vr0.type == VR_RANGE
2709 && (vr1.type != VR_RANGE
2710 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2711 {
2712 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2713 int cmp;
2714
2715 min = NULL_TREE;
2716 max = NULL_TREE;
2717 if (TYPE_UNSIGNED (expr_type)
2718 || value_range_nonnegative_p (&vr1))
2719 {
2720 /* For unsigned division or when divisor is known
2721 to be non-negative, the range has to cover
2722 all numbers from 0 to max for positive max
2723 and all numbers from min to 0 for negative min. */
2724 cmp = compare_values (vr0.max, zero);
2725 if (cmp == -1)
2726 {
2727 /* When vr0.max < 0, vr1.min != 0 and value
2728 ranges for dividend and divisor are available. */
2729 if (vr1.type == VR_RANGE
2730 && !symbolic_range_p (&vr0)
2731 && !symbolic_range_p (&vr1)
2732 && compare_values (vr1.min, zero) != 0)
2733 max = int_const_binop (code, vr0.max, vr1.min);
2734 else
2735 max = zero;
2736 }
2737 else if (cmp == 0 || cmp == 1)
2738 max = vr0.max;
2739 else
2740 type = VR_VARYING;
2741 cmp = compare_values (vr0.min, zero);
2742 if (cmp == 1)
2743 {
2744 /* For unsigned division when value ranges for dividend
2745 and divisor are available. */
2746 if (vr1.type == VR_RANGE
2747 && !symbolic_range_p (&vr0)
2748 && !symbolic_range_p (&vr1)
2749 && compare_values (vr1.max, zero) != 0)
2750 min = int_const_binop (code, vr0.min, vr1.max);
2751 else
2752 min = zero;
2753 }
2754 else if (cmp == 0 || cmp == -1)
2755 min = vr0.min;
2756 else
2757 type = VR_VARYING;
2758 }
2759 else
2760 {
2761 /* Otherwise the range is -max .. max or min .. -min
2762 depending on which bound is bigger in absolute value,
2763 as the division can change the sign. */
2764 abs_extent_range (vr, vr0.min, vr0.max);
2765 return;
2766 }
2767 if (type == VR_VARYING)
2768 {
2769 set_value_range_to_varying (vr);
2770 return;
2771 }
2772 }
2773 else if (!symbolic_range_p (&vr0) && !symbolic_range_p (&vr1))
2774 {
2775 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2776 return;
2777 }
2778 }
2779 else if (code == TRUNC_MOD_EXPR)
2780 {
2781 if (range_is_null (&vr1))
2782 {
2783 set_value_range_to_undefined (vr);
2784 return;
2785 }
2786 /* ABS (A % B) < ABS (B) and either
2787 0 <= A % B <= A or A <= A % B <= 0. */
2788 type = VR_RANGE;
2789 signop sgn = TYPE_SIGN (expr_type);
2790 unsigned int prec = TYPE_PRECISION (expr_type);
2791 wide_int wmin, wmax, tmp;
2792 wide_int zero = wi::zero (prec);
2793 wide_int one = wi::one (prec);
2794 if (vr1.type == VR_RANGE && !symbolic_range_p (&vr1))
2795 {
2796 wmax = wi::sub (vr1.max, one);
2797 if (sgn == SIGNED)
2798 {
2799 tmp = wi::sub (wi::minus_one (prec), vr1.min);
2800 wmax = wi::smax (wmax, tmp);
2801 }
2802 }
2803 else
2804 {
2805 wmax = wi::max_value (prec, sgn);
2806 /* X % INT_MIN may be INT_MAX. */
2807 if (sgn == UNSIGNED)
2808 wmax = wmax - one;
2809 }
2810
2811 if (sgn == UNSIGNED)
2812 wmin = zero;
2813 else
2814 {
2815 wmin = -wmax;
2816 if (vr0.type == VR_RANGE && TREE_CODE (vr0.min) == INTEGER_CST)
2817 {
2818 tmp = vr0.min;
2819 if (wi::gts_p (tmp, zero))
2820 tmp = zero;
2821 wmin = wi::smax (wmin, tmp);
2822 }
2823 }
2824
2825 if (vr0.type == VR_RANGE && TREE_CODE (vr0.max) == INTEGER_CST)
2826 {
2827 tmp = vr0.max;
2828 if (sgn == SIGNED && wi::neg_p (tmp))
2829 tmp = zero;
2830 wmax = wi::min (wmax, tmp, sgn);
2831 }
2832
2833 min = wide_int_to_tree (expr_type, wmin);
2834 max = wide_int_to_tree (expr_type, wmax);
2835 }
2836 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
2837 {
2838 bool int_cst_range0, int_cst_range1;
2839 wide_int may_be_nonzero0, may_be_nonzero1;
2840 wide_int must_be_nonzero0, must_be_nonzero1;
2841
2842 int_cst_range0 = zero_nonzero_bits_from_vr (expr_type, &vr0,
2843 &may_be_nonzero0,
2844 &must_be_nonzero0);
2845 int_cst_range1 = zero_nonzero_bits_from_vr (expr_type, &vr1,
2846 &may_be_nonzero1,
2847 &must_be_nonzero1);
2848
2849 if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR)
2850 {
2851 value_range *vr0p = NULL, *vr1p = NULL;
2852 if (range_int_cst_singleton_p (&vr1))
2853 {
2854 vr0p = &vr0;
2855 vr1p = &vr1;
2856 }
2857 else if (range_int_cst_singleton_p (&vr0))
2858 {
2859 vr0p = &vr1;
2860 vr1p = &vr0;
2861 }
2862 /* For op & or | attempt to optimize:
2863 [x, y] op z into [x op z, y op z]
2864 if z is a constant which (for op | its bitwise not) has n
2865 consecutive least significant bits cleared followed by m 1
2866 consecutive bits set immediately above it and either
2867 m + n == precision, or (x >> (m + n)) == (y >> (m + n)).
2868 The least significant n bits of all the values in the range are
2869 cleared or set, the m bits above it are preserved and any bits
2870 above these are required to be the same for all values in the
2871 range. */
2872 if (vr0p && range_int_cst_p (vr0p))
2873 {
2874 wide_int w = vr1p->min;
2875 int m = 0, n = 0;
2876 if (code == BIT_IOR_EXPR)
2877 w = ~w;
2878 if (wi::eq_p (w, 0))
2879 n = TYPE_PRECISION (expr_type);
2880 else
2881 {
2882 n = wi::ctz (w);
2883 w = ~(w | wi::mask (n, false, w.get_precision ()));
2884 if (wi::eq_p (w, 0))
2885 m = TYPE_PRECISION (expr_type) - n;
2886 else
2887 m = wi::ctz (w) - n;
2888 }
2889 wide_int mask = wi::mask (m + n, true, w.get_precision ());
2890 if (wi::eq_p (mask & vr0p->min, mask & vr0p->max))
2891 {
2892 min = int_const_binop (code, vr0p->min, vr1p->min);
2893 max = int_const_binop (code, vr0p->max, vr1p->min);
2894 }
2895 }
2896 }
2897
2898 type = VR_RANGE;
2899 if (min && max)
2900 /* Optimized above already. */;
2901 else if (code == BIT_AND_EXPR)
2902 {
2903 min = wide_int_to_tree (expr_type,
2904 must_be_nonzero0 & must_be_nonzero1);
2905 wide_int wmax = may_be_nonzero0 & may_be_nonzero1;
2906 /* If both input ranges contain only negative values we can
2907 truncate the result range maximum to the minimum of the
2908 input range maxima. */
2909 if (int_cst_range0 && int_cst_range1
2910 && tree_int_cst_sgn (vr0.max) < 0
2911 && tree_int_cst_sgn (vr1.max) < 0)
2912 {
2913 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
2914 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
2915 }
2916 /* If either input range contains only non-negative values
2917 we can truncate the result range maximum to the respective
2918 maximum of the input range. */
2919 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
2920 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
2921 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
2922 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
2923 max = wide_int_to_tree (expr_type, wmax);
2924 cmp = compare_values (min, max);
2925 /* PR68217: In case of signed & sign-bit-CST should
2926 result in [-INF, 0] instead of [-INF, INF]. */
2927 if (cmp == -2 || cmp == 1)
2928 {
2929 wide_int sign_bit
2930 = wi::set_bit_in_zero (TYPE_PRECISION (expr_type) - 1,
2931 TYPE_PRECISION (expr_type));
2932 if (!TYPE_UNSIGNED (expr_type)
2933 && ((value_range_constant_singleton (&vr0)
2934 && !wi::cmps (vr0.min, sign_bit))
2935 || (value_range_constant_singleton (&vr1)
2936 && !wi::cmps (vr1.min, sign_bit))))
2937 {
2938 min = TYPE_MIN_VALUE (expr_type);
2939 max = build_int_cst (expr_type, 0);
2940 }
2941 }
2942 }
2943 else if (code == BIT_IOR_EXPR)
2944 {
2945 max = wide_int_to_tree (expr_type,
2946 may_be_nonzero0 | may_be_nonzero1);
2947 wide_int wmin = must_be_nonzero0 | must_be_nonzero1;
2948 /* If the input ranges contain only positive values we can
2949 truncate the minimum of the result range to the maximum
2950 of the input range minima. */
2951 if (int_cst_range0 && int_cst_range1
2952 && tree_int_cst_sgn (vr0.min) >= 0
2953 && tree_int_cst_sgn (vr1.min) >= 0)
2954 {
2955 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
2956 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
2957 }
2958 /* If either input range contains only negative values
2959 we can truncate the minimum of the result range to the
2960 respective minimum range. */
2961 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
2962 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
2963 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
2964 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
2965 min = wide_int_to_tree (expr_type, wmin);
2966 }
2967 else if (code == BIT_XOR_EXPR)
2968 {
2969 wide_int result_zero_bits = ((must_be_nonzero0 & must_be_nonzero1)
2970 | ~(may_be_nonzero0 | may_be_nonzero1));
2971 wide_int result_one_bits
2972 = (must_be_nonzero0.and_not (may_be_nonzero1)
2973 | must_be_nonzero1.and_not (may_be_nonzero0));
2974 max = wide_int_to_tree (expr_type, ~result_zero_bits);
2975 min = wide_int_to_tree (expr_type, result_one_bits);
2976 /* If the range has all positive or all negative values the
2977 result is better than VARYING. */
2978 if (tree_int_cst_sgn (min) < 0
2979 || tree_int_cst_sgn (max) >= 0)
2980 ;
2981 else
2982 max = min = NULL_TREE;
2983 }
2984 }
2985 else
2986 gcc_unreachable ();
2987
2988 /* If either MIN or MAX overflowed, then set the resulting range to
2989 VARYING. */
2990 if (min == NULL_TREE
2991 || TREE_OVERFLOW_P (min)
2992 || max == NULL_TREE
2993 || TREE_OVERFLOW_P (max))
2994 {
2995 set_value_range_to_varying (vr);
2996 return;
2997 }
2998
2999 /* We punt for [-INF, +INF].
3000 We learn nothing when we have INF on both sides.
3001 Note that we do accept [-INF, -INF] and [+INF, +INF]. */
3002 if (vrp_val_is_min (min) && vrp_val_is_max (max))
3003 {
3004 set_value_range_to_varying (vr);
3005 return;
3006 }
3007
3008 cmp = compare_values (min, max);
3009 if (cmp == -2 || cmp == 1)
3010 {
3011 /* If the new range has its limits swapped around (MIN > MAX),
3012 then the operation caused one of them to wrap around, mark
3013 the new range VARYING. */
3014 set_value_range_to_varying (vr);
3015 }
3016 else
3017 set_value_range (vr, type, min, max, NULL);
3018 }
3019
3020 /* Extract range information from a binary expression OP0 CODE OP1 based on
3021 the ranges of each of its operands with resulting type EXPR_TYPE.
3022 The resulting range is stored in *VR. */
3023
3024 static void
3025 extract_range_from_binary_expr (value_range *vr,
3026 enum tree_code code,
3027 tree expr_type, tree op0, tree op1)
3028 {
3029 value_range vr0 = VR_INITIALIZER;
3030 value_range vr1 = VR_INITIALIZER;
3031
3032 /* Get value ranges for each operand. For constant operands, create
3033 a new value range with the operand to simplify processing. */
3034 if (TREE_CODE (op0) == SSA_NAME)
3035 vr0 = *(get_value_range (op0));
3036 else if (is_gimple_min_invariant (op0))
3037 set_value_range_to_value (&vr0, op0, NULL);
3038 else
3039 set_value_range_to_varying (&vr0);
3040
3041 if (TREE_CODE (op1) == SSA_NAME)
3042 vr1 = *(get_value_range (op1));
3043 else if (is_gimple_min_invariant (op1))
3044 set_value_range_to_value (&vr1, op1, NULL);
3045 else
3046 set_value_range_to_varying (&vr1);
3047
3048 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
3049
3050 /* Try harder for PLUS and MINUS if the range of one operand is symbolic
3051 and based on the other operand, for example if it was deduced from a
3052 symbolic comparison. When a bound of the range of the first operand
3053 is invariant, we set the corresponding bound of the new range to INF
3054 in order to avoid recursing on the range of the second operand. */
3055 if (vr->type == VR_VARYING
3056 && (code == PLUS_EXPR || code == MINUS_EXPR)
3057 && TREE_CODE (op1) == SSA_NAME
3058 && vr0.type == VR_RANGE
3059 && symbolic_range_based_on_p (&vr0, op1))
3060 {
3061 const bool minus_p = (code == MINUS_EXPR);
3062 value_range n_vr1 = VR_INITIALIZER;
3063
3064 /* Try with VR0 and [-INF, OP1]. */
3065 if (is_gimple_min_invariant (minus_p ? vr0.max : vr0.min))
3066 set_value_range (&n_vr1, VR_RANGE, vrp_val_min (expr_type), op1, NULL);
3067
3068 /* Try with VR0 and [OP1, +INF]. */
3069 else if (is_gimple_min_invariant (minus_p ? vr0.min : vr0.max))
3070 set_value_range (&n_vr1, VR_RANGE, op1, vrp_val_max (expr_type), NULL);
3071
3072 /* Try with VR0 and [OP1, OP1]. */
3073 else
3074 set_value_range (&n_vr1, VR_RANGE, op1, op1, NULL);
3075
3076 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &n_vr1);
3077 }
3078
3079 if (vr->type == VR_VARYING
3080 && (code == PLUS_EXPR || code == MINUS_EXPR)
3081 && TREE_CODE (op0) == SSA_NAME
3082 && vr1.type == VR_RANGE
3083 && symbolic_range_based_on_p (&vr1, op0))
3084 {
3085 const bool minus_p = (code == MINUS_EXPR);
3086 value_range n_vr0 = VR_INITIALIZER;
3087
3088 /* Try with [-INF, OP0] and VR1. */
3089 if (is_gimple_min_invariant (minus_p ? vr1.max : vr1.min))
3090 set_value_range (&n_vr0, VR_RANGE, vrp_val_min (expr_type), op0, NULL);
3091
3092 /* Try with [OP0, +INF] and VR1. */
3093 else if (is_gimple_min_invariant (minus_p ? vr1.min : vr1.max))
3094 set_value_range (&n_vr0, VR_RANGE, op0, vrp_val_max (expr_type), NULL);
3095
3096 /* Try with [OP0, OP0] and VR1. */
3097 else
3098 set_value_range (&n_vr0, VR_RANGE, op0, op0, NULL);
3099
3100 extract_range_from_binary_expr_1 (vr, code, expr_type, &n_vr0, &vr1);
3101 }
3102
3103 /* If we didn't derive a range for MINUS_EXPR, and
3104 op1's range is ~[op0,op0] or vice-versa, then we
3105 can derive a non-null range. This happens often for
3106 pointer subtraction. */
3107 if (vr->type == VR_VARYING
3108 && code == MINUS_EXPR
3109 && TREE_CODE (op0) == SSA_NAME
3110 && ((vr0.type == VR_ANTI_RANGE
3111 && vr0.min == op1
3112 && vr0.min == vr0.max)
3113 || (vr1.type == VR_ANTI_RANGE
3114 && vr1.min == op0
3115 && vr1.min == vr1.max)))
3116 set_value_range_to_nonnull (vr, TREE_TYPE (op0));
3117 }
3118
3119 /* Extract range information from a unary operation CODE based on
3120 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3121 The resulting range is stored in *VR. */
3122
3123 void
3124 extract_range_from_unary_expr (value_range *vr,
3125 enum tree_code code, tree type,
3126 value_range *vr0_, tree op0_type)
3127 {
3128 value_range vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
3129
3130 /* VRP only operates on integral and pointer types. */
3131 if (!(INTEGRAL_TYPE_P (op0_type)
3132 || POINTER_TYPE_P (op0_type))
3133 || !(INTEGRAL_TYPE_P (type)
3134 || POINTER_TYPE_P (type)))
3135 {
3136 set_value_range_to_varying (vr);
3137 return;
3138 }
3139
3140 /* If VR0 is UNDEFINED, so is the result. */
3141 if (vr0.type == VR_UNDEFINED)
3142 {
3143 set_value_range_to_undefined (vr);
3144 return;
3145 }
3146
3147 /* Handle operations that we express in terms of others. */
3148 if (code == PAREN_EXPR || code == OBJ_TYPE_REF)
3149 {
3150 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
3151 copy_value_range (vr, &vr0);
3152 return;
3153 }
3154 else if (code == NEGATE_EXPR)
3155 {
3156 /* -X is simply 0 - X, so re-use existing code that also handles
3157 anti-ranges fine. */
3158 value_range zero = VR_INITIALIZER;
3159 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
3160 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
3161 return;
3162 }
3163 else if (code == BIT_NOT_EXPR)
3164 {
3165 /* ~X is simply -1 - X, so re-use existing code that also handles
3166 anti-ranges fine. */
3167 value_range minusone = VR_INITIALIZER;
3168 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3169 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3170 type, &minusone, &vr0);
3171 return;
3172 }
3173
3174 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3175 and express op ~[] as (op []') U (op []''). */
3176 if (vr0.type == VR_ANTI_RANGE
3177 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
3178 {
3179 extract_range_from_unary_expr (vr, code, type, &vrtem0, op0_type);
3180 if (vrtem1.type != VR_UNDEFINED)
3181 {
3182 value_range vrres = VR_INITIALIZER;
3183 extract_range_from_unary_expr (&vrres, code, type,
3184 &vrtem1, op0_type);
3185 vrp_meet (vr, &vrres);
3186 }
3187 return;
3188 }
3189
3190 if (CONVERT_EXPR_CODE_P (code))
3191 {
3192 tree inner_type = op0_type;
3193 tree outer_type = type;
3194
3195 /* If the expression evaluates to a pointer, we are only interested in
3196 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3197 if (POINTER_TYPE_P (type))
3198 {
3199 if (range_is_nonnull (&vr0))
3200 set_value_range_to_nonnull (vr, type);
3201 else if (range_is_null (&vr0))
3202 set_value_range_to_null (vr, type);
3203 else
3204 set_value_range_to_varying (vr);
3205 return;
3206 }
3207
3208 /* If VR0 is varying and we increase the type precision, assume
3209 a full range for the following transformation. */
3210 if (vr0.type == VR_VARYING
3211 && INTEGRAL_TYPE_P (inner_type)
3212 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
3213 {
3214 vr0.type = VR_RANGE;
3215 vr0.min = TYPE_MIN_VALUE (inner_type);
3216 vr0.max = TYPE_MAX_VALUE (inner_type);
3217 }
3218
3219 /* If VR0 is a constant range or anti-range and the conversion is
3220 not truncating we can convert the min and max values and
3221 canonicalize the resulting range. Otherwise we can do the
3222 conversion if the size of the range is less than what the
3223 precision of the target type can represent and the range is
3224 not an anti-range. */
3225 if ((vr0.type == VR_RANGE
3226 || vr0.type == VR_ANTI_RANGE)
3227 && TREE_CODE (vr0.min) == INTEGER_CST
3228 && TREE_CODE (vr0.max) == INTEGER_CST
3229 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
3230 || (vr0.type == VR_RANGE
3231 && integer_zerop (int_const_binop (RSHIFT_EXPR,
3232 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
3233 size_int (TYPE_PRECISION (outer_type)))))))
3234 {
3235 tree new_min, new_max;
3236 new_min = force_fit_type (outer_type, wi::to_widest (vr0.min),
3237 0, false);
3238 new_max = force_fit_type (outer_type, wi::to_widest (vr0.max),
3239 0, false);
3240 set_and_canonicalize_value_range (vr, vr0.type,
3241 new_min, new_max, NULL);
3242 return;
3243 }
3244
3245 set_value_range_to_varying (vr);
3246 return;
3247 }
3248 else if (code == ABS_EXPR)
3249 {
3250 tree min, max;
3251 int cmp;
3252
3253 /* Pass through vr0 in the easy cases. */
3254 if (TYPE_UNSIGNED (type)
3255 || value_range_nonnegative_p (&vr0))
3256 {
3257 copy_value_range (vr, &vr0);
3258 return;
3259 }
3260
3261 /* For the remaining varying or symbolic ranges we can't do anything
3262 useful. */
3263 if (vr0.type == VR_VARYING
3264 || symbolic_range_p (&vr0))
3265 {
3266 set_value_range_to_varying (vr);
3267 return;
3268 }
3269
3270 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3271 useful range. */
3272 if (!TYPE_OVERFLOW_UNDEFINED (type)
3273 && ((vr0.type == VR_RANGE
3274 && vrp_val_is_min (vr0.min))
3275 || (vr0.type == VR_ANTI_RANGE
3276 && !vrp_val_is_min (vr0.min))))
3277 {
3278 set_value_range_to_varying (vr);
3279 return;
3280 }
3281
3282 /* ABS_EXPR may flip the range around, if the original range
3283 included negative values. */
3284 if (!vrp_val_is_min (vr0.min))
3285 min = fold_unary_to_constant (code, type, vr0.min);
3286 else
3287 min = TYPE_MAX_VALUE (type);
3288
3289 if (!vrp_val_is_min (vr0.max))
3290 max = fold_unary_to_constant (code, type, vr0.max);
3291 else
3292 max = TYPE_MAX_VALUE (type);
3293
3294 cmp = compare_values (min, max);
3295
3296 /* If a VR_ANTI_RANGEs contains zero, then we have
3297 ~[-INF, min(MIN, MAX)]. */
3298 if (vr0.type == VR_ANTI_RANGE)
3299 {
3300 if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3301 {
3302 /* Take the lower of the two values. */
3303 if (cmp != 1)
3304 max = min;
3305
3306 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3307 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3308 flag_wrapv is set and the original anti-range doesn't include
3309 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3310 if (TYPE_OVERFLOW_WRAPS (type))
3311 {
3312 tree type_min_value = TYPE_MIN_VALUE (type);
3313
3314 min = (vr0.min != type_min_value
3315 ? int_const_binop (PLUS_EXPR, type_min_value,
3316 build_int_cst (TREE_TYPE (type_min_value), 1))
3317 : type_min_value);
3318 }
3319 else
3320 min = TYPE_MIN_VALUE (type);
3321 }
3322 else
3323 {
3324 /* All else has failed, so create the range [0, INF], even for
3325 flag_wrapv since TYPE_MIN_VALUE is in the original
3326 anti-range. */
3327 vr0.type = VR_RANGE;
3328 min = build_int_cst (type, 0);
3329 max = TYPE_MAX_VALUE (type);
3330 }
3331 }
3332
3333 /* If the range contains zero then we know that the minimum value in the
3334 range will be zero. */
3335 else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3336 {
3337 if (cmp == 1)
3338 max = min;
3339 min = build_int_cst (type, 0);
3340 }
3341 else
3342 {
3343 /* If the range was reversed, swap MIN and MAX. */
3344 if (cmp == 1)
3345 std::swap (min, max);
3346 }
3347
3348 cmp = compare_values (min, max);
3349 if (cmp == -2 || cmp == 1)
3350 {
3351 /* If the new range has its limits swapped around (MIN > MAX),
3352 then the operation caused one of them to wrap around, mark
3353 the new range VARYING. */
3354 set_value_range_to_varying (vr);
3355 }
3356 else
3357 set_value_range (vr, vr0.type, min, max, NULL);
3358 return;
3359 }
3360
3361 /* For unhandled operations fall back to varying. */
3362 set_value_range_to_varying (vr);
3363 return;
3364 }
3365
3366
3367 /* Extract range information from a unary expression CODE OP0 based on
3368 the range of its operand with resulting type TYPE.
3369 The resulting range is stored in *VR. */
3370
3371 static void
3372 extract_range_from_unary_expr (value_range *vr, enum tree_code code,
3373 tree type, tree op0)
3374 {
3375 value_range vr0 = VR_INITIALIZER;
3376
3377 /* Get value ranges for the operand. For constant operands, create
3378 a new value range with the operand to simplify processing. */
3379 if (TREE_CODE (op0) == SSA_NAME)
3380 vr0 = *(get_value_range (op0));
3381 else if (is_gimple_min_invariant (op0))
3382 set_value_range_to_value (&vr0, op0, NULL);
3383 else
3384 set_value_range_to_varying (&vr0);
3385
3386 extract_range_from_unary_expr (vr, code, type, &vr0, TREE_TYPE (op0));
3387 }
3388
3389
3390 /* Extract range information from a conditional expression STMT based on
3391 the ranges of each of its operands and the expression code. */
3392
3393 static void
3394 extract_range_from_cond_expr (value_range *vr, gassign *stmt)
3395 {
3396 tree op0, op1;
3397 value_range vr0 = VR_INITIALIZER;
3398 value_range vr1 = VR_INITIALIZER;
3399
3400 /* Get value ranges for each operand. For constant operands, create
3401 a new value range with the operand to simplify processing. */
3402 op0 = gimple_assign_rhs2 (stmt);
3403 if (TREE_CODE (op0) == SSA_NAME)
3404 vr0 = *(get_value_range (op0));
3405 else if (is_gimple_min_invariant (op0))
3406 set_value_range_to_value (&vr0, op0, NULL);
3407 else
3408 set_value_range_to_varying (&vr0);
3409
3410 op1 = gimple_assign_rhs3 (stmt);
3411 if (TREE_CODE (op1) == SSA_NAME)
3412 vr1 = *(get_value_range (op1));
3413 else if (is_gimple_min_invariant (op1))
3414 set_value_range_to_value (&vr1, op1, NULL);
3415 else
3416 set_value_range_to_varying (&vr1);
3417
3418 /* The resulting value range is the union of the operand ranges */
3419 copy_value_range (vr, &vr0);
3420 vrp_meet (vr, &vr1);
3421 }
3422
3423
3424 /* Extract range information from a comparison expression EXPR based
3425 on the range of its operand and the expression code. */
3426
3427 static void
3428 extract_range_from_comparison (value_range *vr, enum tree_code code,
3429 tree type, tree op0, tree op1)
3430 {
3431 bool sop;
3432 tree val;
3433
3434 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3435 NULL);
3436 if (val)
3437 {
3438 /* Since this expression was found on the RHS of an assignment,
3439 its type may be different from _Bool. Convert VAL to EXPR's
3440 type. */
3441 val = fold_convert (type, val);
3442 if (is_gimple_min_invariant (val))
3443 set_value_range_to_value (vr, val, vr->equiv);
3444 else
3445 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3446 }
3447 else
3448 /* The result of a comparison is always true or false. */
3449 set_value_range_to_truthvalue (vr, type);
3450 }
3451
3452 /* Helper function for simplify_internal_call_using_ranges and
3453 extract_range_basic. Return true if OP0 SUBCODE OP1 for
3454 SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or
3455 always overflow. Set *OVF to true if it is known to always
3456 overflow. */
3457
3458 static bool
3459 check_for_binary_op_overflow (enum tree_code subcode, tree type,
3460 tree op0, tree op1, bool *ovf)
3461 {
3462 value_range vr0 = VR_INITIALIZER;
3463 value_range vr1 = VR_INITIALIZER;
3464 if (TREE_CODE (op0) == SSA_NAME)
3465 vr0 = *get_value_range (op0);
3466 else if (TREE_CODE (op0) == INTEGER_CST)
3467 set_value_range_to_value (&vr0, op0, NULL);
3468 else
3469 set_value_range_to_varying (&vr0);
3470
3471 if (TREE_CODE (op1) == SSA_NAME)
3472 vr1 = *get_value_range (op1);
3473 else if (TREE_CODE (op1) == INTEGER_CST)
3474 set_value_range_to_value (&vr1, op1, NULL);
3475 else
3476 set_value_range_to_varying (&vr1);
3477
3478 if (!range_int_cst_p (&vr0)
3479 || TREE_OVERFLOW (vr0.min)
3480 || TREE_OVERFLOW (vr0.max))
3481 {
3482 vr0.min = vrp_val_min (TREE_TYPE (op0));
3483 vr0.max = vrp_val_max (TREE_TYPE (op0));
3484 }
3485 if (!range_int_cst_p (&vr1)
3486 || TREE_OVERFLOW (vr1.min)
3487 || TREE_OVERFLOW (vr1.max))
3488 {
3489 vr1.min = vrp_val_min (TREE_TYPE (op1));
3490 vr1.max = vrp_val_max (TREE_TYPE (op1));
3491 }
3492 *ovf = arith_overflowed_p (subcode, type, vr0.min,
3493 subcode == MINUS_EXPR ? vr1.max : vr1.min);
3494 if (arith_overflowed_p (subcode, type, vr0.max,
3495 subcode == MINUS_EXPR ? vr1.min : vr1.max) != *ovf)
3496 return false;
3497 if (subcode == MULT_EXPR)
3498 {
3499 if (arith_overflowed_p (subcode, type, vr0.min, vr1.max) != *ovf
3500 || arith_overflowed_p (subcode, type, vr0.max, vr1.min) != *ovf)
3501 return false;
3502 }
3503 if (*ovf)
3504 {
3505 /* So far we found that there is an overflow on the boundaries.
3506 That doesn't prove that there is an overflow even for all values
3507 in between the boundaries. For that compute widest_int range
3508 of the result and see if it doesn't overlap the range of
3509 type. */
3510 widest_int wmin, wmax;
3511 widest_int w[4];
3512 int i;
3513 w[0] = wi::to_widest (vr0.min);
3514 w[1] = wi::to_widest (vr0.max);
3515 w[2] = wi::to_widest (vr1.min);
3516 w[3] = wi::to_widest (vr1.max);
3517 for (i = 0; i < 4; i++)
3518 {
3519 widest_int wt;
3520 switch (subcode)
3521 {
3522 case PLUS_EXPR:
3523 wt = wi::add (w[i & 1], w[2 + (i & 2) / 2]);
3524 break;
3525 case MINUS_EXPR:
3526 wt = wi::sub (w[i & 1], w[2 + (i & 2) / 2]);
3527 break;
3528 case MULT_EXPR:
3529 wt = wi::mul (w[i & 1], w[2 + (i & 2) / 2]);
3530 break;
3531 default:
3532 gcc_unreachable ();
3533 }
3534 if (i == 0)
3535 {
3536 wmin = wt;
3537 wmax = wt;
3538 }
3539 else
3540 {
3541 wmin = wi::smin (wmin, wt);
3542 wmax = wi::smax (wmax, wt);
3543 }
3544 }
3545 /* The result of op0 CODE op1 is known to be in range
3546 [wmin, wmax]. */
3547 widest_int wtmin = wi::to_widest (vrp_val_min (type));
3548 widest_int wtmax = wi::to_widest (vrp_val_max (type));
3549 /* If all values in [wmin, wmax] are smaller than
3550 [wtmin, wtmax] or all are larger than [wtmin, wtmax],
3551 the arithmetic operation will always overflow. */
3552 if (wmax < wtmin || wmin > wtmax)
3553 return true;
3554 return false;
3555 }
3556 return true;
3557 }
3558
3559 /* Try to derive a nonnegative or nonzero range out of STMT relying
3560 primarily on generic routines in fold in conjunction with range data.
3561 Store the result in *VR */
3562
3563 static void
3564 extract_range_basic (value_range *vr, gimple *stmt)
3565 {
3566 bool sop;
3567 tree type = gimple_expr_type (stmt);
3568
3569 if (is_gimple_call (stmt))
3570 {
3571 tree arg;
3572 int mini, maxi, zerov = 0, prec;
3573 enum tree_code subcode = ERROR_MARK;
3574 combined_fn cfn = gimple_call_combined_fn (stmt);
3575
3576 switch (cfn)
3577 {
3578 case CFN_BUILT_IN_CONSTANT_P:
3579 /* If the call is __builtin_constant_p and the argument is a
3580 function parameter resolve it to false. This avoids bogus
3581 array bound warnings.
3582 ??? We could do this as early as inlining is finished. */
3583 arg = gimple_call_arg (stmt, 0);
3584 if (TREE_CODE (arg) == SSA_NAME
3585 && SSA_NAME_IS_DEFAULT_DEF (arg)
3586 && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL
3587 && cfun->after_inlining)
3588 {
3589 set_value_range_to_null (vr, type);
3590 return;
3591 }
3592 break;
3593 /* Both __builtin_ffs* and __builtin_popcount return
3594 [0, prec]. */
3595 CASE_CFN_FFS:
3596 CASE_CFN_POPCOUNT:
3597 arg = gimple_call_arg (stmt, 0);
3598 prec = TYPE_PRECISION (TREE_TYPE (arg));
3599 mini = 0;
3600 maxi = prec;
3601 if (TREE_CODE (arg) == SSA_NAME)
3602 {
3603 value_range *vr0 = get_value_range (arg);
3604 /* If arg is non-zero, then ffs or popcount
3605 are non-zero. */
3606 if ((vr0->type == VR_RANGE
3607 && range_includes_zero_p (vr0->min, vr0->max) == 0)
3608 || (vr0->type == VR_ANTI_RANGE
3609 && range_includes_zero_p (vr0->min, vr0->max) == 1))
3610 mini = 1;
3611 /* If some high bits are known to be zero,
3612 we can decrease the maximum. */
3613 if (vr0->type == VR_RANGE
3614 && TREE_CODE (vr0->max) == INTEGER_CST
3615 && !operand_less_p (vr0->min,
3616 build_zero_cst (TREE_TYPE (vr0->min))))
3617 maxi = tree_floor_log2 (vr0->max) + 1;
3618 }
3619 goto bitop_builtin;
3620 /* __builtin_parity* returns [0, 1]. */
3621 CASE_CFN_PARITY:
3622 mini = 0;
3623 maxi = 1;
3624 goto bitop_builtin;
3625 /* __builtin_c[lt]z* return [0, prec-1], except for
3626 when the argument is 0, but that is undefined behavior.
3627 On many targets where the CLZ RTL or optab value is defined
3628 for 0 the value is prec, so include that in the range
3629 by default. */
3630 CASE_CFN_CLZ:
3631 arg = gimple_call_arg (stmt, 0);
3632 prec = TYPE_PRECISION (TREE_TYPE (arg));
3633 mini = 0;
3634 maxi = prec;
3635 if (optab_handler (clz_optab, TYPE_MODE (TREE_TYPE (arg)))
3636 != CODE_FOR_nothing
3637 && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3638 zerov)
3639 /* Handle only the single common value. */
3640 && zerov != prec)
3641 /* Magic value to give up, unless vr0 proves
3642 arg is non-zero. */
3643 mini = -2;
3644 if (TREE_CODE (arg) == SSA_NAME)
3645 {
3646 value_range *vr0 = get_value_range (arg);
3647 /* From clz of VR_RANGE minimum we can compute
3648 result maximum. */
3649 if (vr0->type == VR_RANGE
3650 && TREE_CODE (vr0->min) == INTEGER_CST)
3651 {
3652 maxi = prec - 1 - tree_floor_log2 (vr0->min);
3653 if (maxi != prec)
3654 mini = 0;
3655 }
3656 else if (vr0->type == VR_ANTI_RANGE
3657 && integer_zerop (vr0->min))
3658 {
3659 maxi = prec - 1;
3660 mini = 0;
3661 }
3662 if (mini == -2)
3663 break;
3664 /* From clz of VR_RANGE maximum we can compute
3665 result minimum. */
3666 if (vr0->type == VR_RANGE
3667 && TREE_CODE (vr0->max) == INTEGER_CST)
3668 {
3669 mini = prec - 1 - tree_floor_log2 (vr0->max);
3670 if (mini == prec)
3671 break;
3672 }
3673 }
3674 if (mini == -2)
3675 break;
3676 goto bitop_builtin;
3677 /* __builtin_ctz* return [0, prec-1], except for
3678 when the argument is 0, but that is undefined behavior.
