tree-data-ref.c (subscript_dependence_tester_1): Call free_conflict_function.
[gcc.git] / gcc / tree-vrp.c
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006, 2007 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "flags.h"
27 #include "tree.h"
28 #include "basic-block.h"
29 #include "tree-flow.h"
30 #include "tree-pass.h"
31 #include "tree-dump.h"
32 #include "timevar.h"
33 #include "diagnostic.h"
34 #include "toplev.h"
35 #include "intl.h"
36 #include "cfgloop.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-ssa-propagate.h"
39 #include "tree-chrec.h"
40
41 /* Set of SSA names found during the dominator traversal of a
42 sub-graph in find_assert_locations. */
43 static sbitmap found_in_subgraph;
44
45 /* Local functions. */
46 static int compare_values (tree val1, tree val2);
47 static int compare_values_warnv (tree val1, tree val2, bool *);
48 static void vrp_meet (value_range_t *, value_range_t *);
49 static tree vrp_evaluate_conditional_warnv (tree, bool, bool *);
50
51 /* Location information for ASSERT_EXPRs. Each instance of this
52 structure describes an ASSERT_EXPR for an SSA name. Since a single
53 SSA name may have more than one assertion associated with it, these
54 locations are kept in a linked list attached to the corresponding
55 SSA name. */
56 struct assert_locus_d
57 {
58 /* Basic block where the assertion would be inserted. */
59 basic_block bb;
60
61 /* Some assertions need to be inserted on an edge (e.g., assertions
62 generated by COND_EXPRs). In those cases, BB will be NULL. */
63 edge e;
64
65 /* Pointer to the statement that generated this assertion. */
66 block_stmt_iterator si;
67
68 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
69 enum tree_code comp_code;
70
71 /* Value being compared against. */
72 tree val;
73
74 /* Next node in the linked list. */
75 struct assert_locus_d *next;
76 };
77
78 typedef struct assert_locus_d *assert_locus_t;
79
80 /* If bit I is present, it means that SSA name N_i has a list of
81 assertions that should be inserted in the IL. */
82 static bitmap need_assert_for;
83
84 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
85 holds a list of ASSERT_LOCUS_T nodes that describe where
86 ASSERT_EXPRs for SSA name N_I should be inserted. */
87 static assert_locus_t *asserts_for;
88
89 /* Set of blocks visited in find_assert_locations. Used to avoid
90 visiting the same block more than once. */
91 static sbitmap blocks_visited;
92
93 /* Value range array. After propagation, VR_VALUE[I] holds the range
94 of values that SSA name N_I may take. */
95 static value_range_t **vr_value;
96
97 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
98 number of executable edges we saw the last time we visited the
99 node. */
100 static int *vr_phi_edge_counts;
101
102
103 /* Return whether TYPE should use an overflow infinity distinct from
104 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
105 represent a signed overflow during VRP computations. An infinity
106 is distinct from a half-range, which will go from some number to
107 TYPE_{MIN,MAX}_VALUE. */
108
109 static inline bool
110 needs_overflow_infinity (const_tree type)
111 {
112 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
113 }
114
115 /* Return whether TYPE can support our overflow infinity
116 representation: we use the TREE_OVERFLOW flag, which only exists
117 for constants. If TYPE doesn't support this, we don't optimize
118 cases which would require signed overflow--we drop them to
119 VARYING. */
120
121 static inline bool
122 supports_overflow_infinity (const_tree type)
123 {
124 #ifdef ENABLE_CHECKING
125 gcc_assert (needs_overflow_infinity (type));
126 #endif
127 return (TYPE_MIN_VALUE (type) != NULL_TREE
128 && CONSTANT_CLASS_P (TYPE_MIN_VALUE (type))
129 && TYPE_MAX_VALUE (type) != NULL_TREE
130 && CONSTANT_CLASS_P (TYPE_MAX_VALUE (type)));
131 }
132
133 /* VAL is the maximum or minimum value of a type. Return a
134 corresponding overflow infinity. */
135
136 static inline tree
137 make_overflow_infinity (tree val)
138 {
139 #ifdef ENABLE_CHECKING
140 gcc_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
141 #endif
142 val = copy_node (val);
143 TREE_OVERFLOW (val) = 1;
144 return val;
145 }
146
147 /* Return a negative overflow infinity for TYPE. */
148
149 static inline tree
150 negative_overflow_infinity (tree type)
151 {
152 #ifdef ENABLE_CHECKING
153 gcc_assert (supports_overflow_infinity (type));
154 #endif
155 return make_overflow_infinity (TYPE_MIN_VALUE (type));
156 }
157
158 /* Return a positive overflow infinity for TYPE. */
159
160 static inline tree
161 positive_overflow_infinity (tree type)
162 {
163 #ifdef ENABLE_CHECKING
164 gcc_assert (supports_overflow_infinity (type));
165 #endif
166 return make_overflow_infinity (TYPE_MAX_VALUE (type));
167 }
168
169 /* Return whether VAL is a negative overflow infinity. */
170
171 static inline bool
172 is_negative_overflow_infinity (const_tree val)
173 {
174 return (needs_overflow_infinity (TREE_TYPE (val))
175 && CONSTANT_CLASS_P (val)
176 && TREE_OVERFLOW (val)
177 && operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
178 }
179
180 /* Return whether VAL is a positive overflow infinity. */
181
182 static inline bool
183 is_positive_overflow_infinity (const_tree val)
184 {
185 return (needs_overflow_infinity (TREE_TYPE (val))
186 && CONSTANT_CLASS_P (val)
187 && TREE_OVERFLOW (val)
188 && operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0));
189 }
190
191 /* Return whether VAL is a positive or negative overflow infinity. */
192
193 static inline bool
194 is_overflow_infinity (const_tree val)
195 {
196 return (needs_overflow_infinity (TREE_TYPE (val))
197 && CONSTANT_CLASS_P (val)
198 && TREE_OVERFLOW (val)
199 && (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0)
200 || operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0)));
201 }
202
203 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
204 the same value with TREE_OVERFLOW clear. This can be used to avoid
205 confusing a regular value with an overflow value. */
206
207 static inline tree
208 avoid_overflow_infinity (tree val)
209 {
210 if (!is_overflow_infinity (val))
211 return val;
212
213 if (operand_equal_p (val, TYPE_MAX_VALUE (TREE_TYPE (val)), 0))
214 return TYPE_MAX_VALUE (TREE_TYPE (val));
215 else
216 {
217 #ifdef ENABLE_CHECKING
218 gcc_assert (operand_equal_p (val, TYPE_MIN_VALUE (TREE_TYPE (val)), 0));
219 #endif
220 return TYPE_MIN_VALUE (TREE_TYPE (val));
221 }
222 }
223
224
225 /* Return whether VAL is equal to the maximum value of its type. This
226 will be true for a positive overflow infinity. We can't do a
227 simple equality comparison with TYPE_MAX_VALUE because C typedefs
228 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
229 to the integer constant with the same value in the type. */
230
231 static inline bool
232 vrp_val_is_max (const_tree val)
233 {
234 tree type_max = TYPE_MAX_VALUE (TREE_TYPE (val));
235
236 return (val == type_max
237 || (type_max != NULL_TREE
238 && operand_equal_p (val, type_max, 0)));
239 }
240
241 /* Return whether VAL is equal to the minimum value of its type. This
242 will be true for a negative overflow infinity. */
243
244 static inline bool
245 vrp_val_is_min (const_tree val)
246 {
247 tree type_min = TYPE_MIN_VALUE (TREE_TYPE (val));
248
249 return (val == type_min
250 || (type_min != NULL_TREE
251 && operand_equal_p (val, type_min, 0)));
252 }
253
254
255 /* Return true if ARG is marked with the nonnull attribute in the
256 current function signature. */
257
258 static bool
259 nonnull_arg_p (const_tree arg)
260 {
261 tree t, attrs, fntype;
262 unsigned HOST_WIDE_INT arg_num;
263
264 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
265
266 /* The static chain decl is always non null. */
267 if (arg == cfun->static_chain_decl)
268 return true;
269
270 fntype = TREE_TYPE (current_function_decl);
271 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
272
273 /* If "nonnull" wasn't specified, we know nothing about the argument. */
274 if (attrs == NULL_TREE)
275 return false;
276
277 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
278 if (TREE_VALUE (attrs) == NULL_TREE)
279 return true;
280
281 /* Get the position number for ARG in the function signature. */
282 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
283 t;
284 t = TREE_CHAIN (t), arg_num++)
285 {
286 if (t == arg)
287 break;
288 }
289
290 gcc_assert (t == arg);
291
292 /* Now see if ARG_NUM is mentioned in the nonnull list. */
293 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
294 {
295 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
296 return true;
297 }
298
299 return false;
300 }
301
302
303 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
304
305 static void
306 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
307 tree max, bitmap equiv)
308 {
309 #if defined ENABLE_CHECKING
310 /* Check the validity of the range. */
311 if (t == VR_RANGE || t == VR_ANTI_RANGE)
312 {
313 int cmp;
314
315 gcc_assert (min && max);
316
317 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
318 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
319
320 cmp = compare_values (min, max);
321 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
322
323 if (needs_overflow_infinity (TREE_TYPE (min)))
324 gcc_assert (!is_overflow_infinity (min)
325 || !is_overflow_infinity (max));
326 }
327
328 if (t == VR_UNDEFINED || t == VR_VARYING)
329 gcc_assert (min == NULL_TREE && max == NULL_TREE);
330
331 if (t == VR_UNDEFINED || t == VR_VARYING)
332 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
333 #endif
334
335 vr->type = t;
336 vr->min = min;
337 vr->max = max;
338
339 /* Since updating the equivalence set involves deep copying the
340 bitmaps, only do it if absolutely necessary. */
341 if (vr->equiv == NULL
342 && equiv != NULL)
343 vr->equiv = BITMAP_ALLOC (NULL);
344
345 if (equiv != vr->equiv)
346 {
347 if (equiv && !bitmap_empty_p (equiv))
348 bitmap_copy (vr->equiv, equiv);
349 else
350 bitmap_clear (vr->equiv);
351 }
352 }
353
354
355 /* Copy value range FROM into value range TO. */
356
357 static inline void
358 copy_value_range (value_range_t *to, value_range_t *from)
359 {
360 set_value_range (to, from->type, from->min, from->max, from->equiv);
361 }
362
363
364 /* Set value range VR to VR_VARYING. */
365
366 static inline void
367 set_value_range_to_varying (value_range_t *vr)
368 {
369 vr->type = VR_VARYING;
370 vr->min = vr->max = NULL_TREE;
371 if (vr->equiv)
372 bitmap_clear (vr->equiv);
373 }
374
375 /* Set value range VR to a single value. This function is only called
376 with values we get from statements, and exists to clear the
377 TREE_OVERFLOW flag so that we don't think we have an overflow
378 infinity when we shouldn't. */
379
380 static inline void
381 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
382 {
383 gcc_assert (is_gimple_min_invariant (val));
384 val = avoid_overflow_infinity (val);
385 set_value_range (vr, VR_RANGE, val, val, equiv);
386 }
387
388 /* Set value range VR to a non-negative range of type TYPE.
389 OVERFLOW_INFINITY indicates whether to use an overflow infinity
390 rather than TYPE_MAX_VALUE; this should be true if we determine
391 that the range is nonnegative based on the assumption that signed
392 overflow does not occur. */
393
394 static inline void
395 set_value_range_to_nonnegative (value_range_t *vr, tree type,
396 bool overflow_infinity)
397 {
398 tree zero;
399
400 if (overflow_infinity && !supports_overflow_infinity (type))
401 {
402 set_value_range_to_varying (vr);
403 return;
404 }
405
406 zero = build_int_cst (type, 0);
407 set_value_range (vr, VR_RANGE, zero,
408 (overflow_infinity
409 ? positive_overflow_infinity (type)
410 : TYPE_MAX_VALUE (type)),
411 vr->equiv);
412 }
413
414 /* Set value range VR to a non-NULL range of type TYPE. */
415
416 static inline void
417 set_value_range_to_nonnull (value_range_t *vr, tree type)
418 {
419 tree zero = build_int_cst (type, 0);
420 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
421 }
422
423
424 /* Set value range VR to a NULL range of type TYPE. */
425
426 static inline void
427 set_value_range_to_null (value_range_t *vr, tree type)
428 {
429 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
430 }
431
432
433 /* Set value range VR to a range of a truthvalue of type TYPE. */
434
435 static inline void
436 set_value_range_to_truthvalue (value_range_t *vr, tree type)
437 {
438 if (TYPE_PRECISION (type) == 1)
439 set_value_range_to_varying (vr);
440 else
441 set_value_range (vr, VR_RANGE,
442 build_int_cst (type, 0), build_int_cst (type, 1),
443 vr->equiv);
444 }
445
446
447 /* Set value range VR to VR_UNDEFINED. */
448
449 static inline void
450 set_value_range_to_undefined (value_range_t *vr)
451 {
452 vr->type = VR_UNDEFINED;
453 vr->min = vr->max = NULL_TREE;
454 if (vr->equiv)
455 bitmap_clear (vr->equiv);
456 }
457
458
459 /* Return value range information for VAR.
460
461 If we have no values ranges recorded (ie, VRP is not running), then
462 return NULL. Otherwise create an empty range if none existed for VAR. */
463
464 static value_range_t *
465 get_value_range (const_tree var)
466 {
467 value_range_t *vr;
468 tree sym;
469 unsigned ver = SSA_NAME_VERSION (var);
470
471 /* If we have no recorded ranges, then return NULL. */
472 if (! vr_value)
473 return NULL;
474
475 vr = vr_value[ver];
476 if (vr)
477 return vr;
478
479 /* Create a default value range. */
480 vr_value[ver] = vr = XCNEW (value_range_t);
481
482 /* Defer allocating the equivalence set. */
483 vr->equiv = NULL;
484
485 /* If VAR is a default definition, the variable can take any value
486 in VAR's type. */
487 sym = SSA_NAME_VAR (var);
488 if (SSA_NAME_IS_DEFAULT_DEF (var))
489 {
490 /* Try to use the "nonnull" attribute to create ~[0, 0]
491 anti-ranges for pointers. Note that this is only valid with
492 default definitions of PARM_DECLs. */
493 if (TREE_CODE (sym) == PARM_DECL
494 && POINTER_TYPE_P (TREE_TYPE (sym))
495 && nonnull_arg_p (sym))
496 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
497 else
498 set_value_range_to_varying (vr);
499 }
500
501 return vr;
502 }
503
504 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
505
506 static inline bool
507 vrp_operand_equal_p (const_tree val1, const_tree val2)
508 {
509 if (val1 == val2)
510 return true;
511 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
512 return false;
513 if (is_overflow_infinity (val1))
514 return is_overflow_infinity (val2);
515 return true;
516 }
517
518 /* Return true, if the bitmaps B1 and B2 are equal. */
519
520 static inline bool
521 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
522 {
523 return (b1 == b2
524 || (b1 && b2
525 && bitmap_equal_p (b1, b2)));
526 }
527
528 /* Update the value range and equivalence set for variable VAR to
529 NEW_VR. Return true if NEW_VR is different from VAR's previous
530 value.
531
532 NOTE: This function assumes that NEW_VR is a temporary value range
533 object created for the sole purpose of updating VAR's range. The
534 storage used by the equivalence set from NEW_VR will be freed by
535 this function. Do not call update_value_range when NEW_VR
536 is the range object associated with another SSA name. */
537
538 static inline bool
539 update_value_range (const_tree var, value_range_t *new_vr)
540 {
541 value_range_t *old_vr;
542 bool is_new;
543
544 /* Update the value range, if necessary. */
545 old_vr = get_value_range (var);
546 is_new = old_vr->type != new_vr->type
547 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
548 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
549 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
550
551 if (is_new)
552 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
553 new_vr->equiv);
554
555 BITMAP_FREE (new_vr->equiv);
556
557 return is_new;
558 }
559
560
561 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
562 point where equivalence processing can be turned on/off. */
563
564 static void
565 add_equivalence (bitmap *equiv, const_tree var)
566 {
567 unsigned ver = SSA_NAME_VERSION (var);
568 value_range_t *vr = vr_value[ver];
569
570 if (*equiv == NULL)
571 *equiv = BITMAP_ALLOC (NULL);
572 bitmap_set_bit (*equiv, ver);
573 if (vr && vr->equiv)
574 bitmap_ior_into (*equiv, vr->equiv);
575 }
576
577
578 /* Return true if VR is ~[0, 0]. */
579
580 static inline bool
581 range_is_nonnull (value_range_t *vr)
582 {
583 return vr->type == VR_ANTI_RANGE
584 && integer_zerop (vr->min)
585 && integer_zerop (vr->max);
586 }
587
588
589 /* Return true if VR is [0, 0]. */
590
591 static inline bool
592 range_is_null (value_range_t *vr)
593 {
594 return vr->type == VR_RANGE
595 && integer_zerop (vr->min)
596 && integer_zerop (vr->max);
597 }
598
599
600 /* Return true if value range VR involves at least one symbol. */
601
602 static inline bool
603 symbolic_range_p (value_range_t *vr)
604 {
605 return (!is_gimple_min_invariant (vr->min)
606 || !is_gimple_min_invariant (vr->max));
607 }
608
609 /* Return true if value range VR uses an overflow infinity. */
610
611 static inline bool
612 overflow_infinity_range_p (value_range_t *vr)
613 {
614 return (vr->type == VR_RANGE
615 && (is_overflow_infinity (vr->min)
616 || is_overflow_infinity (vr->max)));
617 }
618
619 /* Return false if we can not make a valid comparison based on VR;
620 this will be the case if it uses an overflow infinity and overflow
621 is not undefined (i.e., -fno-strict-overflow is in effect).