3679 If there is a ctz optab for this mode and
3680 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
3681 otherwise just assume 0 won't be seen. */
3682 CASE_CFN_CTZ:
3683 arg = gimple_call_arg (stmt, 0);
3684 prec = TYPE_PRECISION (TREE_TYPE (arg));
3685 mini = 0;
3686 maxi = prec - 1;
3687 if (optab_handler (ctz_optab, TYPE_MODE (TREE_TYPE (arg)))
3688 != CODE_FOR_nothing
3689 && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3690 zerov))
3691 {
3692 /* Handle only the two common values. */
3693 if (zerov == -1)
3694 mini = -1;
3695 else if (zerov == prec)
3696 maxi = prec;
3697 else
3698 /* Magic value to give up, unless vr0 proves
3699 arg is non-zero. */
3700 mini = -2;
3701 }
3702 if (TREE_CODE (arg) == SSA_NAME)
3703 {
3704 value_range *vr0 = get_value_range (arg);
3705 /* If arg is non-zero, then use [0, prec - 1]. */
3706 if ((vr0->type == VR_RANGE
3707 && integer_nonzerop (vr0->min))
3708 || (vr0->type == VR_ANTI_RANGE
3709 && integer_zerop (vr0->min)))
3710 {
3711 mini = 0;
3712 maxi = prec - 1;
3713 }
3714 /* If some high bits are known to be zero,
3715 we can decrease the result maximum. */
3716 if (vr0->type == VR_RANGE
3717 && TREE_CODE (vr0->max) == INTEGER_CST)
3718 {
3719 maxi = tree_floor_log2 (vr0->max);
3720 /* For vr0 [0, 0] give up. */
3721 if (maxi == -1)
3722 break;
3723 }
3724 }
3725 if (mini == -2)
3726 break;
3727 goto bitop_builtin;
3728 /* __builtin_clrsb* returns [0, prec-1]. */
3729 CASE_CFN_CLRSB:
3730 arg = gimple_call_arg (stmt, 0);
3731 prec = TYPE_PRECISION (TREE_TYPE (arg));
3732 mini = 0;
3733 maxi = prec - 1;
3734 goto bitop_builtin;
3735 bitop_builtin:
3736 set_value_range (vr, VR_RANGE, build_int_cst (type, mini),
3737 build_int_cst (type, maxi), NULL);
3738 return;
3739 case CFN_UBSAN_CHECK_ADD:
3740 subcode = PLUS_EXPR;
3741 break;
3742 case CFN_UBSAN_CHECK_SUB:
3743 subcode = MINUS_EXPR;
3744 break;
3745 case CFN_UBSAN_CHECK_MUL:
3746 subcode = MULT_EXPR;
3747 break;
3748 case CFN_GOACC_DIM_SIZE:
3749 case CFN_GOACC_DIM_POS:
3750 /* Optimizing these two internal functions helps the loop
3751 optimizer eliminate outer comparisons. Size is [1,N]
3752 and pos is [0,N-1]. */
3753 {
3754 bool is_pos = cfn == CFN_GOACC_DIM_POS;
3755 int axis = oacc_get_ifn_dim_arg (stmt);
3756 int size = oacc_get_fn_dim_size (current_function_decl, axis);
3757
3758 if (!size)
3759 /* If it's dynamic, the backend might know a hardware
3760 limitation. */
3761 size = targetm.goacc.dim_limit (axis);
3762
3763 tree type = TREE_TYPE (gimple_call_lhs (stmt));
3764 set_value_range (vr, VR_RANGE,
3765 build_int_cst (type, is_pos ? 0 : 1),
3766 size ? build_int_cst (type, size - is_pos)
3767 : vrp_val_max (type), NULL);
3768 }
3769 return;
3770 case CFN_BUILT_IN_STRLEN:
3771 if (tree lhs = gimple_call_lhs (stmt))
3772 if (ptrdiff_type_node
3773 && (TYPE_PRECISION (ptrdiff_type_node)
3774 == TYPE_PRECISION (TREE_TYPE (lhs))))
3775 {
3776 tree type = TREE_TYPE (lhs);
3777 tree max = vrp_val_max (ptrdiff_type_node);
3778 wide_int wmax = wi::to_wide (max, TYPE_PRECISION (TREE_TYPE (max)));
3779 tree range_min = build_zero_cst (type);
3780 tree range_max = wide_int_to_tree (type, wmax - 1);
3781 set_value_range (vr, VR_RANGE, range_min, range_max, NULL);
3782 return;
3783 }
3784 break;
3785 default:
3786 break;
3787 }
3788 if (subcode != ERROR_MARK)
3789 {
3790 bool saved_flag_wrapv = flag_wrapv;
3791 /* Pretend the arithmetics is wrapping. If there is
3792 any overflow, we'll complain, but will actually do
3793 wrapping operation. */
3794 flag_wrapv = 1;
3795 extract_range_from_binary_expr (vr, subcode, type,
3796 gimple_call_arg (stmt, 0),
3797 gimple_call_arg (stmt, 1));
3798 flag_wrapv = saved_flag_wrapv;
3799
3800 /* If for both arguments vrp_valueize returned non-NULL,
3801 this should have been already folded and if not, it
3802 wasn't folded because of overflow. Avoid removing the
3803 UBSAN_CHECK_* calls in that case. */
3804 if (vr->type == VR_RANGE
3805 && (vr->min == vr->max
3806 || operand_equal_p (vr->min, vr->max, 0)))
3807 set_value_range_to_varying (vr);
3808 return;
3809 }
3810 }
3811 /* Handle extraction of the two results (result of arithmetics and
3812 a flag whether arithmetics overflowed) from {ADD,SUB,MUL}_OVERFLOW
3813 internal function. Similarly from ATOMIC_COMPARE_EXCHANGE. */
3814 else if (is_gimple_assign (stmt)
3815 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
3816 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
3817 && INTEGRAL_TYPE_P (type))
3818 {
3819 enum tree_code code = gimple_assign_rhs_code (stmt);
3820 tree op = gimple_assign_rhs1 (stmt);
3821 if (TREE_CODE (op) == code && TREE_CODE (TREE_OPERAND (op, 0)) == SSA_NAME)
3822 {
3823 gimple *g = SSA_NAME_DEF_STMT (TREE_OPERAND (op, 0));
3824 if (is_gimple_call (g) && gimple_call_internal_p (g))
3825 {
3826 enum tree_code subcode = ERROR_MARK;
3827 switch (gimple_call_internal_fn (g))
3828 {
3829 case IFN_ADD_OVERFLOW:
3830 subcode = PLUS_EXPR;
3831 break;
3832 case IFN_SUB_OVERFLOW:
3833 subcode = MINUS_EXPR;
3834 break;
3835 case IFN_MUL_OVERFLOW:
3836 subcode = MULT_EXPR;
3837 break;
3838 case IFN_ATOMIC_COMPARE_EXCHANGE:
3839 if (code == IMAGPART_EXPR)
3840 {
3841 /* This is the boolean return value whether compare and
3842 exchange changed anything or not. */
3843 set_value_range (vr, VR_RANGE, build_int_cst (type, 0),
3844 build_int_cst (type, 1), NULL);
3845 return;
3846 }
3847 break;
3848 default:
3849 break;
3850 }
3851 if (subcode != ERROR_MARK)
3852 {
3853 tree op0 = gimple_call_arg (g, 0);
3854 tree op1 = gimple_call_arg (g, 1);
3855 if (code == IMAGPART_EXPR)
3856 {
3857 bool ovf = false;
3858 if (check_for_binary_op_overflow (subcode, type,
3859 op0, op1, &ovf))
3860 set_value_range_to_value (vr,
3861 build_int_cst (type, ovf),
3862 NULL);
3863 else if (TYPE_PRECISION (type) == 1
3864 && !TYPE_UNSIGNED (type))
3865 set_value_range_to_varying (vr);
3866 else
3867 set_value_range (vr, VR_RANGE, build_int_cst (type, 0),
3868 build_int_cst (type, 1), NULL);
3869 }
3870 else if (types_compatible_p (type, TREE_TYPE (op0))
3871 && types_compatible_p (type, TREE_TYPE (op1)))
3872 {
3873 bool saved_flag_wrapv = flag_wrapv;
3874 /* Pretend the arithmetics is wrapping. If there is
3875 any overflow, IMAGPART_EXPR will be set. */
3876 flag_wrapv = 1;
3877 extract_range_from_binary_expr (vr, subcode, type,
3878 op0, op1);
3879 flag_wrapv = saved_flag_wrapv;
3880 }
3881 else
3882 {
3883 value_range vr0 = VR_INITIALIZER;
3884 value_range vr1 = VR_INITIALIZER;
3885 bool saved_flag_wrapv = flag_wrapv;
3886 /* Pretend the arithmetics is wrapping. If there is
3887 any overflow, IMAGPART_EXPR will be set. */
3888 flag_wrapv = 1;
3889 extract_range_from_unary_expr (&vr0, NOP_EXPR,
3890 type, op0);
3891 extract_range_from_unary_expr (&vr1, NOP_EXPR,
3892 type, op1);
3893 extract_range_from_binary_expr_1 (vr, subcode, type,
3894 &vr0, &vr1);
3895 flag_wrapv = saved_flag_wrapv;
3896 }
3897 return;
3898 }
3899 }
3900 }
3901 }
3902 if (INTEGRAL_TYPE_P (type)
3903 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3904 set_value_range_to_nonnegative (vr, type);
3905 else if (vrp_stmt_computes_nonzero (stmt))
3906 set_value_range_to_nonnull (vr, type);
3907 else
3908 set_value_range_to_varying (vr);
3909 }
3910
3911
3912 /* Try to compute a useful range out of assignment STMT and store it
3913 in *VR. */
3914
3915 static void
3916 extract_range_from_assignment (value_range *vr, gassign *stmt)
3917 {
3918 enum tree_code code = gimple_assign_rhs_code (stmt);
3919
3920 if (code == ASSERT_EXPR)
3921 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3922 else if (code == SSA_NAME)
3923 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3924 else if (TREE_CODE_CLASS (code) == tcc_binary)
3925 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3926 gimple_expr_type (stmt),
3927 gimple_assign_rhs1 (stmt),
3928 gimple_assign_rhs2 (stmt));
3929 else if (TREE_CODE_CLASS (code) == tcc_unary)
3930 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3931 gimple_expr_type (stmt),
3932 gimple_assign_rhs1 (stmt));
3933 else if (code == COND_EXPR)
3934 extract_range_from_cond_expr (vr, stmt);
3935 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3936 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3937 gimple_expr_type (stmt),
3938 gimple_assign_rhs1 (stmt),
3939 gimple_assign_rhs2 (stmt));
3940 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3941 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3942 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3943 else
3944 set_value_range_to_varying (vr);
3945
3946 if (vr->type == VR_VARYING)
3947 extract_range_basic (vr, stmt);
3948 }
3949
3950 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3951 would be profitable to adjust VR using scalar evolution information
3952 for VAR. If so, update VR with the new limits. */
3953
3954 static void
3955 adjust_range_with_scev (value_range *vr, struct loop *loop,
3956 gimple *stmt, tree var)
3957 {
3958 tree init, step, chrec, tmin, tmax, min, max, type, tem;
3959 enum ev_direction dir;
3960
3961 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3962 better opportunities than a regular range, but I'm not sure. */
3963 if (vr->type == VR_ANTI_RANGE)
3964 return;
3965
3966 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3967
3968 /* Like in PR19590, scev can return a constant function. */
3969 if (is_gimple_min_invariant (chrec))
3970 {
3971 set_value_range_to_value (vr, chrec, vr->equiv);
3972 return;
3973 }
3974
3975 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3976 return;
3977
3978 init = initial_condition_in_loop_num (chrec, loop->num);
3979 tem = op_with_constant_singleton_value_range (init);
3980 if (tem)
3981 init = tem;
3982 step = evolution_part_in_loop_num (chrec, loop->num);
3983 tem = op_with_constant_singleton_value_range (step);
3984 if (tem)
3985 step = tem;
3986
3987 /* If STEP is symbolic, we can't know whether INIT will be the
3988 minimum or maximum value in the range. Also, unless INIT is
3989 a simple expression, compare_values and possibly other functions
3990 in tree-vrp won't be able to handle it. */
3991 if (step == NULL_TREE
3992 || !is_gimple_min_invariant (step)
3993 || !valid_value_p (init))
3994 return;
3995
3996 dir = scev_direction (chrec);
3997 if (/* Do not adjust ranges if we do not know whether the iv increases
3998 or decreases, ... */
3999 dir == EV_DIR_UNKNOWN
4000 /* ... or if it may wrap. */
4001 || scev_probably_wraps_p (NULL_TREE, init, step, stmt,
4002 get_chrec_loop (chrec), true))
4003 return;
4004
4005 type = TREE_TYPE (var);
4006 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
4007 tmin = lower_bound_in_type (type, type);
4008 else
4009 tmin = TYPE_MIN_VALUE (type);
4010 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
4011 tmax = upper_bound_in_type (type, type);
4012 else
4013 tmax = TYPE_MAX_VALUE (type);
4014
4015 /* Try to use estimated number of iterations for the loop to constrain the
4016 final value in the evolution. */
4017 if (TREE_CODE (step) == INTEGER_CST
4018 && is_gimple_val (init)
4019 && (TREE_CODE (init) != SSA_NAME
4020 || get_value_range (init)->type == VR_RANGE))
4021 {
4022 widest_int nit;
4023
4024 /* We are only entering here for loop header PHI nodes, so using
4025 the number of latch executions is the correct thing to use. */
4026 if (max_loop_iterations (loop, &nit))
4027 {
4028 value_range maxvr = VR_INITIALIZER;
4029 signop sgn = TYPE_SIGN (TREE_TYPE (step));
4030 bool overflow;
4031
4032 widest_int wtmp = wi::mul (wi::to_widest (step), nit, sgn,
4033 &overflow);
4034 /* If the multiplication overflowed we can't do a meaningful
4035 adjustment. Likewise if the result doesn't fit in the type
4036 of the induction variable. For a signed type we have to
4037 check whether the result has the expected signedness which
4038 is that of the step as number of iterations is unsigned. */
4039 if (!overflow
4040 && wi::fits_to_tree_p (wtmp, TREE_TYPE (init))
4041 && (sgn == UNSIGNED
4042 || wi::gts_p (wtmp, 0) == wi::gts_p (step, 0)))
4043 {
4044 tem = wide_int_to_tree (TREE_TYPE (init), wtmp);
4045 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
4046 TREE_TYPE (init), init, tem);
4047 /* Likewise if the addition did. */
4048 if (maxvr.type == VR_RANGE)
4049 {
4050 value_range initvr = VR_INITIALIZER;
4051
4052 if (TREE_CODE (init) == SSA_NAME)
4053 initvr = *(get_value_range (init));
4054 else if (is_gimple_min_invariant (init))
4055 set_value_range_to_value (&initvr, init, NULL);
4056 else
4057 return;
4058
4059 /* Check if init + nit * step overflows. Though we checked
4060 scev {init, step}_loop doesn't wrap, it is not enough
4061 because the loop may exit immediately. Overflow could
4062 happen in the plus expression in this case. */
4063 if ((dir == EV_DIR_DECREASES
4064 && compare_values (maxvr.min, initvr.min) != -1)
4065 || (dir == EV_DIR_GROWS
4066 && compare_values (maxvr.max, initvr.max) != 1))
4067 return;
4068
4069 tmin = maxvr.min;
4070 tmax = maxvr.max;
4071 }
4072 }
4073 }
4074 }
4075
4076 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4077 {
4078 min = tmin;
4079 max = tmax;
4080
4081 /* For VARYING or UNDEFINED ranges, just about anything we get
4082 from scalar evolutions should be better. */
4083
4084 if (dir == EV_DIR_DECREASES)
4085 max = init;
4086 else
4087 min = init;
4088 }
4089 else if (vr->type == VR_RANGE)
4090 {
4091 min = vr->min;
4092 max = vr->max;
4093
4094 if (dir == EV_DIR_DECREASES)
4095 {
4096 /* INIT is the maximum value. If INIT is lower than VR->MAX
4097 but no smaller than VR->MIN, set VR->MAX to INIT. */
4098 if (compare_values (init, max) == -1)
4099 max = init;
4100
4101 /* According to the loop information, the variable does not
4102 overflow. */
4103 if (compare_values (min, tmin) == -1)
4104 min = tmin;
4105
4106 }
4107 else
4108 {
4109 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
4110 if (compare_values (init, min) == 1)
4111 min = init;
4112
4113 if (compare_values (tmax, max) == -1)
4114 max = tmax;
4115 }
4116 }
4117 else
4118 return;
4119
4120 /* If we just created an invalid range with the minimum
4121 greater than the maximum, we fail conservatively.
4122 This should happen only in unreachable
4123 parts of code, or for invalid programs. */
4124 if (compare_values (min, max) == 1)
4125 return;
4126
4127 /* Even for valid range info, sometimes overflow flag will leak in.
4128 As GIMPLE IL should have no constants with TREE_OVERFLOW set, we
4129 drop them. */
4130 if (TREE_OVERFLOW_P (min))
4131 min = drop_tree_overflow (min);
4132 if (TREE_OVERFLOW_P (max))
4133 max = drop_tree_overflow (max);
4134
4135 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
4136 }
4137
4138
4139 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
4140
4141 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4142 all the values in the ranges.
4143
4144 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4145
4146 - Return NULL_TREE if it is not always possible to determine the
4147 value of the comparison.
4148
4149 Also set *STRICT_OVERFLOW_P to indicate whether comparision evaluation
4150 assumed signed overflow is undefined. */
4151
4152
4153 static tree
4154 compare_ranges (enum tree_code comp, value_range *vr0, value_range *vr1,
4155 bool *strict_overflow_p)
4156 {
4157 /* VARYING or UNDEFINED ranges cannot be compared. */
4158 if (vr0->type == VR_VARYING
4159 || vr0->type == VR_UNDEFINED
4160 || vr1->type == VR_VARYING
4161 || vr1->type == VR_UNDEFINED)
4162 return NULL_TREE;
4163
4164 /* Anti-ranges need to be handled separately. */
4165 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4166 {
4167 /* If both are anti-ranges, then we cannot compute any
4168 comparison. */
4169 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4170 return NULL_TREE;
4171
4172 /* These comparisons are never statically computable. */
4173 if (comp == GT_EXPR
4174 || comp == GE_EXPR
4175 || comp == LT_EXPR
4176 || comp == LE_EXPR)
4177 return NULL_TREE;
4178
4179 /* Equality can be computed only between a range and an
4180 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
4181 if (vr0->type == VR_RANGE)
4182 {
4183 /* To simplify processing, make VR0 the anti-range. */
4184 value_range *tmp = vr0;
4185 vr0 = vr1;
4186 vr1 = tmp;
4187 }
4188
4189 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
4190
4191 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
4192 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
4193 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4194
4195 return NULL_TREE;
4196 }
4197
4198 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4199 operands around and change the comparison code. */
4200 if (comp == GT_EXPR || comp == GE_EXPR)
4201 {
4202 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
4203 std::swap (vr0, vr1);
4204 }
4205
4206 if (comp == EQ_EXPR)
4207 {
4208 /* Equality may only be computed if both ranges represent
4209 exactly one value. */
4210 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
4211 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
4212 {
4213 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
4214 strict_overflow_p);
4215 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
4216 strict_overflow_p);
4217 if (cmp_min == 0 && cmp_max == 0)
4218 return boolean_true_node;
4219 else if (cmp_min != -2 && cmp_max != -2)
4220 return boolean_false_node;
4221 }
4222 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
4223 else if (compare_values_warnv (vr0->min, vr1->max,
4224 strict_overflow_p) == 1
4225 || compare_values_warnv (vr1->min, vr0->max,
4226 strict_overflow_p) == 1)
4227 return boolean_false_node;
4228
4229 return NULL_TREE;
4230 }
4231 else if (comp == NE_EXPR)
4232 {
4233 int cmp1, cmp2;
4234
4235 /* If VR0 is completely to the left or completely to the right
4236 of VR1, they are always different. Notice that we need to
4237 make sure that both comparisons yield similar results to
4238 avoid comparing values that cannot be compared at
4239 compile-time. */
4240 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4241 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4242 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
4243 return boolean_true_node;
4244
4245 /* If VR0 and VR1 represent a single value and are identical,
4246 return false. */
4247 else if (compare_values_warnv (vr0->min, vr0->max,
4248 strict_overflow_p) == 0
4249 && compare_values_warnv (vr1->min, vr1->max,
4250 strict_overflow_p) == 0
4251 && compare_values_warnv (vr0->min, vr1->min,
4252 strict_overflow_p) == 0
4253 && compare_values_warnv (vr0->max, vr1->max,
4254 strict_overflow_p) == 0)
4255 return boolean_false_node;
4256
4257 /* Otherwise, they may or may not be different. */
4258 else
4259 return NULL_TREE;
4260 }
4261 else if (comp == LT_EXPR || comp == LE_EXPR)
4262 {
4263 int tst;
4264
4265 /* If VR0 is to the left of VR1, return true. */
4266 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4267 if ((comp == LT_EXPR && tst == -1)
4268 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4269 return boolean_true_node;
4270
4271 /* If VR0 is to the right of VR1, return false. */
4272 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4273 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4274 || (comp == LE_EXPR && tst == 1))
4275 return boolean_false_node;
4276
4277 /* Otherwise, we don't know. */
4278 return NULL_TREE;
4279 }
4280
4281 gcc_unreachable ();
4282 }
4283
4284
4285 /* Given a value range VR, a value VAL and a comparison code COMP, return
4286 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4287 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4288 always returns false. Return NULL_TREE if it is not always
4289 possible to determine the value of the comparison. Also set
4290 *STRICT_OVERFLOW_P to indicate whether comparision evaluation
4291 assumed signed overflow is undefined. */
4292
4293 static tree
4294 compare_range_with_value (enum tree_code comp, value_range *vr, tree val,
4295 bool *strict_overflow_p)
4296 {
4297 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4298 return NULL_TREE;
4299
4300 /* Anti-ranges need to be handled separately. */
4301 if (vr->type == VR_ANTI_RANGE)
4302 {
4303 /* For anti-ranges, the only predicates that we can compute at
4304 compile time are equality and inequality. */
4305 if (comp == GT_EXPR
4306 || comp == GE_EXPR
4307 || comp == LT_EXPR
4308 || comp == LE_EXPR)
4309 return NULL_TREE;
4310
4311 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4312 if (value_inside_range (val, vr->min, vr->max) == 1)
4313 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4314
4315 return NULL_TREE;
4316 }
4317
4318 if (comp == EQ_EXPR)
4319 {
4320 /* EQ_EXPR may only be computed if VR represents exactly
4321 one value. */
4322 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
4323 {
4324 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
4325 if (cmp == 0)
4326 return boolean_true_node;
4327 else if (cmp == -1 || cmp == 1 || cmp == 2)
4328 return boolean_false_node;
4329 }
4330 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
4331 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
4332 return boolean_false_node;
4333
4334 return NULL_TREE;
4335 }
4336 else if (comp == NE_EXPR)
4337 {
4338 /* If VAL is not inside VR, then they are always different. */
4339 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
4340 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
4341 return boolean_true_node;
4342
4343 /* If VR represents exactly one value equal to VAL, then return
4344 false. */
4345 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
4346 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
4347 return boolean_false_node;
4348
4349 /* Otherwise, they may or may not be different. */
4350 return NULL_TREE;
4351 }
4352 else if (comp == LT_EXPR || comp == LE_EXPR)
4353 {
4354 int tst;
4355
4356 /* If VR is to the left of VAL, return true. */
4357 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4358 if ((comp == LT_EXPR && tst == -1)
4359 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4360 return boolean_true_node;
4361
4362 /* If VR is to the right of VAL, return false. */
4363 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4364 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4365 || (comp == LE_EXPR && tst == 1))
4366 return boolean_false_node;
4367
4368 /* Otherwise, we don't know. */
4369 return NULL_TREE;
4370 }
4371 else if (comp == GT_EXPR || comp == GE_EXPR)
4372 {
4373 int tst;
4374
4375 /* If VR is to the right of VAL, return true. */
4376 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4377 if ((comp == GT_EXPR && tst == 1)
4378 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
4379 return boolean_true_node;
4380
4381 /* If VR is to the left of VAL, return false. */
4382 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4383 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
4384 || (comp == GE_EXPR && tst == -1))
4385 return boolean_false_node;
4386
4387 /* Otherwise, we don't know. */
4388 return NULL_TREE;
4389 }
4390
4391 gcc_unreachable ();
4392 }
4393
4394
4395 /* Debugging dumps. */
4396
4397 void dump_value_range (FILE *, const value_range *);
4398 void debug_value_range (value_range *);
4399 void dump_all_value_ranges (FILE *);
4400 void debug_all_value_ranges (void);
4401 void dump_vr_equiv (FILE *, bitmap);
4402 void debug_vr_equiv (bitmap);
4403
4404
4405 /* Dump value range VR to FILE. */
4406
4407 void
4408 dump_value_range (FILE *file, const value_range *vr)
4409 {
4410 if (vr == NULL)
4411 fprintf (file, "[]");
4412 else if (vr->type == VR_UNDEFINED)
4413 fprintf (file, "UNDEFINED");
4414 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4415 {
4416 tree type = TREE_TYPE (vr->min);
4417
4418 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
4419
4420 if (INTEGRAL_TYPE_P (type)
4421 && !TYPE_UNSIGNED (type)
4422 && vrp_val_is_min (vr->min))
4423 fprintf (file, "-INF");
4424 else
4425 print_generic_expr (file, vr->min);
4426
4427 fprintf (file, ", ");
4428
4429 if (INTEGRAL_TYPE_P (type)
4430 && vrp_val_is_max (vr->max))
4431 fprintf (file, "+INF");
4432 else
4433 print_generic_expr (file, vr->max);
4434
4435 fprintf (file, "]");
4436
4437 if (vr->equiv)
4438 {
4439 bitmap_iterator bi;
4440 unsigned i, c = 0;
4441
4442 fprintf (file, " EQUIVALENCES: { ");
4443
4444 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
4445 {
4446 print_generic_expr (file, ssa_name (i));
4447 fprintf (file, " ");
4448 c++;
4449 }
4450
4451 fprintf (file, "} (%u elements)", c);
4452 }
4453 }
4454 else if (vr->type == VR_VARYING)
4455 fprintf (file, "VARYING");
4456 else
4457 fprintf (file, "INVALID RANGE");
4458 }
4459
4460
4461 /* Dump value range VR to stderr. */
4462
4463 DEBUG_FUNCTION void
4464 debug_value_range (value_range *vr)
4465 {
4466 dump_value_range (stderr, vr);
4467 fprintf (stderr, "\n");
4468 }
4469
4470
4471 /* Dump value ranges of all SSA_NAMEs to FILE. */
4472
4473 void
4474 dump_all_value_ranges (FILE *file)
4475 {
4476 size_t i;
4477
4478 for (i = 0; i < num_vr_values; i++)
4479 {
4480 if (vr_value[i])
4481 {
4482 print_generic_expr (file, ssa_name (i));
4483 fprintf (file, ": ");
4484 dump_value_range (file, vr_value[i]);
4485 fprintf (file, "\n");
4486 }
4487 }
4488
4489 fprintf (file, "\n");
4490 }
4491
4492
4493 /* Dump all value ranges to stderr. */
4494
4495 DEBUG_FUNCTION void
4496 debug_all_value_ranges (void)
4497 {
4498 dump_all_value_ranges (stderr);
4499 }
4500
4501
4502 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4503 create a new SSA name N and return the assertion assignment
4504 'N = ASSERT_EXPR <V, V OP W>'. */
4505
4506 static gimple *
4507 build_assert_expr_for (tree cond, tree v)
4508 {
4509 tree a;
4510 gassign *assertion;
4511
4512 gcc_assert (TREE_CODE (v) == SSA_NAME
4513 && COMPARISON_CLASS_P (cond));
4514
4515 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
4516 assertion = gimple_build_assign (NULL_TREE, a);
4517
4518 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4519 operand of the ASSERT_EXPR. Create it so the new name and the old one
4520 are registered in the replacement table so that we can fix the SSA web
4521 after adding all the ASSERT_EXPRs. */
4522 create_new_def_for (v, assertion, NULL);
4523
4524 return assertion;
4525 }
4526
4527
4528 /* Return false if EXPR is a predicate expression involving floating
4529 point values. */
4530
4531 static inline bool
4532 fp_predicate (gimple *stmt)
4533 {
4534 GIMPLE_CHECK (stmt, GIMPLE_COND);
4535
4536 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4537 }
4538
4539 /* If the range of values taken by OP can be inferred after STMT executes,
4540 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4541 describes the inferred range. Return true if a range could be
4542 inferred. */
4543
4544 static bool
4545 infer_value_range (gimple *stmt, tree op, tree_code *comp_code_p, tree *val_p)
4546 {
4547 *val_p = NULL_TREE;
4548 *comp_code_p = ERROR_MARK;
4549
4550 /* Do not attempt to infer anything in names that flow through
4551 abnormal edges. */
4552 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4553 return false;
4554
4555 /* If STMT is the last statement of a basic block with no normal
4556 successors, there is no point inferring anything about any of its
4557 operands. We would not be able to find a proper insertion point
4558 for the assertion, anyway. */
4559 if (stmt_ends_bb_p (stmt))
4560 {
4561 edge_iterator ei;
4562 edge e;
4563
4564 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
4565 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
4566 break;
4567 if (e == NULL)
4568 return false;
4569 }
4570
4571 if (infer_nonnull_range (stmt, op))
4572 {
4573 *val_p = build_int_cst (TREE_TYPE (op), 0);
4574 *comp_code_p = NE_EXPR;
4575 return true;
4576 }
4577
4578 return false;
4579 }
4580
4581
4582 void dump_asserts_for (FILE *, tree);
4583 void debug_asserts_for (tree);
4584 void dump_all_asserts (FILE *);
4585 void debug_all_asserts (void);
4586
4587 /* Dump all the registered assertions for NAME to FILE. */
4588
4589 void
4590 dump_asserts_for (FILE *file, tree name)
4591 {
4592 assert_locus *loc;
4593
4594 fprintf (file, "Assertions to be inserted for ");
4595 print_generic_expr (file, name);
4596 fprintf (file, "\n");
4597
4598 loc = asserts_for[SSA_NAME_VERSION (name)];
4599 while (loc)
4600 {
4601 fprintf (file, "\t");
4602 print_gimple_stmt (file, gsi_stmt (loc->si), 0);
4603 fprintf (file, "\n\tBB #%d", loc->bb->index);
4604 if (loc->e)
4605 {
4606 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4607 loc->e->dest->index);
4608 dump_edge_info (file, loc->e, dump_flags, 0);
4609 }
4610 fprintf (file, "\n\tPREDICATE: ");
4611 print_generic_expr (file, loc->expr);
4612 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
4613 print_generic_expr (file, loc->val);
4614 fprintf (file, "\n\n");
4615 loc = loc->next;
4616 }
4617
4618 fprintf (file, "\n");
4619 }
4620
4621
4622 /* Dump all the registered assertions for NAME to stderr. */
4623
4624 DEBUG_FUNCTION void
4625 debug_asserts_for (tree name)
4626 {
4627 dump_asserts_for (stderr, name);
4628 }
4629
4630
4631 /* Dump all the registered assertions for all the names to FILE. */
4632
4633 void
4634 dump_all_asserts (FILE *file)
4635 {
4636 unsigned i;
4637 bitmap_iterator bi;
4638
4639 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4640 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4641 dump_asserts_for (file, ssa_name (i));
4642 fprintf (file, "\n");
4643 }
4644
4645
4646 /* Dump all the registered assertions for all the names to stderr. */
4647
4648 DEBUG_FUNCTION void
4649 debug_all_asserts (void)
4650 {
4651 dump_all_asserts (stderr);
4652 }
4653
4654 /* Push the assert info for NAME, EXPR, COMP_CODE and VAL to ASSERTS. */
4655
4656 static void
4657 add_assert_info (vec<assert_info> &asserts,
4658 tree name, tree expr, enum tree_code comp_code, tree val)
4659 {
4660 assert_info info;
4661 info.comp_code = comp_code;
4662 info.name = name;
4663 info.val = val;
4664 info.expr = expr;
4665 asserts.safe_push (info);
4666 }
4667
4668 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4669 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4670 E->DEST, then register this location as a possible insertion point
4671 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4672
4673 BB, E and SI provide the exact insertion point for the new
4674 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4675 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4676 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4677 must not be NULL. */
4678
4679 static void
4680 register_new_assert_for (tree name, tree expr,
4681 enum tree_code comp_code,
4682 tree val,
4683 basic_block bb,
4684 edge e,
4685 gimple_stmt_iterator si)
4686 {
4687 assert_locus *n, *loc, *last_loc;
4688 basic_block dest_bb;
4689
4690 gcc_checking_assert (bb == NULL || e == NULL);
4691
4692 if (e == NULL)
4693 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4694 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4695
4696 /* Never build an assert comparing against an integer constant with
4697 TREE_OVERFLOW set. This confuses our undefined overflow warning
4698 machinery. */
4699 if (TREE_OVERFLOW_P (val))
4700 val = drop_tree_overflow (val);
4701
4702 /* The new assertion A will be inserted at BB or E. We need to
4703 determine if the new location is dominated by a previously
4704 registered location for A. If we are doing an edge insertion,
4705 assume that A will be inserted at E->DEST. Note that this is not
4706 necessarily true.
4707
4708 If E is a critical edge, it will be split. But even if E is
4709 split, the new block will dominate the same set of blocks that
4710 E->DEST dominates.
4711
4712 The reverse, however, is not true, blocks dominated by E->DEST
4713 will not be dominated by the new block created to split E. So,
4714 if the insertion location is on a critical edge, we will not use
4715 the new location to move another assertion previously registered
4716 at a block dominated by E->DEST. */
4717 dest_bb = (bb) ? bb : e->dest;
4718
4719 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4720 VAL at a block dominating DEST_BB, then we don't need to insert a new
4721 one. Similarly, if the same assertion already exists at a block
4722 dominated by DEST_BB and the new location is not on a critical
4723 edge, then update the existing location for the assertion (i.e.,
4724 move the assertion up in the dominance tree).
4725
4726 Note, this is implemented as a simple linked list because there
4727 should not be more than a handful of assertions registered per
4728 name. If this becomes a performance problem, a table hashed by
4729 COMP_CODE and VAL could be implemented. */
4730 loc = asserts_for[SSA_NAME_VERSION (name)];
4731 last_loc = loc;
4732 while (loc)
4733 {
4734 if (loc->comp_code == comp_code
4735 && (loc->val == val
4736 || operand_equal_p (loc->val, val, 0))
4737 && (loc->expr == expr
4738 || operand_equal_p (loc->expr, expr, 0)))
4739 {
4740 /* If E is not a critical edge and DEST_BB
4741 dominates the existing location for the assertion, move
4742 the assertion up in the dominance tree by updating its
4743 location information. */
4744 if ((e == NULL || !EDGE_CRITICAL_P (e))
4745 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4746 {
4747 loc->bb = dest_bb;
4748 loc->e = e;
4749 loc->si = si;
4750 return;
4751 }
4752 }
4753
4754 /* Update the last node of the list and move to the next one. */
4755 last_loc = loc;
4756 loc = loc->next;
4757 }
4758
4759 /* If we didn't find an assertion already registered for
4760 NAME COMP_CODE VAL, add a new one at the end of the list of
4761 assertions associated with NAME. */
4762 n = XNEW (struct assert_locus);
4763 n->bb = dest_bb;
4764 n->e = e;
4765 n->si = si;
4766 n->comp_code = comp_code;
4767 n->val = val;
4768 n->expr = expr;
4769 n->next = NULL;
4770
4771 if (last_loc)
4772 last_loc->next = n;
4773 else
4774 asserts_for[SSA_NAME_VERSION (name)] = n;
4775
4776 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4777 }
4778
4779 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4780 Extract a suitable test code and value and store them into *CODE_P and
4781 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4782
4783 If no extraction was possible, return FALSE, otherwise return TRUE.
4784
4785 If INVERT is true, then we invert the result stored into *CODE_P. */
4786
4787 static bool
4788 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4789 tree cond_op0, tree cond_op1,
4790 bool invert, enum tree_code *code_p,
4791 tree *val_p)
4792 {
4793 enum tree_code comp_code;
4794 tree val;
4795
4796 /* Otherwise, we have a comparison of the form NAME COMP VAL
4797 or VAL COMP NAME. */
4798 if (name == cond_op1)
4799 {
4800 /* If the predicate is of the form VAL COMP NAME, flip
4801 COMP around because we need to register NAME as the
4802 first operand in the predicate. */
4803 comp_code = swap_tree_comparison (cond_code);
4804 val = cond_op0;
4805 }
4806 else if (name == cond_op0)
4807 {
4808 /* The comparison is of the form NAME COMP VAL, so the
4809 comparison code remains unchanged. */
4810 comp_code = cond_code;
4811 val = cond_op1;
4812 }
4813 else
4814 gcc_unreachable ();
4815
4816 /* Invert the comparison code as necessary. */
4817 if (invert)
4818 comp_code = invert_tree_comparison (comp_code, 0);
4819
4820 /* VRP only handles integral and pointer types. */
4821 if (! INTEGRAL_TYPE_P (TREE_TYPE (val))
4822 && ! POINTER_TYPE_P (TREE_TYPE (val)))
4823 return false;
4824
4825 /* Do not register always-false predicates.
4826 FIXME: this works around a limitation in fold() when dealing with
4827 enumerations. Given 'enum { N1, N2 } x;', fold will not
4828 fold 'if (x > N2)' to 'if (0)'. */
4829 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4830 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4831 {
4832 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4833 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4834
4835 if (comp_code == GT_EXPR
4836 && (!max
4837 || compare_values (val, max) == 0))
4838 return false;
4839
4840 if (comp_code == LT_EXPR
4841 && (!min
4842 || compare_values (val, min) == 0))
4843 return false;
4844 }
4845 *code_p = comp_code;
4846 *val_p = val;
4847 return true;
4848 }
4849
4850 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
4851 (otherwise return VAL). VAL and MASK must be zero-extended for
4852 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
4853 (to transform signed values into unsigned) and at the end xor
4854 SGNBIT back. */
4855
4856 static wide_int
4857 masked_increment (const wide_int &val_in, const wide_int &mask,
4858 const wide_int &sgnbit, unsigned int prec)
4859 {
4860 wide_int bit = wi::one (prec), res;
4861 unsigned int i;
4862
4863 wide_int val = val_in ^ sgnbit;
4864 for (i = 0; i < prec; i++, bit += bit)
4865 {
4866 res = mask;
4867 if ((res & bit) == 0)
4868 continue;
4869 res = bit - 1;
4870 res = (val + bit).and_not (res);
4871 res &= mask;
4872 if (wi::gtu_p (res, val))
4873 return res ^ sgnbit;
4874 }
4875 return val ^ sgnbit;
4876 }
4877
4878 /* Helper for overflow_comparison_p
4879
4880 OP0 CODE OP1 is a comparison. Examine the comparison and potentially
4881 OP1's defining statement to see if it ultimately has the form
4882 OP0 CODE (OP0 PLUS INTEGER_CST)
4883
4884 If so, return TRUE indicating this is an overflow test and store into
4885 *NEW_CST an updated constant that can be used in a narrowed range test.
4886
4887 REVERSED indicates if the comparison was originally:
4888
4889 OP1 CODE' OP0.
4890
4891 This affects how we build the updated constant. */
4892
4893 static bool
4894 overflow_comparison_p_1 (enum tree_code code, tree op0, tree op1,
4895 bool follow_assert_exprs, bool reversed, tree *new_cst)
4896 {
4897 /* See if this is a relational operation between two SSA_NAMES with
4898 unsigned, overflow wrapping values. If so, check it more deeply. */
4899 if ((code == LT_EXPR || code == LE_EXPR
4900 || code == GE_EXPR || code == GT_EXPR)
4901 && TREE_CODE (op0) == SSA_NAME
4902 && TREE_CODE (op1) == SSA_NAME
4903 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
4904 && TYPE_UNSIGNED (TREE_TYPE (op0))
4905 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
4906 {
4907 gimple *op1_def = SSA_NAME_DEF_STMT (op1);
4908
4909 /* If requested, follow any ASSERT_EXPRs backwards for OP1. */
4910 if (follow_assert_exprs)
4911 {
4912 while (gimple_assign_single_p (op1_def)
4913 && TREE_CODE (gimple_assign_rhs1 (op1_def)) == ASSERT_EXPR)
4914 {
4915 op1 = TREE_OPERAND (gimple_assign_rhs1 (op1_def), 0);
4916 if (TREE_CODE (op1) != SSA_NAME)
4917 break;
4918 op1_def = SSA_NAME_DEF_STMT (op1);
4919 }
4920 }
4921
4922 /* Now look at the defining statement of OP1 to see if it adds
4923 or subtracts a nonzero constant from another operand. */
4924 if (op1_def
4925 && is_gimple_assign (op1_def)
4926 && gimple_assign_rhs_code (op1_def) == PLUS_EXPR
4927 && TREE_CODE (gimple_assign_rhs2 (op1_def)) == INTEGER_CST
4928 && !integer_zerop (gimple_assign_rhs2 (op1_def)))
4929 {
4930 tree target = gimple_assign_rhs1 (op1_def);
4931
4932 /* If requested, follow ASSERT_EXPRs backwards for op0 looking
4933 for one where TARGET appears on the RHS. */
4934 if (follow_assert_exprs)
4935 {
4936 /* Now see if that "other operand" is op0, following the chain
4937 of ASSERT_EXPRs if necessary. */
4938 gimple *op0_def = SSA_NAME_DEF_STMT (op0);
4939 while (op0 != target
4940 && gimple_assign_single_p (op0_def)
4941 && TREE_CODE (gimple_assign_rhs1 (op0_def)) == ASSERT_EXPR)
4942 {
4943 op0 = TREE_OPERAND (gimple_assign_rhs1 (op0_def), 0);
4944 if (TREE_CODE (op0) != SSA_NAME)
4945 break;
4946 op0_def = SSA_NAME_DEF_STMT (op0);
4947 }
4948 }
4949
4950 /* If we did not find our target SSA_NAME, then this is not
4951 an overflow test. */
4952 if (op0 != target)
4953 return false;
4954
4955 tree type = TREE_TYPE (op0);
4956 wide_int max = wi::max_value (TYPE_PRECISION (type), UNSIGNED);
4957 tree inc = gimple_assign_rhs2 (op1_def);
4958 if (reversed)
4959 *new_cst = wide_int_to_tree (type, max + inc);
4960 else
4961 *new_cst = wide_int_to_tree (type, max - inc);
4962 return true;
4963 }
4964 }
4965 return false;
4966 }
4967
4968 /* OP0 CODE OP1 is a comparison. Examine the comparison and potentially
4969 OP1's defining statement to see if it ultimately has the form
4970 OP0 CODE (OP0 PLUS INTEGER_CST)
4971
4972 If so, return TRUE indicating this is an overflow test and store into
4973 *NEW_CST an updated constant that can be used in a narrowed range test.