622 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
623 uses an overflow infinity. */
624
625 static bool
626 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
627 {
628 gcc_assert (vr->type == VR_RANGE);
629 if (is_overflow_infinity (vr->min))
630 {
631 *strict_overflow_p = true;
632 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
633 return false;
634 }
635 if (is_overflow_infinity (vr->max))
636 {
637 *strict_overflow_p = true;
638 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
639 return false;
640 }
641 return true;
642 }
643
644
645 /* Like tree_expr_nonnegative_warnv_p, but this function uses value
646 ranges obtained so far. */
647
648 static bool
649 vrp_expr_computes_nonnegative (tree expr, bool *strict_overflow_p)
650 {
651 return tree_expr_nonnegative_warnv_p (expr, strict_overflow_p);
652 }
653
654 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
655 obtained so far. */
656
657 static bool
658 vrp_expr_computes_nonzero (tree expr, bool *strict_overflow_p)
659 {
660 if (tree_expr_nonzero_warnv_p (expr, strict_overflow_p))
661 return true;
662
663 /* If we have an expression of the form &X->a, then the expression
664 is nonnull if X is nonnull. */
665 if (TREE_CODE (expr) == ADDR_EXPR)
666 {
667 tree base = get_base_address (TREE_OPERAND (expr, 0));
668
669 if (base != NULL_TREE
670 && TREE_CODE (base) == INDIRECT_REF
671 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
672 {
673 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
674 if (range_is_nonnull (vr))
675 return true;
676 }
677 }
678
679 return false;
680 }
681
682 /* Returns true if EXPR is a valid value (as expected by compare_values) --
683 a gimple invariant, or SSA_NAME +- CST. */
684
685 static bool
686 valid_value_p (tree expr)
687 {
688 if (TREE_CODE (expr) == SSA_NAME)
689 return true;
690
691 if (TREE_CODE (expr) == PLUS_EXPR
692 || TREE_CODE (expr) == MINUS_EXPR)
693 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
694 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
695
696 return is_gimple_min_invariant (expr);
697 }
698
699 /* Return
700 1 if VAL < VAL2
701 0 if !(VAL < VAL2)
702 -2 if those are incomparable. */
703 static inline int
704 operand_less_p (tree val, tree val2)
705 {
706 /* LT is folded faster than GE and others. Inline the common case. */
707 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
708 {
709 if (TYPE_UNSIGNED (TREE_TYPE (val)))
710 return INT_CST_LT_UNSIGNED (val, val2);
711 else
712 {
713 if (INT_CST_LT (val, val2))
714 return 1;
715 }
716 }
717 else
718 {
719 tree tcmp;
720
721 fold_defer_overflow_warnings ();
722
723 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
724
725 fold_undefer_and_ignore_overflow_warnings ();
726
727 if (!tcmp)
728 return -2;
729
730 if (!integer_zerop (tcmp))
731 return 1;
732 }
733
734 /* val >= val2, not considering overflow infinity. */
735 if (is_negative_overflow_infinity (val))
736 return is_negative_overflow_infinity (val2) ? 0 : 1;
737 else if (is_positive_overflow_infinity (val2))
738 return is_positive_overflow_infinity (val) ? 0 : 1;
739
740 return 0;
741 }
742
743 /* Compare two values VAL1 and VAL2. Return
744
745 -2 if VAL1 and VAL2 cannot be compared at compile-time,
746 -1 if VAL1 < VAL2,
747 0 if VAL1 == VAL2,
748 +1 if VAL1 > VAL2, and
749 +2 if VAL1 != VAL2
750
751 This is similar to tree_int_cst_compare but supports pointer values
752 and values that cannot be compared at compile time.
753
754 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
755 true if the return value is only valid if we assume that signed
756 overflow is undefined. */
757
758 static int
759 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
760 {
761 if (val1 == val2)
762 return 0;
763
764 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
765 both integers. */
766 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
767 == POINTER_TYPE_P (TREE_TYPE (val2)));
768 /* Convert the two values into the same type. This is needed because
769 sizetype causes sign extension even for unsigned types. */
770 val2 = fold_convert (TREE_TYPE (val1), val2);
771 STRIP_USELESS_TYPE_CONVERSION (val2);
772
773 if ((TREE_CODE (val1) == SSA_NAME
774 || TREE_CODE (val1) == PLUS_EXPR
775 || TREE_CODE (val1) == MINUS_EXPR)
776 && (TREE_CODE (val2) == SSA_NAME
777 || TREE_CODE (val2) == PLUS_EXPR
778 || TREE_CODE (val2) == MINUS_EXPR))
779 {
780 tree n1, c1, n2, c2;
781 enum tree_code code1, code2;
782
783 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
784 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
785 same name, return -2. */
786 if (TREE_CODE (val1) == SSA_NAME)
787 {
788 code1 = SSA_NAME;
789 n1 = val1;
790 c1 = NULL_TREE;
791 }
792 else
793 {
794 code1 = TREE_CODE (val1);
795 n1 = TREE_OPERAND (val1, 0);
796 c1 = TREE_OPERAND (val1, 1);
797 if (tree_int_cst_sgn (c1) == -1)
798 {
799 if (is_negative_overflow_infinity (c1))
800 return -2;
801 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
802 if (!c1)
803 return -2;
804 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
805 }
806 }
807
808 if (TREE_CODE (val2) == SSA_NAME)
809 {
810 code2 = SSA_NAME;
811 n2 = val2;
812 c2 = NULL_TREE;
813 }
814 else
815 {
816 code2 = TREE_CODE (val2);
817 n2 = TREE_OPERAND (val2, 0);
818 c2 = TREE_OPERAND (val2, 1);
819 if (tree_int_cst_sgn (c2) == -1)
820 {
821 if (is_negative_overflow_infinity (c2))
822 return -2;
823 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
824 if (!c2)
825 return -2;
826 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
827 }
828 }
829
830 /* Both values must use the same name. */
831 if (n1 != n2)
832 return -2;
833
834 if (code1 == SSA_NAME
835 && code2 == SSA_NAME)
836 /* NAME == NAME */
837 return 0;
838
839 /* If overflow is defined we cannot simplify more. */
840 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
841 return -2;
842
843 if (strict_overflow_p != NULL
844 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
845 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
846 *strict_overflow_p = true;
847
848 if (code1 == SSA_NAME)
849 {
850 if (code2 == PLUS_EXPR)
851 /* NAME < NAME + CST */
852 return -1;
853 else if (code2 == MINUS_EXPR)
854 /* NAME > NAME - CST */
855 return 1;
856 }
857 else if (code1 == PLUS_EXPR)
858 {
859 if (code2 == SSA_NAME)
860 /* NAME + CST > NAME */
861 return 1;
862 else if (code2 == PLUS_EXPR)
863 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
864 return compare_values_warnv (c1, c2, strict_overflow_p);
865 else if (code2 == MINUS_EXPR)
866 /* NAME + CST1 > NAME - CST2 */
867 return 1;
868 }
869 else if (code1 == MINUS_EXPR)
870 {
871 if (code2 == SSA_NAME)
872 /* NAME - CST < NAME */
873 return -1;
874 else if (code2 == PLUS_EXPR)
875 /* NAME - CST1 < NAME + CST2 */
876 return -1;
877 else if (code2 == MINUS_EXPR)
878 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
879 C1 and C2 are swapped in the call to compare_values. */
880 return compare_values_warnv (c2, c1, strict_overflow_p);
881 }
882
883 gcc_unreachable ();
884 }
885
886 /* We cannot compare non-constants. */
887 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
888 return -2;
889
890 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
891 {
892 /* We cannot compare overflowed values, except for overflow
893 infinities. */
894 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
895 {
896 if (strict_overflow_p != NULL)
897 *strict_overflow_p = true;
898 if (is_negative_overflow_infinity (val1))
899 return is_negative_overflow_infinity (val2) ? 0 : -1;
900 else if (is_negative_overflow_infinity (val2))
901 return 1;
902 else if (is_positive_overflow_infinity (val1))
903 return is_positive_overflow_infinity (val2) ? 0 : 1;
904 else if (is_positive_overflow_infinity (val2))
905 return -1;
906 return -2;
907 }
908
909 return tree_int_cst_compare (val1, val2);
910 }
911 else
912 {
913 tree t;
914
915 /* First see if VAL1 and VAL2 are not the same. */
916 if (val1 == val2 || operand_equal_p (val1, val2, 0))
917 return 0;
918
919 /* If VAL1 is a lower address than VAL2, return -1. */
920 if (operand_less_p (val1, val2) == 1)
921 return -1;
922
923 /* If VAL1 is a higher address than VAL2, return +1. */
924 if (operand_less_p (val2, val1) == 1)
925 return 1;
926
927 /* If VAL1 is different than VAL2, return +2.
928 For integer constants we either have already returned -1 or 1
929 or they are equivalent. We still might succeed in proving
930 something about non-trivial operands. */
931 if (TREE_CODE (val1) != INTEGER_CST
932 || TREE_CODE (val2) != INTEGER_CST)
933 {
934 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
935 if (t && tree_expr_nonzero_p (t))
936 return 2;
937 }
938
939 return -2;
940 }
941 }
942
943 /* Compare values like compare_values_warnv, but treat comparisons of
944 nonconstants which rely on undefined overflow as incomparable. */
945
946 static int
947 compare_values (tree val1, tree val2)
948 {
949 bool sop;
950 int ret;
951
952 sop = false;
953 ret = compare_values_warnv (val1, val2, &sop);
954 if (sop
955 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
956 ret = -2;
957 return ret;
958 }
959
960
961 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
962 0 if VAL is not inside VR,
963 -2 if we cannot tell either way.
964
965 FIXME, the current semantics of this functions are a bit quirky
966 when taken in the context of VRP. In here we do not care
967 about VR's type. If VR is the anti-range ~[3, 5] the call
968 value_inside_range (4, VR) will return 1.
969
970 This is counter-intuitive in a strict sense, but the callers
971 currently expect this. They are calling the function
972 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
973 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
974 themselves.
975
976 This also applies to value_ranges_intersect_p and
977 range_includes_zero_p. The semantics of VR_RANGE and
978 VR_ANTI_RANGE should be encoded here, but that also means
979 adapting the users of these functions to the new semantics.
980
981 Benchmark compile/20001226-1.c compilation time after changing this
982 function. */
983
984 static inline int
985 value_inside_range (tree val, value_range_t * vr)
986 {
987 int cmp1, cmp2;
988
989 cmp1 = operand_less_p (val, vr->min);
990 if (cmp1 == -2)
991 return -2;
992 if (cmp1 == 1)
993 return 0;
994
995 cmp2 = operand_less_p (vr->max, val);
996 if (cmp2 == -2)
997 return -2;
998
999 return !cmp2;
1000 }
1001
1002
1003 /* Return true if value ranges VR0 and VR1 have a non-empty
1004 intersection.
1005
1006 Benchmark compile/20001226-1.c compilation time after changing this
1007 function.
1008 */
1009
1010 static inline bool
1011 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1012 {
1013 /* The value ranges do not intersect if the maximum of the first range is
1014 less than the minimum of the second range or vice versa.
1015 When those relations are unknown, we can't do any better. */
1016 if (operand_less_p (vr0->max, vr1->min) != 0)
1017 return false;
1018 if (operand_less_p (vr1->max, vr0->min) != 0)
1019 return false;
1020 return true;
1021 }
1022
1023
1024 /* Return true if VR includes the value zero, false otherwise. FIXME,
1025 currently this will return false for an anti-range like ~[-4, 3].
1026 This will be wrong when the semantics of value_inside_range are
1027 modified (currently the users of this function expect these
1028 semantics). */
1029
1030 static inline bool
1031 range_includes_zero_p (value_range_t *vr)
1032 {
1033 tree zero;
1034
1035 gcc_assert (vr->type != VR_UNDEFINED
1036 && vr->type != VR_VARYING
1037 && !symbolic_range_p (vr));
1038
1039 zero = build_int_cst (TREE_TYPE (vr->min), 0);
1040 return (value_inside_range (zero, vr) == 1);
1041 }
1042
1043 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1044 false otherwise or if no value range information is available. */
1045
1046 bool
1047 ssa_name_nonnegative_p (const_tree t)
1048 {
1049 value_range_t *vr = get_value_range (t);
1050
1051 if (!vr)
1052 return false;
1053
1054 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1055 which would return a useful value should be encoded as a VR_RANGE. */
1056 if (vr->type == VR_RANGE)
1057 {
1058 int result = compare_values (vr->min, integer_zero_node);
1059
1060 return (result == 0 || result == 1);
1061 }
1062 return false;
1063 }
1064
1065 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
1066 false otherwise or if no value range information is available. */
1067
1068 bool
1069 ssa_name_nonzero_p (const_tree t)
1070 {
1071 value_range_t *vr = get_value_range (t);
1072
1073 if (!vr)
1074 return false;
1075
1076 /* A VR_RANGE which does not include zero is a nonzero value. */
1077 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
1078 return ! range_includes_zero_p (vr);
1079
1080 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
1081 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
1082 return range_includes_zero_p (vr);
1083
1084 return false;
1085 }
1086
1087
1088 /* Extract value range information from an ASSERT_EXPR EXPR and store
1089 it in *VR_P. */
1090
1091 static void
1092 extract_range_from_assert (value_range_t *vr_p, tree expr)
1093 {
1094 tree var, cond, limit, min, max, type;
1095 value_range_t *var_vr, *limit_vr;
1096 enum tree_code cond_code;
1097
1098 var = ASSERT_EXPR_VAR (expr);
1099 cond = ASSERT_EXPR_COND (expr);
1100
1101 gcc_assert (COMPARISON_CLASS_P (cond));
1102
1103 /* Find VAR in the ASSERT_EXPR conditional. */
1104 if (var == TREE_OPERAND (cond, 0))
1105 {
1106 /* If the predicate is of the form VAR COMP LIMIT, then we just
1107 take LIMIT from the RHS and use the same comparison code. */
1108 limit = TREE_OPERAND (cond, 1);
1109 cond_code = TREE_CODE (cond);
1110 }
1111 else
1112 {
1113 /* If the predicate is of the form LIMIT COMP VAR, then we need
1114 to flip around the comparison code to create the proper range
1115 for VAR. */
1116 limit = TREE_OPERAND (cond, 0);
1117 cond_code = swap_tree_comparison (TREE_CODE (cond));
1118 }
1119
1120 limit = avoid_overflow_infinity (limit);
1121
1122 type = TREE_TYPE (limit);
1123 gcc_assert (limit != var);
1124
1125 /* For pointer arithmetic, we only keep track of pointer equality
1126 and inequality. */
1127 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1128 {
1129 set_value_range_to_varying (vr_p);
1130 return;
1131 }
1132
1133 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1134 try to use LIMIT's range to avoid creating symbolic ranges
1135 unnecessarily. */
1136 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1137
1138 /* LIMIT's range is only interesting if it has any useful information. */
1139 if (limit_vr
1140 && (limit_vr->type == VR_UNDEFINED
1141 || limit_vr->type == VR_VARYING
1142 || symbolic_range_p (limit_vr)))
1143 limit_vr = NULL;
1144
1145 /* Initially, the new range has the same set of equivalences of
1146 VAR's range. This will be revised before returning the final
1147 value. Since assertions may be chained via mutually exclusive
1148 predicates, we will need to trim the set of equivalences before
1149 we are done. */
1150 gcc_assert (vr_p->equiv == NULL);
1151 add_equivalence (&vr_p->equiv, var);
1152
1153 /* Extract a new range based on the asserted comparison for VAR and
1154 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1155 will only use it for equality comparisons (EQ_EXPR). For any
1156 other kind of assertion, we cannot derive a range from LIMIT's
1157 anti-range that can be used to describe the new range. For
1158 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1159 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1160 no single range for x_2 that could describe LE_EXPR, so we might
1161 as well build the range [b_4, +INF] for it. */
1162 if (cond_code == EQ_EXPR)
1163 {
1164 enum value_range_type range_type;
1165
1166 if (limit_vr)
1167 {
1168 range_type = limit_vr->type;
1169 min = limit_vr->min;
1170 max = limit_vr->max;
1171 }
1172 else
1173 {
1174 range_type = VR_RANGE;
1175 min = limit;
1176 max = limit;
1177 }
1178
1179 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1180
1181 /* When asserting the equality VAR == LIMIT and LIMIT is another
1182 SSA name, the new range will also inherit the equivalence set
1183 from LIMIT. */
1184 if (TREE_CODE (limit) == SSA_NAME)
1185 add_equivalence (&vr_p->equiv, limit);
1186 }
1187 else if (cond_code == NE_EXPR)
1188 {
1189 /* As described above, when LIMIT's range is an anti-range and
1190 this assertion is an inequality (NE_EXPR), then we cannot
1191 derive anything from the anti-range. For instance, if
1192 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1193 not imply that VAR's range is [0, 0]. So, in the case of
1194 anti-ranges, we just assert the inequality using LIMIT and
1195 not its anti-range.
1196
1197 If LIMIT_VR is a range, we can only use it to build a new
1198 anti-range if LIMIT_VR is a single-valued range. For
1199 instance, if LIMIT_VR is [0, 1], the predicate
1200 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1201 Rather, it means that for value 0 VAR should be ~[0, 0]
1202 and for value 1, VAR should be ~[1, 1]. We cannot
1203 represent these ranges.
1204
1205 The only situation in which we can build a valid
1206 anti-range is when LIMIT_VR is a single-valued range
1207 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1208 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1209 if (limit_vr
1210 && limit_vr->type == VR_RANGE
1211 && compare_values (limit_vr->min, limit_vr->max) == 0)
1212 {
1213 min = limit_vr->min;
1214 max = limit_vr->max;
1215 }
1216 else
1217 {
1218 /* In any other case, we cannot use LIMIT's range to build a
1219 valid anti-range. */
1220 min = max = limit;
1221 }
1222
1223 /* If MIN and MAX cover the whole range for their type, then
1224 just use the original LIMIT. */
1225 if (INTEGRAL_TYPE_P (type)
1226 && vrp_val_is_min (min)
1227 && vrp_val_is_max (max))
1228 min = max = limit;
1229
1230 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
1231 }
1232 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1233 {
1234 min = TYPE_MIN_VALUE (type);
1235
1236 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1237 max = limit;
1238 else
1239 {
1240 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1241 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1242 LT_EXPR. */
1243 max = limit_vr->max;
1244 }
1245
1246 /* If the maximum value forces us to be out of bounds, simply punt.
1247 It would be pointless to try and do anything more since this
1248 all should be optimized away above us. */
1249 if ((cond_code == LT_EXPR
1250 && compare_values (max, min) == 0)
1251 || is_overflow_infinity (max))
1252 set_value_range_to_varying (vr_p);
1253 else
1254 {
1255 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1256 if (cond_code == LT_EXPR)
1257 {
1258 tree one = build_int_cst (type, 1);
1259 max = fold_build2 (MINUS_EXPR, type, max, one);
1260 if (EXPR_P (max))
1261 TREE_NO_WARNING (max) = 1;
1262 }
1263
1264 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1265 }
1266 }
1267 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1268 {
1269 max = TYPE_MAX_VALUE (type);
1270
1271 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1272 min = limit;
1273 else
1274 {
1275 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1276 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1277 GT_EXPR. */
1278 min = limit_vr->min;
1279 }
1280
1281 /* If the minimum value forces us to be out of bounds, simply punt.
1282 It would be pointless to try and do anything more since this
1283 all should be optimized away above us. */
1284 if ((cond_code == GT_EXPR
1285 && compare_values (min, max) == 0)
1286 || is_overflow_infinity (min))
1287 set_value_range_to_varying (vr_p);
1288 else
1289 {
1290 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1291 if (cond_code == GT_EXPR)
1292 {
1293 tree one = build_int_cst (type, 1);
1294 min = fold_build2 (PLUS_EXPR, type, min, one);
1295 if (EXPR_P (min))
1296 TREE_NO_WARNING (min) = 1;
1297 }
1298
1299 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1300 }
1301 }
1302 else
1303 gcc_unreachable ();
1304
1305 /* If VAR already had a known range, it may happen that the new
1306 range we have computed and VAR's range are not compatible. For
1307 instance,
1308
1309 if (p_5 == NULL)
1310 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1311 x_7 = p_6->fld;
1312 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1313
1314 While the above comes from a faulty program, it will cause an ICE
1315 later because p_8 and p_6 will have incompatible ranges and at
1316 the same time will be considered equivalent. A similar situation
1317 would arise from
1318
1319 if (i_5 > 10)
1320 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1321 if (i_5 < 5)
1322 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1323
1324 Again i_6 and i_7 will have incompatible ranges. It would be
1325 pointless to try and do anything with i_7's range because
1326 anything dominated by 'if (i_5 < 5)' will be optimized away.
1327 Note, due to the wa in which simulation proceeds, the statement
1328 i_7 = ASSERT_EXPR <...> we would never be visited because the
1329 conditional 'if (i_5 < 5)' always evaluates to false. However,
1330 this extra check does not hurt and may protect against future
1331 changes to VRP that may get into a situation similar to the
1332 NULL pointer dereference example.
1333
1334 Note that these compatibility tests are only needed when dealing
1335 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1336 are both anti-ranges, they will always be compatible, because two
1337 anti-ranges will always have a non-empty intersection. */
1338
1339 var_vr = get_value_range (var);
1340
1341 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1342 ranges or anti-ranges. */
1343 if (vr_p->type == VR_VARYING
1344 || vr_p->type == VR_UNDEFINED
1345 || var_vr->type == VR_VARYING
1346 || var_vr->type == VR_UNDEFINED
1347 || symbolic_range_p (vr_p)
1348 || symbolic_range_p (var_vr))
1349 return;
1350
1351 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1352 {
1353 /* If the two ranges have a non-empty intersection, we can
1354 refine the resulting range. Since the assert expression
1355 creates an equivalency and at the same time it asserts a
1356 predicate, we can take the intersection of the two ranges to
1357 get better precision. */
1358 if (value_ranges_intersect_p (var_vr, vr_p))
1359 {
1360 /* Use the larger of the two minimums. */
1361 if (compare_values (vr_p->min, var_vr->min) == -1)
1362 min = var_vr->min;
1363 else
1364 min = vr_p->min;
1365
1366 /* Use the smaller of the two maximums. */
1367 if (compare_values (vr_p->max, var_vr->max) == 1)
1368 max = var_vr->max;
1369 else
1370 max = vr_p->max;
1371
1372 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1373 }
1374 else
1375 {
1376 /* The two ranges do not intersect, set the new range to
1377 VARYING, because we will not be able to do anything
1378 meaningful with it. */
1379 set_value_range_to_varying (vr_p);
1380 }
1381 }
1382 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1383 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1384 {
1385 /* A range and an anti-range will cancel each other only if
1386 their ends are the same. For instance, in the example above,
1387 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1388 so VR_P should be set to VR_VARYING. */
1389 if (compare_values (var_vr->min, vr_p->min) == 0
1390 && compare_values (var_vr->max, vr_p->max) == 0)
1391 set_value_range_to_varying (vr_p);
1392 else
1393 {
1394 tree min, max, anti_min, anti_max, real_min, real_max;
1395 int cmp;
1396
1397 /* We want to compute the logical AND of the two ranges;
1398 there are three cases to consider.
1399
1400
1401 1. The VR_ANTI_RANGE range is completely within the
1402 VR_RANGE and the endpoints of the ranges are
1403 different. In that case the resulting range
1404 should be whichever range is more precise.
1405 Typically that will be the VR_RANGE.
1406
1407 2. The VR_ANTI_RANGE is completely disjoint from
1408 the VR_RANGE. In this case the resulting range
1409 should be the VR_RANGE.
1410
1411 3. There is some overlap between the VR_ANTI_RANGE
1412 and the VR_RANGE.
1413
1414 3a. If the high limit of the VR_ANTI_RANGE resides
1415 within the VR_RANGE, then the result is a new
1416 VR_RANGE starting at the high limit of the
1417 the VR_ANTI_RANGE + 1 and extending to the
1418 high limit of the original VR_RANGE.
1419
1420 3b. If the low limit of the VR_ANTI_RANGE resides
1421 within the VR_RANGE, then the result is a new
1422 VR_RANGE starting at the low limit of the original
1423 VR_RANGE and extending to the low limit of the
1424 VR_ANTI_RANGE - 1. */
1425 if (vr_p->type == VR_ANTI_RANGE)
1426 {
1427 anti_min = vr_p->min;
1428 anti_max = vr_p->max;
1429 real_min = var_vr->min;
1430 real_max = var_vr->max;
1431 }
1432 else
1433 {
1434 anti_min = var_vr->min;
1435 anti_max = var_vr->max;
1436 real_min = vr_p->min;
1437 real_max = vr_p->max;
1438 }
1439
1440
1441 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1442 not including any endpoints. */
1443 if (compare_values (anti_max, real_max) == -1
1444 && compare_values (anti_min, real_min) == 1)
1445 {
1446 set_value_range (vr_p, VR_RANGE, real_min,
1447 real_max, vr_p->equiv);
1448 }
1449 /* Case 2, VR_ANTI_RANGE completely disjoint from
1450 VR_RANGE. */
1451 else if (compare_values (anti_min, real_max) == 1
1452 || compare_values (anti_max, real_min) == -1)
1453 {
1454 set_value_range (vr_p, VR_RANGE, real_min,
1455 real_max, vr_p->equiv);
1456 }
1457 /* Case 3a, the anti-range extends into the low
1458 part of the real range. Thus creating a new
1459 low for the real range. */
1460 else if (((cmp = compare_values (anti_max, real_min)) == 1
1461 || cmp == 0)
1462 && compare_values (anti_max, real_max) == -1)
1463 {
1464 gcc_assert (!is_positive_overflow_infinity (anti_max));
1465 if (needs_overflow_infinity (TREE_TYPE (anti_max))
1466 && vrp_val_is_max (anti_max))
1467 {
1468 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1469 {
1470 set_value_range_to_varying (vr_p);
1471 return;
1472 }
1473 min = positive_overflow_infinity (TREE_TYPE (var_vr->min));
1474 }
1475 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1476 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1477 anti_max,
1478 build_int_cst (TREE_TYPE (var_vr->min), 1));
1479 else
1480 min = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1481 anti_max, size_int (1));
1482 max = real_max;
1483 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1484 }
1485 /* Case 3b, the anti-range extends into the high
1486 part of the real range. Thus creating a new
1487 higher for the real range. */
1488 else if (compare_values (anti_min, real_min) == 1
1489 && ((cmp = compare_values (anti_min, real_max)) == -1
1490 || cmp == 0))
1491 {
1492 gcc_assert (!is_negative_overflow_infinity (anti_min));
1493 if (needs_overflow_infinity (TREE_TYPE (anti_min))
1494 && vrp_val_is_min (anti_min))
1495 {
1496 if (!supports_overflow_infinity (TREE_TYPE (var_vr->min)))
1497 {
1498 set_value_range_to_varying (vr_p);
1499 return;
1500 }
1501 max = negative_overflow_infinity (TREE_TYPE (var_vr->min));
1502 }
1503 else if (!POINTER_TYPE_P (TREE_TYPE (var_vr->min)))
1504 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1505 anti_min,
1506 build_int_cst (TREE_TYPE (var_vr->min), 1));
1507 else
1508 max = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (var_vr->min),
1509 anti_min,
1510 size_int (-1));
1511 min = real_min;
1512 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1513 }
1514 }
1515 }
1516 }
1517
1518
1519 /* Extract range information from SSA name VAR and store it in VR. If
1520 VAR has an interesting range, use it. Otherwise, create the
1521 range [VAR, VAR] and return it. This is useful in situations where
1522 we may have conditionals testing values of VARYING names. For
1523 instance,
1524
1525 x_3 = y_5;
1526 if (x_3 > y_5)
1527 ...
1528
1529 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1530 always false. */
1531
1532 static void
1533 extract_range_from_ssa_name (value_range_t *vr, tree var)
1534 {
1535 value_range_t *var_vr = get_value_range (var);
1536
1537 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1538 copy_value_range (vr, var_vr);
1539 else
1540 set_value_range (vr, VR_RANGE, var, var, NULL);
1541
1542 add_equivalence (&vr->equiv, var);
1543 }
1544
1545
1546 /* Wrapper around int_const_binop. If the operation overflows and we
1547 are not using wrapping arithmetic, then adjust the result to be
1548 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1549 NULL_TREE if we need to use an overflow infinity representation but
1550 the type does not support it. */
1551
1552 static tree
1553 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1554 {
1555 tree res;
1556
1557 res = int_const_binop (code, val1, val2, 0);
1558
1559 /* If we are not using wrapping arithmetic, operate symbolically
1560 on -INF and +INF. */
1561 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1562 {
1563 int checkz = compare_values (res, val1);
1564 bool overflow = false;
1565
1566 /* Ensure that res = val1 [+*] val2 >= val1
1567 or that res = val1 - val2 <= val1. */
1568 if ((code == PLUS_EXPR
1569 && !(checkz == 1 || checkz == 0))
1570 || (code == MINUS_EXPR
1571 && !(checkz == 0 || checkz == -1)))
1572 {
1573 overflow = true;
1574 }
1575 /* Checking for multiplication overflow is done by dividing the
1576 output of the multiplication by the first input of the
1577 multiplication. If the result of that division operation is
1578 not equal to the second input of the multiplication, then the
1579 multiplication overflowed. */
1580 else if (code == MULT_EXPR && !integer_zerop (val1))
1581 {
1582 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1583 res,
1584 val1, 0);
1585 int check = compare_values (tmp, val2);
1586
1587 if (check != 0)
1588 overflow = true;
1589 }
1590
1591 if (overflow)
1592 {
1593 res = copy_node (res);
1594 TREE_OVERFLOW (res) = 1;
1595 }
1596
1597 }
1598 else if ((TREE_OVERFLOW (res)
1599 && !TREE_OVERFLOW (val1)
1600 && !TREE_OVERFLOW (val2))
1601 || is_overflow_infinity (val1)
1602 || is_overflow_infinity (val2))
1603 {
1604 /* If the operation overflowed but neither VAL1 nor VAL2 are
1605 overflown, return -INF or +INF depending on the operation
1606 and the combination of signs of the operands. */
1607 int sgn1 = tree_int_cst_sgn (val1);
1608 int sgn2 = tree_int_cst_sgn (val2);
1609
1610 if (needs_overflow_infinity (TREE_TYPE (res))
1611 && !supports_overflow_infinity (TREE_TYPE (res)))
1612 return NULL_TREE;
1613
1614 /* We have to punt on adding infinities of different signs,
1615 since we can't tell what the sign of the result should be.
1616 Likewise for subtracting infinities of the same sign. */
1617 if (((code == PLUS_EXPR && sgn1 != sgn2)
1618 || (code == MINUS_EXPR && sgn1 == sgn2))
1619 && is_overflow_infinity (val1)
1620 && is_overflow_infinity (val2))
1621 return NULL_TREE;
1622
1623 /* Don't try to handle division or shifting of infinities. */
1624 if ((code == TRUNC_DIV_EXPR
1625 || code == FLOOR_DIV_EXPR
1626 || code == CEIL_DIV_EXPR
1627 || code == EXACT_DIV_EXPR
1628 || code == ROUND_DIV_EXPR
1629 || code == RSHIFT_EXPR)
1630 && (is_overflow_infinity (val1)
1631 || is_overflow_infinity (val2)))
1632 return NULL_TREE;
1633
1634 /* Notice that we only need to handle the restricted set of
1635 operations handled by extract_range_from_binary_expr.
1636 Among them, only multiplication, addition and subtraction
1637 can yield overflow without overflown operands because we
1638 are working with integral types only... except in the
1639 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1640 for division too. */
1641
1642 /* For multiplication, the sign of the overflow is given
1643 by the comparison of the signs of the operands. */
1644 if ((code == MULT_EXPR && sgn1 == sgn2)
1645 /* For addition, the operands must be of the same sign
1646 to yield an overflow. Its sign is therefore that
1647 of one of the operands, for example the first. For
1648 infinite operands X + -INF is negative, not positive. */
1649 || (code == PLUS_EXPR
1650 && (sgn1 >= 0
1651 ? !is_negative_overflow_infinity (val2)
1652 : is_positive_overflow_infinity (val2)))
1653 /* For subtraction, non-infinite operands must be of
1654 different signs to yield an overflow. Its sign is
1655 therefore that of the first operand or the opposite of
1656 that of the second operand. A first operand of 0 counts
1657 as positive here, for the corner case 0 - (-INF), which
1658 overflows, but must yield +INF. For infinite operands 0
1659 - INF is negative, not positive. */
1660 || (code == MINUS_EXPR
1661 && (sgn1 >= 0
1662 ? !is_positive_overflow_infinity (val2)
1663 : is_negative_overflow_infinity (val2)))
1664 /* We only get in here with positive shift count, so the
1665 overflow direction is the same as the sign of val1.