4974
4975 These statements are left as-is in the IL to facilitate discovery of
4976 {ADD,SUB}_OVERFLOW sequences later in the optimizer pipeline. But
4977 the alternate range representation is often useful within VRP. */
4978
4979 static bool
4980 overflow_comparison_p (tree_code code, tree name, tree val,
4981 bool use_equiv_p, tree *new_cst)
4982 {
4983 if (overflow_comparison_p_1 (code, name, val, use_equiv_p, false, new_cst))
4984 return true;
4985 return overflow_comparison_p_1 (swap_tree_comparison (code), val, name,
4986 use_equiv_p, true, new_cst);
4987 }
4988
4989
4990 /* Try to register an edge assertion for SSA name NAME on edge E for
4991 the condition COND contributing to the conditional jump pointed to by BSI.
4992 Invert the condition COND if INVERT is true. */
4993
4994 static void
4995 register_edge_assert_for_2 (tree name, edge e,
4996 enum tree_code cond_code,
4997 tree cond_op0, tree cond_op1, bool invert,
4998 vec<assert_info> &asserts)
4999 {
5000 tree val;
5001 enum tree_code comp_code;
5002
5003 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5004 cond_op0,
5005 cond_op1,
5006 invert, &comp_code, &val))
5007 return;
5008
5009 /* Queue the assert. */
5010 tree x;
5011 if (overflow_comparison_p (comp_code, name, val, false, &x))
5012 {
5013 enum tree_code new_code = ((comp_code == GT_EXPR || comp_code == GE_EXPR)
5014 ? GT_EXPR : LE_EXPR);
5015 add_assert_info (asserts, name, name, new_code, x);
5016 }
5017 add_assert_info (asserts, name, name, comp_code, val);
5018
5019 /* In the case of NAME <= CST and NAME being defined as
5020 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
5021 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
5022 This catches range and anti-range tests. */
5023 if ((comp_code == LE_EXPR
5024 || comp_code == GT_EXPR)
5025 && TREE_CODE (val) == INTEGER_CST
5026 && TYPE_UNSIGNED (TREE_TYPE (val)))
5027 {
5028 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5029 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
5030
5031 /* Extract CST2 from the (optional) addition. */
5032 if (is_gimple_assign (def_stmt)
5033 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
5034 {
5035 name2 = gimple_assign_rhs1 (def_stmt);
5036 cst2 = gimple_assign_rhs2 (def_stmt);
5037 if (TREE_CODE (name2) == SSA_NAME
5038 && TREE_CODE (cst2) == INTEGER_CST)
5039 def_stmt = SSA_NAME_DEF_STMT (name2);
5040 }
5041
5042 /* Extract NAME2 from the (optional) sign-changing cast. */
5043 if (gimple_assign_cast_p (def_stmt))
5044 {
5045 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
5046 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5047 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
5048 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
5049 name3 = gimple_assign_rhs1 (def_stmt);
5050 }
5051
5052 /* If name3 is used later, create an ASSERT_EXPR for it. */
5053 if (name3 != NULL_TREE
5054 && TREE_CODE (name3) == SSA_NAME
5055 && (cst2 == NULL_TREE
5056 || TREE_CODE (cst2) == INTEGER_CST)
5057 && INTEGRAL_TYPE_P (TREE_TYPE (name3)))
5058 {
5059 tree tmp;
5060
5061 /* Build an expression for the range test. */
5062 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
5063 if (cst2 != NULL_TREE)
5064 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5065
5066 if (dump_file)
5067 {
5068 fprintf (dump_file, "Adding assert for ");
5069 print_generic_expr (dump_file, name3);
5070 fprintf (dump_file, " from ");
5071 print_generic_expr (dump_file, tmp);
5072 fprintf (dump_file, "\n");
5073 }
5074
5075 add_assert_info (asserts, name3, tmp, comp_code, val);
5076 }
5077
5078 /* If name2 is used later, create an ASSERT_EXPR for it. */
5079 if (name2 != NULL_TREE
5080 && TREE_CODE (name2) == SSA_NAME
5081 && TREE_CODE (cst2) == INTEGER_CST
5082 && INTEGRAL_TYPE_P (TREE_TYPE (name2)))
5083 {
5084 tree tmp;
5085
5086 /* Build an expression for the range test. */
5087 tmp = name2;
5088 if (TREE_TYPE (name) != TREE_TYPE (name2))
5089 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
5090 if (cst2 != NULL_TREE)
5091 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5092
5093 if (dump_file)
5094 {
5095 fprintf (dump_file, "Adding assert for ");
5096 print_generic_expr (dump_file, name2);
5097 fprintf (dump_file, " from ");
5098 print_generic_expr (dump_file, tmp);
5099 fprintf (dump_file, "\n");
5100 }
5101
5102 add_assert_info (asserts, name2, tmp, comp_code, val);
5103 }
5104 }
5105
5106 /* In the case of post-in/decrement tests like if (i++) ... and uses
5107 of the in/decremented value on the edge the extra name we want to
5108 assert for is not on the def chain of the name compared. Instead
5109 it is in the set of use stmts.
5110 Similar cases happen for conversions that were simplified through
5111 fold_{sign_changed,widened}_comparison. */
5112 if ((comp_code == NE_EXPR
5113 || comp_code == EQ_EXPR)
5114 && TREE_CODE (val) == INTEGER_CST)
5115 {
5116 imm_use_iterator ui;
5117 gimple *use_stmt;
5118 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
5119 {
5120 if (!is_gimple_assign (use_stmt))
5121 continue;
5122
5123 /* Cut off to use-stmts that are dominating the predecessor. */
5124 if (!dominated_by_p (CDI_DOMINATORS, e->src, gimple_bb (use_stmt)))
5125 continue;
5126
5127 tree name2 = gimple_assign_lhs (use_stmt);
5128 if (TREE_CODE (name2) != SSA_NAME)
5129 continue;
5130
5131 enum tree_code code = gimple_assign_rhs_code (use_stmt);
5132 tree cst;
5133 if (code == PLUS_EXPR
5134 || code == MINUS_EXPR)
5135 {
5136 cst = gimple_assign_rhs2 (use_stmt);
5137 if (TREE_CODE (cst) != INTEGER_CST)
5138 continue;
5139 cst = int_const_binop (code, val, cst);
5140 }
5141 else if (CONVERT_EXPR_CODE_P (code))
5142 {
5143 /* For truncating conversions we cannot record
5144 an inequality. */
5145 if (comp_code == NE_EXPR
5146 && (TYPE_PRECISION (TREE_TYPE (name2))
5147 < TYPE_PRECISION (TREE_TYPE (name))))
5148 continue;
5149 cst = fold_convert (TREE_TYPE (name2), val);
5150 }
5151 else
5152 continue;
5153
5154 if (TREE_OVERFLOW_P (cst))
5155 cst = drop_tree_overflow (cst);
5156 add_assert_info (asserts, name2, name2, comp_code, cst);
5157 }
5158 }
5159
5160 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
5161 && TREE_CODE (val) == INTEGER_CST)
5162 {
5163 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5164 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
5165 tree val2 = NULL_TREE;
5166 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
5167 wide_int mask = wi::zero (prec);
5168 unsigned int nprec = prec;
5169 enum tree_code rhs_code = ERROR_MARK;
5170
5171 if (is_gimple_assign (def_stmt))
5172 rhs_code = gimple_assign_rhs_code (def_stmt);
5173
5174 /* In the case of NAME != CST1 where NAME = A +- CST2 we can
5175 assert that A != CST1 -+ CST2. */
5176 if ((comp_code == EQ_EXPR || comp_code == NE_EXPR)
5177 && (rhs_code == PLUS_EXPR || rhs_code == MINUS_EXPR))
5178 {
5179 tree op0 = gimple_assign_rhs1 (def_stmt);
5180 tree op1 = gimple_assign_rhs2 (def_stmt);
5181 if (TREE_CODE (op0) == SSA_NAME
5182 && TREE_CODE (op1) == INTEGER_CST)
5183 {
5184 enum tree_code reverse_op = (rhs_code == PLUS_EXPR
5185 ? MINUS_EXPR : PLUS_EXPR);
5186 op1 = int_const_binop (reverse_op, val, op1);
5187 if (TREE_OVERFLOW (op1))
5188 op1 = drop_tree_overflow (op1);
5189 add_assert_info (asserts, op0, op0, comp_code, op1);
5190 }
5191 }
5192
5193 /* Add asserts for NAME cmp CST and NAME being defined
5194 as NAME = (int) NAME2. */
5195 if (!TYPE_UNSIGNED (TREE_TYPE (val))
5196 && (comp_code == LE_EXPR || comp_code == LT_EXPR
5197 || comp_code == GT_EXPR || comp_code == GE_EXPR)
5198 && gimple_assign_cast_p (def_stmt))
5199 {
5200 name2 = gimple_assign_rhs1 (def_stmt);
5201 if (CONVERT_EXPR_CODE_P (rhs_code)
5202 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5203 && TYPE_UNSIGNED (TREE_TYPE (name2))
5204 && prec == TYPE_PRECISION (TREE_TYPE (name2))
5205 && (comp_code == LE_EXPR || comp_code == GT_EXPR
5206 || !tree_int_cst_equal (val,
5207 TYPE_MIN_VALUE (TREE_TYPE (val)))))
5208 {
5209 tree tmp, cst;
5210 enum tree_code new_comp_code = comp_code;
5211
5212 cst = fold_convert (TREE_TYPE (name2),
5213 TYPE_MIN_VALUE (TREE_TYPE (val)));
5214 /* Build an expression for the range test. */
5215 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
5216 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
5217 fold_convert (TREE_TYPE (name2), val));
5218 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5219 {
5220 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
5221 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
5222 build_int_cst (TREE_TYPE (name2), 1));
5223 }
5224
5225 if (dump_file)
5226 {
5227 fprintf (dump_file, "Adding assert for ");
5228 print_generic_expr (dump_file, name2);
5229 fprintf (dump_file, " from ");
5230 print_generic_expr (dump_file, tmp);
5231 fprintf (dump_file, "\n");
5232 }
5233
5234 add_assert_info (asserts, name2, tmp, new_comp_code, cst);
5235 }
5236 }
5237
5238 /* Add asserts for NAME cmp CST and NAME being defined as
5239 NAME = NAME2 >> CST2.
5240
5241 Extract CST2 from the right shift. */
5242 if (rhs_code == RSHIFT_EXPR)
5243 {
5244 name2 = gimple_assign_rhs1 (def_stmt);
5245 cst2 = gimple_assign_rhs2 (def_stmt);
5246 if (TREE_CODE (name2) == SSA_NAME
5247 && tree_fits_uhwi_p (cst2)
5248 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5249 && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
5250 && type_has_mode_precision_p (TREE_TYPE (val)))
5251 {
5252 mask = wi::mask (tree_to_uhwi (cst2), false, prec);
5253 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
5254 }
5255 }
5256 if (val2 != NULL_TREE
5257 && TREE_CODE (val2) == INTEGER_CST
5258 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
5259 TREE_TYPE (val),
5260 val2, cst2), val))
5261 {
5262 enum tree_code new_comp_code = comp_code;
5263 tree tmp, new_val;
5264
5265 tmp = name2;
5266 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
5267 {
5268 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5269 {
5270 tree type = build_nonstandard_integer_type (prec, 1);
5271 tmp = build1 (NOP_EXPR, type, name2);
5272 val2 = fold_convert (type, val2);
5273 }
5274 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
5275 new_val = wide_int_to_tree (TREE_TYPE (tmp), mask);
5276 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
5277 }
5278 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5279 {
5280 wide_int minval
5281 = wi::min_value (prec, TYPE_SIGN (TREE_TYPE (val)));
5282 new_val = val2;
5283 if (minval == new_val)
5284 new_val = NULL_TREE;
5285 }
5286 else
5287 {
5288 wide_int maxval
5289 = wi::max_value (prec, TYPE_SIGN (TREE_TYPE (val)));
5290 mask |= val2;
5291 if (mask == maxval)
5292 new_val = NULL_TREE;
5293 else
5294 new_val = wide_int_to_tree (TREE_TYPE (val2), mask);
5295 }
5296
5297 if (new_val)
5298 {
5299 if (dump_file)
5300 {
5301 fprintf (dump_file, "Adding assert for ");
5302 print_generic_expr (dump_file, name2);
5303 fprintf (dump_file, " from ");
5304 print_generic_expr (dump_file, tmp);
5305 fprintf (dump_file, "\n");
5306 }
5307
5308 add_assert_info (asserts, name2, tmp, new_comp_code, new_val);
5309 }
5310 }
5311
5312 /* Add asserts for NAME cmp CST and NAME being defined as
5313 NAME = NAME2 & CST2.
5314
5315 Extract CST2 from the and.
5316
5317 Also handle
5318 NAME = (unsigned) NAME2;
5319 casts where NAME's type is unsigned and has smaller precision
5320 than NAME2's type as if it was NAME = NAME2 & MASK. */
5321 names[0] = NULL_TREE;
5322 names[1] = NULL_TREE;
5323 cst2 = NULL_TREE;
5324 if (rhs_code == BIT_AND_EXPR
5325 || (CONVERT_EXPR_CODE_P (rhs_code)
5326 && INTEGRAL_TYPE_P (TREE_TYPE (val))
5327 && TYPE_UNSIGNED (TREE_TYPE (val))
5328 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5329 > prec))
5330 {
5331 name2 = gimple_assign_rhs1 (def_stmt);
5332 if (rhs_code == BIT_AND_EXPR)
5333 cst2 = gimple_assign_rhs2 (def_stmt);
5334 else
5335 {
5336 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
5337 nprec = TYPE_PRECISION (TREE_TYPE (name2));
5338 }
5339 if (TREE_CODE (name2) == SSA_NAME
5340 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5341 && TREE_CODE (cst2) == INTEGER_CST
5342 && !integer_zerop (cst2)
5343 && (nprec > 1
5344 || TYPE_UNSIGNED (TREE_TYPE (val))))
5345 {
5346 gimple *def_stmt2 = SSA_NAME_DEF_STMT (name2);
5347 if (gimple_assign_cast_p (def_stmt2))
5348 {
5349 names[1] = gimple_assign_rhs1 (def_stmt2);
5350 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
5351 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
5352 || (TYPE_PRECISION (TREE_TYPE (name2))
5353 != TYPE_PRECISION (TREE_TYPE (names[1]))))
5354 names[1] = NULL_TREE;
5355 }
5356 names[0] = name2;
5357 }
5358 }
5359 if (names[0] || names[1])
5360 {
5361 wide_int minv, maxv, valv, cst2v;
5362 wide_int tem, sgnbit;
5363 bool valid_p = false, valn, cst2n;
5364 enum tree_code ccode = comp_code;
5365
5366 valv = wide_int::from (val, nprec, UNSIGNED);
5367 cst2v = wide_int::from (cst2, nprec, UNSIGNED);
5368 valn = wi::neg_p (valv, TYPE_SIGN (TREE_TYPE (val)));
5369 cst2n = wi::neg_p (cst2v, TYPE_SIGN (TREE_TYPE (val)));
5370 /* If CST2 doesn't have most significant bit set,
5371 but VAL is negative, we have comparison like
5372 if ((x & 0x123) > -4) (always true). Just give up. */
5373 if (!cst2n && valn)
5374 ccode = ERROR_MARK;
5375 if (cst2n)
5376 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5377 else
5378 sgnbit = wi::zero (nprec);
5379 minv = valv & cst2v;
5380 switch (ccode)
5381 {
5382 case EQ_EXPR:
5383 /* Minimum unsigned value for equality is VAL & CST2
5384 (should be equal to VAL, otherwise we probably should
5385 have folded the comparison into false) and
5386 maximum unsigned value is VAL | ~CST2. */
5387 maxv = valv | ~cst2v;
5388 valid_p = true;
5389 break;
5390
5391 case NE_EXPR:
5392 tem = valv | ~cst2v;
5393 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5394 if (valv == 0)
5395 {
5396 cst2n = false;
5397 sgnbit = wi::zero (nprec);
5398 goto gt_expr;
5399 }
5400 /* If (VAL | ~CST2) is all ones, handle it as
5401 (X & CST2) < VAL. */
5402 if (tem == -1)
5403 {
5404 cst2n = false;
5405 valn = false;
5406 sgnbit = wi::zero (nprec);
5407 goto lt_expr;
5408 }
5409 if (!cst2n && wi::neg_p (cst2v))
5410 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5411 if (sgnbit != 0)
5412 {
5413 if (valv == sgnbit)
5414 {
5415 cst2n = true;
5416 valn = true;
5417 goto gt_expr;
5418 }
5419 if (tem == wi::mask (nprec - 1, false, nprec))
5420 {
5421 cst2n = true;
5422 goto lt_expr;
5423 }
5424 if (!cst2n)
5425 sgnbit = wi::zero (nprec);
5426 }
5427 break;
5428
5429 case GE_EXPR:
5430 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5431 is VAL and maximum unsigned value is ~0. For signed
5432 comparison, if CST2 doesn't have most significant bit
5433 set, handle it similarly. If CST2 has MSB set,
5434 the minimum is the same, and maximum is ~0U/2. */
5435 if (minv != valv)
5436 {
5437 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5438 VAL. */
5439 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5440 if (minv == valv)
5441 break;
5442 }
5443 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5444 valid_p = true;
5445 break;
5446
5447 case GT_EXPR:
5448 gt_expr:
5449 /* Find out smallest MINV where MINV > VAL
5450 && (MINV & CST2) == MINV, if any. If VAL is signed and
5451 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5452 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5453 if (minv == valv)
5454 break;
5455 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5456 valid_p = true;
5457 break;
5458
5459 case LE_EXPR:
5460 /* Minimum unsigned value for <= is 0 and maximum
5461 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5462 Otherwise, find smallest VAL2 where VAL2 > VAL
5463 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5464 as maximum.
5465 For signed comparison, if CST2 doesn't have most
5466 significant bit set, handle it similarly. If CST2 has
5467 MSB set, the maximum is the same and minimum is INT_MIN. */
5468 if (minv == valv)
5469 maxv = valv;
5470 else
5471 {
5472 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5473 if (maxv == valv)
5474 break;
5475 maxv -= 1;
5476 }
5477 maxv |= ~cst2v;
5478 minv = sgnbit;
5479 valid_p = true;
5480 break;
5481
5482 case LT_EXPR:
5483 lt_expr:
5484 /* Minimum unsigned value for < is 0 and maximum
5485 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5486 Otherwise, find smallest VAL2 where VAL2 > VAL
5487 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5488 as maximum.
5489 For signed comparison, if CST2 doesn't have most
5490 significant bit set, handle it similarly. If CST2 has
5491 MSB set, the maximum is the same and minimum is INT_MIN. */
5492 if (minv == valv)
5493 {
5494 if (valv == sgnbit)
5495 break;
5496 maxv = valv;
5497 }
5498 else
5499 {
5500 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5501 if (maxv == valv)
5502 break;
5503 }
5504 maxv -= 1;
5505 maxv |= ~cst2v;
5506 minv = sgnbit;
5507 valid_p = true;
5508 break;
5509
5510 default:
5511 break;
5512 }
5513 if (valid_p
5514 && (maxv - minv) != -1)
5515 {
5516 tree tmp, new_val, type;
5517 int i;
5518
5519 for (i = 0; i < 2; i++)
5520 if (names[i])
5521 {
5522 wide_int maxv2 = maxv;
5523 tmp = names[i];
5524 type = TREE_TYPE (names[i]);
5525 if (!TYPE_UNSIGNED (type))
5526 {
5527 type = build_nonstandard_integer_type (nprec, 1);
5528 tmp = build1 (NOP_EXPR, type, names[i]);
5529 }
5530 if (minv != 0)
5531 {
5532 tmp = build2 (PLUS_EXPR, type, tmp,
5533 wide_int_to_tree (type, -minv));
5534 maxv2 = maxv - minv;
5535 }
5536 new_val = wide_int_to_tree (type, maxv2);
5537
5538 if (dump_file)
5539 {
5540 fprintf (dump_file, "Adding assert for ");
5541 print_generic_expr (dump_file, names[i]);
5542 fprintf (dump_file, " from ");
5543 print_generic_expr (dump_file, tmp);
5544 fprintf (dump_file, "\n");
5545 }
5546
5547 add_assert_info (asserts, names[i], tmp, LE_EXPR, new_val);
5548 }
5549 }
5550 }
5551 }
5552 }
5553
5554 /* OP is an operand of a truth value expression which is known to have
5555 a particular value. Register any asserts for OP and for any
5556 operands in OP's defining statement.
5557
5558 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5559 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5560
5561 static void
5562 register_edge_assert_for_1 (tree op, enum tree_code code,
5563 edge e, vec<assert_info> &asserts)
5564 {
5565 gimple *op_def;
5566 tree val;
5567 enum tree_code rhs_code;
5568
5569 /* We only care about SSA_NAMEs. */
5570 if (TREE_CODE (op) != SSA_NAME)
5571 return;
5572
5573 /* We know that OP will have a zero or nonzero value. */
5574 val = build_int_cst (TREE_TYPE (op), 0);
5575 add_assert_info (asserts, op, op, code, val);
5576
5577 /* Now look at how OP is set. If it's set from a comparison,
5578 a truth operation or some bit operations, then we may be able
5579 to register information about the operands of that assignment. */
5580 op_def = SSA_NAME_DEF_STMT (op);
5581 if (gimple_code (op_def) != GIMPLE_ASSIGN)
5582 return;
5583
5584 rhs_code = gimple_assign_rhs_code (op_def);
5585
5586 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
5587 {
5588 bool invert = (code == EQ_EXPR ? true : false);
5589 tree op0 = gimple_assign_rhs1 (op_def);
5590 tree op1 = gimple_assign_rhs2 (op_def);
5591
5592 if (TREE_CODE (op0) == SSA_NAME)
5593 register_edge_assert_for_2 (op0, e, rhs_code, op0, op1, invert, asserts);
5594 if (TREE_CODE (op1) == SSA_NAME)
5595 register_edge_assert_for_2 (op1, e, rhs_code, op0, op1, invert, asserts);
5596 }
5597 else if ((code == NE_EXPR
5598 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
5599 || (code == EQ_EXPR
5600 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
5601 {
5602 /* Recurse on each operand. */
5603 tree op0 = gimple_assign_rhs1 (op_def);
5604 tree op1 = gimple_assign_rhs2 (op_def);
5605 if (TREE_CODE (op0) == SSA_NAME
5606 && has_single_use (op0))
5607 register_edge_assert_for_1 (op0, code, e, asserts);
5608 if (TREE_CODE (op1) == SSA_NAME
5609 && has_single_use (op1))
5610 register_edge_assert_for_1 (op1, code, e, asserts);
5611 }
5612 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
5613 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
5614 {
5615 /* Recurse, flipping CODE. */
5616 code = invert_tree_comparison (code, false);
5617 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, asserts);
5618 }
5619 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
5620 {
5621 /* Recurse through the copy. */
5622 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, asserts);
5623 }
5624 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
5625 {
5626 /* Recurse through the type conversion, unless it is a narrowing
5627 conversion or conversion from non-integral type. */
5628 tree rhs = gimple_assign_rhs1 (op_def);
5629 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
5630 && (TYPE_PRECISION (TREE_TYPE (rhs))
5631 <= TYPE_PRECISION (TREE_TYPE (op))))
5632 register_edge_assert_for_1 (rhs, code, e, asserts);
5633 }
5634 }
5635
5636 /* Check if comparison
5637 NAME COND_OP INTEGER_CST
5638 has a form of
5639 (X & 11...100..0) COND_OP XX...X00...0
5640 Such comparison can yield assertions like
5641 X >= XX...X00...0
5642 X <= XX...X11...1
5643 in case of COND_OP being NE_EXPR or
5644 X < XX...X00...0
5645 X > XX...X11...1
5646 in case of EQ_EXPR. */
5647
5648 static bool
5649 is_masked_range_test (tree name, tree valt, enum tree_code cond_code,
5650 tree *new_name, tree *low, enum tree_code *low_code,
5651 tree *high, enum tree_code *high_code)
5652 {
5653 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5654
5655 if (!is_gimple_assign (def_stmt)
5656 || gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
5657 return false;
5658
5659 tree t = gimple_assign_rhs1 (def_stmt);
5660 tree maskt = gimple_assign_rhs2 (def_stmt);
5661 if (TREE_CODE (t) != SSA_NAME || TREE_CODE (maskt) != INTEGER_CST)
5662 return false;
5663
5664 wide_int mask = maskt;
5665 wide_int inv_mask = ~mask;
5666 wide_int val = valt; // Assume VALT is INTEGER_CST
5667
5668 if ((inv_mask & (inv_mask + 1)) != 0
5669 || (val & mask) != val)
5670 return false;
5671
5672 bool is_range = cond_code == EQ_EXPR;
5673
5674 tree type = TREE_TYPE (t);
5675 wide_int min = wi::min_value (type),
5676 max = wi::max_value (type);
5677
5678 if (is_range)
5679 {
5680 *low_code = val == min ? ERROR_MARK : GE_EXPR;
5681 *high_code = val == max ? ERROR_MARK : LE_EXPR;
5682 }
5683 else
5684 {
5685 /* We can still generate assertion if one of alternatives
5686 is known to always be false. */
5687 if (val == min)
5688 {
5689 *low_code = (enum tree_code) 0;
5690 *high_code = GT_EXPR;
5691 }
5692 else if ((val | inv_mask) == max)
5693 {
5694 *low_code = LT_EXPR;
5695 *high_code = (enum tree_code) 0;
5696 }
5697 else
5698 return false;
5699 }
5700
5701 *new_name = t;
5702 *low = wide_int_to_tree (type, val);
5703 *high = wide_int_to_tree (type, val | inv_mask);
5704
5705 if (wi::neg_p (val, TYPE_SIGN (type)))
5706 std::swap (*low, *high);
5707
5708 return true;
5709 }
5710
5711 /* Try to register an edge assertion for SSA name NAME on edge E for
5712 the condition COND contributing to the conditional jump pointed to by
5713 SI. */
5714
5715 static void
5716 register_edge_assert_for (tree name, edge e,
5717 enum tree_code cond_code, tree cond_op0,
5718 tree cond_op1, vec<assert_info> &asserts)
5719 {
5720 tree val;
5721 enum tree_code comp_code;
5722 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
5723
5724 /* Do not attempt to infer anything in names that flow through
5725 abnormal edges. */
5726 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
5727 return;
5728
5729 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5730 cond_op0, cond_op1,
5731 is_else_edge,
5732 &comp_code, &val))
5733 return;
5734
5735 /* Register ASSERT_EXPRs for name. */
5736 register_edge_assert_for_2 (name, e, cond_code, cond_op0,
5737 cond_op1, is_else_edge, asserts);
5738
5739
5740 /* If COND is effectively an equality test of an SSA_NAME against
5741 the value zero or one, then we may be able to assert values
5742 for SSA_NAMEs which flow into COND. */
5743
5744 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5745 statement of NAME we can assert both operands of the BIT_AND_EXPR
5746 have nonzero value. */
5747 if (((comp_code == EQ_EXPR && integer_onep (val))
5748 || (comp_code == NE_EXPR && integer_zerop (val))))
5749 {
5750 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5751
5752 if (is_gimple_assign (def_stmt)
5753 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
5754 {
5755 tree op0 = gimple_assign_rhs1 (def_stmt);
5756 tree op1 = gimple_assign_rhs2 (def_stmt);
5757 register_edge_assert_for_1 (op0, NE_EXPR, e, asserts);
5758 register_edge_assert_for_1 (op1, NE_EXPR, e, asserts);
5759 }
5760 }
5761
5762 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5763 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5764 have zero value. */
5765 if (((comp_code == EQ_EXPR && integer_zerop (val))
5766 || (comp_code == NE_EXPR && integer_onep (val))))
5767 {
5768 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
5769
5770 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5771 necessarily zero value, or if type-precision is one. */
5772 if (is_gimple_assign (def_stmt)
5773 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
5774 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
5775 || comp_code == EQ_EXPR)))
5776 {
5777 tree op0 = gimple_assign_rhs1 (def_stmt);
5778 tree op1 = gimple_assign_rhs2 (def_stmt);
5779 register_edge_assert_for_1 (op0, EQ_EXPR, e, asserts);
5780 register_edge_assert_for_1 (op1, EQ_EXPR, e, asserts);
5781 }
5782 }
5783
5784 /* Sometimes we can infer ranges from (NAME & MASK) == VALUE. */
5785 if ((comp_code == EQ_EXPR || comp_code == NE_EXPR)
5786 && TREE_CODE (val) == INTEGER_CST)
5787 {
5788 enum tree_code low_code, high_code;
5789 tree low, high;
5790 if (is_masked_range_test (name, val, comp_code, &name, &low,
5791 &low_code, &high, &high_code))
5792 {
5793 if (low_code != ERROR_MARK)
5794 register_edge_assert_for_2 (name, e, low_code, name,
5795 low, /*invert*/false, asserts);
5796 if (high_code != ERROR_MARK)
5797 register_edge_assert_for_2 (name, e, high_code, name,
5798 high, /*invert*/false, asserts);
5799 }
5800 }
5801 }
5802
5803 /* Finish found ASSERTS for E and register them at GSI. */
5804
5805 static void
5806 finish_register_edge_assert_for (edge e, gimple_stmt_iterator gsi,
5807 vec<assert_info> &asserts)
5808 {
5809 for (unsigned i = 0; i < asserts.length (); ++i)
5810 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
5811 reachable from E. */
5812 if (live_on_edge (e, asserts[i].name))
5813 register_new_assert_for (asserts[i].name, asserts[i].expr,
5814 asserts[i].comp_code, asserts[i].val,
5815 NULL, e, gsi);
5816 }
5817
5818
5819
5820 /* Determine whether the outgoing edges of BB should receive an
5821 ASSERT_EXPR for each of the operands of BB's LAST statement.
5822 The last statement of BB must be a COND_EXPR.
5823
5824 If any of the sub-graphs rooted at BB have an interesting use of
5825 the predicate operands, an assert location node is added to the
5826 list of assertions for the corresponding operands. */
5827
5828 static void
5829 find_conditional_asserts (basic_block bb, gcond *last)
5830 {
5831 gimple_stmt_iterator bsi;
5832 tree op;
5833 edge_iterator ei;
5834 edge e;
5835 ssa_op_iter iter;
5836
5837 bsi = gsi_for_stmt (last);
5838
5839 /* Look for uses of the operands in each of the sub-graphs
5840 rooted at BB. We need to check each of the outgoing edges
5841 separately, so that we know what kind of ASSERT_EXPR to
5842 insert. */
5843 FOR_EACH_EDGE (e, ei, bb->succs)
5844 {
5845 if (e->dest == bb)
5846 continue;
5847
5848 /* Register the necessary assertions for each operand in the
5849 conditional predicate. */
5850 auto_vec<assert_info, 8> asserts;
5851 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
5852 register_edge_assert_for (op, e,
5853 gimple_cond_code (last),
5854 gimple_cond_lhs (last),
5855 gimple_cond_rhs (last), asserts);
5856 finish_register_edge_assert_for (e, bsi, asserts);
5857 }
5858 }
5859
5860 struct case_info
5861 {
5862 tree expr;
5863 basic_block bb;
5864 };
5865
5866 /* Compare two case labels sorting first by the destination bb index
5867 and then by the case value. */
5868
5869 static int
5870 compare_case_labels (const void *p1, const void *p2)
5871 {
5872 const struct case_info *ci1 = (const struct case_info *) p1;
5873 const struct case_info *ci2 = (const struct case_info *) p2;
5874 int idx1 = ci1->bb->index;
5875 int idx2 = ci2->bb->index;
5876
5877 if (idx1 < idx2)
5878 return -1;
5879 else if (idx1 == idx2)
5880 {
5881 /* Make sure the default label is first in a group. */
5882 if (!CASE_LOW (ci1->expr))
5883 return -1;
5884 else if (!CASE_LOW (ci2->expr))
5885 return 1;
5886 else
5887 return tree_int_cst_compare (CASE_LOW (ci1->expr),
5888 CASE_LOW (ci2->expr));
5889 }
5890 else
5891 return 1;
5892 }
5893
5894 /* Determine whether the outgoing edges of BB should receive an
5895 ASSERT_EXPR for each of the operands of BB's LAST statement.
5896 The last statement of BB must be a SWITCH_EXPR.
5897
5898 If any of the sub-graphs rooted at BB have an interesting use of
5899 the predicate operands, an assert location node is added to the
5900 list of assertions for the corresponding operands. */
5901
5902 static void
5903 find_switch_asserts (basic_block bb, gswitch *last)
5904 {
5905 gimple_stmt_iterator bsi;
5906 tree op;
5907 edge e;
5908 struct case_info *ci;
5909 size_t n = gimple_switch_num_labels (last);
5910 #if GCC_VERSION >= 4000
5911 unsigned int idx;
5912 #else
5913 /* Work around GCC 3.4 bug (PR 37086). */
5914 volatile unsigned int idx;
5915 #endif
5916
5917 bsi = gsi_for_stmt (last);
5918 op = gimple_switch_index (last);
5919 if (TREE_CODE (op) != SSA_NAME)
5920 return;
5921
5922 /* Build a vector of case labels sorted by destination label. */
5923 ci = XNEWVEC (struct case_info, n);
5924 for (idx = 0; idx < n; ++idx)
5925 {
5926 ci[idx].expr = gimple_switch_label (last, idx);
5927 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
5928 }
5929 edge default_edge = find_edge (bb, ci[0].bb);
5930 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
5931
5932 for (idx = 0; idx < n; ++idx)
5933 {
5934 tree min, max;
5935 tree cl = ci[idx].expr;
5936 basic_block cbb = ci[idx].bb;
5937
5938 min = CASE_LOW (cl);
5939 max = CASE_HIGH (cl);
5940
5941 /* If there are multiple case labels with the same destination
5942 we need to combine them to a single value range for the edge. */
5943 if (idx + 1 < n && cbb == ci[idx + 1].bb)
5944 {
5945 /* Skip labels until the last of the group. */
5946 do {
5947 ++idx;
5948 } while (idx < n && cbb == ci[idx].bb);
5949 --idx;
5950
5951 /* Pick up the maximum of the case label range. */
5952 if (CASE_HIGH (ci[idx].expr))
5953 max = CASE_HIGH (ci[idx].expr);
5954 else
5955 max = CASE_LOW (ci[idx].expr);
5956 }
5957
5958 /* Can't extract a useful assertion out of a range that includes the
5959 default label. */
5960 if (min == NULL_TREE)
5961 continue;
5962
5963 /* Find the edge to register the assert expr on. */
5964 e = find_edge (bb, cbb);
5965
5966 /* Register the necessary assertions for the operand in the
5967 SWITCH_EXPR. */
5968 auto_vec<assert_info, 8> asserts;
5969 register_edge_assert_for (op, e,
5970 max ? GE_EXPR : EQ_EXPR,
5971 op, fold_convert (TREE_TYPE (op), min),
5972 asserts);
5973 if (max)
5974 register_edge_assert_for (op, e, LE_EXPR, op,
5975 fold_convert (TREE_TYPE (op), max),
5976 asserts);
5977 finish_register_edge_assert_for (e, bsi, asserts);
5978 }
5979
5980 XDELETEVEC (ci);
5981
5982 if (!live_on_edge (default_edge, op))
5983 return;
5984
5985 /* Now register along the default label assertions that correspond to the
5986 anti-range of each label. */
5987 int insertion_limit = PARAM_VALUE (PARAM_MAX_VRP_SWITCH_ASSERTIONS);
5988 if (insertion_limit == 0)
5989 return;
5990
5991 /* We can't do this if the default case shares a label with another case. */
5992 tree default_cl = gimple_switch_default_label (last);
5993 for (idx = 1; idx < n; idx++)
5994 {
5995 tree min, max;
5996 tree cl = gimple_switch_label (last, idx);
5997 if (CASE_LABEL (cl) == CASE_LABEL (default_cl))
5998 continue;
5999
6000 min = CASE_LOW (cl);
6001 max = CASE_HIGH (cl);
6002
6003 /* Combine contiguous case ranges to reduce the number of assertions
6004 to insert. */
6005 for (idx = idx + 1; idx < n; idx++)
6006 {
6007 tree next_min, next_max;
6008 tree next_cl = gimple_switch_label (last, idx);
6009 if (CASE_LABEL (next_cl) == CASE_LABEL (default_cl))
6010 break;
6011
6012 next_min = CASE_LOW (next_cl);
6013 next_max = CASE_HIGH (next_cl);
6014
6015 wide_int difference = wi::sub (next_min, max ? max : min);
6016 if (wi::eq_p (difference, 1))
6017 max = next_max ? next_max : next_min;
6018 else
6019 break;
6020 }
6021 idx--;
6022
6023 if (max == NULL_TREE)
6024 {
6025 /* Register the assertion OP != MIN. */
6026 auto_vec<assert_info, 8> asserts;
6027 min = fold_convert (TREE_TYPE (op), min);
6028 register_edge_assert_for (op, default_edge, NE_EXPR, op, min,
6029 asserts);
6030 finish_register_edge_assert_for (default_edge, bsi, asserts);
6031 }
6032 else
6033 {
6034 /* Register the assertion (unsigned)OP - MIN > (MAX - MIN),
6035 which will give OP the anti-range ~[MIN,MAX]. */
6036 tree uop = fold_convert (unsigned_type_for (TREE_TYPE (op)), op);
6037 min = fold_convert (TREE_TYPE (uop), min);
6038 max = fold_convert (TREE_TYPE (uop), max);
6039
6040 tree lhs = fold_build2 (MINUS_EXPR, TREE_TYPE (uop), uop, min);
6041 tree rhs = int_const_binop (MINUS_EXPR, max, min);
6042 register_new_assert_for (op, lhs, GT_EXPR, rhs,
6043 NULL, default_edge, bsi);
6044 }
6045
6046 if (--insertion_limit == 0)
6047 break;
6048 }
6049 }
6050
6051
6052 /* Traverse all the statements in block BB looking for statements that
6053 may generate useful assertions for the SSA names in their operand.