1666 Actually rshift does not overflow at all, but we only
1667 handle the case of shifting overflowed -INF and +INF. */
1668 || (code == RSHIFT_EXPR
1669 && sgn1 >= 0)
1670 /* For division, the only case is -INF / -1 = +INF. */
1671 || code == TRUNC_DIV_EXPR
1672 || code == FLOOR_DIV_EXPR
1673 || code == CEIL_DIV_EXPR
1674 || code == EXACT_DIV_EXPR
1675 || code == ROUND_DIV_EXPR)
1676 return (needs_overflow_infinity (TREE_TYPE (res))
1677 ? positive_overflow_infinity (TREE_TYPE (res))
1678 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1679 else
1680 return (needs_overflow_infinity (TREE_TYPE (res))
1681 ? negative_overflow_infinity (TREE_TYPE (res))
1682 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1683 }
1684
1685 return res;
1686 }
1687
1688
1689 /* Extract range information from a binary expression EXPR based on
1690 the ranges of each of its operands and the expression code. */
1691
1692 static void
1693 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1694 {
1695 enum tree_code code = TREE_CODE (expr);
1696 enum value_range_type type;
1697 tree op0, op1, min, max;
1698 int cmp;
1699 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1700 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1701
1702 /* Not all binary expressions can be applied to ranges in a
1703 meaningful way. Handle only arithmetic operations. */
1704 if (code != PLUS_EXPR
1705 && code != MINUS_EXPR
1706 && code != POINTER_PLUS_EXPR
1707 && code != MULT_EXPR
1708 && code != TRUNC_DIV_EXPR
1709 && code != FLOOR_DIV_EXPR
1710 && code != CEIL_DIV_EXPR
1711 && code != EXACT_DIV_EXPR
1712 && code != ROUND_DIV_EXPR
1713 && code != RSHIFT_EXPR
1714 && code != MIN_EXPR
1715 && code != MAX_EXPR
1716 && code != BIT_AND_EXPR
1717 && code != TRUTH_ANDIF_EXPR
1718 && code != TRUTH_ORIF_EXPR
1719 && code != TRUTH_AND_EXPR
1720 && code != TRUTH_OR_EXPR)
1721 {
1722 set_value_range_to_varying (vr);
1723 return;
1724 }
1725
1726 /* Get value ranges for each operand. For constant operands, create
1727 a new value range with the operand to simplify processing. */
1728 op0 = TREE_OPERAND (expr, 0);
1729 if (TREE_CODE (op0) == SSA_NAME)
1730 vr0 = *(get_value_range (op0));
1731 else if (is_gimple_min_invariant (op0))
1732 set_value_range_to_value (&vr0, op0, NULL);
1733 else
1734 set_value_range_to_varying (&vr0);
1735
1736 op1 = TREE_OPERAND (expr, 1);
1737 if (TREE_CODE (op1) == SSA_NAME)
1738 vr1 = *(get_value_range (op1));
1739 else if (is_gimple_min_invariant (op1))
1740 set_value_range_to_value (&vr1, op1, NULL);
1741 else
1742 set_value_range_to_varying (&vr1);
1743
1744 /* If either range is UNDEFINED, so is the result. */
1745 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1746 {
1747 set_value_range_to_undefined (vr);
1748 return;
1749 }
1750
1751 /* The type of the resulting value range defaults to VR0.TYPE. */
1752 type = vr0.type;
1753
1754 /* Refuse to operate on VARYING ranges, ranges of different kinds
1755 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1756 because we may be able to derive a useful range even if one of
1757 the operands is VR_VARYING or symbolic range. TODO, we may be
1758 able to derive anti-ranges in some cases. */
1759 if (code != BIT_AND_EXPR
1760 && code != TRUTH_AND_EXPR
1761 && code != TRUTH_OR_EXPR
1762 && (vr0.type == VR_VARYING
1763 || vr1.type == VR_VARYING
1764 || vr0.type != vr1.type
1765 || symbolic_range_p (&vr0)
1766 || symbolic_range_p (&vr1)))
1767 {
1768 set_value_range_to_varying (vr);
1769 return;
1770 }
1771
1772 /* Now evaluate the expression to determine the new range. */
1773 if (POINTER_TYPE_P (TREE_TYPE (expr))
1774 || POINTER_TYPE_P (TREE_TYPE (op0))
1775 || POINTER_TYPE_P (TREE_TYPE (op1)))
1776 {
1777 if (code == MIN_EXPR || code == MAX_EXPR)
1778 {
1779 /* For MIN/MAX expressions with pointers, we only care about
1780 nullness, if both are non null, then the result is nonnull.
1781 If both are null, then the result is null. Otherwise they
1782 are varying. */
1783 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
1784 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1785 else if (range_is_null (&vr0) && range_is_null (&vr1))
1786 set_value_range_to_null (vr, TREE_TYPE (expr));
1787 else
1788 set_value_range_to_varying (vr);
1789
1790 return;
1791 }
1792 gcc_assert (code == POINTER_PLUS_EXPR);
1793 /* For pointer types, we are really only interested in asserting
1794 whether the expression evaluates to non-NULL. */
1795 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1796 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1797 else if (range_is_null (&vr0) && range_is_null (&vr1))
1798 set_value_range_to_null (vr, TREE_TYPE (expr));
1799 else
1800 set_value_range_to_varying (vr);
1801
1802 return;
1803 }
1804
1805 /* For integer ranges, apply the operation to each end of the
1806 range and see what we end up with. */
1807 if (code == TRUTH_ANDIF_EXPR
1808 || code == TRUTH_ORIF_EXPR
1809 || code == TRUTH_AND_EXPR
1810 || code == TRUTH_OR_EXPR)
1811 {
1812 /* If one of the operands is zero, we know that the whole
1813 expression evaluates zero. */
1814 if (code == TRUTH_AND_EXPR
1815 && ((vr0.type == VR_RANGE
1816 && integer_zerop (vr0.min)
1817 && integer_zerop (vr0.max))
1818 || (vr1.type == VR_RANGE
1819 && integer_zerop (vr1.min)
1820 && integer_zerop (vr1.max))))
1821 {
1822 type = VR_RANGE;
1823 min = max = build_int_cst (TREE_TYPE (expr), 0);
1824 }
1825 /* If one of the operands is one, we know that the whole
1826 expression evaluates one. */
1827 else if (code == TRUTH_OR_EXPR
1828 && ((vr0.type == VR_RANGE
1829 && integer_onep (vr0.min)
1830 && integer_onep (vr0.max))
1831 || (vr1.type == VR_RANGE
1832 && integer_onep (vr1.min)
1833 && integer_onep (vr1.max))))
1834 {
1835 type = VR_RANGE;
1836 min = max = build_int_cst (TREE_TYPE (expr), 1);
1837 }
1838 else if (vr0.type != VR_VARYING
1839 && vr1.type != VR_VARYING
1840 && vr0.type == vr1.type
1841 && !symbolic_range_p (&vr0)
1842 && !overflow_infinity_range_p (&vr0)
1843 && !symbolic_range_p (&vr1)
1844 && !overflow_infinity_range_p (&vr1))
1845 {
1846 /* Boolean expressions cannot be folded with int_const_binop. */
1847 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1848 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1849 }
1850 else
1851 {
1852 /* The result of a TRUTH_*_EXPR is always true or false. */
1853 set_value_range_to_truthvalue (vr, TREE_TYPE (expr));
1854 return;
1855 }
1856 }
1857 else if (code == PLUS_EXPR
1858 || code == MIN_EXPR
1859 || code == MAX_EXPR)
1860 {
1861 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1862 VR_VARYING. It would take more effort to compute a precise
1863 range for such a case. For example, if we have op0 == 1 and
1864 op1 == -1 with their ranges both being ~[0,0], we would have
1865 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1866 Note that we are guaranteed to have vr0.type == vr1.type at
1867 this point. */
1868 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1869 {
1870 set_value_range_to_varying (vr);
1871 return;
1872 }
1873
1874 /* For operations that make the resulting range directly
1875 proportional to the original ranges, apply the operation to
1876 the same end of each range. */
1877 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1878 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1879 }
1880 else if (code == MULT_EXPR
1881 || code == TRUNC_DIV_EXPR
1882 || code == FLOOR_DIV_EXPR
1883 || code == CEIL_DIV_EXPR
1884 || code == EXACT_DIV_EXPR
1885 || code == ROUND_DIV_EXPR
1886 || code == RSHIFT_EXPR)
1887 {
1888 tree val[4];
1889 size_t i;
1890 bool sop;
1891
1892 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1893 drop to VR_VARYING. It would take more effort to compute a
1894 precise range for such a case. For example, if we have
1895 op0 == 65536 and op1 == 65536 with their ranges both being
1896 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1897 we cannot claim that the product is in ~[0,0]. Note that we
1898 are guaranteed to have vr0.type == vr1.type at this
1899 point. */
1900 if (code == MULT_EXPR
1901 && vr0.type == VR_ANTI_RANGE
1902 && !TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0)))
1903 {
1904 set_value_range_to_varying (vr);
1905 return;
1906 }
1907
1908 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
1909 then drop to VR_VARYING. Outside of this range we get undefined
1910 behavior from the shift operation. We cannot even trust
1911 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
1912 shifts, and the operation at the tree level may be widened. */
1913 if (code == RSHIFT_EXPR)
1914 {
1915 if (vr1.type == VR_ANTI_RANGE
1916 || !vrp_expr_computes_nonnegative (op1, &sop)
1917 || (operand_less_p
1918 (build_int_cst (TREE_TYPE (vr1.max),
1919 TYPE_PRECISION (TREE_TYPE (expr)) - 1),
1920 vr1.max) != 0))
1921 {
1922 set_value_range_to_varying (vr);
1923 return;
1924 }
1925 }
1926
1927 /* Multiplications and divisions are a bit tricky to handle,
1928 depending on the mix of signs we have in the two ranges, we
1929 need to operate on different values to get the minimum and
1930 maximum values for the new range. One approach is to figure
1931 out all the variations of range combinations and do the
1932 operations.
1933
1934 However, this involves several calls to compare_values and it
1935 is pretty convoluted. It's simpler to do the 4 operations
1936 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1937 MAX1) and then figure the smallest and largest values to form
1938 the new range. */
1939
1940 /* Divisions by zero result in a VARYING value. */
1941 else if (code != MULT_EXPR
1942 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1943 {
1944 set_value_range_to_varying (vr);
1945 return;
1946 }
1947
1948 /* Compute the 4 cross operations. */
1949 sop = false;
1950 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1951 if (val[0] == NULL_TREE)
1952 sop = true;
1953
1954 if (vr1.max == vr1.min)
1955 val[1] = NULL_TREE;
1956 else
1957 {
1958 val[1] = vrp_int_const_binop (code, vr0.min, vr1.max);
1959 if (val[1] == NULL_TREE)
1960 sop = true;
1961 }
1962
1963 if (vr0.max == vr0.min)
1964 val[2] = NULL_TREE;
1965 else
1966 {
1967 val[2] = vrp_int_const_binop (code, vr0.max, vr1.min);
1968 if (val[2] == NULL_TREE)
1969 sop = true;
1970 }
1971
1972 if (vr0.min == vr0.max || vr1.min == vr1.max)
1973 val[3] = NULL_TREE;
1974 else
1975 {
1976 val[3] = vrp_int_const_binop (code, vr0.max, vr1.max);
1977 if (val[3] == NULL_TREE)
1978 sop = true;
1979 }
1980
1981 if (sop)
1982 {
1983 set_value_range_to_varying (vr);
1984 return;
1985 }
1986
1987 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1988 of VAL[i]. */
1989 min = val[0];
1990 max = val[0];
1991 for (i = 1; i < 4; i++)
1992 {
1993 if (!is_gimple_min_invariant (min)
1994 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
1995 || !is_gimple_min_invariant (max)
1996 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
1997 break;
1998
1999 if (val[i])
2000 {
2001 if (!is_gimple_min_invariant (val[i])
2002 || (TREE_OVERFLOW (val[i])
2003 && !is_overflow_infinity (val[i])))
2004 {
2005 /* If we found an overflowed value, set MIN and MAX
2006 to it so that we set the resulting range to
2007 VARYING. */
2008 min = max = val[i];
2009 break;
2010 }
2011
2012 if (compare_values (val[i], min) == -1)
2013 min = val[i];
2014
2015 if (compare_values (val[i], max) == 1)
2016 max = val[i];
2017 }
2018 }
2019 }
2020 else if (code == MINUS_EXPR)
2021 {
2022 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
2023 VR_VARYING. It would take more effort to compute a precise
2024 range for such a case. For example, if we have op0 == 1 and
2025 op1 == 1 with their ranges both being ~[0,0], we would have
2026 op0 - op1 == 0, so we cannot claim that the difference is in
2027 ~[0,0]. Note that we are guaranteed to have
2028 vr0.type == vr1.type at this point. */
2029 if (vr0.type == VR_ANTI_RANGE)
2030 {
2031 set_value_range_to_varying (vr);
2032 return;
2033 }
2034
2035 /* For MINUS_EXPR, apply the operation to the opposite ends of
2036 each range. */
2037 min = vrp_int_const_binop (code, vr0.min, vr1.max);
2038 max = vrp_int_const_binop (code, vr0.max, vr1.min);
2039 }
2040 else if (code == BIT_AND_EXPR)
2041 {
2042 if (vr0.type == VR_RANGE
2043 && vr0.min == vr0.max
2044 && TREE_CODE (vr0.max) == INTEGER_CST
2045 && !TREE_OVERFLOW (vr0.max)
2046 && tree_int_cst_sgn (vr0.max) >= 0)
2047 {
2048 min = build_int_cst (TREE_TYPE (expr), 0);
2049 max = vr0.max;
2050 }
2051 else if (vr1.type == VR_RANGE
2052 && vr1.min == vr1.max
2053 && TREE_CODE (vr1.max) == INTEGER_CST
2054 && !TREE_OVERFLOW (vr1.max)
2055 && tree_int_cst_sgn (vr1.max) >= 0)
2056 {
2057 type = VR_RANGE;
2058 min = build_int_cst (TREE_TYPE (expr), 0);
2059 max = vr1.max;
2060 }
2061 else
2062 {
2063 set_value_range_to_varying (vr);
2064 return;
2065 }
2066 }
2067 else
2068 gcc_unreachable ();
2069
2070 /* If either MIN or MAX overflowed, then set the resulting range to
2071 VARYING. But we do accept an overflow infinity
2072 representation. */
2073 if (min == NULL_TREE
2074 || !is_gimple_min_invariant (min)
2075 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2076 || max == NULL_TREE
2077 || !is_gimple_min_invariant (max)
2078 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2079 {
2080 set_value_range_to_varying (vr);
2081 return;
2082 }
2083
2084 /* We punt if:
2085 1) [-INF, +INF]
2086 2) [-INF, +-INF(OVF)]
2087 3) [+-INF(OVF), +INF]
2088 4) [+-INF(OVF), +-INF(OVF)]