6054 If a statement produces a useful assertion A for name N_i, then the
6055 list of assertions already generated for N_i is scanned to
6056 determine if A is actually needed.
6057
6058 If N_i already had the assertion A at a location dominating the
6059 current location, then nothing needs to be done. Otherwise, the
6060 new location for A is recorded instead.
6061
6062 1- For every statement S in BB, all the variables used by S are
6063 added to bitmap FOUND_IN_SUBGRAPH.
6064
6065 2- If statement S uses an operand N in a way that exposes a known
6066 value range for N, then if N was not already generated by an
6067 ASSERT_EXPR, create a new assert location for N. For instance,
6068 if N is a pointer and the statement dereferences it, we can
6069 assume that N is not NULL.
6070
6071 3- COND_EXPRs are a special case of #2. We can derive range
6072 information from the predicate but need to insert different
6073 ASSERT_EXPRs for each of the sub-graphs rooted at the
6074 conditional block. If the last statement of BB is a conditional
6075 expression of the form 'X op Y', then
6076
6077 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
6078
6079 b) If the conditional is the only entry point to the sub-graph
6080 corresponding to the THEN_CLAUSE, recurse into it. On
6081 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
6082 an ASSERT_EXPR is added for the corresponding variable.
6083
6084 c) Repeat step (b) on the ELSE_CLAUSE.
6085
6086 d) Mark X and Y in FOUND_IN_SUBGRAPH.
6087
6088 For instance,
6089
6090 if (a == 9)
6091 b = a;
6092 else
6093 b = c + 1;
6094
6095 In this case, an assertion on the THEN clause is useful to
6096 determine that 'a' is always 9 on that edge. However, an assertion
6097 on the ELSE clause would be unnecessary.
6098
6099 4- If BB does not end in a conditional expression, then we recurse
6100 into BB's dominator children.
6101
6102 At the end of the recursive traversal, every SSA name will have a
6103 list of locations where ASSERT_EXPRs should be added. When a new
6104 location for name N is found, it is registered by calling
6105 register_new_assert_for. That function keeps track of all the
6106 registered assertions to prevent adding unnecessary assertions.
6107 For instance, if a pointer P_4 is dereferenced more than once in a
6108 dominator tree, only the location dominating all the dereference of
6109 P_4 will receive an ASSERT_EXPR. */
6110
6111 static void
6112 find_assert_locations_1 (basic_block bb, sbitmap live)
6113 {
6114 gimple *last;
6115
6116 last = last_stmt (bb);
6117
6118 /* If BB's last statement is a conditional statement involving integer
6119 operands, determine if we need to add ASSERT_EXPRs. */
6120 if (last
6121 && gimple_code (last) == GIMPLE_COND
6122 && !fp_predicate (last)
6123 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
6124 find_conditional_asserts (bb, as_a <gcond *> (last));
6125
6126 /* If BB's last statement is a switch statement involving integer
6127 operands, determine if we need to add ASSERT_EXPRs. */
6128 if (last
6129 && gimple_code (last) == GIMPLE_SWITCH
6130 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
6131 find_switch_asserts (bb, as_a <gswitch *> (last));
6132
6133 /* Traverse all the statements in BB marking used names and looking
6134 for statements that may infer assertions for their used operands. */
6135 for (gimple_stmt_iterator si = gsi_last_bb (bb); !gsi_end_p (si);
6136 gsi_prev (&si))
6137 {
6138 gimple *stmt;
6139 tree op;
6140 ssa_op_iter i;
6141
6142 stmt = gsi_stmt (si);
6143
6144 if (is_gimple_debug (stmt))
6145 continue;
6146
6147 /* See if we can derive an assertion for any of STMT's operands. */
6148 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6149 {
6150 tree value;
6151 enum tree_code comp_code;
6152
6153 /* If op is not live beyond this stmt, do not bother to insert
6154 asserts for it. */
6155 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
6156 continue;
6157
6158 /* If OP is used in such a way that we can infer a value
6159 range for it, and we don't find a previous assertion for
6160 it, create a new assertion location node for OP. */
6161 if (infer_value_range (stmt, op, &comp_code, &value))
6162 {
6163 /* If we are able to infer a nonzero value range for OP,
6164 then walk backwards through the use-def chain to see if OP
6165 was set via a typecast.
6166
6167 If so, then we can also infer a nonzero value range
6168 for the operand of the NOP_EXPR. */
6169 if (comp_code == NE_EXPR && integer_zerop (value))
6170 {
6171 tree t = op;
6172 gimple *def_stmt = SSA_NAME_DEF_STMT (t);
6173
6174 while (is_gimple_assign (def_stmt)
6175 && CONVERT_EXPR_CODE_P
6176 (gimple_assign_rhs_code (def_stmt))
6177 && TREE_CODE
6178 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
6179 && POINTER_TYPE_P
6180 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
6181 {
6182 t = gimple_assign_rhs1 (def_stmt);
6183 def_stmt = SSA_NAME_DEF_STMT (t);
6184
6185 /* Note we want to register the assert for the
6186 operand of the NOP_EXPR after SI, not after the
6187 conversion. */
6188 if (bitmap_bit_p (live, SSA_NAME_VERSION (t)))
6189 register_new_assert_for (t, t, comp_code, value,
6190 bb, NULL, si);
6191 }
6192 }
6193
6194 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
6195 }
6196 }
6197
6198 /* Update live. */
6199 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6200 bitmap_set_bit (live, SSA_NAME_VERSION (op));
6201 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
6202 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
6203 }
6204
6205 /* Traverse all PHI nodes in BB, updating live. */
6206 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
6207 gsi_next (&si))
6208 {
6209 use_operand_p arg_p;
6210 ssa_op_iter i;
6211 gphi *phi = si.phi ();
6212 tree res = gimple_phi_result (phi);
6213
6214 if (virtual_operand_p (res))
6215 continue;
6216
6217 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
6218 {
6219 tree arg = USE_FROM_PTR (arg_p);
6220 if (TREE_CODE (arg) == SSA_NAME)
6221 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
6222 }
6223
6224 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
6225 }
6226 }
6227
6228 /* Do an RPO walk over the function computing SSA name liveness
6229 on-the-fly and deciding on assert expressions to insert. */
6230
6231 static void
6232 find_assert_locations (void)
6233 {
6234 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6235 int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6236 int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6237 int rpo_cnt, i;
6238
6239 live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun));
6240 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
6241 for (i = 0; i < rpo_cnt; ++i)
6242 bb_rpo[rpo[i]] = i;
6243
6244 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
6245 the order we compute liveness and insert asserts we otherwise
6246 fail to insert asserts into the loop latch. */
6247 loop_p loop;
6248 FOR_EACH_LOOP (loop, 0)
6249 {
6250 i = loop->latch->index;
6251 unsigned int j = single_succ_edge (loop->latch)->dest_idx;
6252 for (gphi_iterator gsi = gsi_start_phis (loop->header);
6253 !gsi_end_p (gsi); gsi_next (&gsi))
6254 {
6255 gphi *phi = gsi.phi ();
6256 if (virtual_operand_p (gimple_phi_result (phi)))
6257 continue;
6258 tree arg = gimple_phi_arg_def (phi, j);
6259 if (TREE_CODE (arg) == SSA_NAME)
6260 {
6261 if (live[i] == NULL)
6262 {
6263 live[i] = sbitmap_alloc (num_ssa_names);
6264 bitmap_clear (live[i]);
6265 }
6266 bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
6267 }
6268 }
6269 }
6270
6271 for (i = rpo_cnt - 1; i >= 0; --i)
6272 {
6273 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
6274 edge e;
6275 edge_iterator ei;
6276
6277 if (!live[rpo[i]])
6278 {
6279 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
6280 bitmap_clear (live[rpo[i]]);
6281 }
6282
6283 /* Process BB and update the live information with uses in
6284 this block. */
6285 find_assert_locations_1 (bb, live[rpo[i]]);
6286
6287 /* Merge liveness into the predecessor blocks and free it. */
6288 if (!bitmap_empty_p (live[rpo[i]]))
6289 {
6290 int pred_rpo = i;
6291 FOR_EACH_EDGE (e, ei, bb->preds)
6292 {
6293 int pred = e->src->index;
6294 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
6295 continue;
6296
6297 if (!live[pred])
6298 {
6299 live[pred] = sbitmap_alloc (num_ssa_names);
6300 bitmap_clear (live[pred]);
6301 }
6302 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
6303
6304 if (bb_rpo[pred] < pred_rpo)
6305 pred_rpo = bb_rpo[pred];
6306 }
6307
6308 /* Record the RPO number of the last visited block that needs
6309 live information from this block. */
6310 last_rpo[rpo[i]] = pred_rpo;
6311 }
6312 else
6313 {
6314 sbitmap_free (live[rpo[i]]);
6315 live[rpo[i]] = NULL;
6316 }
6317
6318 /* We can free all successors live bitmaps if all their
6319 predecessors have been visited already. */
6320 FOR_EACH_EDGE (e, ei, bb->succs)
6321 if (last_rpo[e->dest->index] == i
6322 && live[e->dest->index])
6323 {
6324 sbitmap_free (live[e->dest->index]);
6325 live[e->dest->index] = NULL;
6326 }
6327 }
6328
6329 XDELETEVEC (rpo);
6330 XDELETEVEC (bb_rpo);
6331 XDELETEVEC (last_rpo);
6332 for (i = 0; i < last_basic_block_for_fn (cfun); ++i)
6333 if (live[i])
6334 sbitmap_free (live[i]);
6335 XDELETEVEC (live);
6336 }
6337
6338 /* Create an ASSERT_EXPR for NAME and insert it in the location
6339 indicated by LOC. Return true if we made any edge insertions. */
6340
6341 static bool
6342 process_assert_insertions_for (tree name, assert_locus *loc)
6343 {
6344 /* Build the comparison expression NAME_i COMP_CODE VAL. */
6345 gimple *stmt;
6346 tree cond;
6347 gimple *assert_stmt;
6348 edge_iterator ei;
6349 edge e;
6350
6351 /* If we have X <=> X do not insert an assert expr for that. */
6352 if (loc->expr == loc->val)
6353 return false;
6354
6355 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
6356 assert_stmt = build_assert_expr_for (cond, name);
6357 if (loc->e)
6358 {
6359 /* We have been asked to insert the assertion on an edge. This
6360 is used only by COND_EXPR and SWITCH_EXPR assertions. */
6361 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
6362 || (gimple_code (gsi_stmt (loc->si))
6363 == GIMPLE_SWITCH));
6364
6365 gsi_insert_on_edge (loc->e, assert_stmt);
6366 return true;
6367 }
6368
6369 /* If the stmt iterator points at the end then this is an insertion
6370 at the beginning of a block. */
6371 if (gsi_end_p (loc->si))
6372 {
6373 gimple_stmt_iterator si = gsi_after_labels (loc->bb);
6374 gsi_insert_before (&si, assert_stmt, GSI_SAME_STMT);
6375 return false;
6376
6377 }
6378 /* Otherwise, we can insert right after LOC->SI iff the
6379 statement must not be the last statement in the block. */
6380 stmt = gsi_stmt (loc->si);
6381 if (!stmt_ends_bb_p (stmt))
6382 {
6383 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
6384 return false;
6385 }
6386
6387 /* If STMT must be the last statement in BB, we can only insert new
6388 assertions on the non-abnormal edge out of BB. Note that since
6389 STMT is not control flow, there may only be one non-abnormal/eh edge
6390 out of BB. */
6391 FOR_EACH_EDGE (e, ei, loc->bb->succs)
6392 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
6393 {
6394 gsi_insert_on_edge (e, assert_stmt);
6395 return true;
6396 }
6397
6398 gcc_unreachable ();
6399 }
6400
6401 /* Qsort helper for sorting assert locations. If stable is true, don't
6402 use iterative_hash_expr because it can be unstable for -fcompare-debug,
6403 on the other side some pointers might be NULL. */
6404
6405 template <bool stable>
6406 static int
6407 compare_assert_loc (const void *pa, const void *pb)
6408 {
6409 assert_locus * const a = *(assert_locus * const *)pa;
6410 assert_locus * const b = *(assert_locus * const *)pb;
6411
6412 /* If stable, some asserts might be optimized away already, sort
6413 them last. */
6414 if (stable)
6415 {
6416 if (a == NULL)
6417 return b != NULL;
6418 else if (b == NULL)
6419 return -1;
6420 }
6421
6422 if (a->e == NULL && b->e != NULL)
6423 return 1;
6424 else if (a->e != NULL && b->e == NULL)
6425 return -1;
6426
6427 /* After the above checks, we know that (a->e == NULL) == (b->e == NULL),
6428 no need to test both a->e and b->e. */
6429
6430 /* Sort after destination index. */
6431 if (a->e == NULL)
6432 ;
6433 else if (a->e->dest->index > b->e->dest->index)
6434 return 1;
6435 else if (a->e->dest->index < b->e->dest->index)
6436 return -1;
6437
6438 /* Sort after comp_code. */
6439 if (a->comp_code > b->comp_code)
6440 return 1;
6441 else if (a->comp_code < b->comp_code)
6442 return -1;
6443
6444 hashval_t ha, hb;
6445
6446 /* E.g. if a->val is ADDR_EXPR of a VAR_DECL, iterative_hash_expr
6447 uses DECL_UID of the VAR_DECL, so sorting might differ between
6448 -g and -g0. When doing the removal of redundant assert exprs
6449 and commonization to successors, this does not matter, but for
6450 the final sort needs to be stable. */
6451 if (stable)
6452 {
6453 ha = 0;
6454 hb = 0;
6455 }
6456 else
6457 {
6458 ha = iterative_hash_expr (a->expr, iterative_hash_expr (a->val, 0));
6459 hb = iterative_hash_expr (b->expr, iterative_hash_expr (b->val, 0));
6460 }
6461
6462 /* Break the tie using hashing and source/bb index. */
6463 if (ha == hb)
6464 return (a->e != NULL
6465 ? a->e->src->index - b->e->src->index
6466 : a->bb->index - b->bb->index);
6467 return ha > hb ? 1 : -1;
6468 }
6469
6470 /* Process all the insertions registered for every name N_i registered
6471 in NEED_ASSERT_FOR. The list of assertions to be inserted are
6472 found in ASSERTS_FOR[i]. */
6473
6474 static void
6475 process_assert_insertions (void)
6476 {
6477 unsigned i;
6478 bitmap_iterator bi;
6479 bool update_edges_p = false;
6480 int num_asserts = 0;
6481
6482 if (dump_file && (dump_flags & TDF_DETAILS))
6483 dump_all_asserts (dump_file);
6484
6485 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
6486 {
6487 assert_locus *loc = asserts_for[i];
6488 gcc_assert (loc);
6489
6490 auto_vec<assert_locus *, 16> asserts;
6491 for (; loc; loc = loc->next)
6492 asserts.safe_push (loc);
6493 asserts.qsort (compare_assert_loc<false>);
6494
6495 /* Push down common asserts to successors and remove redundant ones. */
6496 unsigned ecnt = 0;
6497 assert_locus *common = NULL;
6498 unsigned commonj = 0;
6499 for (unsigned j = 0; j < asserts.length (); ++j)
6500 {
6501 loc = asserts[j];
6502 if (! loc->e)
6503 common = NULL;
6504 else if (! common
6505 || loc->e->dest != common->e->dest
6506 || loc->comp_code != common->comp_code
6507 || ! operand_equal_p (loc->val, common->val, 0)
6508 || ! operand_equal_p (loc->expr, common->expr, 0))
6509 {
6510 commonj = j;
6511 common = loc;
6512 ecnt = 1;
6513 }
6514 else if (loc->e == asserts[j-1]->e)
6515 {
6516 /* Remove duplicate asserts. */
6517 if (commonj == j - 1)
6518 {
6519 commonj = j;
6520 common = loc;
6521 }
6522 free (asserts[j-1]);
6523 asserts[j-1] = NULL;
6524 }
6525 else
6526 {
6527 ecnt++;
6528 if (EDGE_COUNT (common->e->dest->preds) == ecnt)
6529 {
6530 /* We have the same assertion on all incoming edges of a BB.
6531 Insert it at the beginning of that block. */
6532 loc->bb = loc->e->dest;
6533 loc->e = NULL;
6534 loc->si = gsi_none ();
6535 common = NULL;
6536 /* Clear asserts commoned. */
6537 for (; commonj != j; ++commonj)
6538 if (asserts[commonj])
6539 {
6540 free (asserts[commonj]);
6541 asserts[commonj] = NULL;
6542 }
6543 }
6544 }
6545 }
6546
6547 /* The asserts vector sorting above might be unstable for
6548 -fcompare-debug, sort again to ensure a stable sort. */
6549 asserts.qsort (compare_assert_loc<true>);
6550 for (unsigned j = 0; j < asserts.length (); ++j)
6551 {
6552 loc = asserts[j];
6553 if (! loc)
6554 break;
6555 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
6556 num_asserts++;
6557 free (loc);
6558 }
6559 }
6560
6561 if (update_edges_p)
6562 gsi_commit_edge_inserts ();
6563
6564 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
6565 num_asserts);
6566 }
6567
6568
6569 /* Traverse the flowgraph looking for conditional jumps to insert range
6570 expressions. These range expressions are meant to provide information
6571 to optimizations that need to reason in terms of value ranges. They
6572 will not be expanded into RTL. For instance, given:
6573
6574 x = ...
6575 y = ...
6576 if (x < y)
6577 y = x - 2;
6578 else
6579 x = y + 3;
6580
6581 this pass will transform the code into:
6582
6583 x = ...
6584 y = ...
6585 if (x < y)
6586 {
6587 x = ASSERT_EXPR <x, x < y>
6588 y = x - 2
6589 }
6590 else
6591 {
6592 y = ASSERT_EXPR <y, x >= y>
6593 x = y + 3
6594 }
6595
6596 The idea is that once copy and constant propagation have run, other
6597 optimizations will be able to determine what ranges of values can 'x'
6598 take in different paths of the code, simply by checking the reaching
6599 definition of 'x'. */
6600
6601 static void
6602 insert_range_assertions (void)
6603 {
6604 need_assert_for = BITMAP_ALLOC (NULL);
6605 asserts_for = XCNEWVEC (assert_locus *, num_ssa_names);
6606
6607 calculate_dominance_info (CDI_DOMINATORS);
6608
6609 find_assert_locations ();
6610 if (!bitmap_empty_p (need_assert_for))
6611 {
6612 process_assert_insertions ();
6613 update_ssa (TODO_update_ssa_no_phi);
6614 }
6615
6616 if (dump_file && (dump_flags & TDF_DETAILS))
6617 {
6618 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
6619 dump_function_to_file (current_function_decl, dump_file, dump_flags);
6620 }
6621
6622 free (asserts_for);
6623 BITMAP_FREE (need_assert_for);
6624 }
6625
6626 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6627 and "struct" hacks. If VRP can determine that the
6628 array subscript is a constant, check if it is outside valid
6629 range. If the array subscript is a RANGE, warn if it is
6630 non-overlapping with valid range.
6631 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6632
6633 static void
6634 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
6635 {
6636 value_range *vr = NULL;
6637 tree low_sub, up_sub;
6638 tree low_bound, up_bound, up_bound_p1;
6639
6640 if (TREE_NO_WARNING (ref))
6641 return;
6642
6643 low_sub = up_sub = TREE_OPERAND (ref, 1);
6644 up_bound = array_ref_up_bound (ref);
6645
6646 /* Can not check flexible arrays. */
6647 if (!up_bound
6648 || TREE_CODE (up_bound) != INTEGER_CST)
6649 return;
6650
6651 /* Accesses to trailing arrays via pointers may access storage
6652 beyond the types array bounds. */
6653 if (warn_array_bounds < 2
6654 && array_at_struct_end_p (ref))
6655 return;
6656
6657 low_bound = array_ref_low_bound (ref);
6658 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound,
6659 build_int_cst (TREE_TYPE (up_bound), 1));
6660
6661 /* Empty array. */
6662 if (tree_int_cst_equal (low_bound, up_bound_p1))
6663 {
6664 warning_at (location, OPT_Warray_bounds,
6665 "array subscript is above array bounds");
6666 TREE_NO_WARNING (ref) = 1;
6667 }
6668
6669 if (TREE_CODE (low_sub) == SSA_NAME)
6670 {
6671 vr = get_value_range (low_sub);
6672 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
6673 {
6674 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
6675 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
6676 }
6677 }
6678
6679 if (vr && vr->type == VR_ANTI_RANGE)
6680 {
6681 if (TREE_CODE (up_sub) == INTEGER_CST
6682 && (ignore_off_by_one
6683 ? tree_int_cst_lt (up_bound, up_sub)
6684 : tree_int_cst_le (up_bound, up_sub))
6685 && TREE_CODE (low_sub) == INTEGER_CST
6686 && tree_int_cst_le (low_sub, low_bound))
6687 {
6688 warning_at (location, OPT_Warray_bounds,
6689 "array subscript is outside array bounds");
6690 TREE_NO_WARNING (ref) = 1;
6691 }
6692 }
6693 else if (TREE_CODE (up_sub) == INTEGER_CST
6694 && (ignore_off_by_one
6695 ? !tree_int_cst_le (up_sub, up_bound_p1)
6696 : !tree_int_cst_le (up_sub, up_bound)))
6697 {
6698 if (dump_file && (dump_flags & TDF_DETAILS))
6699 {
6700 fprintf (dump_file, "Array bound warning for ");
6701 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6702 fprintf (dump_file, "\n");
6703 }
6704 warning_at (location, OPT_Warray_bounds,
6705 "array subscript is above array bounds");
6706 TREE_NO_WARNING (ref) = 1;
6707 }
6708 else if (TREE_CODE (low_sub) == INTEGER_CST
6709 && tree_int_cst_lt (low_sub, low_bound))
6710 {
6711 if (dump_file && (dump_flags & TDF_DETAILS))
6712 {
6713 fprintf (dump_file, "Array bound warning for ");
6714 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6715 fprintf (dump_file, "\n");
6716 }
6717 warning_at (location, OPT_Warray_bounds,
6718 "array subscript is below array bounds");
6719 TREE_NO_WARNING (ref) = 1;
6720 }
6721 }
6722
6723 /* Searches if the expr T, located at LOCATION computes
6724 address of an ARRAY_REF, and call check_array_ref on it. */
6725
6726 static void
6727 search_for_addr_array (tree t, location_t location)
6728 {
6729 /* Check each ARRAY_REFs in the reference chain. */
6730 do
6731 {
6732 if (TREE_CODE (t) == ARRAY_REF)
6733 check_array_ref (location, t, true /*ignore_off_by_one*/);
6734
6735 t = TREE_OPERAND (t, 0);
6736 }
6737 while (handled_component_p (t));
6738
6739 if (TREE_CODE (t) == MEM_REF
6740 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
6741 && !TREE_NO_WARNING (t))
6742 {
6743 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
6744 tree low_bound, up_bound, el_sz;
6745 offset_int idx;
6746 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
6747 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
6748 || !TYPE_DOMAIN (TREE_TYPE (tem)))
6749 return;
6750
6751 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6752 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6753 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
6754 if (!low_bound
6755 || TREE_CODE (low_bound) != INTEGER_CST
6756 || !up_bound
6757 || TREE_CODE (up_bound) != INTEGER_CST
6758 || !el_sz
6759 || TREE_CODE (el_sz) != INTEGER_CST)
6760 return;
6761
6762 idx = mem_ref_offset (t);
6763 idx = wi::sdiv_trunc (idx, wi::to_offset (el_sz));
6764 if (idx < 0)
6765 {
6766 if (dump_file && (dump_flags & TDF_DETAILS))
6767 {
6768 fprintf (dump_file, "Array bound warning for ");
6769 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6770 fprintf (dump_file, "\n");
6771 }
6772 warning_at (location, OPT_Warray_bounds,
6773 "array subscript is below array bounds");
6774 TREE_NO_WARNING (t) = 1;
6775 }
6776 else if (idx > (wi::to_offset (up_bound)
6777 - wi::to_offset (low_bound) + 1))
6778 {
6779 if (dump_file && (dump_flags & TDF_DETAILS))
6780 {
6781 fprintf (dump_file, "Array bound warning for ");
6782 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6783 fprintf (dump_file, "\n");
6784 }
6785 warning_at (location, OPT_Warray_bounds,
6786 "array subscript is above array bounds");
6787 TREE_NO_WARNING (t) = 1;
6788 }
6789 }
6790 }
6791
6792 /* walk_tree() callback that checks if *TP is
6793 an ARRAY_REF inside an ADDR_EXPR (in which an array
6794 subscript one outside the valid range is allowed). Call
6795 check_array_ref for each ARRAY_REF found. The location is
6796 passed in DATA. */
6797
6798 static tree
6799 check_array_bounds (tree *tp, int *walk_subtree, void *data)
6800 {
6801 tree t = *tp;
6802 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6803 location_t location;
6804
6805 if (EXPR_HAS_LOCATION (t))
6806 location = EXPR_LOCATION (t);
6807 else
6808 {
6809 location_t *locp = (location_t *) wi->info;
6810 location = *locp;
6811 }
6812
6813 *walk_subtree = TRUE;
6814
6815 if (TREE_CODE (t) == ARRAY_REF)
6816 check_array_ref (location, t, false /*ignore_off_by_one*/);
6817
6818 else if (TREE_CODE (t) == ADDR_EXPR)
6819 {
6820 search_for_addr_array (t, location);
6821 *walk_subtree = FALSE;
6822 }
6823
6824 return NULL_TREE;
6825 }
6826
6827 /* Walk over all statements of all reachable BBs and call check_array_bounds
6828 on them. */
6829
6830 static void
6831 check_all_array_refs (void)
6832 {
6833 basic_block bb;
6834 gimple_stmt_iterator si;
6835
6836 FOR_EACH_BB_FN (bb, cfun)
6837 {
6838 edge_iterator ei;
6839 edge e;
6840 bool executable = false;
6841
6842 /* Skip blocks that were found to be unreachable. */
6843 FOR_EACH_EDGE (e, ei, bb->preds)
6844 executable |= !!(e->flags & EDGE_EXECUTABLE);
6845 if (!executable)
6846 continue;
6847
6848 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6849 {
6850 gimple *stmt = gsi_stmt (si);
6851 struct walk_stmt_info wi;
6852 if (!gimple_has_location (stmt)
6853 || is_gimple_debug (stmt))
6854 continue;
6855
6856 memset (&wi, 0, sizeof (wi));
6857
6858 location_t loc = gimple_location (stmt);
6859 wi.info = &loc;
6860
6861 walk_gimple_op (gsi_stmt (si),
6862 check_array_bounds,
6863 &wi);
6864 }
6865 }
6866 }
6867
6868 /* Return true if all imm uses of VAR are either in STMT, or
6869 feed (optionally through a chain of single imm uses) GIMPLE_COND
6870 in basic block COND_BB. */
6871
6872 static bool
6873 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple *stmt, basic_block cond_bb)
6874 {
6875 use_operand_p use_p, use2_p;
6876 imm_use_iterator iter;
6877
6878 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
6879 if (USE_STMT (use_p) != stmt)
6880 {
6881 gimple *use_stmt = USE_STMT (use_p), *use_stmt2;
6882 if (is_gimple_debug (use_stmt))
6883 continue;
6884 while (is_gimple_assign (use_stmt)
6885 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
6886 && single_imm_use (gimple_assign_lhs (use_stmt),
6887 &use2_p, &use_stmt2))
6888 use_stmt = use_stmt2;
6889 if (gimple_code (use_stmt) != GIMPLE_COND
6890 || gimple_bb (use_stmt) != cond_bb)
6891 return false;
6892 }
6893 return true;
6894 }
6895
6896 /* Handle
6897 _4 = x_3 & 31;
6898 if (_4 != 0)
6899 goto <bb 6>;
6900 else
6901 goto <bb 7>;
6902 <bb 6>:
6903 __builtin_unreachable ();
6904 <bb 7>:
6905 x_5 = ASSERT_EXPR <x_3, ...>;
6906 If x_3 has no other immediate uses (checked by caller),
6907 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
6908 from the non-zero bitmask. */
6909
6910 static void
6911 maybe_set_nonzero_bits (basic_block bb, tree var)
6912 {
6913 edge e = single_pred_edge (bb);
6914 basic_block cond_bb = e->src;
6915 gimple *stmt = last_stmt (cond_bb);
6916 tree cst;
6917
6918 if (stmt == NULL
6919 || gimple_code (stmt) != GIMPLE_COND
6920 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
6921 ? EQ_EXPR : NE_EXPR)
6922 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
6923 || !integer_zerop (gimple_cond_rhs (stmt)))
6924 return;
6925
6926 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
6927 if (!is_gimple_assign (stmt)
6928 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
6929 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
6930 return;
6931 if (gimple_assign_rhs1 (stmt) != var)
6932 {
6933 gimple *stmt2;
6934
6935 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
6936 return;
6937 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
6938 if (!gimple_assign_cast_p (stmt2)
6939 || gimple_assign_rhs1 (stmt2) != var
6940 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
6941 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6942 != TYPE_PRECISION (TREE_TYPE (var))))
6943 return;
6944 }
6945 cst = gimple_assign_rhs2 (stmt);
6946 set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var), cst));
6947 }
6948
6949 /* Convert range assertion expressions into the implied copies and
6950 copy propagate away the copies. Doing the trivial copy propagation
6951 here avoids the need to run the full copy propagation pass after
6952 VRP.
6953
6954 FIXME, this will eventually lead to copy propagation removing the
6955 names that had useful range information attached to them. For
6956 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6957 then N_i will have the range [3, +INF].
6958
6959 However, by converting the assertion into the implied copy
6960 operation N_i = N_j, we will then copy-propagate N_j into the uses
6961 of N_i and lose the range information. We may want to hold on to
6962 ASSERT_EXPRs a little while longer as the ranges could be used in
6963 things like jump threading.
6964
6965 The problem with keeping ASSERT_EXPRs around is that passes after
6966 VRP need to handle them appropriately.
6967
6968 Another approach would be to make the range information a first
6969 class property of the SSA_NAME so that it can be queried from
6970 any pass. This is made somewhat more complex by the need for
6971 multiple ranges to be associated with one SSA_NAME. */
6972
6973 static void
6974 remove_range_assertions (void)
6975 {
6976 basic_block bb;
6977 gimple_stmt_iterator si;
6978 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
6979 a basic block preceeded by GIMPLE_COND branching to it and
6980 __builtin_trap, -1 if not yet checked, 0 otherwise. */
6981 int is_unreachable;
6982
6983 /* Note that the BSI iterator bump happens at the bottom of the
6984 loop and no bump is necessary if we're removing the statement
6985 referenced by the current BSI. */
6986 FOR_EACH_BB_FN (bb, cfun)
6987 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
6988 {
6989 gimple *stmt = gsi_stmt (si);
6990
6991 if (is_gimple_assign (stmt)
6992 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
6993 {
6994 tree lhs = gimple_assign_lhs (stmt);
6995 tree rhs = gimple_assign_rhs1 (stmt);
6996 tree var;
6997
6998 var = ASSERT_EXPR_VAR (rhs);
6999
7000 if (TREE_CODE (var) == SSA_NAME
7001 && !POINTER_TYPE_P (TREE_TYPE (lhs))
7002 && SSA_NAME_RANGE_INFO (lhs))
7003 {
7004 if (is_unreachable == -1)
7005 {
7006 is_unreachable = 0;
7007 if (single_pred_p (bb)
7008 && assert_unreachable_fallthru_edge_p
7009 (single_pred_edge (bb)))
7010 is_unreachable = 1;
7011 }
7012 /* Handle
7013 if (x_7 >= 10 && x_7 < 20)
7014 __builtin_unreachable ();
7015 x_8 = ASSERT_EXPR <x_7, ...>;
7016 if the only uses of x_7 are in the ASSERT_EXPR and
7017 in the condition. In that case, we can copy the
7018 range info from x_8 computed in this pass also
7019 for x_7. */
7020 if (is_unreachable
7021 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
7022 single_pred (bb)))
7023 {
7024 set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
7025 SSA_NAME_RANGE_INFO (lhs)->get_min (),
7026 SSA_NAME_RANGE_INFO (lhs)->get_max ());
7027 maybe_set_nonzero_bits (bb, var);
7028 }
7029 }
7030
7031 /* Propagate the RHS into every use of the LHS. For SSA names
7032 also propagate abnormals as it merely restores the original
7033 IL in this case (an replace_uses_by would assert). */
7034 if (TREE_CODE (var) == SSA_NAME)
7035 {
7036 imm_use_iterator iter;
7037 use_operand_p use_p;
7038 gimple *use_stmt;
7039 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
7040 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
7041 SET_USE (use_p, var);
7042 }
7043 else
7044 replace_uses_by (lhs, var);
7045
7046 /* And finally, remove the copy, it is not needed. */
7047 gsi_remove (&si, true);
7048 release_defs (stmt);
7049 }
7050 else
7051 {
7052 if (!is_gimple_debug (gsi_stmt (si)))
7053 is_unreachable = 0;
7054 gsi_next (&si);
7055 }
7056 }
7057 }
7058
7059
7060 /* Return true if STMT is interesting for VRP. */
7061
7062 static bool
7063 stmt_interesting_for_vrp (gimple *stmt)
7064 {
7065 if (gimple_code (stmt) == GIMPLE_PHI)
7066 {
7067 tree res = gimple_phi_result (stmt);
7068 return (!virtual_operand_p (res)
7069 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
7070 || POINTER_TYPE_P (TREE_TYPE (res))));
7071 }
7072 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
7073 {
7074 tree lhs = gimple_get_lhs (stmt);
7075
7076 /* In general, assignments with virtual operands are not useful
7077 for deriving ranges, with the obvious exception of calls to
7078 builtin functions. */
7079 if (lhs && TREE_CODE (lhs) == SSA_NAME
7080 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
7081 || POINTER_TYPE_P (TREE_TYPE (lhs)))
7082 && (is_gimple_call (stmt)
7083 || !gimple_vuse (stmt)))
7084 return true;
7085 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
7086 switch (gimple_call_internal_fn (stmt))
7087 {
7088 case IFN_ADD_OVERFLOW:
7089 case IFN_SUB_OVERFLOW:
7090 case IFN_MUL_OVERFLOW:
7091 case IFN_ATOMIC_COMPARE_EXCHANGE:
7092 /* These internal calls return _Complex integer type,
7093 but are interesting to VRP nevertheless. */
7094 if (lhs && TREE_CODE (lhs) == SSA_NAME)
7095 return true;
7096 break;
7097 default:
7098 break;
7099 }
7100 }
7101 else if (gimple_code (stmt) == GIMPLE_COND
7102 || gimple_code (stmt) == GIMPLE_SWITCH)
7103 return true;
7104
7105 return false;
7106 }
7107
7108 /* Initialize VRP lattice. */
7109
7110 static void
7111 vrp_initialize_lattice ()
7112 {
7113 values_propagated = false;
7114 num_vr_values = num_ssa_names;
7115 vr_value = XCNEWVEC (value_range *, num_vr_values);
7116 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
7117 bitmap_obstack_initialize (&vrp_equiv_obstack);
7118 }
7119
7120 /* Initialization required by ssa_propagate engine. */
7121
7122 static void
7123 vrp_initialize ()
7124 {
7125 basic_block bb;
7126
7127 FOR_EACH_BB_FN (bb, cfun)
7128 {
7129 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
7130 gsi_next (&si))
7131 {
7132 gphi *phi = si.phi ();
7133 if (!stmt_interesting_for_vrp (phi))
7134 {
7135 tree lhs = PHI_RESULT (phi);
7136 set_value_range_to_varying (get_value_range (lhs));
7137 prop_set_simulate_again (phi, false);
7138 }
7139 else
7140 prop_set_simulate_again (phi, true);
7141 }
7142
7143 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
7144 gsi_next (&si))
7145 {
7146 gimple *stmt = gsi_stmt (si);
7147
7148 /* If the statement is a control insn, then we do not
7149 want to avoid simulating the statement once. Failure
7150 to do so means that those edges will never get added. */
7151 if (stmt_ends_bb_p (stmt))
7152 prop_set_simulate_again (stmt, true);
7153 else if (!stmt_interesting_for_vrp (stmt))
7154 {
7155 set_defs_to_varying (stmt);
7156 prop_set_simulate_again (stmt, false);
7157 }
7158 else
7159 prop_set_simulate_again (stmt, true);
7160 }
7161 }
7162 }
7163
7164 /* Return the singleton value-range for NAME or NAME. */
7165
7166 static inline tree
7167 vrp_valueize (tree name)
7168 {
7169 if (TREE_CODE (name) == SSA_NAME)
7170 {
7171 value_range *vr = get_value_range (name);
7172 if (vr->type == VR_RANGE
7173 && (TREE_CODE (vr->min) == SSA_NAME
7174 || is_gimple_min_invariant (vr->min))
7175 && vrp_operand_equal_p (vr->min, vr->max))
7176 return vr->min;
7177 }
7178 return name;
7179 }
7180
7181 /* Return the singleton value-range for NAME if that is a constant
7182 but signal to not follow SSA edges. */
7183
7184 static inline tree
7185 vrp_valueize_1 (tree name)
7186 {
7187 if (TREE_CODE (name) == SSA_NAME)
7188 {
7189 /* If the definition may be simulated again we cannot follow
7190 this SSA edge as the SSA propagator does not necessarily
7191 re-visit the use. */
7192 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
7193 if (!gimple_nop_p (def_stmt)
7194 && prop_simulate_again_p (def_stmt))
7195 return NULL_TREE;
7196 value_range *vr = get_value_range (name);
7197 if (range_int_cst_singleton_p (vr))
7198 return vr->min;
7199 }
7200 return name;
7201 }
7202
7203 /* Visit assignment STMT. If it produces an interesting range, record
7204 the range in VR and set LHS to OUTPUT_P. */
7205
7206 static void
7207 vrp_visit_assignment_or_call (gimple *stmt, tree *output_p, value_range *vr)
7208 {
7209 tree lhs;
7210 enum gimple_code code = gimple_code (stmt);
7211 lhs = gimple_get_lhs (stmt);
7212 *output_p = NULL_TREE;
7213
7214 /* We only keep track of ranges in integral and pointer types. */
7215 if (TREE_CODE (lhs) == SSA_NAME
7216 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
7217 /* It is valid to have NULL MIN/MAX values on a type. See
7218 build_range_type. */
7219 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
7220 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
7221 || POINTER_TYPE_P (TREE_TYPE (lhs))))
7222 {
7223 *output_p = lhs;
7224
7225 /* Try folding the statement to a constant first. */
7226 tree tem = gimple_fold_stmt_to_constant_1 (stmt, vrp_valueize,
7227 vrp_valueize_1);
7228 if (tem)
7229 {
7230 if (TREE_CODE (tem) == SSA_NAME
7231 && (SSA_NAME_IS_DEFAULT_DEF (tem)
7232 || ! prop_simulate_again_p (SSA_NAME_DEF_STMT (tem))))
7233 {
7234 extract_range_from_ssa_name (vr, tem);
7235 return;
7236 }
7237 else if (is_gimple_min_invariant (tem))
7238 {
7239 set_value_range_to_value (vr, tem, NULL);
7240 return;
7241 }
7242 }
7243 /* Then dispatch to value-range extracting functions. */
7244 if (code == GIMPLE_CALL)
7245 extract_range_basic (vr, stmt);
7246 else
7247 extract_range_from_assignment (vr, as_a <gassign *> (stmt));
7248 }
7249 }
7250
7251 /* Helper that gets the value range of the SSA_NAME with version I
7252 or a symbolic range containing the SSA_NAME only if the value range
7253 is varying or undefined. */
7254
7255 static inline value_range
7256 get_vr_for_comparison (int i)
7257 {
7258 value_range vr = *get_value_range (ssa_name (i));
7259
7260 /* If name N_i does not have a valid range, use N_i as its own
7261 range. This allows us to compare against names that may
7262 have N_i in their ranges. */
7263 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
7264 {
7265 vr.type = VR_RANGE;
7266 vr.min = ssa_name (i);
7267 vr.max = ssa_name (i);
7268 }
7269
7270 return vr;
7271 }
7272
7273 /* Compare all the value ranges for names equivalent to VAR with VAL
7274 using comparison code COMP. Return the same value returned by
7275 compare_range_with_value, including the setting of
7276 *STRICT_OVERFLOW_P. */
7277
7278 static tree
7279 compare_name_with_value (enum tree_code comp, tree var, tree val,
7280 bool *strict_overflow_p, bool use_equiv_p)
7281 {
7282 bitmap_iterator bi;
7283 unsigned i;
7284 bitmap e;
7285 tree retval, t;
7286 int used_strict_overflow;
7287 bool sop;
7288 value_range equiv_vr;
7289
7290 /* Get the set of equivalences for VAR. */
7291 e = get_value_range (var)->equiv;
7292
7293 /* Start at -1. Set it to 0 if we do a comparison without relying
7294 on overflow, or 1 if all comparisons rely on overflow. */
7295 used_strict_overflow = -1;
7296
7297 /* Compare vars' value range with val. */
7298 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
7299 sop = false;
7300 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
7301 if (retval)
7302 used_strict_overflow = sop ? 1 : 0;
7303
7304 /* If the equiv set is empty we have done all work we need to do. */
7305 if (e == NULL)
7306 {
7307 if (retval
7308 && used_strict_overflow > 0)
7309 *strict_overflow_p = true;
7310 return retval;
7311 }
7312
7313 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
7314 {
7315 tree name = ssa_name (i);
7316 if (! name)
7317 continue;
7318
7319 if (! use_equiv_p
7320 && ! SSA_NAME_IS_DEFAULT_DEF (name)
7321 && prop_simulate_again_p (SSA_NAME_DEF_STMT (name)))
7322 continue;
7323
7324 equiv_vr = get_vr_for_comparison (i);
7325 sop = false;
7326 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
7327 if (t)
7328 {
7329 /* If we get different answers from different members
7330 of the equivalence set this check must be in a dead
7331 code region. Folding it to a trap representation
7332 would be correct here. For now just return don't-know. */
7333 if (retval != NULL
7334 && t != retval)
7335 {
7336 retval = NULL_TREE;
7337 break;
7338 }
7339 retval = t;
7340
7341 if (!sop)
7342 used_strict_overflow = 0;
7343 else if (used_strict_overflow < 0)
7344 used_strict_overflow = 1;
7345 }
7346 }
7347
7348 if (retval
7349 && used_strict_overflow > 0)
7350 *strict_overflow_p = true;
7351
7352 return retval;
7353 }
7354
7355
7356 /* Given a comparison code COMP and names N1 and N2, compare all the
7357 ranges equivalent to N1 against all the ranges equivalent to N2
7358 to determine the value of N1 COMP N2. Return the same value
7359 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
7360 whether we relied on undefined signed overflow in the comparison. */
7361
7362
7363 static tree
7364 compare_names (enum tree_code comp, tree n1, tree n2,
7365 bool *strict_overflow_p)
7366 {
7367 tree t, retval;
7368 bitmap e1, e2;
7369 bitmap_iterator bi1, bi2;
7370 unsigned i1, i2;
7371 int used_strict_overflow;
7372 static bitmap_obstack *s_obstack = NULL;
7373 static bitmap s_e1 = NULL, s_e2 = NULL;
7374
7375 /* Compare the ranges of every name equivalent to N1 against the
7376 ranges of every name equivalent to N2. */
7377 e1 = get_value_range (n1)->equiv;
7378 e2 = get_value_range (n2)->equiv;
7379
7380 /* Use the fake bitmaps if e1 or e2 are not available. */
7381 if (s_obstack == NULL)
7382 {
7383 s_obstack = XNEW (bitmap_obstack);
7384 bitmap_obstack_initialize (s_obstack);
7385 s_e1 = BITMAP_ALLOC (s_obstack);
7386 s_e2 = BITMAP_ALLOC (s_obstack);
7387 }
7388 if (e1 == NULL)
7389 e1 = s_e1;
7390 if (e2 == NULL)
7391 e2 = s_e2;
7392
7393 /* Add N1 and N2 to their own set of equivalences to avoid
7394 duplicating the body of the loop just to check N1 and N2
7395 ranges. */
7396 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
7397 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
7398
7399 /* If the equivalence sets have a common intersection, then the two
7400 names can be compared without checking their ranges. */
7401 if (bitmap_intersect_p (e1, e2))
7402 {
7403 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7404 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7405
7406 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
7407 ? boolean_true_node
7408 : boolean_false_node;
7409 }
7410
7411 /* Start at -1. Set it to 0 if we do a comparison without relying
7412 on overflow, or 1 if all comparisons rely on overflow. */
7413 used_strict_overflow = -1;
7414
7415 /* Otherwise, compare all the equivalent ranges. First, add N1 and
7416 N2 to their own set of equivalences to avoid duplicating the body
7417 of the loop just to check N1 and N2 ranges. */
7418 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
7419 {
7420 if (! ssa_name (i1))
7421 continue;
7422
7423 value_range vr1 = get_vr_for_comparison (i1);
7424
7425 t = retval = NULL_TREE;
7426 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
7427 {
7428 if (! ssa_name (i2))
7429 continue;
7430
7431 bool sop = false;
7432
7433 value_range vr2 = get_vr_for_comparison (i2);
7434
7435 t = compare_ranges (comp, &vr1, &vr2, &sop);
7436 if (t)
7437 {
7438 /* If we get different answers from different members
7439 of the equivalence set this check must be in a dead
7440 code region. Folding it to a trap representation
7441 would be correct here. For now just return don't-know. */
7442 if (retval != NULL
7443 && t != retval)
7444 {
7445 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7446 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7447 return NULL_TREE;
7448 }
7449 retval = t;
7450
7451 if (!sop)
7452 used_strict_overflow = 0;
7453 else if (used_strict_overflow < 0)
7454 used_strict_overflow = 1;
7455 }
7456 }
7457
7458 if (retval)
7459 {
7460 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7461 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7462 if (used_strict_overflow > 0)
7463 *strict_overflow_p = true;
7464 return retval;
7465 }
7466 }
7467
7468 /* None of the equivalent ranges are useful in computing this
7469 comparison. */
7470 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7471 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7472 return NULL_TREE;
7473 }
7474
7475 /* Helper function for vrp_evaluate_conditional_warnv & other
7476 optimizers. */
7477
7478 static tree
7479 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
7480 tree op0, tree op1,
7481 bool * strict_overflow_p)
7482 {
7483 value_range *vr0, *vr1;
7484
7485 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
7486 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
7487
7488 tree res = NULL_TREE;
7489 if (vr0 && vr1)
7490 res = compare_ranges (code, vr0, vr1, strict_overflow_p);
7491 if (!res && vr0)
7492 res = compare_range_with_value (code, vr0, op1, strict_overflow_p);
7493 if (!res && vr1)
7494 res = (compare_range_with_value
7495 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
7496 return res;
7497 }
7498
7499 /* Helper function for vrp_evaluate_conditional_warnv. */
7500
7501 static tree
7502 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
7503 tree op1, bool use_equiv_p,
7504 bool *strict_overflow_p, bool *only_ranges)
7505 {
7506 tree ret;
7507 if (only_ranges)
7508 *only_ranges = true;
7509
7510 /* We only deal with integral and pointer types. */
7511 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
7512 && !POINTER_TYPE_P (TREE_TYPE (op0)))
7513 return NULL_TREE;
7514
7515 /* If OP0 CODE OP1 is an overflow comparison, if it can be expressed
7516 as a simple equality test, then prefer that over its current form
7517 for evaluation.
7518
7519 An overflow test which collapses to an equality test can always be
7520 expressed as a comparison of one argument against zero. Overflow
7521 occurs when the chosen argument is zero and does not occur if the
7522 chosen argument is not zero. */
7523 tree x;
7524 if (overflow_comparison_p (code, op0, op1, use_equiv_p, &x))
7525 {
7526 wide_int max = wi::max_value (TYPE_PRECISION (TREE_TYPE (op0)), UNSIGNED);
7527 /* B = A - 1; if (A < B) -> B = A - 1; if (A == 0)
7528 B = A - 1; if (A > B) -> B = A - 1; if (A != 0)
7529 B = A + 1; if (B < A) -> B = A + 1; if (B == 0)
7530 B = A + 1; if (B > A) -> B = A + 1; if (B != 0) */
7531 if (integer_zerop (x))
7532 {
7533 op1 = x;
7534 code = (code == LT_EXPR || code == LE_EXPR) ? EQ_EXPR : NE_EXPR;
7535 }
7536 /* B = A + 1; if (A > B) -> B = A + 1; if (B == 0)
7537 B = A + 1; if (A < B) -> B = A + 1; if (B != 0)
7538 B = A - 1; if (B > A) -> B = A - 1; if (A == 0)
7539 B = A - 1; if (B < A) -> B = A - 1; if (A != 0) */
7540 else if (wi::eq_p (x, max - 1))
7541 {
7542 op0 = op1;
7543 op1 = wide_int_to_tree (TREE_TYPE (op0), 0);
7544 code = (code == GT_EXPR || code == GE_EXPR) ? EQ_EXPR : NE_EXPR;
7545 }
7546 }
7547
7548 if ((ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
7549 (code, op0, op1, strict_overflow_p)))
7550 return ret;
7551 if (only_ranges)
7552 *only_ranges = false;
7553 /* Do not use compare_names during propagation, it's quadratic. */
7554 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME
7555 && use_equiv_p)
7556 return compare_names (code, op0, op1, strict_overflow_p);
7557 else if (TREE_CODE (op0) == SSA_NAME)
7558 return compare_name_with_value (code, op0, op1,
7559 strict_overflow_p, use_equiv_p);
7560 else if (TREE_CODE (op1) == SSA_NAME)
7561 return compare_name_with_value (swap_tree_comparison (code), op1, op0,
7562 strict_overflow_p, use_equiv_p);
7563 return NULL_TREE;
7564 }
7565
7566 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
7567 information. Return NULL if the conditional can not be evaluated.
7568 The ranges of all the names equivalent with the operands in COND
7569 will be used when trying to compute the value. If the result is
7570 based on undefined signed overflow, issue a warning if
7571 appropriate. */
7572
7573 static tree
7574 vrp_evaluate_conditional (tree_code code, tree op0, tree op1, gimple *stmt)
7575 {
7576 bool sop;
7577 tree ret;
7578 bool only_ranges;
7579
7580 /* Some passes and foldings leak constants with overflow flag set
7581 into the IL. Avoid doing wrong things with these and bail out. */
7582 if ((TREE_CODE (op0) == INTEGER_CST
7583 && TREE_OVERFLOW (op0))
7584 || (TREE_CODE (op1) == INTEGER_CST
7585 && TREE_OVERFLOW (op1)))
7586 return NULL_TREE;
7587
7588 sop = false;
7589 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
7590 &only_ranges);
7591
7592 if (ret && sop)
7593 {
7594 enum warn_strict_overflow_code wc;
7595 const char* warnmsg;
7596
7597 if (is_gimple_min_invariant (ret))
7598 {
7599 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
7600 warnmsg = G_("assuming signed overflow does not occur when "
7601 "simplifying conditional to constant");
7602 }
7603 else
7604 {
7605 wc = WARN_STRICT_OVERFLOW_COMPARISON;
7606 warnmsg = G_("assuming signed overflow does not occur when "
7607 "simplifying conditional");
7608 }
7609
7610 if (issue_strict_overflow_warning (wc))
7611 {
7612 location_t location;
7613
7614 if (!gimple_has_location (stmt))
7615 location = input_location;
7616 else
7617 location = gimple_location (stmt);
7618 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
7619 }
7620 }
7621
7622 if (warn_type_limits
7623 && ret && only_ranges
7624 && TREE_CODE_CLASS (code) == tcc_comparison
7625 && TREE_CODE (op0) == SSA_NAME)
7626 {
7627 /* If the comparison is being folded and the operand on the LHS
7628 is being compared against a constant value that is outside of
7629 the natural range of OP0's type, then the predicate will
7630 always fold regardless of the value of OP0. If -Wtype-limits
7631 was specified, emit a warning. */
7632 tree type = TREE_TYPE (op0);
7633 value_range *vr0 = get_value_range (op0);
7634
7635 if (vr0->type == VR_RANGE
7636 && INTEGRAL_TYPE_P (type)
7637 && vrp_val_is_min (vr0->min)
7638 && vrp_val_is_max (vr0->max)
7639 && is_gimple_min_invariant (op1))
7640 {
7641 location_t location;
7642
7643 if (!gimple_has_location (stmt))
7644 location = input_location;
7645 else
7646 location = gimple_location (stmt);
7647
7648 warning_at (location, OPT_Wtype_limits,
7649 integer_zerop (ret)
7650 ? G_("comparison always false "
7651 "due to limited range of data type")
7652 : G_("comparison always true "
7653 "due to limited range of data type"));
7654 }
7655 }
7656
7657 return ret;
7658 }
7659
7660
7661 /* Visit conditional statement STMT. If we can determine which edge
7662 will be taken out of STMT's basic block, record it in
7663 *TAKEN_EDGE_P. Otherwise, set *TAKEN_EDGE_P to NULL. */
7664
7665 static void
7666 vrp_visit_cond_stmt (gcond *stmt, edge *taken_edge_p)
7667 {
7668 tree val;
7669
7670 *taken_edge_p = NULL;
7671
7672 if (dump_file && (dump_flags & TDF_DETAILS))
7673 {
7674 tree use;
7675 ssa_op_iter i;
7676
7677 fprintf (dump_file, "\nVisiting conditional with predicate: ");
7678 print_gimple_stmt (dump_file, stmt, 0);
7679 fprintf (dump_file, "\nWith known ranges\n");
7680
7681 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
7682 {
7683 fprintf (dump_file, "\t");
7684 print_generic_expr (dump_file, use);
7685 fprintf (dump_file, ": ");
7686 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
7687 }
7688
7689 fprintf (dump_file, "\n");
7690 }
7691
7692 /* Compute the value of the predicate COND by checking the known
7693 ranges of each of its operands.
7694
7695 Note that we cannot evaluate all the equivalent ranges here
7696 because those ranges may not yet be final and with the current
7697 propagation strategy, we cannot determine when the value ranges
7698 of the names in the equivalence set have changed.
7699
7700 For instance, given the following code fragment
7701
7702 i_5 = PHI <8, i_13>
7703 ...
7704 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7705 if (i_14 == 1)
7706 ...
7707
7708 Assume that on the first visit to i_14, i_5 has the temporary
7709 range [8, 8] because the second argument to the PHI function is
7710 not yet executable. We derive the range ~[0, 0] for i_14 and the
7711 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7712 the first time, since i_14 is equivalent to the range [8, 8], we
7713 determine that the predicate is always false.
7714
7715 On the next round of propagation, i_13 is determined to be
7716 VARYING, which causes i_5 to drop down to VARYING. So, another
7717 visit to i_14 is scheduled. In this second visit, we compute the
7718 exact same range and equivalence set for i_14, namely ~[0, 0] and
7719 { i_5 }. But we did not have the previous range for i_5
7720 registered, so vrp_visit_assignment thinks that the range for
7721 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7722 is not visited again, which stops propagation from visiting
7723 statements in the THEN clause of that if().
7724
7725 To properly fix this we would need to keep the previous range
7726 value for the names in the equivalence set. This way we would've
7727 discovered that from one visit to the other i_5 changed from
7728 range [8, 8] to VR_VARYING.
7729
7730 However, fixing this apparent limitation may not be worth the
7731 additional checking. Testing on several code bases (GCC, DLV,
7732 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7733 4 more predicates folded in SPEC. */
7734
7735 bool sop;
7736 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
7737 gimple_cond_lhs (stmt),
7738 gimple_cond_rhs (stmt),
7739 false, &sop, NULL);
7740 if (val)
7741 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
7742
7743 if (dump_file && (dump_flags & TDF_DETAILS))
7744 {
7745 fprintf (dump_file, "\nPredicate evaluates to: ");
7746 if (val == NULL_TREE)
7747 fprintf (dump_file, "DON'T KNOW\n");
7748 else
7749 print_generic_stmt (dump_file, val);
7750 }
7751 }
7752
7753 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7754 that includes the value VAL. The search is restricted to the range
7755 [START_IDX, n - 1] where n is the size of VEC.
7756
7757 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
7758 returned.
7759
7760 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
7761 it is placed in IDX and false is returned.
7762
7763 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
7764 returned. */
7765
7766 static bool
7767 find_case_label_index (gswitch *stmt, size_t start_idx, tree val, size_t *idx)
7768 {
7769 size_t n = gimple_switch_num_labels (stmt);
7770 size_t low, high;
7771
7772 /* Find case label for minimum of the value range or the next one.
7773 At each iteration we are searching in [low, high - 1]. */
7774
7775 for (low = start_idx, high = n; high != low; )
7776 {
7777 tree t;
7778 int cmp;
7779 /* Note that i != high, so we never ask for n. */
7780 size_t i = (high + low) / 2;
7781 t = gimple_switch_label (stmt, i);
7782
7783 /* Cache the result of comparing CASE_LOW and val. */
7784 cmp = tree_int_cst_compare (CASE_LOW (t), val);
7785
7786 if (cmp == 0)
7787 {
7788 /* Ranges cannot be empty. */
7789 *idx = i;
7790 return true;
7791 }
7792 else if (cmp > 0)
7793 high = i;
7794 else
7795 {
7796 low = i + 1;
7797 if (CASE_HIGH (t) != NULL
7798 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
7799 {
7800 *idx = i;
7801 return true;
7802 }
7803 }
7804 }
7805
7806 *idx = high;
7807 return false;
7808 }
7809
7810 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
7811 for values between MIN and MAX. The first index is placed in MIN_IDX. The
7812 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
7813 then MAX_IDX < MIN_IDX.
7814 Returns true if the default label is not needed. */
7815
7816 static bool
7817 find_case_label_range (gswitch *stmt, tree min, tree max, size_t *min_idx,
7818 size_t *max_idx)
7819 {
7820 size_t i, j;
7821 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
7822 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
7823
7824 if (i == j
7825 && min_take_default
7826 && max_take_default)
7827 {
7828 /* Only the default case label reached.
7829 Return an empty range. */
7830 *min_idx = 1;
7831 *max_idx = 0;
7832 return false;
7833 }
7834 else
7835 {
7836 bool take_default = min_take_default || max_take_default;
7837 tree low, high;
7838 size_t k;
7839
7840 if (max_take_default)
7841 j--;
7842
7843 /* If the case label range is continuous, we do not need
7844 the default case label. Verify that. */
7845 high = CASE_LOW (gimple_switch_label (stmt, i));
7846 if (CASE_HIGH (gimple_switch_label (stmt, i)))
7847 high = CASE_HIGH (gimple_switch_label (stmt, i));
7848 for (k = i + 1; k <= j; ++k)
7849 {
7850 low = CASE_LOW (gimple_switch_label (stmt, k));
7851 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
7852 {
7853 take_default = true;
7854 break;
7855 }
7856 high = low;
7857 if (CASE_HIGH (gimple_switch_label (stmt, k)))
7858 high = CASE_HIGH (gimple_switch_label (stmt, k));
7859 }
7860
7861 *min_idx = i;
7862 *max_idx = j;
7863 return !take_default;
7864 }
7865 }
7866
7867 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7868 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7869 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7870 Returns true if the default label is not needed. */
7871
7872 static bool
7873 find_case_label_ranges (gswitch *stmt, value_range *vr, size_t *min_idx1,
7874 size_t *max_idx1, size_t *min_idx2,
7875 size_t *max_idx2)
7876 {
7877 size_t i, j, k, l;
7878 unsigned int n = gimple_switch_num_labels (stmt);
7879 bool take_default;
7880 tree case_low, case_high;
7881 tree min = vr->min, max = vr->max;
7882
7883 gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE);
7884
7885 take_default = !find_case_label_range (stmt, min, max, &i, &j);
7886
7887 /* Set second range to emtpy. */
7888 *min_idx2 = 1;
7889 *max_idx2 = 0;
7890
7891 if (vr->type == VR_RANGE)
7892 {
7893 *min_idx1 = i;
7894 *max_idx1 = j;
7895 return !take_default;
7896 }
7897
7898 /* Set first range to all case labels. */
7899 *min_idx1 = 1;
7900 *max_idx1 = n - 1;
7901
7902 if (i > j)
7903 return false;
7904
7905 /* Make sure all the values of case labels [i , j] are contained in
7906 range [MIN, MAX]. */
7907 case_low = CASE_LOW (gimple_switch_label (stmt, i));
7908 case_high = CASE_HIGH (gimple_switch_label (stmt, j));
7909 if (tree_int_cst_compare (case_low, min) < 0)
7910 i += 1;
7911 if (case_high != NULL_TREE
7912 && tree_int_cst_compare (max, case_high) < 0)
7913 j -= 1;
7914
7915 if (i > j)
7916 return false;
7917
7918 /* If the range spans case labels [i, j], the corresponding anti-range spans
7919 the labels [1, i - 1] and [j + 1, n - 1]. */
7920 k = j + 1;
7921 l = n - 1;
7922 if (k > l)
7923 {
7924 k = 1;
7925 l = 0;
7926 }
7927
7928 j = i - 1;
7929 i = 1;
7930 if (i > j)
7931 {
7932 i = k;
7933 j = l;
7934 k = 1;
7935 l = 0;
7936 }
7937
7938 *min_idx1 = i;
7939 *max_idx1 = j;
7940 *min_idx2 = k;
7941 *max_idx2 = l;
7942 return false;
7943 }
7944
7945 /* Visit switch statement STMT. If we can determine which edge
7946 will be taken out of STMT's basic block, record it in
7947 *TAKEN_EDGE_P. Otherwise, *TAKEN_EDGE_P set to NULL. */
7948
7949 static void
7950 vrp_visit_switch_stmt (gswitch *stmt, edge *taken_edge_p)
7951 {
7952 tree op, val;
7953 value_range *vr;
7954 size_t i = 0, j = 0, k, l;
7955 bool take_default;
7956
7957 *taken_edge_p = NULL;
7958 op = gimple_switch_index (stmt);
7959 if (TREE_CODE (op) != SSA_NAME)
7960 return;
7961
7962 vr = get_value_range (op);
7963 if (dump_file && (dump_flags & TDF_DETAILS))
7964 {
7965 fprintf (dump_file, "\nVisiting switch expression with operand ");
7966 print_generic_expr (dump_file, op);
7967 fprintf (dump_file, " with known range ");
7968 dump_value_range (dump_file, vr);
7969 fprintf (dump_file, "\n");
7970 }
7971
7972 if ((vr->type != VR_RANGE
7973 && vr->type != VR_ANTI_RANGE)
7974 || symbolic_range_p (vr))
7975 return;
7976
7977 /* Find the single edge that is taken from the switch expression. */
7978 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
7979
7980 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7981 label */
7982 if (j < i)
7983 {
7984 gcc_assert (take_default);
7985 val = gimple_switch_default_label (stmt);
7986 }
7987 else
7988 {
7989 /* Check if labels with index i to j and maybe the default label
7990 are all reaching the same label. */
7991
7992 val = gimple_switch_label (stmt, i);
7993 if (take_default
7994 && CASE_LABEL (gimple_switch_default_label (stmt))
7995 != CASE_LABEL (val))
7996 {
7997 if (dump_file && (dump_flags & TDF_DETAILS))
7998 fprintf (dump_file, " not a single destination for this "
7999 "range\n");
8000 return;
8001 }
8002 for (++i; i <= j; ++i)
8003 {
8004 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
8005 {
8006 if (dump_file && (dump_flags & TDF_DETAILS))
8007 fprintf (dump_file, " not a single destination for this "
8008 "range\n");
8009 return;
8010 }
8011 }
8012 for (; k <= l; ++k)
8013 {
8014 if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
8015 {
8016 if (dump_file && (dump_flags & TDF_DETAILS))
8017 fprintf (dump_file, " not a single destination for this "
8018 "range\n");
8019 return;
8020 }
8021 }
8022 }
8023
8024 *taken_edge_p = find_edge (gimple_bb (stmt),
8025 label_to_block (CASE_LABEL (val)));
8026
8027 if (dump_file && (dump_flags & TDF_DETAILS))
8028 {
8029 fprintf (dump_file, " will take edge to ");
8030 print_generic_stmt (dump_file, CASE_LABEL (val));
8031 }
8032 }
8033
8034
8035 /* Evaluate statement STMT. If the statement produces a useful range,
8036 set VR and corepsponding OUTPUT_P.
8037
8038 If STMT is a conditional branch and we can determine its truth
8039 value, the taken edge is recorded in *TAKEN_EDGE_P. */
8040
8041 static void
8042 extract_range_from_stmt (gimple *stmt, edge *taken_edge_p,
8043 tree *output_p, value_range *vr)
8044 {
8045
8046 if (dump_file && (dump_flags & TDF_DETAILS))
8047 {
8048 fprintf (dump_file, "\nVisiting statement:\n");
8049 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
8050 }
8051
8052 if (!stmt_interesting_for_vrp (stmt))
8053 gcc_assert (stmt_ends_bb_p (stmt));
8054 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
8055 vrp_visit_assignment_or_call (stmt, output_p, vr);
8056 else if (gimple_code (stmt) == GIMPLE_COND)
8057 vrp_visit_cond_stmt (as_a <gcond *> (stmt), taken_edge_p);
8058 else if (gimple_code (stmt) == GIMPLE_SWITCH)
8059 vrp_visit_switch_stmt (as_a <gswitch *> (stmt), taken_edge_p);
8060 }
8061
8062 /* Evaluate statement STMT. If the statement produces a useful range,
8063 return SSA_PROP_INTERESTING and record the SSA name with the
8064 interesting range into *OUTPUT_P.
8065
8066 If STMT is a conditional branch and we can determine its truth
8067 value, the taken edge is recorded in *TAKEN_EDGE_P.