2089 We learn nothing when we have INF and INF(OVF) on both sides.
2090 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2091 overflow. */
2092 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2093 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2094 {
2095 set_value_range_to_varying (vr);
2096 return;
2097 }
2098
2099 cmp = compare_values (min, max);
2100 if (cmp == -2 || cmp == 1)
2101 {
2102 /* If the new range has its limits swapped around (MIN > MAX),
2103 then the operation caused one of them to wrap around, mark
2104 the new range VARYING. */
2105 set_value_range_to_varying (vr);
2106 }
2107 else
2108 set_value_range (vr, type, min, max, NULL);
2109 }
2110
2111
2112 /* Extract range information from a unary expression EXPR based on
2113 the range of its operand and the expression code. */
2114
2115 static void
2116 extract_range_from_unary_expr (value_range_t *vr, tree expr)
2117 {
2118 enum tree_code code = TREE_CODE (expr);
2119 tree min, max, op0;
2120 int cmp;
2121 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2122
2123 /* Refuse to operate on certain unary expressions for which we
2124 cannot easily determine a resulting range. */
2125 if (code == FIX_TRUNC_EXPR
2126 || code == FLOAT_EXPR
2127 || code == BIT_NOT_EXPR
2128 || code == NON_LVALUE_EXPR
2129 || code == CONJ_EXPR)
2130 {
2131 set_value_range_to_varying (vr);
2132 return;
2133 }
2134
2135 /* Get value ranges for the operand. For constant operands, create
2136 a new value range with the operand to simplify processing. */
2137 op0 = TREE_OPERAND (expr, 0);
2138 if (TREE_CODE (op0) == SSA_NAME)
2139 vr0 = *(get_value_range (op0));
2140 else if (is_gimple_min_invariant (op0))
2141 set_value_range_to_value (&vr0, op0, NULL);
2142 else
2143 set_value_range_to_varying (&vr0);
2144
2145 /* If VR0 is UNDEFINED, so is the result. */
2146 if (vr0.type == VR_UNDEFINED)
2147 {
2148 set_value_range_to_undefined (vr);
2149 return;
2150 }
2151
2152 /* Refuse to operate on symbolic ranges, or if neither operand is
2153 a pointer or integral type. */
2154 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
2155 && !POINTER_TYPE_P (TREE_TYPE (op0)))
2156 || (vr0.type != VR_VARYING
2157 && symbolic_range_p (&vr0)))
2158 {
2159 set_value_range_to_varying (vr);
2160 return;
2161 }
2162
2163 /* If the expression involves pointers, we are only interested in
2164 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
2165 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
2166 {
2167 bool sop;
2168
2169 sop = false;
2170 if (range_is_nonnull (&vr0)
2171 || (tree_expr_nonzero_warnv_p (expr, &sop)
2172 && !sop))
2173 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2174 else if (range_is_null (&vr0))
2175 set_value_range_to_null (vr, TREE_TYPE (expr));
2176 else
2177 set_value_range_to_varying (vr);
2178
2179 return;
2180 }
2181
2182 /* Handle unary expressions on integer ranges. */
2183 if (code == NOP_EXPR || code == CONVERT_EXPR)
2184 {
2185 tree inner_type = TREE_TYPE (op0);
2186 tree outer_type = TREE_TYPE (expr);
2187
2188 /* If VR0 represents a simple range, then try to convert
2189 the min and max values for the range to the same type
2190 as OUTER_TYPE. If the results compare equal to VR0's
2191 min and max values and the new min is still less than
2192 or equal to the new max, then we can safely use the newly
2193 computed range for EXPR. This allows us to compute
2194 accurate ranges through many casts. */
2195 if ((vr0.type == VR_RANGE
2196 && !overflow_infinity_range_p (&vr0))
2197 || (vr0.type == VR_VARYING
2198 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)))
2199 {
2200 tree new_min, new_max, orig_min, orig_max;
2201
2202 /* Convert the input operand min/max to OUTER_TYPE. If
2203 the input has no range information, then use the min/max
2204 for the input's type. */
2205 if (vr0.type == VR_RANGE)
2206 {
2207 orig_min = vr0.min;
2208 orig_max = vr0.max;
2209 }
2210 else
2211 {
2212 orig_min = TYPE_MIN_VALUE (inner_type);
2213 orig_max = TYPE_MAX_VALUE (inner_type);
2214 }
2215
2216 new_min = fold_convert (outer_type, orig_min);
2217 new_max = fold_convert (outer_type, orig_max);
2218
2219 /* Verify the new min/max values are gimple values and
2220 that they compare equal to the original input's
2221 min/max values. */
2222 if (is_gimple_val (new_min)
2223 && is_gimple_val (new_max)
2224 && tree_int_cst_equal (new_min, orig_min)
2225 && tree_int_cst_equal (new_max, orig_max)
2226 && (!is_overflow_infinity (new_min)
2227 || !is_overflow_infinity (new_max))
2228 && (cmp = compare_values (new_min, new_max)) <= 0
2229 && cmp >= -1)
2230 {
2231 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
2232 return;
2233 }
2234 }
2235
2236 /* When converting types of different sizes, set the result to
2237 VARYING. Things like sign extensions and precision loss may
2238 change the range. For instance, if x_3 is of type 'long long
2239 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
2240 is impossible to know at compile time whether y_5 will be
2241 ~[0, 0]. */
2242 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
2243 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
2244 {
2245 set_value_range_to_varying (vr);
2246 return;
2247 }
2248 }
2249
2250 /* Conversion of a VR_VARYING value to a wider type can result
2251 in a usable range. So wait until after we've handled conversions
2252 before dropping the result to VR_VARYING if we had a source
2253 operand that is VR_VARYING. */
2254 if (vr0.type == VR_VARYING)
2255 {
2256 set_value_range_to_varying (vr);
2257 return;
2258 }
2259
2260 /* Apply the operation to each end of the range and see what we end
2261 up with. */
2262 if (code == NEGATE_EXPR
2263 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2264 {
2265 /* NEGATE_EXPR flips the range around. We need to treat
2266 TYPE_MIN_VALUE specially. */
2267 if (is_positive_overflow_infinity (vr0.max))
2268 min = negative_overflow_infinity (TREE_TYPE (expr));
2269 else if (is_negative_overflow_infinity (vr0.max))
2270 min = positive_overflow_infinity (TREE_TYPE (expr));
2271 else if (!vrp_val_is_min (vr0.max))
2272 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2273 else if (needs_overflow_infinity (TREE_TYPE (expr)))
2274 {
2275 if (supports_overflow_infinity (TREE_TYPE (expr))
2276 && !is_overflow_infinity (vr0.min)
2277 && !vrp_val_is_min (vr0.min))
2278 min = positive_overflow_infinity (TREE_TYPE (expr));
2279 else
2280 {
2281 set_value_range_to_varying (vr);
2282 return;
2283 }
2284 }
2285 else
2286 min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2287
2288 if (is_positive_overflow_infinity (vr0.min))
2289 max = negative_overflow_infinity (TREE_TYPE (expr));
2290 else if (is_negative_overflow_infinity (vr0.min))
2291 max = positive_overflow_infinity (TREE_TYPE (expr));
2292 else if (!vrp_val_is_min (vr0.min))
2293 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2294 else if (needs_overflow_infinity (TREE_TYPE (expr)))
2295 {
2296 if (supports_overflow_infinity (TREE_TYPE (expr)))
2297 max = positive_overflow_infinity (TREE_TYPE (expr));
2298 else
2299 {
2300 set_value_range_to_varying (vr);
2301 return;
2302 }
2303 }
2304 else
2305 max = TYPE_MIN_VALUE (TREE_TYPE (expr));
2306 }
2307 else if (code == NEGATE_EXPR
2308 && TYPE_UNSIGNED (TREE_TYPE (expr)))
2309 {
2310 if (!range_includes_zero_p (&vr0))
2311 {
2312 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2313 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2314 }
2315 else
2316 {
2317 if (range_is_null (&vr0))
2318 set_value_range_to_null (vr, TREE_TYPE (expr));
2319 else
2320 set_value_range_to_varying (vr);
2321 return;
2322 }
2323 }
2324 else if (code == ABS_EXPR
2325 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
2326 {
2327 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
2328 useful range. */
2329 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (expr))
2330 && ((vr0.type == VR_RANGE
2331 && vrp_val_is_min (vr0.min))
2332 || (vr0.type == VR_ANTI_RANGE
2333 && !vrp_val_is_min (vr0.min)
2334 && !range_includes_zero_p (&vr0))))
2335 {
2336 set_value_range_to_varying (vr);
2337 return;
2338 }
2339
2340 /* ABS_EXPR may flip the range around, if the original range
2341 included negative values. */
2342 if (is_overflow_infinity (vr0.min))
2343 min = positive_overflow_infinity (TREE_TYPE (expr));
2344 else if (!vrp_val_is_min (vr0.min))
2345 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2346 else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2347 min = TYPE_MAX_VALUE (TREE_TYPE (expr));
2348 else if (supports_overflow_infinity (TREE_TYPE (expr)))
2349 min = positive_overflow_infinity (TREE_TYPE (expr));
2350 else
2351 {
2352 set_value_range_to_varying (vr);
2353 return;
2354 }
2355
2356 if (is_overflow_infinity (vr0.max))
2357 max = positive_overflow_infinity (TREE_TYPE (expr));
2358 else if (!vrp_val_is_min (vr0.max))
2359 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2360 else if (!needs_overflow_infinity (TREE_TYPE (expr)))
2361 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2362 else if (supports_overflow_infinity (TREE_TYPE (expr)))
2363 max = positive_overflow_infinity (TREE_TYPE (expr));
2364 else
2365 {
2366 set_value_range_to_varying (vr);
2367 return;
2368 }
2369
2370 cmp = compare_values (min, max);
2371
2372 /* If a VR_ANTI_RANGEs contains zero, then we have
2373 ~[-INF, min(MIN, MAX)]. */
2374 if (vr0.type == VR_ANTI_RANGE)
2375 {
2376 if (range_includes_zero_p (&vr0))
2377 {
2378 /* Take the lower of the two values. */
2379 if (cmp != 1)
2380 max = min;
2381
2382 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
2383 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
2384 flag_wrapv is set and the original anti-range doesn't include
2385 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
2386 if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (expr)))
2387 {
2388 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
2389
2390 min = (vr0.min != type_min_value
2391 ? int_const_binop (PLUS_EXPR, type_min_value,
2392 integer_one_node, 0)
2393 : type_min_value);
2394 }
2395 else
2396 {
2397 if (overflow_infinity_range_p (&vr0))
2398 min = negative_overflow_infinity (TREE_TYPE (expr));
2399 else
2400 min = TYPE_MIN_VALUE (TREE_TYPE (expr));
2401 }
2402 }
2403 else
2404 {
2405 /* All else has failed, so create the range [0, INF], even for
2406 flag_wrapv since TYPE_MIN_VALUE is in the original
2407 anti-range. */
2408 vr0.type = VR_RANGE;
2409 min = build_int_cst (TREE_TYPE (expr), 0);
2410 if (needs_overflow_infinity (TREE_TYPE (expr)))
2411 {
2412 if (supports_overflow_infinity (TREE_TYPE (expr)))
2413 max = positive_overflow_infinity (TREE_TYPE (expr));
2414 else
2415 {
2416 set_value_range_to_varying (vr);
2417 return;
2418 }
2419 }
2420 else
2421 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
2422 }
2423 }
2424
2425 /* If the range contains zero then we know that the minimum value in the
2426 range will be zero. */
2427 else if (range_includes_zero_p (&vr0))
2428 {
2429 if (cmp == 1)
2430 max = min;
2431 min = build_int_cst (TREE_TYPE (expr), 0);
2432 }
2433 else
2434 {
2435 /* If the range was reversed, swap MIN and MAX. */
2436 if (cmp == 1)
2437 {
2438 tree t = min;
2439 min = max;
2440 max = t;
2441 }
2442 }
2443 }
2444 else
2445 {
2446 /* Otherwise, operate on each end of the range. */
2447 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
2448 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
2449
2450 if (needs_overflow_infinity (TREE_TYPE (expr)))
2451 {
2452 gcc_assert (code != NEGATE_EXPR && code != ABS_EXPR);
2453
2454 /* If both sides have overflowed, we don't know
2455 anything. */
2456 if ((is_overflow_infinity (vr0.min)
2457 || TREE_OVERFLOW (min))
2458 && (is_overflow_infinity (vr0.max)
2459 || TREE_OVERFLOW (max)))
2460 {
2461 set_value_range_to_varying (vr);
2462 return;
2463 }
2464
2465 if (is_overflow_infinity (vr0.min))
2466 min = vr0.min;
2467 else if (TREE_OVERFLOW (min))
2468 {
2469 if (supports_overflow_infinity (TREE_TYPE (expr)))
2470 min = (tree_int_cst_sgn (min) >= 0
2471 ? positive_overflow_infinity (TREE_TYPE (min))
2472 : negative_overflow_infinity (TREE_TYPE (min)));
2473 else
2474 {
2475 set_value_range_to_varying (vr);
2476 return;
2477 }
2478 }
2479
2480 if (is_overflow_infinity (vr0.max))
2481 max = vr0.max;
2482 else if (TREE_OVERFLOW (max))
2483 {
2484 if (supports_overflow_infinity (TREE_TYPE (expr)))
2485 max = (tree_int_cst_sgn (max) >= 0
2486 ? positive_overflow_infinity (TREE_TYPE (max))
2487 : negative_overflow_infinity (TREE_TYPE (max)));
2488 else
2489 {
2490 set_value_range_to_varying (vr);
2491 return;
2492 }
2493 }
2494 }
2495 }
2496
2497 cmp = compare_values (min, max);
2498 if (cmp == -2 || cmp == 1)
2499 {
2500 /* If the new range has its limits swapped around (MIN > MAX),
2501 then the operation caused one of them to wrap around, mark
2502 the new range VARYING. */
2503 set_value_range_to_varying (vr);
2504 }
2505 else
2506 set_value_range (vr, vr0.type, min, max, NULL);
2507 }
2508
2509
2510 /* Extract range information from a conditional expression EXPR based on
2511 the ranges of each of its operands and the expression code. */
2512
2513 static void
2514 extract_range_from_cond_expr (value_range_t *vr, tree expr)
2515 {
2516 tree op0, op1;
2517 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2518 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2519
2520 /* Get value ranges for each operand. For constant operands, create
2521 a new value range with the operand to simplify processing. */
2522 op0 = COND_EXPR_THEN (expr);
2523 if (TREE_CODE (op0) == SSA_NAME)
2524 vr0 = *(get_value_range (op0));
2525 else if (is_gimple_min_invariant (op0))
2526 set_value_range_to_value (&vr0, op0, NULL);
2527 else
2528 set_value_range_to_varying (&vr0);
2529
2530 op1 = COND_EXPR_ELSE (expr);
2531 if (TREE_CODE (op1) == SSA_NAME)
2532 vr1 = *(get_value_range (op1));
2533 else if (is_gimple_min_invariant (op1))
2534 set_value_range_to_value (&vr1, op1, NULL);
2535 else
2536 set_value_range_to_varying (&vr1);
2537
2538 /* The resulting value range is the union of the operand ranges */
2539 vrp_meet (&vr0, &vr1);
2540 copy_value_range (vr, &vr0);
2541 }
2542
2543
2544 /* Extract range information from a comparison expression EXPR based
2545 on the range of its operand and the expression code. */
2546
2547 static void
2548 extract_range_from_comparison (value_range_t *vr, tree expr)
2549 {
2550 bool sop = false;
2551 tree val = vrp_evaluate_conditional_warnv (expr, false, &sop);
2552
2553 /* A disadvantage of using a special infinity as an overflow
2554 representation is that we lose the ability to record overflow
2555 when we don't have an infinity. So we have to ignore a result
2556 which relies on overflow. */
2557
2558 if (val && !is_overflow_infinity (val) && !sop)
2559 {
2560 /* Since this expression was found on the RHS of an assignment,
2561 its type may be different from _Bool. Convert VAL to EXPR's
2562 type. */
2563 val = fold_convert (TREE_TYPE (expr), val);
2564 if (is_gimple_min_invariant (val))
2565 set_value_range_to_value (vr, val, vr->equiv);
2566 else
2567 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
2568 }
2569 else
2570 /* The result of a comparison is always true or false. */
2571 set_value_range_to_truthvalue (vr, TREE_TYPE (expr));
2572 }
2573
2574
2575 /* Try to compute a useful range out of expression EXPR and store it
2576 in *VR. */
2577
2578 static void
2579 extract_range_from_expr (value_range_t *vr, tree expr)
2580 {
2581 enum tree_code code = TREE_CODE (expr);
2582
2583 if (code == ASSERT_EXPR)
2584 extract_range_from_assert (vr, expr);
2585 else if (code == SSA_NAME)
2586 extract_range_from_ssa_name (vr, expr);
2587 else if (TREE_CODE_CLASS (code) == tcc_binary
2588 || code == TRUTH_ANDIF_EXPR
2589 || code == TRUTH_ORIF_EXPR
2590 || code == TRUTH_AND_EXPR
2591 || code == TRUTH_OR_EXPR
2592 || code == TRUTH_XOR_EXPR)
2593 extract_range_from_binary_expr (vr, expr);
2594 else if (TREE_CODE_CLASS (code) == tcc_unary)
2595 extract_range_from_unary_expr (vr, expr);
2596 else if (code == COND_EXPR)
2597 extract_range_from_cond_expr (vr, expr);
2598 else if (TREE_CODE_CLASS (code) == tcc_comparison)
2599 extract_range_from_comparison (vr, expr);
2600 else if (is_gimple_min_invariant (expr))
2601 set_value_range_to_value (vr, expr, NULL);
2602 else
2603 set_value_range_to_varying (vr);
2604
2605 /* If we got a varying range from the tests above, try a final
2606 time to derive a nonnegative or nonzero range. This time
2607 relying primarily on generic routines in fold in conjunction
2608 with range data. */
2609 if (vr->type == VR_VARYING)
2610 {
2611 bool sop = false;
2612
2613 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
2614 && vrp_expr_computes_nonnegative (expr, &sop))
2615 set_value_range_to_nonnegative (vr, TREE_TYPE (expr),
2616 sop || is_overflow_infinity (expr));
2617 else if (vrp_expr_computes_nonzero (expr, &sop)
2618 && !sop)
2619 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2620 }
2621 }
2622
2623 /* Given a range VR, a LOOP and a variable VAR, determine whether it
2624 would be profitable to adjust VR using scalar evolution information
2625 for VAR. If so, update VR with the new limits. */
2626
2627 static void
2628 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
2629 tree var)
2630 {
2631 tree init, step, chrec, tmin, tmax, min, max, type;
2632 enum ev_direction dir;
2633
2634 /* TODO. Don't adjust anti-ranges. An anti-range may provide
2635 better opportunities than a regular range, but I'm not sure. */
2636 if (vr->type == VR_ANTI_RANGE)
2637 return;
2638
2639 /* Ensure that there are not values in the scev cache based on assumptions
2640 on ranges of ssa names that were changed
2641 (in set_value_range/set_value_range_to_varying). Preserve cached numbers
2642 of iterations, that were computed before the start of VRP (we do not
2643 recompute these each time to save the compile time). */
2644 scev_reset_except_niters ();
2645
2646 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
2647
2648 /* Like in PR19590, scev can return a constant function. */
2649 if (is_gimple_min_invariant (chrec))
2650 {
2651 set_value_range_to_value (vr, chrec, vr->equiv);
2652 return;
2653 }
2654
2655 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2656 return;
2657
2658 init = initial_condition_in_loop_num (chrec, loop->num);
2659 step = evolution_part_in_loop_num (chrec, loop->num);
2660
2661 /* If STEP is symbolic, we can't know whether INIT will be the
2662 minimum or maximum value in the range. Also, unless INIT is
2663 a simple expression, compare_values and possibly other functions
2664 in tree-vrp won't be able to handle it. */
2665 if (step == NULL_TREE
2666 || !is_gimple_min_invariant (step)
2667 || !valid_value_p (init))
2668 return;
2669
2670 dir = scev_direction (chrec);
2671 if (/* Do not adjust ranges if we do not know whether the iv increases
2672 or decreases, ... */
2673 dir == EV_DIR_UNKNOWN
2674 /* ... or if it may wrap. */
2675 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
2676 true))
2677 return;
2678
2679 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
2680 negative_overflow_infinity and positive_overflow_infinity,
2681 because we have concluded that the loop probably does not
2682 wrap. */
2683
2684 type = TREE_TYPE (var);
2685 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
2686 tmin = lower_bound_in_type (type, type);
2687 else
2688 tmin = TYPE_MIN_VALUE (type);
2689 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
2690 tmax = upper_bound_in_type (type, type);
2691 else
2692 tmax = TYPE_MAX_VALUE (type);
2693
2694 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2695 {
2696 min = tmin;
2697 max = tmax;
2698
2699 /* For VARYING or UNDEFINED ranges, just about anything we get
2700 from scalar evolutions should be better. */
2701
2702 if (dir == EV_DIR_DECREASES)
2703 max = init;
2704 else
2705 min = init;
2706
2707 /* If we would create an invalid range, then just assume we
2708 know absolutely nothing. This may be over-conservative,
2709 but it's clearly safe, and should happen only in unreachable
2710 parts of code, or for invalid programs. */
2711 if (compare_values (min, max) == 1)
2712 return;
2713
2714 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2715 }
2716 else if (vr->type == VR_RANGE)
2717 {
2718 min = vr->min;
2719 max = vr->max;
2720
2721 if (dir == EV_DIR_DECREASES)
2722 {
2723 /* INIT is the maximum value. If INIT is lower than VR->MAX
2724 but no smaller than VR->MIN, set VR->MAX to INIT. */
2725 if (compare_values (init, max) == -1)
2726 {
2727 max = init;
2728
2729 /* If we just created an invalid range with the minimum
2730 greater than the maximum, we fail conservatively.
2731 This should happen only in unreachable
2732 parts of code, or for invalid programs. */
2733 if (compare_values (min, max) == 1)
2734 return;
2735 }
2736
2737 /* According to the loop information, the variable does not
2738 overflow. If we think it does, probably because of an
2739 overflow due to arithmetic on a different INF value,
2740 reset now. */
2741 if (is_negative_overflow_infinity (min))
2742 min = tmin;
2743 }
2744 else
2745 {
2746 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
2747 if (compare_values (init, min) == 1)
2748 {
2749 min = init;
2750
2751 /* Again, avoid creating invalid range by failing. */
2752 if (compare_values (min, max) == 1)
2753 return;
2754 }
2755
2756 if (is_positive_overflow_infinity (max))
2757 max = tmax;
2758 }
2759
2760 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2761 }
2762 }
2763
2764 /* Return true if VAR may overflow at STMT. This checks any available
2765 loop information to see if we can determine that VAR does not
2766 overflow. */
2767
2768 static bool
2769 vrp_var_may_overflow (tree var, tree stmt)
2770 {
2771 struct loop *l;
2772 tree chrec, init, step;
2773
2774 if (current_loops == NULL)
2775 return true;
2776
2777 l = loop_containing_stmt (stmt);
2778 if (l == NULL)
2779 return true;
2780
2781 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
2782 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2783 return true;
2784
2785 init = initial_condition_in_loop_num (chrec, l->num);
2786 step = evolution_part_in_loop_num (chrec, l->num);
2787
2788 if (step == NULL_TREE
2789 || !is_gimple_min_invariant (step)
2790 || !valid_value_p (init))
2791 return true;
2792
2793 /* If we get here, we know something useful about VAR based on the
2794 loop information. If it wraps, it may overflow. */
2795
2796 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
2797 true))
2798 return true;
2799
2800 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
2801 {
2802 print_generic_expr (dump_file, var, 0);
2803 fprintf (dump_file, ": loop information indicates does not overflow\n");
2804 }
2805
2806 return false;
2807 }
2808
2809
2810 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2811
2812 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2813 all the values in the ranges.
2814
2815 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2816
2817 - Return NULL_TREE if it is not always possible to determine the
2818 value of the comparison.
2819
2820 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
2821 overflow infinity was used in the test. */
2822
2823
2824 static tree
2825 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
2826 bool *strict_overflow_p)
2827 {
2828 /* VARYING or UNDEFINED ranges cannot be compared. */
2829 if (vr0->type == VR_VARYING
2830 || vr0->type == VR_UNDEFINED
2831 || vr1->type == VR_VARYING
2832 || vr1->type == VR_UNDEFINED)
2833 return NULL_TREE;
2834
2835 /* Anti-ranges need to be handled separately. */
2836 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2837 {
2838 /* If both are anti-ranges, then we cannot compute any
2839 comparison. */
2840 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2841 return NULL_TREE;
2842
2843 /* These comparisons are never statically computable. */
2844 if (comp == GT_EXPR
2845 || comp == GE_EXPR
2846 || comp == LT_EXPR
2847 || comp == LE_EXPR)
2848 return NULL_TREE;
2849
2850 /* Equality can be computed only between a range and an
2851 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2852 if (vr0->type == VR_RANGE)
2853 {
2854 /* To simplify processing, make VR0 the anti-range. */
2855 value_range_t *tmp = vr0;
2856 vr0 = vr1;
2857 vr1 = tmp;
2858 }
2859
2860 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2861
2862 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
2863 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
2864 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2865
2866 return NULL_TREE;
2867 }
2868
2869 if (!usable_range_p (vr0, strict_overflow_p)
2870 || !usable_range_p (vr1, strict_overflow_p))
2871 return NULL_TREE;
2872
2873 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2874 operands around and change the comparison code. */
2875 if (comp == GT_EXPR || comp == GE_EXPR)
2876 {
2877 value_range_t *tmp;
2878 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2879 tmp = vr0;
2880 vr0 = vr1;
2881 vr1 = tmp;
2882 }
2883
2884 if (comp == EQ_EXPR)
2885 {
2886 /* Equality may only be computed if both ranges represent
2887 exactly one value. */
2888 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
2889 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
2890 {
2891 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
2892 strict_overflow_p);
2893 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
2894 strict_overflow_p);
2895 if (cmp_min == 0 && cmp_max == 0)
2896 return boolean_true_node;
2897 else if (cmp_min != -2 && cmp_max != -2)
2898 return boolean_false_node;
2899 }
2900 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
2901 else if (compare_values_warnv (vr0->min, vr1->max,
2902 strict_overflow_p) == 1
2903 || compare_values_warnv (vr1->min, vr0->max,
2904 strict_overflow_p) == 1)
2905 return boolean_false_node;
2906
2907 return NULL_TREE;
2908 }
2909 else if (comp == NE_EXPR)
2910 {
2911 int cmp1, cmp2;
2912
2913 /* If VR0 is completely to the left or completely to the right
2914 of VR1, they are always different. Notice that we need to
2915 make sure that both comparisons yield similar results to
2916 avoid comparing values that cannot be compared at
2917 compile-time. */
2918 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2919 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
2920 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2921 return boolean_true_node;
2922
2923 /* If VR0 and VR1 represent a single value and are identical,
2924 return false. */
2925 else if (compare_values_warnv (vr0->min, vr0->max,
2926 strict_overflow_p) == 0
2927 && compare_values_warnv (vr1->min, vr1->max,
2928 strict_overflow_p) == 0
2929 && compare_values_warnv (vr0->min, vr1->min,
2930 strict_overflow_p) == 0
2931 && compare_values_warnv (vr0->max, vr1->max,
2932 strict_overflow_p) == 0)
2933 return boolean_false_node;
2934
2935 /* Otherwise, they may or may not be different. */
2936 else
2937 return NULL_TREE;
2938 }
2939 else if (comp == LT_EXPR || comp == LE_EXPR)
2940 {
2941 int tst;
2942
2943 /* If VR0 is to the left of VR1, return true. */
2944 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
2945 if ((comp == LT_EXPR && tst == -1)
2946 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2947 {
2948 if (overflow_infinity_range_p (vr0)
2949 || overflow_infinity_range_p (vr1))
2950 *strict_overflow_p = true;
2951 return boolean_true_node;
2952 }
2953
2954 /* If VR0 is to the right of VR1, return false. */
2955 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
2956 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2957 || (comp == LE_EXPR && tst == 1))
2958 {
2959 if (overflow_infinity_range_p (vr0)
2960 || overflow_infinity_range_p (vr1))
2961 *strict_overflow_p = true;
2962 return boolean_false_node;
2963 }
2964
2965 /* Otherwise, we don't know. */
2966 return NULL_TREE;
2967 }
2968
2969 gcc_unreachable ();
2970 }
2971
2972
2973 /* Given a value range VR, a value VAL and a comparison code COMP, return
2974 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2975 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2976 always returns false. Return NULL_TREE if it is not always
2977 possible to determine the value of the comparison. Also set
2978 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
2979 infinity was used in the test. */
2980
2981 static tree
2982 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
2983 bool *strict_overflow_p)
2984 {
2985 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2986 return NULL_TREE;
2987
2988 /* Anti-ranges need to be handled separately. */
2989 if (vr->type == VR_ANTI_RANGE)
2990 {
2991 /* For anti-ranges, the only predicates that we can compute at
2992 compile time are equality and inequality. */
2993 if (comp == GT_EXPR
2994 || comp == GE_EXPR
2995 || comp == LT_EXPR
2996 || comp == LE_EXPR)
2997 return NULL_TREE;
2998
2999 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
3000 if (value_inside_range (val, vr) == 1)
3001 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
3002
3003 return NULL_TREE;
3004 }
3005
3006 if (!usable_range_p (vr, strict_overflow_p))
3007 return NULL_TREE;
3008
3009 if (comp == EQ_EXPR)
3010 {
3011 /* EQ_EXPR may only be computed if VR represents exactly
3012 one value. */
3013 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
3014 {
3015 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
3016 if (cmp == 0)
3017 return boolean_true_node;
3018 else if (cmp == -1 || cmp == 1 || cmp == 2)
3019 return boolean_false_node;
3020 }
3021 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
3022 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
3023 return boolean_false_node;
3024
3025 return NULL_TREE;
3026 }
3027 else if (comp == NE_EXPR)
3028 {
3029 /* If VAL is not inside VR, then they are always different. */
3030 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
3031 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
3032 return boolean_true_node;
3033
3034 /* If VR represents exactly one value equal to VAL, then return
3035 false. */
3036 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
3037 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
3038 return boolean_false_node;
3039
3040 /* Otherwise, they may or may not be different. */
3041 return NULL_TREE;
3042 }
3043 else if (comp == LT_EXPR || comp == LE_EXPR)
3044 {
3045 int tst;
3046
3047 /* If VR is to the left of VAL, return true. */
3048 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3049 if ((comp == LT_EXPR && tst == -1)
3050 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
3051 {
3052 if (overflow_infinity_range_p (vr))
3053 *strict_overflow_p = true;
3054 return boolean_true_node;
3055 }
3056
3057 /* If VR is to the right of VAL, return false. */
3058 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3059 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
3060 || (comp == LE_EXPR && tst == 1))
3061 {
3062 if (overflow_infinity_range_p (vr))
3063 *strict_overflow_p = true;
3064 return boolean_false_node;
3065 }
3066
3067 /* Otherwise, we don't know. */
3068 return NULL_TREE;
3069 }
3070 else if (comp == GT_EXPR || comp == GE_EXPR)
3071 {
3072 int tst;
3073
3074 /* If VR is to the right of VAL, return true. */
3075 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
3076 if ((comp == GT_EXPR && tst == 1)
3077 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
3078 {
3079 if (overflow_infinity_range_p (vr))
3080 *strict_overflow_p = true;
3081 return boolean_true_node;
3082 }
3083
3084 /* If VR is to the left of VAL, return false. */
3085 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
3086 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
3087 || (comp == GE_EXPR && tst == -1))
3088 {
3089 if (overflow_infinity_range_p (vr))
3090 *strict_overflow_p = true;
3091 return boolean_false_node;
3092 }
3093
3094 /* Otherwise, we don't know. */
3095 return NULL_TREE;
3096 }
3097
3098 gcc_unreachable ();
3099 }
3100
3101
3102 /* Debugging dumps. */
3103
3104 void dump_value_range (FILE *, value_range_t *);
3105 void debug_value_range (value_range_t *);
3106 void dump_all_value_ranges (FILE *);
3107 void debug_all_value_ranges (void);
3108 void dump_vr_equiv (FILE *, bitmap);
3109 void debug_vr_equiv (bitmap);
3110
3111
3112 /* Dump value range VR to FILE. */
3113
3114 void
3115 dump_value_range (FILE *file, value_range_t *vr)
3116 {
3117 if (vr == NULL)
3118 fprintf (file, "[]");
3119 else if (vr->type == VR_UNDEFINED)
3120 fprintf (file, "UNDEFINED");
3121 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3122 {
3123 tree type = TREE_TYPE (vr->min);
3124
3125 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
3126
3127 if (is_negative_overflow_infinity (vr->min))
3128 fprintf (file, "-INF(OVF)");
3129 else if (INTEGRAL_TYPE_P (type)
3130 && !TYPE_UNSIGNED (type)
3131 && vrp_val_is_min (vr->min))
3132 fprintf (file, "-INF");
3133 else
3134 print_generic_expr (file, vr->min, 0);
3135
3136 fprintf (file, ", ");
3137
3138 if (is_positive_overflow_infinity (vr->max))
3139 fprintf (file, "+INF(OVF)");
3140 else if (INTEGRAL_TYPE_P (type)
3141 && vrp_val_is_max (vr->max))
3142 fprintf (file, "+INF");
3143 else
3144 print_generic_expr (file, vr->max, 0);
3145
3146 fprintf (file, "]");
3147
3148 if (vr->equiv)
3149 {
3150 bitmap_iterator bi;
3151 unsigned i, c = 0;
3152
3153 fprintf (file, " EQUIVALENCES: { ");
3154
3155 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
3156 {
3157 print_generic_expr (file, ssa_name (i), 0);
3158 fprintf (file, " ");
3159 c++;
3160 }
3161
3162 fprintf (file, "} (%u elements)", c);
3163 }
3164 }
3165 else if (vr->type == VR_VARYING)
3166 fprintf (file, "VARYING");
3167 else
3168 fprintf (file, "INVALID RANGE");
3169 }
3170
3171
3172 /* Dump value range VR to stderr. */
3173
3174 void
3175 debug_value_range (value_range_t *vr)
3176 {
3177 dump_value_range (stderr, vr);
3178 fprintf (stderr, "\n");
3179 }
3180
3181
3182 /* Dump value ranges of all SSA_NAMEs to FILE. */
3183
3184 void
3185 dump_all_value_ranges (FILE *file)
3186 {
3187 size_t i;
3188
3189 for (i = 0; i < num_ssa_names; i++)
3190 {
3191 if (vr_value[i])
3192 {
3193 print_generic_expr (file, ssa_name (i), 0);
3194 fprintf (file, ": ");
3195 dump_value_range (file, vr_value[i]);
3196 fprintf (file, "\n");
3197 }
3198 }
3199
3200 fprintf (file, "\n");
3201 }
3202
3203
3204 /* Dump all value ranges to stderr. */
3205
3206 void
3207 debug_all_value_ranges (void)
3208 {
3209 dump_all_value_ranges (stderr);
3210 }
3211
3212
3213 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
3214 create a new SSA name N and return the assertion assignment
3215 'V = ASSERT_EXPR <V, V OP W>'. */
3216
3217 static tree
3218 build_assert_expr_for (tree cond, tree v)
3219 {
3220 tree n, assertion;
3221
3222 gcc_assert (TREE_CODE (v) == SSA_NAME);
3223 n = duplicate_ssa_name (v, NULL_TREE);
3224
3225 if (COMPARISON_CLASS_P (cond))
3226 {
3227 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
3228 assertion = build_gimple_modify_stmt (n, a);
3229 }
3230 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
3231 {
3232 /* Given !V, build the assignment N = false. */
3233 tree op0 = TREE_OPERAND (cond, 0);
3234 gcc_assert (op0 == v);
3235 assertion = build_gimple_modify_stmt (n, boolean_false_node);
3236 }
3237 else if (TREE_CODE (cond) == SSA_NAME)
3238 {
3239 /* Given V, build the assignment N = true. */
3240 gcc_assert (v == cond);
3241 assertion = build_gimple_modify_stmt (n, boolean_true_node);
3242 }
3243 else
3244 gcc_unreachable ();
3245
3246 SSA_NAME_DEF_STMT (n) = assertion;
3247
3248 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
3249 operand of the ASSERT_EXPR. Register the new name and the old one
3250 in the replacement table so that we can fix the SSA web after
3251 adding all the ASSERT_EXPRs. */
3252 register_new_name_mapping (n, v);
3253
3254 return assertion;
3255 }
3256
3257
3258 /* Return false if EXPR is a predicate expression involving floating
3259 point values. */
3260
3261 static inline bool
3262 fp_predicate (const_tree expr)
3263 {
3264 return (COMPARISON_CLASS_P (expr)
3265 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
3266 }
3267
3268
3269 /* If the range of values taken by OP can be inferred after STMT executes,
3270 return the comparison code (COMP_CODE_P) and value (VAL_P) that
3271 describes the inferred range. Return true if a range could be
3272 inferred. */
3273
3274 static bool
3275 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
3276 {
3277 *val_p = NULL_TREE;
3278 *comp_code_p = ERROR_MARK;
3279
3280 /* Do not attempt to infer anything in names that flow through
3281 abnormal edges. */
3282 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
3283 return false;
3284
3285 /* Similarly, don't infer anything from statements that may throw
3286 exceptions. */
3287 if (tree_could_throw_p (stmt))
3288 return false;
3289
3290 /* If STMT is the last statement of a basic block with no
3291 successors, there is no point inferring anything about any of its
3292 operands. We would not be able to find a proper insertion point
3293 for the assertion, anyway. */
3294 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
3295 return false;
3296
3297 /* We can only assume that a pointer dereference will yield
3298 non-NULL if -fdelete-null-pointer-checks is enabled. */
3299 if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
3300 {
3301 unsigned num_uses, num_loads, num_stores;
3302
3303 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
3304 if (num_loads + num_stores > 0)
3305 {
3306 *val_p = build_int_cst (TREE_TYPE (op), 0);
3307 *comp_code_p = NE_EXPR;
3308 return true;
3309 }
3310 }
3311
3312 return false;
3313 }
3314
3315
3316 void dump_asserts_for (FILE *, tree);
3317 void debug_asserts_for (tree);
3318 void dump_all_asserts (FILE *);
3319 void debug_all_asserts (void);
3320
3321 /* Dump all the registered assertions for NAME to FILE. */
3322
3323 void
3324 dump_asserts_for (FILE *file, tree name)
3325 {
3326 assert_locus_t loc;
3327
3328 fprintf (file, "Assertions to be inserted for ");
3329 print_generic_expr (file, name, 0);
3330 fprintf (file, "\n");
3331
3332 loc = asserts_for[SSA_NAME_VERSION (name)];
3333 while (loc)
3334 {
3335 fprintf (file, "\t");
3336 print_generic_expr (file, bsi_stmt (loc->si), 0);
3337 fprintf (file, "\n\tBB #%d", loc->bb->index);
3338 if (loc->e)
3339 {
3340 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
3341 loc->e->dest->index);
3342 dump_edge_info (file, loc->e, 0);
3343 }
3344 fprintf (file, "\n\tPREDICATE: ");
3345 print_generic_expr (file, name, 0);
3346 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
3347 print_generic_expr (file, loc->val, 0);
3348 fprintf (file, "\n\n");
3349 loc = loc->next;
3350 }
3351
3352 fprintf (file, "\n");
3353 }
3354
3355
3356 /* Dump all the registered assertions for NAME to stderr. */
3357
3358 void
3359 debug_asserts_for (tree name)
3360 {
3361 dump_asserts_for (stderr, name);
3362 }
3363
3364
3365 /* Dump all the registered assertions for all the names to FILE. */
3366
3367 void
3368 dump_all_asserts (FILE *file)
3369 {
3370 unsigned i;
3371 bitmap_iterator bi;
3372
3373 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
3374 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3375 dump_asserts_for (file, ssa_name (i));
3376 fprintf (file, "\n");
3377 }
3378
3379
3380 /* Dump all the registered assertions for all the names to stderr. */
3381
3382 void
3383 debug_all_asserts (void)
3384 {
3385 dump_all_asserts (stderr);
3386 }
3387
3388
3389 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
3390 'NAME COMP_CODE VAL' at a location that dominates block BB or
3391 E->DEST, then register this location as a possible insertion point
3392 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
3393
3394 BB, E and SI provide the exact insertion point for the new
3395 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
3396 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
3397 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
3398 must not be NULL. */
3399
3400 static void
3401 register_new_assert_for (tree name,
3402 enum tree_code comp_code,
3403 tree val,
3404 basic_block bb,
3405 edge e,
3406 block_stmt_iterator si)
3407 {
3408 assert_locus_t n, loc, last_loc;
3409 bool found;
3410 basic_block dest_bb;
3411
3412 #if defined ENABLE_CHECKING
3413 gcc_assert (bb == NULL || e == NULL);
3414
3415 if (e == NULL)
3416 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
3417 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
3418 #endif
3419
3420 /* The new assertion A will be inserted at BB or E. We need to
3421 determine if the new location is dominated by a previously
3422 registered location for A. If we are doing an edge insertion,
3423 assume that A will be inserted at E->DEST. Note that this is not
3424 necessarily true.