8068
8069 If STMT produces a varying value, return SSA_PROP_VARYING. */
8070
8071 static enum ssa_prop_result
8072 vrp_visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
8073 {
8074 value_range vr = VR_INITIALIZER;
8075 tree lhs = gimple_get_lhs (stmt);
8076 extract_range_from_stmt (stmt, taken_edge_p, output_p, &vr);
8077
8078 if (*output_p)
8079 {
8080 if (update_value_range (*output_p, &vr))
8081 {
8082 if (dump_file && (dump_flags & TDF_DETAILS))
8083 {
8084 fprintf (dump_file, "Found new range for ");
8085 print_generic_expr (dump_file, *output_p);
8086 fprintf (dump_file, ": ");
8087 dump_value_range (dump_file, &vr);
8088 fprintf (dump_file, "\n");
8089 }
8090
8091 if (vr.type == VR_VARYING)
8092 return SSA_PROP_VARYING;
8093
8094 return SSA_PROP_INTERESTING;
8095 }
8096 return SSA_PROP_NOT_INTERESTING;
8097 }
8098
8099 if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
8100 switch (gimple_call_internal_fn (stmt))
8101 {
8102 case IFN_ADD_OVERFLOW:
8103 case IFN_SUB_OVERFLOW:
8104 case IFN_MUL_OVERFLOW:
8105 case IFN_ATOMIC_COMPARE_EXCHANGE:
8106 /* These internal calls return _Complex integer type,
8107 which VRP does not track, but the immediate uses
8108 thereof might be interesting. */
8109 if (lhs && TREE_CODE (lhs) == SSA_NAME)
8110 {
8111 imm_use_iterator iter;
8112 use_operand_p use_p;
8113 enum ssa_prop_result res = SSA_PROP_VARYING;
8114
8115 set_value_range_to_varying (get_value_range (lhs));
8116
8117 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
8118 {
8119 gimple *use_stmt = USE_STMT (use_p);
8120 if (!is_gimple_assign (use_stmt))
8121 continue;
8122 enum tree_code rhs_code = gimple_assign_rhs_code (use_stmt);
8123 if (rhs_code != REALPART_EXPR && rhs_code != IMAGPART_EXPR)
8124 continue;
8125 tree rhs1 = gimple_assign_rhs1 (use_stmt);
8126 tree use_lhs = gimple_assign_lhs (use_stmt);
8127 if (TREE_CODE (rhs1) != rhs_code
8128 || TREE_OPERAND (rhs1, 0) != lhs
8129 || TREE_CODE (use_lhs) != SSA_NAME
8130 || !stmt_interesting_for_vrp (use_stmt)
8131 || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs))
8132 || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs))
8133 || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs))))
8134 continue;
8135
8136 /* If there is a change in the value range for any of the
8137 REALPART_EXPR/IMAGPART_EXPR immediate uses, return
8138 SSA_PROP_INTERESTING. If there are any REALPART_EXPR
8139 or IMAGPART_EXPR immediate uses, but none of them have
8140 a change in their value ranges, return
8141 SSA_PROP_NOT_INTERESTING. If there are no
8142 {REAL,IMAG}PART_EXPR uses at all,
8143 return SSA_PROP_VARYING. */
8144 value_range new_vr = VR_INITIALIZER;
8145 extract_range_basic (&new_vr, use_stmt);
8146 value_range *old_vr = get_value_range (use_lhs);
8147 if (old_vr->type != new_vr.type
8148 || !vrp_operand_equal_p (old_vr->min, new_vr.min)
8149 || !vrp_operand_equal_p (old_vr->max, new_vr.max)
8150 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr.equiv))
8151 res = SSA_PROP_INTERESTING;
8152 else
8153 res = SSA_PROP_NOT_INTERESTING;
8154 BITMAP_FREE (new_vr.equiv);
8155 if (res == SSA_PROP_INTERESTING)
8156 {
8157 *output_p = lhs;
8158 return res;
8159 }
8160 }
8161
8162 return res;
8163 }
8164 break;
8165 default:
8166 break;
8167 }
8168
8169 /* All other statements produce nothing of interest for VRP, so mark
8170 their outputs varying and prevent further simulation. */
8171 set_defs_to_varying (stmt);
8172
8173 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
8174 }
8175
8176 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8177 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8178 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8179 possible such range. The resulting range is not canonicalized. */
8180
8181 static void
8182 union_ranges (enum value_range_type *vr0type,
8183 tree *vr0min, tree *vr0max,
8184 enum value_range_type vr1type,
8185 tree vr1min, tree vr1max)
8186 {
8187 bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
8188 bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
8189
8190 /* [] is vr0, () is vr1 in the following classification comments. */
8191 if (mineq && maxeq)
8192 {
8193 /* [( )] */
8194 if (*vr0type == vr1type)
8195 /* Nothing to do for equal ranges. */
8196 ;
8197 else if ((*vr0type == VR_RANGE
8198 && vr1type == VR_ANTI_RANGE)
8199 || (*vr0type == VR_ANTI_RANGE
8200 && vr1type == VR_RANGE))
8201 {
8202 /* For anti-range with range union the result is varying. */
8203 goto give_up;
8204 }
8205 else
8206 gcc_unreachable ();
8207 }
8208 else if (operand_less_p (*vr0max, vr1min) == 1
8209 || operand_less_p (vr1max, *vr0min) == 1)
8210 {
8211 /* [ ] ( ) or ( ) [ ]
8212 If the ranges have an empty intersection, result of the union
8213 operation is the anti-range or if both are anti-ranges
8214 it covers all. */
8215 if (*vr0type == VR_ANTI_RANGE
8216 && vr1type == VR_ANTI_RANGE)
8217 goto give_up;
8218 else if (*vr0type == VR_ANTI_RANGE
8219 && vr1type == VR_RANGE)
8220 ;
8221 else if (*vr0type == VR_RANGE
8222 && vr1type == VR_ANTI_RANGE)
8223 {
8224 *vr0type = vr1type;
8225 *vr0min = vr1min;
8226 *vr0max = vr1max;
8227 }
8228 else if (*vr0type == VR_RANGE
8229 && vr1type == VR_RANGE)
8230 {
8231 /* The result is the convex hull of both ranges. */
8232 if (operand_less_p (*vr0max, vr1min) == 1)
8233 {
8234 /* If the result can be an anti-range, create one. */
8235 if (TREE_CODE (*vr0max) == INTEGER_CST
8236 && TREE_CODE (vr1min) == INTEGER_CST
8237 && vrp_val_is_min (*vr0min)
8238 && vrp_val_is_max (vr1max))
8239 {
8240 tree min = int_const_binop (PLUS_EXPR,
8241 *vr0max,
8242 build_int_cst (TREE_TYPE (*vr0max), 1));
8243 tree max = int_const_binop (MINUS_EXPR,
8244 vr1min,
8245 build_int_cst (TREE_TYPE (vr1min), 1));
8246 if (!operand_less_p (max, min))
8247 {
8248 *vr0type = VR_ANTI_RANGE;
8249 *vr0min = min;
8250 *vr0max = max;
8251 }
8252 else
8253 *vr0max = vr1max;
8254 }
8255 else
8256 *vr0max = vr1max;
8257 }
8258 else
8259 {
8260 /* If the result can be an anti-range, create one. */
8261 if (TREE_CODE (vr1max) == INTEGER_CST
8262 && TREE_CODE (*vr0min) == INTEGER_CST
8263 && vrp_val_is_min (vr1min)
8264 && vrp_val_is_max (*vr0max))
8265 {
8266 tree min = int_const_binop (PLUS_EXPR,
8267 vr1max,
8268 build_int_cst (TREE_TYPE (vr1max), 1));
8269 tree max = int_const_binop (MINUS_EXPR,
8270 *vr0min,
8271 build_int_cst (TREE_TYPE (*vr0min), 1));
8272 if (!operand_less_p (max, min))
8273 {
8274 *vr0type = VR_ANTI_RANGE;
8275 *vr0min = min;
8276 *vr0max = max;
8277 }
8278 else
8279 *vr0min = vr1min;
8280 }
8281 else
8282 *vr0min = vr1min;
8283 }
8284 }
8285 else
8286 gcc_unreachable ();
8287 }
8288 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8289 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
8290 {
8291 /* [ ( ) ] or [( ) ] or [ ( )] */
8292 if (*vr0type == VR_RANGE
8293 && vr1type == VR_RANGE)
8294 ;
8295 else if (*vr0type == VR_ANTI_RANGE
8296 && vr1type == VR_ANTI_RANGE)
8297 {
8298 *vr0type = vr1type;
8299 *vr0min = vr1min;
8300 *vr0max = vr1max;
8301 }
8302 else if (*vr0type == VR_ANTI_RANGE
8303 && vr1type == VR_RANGE)
8304 {
8305 /* Arbitrarily choose the right or left gap. */
8306 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
8307 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8308 build_int_cst (TREE_TYPE (vr1min), 1));
8309 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
8310 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8311 build_int_cst (TREE_TYPE (vr1max), 1));
8312 else
8313 goto give_up;
8314 }
8315 else if (*vr0type == VR_RANGE
8316 && vr1type == VR_ANTI_RANGE)
8317 /* The result covers everything. */
8318 goto give_up;
8319 else
8320 gcc_unreachable ();
8321 }
8322 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8323 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8324 {
8325 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8326 if (*vr0type == VR_RANGE
8327 && vr1type == VR_RANGE)
8328 {
8329 *vr0type = vr1type;
8330 *vr0min = vr1min;
8331 *vr0max = vr1max;
8332 }
8333 else if (*vr0type == VR_ANTI_RANGE
8334 && vr1type == VR_ANTI_RANGE)
8335 ;
8336 else if (*vr0type == VR_RANGE
8337 && vr1type == VR_ANTI_RANGE)
8338 {
8339 *vr0type = VR_ANTI_RANGE;
8340 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
8341 {
8342 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8343 build_int_cst (TREE_TYPE (*vr0min), 1));
8344 *vr0min = vr1min;
8345 }
8346 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
8347 {
8348 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8349 build_int_cst (TREE_TYPE (*vr0max), 1));
8350 *vr0max = vr1max;
8351 }
8352 else
8353 goto give_up;
8354 }
8355 else if (*vr0type == VR_ANTI_RANGE
8356 && vr1type == VR_RANGE)
8357 /* The result covers everything. */
8358 goto give_up;
8359 else
8360 gcc_unreachable ();
8361 }
8362 else if ((operand_less_p (vr1min, *vr0max) == 1
8363 || operand_equal_p (vr1min, *vr0max, 0))
8364 && operand_less_p (*vr0min, vr1min) == 1
8365 && operand_less_p (*vr0max, vr1max) == 1)
8366 {
8367 /* [ ( ] ) or [ ]( ) */
8368 if (*vr0type == VR_RANGE
8369 && vr1type == VR_RANGE)
8370 *vr0max = vr1max;
8371 else if (*vr0type == VR_ANTI_RANGE
8372 && vr1type == VR_ANTI_RANGE)
8373 *vr0min = vr1min;
8374 else if (*vr0type == VR_ANTI_RANGE
8375 && vr1type == VR_RANGE)
8376 {
8377 if (TREE_CODE (vr1min) == INTEGER_CST)
8378 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8379 build_int_cst (TREE_TYPE (vr1min), 1));
8380 else
8381 goto give_up;
8382 }
8383 else if (*vr0type == VR_RANGE
8384 && vr1type == VR_ANTI_RANGE)
8385 {
8386 if (TREE_CODE (*vr0max) == INTEGER_CST)
8387 {
8388 *vr0type = vr1type;
8389 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8390 build_int_cst (TREE_TYPE (*vr0max), 1));
8391 *vr0max = vr1max;
8392 }
8393 else
8394 goto give_up;
8395 }
8396 else
8397 gcc_unreachable ();
8398 }
8399 else if ((operand_less_p (*vr0min, vr1max) == 1
8400 || operand_equal_p (*vr0min, vr1max, 0))
8401 && operand_less_p (vr1min, *vr0min) == 1
8402 && operand_less_p (vr1max, *vr0max) == 1)
8403 {
8404 /* ( [ ) ] or ( )[ ] */
8405 if (*vr0type == VR_RANGE
8406 && vr1type == VR_RANGE)
8407 *vr0min = vr1min;
8408 else if (*vr0type == VR_ANTI_RANGE
8409 && vr1type == VR_ANTI_RANGE)
8410 *vr0max = vr1max;
8411 else if (*vr0type == VR_ANTI_RANGE
8412 && vr1type == VR_RANGE)
8413 {
8414 if (TREE_CODE (vr1max) == INTEGER_CST)
8415 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8416 build_int_cst (TREE_TYPE (vr1max), 1));
8417 else
8418 goto give_up;
8419 }
8420 else if (*vr0type == VR_RANGE
8421 && vr1type == VR_ANTI_RANGE)
8422 {
8423 if (TREE_CODE (*vr0min) == INTEGER_CST)
8424 {
8425 *vr0type = vr1type;
8426 *vr0min = vr1min;
8427 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8428 build_int_cst (TREE_TYPE (*vr0min), 1));
8429 }
8430 else
8431 goto give_up;
8432 }
8433 else
8434 gcc_unreachable ();
8435 }
8436 else
8437 goto give_up;
8438
8439 return;
8440
8441 give_up:
8442 *vr0type = VR_VARYING;
8443 *vr0min = NULL_TREE;
8444 *vr0max = NULL_TREE;
8445 }
8446
8447 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8448 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8449 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8450 possible such range. The resulting range is not canonicalized. */
8451
8452 static void
8453 intersect_ranges (enum value_range_type *vr0type,
8454 tree *vr0min, tree *vr0max,
8455 enum value_range_type vr1type,
8456 tree vr1min, tree vr1max)
8457 {
8458 bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
8459 bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
8460
8461 /* [] is vr0, () is vr1 in the following classification comments. */
8462 if (mineq && maxeq)
8463 {
8464 /* [( )] */
8465 if (*vr0type == vr1type)
8466 /* Nothing to do for equal ranges. */
8467 ;
8468 else if ((*vr0type == VR_RANGE
8469 && vr1type == VR_ANTI_RANGE)
8470 || (*vr0type == VR_ANTI_RANGE
8471 && vr1type == VR_RANGE))
8472 {
8473 /* For anti-range with range intersection the result is empty. */
8474 *vr0type = VR_UNDEFINED;
8475 *vr0min = NULL_TREE;
8476 *vr0max = NULL_TREE;
8477 }
8478 else
8479 gcc_unreachable ();
8480 }
8481 else if (operand_less_p (*vr0max, vr1min) == 1
8482 || operand_less_p (vr1max, *vr0min) == 1)
8483 {
8484 /* [ ] ( ) or ( ) [ ]
8485 If the ranges have an empty intersection, the result of the
8486 intersect operation is the range for intersecting an
8487 anti-range with a range or empty when intersecting two ranges. */
8488 if (*vr0type == VR_RANGE
8489 && vr1type == VR_ANTI_RANGE)
8490 ;
8491 else if (*vr0type == VR_ANTI_RANGE
8492 && vr1type == VR_RANGE)
8493 {
8494 *vr0type = vr1type;
8495 *vr0min = vr1min;
8496 *vr0max = vr1max;
8497 }
8498 else if (*vr0type == VR_RANGE
8499 && vr1type == VR_RANGE)
8500 {
8501 *vr0type = VR_UNDEFINED;
8502 *vr0min = NULL_TREE;
8503 *vr0max = NULL_TREE;
8504 }
8505 else if (*vr0type == VR_ANTI_RANGE
8506 && vr1type == VR_ANTI_RANGE)
8507 {
8508 /* If the anti-ranges are adjacent to each other merge them. */
8509 if (TREE_CODE (*vr0max) == INTEGER_CST
8510 && TREE_CODE (vr1min) == INTEGER_CST
8511 && operand_less_p (*vr0max, vr1min) == 1
8512 && integer_onep (int_const_binop (MINUS_EXPR,
8513 vr1min, *vr0max)))
8514 *vr0max = vr1max;
8515 else if (TREE_CODE (vr1max) == INTEGER_CST
8516 && TREE_CODE (*vr0min) == INTEGER_CST
8517 && operand_less_p (vr1max, *vr0min) == 1
8518 && integer_onep (int_const_binop (MINUS_EXPR,
8519 *vr0min, vr1max)))
8520 *vr0min = vr1min;
8521 /* Else arbitrarily take VR0. */
8522 }
8523 }
8524 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8525 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
8526 {
8527 /* [ ( ) ] or [( ) ] or [ ( )] */
8528 if (*vr0type == VR_RANGE
8529 && vr1type == VR_RANGE)
8530 {
8531 /* If both are ranges the result is the inner one. */
8532 *vr0type = vr1type;
8533 *vr0min = vr1min;
8534 *vr0max = vr1max;
8535 }
8536 else if (*vr0type == VR_RANGE
8537 && vr1type == VR_ANTI_RANGE)
8538 {
8539 /* Choose the right gap if the left one is empty. */
8540 if (mineq)
8541 {
8542 if (TREE_CODE (vr1max) != INTEGER_CST)
8543 *vr0min = vr1max;
8544 else if (TYPE_PRECISION (TREE_TYPE (vr1max)) == 1
8545 && !TYPE_UNSIGNED (TREE_TYPE (vr1max)))
8546 *vr0min
8547 = int_const_binop (MINUS_EXPR, vr1max,
8548 build_int_cst (TREE_TYPE (vr1max), -1));
8549 else
8550 *vr0min
8551 = int_const_binop (PLUS_EXPR, vr1max,
8552 build_int_cst (TREE_TYPE (vr1max), 1));
8553 }
8554 /* Choose the left gap if the right one is empty. */
8555 else if (maxeq)
8556 {
8557 if (TREE_CODE (vr1min) != INTEGER_CST)
8558 *vr0max = vr1min;
8559 else if (TYPE_PRECISION (TREE_TYPE (vr1min)) == 1
8560 && !TYPE_UNSIGNED (TREE_TYPE (vr1min)))
8561 *vr0max
8562 = int_const_binop (PLUS_EXPR, vr1min,
8563 build_int_cst (TREE_TYPE (vr1min), -1));
8564 else
8565 *vr0max
8566 = int_const_binop (MINUS_EXPR, vr1min,
8567 build_int_cst (TREE_TYPE (vr1min), 1));
8568 }
8569 /* Choose the anti-range if the range is effectively varying. */
8570 else if (vrp_val_is_min (*vr0min)
8571 && vrp_val_is_max (*vr0max))
8572 {
8573 *vr0type = vr1type;
8574 *vr0min = vr1min;
8575 *vr0max = vr1max;
8576 }
8577 /* Else choose the range. */
8578 }
8579 else if (*vr0type == VR_ANTI_RANGE
8580 && vr1type == VR_ANTI_RANGE)
8581 /* If both are anti-ranges the result is the outer one. */
8582 ;
8583 else if (*vr0type == VR_ANTI_RANGE
8584 && vr1type == VR_RANGE)
8585 {
8586 /* The intersection is empty. */
8587 *vr0type = VR_UNDEFINED;
8588 *vr0min = NULL_TREE;
8589 *vr0max = NULL_TREE;
8590 }
8591 else
8592 gcc_unreachable ();
8593 }
8594 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8595 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8596 {
8597 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8598 if (*vr0type == VR_RANGE
8599 && vr1type == VR_RANGE)
8600 /* Choose the inner range. */
8601 ;
8602 else if (*vr0type == VR_ANTI_RANGE
8603 && vr1type == VR_RANGE)
8604 {
8605 /* Choose the right gap if the left is empty. */
8606 if (mineq)
8607 {
8608 *vr0type = VR_RANGE;
8609 if (TREE_CODE (*vr0max) != INTEGER_CST)
8610 *vr0min = *vr0max;
8611 else if (TYPE_PRECISION (TREE_TYPE (*vr0max)) == 1
8612 && !TYPE_UNSIGNED (TREE_TYPE (*vr0max)))
8613 *vr0min
8614 = int_const_binop (MINUS_EXPR, *vr0max,
8615 build_int_cst (TREE_TYPE (*vr0max), -1));
8616 else
8617 *vr0min
8618 = int_const_binop (PLUS_EXPR, *vr0max,
8619 build_int_cst (TREE_TYPE (*vr0max), 1));
8620 *vr0max = vr1max;
8621 }
8622 /* Choose the left gap if the right is empty. */
8623 else if (maxeq)
8624 {
8625 *vr0type = VR_RANGE;
8626 if (TREE_CODE (*vr0min) != INTEGER_CST)
8627 *vr0max = *vr0min;
8628 else if (TYPE_PRECISION (TREE_TYPE (*vr0min)) == 1
8629 && !TYPE_UNSIGNED (TREE_TYPE (*vr0min)))
8630 *vr0max
8631 = int_const_binop (PLUS_EXPR, *vr0min,
8632 build_int_cst (TREE_TYPE (*vr0min), -1));
8633 else
8634 *vr0max
8635 = int_const_binop (MINUS_EXPR, *vr0min,
8636 build_int_cst (TREE_TYPE (*vr0min), 1));
8637 *vr0min = vr1min;
8638 }
8639 /* Choose the anti-range if the range is effectively varying. */
8640 else if (vrp_val_is_min (vr1min)
8641 && vrp_val_is_max (vr1max))
8642 ;
8643 /* Choose the anti-range if it is ~[0,0], that range is special
8644 enough to special case when vr1's range is relatively wide. */
8645 else if (*vr0min == *vr0max
8646 && integer_zerop (*vr0min)
8647 && (TYPE_PRECISION (TREE_TYPE (*vr0min))
8648 == TYPE_PRECISION (ptr_type_node))
8649 && TREE_CODE (vr1max) == INTEGER_CST
8650 && TREE_CODE (vr1min) == INTEGER_CST
8651 && (wi::clz (wi::sub (vr1max, vr1min))
8652 < TYPE_PRECISION (TREE_TYPE (*vr0min)) / 2))
8653 ;
8654 /* Else choose the range. */
8655 else
8656 {
8657 *vr0type = vr1type;
8658 *vr0min = vr1min;
8659 *vr0max = vr1max;
8660 }
8661 }
8662 else if (*vr0type == VR_ANTI_RANGE
8663 && vr1type == VR_ANTI_RANGE)
8664 {
8665 /* If both are anti-ranges the result is the outer one. */
8666 *vr0type = vr1type;
8667 *vr0min = vr1min;
8668 *vr0max = vr1max;
8669 }
8670 else if (vr1type == VR_ANTI_RANGE
8671 && *vr0type == VR_RANGE)
8672 {
8673 /* The intersection is empty. */
8674 *vr0type = VR_UNDEFINED;
8675 *vr0min = NULL_TREE;
8676 *vr0max = NULL_TREE;
8677 }
8678 else
8679 gcc_unreachable ();
8680 }
8681 else if ((operand_less_p (vr1min, *vr0max) == 1
8682 || operand_equal_p (vr1min, *vr0max, 0))
8683 && operand_less_p (*vr0min, vr1min) == 1)
8684 {
8685 /* [ ( ] ) or [ ]( ) */
8686 if (*vr0type == VR_ANTI_RANGE
8687 && vr1type == VR_ANTI_RANGE)
8688 *vr0max = vr1max;
8689 else if (*vr0type == VR_RANGE
8690 && vr1type == VR_RANGE)
8691 *vr0min = vr1min;
8692 else if (*vr0type == VR_RANGE
8693 && vr1type == VR_ANTI_RANGE)
8694 {
8695 if (TREE_CODE (vr1min) == INTEGER_CST)
8696 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8697 build_int_cst (TREE_TYPE (vr1min), 1));
8698 else
8699 *vr0max = vr1min;
8700 }
8701 else if (*vr0type == VR_ANTI_RANGE
8702 && vr1type == VR_RANGE)
8703 {
8704 *vr0type = VR_RANGE;
8705 if (TREE_CODE (*vr0max) == INTEGER_CST)
8706 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8707 build_int_cst (TREE_TYPE (*vr0max), 1));
8708 else
8709 *vr0min = *vr0max;
8710 *vr0max = vr1max;
8711 }
8712 else
8713 gcc_unreachable ();
8714 }
8715 else if ((operand_less_p (*vr0min, vr1max) == 1
8716 || operand_equal_p (*vr0min, vr1max, 0))
8717 && operand_less_p (vr1min, *vr0min) == 1)
8718 {
8719 /* ( [ ) ] or ( )[ ] */
8720 if (*vr0type == VR_ANTI_RANGE
8721 && vr1type == VR_ANTI_RANGE)
8722 *vr0min = vr1min;
8723 else if (*vr0type == VR_RANGE
8724 && vr1type == VR_RANGE)
8725 *vr0max = vr1max;
8726 else if (*vr0type == VR_RANGE
8727 && vr1type == VR_ANTI_RANGE)
8728 {
8729 if (TREE_CODE (vr1max) == INTEGER_CST)
8730 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8731 build_int_cst (TREE_TYPE (vr1max), 1));
8732 else
8733 *vr0min = vr1max;
8734 }
8735 else if (*vr0type == VR_ANTI_RANGE
8736 && vr1type == VR_RANGE)
8737 {
8738 *vr0type = VR_RANGE;
8739 if (TREE_CODE (*vr0min) == INTEGER_CST)
8740 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8741 build_int_cst (TREE_TYPE (*vr0min), 1));
8742 else
8743 *vr0max = *vr0min;
8744 *vr0min = vr1min;
8745 }
8746 else
8747 gcc_unreachable ();
8748 }
8749
8750 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
8751 result for the intersection. That's always a conservative
8752 correct estimate unless VR1 is a constant singleton range
8753 in which case we choose that. */
8754 if (vr1type == VR_RANGE
8755 && is_gimple_min_invariant (vr1min)
8756 && vrp_operand_equal_p (vr1min, vr1max))
8757 {
8758 *vr0type = vr1type;
8759 *vr0min = vr1min;
8760 *vr0max = vr1max;
8761 }
8762
8763 return;
8764 }
8765
8766
8767 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
8768 in *VR0. This may not be the smallest possible such range. */
8769
8770 static void
8771 vrp_intersect_ranges_1 (value_range *vr0, value_range *vr1)
8772 {
8773 value_range saved;
8774
8775 /* If either range is VR_VARYING the other one wins. */
8776 if (vr1->type == VR_VARYING)
8777 return;
8778 if (vr0->type == VR_VARYING)
8779 {
8780 copy_value_range (vr0, vr1);
8781 return;
8782 }
8783
8784 /* When either range is VR_UNDEFINED the resulting range is
8785 VR_UNDEFINED, too. */
8786 if (vr0->type == VR_UNDEFINED)
8787 return;
8788 if (vr1->type == VR_UNDEFINED)
8789 {
8790 set_value_range_to_undefined (vr0);
8791 return;
8792 }
8793
8794 /* Save the original vr0 so we can return it as conservative intersection
8795 result when our worker turns things to varying. */
8796 saved = *vr0;
8797 intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
8798 vr1->type, vr1->min, vr1->max);
8799 /* Make sure to canonicalize the result though as the inversion of a
8800 VR_RANGE can still be a VR_RANGE. */
8801 set_and_canonicalize_value_range (vr0, vr0->type,
8802 vr0->min, vr0->max, vr0->equiv);
8803 /* If that failed, use the saved original VR0. */
8804 if (vr0->type == VR_VARYING)
8805 {
8806 *vr0 = saved;
8807 return;
8808 }
8809 /* If the result is VR_UNDEFINED there is no need to mess with
8810 the equivalencies. */
8811 if (vr0->type == VR_UNDEFINED)
8812 return;
8813
8814 /* The resulting set of equivalences for range intersection is the union of
8815 the two sets. */
8816 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8817 bitmap_ior_into (vr0->equiv, vr1->equiv);
8818 else if (vr1->equiv && !vr0->equiv)
8819 {
8820 vr0->equiv = BITMAP_ALLOC (&vrp_equiv_obstack);
8821 bitmap_copy (vr0->equiv, vr1->equiv);
8822 }
8823 }
8824
8825 void
8826 vrp_intersect_ranges (value_range *vr0, value_range *vr1)
8827 {
8828 if (dump_file && (dump_flags & TDF_DETAILS))
8829 {
8830 fprintf (dump_file, "Intersecting\n ");
8831 dump_value_range (dump_file, vr0);
8832 fprintf (dump_file, "\nand\n ");
8833 dump_value_range (dump_file, vr1);
8834 fprintf (dump_file, "\n");
8835 }
8836 vrp_intersect_ranges_1 (vr0, vr1);
8837 if (dump_file && (dump_flags & TDF_DETAILS))
8838 {
8839 fprintf (dump_file, "to\n ");
8840 dump_value_range (dump_file, vr0);
8841 fprintf (dump_file, "\n");
8842 }
8843 }
8844
8845 /* Meet operation for value ranges. Given two value ranges VR0 and
8846 VR1, store in VR0 a range that contains both VR0 and VR1. This
8847 may not be the smallest possible such range. */
8848
8849 static void
8850 vrp_meet_1 (value_range *vr0, const value_range *vr1)
8851 {
8852 value_range saved;
8853
8854 if (vr0->type == VR_UNDEFINED)
8855 {
8856 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr1->equiv);
8857 return;
8858 }
8859
8860 if (vr1->type == VR_UNDEFINED)
8861 {
8862 /* VR0 already has the resulting range. */
8863 return;
8864 }
8865
8866 if (vr0->type == VR_VARYING)
8867 {
8868 /* Nothing to do. VR0 already has the resulting range. */
8869 return;
8870 }
8871
8872 if (vr1->type == VR_VARYING)
8873 {
8874 set_value_range_to_varying (vr0);
8875 return;
8876 }
8877
8878 saved = *vr0;
8879 union_ranges (&vr0->type, &vr0->min, &vr0->max,
8880 vr1->type, vr1->min, vr1->max);
8881 if (vr0->type == VR_VARYING)
8882 {
8883 /* Failed to find an efficient meet. Before giving up and setting
8884 the result to VARYING, see if we can at least derive a useful
8885 anti-range. FIXME, all this nonsense about distinguishing
8886 anti-ranges from ranges is necessary because of the odd
8887 semantics of range_includes_zero_p and friends. */
8888 if (((saved.type == VR_RANGE
8889 && range_includes_zero_p (saved.min, saved.max) == 0)
8890 || (saved.type == VR_ANTI_RANGE
8891 && range_includes_zero_p (saved.min, saved.max) == 1))
8892 && ((vr1->type == VR_RANGE
8893 && range_includes_zero_p (vr1->min, vr1->max) == 0)
8894 || (vr1->type == VR_ANTI_RANGE
8895 && range_includes_zero_p (vr1->min, vr1->max) == 1)))
8896 {
8897 set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min));
8898
8899 /* Since this meet operation did not result from the meeting of
8900 two equivalent names, VR0 cannot have any equivalences. */
8901 if (vr0->equiv)
8902 bitmap_clear (vr0->equiv);
8903 return;
8904 }
8905
8906 set_value_range_to_varying (vr0);
8907 return;
8908 }
8909 set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max,
8910 vr0->equiv);
8911 if (vr0->type == VR_VARYING)
8912 return;
8913
8914 /* The resulting set of equivalences is always the intersection of
8915 the two sets. */
8916 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8917 bitmap_and_into (vr0->equiv, vr1->equiv);
8918 else if (vr0->equiv && !vr1->equiv)
8919 bitmap_clear (vr0->equiv);
8920 }
8921
8922 void
8923 vrp_meet (value_range *vr0, const value_range *vr1)
8924 {
8925 if (dump_file && (dump_flags & TDF_DETAILS))
8926 {
8927 fprintf (dump_file, "Meeting\n ");
8928 dump_value_range (dump_file, vr0);
8929 fprintf (dump_file, "\nand\n ");
8930 dump_value_range (dump_file, vr1);
8931 fprintf (dump_file, "\n");
8932 }
8933 vrp_meet_1 (vr0, vr1);
8934 if (dump_file && (dump_flags & TDF_DETAILS))
8935 {
8936 fprintf (dump_file, "to\n ");
8937 dump_value_range (dump_file, vr0);
8938 fprintf (dump_file, "\n");
8939 }
8940 }
8941
8942
8943 /* Visit all arguments for PHI node PHI that flow through executable
8944 edges. If a valid value range can be derived from all the incoming
8945 value ranges, set a new range in VR_RESULT. */
8946
8947 static void
8948 extract_range_from_phi_node (gphi *phi, value_range *vr_result)
8949 {
8950 size_t i;
8951 tree lhs = PHI_RESULT (phi);
8952 value_range *lhs_vr = get_value_range (lhs);
8953 bool first = true;
8954 int edges, old_edges;
8955 struct loop *l;
8956
8957 if (dump_file && (dump_flags & TDF_DETAILS))
8958 {
8959 fprintf (dump_file, "\nVisiting PHI node: ");
8960 print_gimple_stmt (dump_file, phi, 0, dump_flags);
8961 }
8962
8963 bool may_simulate_backedge_again = false;
8964 edges = 0;
8965 for (i = 0; i < gimple_phi_num_args (phi); i++)
8966 {
8967 edge e = gimple_phi_arg_edge (phi, i);
8968
8969 if (dump_file && (dump_flags & TDF_DETAILS))
8970 {
8971 fprintf (dump_file,
8972 " Argument #%d (%d -> %d %sexecutable)\n",
8973 (int) i, e->src->index, e->dest->index,
8974 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
8975 }
8976
8977 if (e->flags & EDGE_EXECUTABLE)
8978 {
8979 tree arg = PHI_ARG_DEF (phi, i);
8980 value_range vr_arg;
8981
8982 ++edges;
8983
8984 if (TREE_CODE (arg) == SSA_NAME)
8985 {
8986 /* See if we are eventually going to change one of the args. */
8987 gimple *def_stmt = SSA_NAME_DEF_STMT (arg);
8988 if (! gimple_nop_p (def_stmt)
8989 && prop_simulate_again_p (def_stmt)
8990 && e->flags & EDGE_DFS_BACK)
8991 may_simulate_backedge_again = true;
8992
8993 vr_arg = *(get_value_range (arg));
8994 /* Do not allow equivalences or symbolic ranges to leak in from
8995 backedges. That creates invalid equivalencies.
8996 See PR53465 and PR54767. */
8997 if (e->flags & EDGE_DFS_BACK)
8998 {
8999 if (vr_arg.type == VR_RANGE
9000 || vr_arg.type == VR_ANTI_RANGE)
9001 {
9002 vr_arg.equiv = NULL;
9003 if (symbolic_range_p (&vr_arg))
9004 {
9005 vr_arg.type = VR_VARYING;
9006 vr_arg.min = NULL_TREE;
9007 vr_arg.max = NULL_TREE;
9008 }
9009 }
9010 }
9011 else
9012 {
9013 /* If the non-backedge arguments range is VR_VARYING then
9014 we can still try recording a simple equivalence. */
9015 if (vr_arg.type == VR_VARYING)
9016 {
9017 vr_arg.type = VR_RANGE;
9018 vr_arg.min = arg;
9019 vr_arg.max = arg;
9020 vr_arg.equiv = NULL;
9021 }
9022 }
9023 }
9024 else
9025 {
9026 if (TREE_OVERFLOW_P (arg))
9027 arg = drop_tree_overflow (arg);
9028
9029 vr_arg.type = VR_RANGE;
9030 vr_arg.min = arg;
9031 vr_arg.max = arg;
9032 vr_arg.equiv = NULL;
9033 }
9034
9035 if (dump_file && (dump_flags & TDF_DETAILS))
9036 {
9037 fprintf (dump_file, "\t");
9038 print_generic_expr (dump_file, arg, dump_flags);
9039 fprintf (dump_file, ": ");
9040 dump_value_range (dump_file, &vr_arg);
9041 fprintf (dump_file, "\n");
9042 }
9043
9044 if (first)
9045 copy_value_range (vr_result, &vr_arg);
9046 else
9047 vrp_meet (vr_result, &vr_arg);
9048 first = false;
9049
9050 if (vr_result->type == VR_VARYING)
9051 break;
9052 }
9053 }
9054
9055 if (vr_result->type == VR_VARYING)
9056 goto varying;
9057 else if (vr_result->type == VR_UNDEFINED)
9058 goto update_range;
9059
9060 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
9061 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
9062
9063 /* To prevent infinite iterations in the algorithm, derive ranges
9064 when the new value is slightly bigger or smaller than the
9065 previous one. We don't do this if we have seen a new executable
9066 edge; this helps us avoid an infinity for conditionals
9067 which are not in a loop. If the old value-range was VR_UNDEFINED
9068 use the updated range and iterate one more time. If we will not
9069 simulate this PHI again via the backedge allow us to iterate. */
9070 if (edges > 0
9071 && gimple_phi_num_args (phi) > 1
9072 && edges == old_edges
9073 && lhs_vr->type != VR_UNDEFINED
9074 && may_simulate_backedge_again)
9075 {
9076 /* Compare old and new ranges, fall back to varying if the
9077 values are not comparable. */
9078 int cmp_min = compare_values (lhs_vr->min, vr_result->min);
9079 if (cmp_min == -2)
9080 goto varying;
9081 int cmp_max = compare_values (lhs_vr->max, vr_result->max);
9082 if (cmp_max == -2)
9083 goto varying;
9084
9085 /* For non VR_RANGE or for pointers fall back to varying if
9086 the range changed. */
9087 if ((lhs_vr->type != VR_RANGE || vr_result->type != VR_RANGE
9088 || POINTER_TYPE_P (TREE_TYPE (lhs)))
9089 && (cmp_min != 0 || cmp_max != 0))
9090 goto varying;
9091
9092 /* If the new minimum is larger than the previous one
9093 retain the old value. If the new minimum value is smaller
9094 than the previous one and not -INF go all the way to -INF + 1.
9095 In the first case, to avoid infinite bouncing between different
9096 minimums, and in the other case to avoid iterating millions of
9097 times to reach -INF. Going to -INF + 1 also lets the following
9098 iteration compute whether there will be any overflow, at the
9099 expense of one additional iteration. */
9100 if (cmp_min < 0)
9101 vr_result->min = lhs_vr->min;
9102 else if (cmp_min > 0
9103 && !vrp_val_is_min (vr_result->min))
9104 vr_result->min
9105 = int_const_binop (PLUS_EXPR,
9106 vrp_val_min (TREE_TYPE (vr_result->min)),
9107 build_int_cst (TREE_TYPE (vr_result->min), 1));
9108
9109 /* Similarly for the maximum value. */
9110 if (cmp_max > 0)
9111 vr_result->max = lhs_vr->max;
9112 else if (cmp_max < 0
9113 && !vrp_val_is_max (vr_result->max))
9114 vr_result->max
9115 = int_const_binop (MINUS_EXPR,
9116 vrp_val_max (TREE_TYPE (vr_result->min)),
9117 build_int_cst (TREE_TYPE (vr_result->min), 1));
9118
9119 /* If we dropped either bound to +-INF then if this is a loop
9120 PHI node SCEV may known more about its value-range. */
9121 if (cmp_min > 0 || cmp_min < 0
9122 || cmp_max < 0 || cmp_max > 0)
9123 goto scev_check;
9124
9125 goto infinite_check;
9126 }
9127
9128 goto update_range;
9129
9130 varying:
9131 set_value_range_to_varying (vr_result);
9132
9133 scev_check:
9134 /* If this is a loop PHI node SCEV may known more about its value-range.
9135 scev_check can be reached from two paths, one is a fall through from above
9136 "varying" label, the other is direct goto from code block which tries to
9137 avoid infinite simulation. */
9138 if ((l = loop_containing_stmt (phi))
9139 && l->header == gimple_bb (phi))
9140 adjust_range_with_scev (vr_result, l, phi, lhs);
9141
9142 infinite_check:
9143 /* If we will end up with a (-INF, +INF) range, set it to
9144 VARYING. Same if the previous max value was invalid for
9145 the type and we end up with vr_result.min > vr_result.max. */
9146 if ((vr_result->type == VR_RANGE || vr_result->type == VR_ANTI_RANGE)
9147 && !((vrp_val_is_max (vr_result->max) && vrp_val_is_min (vr_result->min))
9148 || compare_values (vr_result->min, vr_result->max) > 0))
9149 ;
9150 else
9151 set_value_range_to_varying (vr_result);
9152
9153 /* If the new range is different than the previous value, keep
9154 iterating. */
9155 update_range:
9156 return;
9157 }
9158
9159 /* Visit all arguments for PHI node PHI that flow through executable
9160 edges. If a valid value range can be derived from all the incoming
9161 value ranges, set a new range for the LHS of PHI. */
9162
9163 static enum ssa_prop_result
9164 vrp_visit_phi_node (gphi *phi)
9165 {
9166 tree lhs = PHI_RESULT (phi);
9167 value_range vr_result = VR_INITIALIZER;
9168 extract_range_from_phi_node (phi, &vr_result);
9169 if (update_value_range (lhs, &vr_result))
9170 {
9171 if (dump_file && (dump_flags & TDF_DETAILS))
9172 {
9173 fprintf (dump_file, "Found new range for ");
9174 print_generic_expr (dump_file, lhs);
9175 fprintf (dump_file, ": ");
9176 dump_value_range (dump_file, &vr_result);
9177 fprintf (dump_file, "\n");
9178 }
9179
9180 if (vr_result.type == VR_VARYING)
9181 return SSA_PROP_VARYING;
9182
9183 return SSA_PROP_INTERESTING;
9184 }
9185
9186 /* Nothing changed, don't add outgoing edges. */
9187 return SSA_PROP_NOT_INTERESTING;
9188 }
9189
9190 /* Simplify boolean operations if the source is known
9191 to be already a boolean. */
9192 static bool
9193 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9194 {
9195 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9196 tree lhs, op0, op1;
9197 bool need_conversion;
9198
9199 /* We handle only !=/== case here. */
9200 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
9201
9202 op0 = gimple_assign_rhs1 (stmt);
9203 if (!op_with_boolean_value_range_p (op0))
9204 return false;
9205
9206 op1 = gimple_assign_rhs2 (stmt);
9207 if (!op_with_boolean_value_range_p (op1))
9208 return false;
9209
9210 /* Reduce number of cases to handle to NE_EXPR. As there is no
9211 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
9212 if (rhs_code == EQ_EXPR)
9213 {
9214 if (TREE_CODE (op1) == INTEGER_CST)
9215 op1 = int_const_binop (BIT_XOR_EXPR, op1,
9216 build_int_cst (TREE_TYPE (op1), 1));
9217 else
9218 return false;
9219 }
9220
9221 lhs = gimple_assign_lhs (stmt);
9222 need_conversion
9223 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
9224
9225 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
9226 if (need_conversion
9227 && !TYPE_UNSIGNED (TREE_TYPE (op0))
9228 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
9229 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
9230 return false;
9231
9232 /* For A != 0 we can substitute A itself. */
9233 if (integer_zerop (op1))
9234 gimple_assign_set_rhs_with_ops (gsi,
9235 need_conversion
9236 ? NOP_EXPR : TREE_CODE (op0), op0);
9237 /* For A != B we substitute A ^ B. Either with conversion. */
9238 else if (need_conversion)
9239 {
9240 tree tem = make_ssa_name (TREE_TYPE (op0));
9241 gassign *newop
9242 = gimple_build_assign (tem, BIT_XOR_EXPR, op0, op1);
9243 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
9244 if (INTEGRAL_TYPE_P (TREE_TYPE (tem))
9245 && TYPE_PRECISION (TREE_TYPE (tem)) > 1)
9246 set_range_info (tem, VR_RANGE,
9247 wi::zero (TYPE_PRECISION (TREE_TYPE (tem))),
9248 wi::one (TYPE_PRECISION (TREE_TYPE (tem))));
9249 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem);
9250 }
9251 /* Or without. */
9252 else
9253 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
9254 update_stmt (gsi_stmt (*gsi));
9255 fold_stmt (gsi, follow_single_use_edges);
9256
9257 return true;
9258 }
9259
9260 /* Simplify a division or modulo operator to a right shift or bitwise and
9261 if the first operand is unsigned or is greater than zero and the second
9262 operand is an exact power of two. For TRUNC_MOD_EXPR op0 % op1 with
9263 constant op1 (op1min = op1) or with op1 in [op1min, op1max] range,
9264 optimize it into just op0 if op0's range is known to be a subset of
9265 [-op1min + 1, op1min - 1] for signed and [0, op1min - 1] for unsigned
9266 modulo. */
9267
9268 static bool
9269 simplify_div_or_mod_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9270 {
9271 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9272 tree val = NULL;
9273 tree op0 = gimple_assign_rhs1 (stmt);
9274 tree op1 = gimple_assign_rhs2 (stmt);
9275 tree op0min = NULL_TREE, op0max = NULL_TREE;
9276 tree op1min = op1;
9277 value_range *vr = NULL;
9278
9279 if (TREE_CODE (op0) == INTEGER_CST)
9280 {
9281 op0min = op0;
9282 op0max = op0;
9283 }
9284 else
9285 {
9286 vr = get_value_range (op0);
9287 if (range_int_cst_p (vr))
9288 {
9289 op0min = vr->min;
9290 op0max = vr->max;
9291 }
9292 }
9293
9294 if (rhs_code == TRUNC_MOD_EXPR
9295 && TREE_CODE (op1) == SSA_NAME)
9296 {
9297 value_range *vr1 = get_value_range (op1);
9298 if (range_int_cst_p (vr1))
9299 op1min = vr1->min;
9300 }
9301 if (rhs_code == TRUNC_MOD_EXPR
9302 && TREE_CODE (op1min) == INTEGER_CST
9303 && tree_int_cst_sgn (op1min) == 1
9304 && op0max
9305 && tree_int_cst_lt (op0max, op1min))
9306 {
9307 if (TYPE_UNSIGNED (TREE_TYPE (op0))
9308 || tree_int_cst_sgn (op0min) >= 0
9309 || tree_int_cst_lt (fold_unary (NEGATE_EXPR, TREE_TYPE (op1min), op1min),
9310 op0min))
9311 {
9312 /* If op0 already has the range op0 % op1 has,
9313 then TRUNC_MOD_EXPR won't change anything. */
9314 gimple_assign_set_rhs_from_tree (gsi, op0);
9315 return true;
9316 }
9317 }
9318
9319 if (TREE_CODE (op0) != SSA_NAME)
9320 return false;
9321
9322 if (!integer_pow2p (op1))
9323 {
9324 /* X % -Y can be only optimized into X % Y either if
9325 X is not INT_MIN, or Y is not -1. Fold it now, as after
9326 remove_range_assertions the range info might be not available
9327 anymore. */
9328 if (rhs_code == TRUNC_MOD_EXPR
9329 && fold_stmt (gsi, follow_single_use_edges))
9330 return true;
9331 return false;
9332 }
9333
9334 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
9335 val = integer_one_node;
9336 else
9337 {
9338 bool sop = false;
9339
9340 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
9341
9342 if (val
9343 && sop
9344 && integer_onep (val)
9345 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9346 {
9347 location_t location;
9348
9349 if (!gimple_has_location (stmt))
9350 location = input_location;
9351 else
9352 location = gimple_location (stmt);
9353 warning_at (location, OPT_Wstrict_overflow,
9354 "assuming signed overflow does not occur when "
9355 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
9356 }
9357 }
9358
9359 if (val && integer_onep (val))
9360 {
9361 tree t;
9362
9363 if (rhs_code == TRUNC_DIV_EXPR)
9364 {
9365 t = build_int_cst (integer_type_node, tree_log2 (op1));
9366 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
9367 gimple_assign_set_rhs1 (stmt, op0);
9368 gimple_assign_set_rhs2 (stmt, t);
9369 }
9370 else
9371 {
9372 t = build_int_cst (TREE_TYPE (op1), 1);
9373 t = int_const_binop (MINUS_EXPR, op1, t);
9374 t = fold_convert (TREE_TYPE (op0), t);
9375
9376 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
9377 gimple_assign_set_rhs1 (stmt, op0);
9378 gimple_assign_set_rhs2 (stmt, t);
9379 }
9380
9381 update_stmt (stmt);
9382 fold_stmt (gsi, follow_single_use_edges);
9383 return true;
9384 }
9385
9386 return false;
9387 }
9388
9389 /* Simplify a min or max if the ranges of the two operands are
9390 disjoint. Return true if we do simplify. */
9391
9392 static bool
9393 simplify_min_or_max_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9394 {
9395 tree op0 = gimple_assign_rhs1 (stmt);
9396 tree op1 = gimple_assign_rhs2 (stmt);
9397 bool sop = false;
9398 tree val;
9399
9400 val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
9401 (LE_EXPR, op0, op1, &sop));
9402 if (!val)
9403 {
9404 sop = false;
9405 val = (vrp_evaluate_conditional_warnv_with_ops_using_ranges
9406 (LT_EXPR, op0, op1, &sop));
9407 }
9408
9409 if (val)
9410 {
9411 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9412 {
9413 location_t location;
9414
9415 if (!gimple_has_location (stmt))
9416 location = input_location;
9417 else
9418 location = gimple_location (stmt);
9419 warning_at (location, OPT_Wstrict_overflow,
9420 "assuming signed overflow does not occur when "
9421 "simplifying %<min/max (X,Y)%> to %<X%> or %<Y%>");
9422 }
9423
9424 /* VAL == TRUE -> OP0 < or <= op1
9425 VAL == FALSE -> OP0 > or >= op1. */
9426 tree res = ((gimple_assign_rhs_code (stmt) == MAX_EXPR)
9427 == integer_zerop (val)) ? op0 : op1;
9428 gimple_assign_set_rhs_from_tree (gsi, res);
9429 return true;
9430 }
9431
9432 return false;
9433 }
9434
9435 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
9436 ABS_EXPR. If the operand is <= 0, then simplify the
9437 ABS_EXPR into a NEGATE_EXPR. */
9438
9439 static bool
9440 simplify_abs_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9441 {
9442 tree op = gimple_assign_rhs1 (stmt);
9443 value_range *vr = get_value_range (op);
9444
9445 if (vr)
9446 {
9447 tree val = NULL;
9448 bool sop = false;
9449
9450 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
9451 if (!val)
9452 {
9453 /* The range is neither <= 0 nor > 0. Now see if it is
9454 either < 0 or >= 0. */
9455 sop = false;
9456 val = compare_range_with_value (LT_EXPR, vr, integer_zero_node,
9457 &sop);
9458 }
9459
9460 if (val)
9461 {
9462 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9463 {
9464 location_t location;
9465
9466 if (!gimple_has_location (stmt))
9467 location = input_location;
9468 else
9469 location = gimple_location (stmt);
9470 warning_at (location, OPT_Wstrict_overflow,
9471 "assuming signed overflow does not occur when "
9472 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
9473 }
9474
9475 gimple_assign_set_rhs1 (stmt, op);
9476 if (integer_zerop (val))
9477 gimple_assign_set_rhs_code (stmt, SSA_NAME);
9478 else
9479 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
9480 update_stmt (stmt);
9481 fold_stmt (gsi, follow_single_use_edges);
9482 return true;
9483 }
9484 }
9485
9486 return false;
9487 }
9488
9489 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
9490 If all the bits that are being cleared by & are already
9491 known to be zero from VR, or all the bits that are being
9492 set by | are already known to be one from VR, the bit
9493 operation is redundant. */
9494
9495 static bool
9496 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
9497 {
9498 tree op0 = gimple_assign_rhs1 (stmt);
9499 tree op1 = gimple_assign_rhs2 (stmt);
9500 tree op = NULL_TREE;
9501 value_range vr0 = VR_INITIALIZER;
9502 value_range vr1 = VR_INITIALIZER;
9503 wide_int may_be_nonzero0, may_be_nonzero1;
9504 wide_int must_be_nonzero0, must_be_nonzero1;
9505 wide_int mask;
9506
9507 if (TREE_CODE (op0) == SSA_NAME)
9508 vr0 = *(get_value_range (op0));
9509 else if (is_gimple_min_invariant (op0))
9510 set_value_range_to_value (&vr0, op0, NULL);
9511 else
9512 return false;
9513
9514 if (TREE_CODE (op1) == SSA_NAME)
9515 vr1 = *(get_value_range (op1));
9516 else if (is_gimple_min_invariant (op1))
9517 set_value_range_to_value (&vr1, op1, NULL);
9518 else
9519 return false;
9520
9521 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op0), &vr0, &may_be_nonzero0,
9522 &must_be_nonzero0))
9523 return false;
9524 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op1), &vr1, &may_be_nonzero1,
9525 &must_be_nonzero1))
9526 return false;
9527
9528 switch (gimple_assign_rhs_code (stmt))
9529 {
9530 case BIT_AND_EXPR:
9531 mask = may_be_nonzero0.and_not (must_be_nonzero1);
9532 if (mask == 0)
9533 {
9534 op = op0;
9535 break;
9536 }
9537 mask = may_be_nonzero1.and_not (must_be_nonzero0);
9538 if (mask == 0)
9539 {
9540 op = op1;
9541 break;
9542 }
9543 break;
9544 case BIT_IOR_EXPR:
9545 mask = may_be_nonzero0.and_not (must_be_nonzero1);
9546 if (mask == 0)
9547 {
9548 op = op1;
9549 break;
9550 }
9551 mask = may_be_nonzero1.and_not (must_be_nonzero0);
9552 if (mask == 0)
9553 {
9554 op = op0;
9555 break;
9556 }
9557 break;
9558 default:
9559 gcc_unreachable ();
9560 }
9561
9562 if (op == NULL_TREE)
9563 return false;
9564
9565 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op);
9566 update_stmt (gsi_stmt (*gsi));
9567 return true;
9568 }
9569
9570 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
9571 a known value range VR.
9572
9573 If there is one and only one value which will satisfy the
9574 conditional, then return that value. Else return NULL.
9575
9576 If signed overflow must be undefined for the value to satisfy
9577 the conditional, then set *STRICT_OVERFLOW_P to true. */
9578
9579 static tree
9580 test_for_singularity (enum tree_code cond_code, tree op0,
9581 tree op1, value_range *vr)
9582 {
9583 tree min = NULL;
9584 tree max = NULL;
9585
9586 /* Extract minimum/maximum values which satisfy the conditional as it was
9587 written. */
9588 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
9589 {
9590 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
9591
9592 max = op1;
9593 if (cond_code == LT_EXPR)
9594 {
9595 tree one = build_int_cst (TREE_TYPE (op0), 1);
9596 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
9597 /* Signal to compare_values_warnv this expr doesn't overflow. */
9598 if (EXPR_P (max))
9599 TREE_NO_WARNING (max) = 1;
9600 }
9601 }
9602 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
9603 {
9604 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
9605
9606 min = op1;
9607 if (cond_code == GT_EXPR)
9608 {
9609 tree one = build_int_cst (TREE_TYPE (op0), 1);
9610 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
9611 /* Signal to compare_values_warnv this expr doesn't overflow. */
9612 if (EXPR_P (min))
9613 TREE_NO_WARNING (min) = 1;
9614 }
9615 }
9616
9617 /* Now refine the minimum and maximum values using any
9618 value range information we have for op0. */
9619 if (min && max)
9620 {
9621 if (compare_values (vr->min, min) == 1)
9622 min = vr->min;
9623 if (compare_values (vr->max, max) == -1)
9624 max = vr->max;
9625
9626 /* If the new min/max values have converged to a single value,
9627 then there is only one value which can satisfy the condition,
9628 return that value. */
9629 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
9630 return min;
9631 }
9632 return NULL;
9633 }
9634
9635 /* Return whether the value range *VR fits in an integer type specified
9636 by PRECISION and UNSIGNED_P. */
9637
9638 static bool
9639 range_fits_type_p (value_range *vr, unsigned dest_precision, signop dest_sgn)
9640 {
9641 tree src_type;
9642 unsigned src_precision;
9643 widest_int tem;
9644 signop src_sgn;
9645
9646 /* We can only handle integral and pointer types. */
9647 src_type = TREE_TYPE (vr->min);
9648 if (!INTEGRAL_TYPE_P (src_type)
9649 && !POINTER_TYPE_P (src_type))
9650 return false;
9651
9652 /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED,
9653 and so is an identity transform. */
9654 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
9655 src_sgn = TYPE_SIGN (src_type);
9656 if ((src_precision < dest_precision
9657 && !(dest_sgn == UNSIGNED && src_sgn == SIGNED))
9658 || (src_precision == dest_precision && src_sgn == dest_sgn))
9659 return true;
9660
9661 /* Now we can only handle ranges with constant bounds. */
9662 if (vr->type != VR_RANGE
9663 || TREE_CODE (vr->min) != INTEGER_CST
9664 || TREE_CODE (vr->max) != INTEGER_CST)
9665 return false;
9666
9667 /* For sign changes, the MSB of the wide_int has to be clear.
9668 An unsigned value with its MSB set cannot be represented by
9669 a signed wide_int, while a negative value cannot be represented
9670 by an unsigned wide_int. */
9671 if (src_sgn != dest_sgn
9672 && (wi::lts_p (vr->min, 0) || wi::lts_p (vr->max, 0)))
9673 return false;
9674
9675 /* Then we can perform the conversion on both ends and compare
9676 the result for equality. */
9677 tem = wi::ext (wi::to_widest (vr->min), dest_precision, dest_sgn);
9678 if (tem != wi::to_widest (vr->min))
9679 return false;
9680 tem = wi::ext (wi::to_widest (vr->max), dest_precision, dest_sgn);
9681 if (tem != wi::to_widest (vr->max))
9682 return false;
9683
9684 return true;
9685 }
9686
9687 /* Simplify a conditional using a relational operator to an equality
9688 test if the range information indicates only one value can satisfy
9689 the original conditional. */
9690
9691 static bool
9692 simplify_cond_using_ranges_1 (gcond *stmt)
9693 {
9694 tree op0 = gimple_cond_lhs (stmt);
9695 tree op1 = gimple_cond_rhs (stmt);
9696 enum tree_code cond_code = gimple_cond_code (stmt);
9697
9698 if (cond_code != NE_EXPR
9699 && cond_code != EQ_EXPR
9700 && TREE_CODE (op0) == SSA_NAME
9701 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
9702 && is_gimple_min_invariant (op1))
9703 {
9704 value_range *vr = get_value_range (op0);
9705
9706 /* If we have range information for OP0, then we might be
9707 able to simplify this conditional. */
9708 if (vr->type == VR_RANGE)
9709 {
9710 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
9711 if (new_tree)
9712 {
9713 if (dump_file)
9714 {
9715 fprintf (dump_file, "Simplified relational ");
9716 print_gimple_stmt (dump_file, stmt, 0);
9717 fprintf (dump_file, " into ");
9718 }
9719
9720 gimple_cond_set_code (stmt, EQ_EXPR);
9721 gimple_cond_set_lhs (stmt, op0);
9722 gimple_cond_set_rhs (stmt, new_tree);
9723
9724 update_stmt (stmt);
9725
9726 if (dump_file)
9727 {
9728 print_gimple_stmt (dump_file, stmt, 0);
9729 fprintf (dump_file, "\n");
9730 }
9731
9732 return true;
9733 }
9734
9735 /* Try again after inverting the condition. We only deal
9736 with integral types here, so no need to worry about
9737 issues with inverting FP comparisons. */
9738 new_tree = test_for_singularity
9739 (invert_tree_comparison (cond_code, false),
9740 op0, op1, vr);
9741 if (new_tree)
9742 {
9743 if (dump_file)
9744 {
9745 fprintf (dump_file, "Simplified relational ");
9746 print_gimple_stmt (dump_file, stmt, 0);
9747 fprintf (dump_file, " into ");
9748 }
9749
9750 gimple_cond_set_code (stmt, NE_EXPR);
9751 gimple_cond_set_lhs (stmt, op0);
9752 gimple_cond_set_rhs (stmt, new_tree);
9753
9754 update_stmt (stmt);
9755
9756 if (dump_file)
9757 {
9758 print_gimple_stmt (dump_file, stmt, 0);
9759 fprintf (dump_file, "\n");
9760 }
9761
9762 return true;
9763 }
9764 }
9765 }
9766 return false;
9767 }
9768
9769 /* STMT is a conditional at the end of a basic block.
9770
9771 If the conditional is of the form SSA_NAME op constant and the SSA_NAME
9772 was set via a type conversion, try to replace the SSA_NAME with the RHS
9773 of the type conversion. Doing so makes the conversion dead which helps
9774 subsequent passes. */
9775
9776 static void
9777 simplify_cond_using_ranges_2 (gcond *stmt)
9778 {
9779 tree op0 = gimple_cond_lhs (stmt);
9780 tree op1 = gimple_cond_rhs (stmt);
9781
9782 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
9783 see if OP0 was set by a type conversion where the source of
9784 the conversion is another SSA_NAME with a range that fits
9785 into the range of OP0's type.
9786
9787 If so, the conversion is redundant as the earlier SSA_NAME can be
9788 used for the comparison directly if we just massage the constant in the
9789 comparison. */
9790 if (TREE_CODE (op0) == SSA_NAME
9791 && TREE_CODE (op1) == INTEGER_CST)
9792 {
9793 gimple *def_stmt = SSA_NAME_DEF_STMT (op0);
9794 tree innerop;
9795
9796 if (!is_gimple_assign (def_stmt)
9797 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9798 return;
9799
9800 innerop = gimple_assign_rhs1 (def_stmt);
9801
9802 if (TREE_CODE (innerop) == SSA_NAME
9803 && !POINTER_TYPE_P (TREE_TYPE (innerop))
9804 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop)
9805 && desired_pro_or_demotion_p (TREE_TYPE (innerop), TREE_TYPE (op0)))
9806 {
9807 value_range *vr = get_value_range (innerop);
9808
9809 if (range_int_cst_p (vr)
9810 && range_fits_type_p (vr,
9811 TYPE_PRECISION (TREE_TYPE (op0)),
9812 TYPE_SIGN (TREE_TYPE (op0)))
9813 && int_fits_type_p (op1, TREE_TYPE (innerop)))
9814 {
9815 tree newconst = fold_convert (TREE_TYPE (innerop), op1);
9816 gimple_cond_set_lhs (stmt, innerop);
9817 gimple_cond_set_rhs (stmt, newconst);
9818 update_stmt (stmt);
9819 if (dump_file && (dump_flags & TDF_DETAILS))
9820 {
9821 fprintf (dump_file, "Folded into: ");
9822 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
9823 fprintf (dump_file, "\n");
9824 }
9825 }
9826 }
9827 }
9828 }
9829
9830 /* Simplify a switch statement using the value range of the switch
9831 argument. */
9832
9833 static bool
9834 simplify_switch_using_ranges (gswitch *stmt)
9835 {
9836 tree op = gimple_switch_index (stmt);
9837 value_range *vr = NULL;
9838 bool take_default;
9839 edge e;
9840 edge_iterator ei;
9841 size_t i = 0, j = 0, n, n2;
9842 tree vec2;
9843 switch_update su;
9844 size_t k = 1, l = 0;
9845
9846 if (TREE_CODE (op) == SSA_NAME)
9847 {
9848 vr = get_value_range (op);
9849
9850 /* We can only handle integer ranges. */
9851 if ((vr->type != VR_RANGE
9852 && vr->type != VR_ANTI_RANGE)
9853 || symbolic_range_p (vr))
9854 return false;
9855
9856 /* Find case label for min/max of the value range. */
9857 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
9858 }
9859 else if (TREE_CODE (op) == INTEGER_CST)
9860 {
9861 take_default = !find_case_label_index (stmt, 1, op, &i);
9862 if (take_default)
9863 {
9864 i = 1;
9865 j = 0;
9866 }
9867 else
9868 {
9869 j = i;
9870 }
9871 }
9872 else
9873 return false;
9874
9875 n = gimple_switch_num_labels (stmt);
9876
9877 /* We can truncate the case label ranges that partially overlap with OP's
9878 value range. */
9879 size_t min_idx = 1, max_idx = 0;
9880 if (vr != NULL)
9881 find_case_label_range (stmt, vr->min, vr->max, &min_idx, &max_idx);
9882 if (min_idx <= max_idx)
9883 {
9884 tree min_label = gimple_switch_label (stmt, min_idx);
9885 tree max_label = gimple_switch_label (stmt, max_idx);
9886
9887 /* Avoid changing the type of the case labels when truncating. */
9888 tree case_label_type = TREE_TYPE (CASE_LOW (min_label));
9889 tree vr_min = fold_convert (case_label_type, vr->min);
9890 tree vr_max = fold_convert (case_label_type, vr->max);
9891
9892 if (vr->type == VR_RANGE)
9893 {
9894 /* If OP's value range is [2,8] and the low label range is
9895 0 ... 3, truncate the label's range to 2 .. 3. */
9896 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
9897 && CASE_HIGH (min_label) != NULL_TREE
9898 && tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0)
9899 CASE_LOW (min_label) = vr_min;
9900
9901 /* If OP's value range is [2,8] and the high label range is
9902 7 ... 10, truncate the label's range to 7 .. 8. */
9903 if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0
9904 && CASE_HIGH (max_label) != NULL_TREE
9905 && tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0)
9906 CASE_HIGH (max_label) = vr_max;
9907 }
9908 else if (vr->type == VR_ANTI_RANGE)
9909 {
9910 tree one_cst = build_one_cst (case_label_type);
9911
9912 if (min_label == max_label)
9913 {
9914 /* If OP's value range is ~[7,8] and the label's range is
9915 7 ... 10, truncate the label's range to 9 ... 10. */
9916 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) == 0
9917 && CASE_HIGH (min_label) != NULL_TREE
9918 && tree_int_cst_compare (CASE_HIGH (min_label), vr_max) > 0)
9919 CASE_LOW (min_label)
9920 = int_const_binop (PLUS_EXPR, vr_max, one_cst);
9921
9922 /* If OP's value range is ~[7,8] and the label's range is
9923 5 ... 8, truncate the label's range to 5 ... 6. */
9924 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
9925 && CASE_HIGH (min_label) != NULL_TREE
9926 && tree_int_cst_compare (CASE_HIGH (min_label), vr_max) == 0)
9927 CASE_HIGH (min_label)
9928 = int_const_binop (MINUS_EXPR, vr_min, one_cst);
9929 }
9930 else
9931 {
9932 /* If OP's value range is ~[2,8] and the low label range is
9933 0 ... 3, truncate the label's range to 0 ... 1. */
9934 if (tree_int_cst_compare (CASE_LOW (min_label), vr_min) < 0
9935 && CASE_HIGH (min_label) != NULL_TREE
9936 && tree_int_cst_compare (CASE_HIGH (min_label), vr_min) >= 0)
9937 CASE_HIGH (min_label)
9938 = int_const_binop (MINUS_EXPR, vr_min, one_cst);
9939
9940 /* If OP's value range is ~[2,8] and the high label range is
9941 7 ... 10, truncate the label's range to 9 ... 10. */
9942 if (tree_int_cst_compare (CASE_LOW (max_label), vr_max) <= 0
9943 && CASE_HIGH (max_label) != NULL_TREE
9944 && tree_int_cst_compare (CASE_HIGH (max_label), vr_max) > 0)
9945 CASE_LOW (max_label)
9946 = int_const_binop (PLUS_EXPR, vr_max, one_cst);
9947 }
9948 }
9949
9950 /* Canonicalize singleton case ranges. */
9951 if (tree_int_cst_equal (CASE_LOW (min_label), CASE_HIGH (min_label)))
9952 CASE_HIGH (min_label) = NULL_TREE;
9953 if (tree_int_cst_equal (CASE_LOW (max_label), CASE_HIGH (max_label)))
9954 CASE_HIGH (max_label) = NULL_TREE;
9955 }
9956
9957 /* We can also eliminate case labels that lie completely outside OP's value
9958 range. */
9959
9960 /* Bail out if this is just all edges taken. */
9961 if (i == 1
9962 && j == n - 1
9963 && take_default)
9964 return false;
9965
9966 /* Build a new vector of taken case labels. */
9967 vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
9968 n2 = 0;
9969
9970 /* Add the default edge, if necessary. */
9971 if (take_default)
9972 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
9973
9974 for (; i <= j; ++i, ++n2)
9975 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
9976
9977 for (; k <= l; ++k, ++n2)
9978 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
9979
9980 /* Mark needed edges. */
9981 for (i = 0; i < n2; ++i)
9982 {
9983 e = find_edge (gimple_bb (stmt),
9984 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
9985 e->aux = (void *)-1;
9986 }
9987
9988 /* Queue not needed edges for later removal. */
9989 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
9990 {
9991 if (e->aux == (void *)-1)
9992 {
9993 e->aux = NULL;
9994 continue;
9995 }
9996
9997 if (dump_file && (dump_flags & TDF_DETAILS))
9998 {
9999 fprintf (dump_file, "removing unreachable case label\n");
10000 }
10001 to_remove_edges.safe_push (e);
10002 e->flags &= ~EDGE_EXECUTABLE;
10003 }
10004
10005 /* And queue an update for the stmt. */
10006 su.stmt = stmt;
10007 su.vec = vec2;
10008 to_update_switch_stmts.safe_push (su);
10009 return false;
10010 }
10011
10012 /* Simplify an integral conversion from an SSA name in STMT. */
10013
10014 static bool
10015 simplify_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
10016 {
10017 tree innerop, middleop, finaltype;
10018 gimple *def_stmt;
10019 signop inner_sgn, middle_sgn, final_sgn;
10020 unsigned inner_prec, middle_prec, final_prec;
10021 widest_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
10022
10023 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
10024 if (!INTEGRAL_TYPE_P (finaltype))
10025 return false;
10026 middleop = gimple_assign_rhs1 (stmt);
10027 def_stmt = SSA_NAME_DEF_STMT (middleop);
10028 if (!is_gimple_assign (def_stmt)
10029 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
10030 return false;
10031 innerop = gimple_assign_rhs1 (def_stmt);
10032 if (TREE_CODE (innerop) != SSA_NAME
10033 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
10034 return false;
10035
10036 /* Get the value-range of the inner operand. Use get_range_info in
10037 case innerop was created during substitute-and-fold. */
10038 wide_int imin, imax;
10039 if (!INTEGRAL_TYPE_P (TREE_TYPE (innerop))
10040 || get_range_info (innerop, &imin, &imax) != VR_RANGE)
10041 return false;
10042 innermin = widest_int::from (imin, TYPE_SIGN (TREE_TYPE (innerop)));
10043 innermax = widest_int::from (imax, TYPE_SIGN (TREE_TYPE (innerop)));
10044
10045 /* Simulate the conversion chain to check if the result is equal if
10046 the middle conversion is removed. */
10047 inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
10048 middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
10049 final_prec = TYPE_PRECISION (finaltype);
10050
10051 /* If the first conversion is not injective, the second must not
10052 be widening. */
10053 if (wi::gtu_p (innermax - innermin,
10054 wi::mask <widest_int> (middle_prec, false))
10055 && middle_prec < final_prec)
10056 return false;
10057 /* We also want a medium value so that we can track the effect that
10058 narrowing conversions with sign change have. */
10059 inner_sgn = TYPE_SIGN (TREE_TYPE (innerop));
10060 if (inner_sgn == UNSIGNED)
10061 innermed = wi::shifted_mask <widest_int> (1, inner_prec - 1, false);
10062 else
10063 innermed = 0;
10064 if (wi::cmp (innermin, innermed, inner_sgn) >= 0
10065 || wi::cmp (innermed, innermax, inner_sgn) >= 0)
10066 innermed = innermin;
10067
10068 middle_sgn = TYPE_SIGN (TREE_TYPE (middleop));
10069 middlemin = wi::ext (innermin, middle_prec, middle_sgn);
10070 middlemed = wi::ext (innermed, middle_prec, middle_sgn);
10071 middlemax = wi::ext (innermax, middle_prec, middle_sgn);
10072
10073 /* Require that the final conversion applied to both the original
10074 and the intermediate range produces the same result. */
10075 final_sgn = TYPE_SIGN (finaltype);
10076 if (wi::ext (middlemin, final_prec, final_sgn)
10077 != wi::ext (innermin, final_prec, final_sgn)
10078 || wi::ext (middlemed, final_prec, final_sgn)
10079 != wi::ext (innermed, final_prec, final_sgn)
10080 || wi::ext (middlemax, final_prec, final_sgn)
10081 != wi::ext (innermax, final_prec, final_sgn))
10082 return false;
10083
10084 gimple_assign_set_rhs1 (stmt, innerop);
10085 fold_stmt (gsi, follow_single_use_edges);
10086 return true;
10087 }
10088
10089 /* Simplify a conversion from integral SSA name to float in STMT. */
10090
10091 static bool
10092 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi,
10093 gimple *stmt)
10094 {
10095 tree rhs1 = gimple_assign_rhs1 (stmt);
10096 value_range *vr = get_value_range (rhs1);
10097 scalar_float_mode fltmode
10098 = SCALAR_FLOAT_TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
10099 machine_mode mode;
10100 tree tem;
10101 gassign *conv;
10102
10103 /* We can only handle constant ranges. */
10104 if (vr->type != VR_RANGE
10105 || TREE_CODE (vr->min) != INTEGER_CST
10106 || TREE_CODE (vr->max) != INTEGER_CST)
10107 return false;
10108
10109 /* First check if we can use a signed type in place of an unsigned. */
10110 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
10111 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
10112 != CODE_FOR_nothing)
10113 && range_fits_type_p (vr, TYPE_PRECISION (TREE_TYPE (rhs1)), SIGNED))
10114 mode = TYPE_MODE (TREE_TYPE (rhs1));
10115 /* If we can do the conversion in the current input mode do nothing. */
10116 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
10117 TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
10118 return false;
10119 /* Otherwise search for a mode we can use, starting from the narrowest
10120 integer mode available. */
10121 else
10122 {
10123 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
10124 for (;;)
10125 {
10126 /* If we cannot do a signed conversion to float from mode
10127 or if the value-range does not fit in the signed type
10128 try with a wider mode. */
10129 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
10130 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), SIGNED))
10131 break;
10132
10133 /* But do not widen the input. Instead leave that to the
10134 optabs expansion code. */
10135 if (!GET_MODE_WIDER_MODE (mode).exists (&mode)
10136 || GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
10137 return false;
10138 }
10139 }
10140
10141 /* It works, insert a truncation or sign-change before the
10142 float conversion. */
10143 tem = make_ssa_name (build_nonstandard_integer_type
10144 (GET_MODE_PRECISION (mode), 0));
10145 conv = gimple_build_assign (tem, NOP_EXPR, rhs1);
10146 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
10147 gimple_assign_set_rhs1 (stmt, tem);
10148 fold_stmt (gsi, follow_single_use_edges);
10149
10150 return true;
10151 }
10152
10153 /* Simplify an internal fn call using ranges if possible. */
10154
10155 static bool
10156 simplify_internal_call_using_ranges (gimple_stmt_iterator *gsi, gimple *stmt)
10157 {
10158 enum tree_code subcode;
10159 bool is_ubsan = false;
10160 bool ovf = false;
10161 switch (gimple_call_internal_fn (stmt))
10162 {
10163 case IFN_UBSAN_CHECK_ADD:
10164 subcode = PLUS_EXPR;
10165 is_ubsan = true;
10166 break;
10167 case IFN_UBSAN_CHECK_SUB:
10168 subcode = MINUS_EXPR;
10169 is_ubsan = true;
10170 break;
10171 case IFN_UBSAN_CHECK_MUL:
10172 subcode = MULT_EXPR;
10173 is_ubsan = true;
10174 break;
10175 case IFN_ADD_OVERFLOW:
10176 subcode = PLUS_EXPR;
10177 break;
10178 case IFN_SUB_OVERFLOW:
10179 subcode = MINUS_EXPR;
10180 break;
10181 case IFN_MUL_OVERFLOW:
10182 subcode = MULT_EXPR;
10183 break;
10184 default:
10185 return false;
10186 }
10187
10188 tree op0 = gimple_call_arg (stmt, 0);
10189 tree op1 = gimple_call_arg (stmt, 1);
10190 tree type;
10191 if (is_ubsan)
10192 {
10193 type = TREE_TYPE (op0);
10194 if (VECTOR_TYPE_P (type))
10195 return false;
10196 }
10197 else if (gimple_call_lhs (stmt) == NULL_TREE)
10198 return false;
10199 else
10200 type = TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt)));
10201 if (!check_for_binary_op_overflow (subcode, type, op0, op1, &ovf)
10202 || (is_ubsan && ovf))
10203 return false;
10204
10205 gimple *g;
10206 location_t loc = gimple_location (stmt);
10207 if (is_ubsan)
10208 g = gimple_build_assign (gimple_call_lhs (stmt), subcode, op0, op1);
10209 else
10210 {
10211 int prec = TYPE_PRECISION (type);
10212 tree utype = type;
10213 if (ovf
10214 || !useless_type_conversion_p (type, TREE_TYPE (op0))
10215 || !useless_type_conversion_p (type, TREE_TYPE (op1)))
10216 utype = build_nonstandard_integer_type (prec, 1);
10217 if (TREE_CODE (op0) == INTEGER_CST)
10218 op0 = fold_convert (utype, op0);
10219 else if (!useless_type_conversion_p (utype, TREE_TYPE (op0)))
10220 {
10221 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op0);
10222 gimple_set_location (g, loc);
10223 gsi_insert_before (gsi, g, GSI_SAME_STMT);
10224 op0 = gimple_assign_lhs (g);
10225 }
10226 if (TREE_CODE (op1) == INTEGER_CST)
10227 op1 = fold_convert (utype, op1);
10228 else if (!useless_type_conversion_p (utype, TREE_TYPE (op1)))
10229 {
10230 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op1);
10231 gimple_set_location (g, loc);
10232 gsi_insert_before (gsi, g, GSI_SAME_STMT);
10233 op1 = gimple_assign_lhs (g);
10234 }
10235 g = gimple_build_assign (make_ssa_name (utype), subcode, op0, op1);
10236 gimple_set_location (g, loc);
10237 gsi_insert_before (gsi, g, GSI_SAME_STMT);
10238 if (utype != type)
10239 {
10240 g = gimple_build_assign (make_ssa_name (type), NOP_EXPR,
10241 gimple_assign_lhs (g));
10242 gimple_set_location (g, loc);
10243 gsi_insert_before (gsi, g, GSI_SAME_STMT);
10244 }
10245 g = gimple_build_assign (gimple_call_lhs (stmt), COMPLEX_EXPR,
10246 gimple_assign_lhs (g),
10247 build_int_cst (type, ovf));
10248 }
10249 gimple_set_location (g, loc);
10250 gsi_replace (gsi, g, false);
10251 return true;
10252 }
10253
10254 /* Return true if VAR is a two-valued variable. Set a and b with the
10255 two-values when it is true. Return false otherwise. */
10256
10257 static bool
10258 two_valued_val_range_p (tree var, tree *a, tree *b)
10259 {
10260 value_range *vr = get_value_range (var);
10261 if ((vr->type != VR_RANGE
10262 && vr->type != VR_ANTI_RANGE)
10263 || TREE_CODE (vr->min) != INTEGER_CST
10264 || TREE_CODE (vr->max) != INTEGER_CST)
10265 return false;
10266
10267 if (vr->type == VR_RANGE
10268 && wi::sub (vr->max, vr->min) == 1)
10269 {
10270 *a = vr->min;
10271 *b = vr->max;
10272 return true;
10273 }
10274
10275 /* ~[TYPE_MIN + 1, TYPE_MAX - 1] */
10276 if (vr->type == VR_ANTI_RANGE
10277 && wi::sub (vr->min, vrp_val_min (TREE_TYPE (var))) == 1
10278 && wi::sub (vrp_val_max (TREE_TYPE (var)), vr->max) == 1)
10279 {
10280 *a = vrp_val_min (TREE_TYPE (var));
10281 *b = vrp_val_max (TREE_TYPE (var));
10282 return true;
10283 }
10284
10285 return false;
10286 }
10287
10288 /* Simplify STMT using ranges if possible. */
10289
10290 static bool
10291 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
10292 {
10293 gimple *stmt = gsi_stmt (*gsi);
10294 if (is_gimple_assign (stmt))
10295 {
10296 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
10297 tree rhs1 = gimple_assign_rhs1 (stmt);
10298 tree rhs2 = gimple_assign_rhs2 (stmt);
10299 tree lhs = gimple_assign_lhs (stmt);
10300 tree val1 = NULL_TREE, val2 = NULL_TREE;
10301 use_operand_p use_p;
10302 gimple *use_stmt;
10303
10304 /* Convert:
10305 LHS = CST BINOP VAR
10306 Where VAR is two-valued and LHS is used in GIMPLE_COND only
10307 To:
10308 LHS = VAR == VAL1 ? (CST BINOP VAL1) : (CST BINOP VAL2)
10309
10310 Also handles:
10311 LHS = VAR BINOP CST
10312 Where VAR is two-valued and LHS is used in GIMPLE_COND only
10313 To:
10314 LHS = VAR == VAL1 ? (VAL1 BINOP CST) : (VAL2 BINOP CST) */
10315
10316 if (TREE_CODE_CLASS (rhs_code) == tcc_binary
10317 && INTEGRAL_TYPE_P (TREE_TYPE (lhs))
10318 && ((TREE_CODE (rhs1) == INTEGER_CST
10319 && TREE_CODE (rhs2) == SSA_NAME)
10320 || (TREE_CODE (rhs2) == INTEGER_CST
10321 && TREE_CODE (rhs1) == SSA_NAME))
10322 && single_imm_use (lhs, &use_p, &use_stmt)
10323 && gimple_code (use_stmt) == GIMPLE_COND)
10324
10325 {
10326 tree new_rhs1 = NULL_TREE;
10327 tree new_rhs2 = NULL_TREE;
10328 tree cmp_var = NULL_TREE;
10329
10330 if (TREE_CODE (rhs2) == SSA_NAME
10331 && two_valued_val_range_p (rhs2, &val1, &val2))
10332 {
10333 /* Optimize RHS1 OP [VAL1, VAL2]. */
10334 new_rhs1 = int_const_binop (rhs_code, rhs1, val1);
10335 new_rhs2 = int_const_binop (rhs_code, rhs1, val2);
10336 cmp_var = rhs2;
10337 }
10338 else if (TREE_CODE (rhs1) == SSA_NAME
10339 && two_valued_val_range_p (rhs1, &val1, &val2))
10340 {
10341 /* Optimize [VAL1, VAL2] OP RHS2. */
10342 new_rhs1 = int_const_binop (rhs_code, val1, rhs2);
10343 new_rhs2 = int_const_binop (rhs_code, val2, rhs2);
10344 cmp_var = rhs1;
10345 }
10346
10347 /* If we could not find two-vals or the optimzation is invalid as
10348 in divide by zero, new_rhs1 / new_rhs will be NULL_TREE. */
10349 if (new_rhs1 && new_rhs2)
10350 {
10351 tree cond = build2 (EQ_EXPR, boolean_type_node, cmp_var, val1);
10352 gimple_assign_set_rhs_with_ops (gsi,
10353 COND_EXPR, cond,
10354 new_rhs1,
10355 new_rhs2);
10356 update_stmt (gsi_stmt (*gsi));
10357 fold_stmt (gsi, follow_single_use_edges);
10358 return true;
10359 }
10360 }
10361
10362 switch (rhs_code)
10363 {
10364 case EQ_EXPR:
10365 case NE_EXPR:
10366 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
10367 if the RHS is zero or one, and the LHS are known to be boolean
10368 values. */
10369 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10370 return simplify_truth_ops_using_ranges (gsi, stmt);
10371 break;
10372
10373 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
10374 and BIT_AND_EXPR respectively if the first operand is greater
10375 than zero and the second operand is an exact power of two.
10376 Also optimize TRUNC_MOD_EXPR away if the second operand is
10377 constant and the first operand already has the right value
10378 range. */
10379 case TRUNC_DIV_EXPR:
10380 case TRUNC_MOD_EXPR:
10381 if ((TREE_CODE (rhs1) == SSA_NAME
10382 || TREE_CODE (rhs1) == INTEGER_CST)
10383 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10384 return simplify_div_or_mod_using_ranges (gsi, stmt);
10385 break;
10386
10387 /* Transform ABS (X) into X or -X as appropriate. */
10388 case ABS_EXPR:
10389 if (TREE_CODE (rhs1) == SSA_NAME
10390 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10391 return simplify_abs_using_ranges (gsi, stmt);
10392 break;
10393
10394 case BIT_AND_EXPR:
10395 case BIT_IOR_EXPR:
10396 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
10397 if all the bits being cleared are already cleared or
10398 all the bits being set are already set. */
10399 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10400 return simplify_bit_ops_using_ranges (gsi, stmt);
10401 break;
10402
10403 CASE_CONVERT:
10404 if (TREE_CODE (rhs1) == SSA_NAME
10405 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10406 return simplify_conversion_using_ranges (gsi, stmt);
10407 break;
10408
10409 case FLOAT_EXPR:
10410 if (TREE_CODE (rhs1) == SSA_NAME
10411 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
10412 return simplify_float_conversion_using_ranges (gsi, stmt);
10413 break;
10414
10415 case MIN_EXPR:
10416 case MAX_EXPR:
10417 return simplify_min_or_max_using_ranges (gsi, stmt);
10418
10419 default:
10420 break;
10421 }
10422 }
10423 else if (gimple_code (stmt) == GIMPLE_COND)
10424 return simplify_cond_using_ranges_1 (as_a <gcond *> (stmt));
10425 else if (gimple_code (stmt) == GIMPLE_SWITCH)
10426 return simplify_switch_using_ranges (as_a <gswitch *> (stmt));
10427 else if (is_gimple_call (stmt)
10428 && gimple_call_internal_p (stmt))
10429 return simplify_internal_call_using_ranges (gsi, stmt);
10430
10431 return false;
10432 }
10433
10434 /* If the statement pointed by SI has a predicate whose value can be
10435 computed using the value range information computed by VRP, compute
10436 its value and return true. Otherwise, return false. */
10437
10438 static bool
10439 fold_predicate_in (gimple_stmt_iterator *si)
10440 {
10441 bool assignment_p = false;
10442 tree val;
10443 gimple *stmt = gsi_stmt (*si);
10444
10445 if (is_gimple_assign (stmt)
10446 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
10447 {
10448 assignment_p = true;
10449 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
10450 gimple_assign_rhs1 (stmt),
10451 gimple_assign_rhs2 (stmt),
10452 stmt);
10453 }
10454 else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
10455 val = vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
10456 gimple_cond_lhs (cond_stmt),
10457 gimple_cond_rhs (cond_stmt),
10458 stmt);
10459 else
10460 return false;
10461
10462 if (val)
10463 {
10464 if (assignment_p)
10465 val = fold_convert (gimple_expr_type (stmt), val);
10466
10467 if (dump_file)
10468 {
10469 fprintf (dump_file, "Folding predicate ");
10470 print_gimple_expr (dump_file, stmt, 0);
10471 fprintf (dump_file, " to ");
10472 print_generic_expr (dump_file, val);
10473 fprintf (dump_file, "\n");
10474 }
10475
10476 if (is_gimple_assign (stmt))
10477 gimple_assign_set_rhs_from_tree (si, val);
10478 else
10479 {
10480 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
10481 gcond *cond_stmt = as_a <gcond *> (stmt);
10482 if (integer_zerop (val))
10483 gimple_cond_make_false (cond_stmt);
10484 else if (integer_onep (val))
10485 gimple_cond_make_true (cond_stmt);
10486 else
10487 gcc_unreachable ();
10488 }
10489
10490 return true;
10491 }
10492
10493 return false;
10494 }
10495
10496 /* Callback for substitute_and_fold folding the stmt at *SI. */
10497
10498 static bool
10499 vrp_fold_stmt (gimple_stmt_iterator *si)
10500 {
10501 if (fold_predicate_in (si))
10502 return true;
10503
10504 return simplify_stmt_using_ranges (si);
10505 }
10506
10507 /* Return the LHS of any ASSERT_EXPR where OP appears as the first
10508 argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
10509 BB. If no such ASSERT_EXPR is found, return OP. */
10510
10511 static tree
10512 lhs_of_dominating_assert (tree op, basic_block bb, gimple *stmt)
10513 {
10514 imm_use_iterator imm_iter;
10515 gimple *use_stmt;
10516 use_operand_p use_p;
10517
10518 if (TREE_CODE (op) == SSA_NAME)
10519 {
10520 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
10521 {
10522 use_stmt = USE_STMT (use_p);
10523 if (use_stmt != stmt
10524 && gimple_assign_single_p (use_stmt)
10525 && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ASSERT_EXPR
10526 && TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == op
10527 && dominated_by_p (CDI_DOMINATORS, bb, gimple_bb (use_stmt)))
10528 return gimple_assign_lhs (use_stmt);
10529 }
10530 }
10531 return op;
10532 }
10533
10534 /* A trivial wrapper so that we can present the generic jump threading
10535 code with a simple API for simplifying statements. STMT is the
10536 statement we want to simplify, WITHIN_STMT provides the location
10537 for any overflow warnings. */
10538
10539 static tree
10540 simplify_stmt_for_jump_threading (gimple *stmt, gimple *within_stmt,
10541 class avail_exprs_stack *avail_exprs_stack ATTRIBUTE_UNUSED,
10542 basic_block bb)
10543 {
10544 /* First see if the conditional is in the hash table. */
10545 tree cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, false, true);
10546 if (cached_lhs && is_gimple_min_invariant (cached_lhs))
10547 return cached_lhs;
10548
10549 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
10550 {
10551 tree op0 = gimple_cond_lhs (cond_stmt);
10552 op0 = lhs_of_dominating_assert (op0, bb, stmt);
10553
10554 tree op1 = gimple_cond_rhs (cond_stmt);
10555 op1 = lhs_of_dominating_assert (op1, bb, stmt);
10556
10557 return vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
10558 op0, op1, within_stmt);
10559 }
10560
10561 /* We simplify a switch statement by trying to determine which case label
10562 will be taken. If we are successful then we return the corresponding
10563 CASE_LABEL_EXPR. */
10564 if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt))
10565 {
10566 tree op = gimple_switch_index (switch_stmt);
10567 if (TREE_CODE (op) != SSA_NAME)
10568 return NULL_TREE;
10569
10570 op = lhs_of_dominating_assert (op, bb, stmt);
10571
10572 value_range *vr = get_value_range (op);
10573 if ((vr->type != VR_RANGE && vr->type != VR_ANTI_RANGE)
10574 || symbolic_range_p (vr))
10575 return NULL_TREE;
10576
10577 if (vr->type == VR_RANGE)
10578 {
10579 size_t i, j;
10580 /* Get the range of labels that contain a part of the operand's
10581 value range. */
10582 find_case_label_range (switch_stmt, vr->min, vr->max, &i, &j);
10583
10584 /* Is there only one such label? */
10585 if (i == j)
10586 {
10587 tree label = gimple_switch_label (switch_stmt, i);
10588
10589 /* The i'th label will be taken only if the value range of the
10590 operand is entirely within the bounds of this label. */
10591 if (CASE_HIGH (label) != NULL_TREE
10592 ? (tree_int_cst_compare (CASE_LOW (label), vr->min) <= 0
10593 && tree_int_cst_compare (CASE_HIGH (label), vr->max) >= 0)
10594 : (tree_int_cst_equal (CASE_LOW (label), vr->min)
10595 && tree_int_cst_equal (vr->min, vr->max)))
10596 return label;
10597 }
10598
10599 /* If there are no such labels then the default label will be
10600 taken. */
10601 if (i > j)
10602 return gimple_switch_label (switch_stmt, 0);
10603 }
10604
10605 if (vr->type == VR_ANTI_RANGE)
10606 {
10607 unsigned n = gimple_switch_num_labels (switch_stmt);
10608 tree min_label = gimple_switch_label (switch_stmt, 1);
10609 tree max_label = gimple_switch_label (switch_stmt, n - 1);
10610
10611 /* The default label will be taken only if the anti-range of the
10612 operand is entirely outside the bounds of all the (non-default)
10613 case labels. */
10614 if (tree_int_cst_compare (vr->min, CASE_LOW (min_label)) <= 0
10615 && (CASE_HIGH (max_label) != NULL_TREE
10616 ? tree_int_cst_compare (vr->max, CASE_HIGH (max_label)) >= 0
10617 : tree_int_cst_compare (vr->max, CASE_LOW (max_label)) >= 0))
10618 return gimple_switch_label (switch_stmt, 0);
10619 }
10620
10621 return NULL_TREE;
10622 }
10623
10624 if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
10625 {
10626 value_range new_vr = VR_INITIALIZER;
10627 tree lhs = gimple_assign_lhs (assign_stmt);
10628
10629 if (TREE_CODE (lhs) == SSA_NAME
10630 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
10631 || POINTER_TYPE_P (TREE_TYPE (lhs))))
10632 {
10633 extract_range_from_assignment (&new_vr, assign_stmt);
10634 if (range_int_cst_singleton_p (&new_vr))
10635 return new_vr.min;
10636 }
10637 }
10638
10639 return NULL_TREE;
10640 }
10641
10642 class vrp_dom_walker : public dom_walker
10643 {
10644 public:
10645 vrp_dom_walker (cdi_direction direction,
10646 class const_and_copies *const_and_copies,
10647 class avail_exprs_stack *avail_exprs_stack)
10648 : dom_walker (direction, true),
10649 m_const_and_copies (const_and_copies),
10650 m_avail_exprs_stack (avail_exprs_stack),
10651 m_dummy_cond (NULL) {}
10652
10653 virtual edge before_dom_children (basic_block);
10654 virtual void after_dom_children (basic_block);
10655
10656 private:
10657 class const_and_copies *m_const_and_copies;
10658 class avail_exprs_stack *m_avail_exprs_stack;
10659
10660 gcond *m_dummy_cond;
10661 };
10662
10663 /* Called before processing dominator children of BB. We want to look
10664 at ASSERT_EXPRs and record information from them in the appropriate
10665 tables.