3425
3426 If E is a critical edge, it will be split. But even if E is
3427 split, the new block will dominate the same set of blocks that
3428 E->DEST dominates.
3429
3430 The reverse, however, is not true, blocks dominated by E->DEST
3431 will not be dominated by the new block created to split E. So,
3432 if the insertion location is on a critical edge, we will not use
3433 the new location to move another assertion previously registered
3434 at a block dominated by E->DEST. */
3435 dest_bb = (bb) ? bb : e->dest;
3436
3437 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
3438 VAL at a block dominating DEST_BB, then we don't need to insert a new
3439 one. Similarly, if the same assertion already exists at a block
3440 dominated by DEST_BB and the new location is not on a critical
3441 edge, then update the existing location for the assertion (i.e.,
3442 move the assertion up in the dominance tree).
3443
3444 Note, this is implemented as a simple linked list because there
3445 should not be more than a handful of assertions registered per
3446 name. If this becomes a performance problem, a table hashed by
3447 COMP_CODE and VAL could be implemented. */
3448 loc = asserts_for[SSA_NAME_VERSION (name)];
3449 last_loc = loc;
3450 found = false;
3451 while (loc)
3452 {
3453 if (loc->comp_code == comp_code
3454 && (loc->val == val
3455 || operand_equal_p (loc->val, val, 0)))
3456 {
3457 /* If the assertion NAME COMP_CODE VAL has already been
3458 registered at a basic block that dominates DEST_BB, then
3459 we don't need to insert the same assertion again. Note
3460 that we don't check strict dominance here to avoid
3461 replicating the same assertion inside the same basic
3462 block more than once (e.g., when a pointer is
3463 dereferenced several times inside a block).
3464
3465 An exception to this rule are edge insertions. If the
3466 new assertion is to be inserted on edge E, then it will
3467 dominate all the other insertions that we may want to
3468 insert in DEST_BB. So, if we are doing an edge
3469 insertion, don't do this dominance check. */
3470 if (e == NULL
3471 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
3472 return;
3473
3474 /* Otherwise, if E is not a critical edge and DEST_BB
3475 dominates the existing location for the assertion, move
3476 the assertion up in the dominance tree by updating its
3477 location information. */
3478 if ((e == NULL || !EDGE_CRITICAL_P (e))
3479 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
3480 {
3481 loc->bb = dest_bb;
3482 loc->e = e;
3483 loc->si = si;
3484 return;
3485 }
3486 }
3487
3488 /* Update the last node of the list and move to the next one. */
3489 last_loc = loc;
3490 loc = loc->next;
3491 }
3492
3493 /* If we didn't find an assertion already registered for
3494 NAME COMP_CODE VAL, add a new one at the end of the list of
3495 assertions associated with NAME. */
3496 n = XNEW (struct assert_locus_d);
3497 n->bb = dest_bb;
3498 n->e = e;
3499 n->si = si;
3500 n->comp_code = comp_code;
3501 n->val = val;
3502 n->next = NULL;
3503
3504 if (last_loc)
3505 last_loc->next = n;
3506 else
3507 asserts_for[SSA_NAME_VERSION (name)] = n;
3508
3509 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
3510 }
3511
3512 /* COND is a predicate which uses NAME. Extract a suitable test code
3513 and value and store them into *CODE_P and *VAL_P so the predicate
3514 is normalized to NAME *CODE_P *VAL_P.
3515
3516 If no extraction was possible, return FALSE, otherwise return TRUE.
3517
3518 If INVERT is true, then we invert the result stored into *CODE_P. */
3519
3520 static bool
3521 extract_code_and_val_from_cond (tree name, tree cond, bool invert,
3522 enum tree_code *code_p, tree *val_p)
3523 {
3524 enum tree_code comp_code;
3525 tree val;
3526
3527 /* Predicates may be a single SSA name or NAME OP VAL. */
3528 if (cond == name)
3529 {
3530 /* If the predicate is a name, it must be NAME, in which
3531 case we create the predicate NAME == true or
3532 NAME == false accordingly. */
3533 comp_code = EQ_EXPR;
3534 val = invert ? boolean_false_node : boolean_true_node;
3535 }
3536 else
3537 {
3538 /* Otherwise, we have a comparison of the form NAME COMP VAL
3539 or VAL COMP NAME. */
3540 if (name == TREE_OPERAND (cond, 1))
3541 {
3542 /* If the predicate is of the form VAL COMP NAME, flip
3543 COMP around because we need to register NAME as the
3544 first operand in the predicate. */
3545 comp_code = swap_tree_comparison (TREE_CODE (cond));
3546 val = TREE_OPERAND (cond, 0);
3547 }
3548 else
3549 {
3550 /* The comparison is of the form NAME COMP VAL, so the
3551 comparison code remains unchanged. */
3552 comp_code = TREE_CODE (cond);
3553 val = TREE_OPERAND (cond, 1);
3554 }
3555
3556 /* Invert the comparison code as necessary. */
3557 if (invert)
3558 comp_code = invert_tree_comparison (comp_code, 0);
3559
3560 /* VRP does not handle float types. */
3561 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
3562 return false;
3563
3564 /* Do not register always-false predicates.
3565 FIXME: this works around a limitation in fold() when dealing with
3566 enumerations. Given 'enum { N1, N2 } x;', fold will not
3567 fold 'if (x > N2)' to 'if (0)'. */
3568 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
3569 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
3570 {
3571 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
3572 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
3573
3574 if (comp_code == GT_EXPR
3575 && (!max
3576 || compare_values (val, max) == 0))
3577 return false;
3578
3579 if (comp_code == LT_EXPR
3580 && (!min
3581 || compare_values (val, min) == 0))
3582 return false;
3583 }
3584 }
3585 *code_p = comp_code;
3586 *val_p = val;
3587 return true;
3588 }
3589
3590 /* OP is an operand of a truth value expression which is known to have
3591 a particular value. Register any asserts for OP and for any
3592 operands in OP's defining statement.
3593
3594 If CODE is EQ_EXPR, then we want to register OP is zero (false),
3595 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
3596
3597 static bool
3598 register_edge_assert_for_1 (tree op, enum tree_code code,
3599 edge e, block_stmt_iterator bsi)
3600 {
3601 bool retval = false;
3602 tree op_def, rhs, val;
3603
3604 /* We only care about SSA_NAMEs. */
3605 if (TREE_CODE (op) != SSA_NAME)
3606 return false;
3607
3608 /* We know that OP will have a zero or nonzero value. If OP is used
3609 more than once go ahead and register an assert for OP.
3610
3611 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
3612 it will always be set for OP (because OP is used in a COND_EXPR in
3613 the subgraph). */
3614 if (!has_single_use (op))
3615 {
3616 val = build_int_cst (TREE_TYPE (op), 0);
3617 register_new_assert_for (op, code, val, NULL, e, bsi);
3618 retval = true;
3619 }
3620
3621 /* Now look at how OP is set. If it's set from a comparison,
3622 a truth operation or some bit operations, then we may be able
3623 to register information about the operands of that assignment. */
3624 op_def = SSA_NAME_DEF_STMT (op);
3625 if (TREE_CODE (op_def) != GIMPLE_MODIFY_STMT)
3626 return retval;
3627
3628 rhs = GIMPLE_STMT_OPERAND (op_def, 1);
3629
3630 if (COMPARISON_CLASS_P (rhs))
3631 {
3632 bool invert = (code == EQ_EXPR ? true : false);
3633 tree op0 = TREE_OPERAND (rhs, 0);
3634 tree op1 = TREE_OPERAND (rhs, 1);
3635
3636 /* Conditionally register an assert for each SSA_NAME in the
3637 comparison. */
3638 if (TREE_CODE (op0) == SSA_NAME
3639 && !has_single_use (op0)
3640 && extract_code_and_val_from_cond (op0, rhs,
3641 invert, &code, &val))
3642 {
3643 register_new_assert_for (op0, code, val, NULL, e, bsi);
3644 retval = true;
3645 }
3646
3647 /* Similarly for the second operand of the comparison. */
3648 if (TREE_CODE (op1) == SSA_NAME
3649 && !has_single_use (op1)
3650 && extract_code_and_val_from_cond (op1, rhs,
3651 invert, &code, &val))
3652 {
3653 register_new_assert_for (op1, code, val, NULL, e, bsi);
3654 retval = true;
3655 }
3656 }
3657 else if ((code == NE_EXPR
3658 && (TREE_CODE (rhs) == TRUTH_AND_EXPR
3659 || TREE_CODE (rhs) == BIT_AND_EXPR))
3660 || (code == EQ_EXPR
3661 && (TREE_CODE (rhs) == TRUTH_OR_EXPR
3662 || TREE_CODE (rhs) == BIT_IOR_EXPR)))
3663 {
3664 /* Recurse on each operand. */
3665 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3666 code, e, bsi);
3667 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 1),
3668 code, e, bsi);
3669 }
3670 else if (TREE_CODE (rhs) == TRUTH_NOT_EXPR)
3671 {
3672 /* Recurse, flipping CODE. */
3673 code = invert_tree_comparison (code, false);
3674 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3675 code, e, bsi);
3676 }
3677 else if (TREE_CODE (rhs) == SSA_NAME)
3678 {
3679 /* Recurse through the copy. */
3680 retval |= register_edge_assert_for_1 (rhs, code, e, bsi);
3681 }
3682 else if (TREE_CODE (rhs) == NOP_EXPR
3683 || TREE_CODE (rhs) == CONVERT_EXPR
3684 || TREE_CODE (rhs) == NON_LVALUE_EXPR)
3685 {
3686 /* Recurse through the type conversion. */
3687 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
3688 code, e, bsi);
3689 }
3690
3691 return retval;
3692 }
3693
3694 /* Try to register an edge assertion for SSA name NAME on edge E for
3695 the condition COND contributing to the conditional jump pointed to by SI.
3696 Return true if an assertion for NAME could be registered. */
3697
3698 static bool
3699 register_edge_assert_for (tree name, edge e, block_stmt_iterator si, tree cond)
3700 {
3701 tree val;
3702 enum tree_code comp_code;
3703 bool retval = false;
3704 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
3705
3706 /* Do not attempt to infer anything in names that flow through
3707 abnormal edges. */
3708 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
3709 return false;
3710
3711 if (!extract_code_and_val_from_cond (name, cond, is_else_edge,
3712 &comp_code, &val))
3713 return false;
3714
3715 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
3716 reachable from E. */
3717 if (TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
3718 {
3719 register_new_assert_for (name, comp_code, val, NULL, e, si);
3720 retval = true;
3721 }
3722
3723 /* If COND is effectively an equality test of an SSA_NAME against
3724 the value zero or one, then we may be able to assert values
3725 for SSA_NAMEs which flow into COND. */
3726
3727 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
3728 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
3729 have nonzero value. */
3730 if (((comp_code == EQ_EXPR && integer_onep (val))
3731 || (comp_code == NE_EXPR && integer_zerop (val))))
3732 {
3733 tree def_stmt = SSA_NAME_DEF_STMT (name);
3734
3735 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3736 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_AND_EXPR
3737 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_AND_EXPR))
3738 {
3739 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3740 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
3741 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
3742 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
3743 }
3744 }
3745
3746 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
3747 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
3748 have zero value. */
3749 if (((comp_code == EQ_EXPR && integer_zerop (val))
3750 || (comp_code == NE_EXPR && integer_onep (val))))
3751 {
3752 tree def_stmt = SSA_NAME_DEF_STMT (name);
3753
3754 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3755 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_OR_EXPR
3756 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_IOR_EXPR))
3757 {
3758 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3759 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
3760 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
3761 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
3762 }
3763 }
3764
3765 return retval;
3766 }
3767
3768
3769 static bool find_assert_locations (basic_block bb);
3770
3771 /* Determine whether the outgoing edges of BB should receive an
3772 ASSERT_EXPR for each of the operands of BB's LAST statement.
3773 The last statement of BB must be a COND_EXPR.
3774
3775 If any of the sub-graphs rooted at BB have an interesting use of
3776 the predicate operands, an assert location node is added to the
3777 list of assertions for the corresponding operands. */
3778
3779 static bool
3780 find_conditional_asserts (basic_block bb, tree last)
3781 {
3782 bool need_assert;
3783 block_stmt_iterator bsi;
3784 tree op;
3785 edge_iterator ei;
3786 edge e;
3787 ssa_op_iter iter;
3788
3789 need_assert = false;
3790 bsi = bsi_for_stmt (last);
3791
3792 /* Look for uses of the operands in each of the sub-graphs
3793 rooted at BB. We need to check each of the outgoing edges
3794 separately, so that we know what kind of ASSERT_EXPR to
3795 insert. */
3796 FOR_EACH_EDGE (e, ei, bb->succs)
3797 {
3798 if (e->dest == bb)
3799 continue;
3800
3801 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
3802 Otherwise, when we finish traversing each of the sub-graphs, we
3803 won't know whether the variables were found in the sub-graphs or
3804 if they had been found in a block upstream from BB.