10666
10667 We could look at other statements here. It's not seen as likely
10668 to significantly increase the jump threads we discover. */
10669
10670 edge
10671 vrp_dom_walker::before_dom_children (basic_block bb)
10672 {
10673 gimple_stmt_iterator gsi;
10674
10675 m_avail_exprs_stack->push_marker ();
10676 m_const_and_copies->push_marker ();
10677 for (gsi = gsi_start_nondebug_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
10678 {
10679 gimple *stmt = gsi_stmt (gsi);
10680 if (gimple_assign_single_p (stmt)
10681 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
10682 {
10683 tree rhs1 = gimple_assign_rhs1 (stmt);
10684 tree cond = TREE_OPERAND (rhs1, 1);
10685 tree inverted = invert_truthvalue (cond);
10686 vec<cond_equivalence> p;
10687 p.create (3);
10688 record_conditions (&p, cond, inverted);
10689 for (unsigned int i = 0; i < p.length (); i++)
10690 m_avail_exprs_stack->record_cond (&p[i]);
10691
10692 tree lhs = gimple_assign_lhs (stmt);
10693 m_const_and_copies->record_const_or_copy (lhs,
10694 TREE_OPERAND (rhs1, 0));
10695 p.release ();
10696 continue;
10697 }
10698 break;
10699 }
10700 return NULL;
10701 }
10702
10703 /* Called after processing dominator children of BB. This is where we
10704 actually call into the threader. */
10705 void
10706 vrp_dom_walker::after_dom_children (basic_block bb)
10707 {
10708 if (!m_dummy_cond)
10709 m_dummy_cond = gimple_build_cond (NE_EXPR,
10710 integer_zero_node, integer_zero_node,
10711 NULL, NULL);
10712
10713 thread_outgoing_edges (bb, m_dummy_cond, m_const_and_copies,
10714 m_avail_exprs_stack,
10715 simplify_stmt_for_jump_threading);
10716
10717 m_avail_exprs_stack->pop_to_marker ();
10718 m_const_and_copies->pop_to_marker ();
10719 }
10720
10721 /* Blocks which have more than one predecessor and more than
10722 one successor present jump threading opportunities, i.e.,
10723 when the block is reached from a specific predecessor, we
10724 may be able to determine which of the outgoing edges will
10725 be traversed. When this optimization applies, we are able
10726 to avoid conditionals at runtime and we may expose secondary
10727 optimization opportunities.
10728
10729 This routine is effectively a driver for the generic jump
10730 threading code. It basically just presents the generic code
10731 with edges that may be suitable for jump threading.
10732
10733 Unlike DOM, we do not iterate VRP if jump threading was successful.
10734 While iterating may expose new opportunities for VRP, it is expected
10735 those opportunities would be very limited and the compile time cost
10736 to expose those opportunities would be significant.
10737
10738 As jump threading opportunities are discovered, they are registered
10739 for later realization. */
10740
10741 static void
10742 identify_jump_threads (void)
10743 {
10744 int i;
10745 edge e;
10746
10747 /* Ugh. When substituting values earlier in this pass we can
10748 wipe the dominance information. So rebuild the dominator
10749 information as we need it within the jump threading code. */
10750 calculate_dominance_info (CDI_DOMINATORS);
10751
10752 /* We do not allow VRP information to be used for jump threading
10753 across a back edge in the CFG. Otherwise it becomes too
10754 difficult to avoid eliminating loop exit tests. Of course
10755 EDGE_DFS_BACK is not accurate at this time so we have to
10756 recompute it. */
10757 mark_dfs_back_edges ();
10758
10759 /* Do not thread across edges we are about to remove. Just marking
10760 them as EDGE_IGNORE will do. */
10761 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
10762 e->flags |= EDGE_IGNORE;
10763
10764 /* Allocate our unwinder stack to unwind any temporary equivalences
10765 that might be recorded. */
10766 const_and_copies *equiv_stack = new const_and_copies ();
10767
10768 hash_table<expr_elt_hasher> *avail_exprs
10769 = new hash_table<expr_elt_hasher> (1024);
10770 avail_exprs_stack *avail_exprs_stack
10771 = new class avail_exprs_stack (avail_exprs);
10772
10773 vrp_dom_walker walker (CDI_DOMINATORS, equiv_stack, avail_exprs_stack);
10774 walker.walk (cfun->cfg->x_entry_block_ptr);
10775
10776 /* Clear EDGE_IGNORE. */
10777 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
10778 e->flags &= ~EDGE_IGNORE;
10779
10780 /* We do not actually update the CFG or SSA graphs at this point as
10781 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
10782 handle ASSERT_EXPRs gracefully. */
10783 delete equiv_stack;
10784 delete avail_exprs;
10785 delete avail_exprs_stack;
10786 }
10787
10788 /* Free VRP lattice. */
10789
10790 static void
10791 vrp_free_lattice ()
10792 {
10793 /* Free allocated memory. */
10794 free (vr_value);
10795 free (vr_phi_edge_counts);
10796 bitmap_obstack_release (&vrp_equiv_obstack);
10797 vrp_value_range_pool.release ();
10798
10799 /* So that we can distinguish between VRP data being available
10800 and not available. */
10801 vr_value = NULL;
10802 vr_phi_edge_counts = NULL;
10803 }
10804
10805 /* Traverse all the blocks folding conditionals with known ranges. */
10806
10807 static void
10808 vrp_finalize (bool warn_array_bounds_p)
10809 {
10810 size_t i;
10811
10812 values_propagated = true;
10813
10814 if (dump_file)
10815 {
10816 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
10817 dump_all_value_ranges (dump_file);
10818 fprintf (dump_file, "\n");
10819 }
10820
10821 /* Set value range to non pointer SSA_NAMEs. */
10822 for (i = 0; i < num_vr_values; i++)
10823 if (vr_value[i])
10824 {
10825 tree name = ssa_name (i);
10826
10827 if (!name
10828 || (vr_value[i]->type == VR_VARYING)
10829 || (vr_value[i]->type == VR_UNDEFINED)
10830 || (TREE_CODE (vr_value[i]->min) != INTEGER_CST)
10831 || (TREE_CODE (vr_value[i]->max) != INTEGER_CST))
10832 continue;
10833
10834 if (POINTER_TYPE_P (TREE_TYPE (name))
10835 && ((vr_value[i]->type == VR_RANGE
10836 && range_includes_zero_p (vr_value[i]->min,
10837 vr_value[i]->max) == 0)
10838 || (vr_value[i]->type == VR_ANTI_RANGE
10839 && range_includes_zero_p (vr_value[i]->min,
10840 vr_value[i]->max) == 1)))
10841 set_ptr_nonnull (name);
10842 else if (!POINTER_TYPE_P (TREE_TYPE (name)))
10843 set_range_info (name, vr_value[i]->type, vr_value[i]->min,
10844 vr_value[i]->max);
10845 }
10846
10847 substitute_and_fold (op_with_constant_singleton_value_range, vrp_fold_stmt);
10848
10849 if (warn_array_bounds && warn_array_bounds_p)
10850 check_all_array_refs ();
10851 }
10852
10853 /* evrp_dom_walker visits the basic blocks in the dominance order and set
10854 the Value Ranges (VR) for SSA_NAMEs in the scope. Use this VR to
10855 discover more VRs. */
10856
10857 class evrp_dom_walker : public dom_walker
10858 {
10859 public:
10860 evrp_dom_walker ()
10861 : dom_walker (CDI_DOMINATORS), stack (10)
10862 {
10863 need_eh_cleanup = BITMAP_ALLOC (NULL);
10864 }
10865 ~evrp_dom_walker ()
10866 {
10867 BITMAP_FREE (need_eh_cleanup);
10868 }
10869 virtual edge before_dom_children (basic_block);
10870 virtual void after_dom_children (basic_block);
10871 void push_value_range (tree var, value_range *vr);
10872 value_range *pop_value_range (tree var);
10873 value_range *try_find_new_range (tree, tree op, tree_code code, tree limit);
10874
10875 /* Cond_stack holds the old VR. */
10876 auto_vec<std::pair <tree, value_range*> > stack;
10877 bitmap need_eh_cleanup;
10878 auto_vec<gimple *> stmts_to_fixup;
10879 auto_vec<gimple *> stmts_to_remove;
10880 };
10881
10882 /* Find new range for NAME such that (OP CODE LIMIT) is true. */
10883
10884 value_range *
10885 evrp_dom_walker::try_find_new_range (tree name,
10886 tree op, tree_code code, tree limit)
10887 {
10888 value_range vr = VR_INITIALIZER;
10889 value_range *old_vr = get_value_range (name);
10890
10891 /* Discover VR when condition is true. */
10892 extract_range_for_var_from_comparison_expr (name, code, op,
10893 limit, &vr);
10894 /* If we found any usable VR, set the VR to ssa_name and create a
10895 PUSH old value in the stack with the old VR. */
10896 if (vr.type == VR_RANGE || vr.type == VR_ANTI_RANGE)
10897 {
10898 if (old_vr->type == vr.type
10899 && vrp_operand_equal_p (old_vr->min, vr.min)
10900 && vrp_operand_equal_p (old_vr->max, vr.max))
10901 return NULL;
10902 value_range *new_vr = vrp_value_range_pool.allocate ();
10903 *new_vr = vr;
10904 return new_vr;
10905 }
10906 return NULL;
10907 }
10908
10909 /* See if there is any new scope is entered with new VR and set that VR to
10910 ssa_name before visiting the statements in the scope. */
10911
10912 edge
10913 evrp_dom_walker::before_dom_children (basic_block bb)
10914 {
10915 tree op0 = NULL_TREE;
10916 edge_iterator ei;
10917 edge e;
10918
10919 if (dump_file && (dump_flags & TDF_DETAILS))
10920 fprintf (dump_file, "Visiting BB%d\n", bb->index);
10921
10922 stack.safe_push (std::make_pair (NULL_TREE, (value_range *)NULL));
10923
10924 edge pred_e = NULL;
10925 FOR_EACH_EDGE (e, ei, bb->preds)
10926 {
10927 /* Ignore simple backedges from this to allow recording conditions
10928 in loop headers. */
10929 if (dominated_by_p (CDI_DOMINATORS, e->src, e->dest))
10930 continue;
10931 if (! pred_e)
10932 pred_e = e;
10933 else
10934 {
10935 pred_e = NULL;
10936 break;
10937 }
10938 }
10939 if (pred_e)
10940 {
10941 gimple *stmt = last_stmt (pred_e->src);
10942 if (stmt
10943 && gimple_code (stmt) == GIMPLE_COND
10944 && (op0 = gimple_cond_lhs (stmt))
10945 && TREE_CODE (op0) == SSA_NAME
10946 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)))
10947 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)))))
10948 {
10949 if (dump_file && (dump_flags & TDF_DETAILS))
10950 {
10951 fprintf (dump_file, "Visiting controlling predicate ");
10952 print_gimple_stmt (dump_file, stmt, 0);
10953 }
10954 /* Entering a new scope. Try to see if we can find a VR
10955 here. */
10956 tree op1 = gimple_cond_rhs (stmt);
10957 if (TREE_OVERFLOW_P (op1))
10958 op1 = drop_tree_overflow (op1);
10959 tree_code code = gimple_cond_code (stmt);
10960
10961 auto_vec<assert_info, 8> asserts;
10962 register_edge_assert_for (op0, pred_e, code, op0, op1, asserts);
10963 if (TREE_CODE (op1) == SSA_NAME)
10964 register_edge_assert_for (op1, pred_e, code, op0, op1, asserts);
10965
10966 auto_vec<std::pair<tree, value_range *>, 8> vrs;
10967 for (unsigned i = 0; i < asserts.length (); ++i)
10968 {
10969 value_range *vr = try_find_new_range (asserts[i].name,
10970 asserts[i].expr,
10971 asserts[i].comp_code,
10972 asserts[i].val);
10973 if (vr)
10974 vrs.safe_push (std::make_pair (asserts[i].name, vr));
10975 }
10976 /* Push updated ranges only after finding all of them to avoid
10977 ordering issues that can lead to worse ranges. */
10978 for (unsigned i = 0; i < vrs.length (); ++i)
10979 push_value_range (vrs[i].first, vrs[i].second);
10980 }
10981 }
10982
10983 /* Visit PHI stmts and discover any new VRs possible. */
10984 bool has_unvisited_preds = false;
10985 FOR_EACH_EDGE (e, ei, bb->preds)
10986 if (e->flags & EDGE_EXECUTABLE
10987 && !(e->src->flags & BB_VISITED))
10988 {
10989 has_unvisited_preds = true;
10990 break;
10991 }
10992
10993 for (gphi_iterator gpi = gsi_start_phis (bb);
10994 !gsi_end_p (gpi); gsi_next (&gpi))
10995 {
10996 gphi *phi = gpi.phi ();
10997 tree lhs = PHI_RESULT (phi);
10998 if (virtual_operand_p (lhs))
10999 continue;
11000 value_range vr_result = VR_INITIALIZER;
11001 bool interesting = stmt_interesting_for_vrp (phi);
11002 if (interesting && dump_file && (dump_flags & TDF_DETAILS))
11003 {
11004 fprintf (dump_file, "Visiting PHI node ");
11005 print_gimple_stmt (dump_file, phi, 0);
11006 }
11007 if (!has_unvisited_preds
11008 && interesting)
11009 extract_range_from_phi_node (phi, &vr_result);
11010 else
11011 {
11012 set_value_range_to_varying (&vr_result);
11013 /* When we have an unvisited executable predecessor we can't
11014 use PHI arg ranges which may be still UNDEFINED but have
11015 to use VARYING for them. But we can still resort to
11016 SCEV for loop header PHIs. */
11017 struct loop *l;
11018 if (interesting
11019 && (l = loop_containing_stmt (phi))
11020 && l->header == gimple_bb (phi))
11021 adjust_range_with_scev (&vr_result, l, phi, lhs);
11022 }
11023 update_value_range (lhs, &vr_result);
11024
11025 /* Mark PHIs whose lhs we fully propagate for removal. */
11026 tree val = op_with_constant_singleton_value_range (lhs);
11027 if (val && may_propagate_copy (lhs, val))
11028 {
11029 stmts_to_remove.safe_push (phi);
11030 continue;
11031 }
11032
11033 /* Set the SSA with the value range. */
11034 if (INTEGRAL_TYPE_P (TREE_TYPE (lhs)))
11035 {
11036 if ((vr_result.type == VR_RANGE
11037 || vr_result.type == VR_ANTI_RANGE)
11038 && (TREE_CODE (vr_result.min) == INTEGER_CST)
11039 && (TREE_CODE (vr_result.max) == INTEGER_CST))
11040 set_range_info (lhs,
11041 vr_result.type, vr_result.min, vr_result.max);
11042 }
11043 else if (POINTER_TYPE_P (TREE_TYPE (lhs))
11044 && ((vr_result.type == VR_RANGE
11045 && range_includes_zero_p (vr_result.min,
11046 vr_result.max) == 0)
11047 || (vr_result.type == VR_ANTI_RANGE
11048 && range_includes_zero_p (vr_result.min,
11049 vr_result.max) == 1)))
11050 set_ptr_nonnull (lhs);
11051 }
11052
11053 edge taken_edge = NULL;
11054
11055 /* Visit all other stmts and discover any new VRs possible. */
11056 for (gimple_stmt_iterator gsi = gsi_start_bb (bb);
11057 !gsi_end_p (gsi); gsi_next (&gsi))
11058 {
11059 gimple *stmt = gsi_stmt (gsi);
11060 tree output = NULL_TREE;
11061 gimple *old_stmt = stmt;
11062 bool was_noreturn = (is_gimple_call (stmt)
11063 && gimple_call_noreturn_p (stmt));
11064
11065 if (dump_file && (dump_flags & TDF_DETAILS))
11066 {
11067 fprintf (dump_file, "Visiting stmt ");
11068 print_gimple_stmt (dump_file, stmt, 0);
11069 }
11070
11071 if (gcond *cond = dyn_cast <gcond *> (stmt))
11072 {
11073 vrp_visit_cond_stmt (cond, &taken_edge);
11074 if (taken_edge)
11075 {
11076 if (taken_edge->flags & EDGE_TRUE_VALUE)
11077 gimple_cond_make_true (cond);
11078 else if (taken_edge->flags & EDGE_FALSE_VALUE)
11079 gimple_cond_make_false (cond);
11080 else
11081 gcc_unreachable ();
11082 update_stmt (stmt);
11083 }
11084 }
11085 else if (stmt_interesting_for_vrp (stmt))
11086 {
11087 edge taken_edge;
11088 value_range vr = VR_INITIALIZER;
11089 extract_range_from_stmt (stmt, &taken_edge, &output, &vr);
11090 if (output
11091 && (vr.type == VR_RANGE || vr.type == VR_ANTI_RANGE))
11092 {
11093 update_value_range (output, &vr);
11094 vr = *get_value_range (output);
11095
11096 /* Mark stmts whose output we fully propagate for removal. */
11097 tree val;
11098 if ((val = op_with_constant_singleton_value_range (output))
11099 && may_propagate_copy (output, val)
11100 && !stmt_could_throw_p (stmt)
11101 && !gimple_has_side_effects (stmt))
11102 {
11103 stmts_to_remove.safe_push (stmt);
11104 continue;
11105 }
11106
11107 /* Set the SSA with the value range. */
11108 if (INTEGRAL_TYPE_P (TREE_TYPE (output)))
11109 {
11110 if ((vr.type == VR_RANGE
11111 || vr.type == VR_ANTI_RANGE)
11112 && (TREE_CODE (vr.min) == INTEGER_CST)
11113 && (TREE_CODE (vr.max) == INTEGER_CST))
11114 set_range_info (output, vr.type, vr.min, vr.max);
11115 }
11116 else if (POINTER_TYPE_P (TREE_TYPE (output))
11117 && ((vr.type == VR_RANGE
11118 && range_includes_zero_p (vr.min,
11119 vr.max) == 0)
11120 || (vr.type == VR_ANTI_RANGE
11121 && range_includes_zero_p (vr.min,
11122 vr.max) == 1)))
11123 set_ptr_nonnull (output);
11124 }
11125 else
11126 set_defs_to_varying (stmt);
11127 }
11128 else
11129 set_defs_to_varying (stmt);
11130
11131 /* See if we can derive a range for any of STMT's operands. */
11132 tree op;
11133 ssa_op_iter i;
11134 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
11135 {
11136 tree value;
11137 enum tree_code comp_code;
11138
11139 /* If OP is used in such a way that we can infer a value
11140 range for it, and we don't find a previous assertion for
11141 it, create a new assertion location node for OP. */
11142 if (infer_value_range (stmt, op, &comp_code, &value))
11143 {
11144 /* If we are able to infer a nonzero value range for OP,
11145 then walk backwards through the use-def chain to see if OP
11146 was set via a typecast.
11147 If so, then we can also infer a nonzero value range
11148 for the operand of the NOP_EXPR. */
11149 if (comp_code == NE_EXPR && integer_zerop (value))
11150 {
11151 tree t = op;
11152 gimple *def_stmt = SSA_NAME_DEF_STMT (t);
11153 while (is_gimple_assign (def_stmt)
11154 && CONVERT_EXPR_CODE_P
11155 (gimple_assign_rhs_code (def_stmt))
11156 && TREE_CODE
11157 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
11158 && POINTER_TYPE_P
11159 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
11160 {
11161 t = gimple_assign_rhs1 (def_stmt);
11162 def_stmt = SSA_NAME_DEF_STMT (t);
11163
11164 /* Add VR when (T COMP_CODE value) condition is
11165 true. */
11166 value_range *op_range
11167 = try_find_new_range (t, t, comp_code, value);
11168 if (op_range)
11169 push_value_range (t, op_range);
11170 }
11171 }
11172 /* Add VR when (OP COMP_CODE value) condition is true. */
11173 value_range *op_range = try_find_new_range (op, op,
11174 comp_code, value);
11175 if (op_range)
11176 push_value_range (op, op_range);
11177 }
11178 }
11179
11180 /* Try folding stmts with the VR discovered. */
11181 bool did_replace
11182 = replace_uses_in (stmt, op_with_constant_singleton_value_range);
11183 if (fold_stmt (&gsi, follow_single_use_edges)
11184 || did_replace)
11185 {
11186 stmt = gsi_stmt (gsi);
11187 update_stmt (stmt);
11188 did_replace = true;
11189 }
11190
11191 if (did_replace)
11192 {
11193 /* If we cleaned up EH information from the statement,
11194 remove EH edges. */
11195 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt))
11196 bitmap_set_bit (need_eh_cleanup, bb->index);
11197
11198 /* If we turned a not noreturn call into a noreturn one
11199 schedule it for fixup. */
11200 if (!was_noreturn
11201 && is_gimple_call (stmt)
11202 && gimple_call_noreturn_p (stmt))
11203 stmts_to_fixup.safe_push (stmt);
11204
11205 if (gimple_assign_single_p (stmt))
11206 {
11207 tree rhs = gimple_assign_rhs1 (stmt);
11208 if (TREE_CODE (rhs) == ADDR_EXPR)
11209 recompute_tree_invariant_for_addr_expr (rhs);
11210 }
11211 }
11212 }
11213
11214 /* Visit BB successor PHI nodes and replace PHI args. */
11215 FOR_EACH_EDGE (e, ei, bb->succs)
11216 {
11217 for (gphi_iterator gpi = gsi_start_phis (e->dest);
11218 !gsi_end_p (gpi); gsi_next (&gpi))
11219 {
11220 gphi *phi = gpi.phi ();
11221 use_operand_p use_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
11222 tree arg = USE_FROM_PTR (use_p);
11223 if (TREE_CODE (arg) != SSA_NAME
11224 || virtual_operand_p (arg))
11225 continue;
11226 tree val = op_with_constant_singleton_value_range (arg);
11227 if (val && may_propagate_copy (arg, val))
11228 propagate_value (use_p, val);
11229 }
11230 }
11231
11232 bb->flags |= BB_VISITED;
11233
11234 return taken_edge;
11235 }
11236
11237 /* Restore/pop VRs valid only for BB when we leave BB. */
11238
11239 void
11240 evrp_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
11241 {
11242 gcc_checking_assert (!stack.is_empty ());
11243 while (stack.last ().first != NULL_TREE)
11244 pop_value_range (stack.last ().first);
11245 stack.pop ();
11246 }
11247
11248 /* Push the Value Range of VAR to the stack and update it with new VR. */
11249
11250 void
11251 evrp_dom_walker::push_value_range (tree var, value_range *vr)
11252 {
11253 if (SSA_NAME_VERSION (var) >= num_vr_values)
11254 return;
11255 if (dump_file && (dump_flags & TDF_DETAILS))
11256 {
11257 fprintf (dump_file, "pushing new range for ");
11258 print_generic_expr (dump_file, var);
11259 fprintf (dump_file, ": ");
11260 dump_value_range (dump_file, vr);
11261 fprintf (dump_file, "\n");
11262 }
11263 stack.safe_push (std::make_pair (var, get_value_range (var)));
11264 vr_value[SSA_NAME_VERSION (var)] = vr;
11265 }
11266
11267 /* Pop the Value Range from the vrp_stack and update VAR with it. */
11268
11269 value_range *
11270 evrp_dom_walker::pop_value_range (tree var)
11271 {
11272 value_range *vr = stack.last ().second;
11273 gcc_checking_assert (var == stack.last ().first);
11274 if (dump_file && (dump_flags & TDF_DETAILS))
11275 {
11276 fprintf (dump_file, "popping range for ");
11277 print_generic_expr (dump_file, var);
11278 fprintf (dump_file, ", restoring ");
11279 dump_value_range (dump_file, vr);
11280 fprintf (dump_file, "\n");
11281 }
11282 vr_value[SSA_NAME_VERSION (var)] = vr;
11283 stack.pop ();
11284 return vr;
11285 }
11286
11287
11288 /* Main entry point for the early vrp pass which is a simplified non-iterative
11289 version of vrp where basic blocks are visited in dominance order. Value
11290 ranges discovered in early vrp will also be used by ipa-vrp. */
11291
11292 static unsigned int
11293 execute_early_vrp ()
11294 {
11295 edge e;
11296 edge_iterator ei;
11297 basic_block bb;
11298
11299 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
11300 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
11301 scev_initialize ();
11302 calculate_dominance_info (CDI_DOMINATORS);
11303 FOR_EACH_BB_FN (bb, cfun)
11304 {
11305 bb->flags &= ~BB_VISITED;
11306 FOR_EACH_EDGE (e, ei, bb->preds)
11307 e->flags |= EDGE_EXECUTABLE;
11308 }
11309 vrp_initialize_lattice ();
11310
11311 /* Walk stmts in dominance order and propagate VRP. */
11312 evrp_dom_walker walker;
11313 walker.walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
11314
11315 if (dump_file)
11316 {
11317 fprintf (dump_file, "\nValue ranges after Early VRP:\n\n");
11318 dump_all_value_ranges (dump_file);
11319 fprintf (dump_file, "\n");
11320 }
11321
11322 /* Remove stmts in reverse order to make debug stmt creation possible. */
11323 while (! walker.stmts_to_remove.is_empty ())
11324 {
11325 gimple *stmt = walker.stmts_to_remove.pop ();
11326 if (dump_file && dump_flags & TDF_DETAILS)
11327 {
11328 fprintf (dump_file, "Removing dead stmt ");
11329 print_gimple_stmt (dump_file, stmt, 0);
11330 fprintf (dump_file, "\n");
11331 }
11332 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
11333 if (gimple_code (stmt) == GIMPLE_PHI)
11334 remove_phi_node (&gsi, true);
11335 else
11336 {
11337 unlink_stmt_vdef (stmt);
11338 gsi_remove (&gsi, true);
11339 release_defs (stmt);
11340 }
11341 }
11342
11343 if (!bitmap_empty_p (walker.need_eh_cleanup))
11344 gimple_purge_all_dead_eh_edges (walker.need_eh_cleanup);
11345
11346 /* Fixup stmts that became noreturn calls. This may require splitting
11347 blocks and thus isn't possible during the dominator walk. Do this
11348 in reverse order so we don't inadvertedly remove a stmt we want to
11349 fixup by visiting a dominating now noreturn call first. */
11350 while (!walker.stmts_to_fixup.is_empty ())
11351 {
11352 gimple *stmt = walker.stmts_to_fixup.pop ();
11353 fixup_noreturn_call (stmt);
11354 }
11355
11356 vrp_free_lattice ();
11357 scev_finalize ();
11358 loop_optimizer_finalize ();
11359 return 0;
11360 }
11361
11362
11363 /* Main entry point to VRP (Value Range Propagation). This pass is
11364 loosely based on J. R. C. Patterson, ``Accurate Static Branch
11365 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
11366 Programming Language Design and Implementation, pp. 67-78, 1995.
11367 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
11368
11369 This is essentially an SSA-CCP pass modified to deal with ranges
11370 instead of constants.
11371
11372 While propagating ranges, we may find that two or more SSA name
11373 have equivalent, though distinct ranges. For instance,
11374
11375 1 x_9 = p_3->a;
11376 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
11377 3 if (p_4 == q_2)
11378 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
11379 5 endif
11380 6 if (q_2)
11381
11382 In the code above, pointer p_5 has range [q_2, q_2], but from the
11383 code we can also determine that p_5 cannot be NULL and, if q_2 had
11384 a non-varying range, p_5's range should also be compatible with it.
11385
11386 These equivalences are created by two expressions: ASSERT_EXPR and
11387 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
11388 result of another assertion, then we can use the fact that p_5 and
11389 p_4 are equivalent when evaluating p_5's range.
11390
11391 Together with value ranges, we also propagate these equivalences
11392 between names so that we can take advantage of information from
11393 multiple ranges when doing final replacement. Note that this
11394 equivalency relation is transitive but not symmetric.
11395
11396 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
11397 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
11398 in contexts where that assertion does not hold (e.g., in line 6).
11399
11400 TODO, the main difference between this pass and Patterson's is that
11401 we do not propagate edge probabilities. We only compute whether
11402 edges can be taken or not. That is, instead of having a spectrum
11403 of jump probabilities between 0 and 1, we only deal with 0, 1 and
11404 DON'T KNOW. In the future, it may be worthwhile to propagate
11405 probabilities to aid branch prediction. */
11406
11407 static unsigned int
11408 execute_vrp (bool warn_array_bounds_p)
11409 {
11410 int i;
11411 edge e;
11412 switch_update *su;
11413
11414 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
11415 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
11416 scev_initialize ();
11417
11418 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
11419 Inserting assertions may split edges which will invalidate
11420 EDGE_DFS_BACK. */
11421 insert_range_assertions ();
11422
11423 to_remove_edges.create (10);
11424 to_update_switch_stmts.create (5);
11425 threadedge_initialize_values ();
11426
11427 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
11428 mark_dfs_back_edges ();
11429
11430 vrp_initialize_lattice ();
11431 vrp_initialize ();
11432 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
11433 vrp_finalize (warn_array_bounds_p);
11434
11435 /* We must identify jump threading opportunities before we release
11436 the datastructures built by VRP. */
11437 identify_jump_threads ();
11438
11439 /* A comparison of an SSA_NAME against a constant where the SSA_NAME
11440 was set by a type conversion can often be rewritten to use the
11441 RHS of the type conversion.
11442
11443 However, doing so inhibits jump threading through the comparison.
11444 So that transformation is not performed until after jump threading
11445 is complete. */
11446 basic_block bb;
11447 FOR_EACH_BB_FN (bb, cfun)
11448 {
11449 gimple *last = last_stmt (bb);
11450 if (last && gimple_code (last) == GIMPLE_COND)
11451 simplify_cond_using_ranges_2 (as_a <gcond *> (last));
11452 }
11453
11454 vrp_free_lattice ();
11455
11456 free_numbers_of_iterations_estimates (cfun);
11457
11458 /* ASSERT_EXPRs must be removed before finalizing jump threads
11459 as finalizing jump threads calls the CFG cleanup code which
11460 does not properly handle ASSERT_EXPRs. */
11461 remove_range_assertions ();
11462
11463 /* If we exposed any new variables, go ahead and put them into
11464 SSA form now, before we handle jump threading. This simplifies
11465 interactions between rewriting of _DECL nodes into SSA form
11466 and rewriting SSA_NAME nodes into SSA form after block
11467 duplication and CFG manipulation. */
11468 update_ssa (TODO_update_ssa);
11469
11470 /* We identified all the jump threading opportunities earlier, but could
11471 not transform the CFG at that time. This routine transforms the
11472 CFG and arranges for the dominator tree to be rebuilt if necessary.
11473
11474 Note the SSA graph update will occur during the normal TODO
11475 processing by the pass manager. */
11476 thread_through_all_blocks (false);
11477
11478 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
11479 CFG in a broken state and requires a cfg_cleanup run. */
11480 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
11481 remove_edge (e);
11482 /* Update SWITCH_EXPR case label vector. */
11483 FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
11484 {
11485 size_t j;
11486 size_t n = TREE_VEC_LENGTH (su->vec);
11487 tree label;
11488 gimple_switch_set_num_labels (su->stmt, n);
11489 for (j = 0; j < n; j++)
11490 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
11491 /* As we may have replaced the default label with a regular one
11492 make sure to make it a real default label again. This ensures
11493 optimal expansion. */
11494 label = gimple_switch_label (su->stmt, 0);
11495 CASE_LOW (label) = NULL_TREE;
11496 CASE_HIGH (label) = NULL_TREE;
11497 }
11498
11499 if (to_remove_edges.length () > 0)
11500 {
11501 free_dominance_info (CDI_DOMINATORS);
11502 loops_state_set (LOOPS_NEED_FIXUP);
11503 }
11504
11505 to_remove_edges.release ();
11506 to_update_switch_stmts.release ();
11507 threadedge_finalize_values ();
11508
11509 scev_finalize ();
11510 loop_optimizer_finalize ();
11511 return 0;
11512 }
11513
11514 namespace {
11515
11516 const pass_data pass_data_vrp =
11517 {
11518 GIMPLE_PASS, /* type */
11519 "vrp", /* name */
11520 OPTGROUP_NONE, /* optinfo_flags */
11521 TV_TREE_VRP, /* tv_id */
11522 PROP_ssa, /* properties_required */
11523 0, /* properties_provided */
11524 0, /* properties_destroyed */
11525 0, /* todo_flags_start */
11526 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
11527 };
11528
11529 class pass_vrp : public gimple_opt_pass
11530 {
11531 public:
11532 pass_vrp (gcc::context *ctxt)
11533 : gimple_opt_pass (pass_data_vrp, ctxt), warn_array_bounds_p (false)
11534 {}
11535
11536 /* opt_pass methods: */
11537 opt_pass * clone () { return new pass_vrp (m_ctxt); }
11538 void set_pass_param (unsigned int n, bool param)
11539 {
11540 gcc_assert (n == 0);
11541 warn_array_bounds_p = param;
11542 }
11543 virtual bool gate (function *) { return flag_tree_vrp != 0; }
11544 virtual unsigned int execute (function *)
11545 { return execute_vrp (warn_array_bounds_p); }
11546
11547 private:
11548 bool warn_array_bounds_p;
11549 }; // class pass_vrp
11550
11551 } // anon namespace
11552
11553 gimple_opt_pass *
11554 make_pass_vrp (gcc::context *ctxt)
11555 {
11556 return new pass_vrp (ctxt);
11557 }
11558
11559 namespace {
11560
11561 const pass_data pass_data_early_vrp =
11562 {
11563 GIMPLE_PASS, /* type */
11564 "evrp", /* name */
11565 OPTGROUP_NONE, /* optinfo_flags */
11566 TV_TREE_EARLY_VRP, /* tv_id */
11567 PROP_ssa, /* properties_required */
11568 0, /* properties_provided */
11569 0, /* properties_destroyed */
11570 0, /* todo_flags_start */
11571 ( TODO_cleanup_cfg | TODO_update_ssa | TODO_verify_all ),
11572 };
11573
11574 class pass_early_vrp : public gimple_opt_pass
11575 {
11576 public:
11577 pass_early_vrp (gcc::context *ctxt)
11578 : gimple_opt_pass (pass_data_early_vrp, ctxt)
11579 {}
11580
11581 /* opt_pass methods: */
11582 opt_pass * clone () { return new pass_early_vrp (m_ctxt); }
11583 virtual bool gate (function *)
11584 {
11585 return flag_tree_vrp != 0;
11586 }
11587 virtual unsigned int execute (function *)
11588 { return execute_early_vrp (); }
11589
11590 }; // class pass_vrp
11591 } // anon namespace
11592
11593 gimple_opt_pass *
11594 make_pass_early_vrp (gcc::context *ctxt)
11595 {
11596 return new pass_early_vrp (ctxt);
11597 }
11598