3805
3806 This is actually a bad idea is some cases, particularly jump
3807 threading. Consider a CFG like the following:
3808
3809 0
3810 /|
3811 1 |
3812 \|
3813 2
3814 / \
3815 3 4
3816
3817 Assume that one or more operands in the conditional at the
3818 end of block 0 are used in a conditional in block 2, but not
3819 anywhere in block 1. In this case we will not insert any
3820 assert statements in block 1, which may cause us to miss
3821 opportunities to optimize, particularly for jump threading. */
3822 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3823 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3824
3825 /* Traverse the strictly dominated sub-graph rooted at E->DEST
3826 to determine if any of the operands in the conditional
3827 predicate are used. */
3828 need_assert |= find_assert_locations (e->dest);
3829
3830 /* Register the necessary assertions for each operand in the
3831 conditional predicate. */
3832 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3833 need_assert |= register_edge_assert_for (op, e, bsi,
3834 COND_EXPR_COND (last));
3835 }
3836
3837 /* Finally, indicate that we have found the operands in the
3838 conditional. */
3839 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3840 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3841
3842 return need_assert;
3843 }
3844
3845 /* Compare two case labels sorting first by the destination label uid
3846 and then by the case value. */
3847
3848 static int
3849 compare_case_labels (const void *p1, const void *p2)
3850 {
3851 const_tree const case1 = *(const_tree const*)p1;
3852 const_tree const case2 = *(const_tree const*)p2;
3853 unsigned int uid1 = DECL_UID (CASE_LABEL (case1));
3854 unsigned int uid2 = DECL_UID (CASE_LABEL (case2));
3855
3856 if (uid1 < uid2)
3857 return -1;
3858 else if (uid1 == uid2)
3859 {
3860 /* Make sure the default label is first in a group. */
3861 if (!CASE_LOW (case1))
3862 return -1;
3863 else if (!CASE_LOW (case2))
3864 return 1;
3865 else
3866 return tree_int_cst_compare (CASE_LOW (case1), CASE_LOW (case2));
3867 }
3868 else
3869 return 1;
3870 }
3871
3872 /* Determine whether the outgoing edges of BB should receive an
3873 ASSERT_EXPR for each of the operands of BB's LAST statement.
3874 The last statement of BB must be a SWITCH_EXPR.
3875
3876 If any of the sub-graphs rooted at BB have an interesting use of
3877 the predicate operands, an assert location node is added to the
3878 list of assertions for the corresponding operands. */
3879
3880 static bool
3881 find_switch_asserts (basic_block bb, tree last)
3882 {
3883 bool need_assert;
3884 block_stmt_iterator bsi;
3885 tree op, cond;
3886 edge e;
3887 tree vec = SWITCH_LABELS (last), vec2;
3888 size_t n = TREE_VEC_LENGTH (vec);
3889 unsigned int idx;
3890
3891 need_assert = false;
3892 bsi = bsi_for_stmt (last);
3893 op = TREE_OPERAND (last, 0);
3894 if (TREE_CODE (op) != SSA_NAME)
3895 return false;
3896
3897 /* Build a vector of case labels sorted by destination label. */
3898 vec2 = make_tree_vec (n);
3899 for (idx = 0; idx < n; ++idx)
3900 TREE_VEC_ELT (vec2, idx) = TREE_VEC_ELT (vec, idx);
3901 qsort (&TREE_VEC_ELT (vec2, 0), n, sizeof (tree), compare_case_labels);
3902
3903 for (idx = 0; idx < n; ++idx)
3904 {
3905 tree min, max;
3906 tree cl = TREE_VEC_ELT (vec2, idx);
3907
3908 min = CASE_LOW (cl);
3909 max = CASE_HIGH (cl);
3910
3911 /* If there are multiple case labels with the same destination
3912 we need to combine them to a single value range for the edge. */
3913 if (idx + 1 < n
3914 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx + 1)))
3915 {
3916 /* Skip labels until the last of the group. */
3917 do {
3918 ++idx;
3919 } while (idx < n
3920 && CASE_LABEL (cl) == CASE_LABEL (TREE_VEC_ELT (vec2, idx)));
3921 --idx;
3922
3923 /* Pick up the maximum of the case label range. */
3924 if (CASE_HIGH (TREE_VEC_ELT (vec2, idx)))
3925 max = CASE_HIGH (TREE_VEC_ELT (vec2, idx));
3926 else
3927 max = CASE_LOW (TREE_VEC_ELT (vec2, idx));
3928 }
3929
3930 /* Nothing to do if the range includes the default label until we
3931 can register anti-ranges. */
3932 if (min == NULL_TREE)
3933 continue;
3934
3935 /* Find the edge to register the assert expr on. */
3936 e = find_edge (bb, label_to_block (CASE_LABEL (cl)));
3937
3938 /* Remove the SWITCH_EXPR operand from the FOUND_IN_SUBGRAPH bitmap.
3939 Otherwise, when we finish traversing each of the sub-graphs, we
3940 won't know whether the variables were found in the sub-graphs or
3941 if they had been found in a block upstream from BB. */
3942 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3943
3944 /* Traverse the strictly dominated sub-graph rooted at E->DEST
3945 to determine if any of the operands in the conditional
3946 predicate are used. */
3947 if (e->dest != bb)
3948 need_assert |= find_assert_locations (e->dest);
3949
3950 /* Register the necessary assertions for the operand in the
3951 SWITCH_EXPR. */
3952 cond = build2 (max ? GE_EXPR : EQ_EXPR, boolean_type_node,
3953 op, fold_convert (TREE_TYPE (op), min));
3954 need_assert |= register_edge_assert_for (op, e, bsi, cond);
3955 if (max)
3956 {
3957 cond = build2 (LE_EXPR, boolean_type_node,
3958 op, fold_convert (TREE_TYPE (op), max));
3959 need_assert |= register_edge_assert_for (op, e, bsi, cond);
3960 }
3961 }
3962
3963 /* Finally, indicate that we have found the operand in the
3964 SWITCH_EXPR. */
3965 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3966
3967 return need_assert;
3968 }
3969
3970
3971 /* Traverse all the statements in block BB looking for statements that
3972 may generate useful assertions for the SSA names in their operand.
3973 If a statement produces a useful assertion A for name N_i, then the
3974 list of assertions already generated for N_i is scanned to
3975 determine if A is actually needed.
3976
3977 If N_i already had the assertion A at a location dominating the
3978 current location, then nothing needs to be done. Otherwise, the
3979 new location for A is recorded instead.
3980
3981 1- For every statement S in BB, all the variables used by S are
3982 added to bitmap FOUND_IN_SUBGRAPH.
3983
3984 2- If statement S uses an operand N in a way that exposes a known
3985 value range for N, then if N was not already generated by an
3986 ASSERT_EXPR, create a new assert location for N. For instance,
3987 if N is a pointer and the statement dereferences it, we can
3988 assume that N is not NULL.
3989
3990 3- COND_EXPRs are a special case of #2. We can derive range
3991 information from the predicate but need to insert different
3992 ASSERT_EXPRs for each of the sub-graphs rooted at the
3993 conditional block. If the last statement of BB is a conditional
3994 expression of the form 'X op Y', then
3995
3996 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
3997
3998 b) If the conditional is the only entry point to the sub-graph
3999 corresponding to the THEN_CLAUSE, recurse into it. On
4000 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
4001 an ASSERT_EXPR is added for the corresponding variable.
4002
4003 c) Repeat step (b) on the ELSE_CLAUSE.
4004
4005 d) Mark X and Y in FOUND_IN_SUBGRAPH.
4006
4007 For instance,
4008
4009 if (a == 9)
4010 b = a;
4011 else
4012 b = c + 1;
4013
4014 In this case, an assertion on the THEN clause is useful to
4015 determine that 'a' is always 9 on that edge. However, an assertion
4016 on the ELSE clause would be unnecessary.
4017
4018 4- If BB does not end in a conditional expression, then we recurse
4019 into BB's dominator children.
4020
4021 At the end of the recursive traversal, every SSA name will have a
4022 list of locations where ASSERT_EXPRs should be added. When a new
4023 location for name N is found, it is registered by calling
4024 register_new_assert_for. That function keeps track of all the
4025 registered assertions to prevent adding unnecessary assertions.
4026 For instance, if a pointer P_4 is dereferenced more than once in a
4027 dominator tree, only the location dominating all the dereference of
4028 P_4 will receive an ASSERT_EXPR.
4029
4030 If this function returns true, then it means that there are names
4031 for which we need to generate ASSERT_EXPRs. Those assertions are
4032 inserted by process_assert_insertions. */
4033
4034 static bool
4035 find_assert_locations (basic_block bb)
4036 {
4037 block_stmt_iterator si;
4038 tree last, phi;
4039 bool need_assert;
4040 basic_block son;
4041
4042 if (TEST_BIT (blocks_visited, bb->index))
4043 return false;
4044
4045 SET_BIT (blocks_visited, bb->index);
4046
4047 need_assert = false;
4048
4049 /* Traverse all PHI nodes in BB marking used operands. */
4050 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4051 {
4052 use_operand_p arg_p;
4053 ssa_op_iter i;
4054
4055 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
4056 {
4057 tree arg = USE_FROM_PTR (arg_p);
4058 if (TREE_CODE (arg) == SSA_NAME)
4059 {
4060 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
4061 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
4062 }
4063 }
4064 }
4065
4066 /* Traverse all the statements in BB marking used names and looking
4067 for statements that may infer assertions for their used operands. */
4068 last = NULL_TREE;
4069 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4070 {
4071 tree stmt, op;
4072 ssa_op_iter i;
4073
4074 stmt = bsi_stmt (si);
4075
4076 /* See if we can derive an assertion for any of STMT's operands. */
4077 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
4078 {
4079 tree value;
4080 enum tree_code comp_code;
4081
4082 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
4083 the sub-graph of a conditional block, when we return from
4084 this recursive walk, our parent will use the
4085 FOUND_IN_SUBGRAPH bitset to determine if one of the
4086 operands it was looking for was present in the sub-graph. */
4087 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
4088
4089 /* If OP is used in such a way that we can infer a value
4090 range for it, and we don't find a previous assertion for
4091 it, create a new assertion location node for OP. */
4092 if (infer_value_range (stmt, op, &comp_code, &value))
4093 {
4094 /* If we are able to infer a nonzero value range for OP,
4095 then walk backwards through the use-def chain to see if OP
4096 was set via a typecast.
4097
4098 If so, then we can also infer a nonzero value range
4099 for the operand of the NOP_EXPR. */
4100 if (comp_code == NE_EXPR && integer_zerop (value))
4101 {
4102 tree t = op;
4103 tree def_stmt = SSA_NAME_DEF_STMT (t);
4104
4105 while (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
4106 && TREE_CODE
4107 (GIMPLE_STMT_OPERAND (def_stmt, 1)) == NOP_EXPR
4108 && TREE_CODE
4109 (TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1),
4110 0)) == SSA_NAME
4111 && POINTER_TYPE_P
4112 (TREE_TYPE (TREE_OPERAND
4113 (GIMPLE_STMT_OPERAND (def_stmt,
4114 1), 0))))
4115 {
4116 t = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
4117 def_stmt = SSA_NAME_DEF_STMT (t);
4118
4119 /* Note we want to register the assert for the
4120 operand of the NOP_EXPR after SI, not after the
4121 conversion. */
4122 if (! has_single_use (t))
4123 {
4124 register_new_assert_for (t, comp_code, value,
4125 bb, NULL, si);
4126 need_assert = true;
4127 }
4128 }
4129 }
4130
4131 /* If OP is used only once, namely in this STMT, don't
4132 bother creating an ASSERT_EXPR for it. Such an
4133 ASSERT_EXPR would do nothing but increase compile time. */
4134 if (!has_single_use (op))
4135 {
4136 register_new_assert_for (op, comp_code, value, bb, NULL, si);
4137 need_assert = true;
4138 }
4139 }
4140 }
4141
4142 /* Remember the last statement of the block. */
4143 last = stmt;
4144 }
4145
4146 /* If BB's last statement is a conditional expression
4147 involving integer operands, recurse into each of the sub-graphs
4148 rooted at BB to determine if we need to add ASSERT_EXPRs. */
4149 if (last
4150 && TREE_CODE (last) == COND_EXPR
4151 && !fp_predicate (COND_EXPR_COND (last))
4152 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4153 need_assert |= find_conditional_asserts (bb, last);
4154
4155 if (last
4156 && TREE_CODE (last) == SWITCH_EXPR
4157 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
4158 need_assert |= find_switch_asserts (bb, last);
4159
4160 /* Recurse into the dominator children of BB. */
4161 for (son = first_dom_son (CDI_DOMINATORS, bb);
4162 son;
4163 son = next_dom_son (CDI_DOMINATORS, son))
4164 need_assert |= find_assert_locations (son);
4165
4166 return need_assert;
4167 }
4168
4169
4170 /* Create an ASSERT_EXPR for NAME and insert it in the location
4171 indicated by LOC. Return true if we made any edge insertions. */
4172
4173 static bool
4174 process_assert_insertions_for (tree name, assert_locus_t loc)
4175 {
4176 /* Build the comparison expression NAME_i COMP_CODE VAL. */
4177 tree stmt, cond, assert_expr;
4178 edge_iterator ei;
4179 edge e;
4180
4181 cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
4182 assert_expr = build_assert_expr_for (cond, name);
4183
4184 if (loc->e)
4185 {
4186 /* We have been asked to insert the assertion on an edge. This
4187 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4188 #if defined ENABLE_CHECKING
4189 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
4190 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
4191 #endif
4192
4193 bsi_insert_on_edge (loc->e, assert_expr);
4194 return true;
4195 }
4196
4197 /* Otherwise, we can insert right after LOC->SI iff the
4198 statement must not be the last statement in the block. */
4199 stmt = bsi_stmt (loc->si);
4200 if (!stmt_ends_bb_p (stmt))
4201 {
4202 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
4203 return false;
4204 }
4205
4206 /* If STMT must be the last statement in BB, we can only insert new
4207 assertions on the non-abnormal edge out of BB. Note that since
4208 STMT is not control flow, there may only be one non-abnormal edge
4209 out of BB. */
4210 FOR_EACH_EDGE (e, ei, loc->bb->succs)
4211 if (!(e->flags & EDGE_ABNORMAL))
4212 {
4213 bsi_insert_on_edge (e, assert_expr);
4214 return true;
4215 }
4216
4217 gcc_unreachable ();
4218 }
4219
4220
4221 /* Process all the insertions registered for every name N_i registered
4222 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4223 found in ASSERTS_FOR[i]. */
4224
4225 static void
4226 process_assert_insertions (void)
4227 {
4228 unsigned i;
4229 bitmap_iterator bi;
4230 bool update_edges_p = false;
4231 int num_asserts = 0;
4232
4233 if (dump_file && (dump_flags & TDF_DETAILS))
4234 dump_all_asserts (dump_file);
4235
4236 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4237 {
4238 assert_locus_t loc = asserts_for[i];
4239 gcc_assert (loc);
4240
4241 while (loc)
4242 {
4243 assert_locus_t next = loc->next;
4244 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
4245 free (loc);
4246 loc = next;
4247 num_asserts++;
4248 }
4249 }
4250
4251 if (update_edges_p)
4252 bsi_commit_edge_inserts ();
4253
4254 if (dump_file && (dump_flags & TDF_STATS))
4255 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
4256 num_asserts);
4257 }
4258
4259
4260 /* Traverse the flowgraph looking for conditional jumps to insert range
4261 expressions. These range expressions are meant to provide information
4262 to optimizations that need to reason in terms of value ranges. They
4263 will not be expanded into RTL. For instance, given:
4264
4265 x = ...
4266 y = ...
4267 if (x < y)
4268 y = x - 2;
4269 else
4270 x = y + 3;
4271
4272 this pass will transform the code into:
4273
4274 x = ...
4275 y = ...
4276 if (x < y)
4277 {
4278 x = ASSERT_EXPR <x, x < y>
4279 y = x - 2
4280 }
4281 else
4282 {
4283 y = ASSERT_EXPR <y, x <= y>
4284 x = y + 3
4285 }
4286
4287 The idea is that once copy and constant propagation have run, other
4288 optimizations will be able to determine what ranges of values can 'x'
4289 take in different paths of the code, simply by checking the reaching
4290 definition of 'x'. */
4291
4292 static void
4293 insert_range_assertions (void)
4294 {
4295 edge e;
4296 edge_iterator ei;
4297 bool update_ssa_p;
4298
4299 found_in_subgraph = sbitmap_alloc (num_ssa_names);
4300 sbitmap_zero (found_in_subgraph);
4301
4302 blocks_visited = sbitmap_alloc (last_basic_block);
4303 sbitmap_zero (blocks_visited);
4304
4305 need_assert_for = BITMAP_ALLOC (NULL);
4306 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
4307
4308 calculate_dominance_info (CDI_DOMINATORS);
4309
4310 update_ssa_p = false;
4311 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
4312 if (find_assert_locations (e->dest))
4313 update_ssa_p = true;
4314
4315 if (update_ssa_p)
4316 {
4317 process_assert_insertions ();
4318 update_ssa (TODO_update_ssa_no_phi);
4319 }
4320
4321 if (dump_file && (dump_flags & TDF_DETAILS))
4322 {
4323 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
4324 dump_function_to_file (current_function_decl, dump_file, dump_flags);
4325 }
4326
4327 sbitmap_free (found_in_subgraph);
4328 free (asserts_for);
4329 BITMAP_FREE (need_assert_for);
4330 }
4331
4332 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4333 and "struct" hacks. If VRP can determine that the
4334 array subscript is a constant, check if it is outside valid
4335 range. If the array subscript is a RANGE, warn if it is
4336 non-overlapping with valid range.
4337 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4338
4339 static void
4340 check_array_ref (tree ref, location_t* locus, bool ignore_off_by_one)
4341 {
4342 value_range_t* vr = NULL;
4343 tree low_sub, up_sub;
4344 tree low_bound, up_bound = array_ref_up_bound (ref);
4345
4346 low_sub = up_sub = TREE_OPERAND (ref, 1);
4347
4348 if (!up_bound || TREE_NO_WARNING (ref)
4349 || TREE_CODE (up_bound) != INTEGER_CST
4350 /* Can not check flexible arrays. */
4351 || (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
4352 && TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
4353 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
4354 /* Accesses after the end of arrays of size 0 (gcc
4355 extension) and 1 are likely intentional ("struct
4356 hack"). */
4357 || compare_tree_int (up_bound, 1) <= 0)
4358 return;
4359
4360 low_bound = array_ref_low_bound (ref);
4361
4362 if (TREE_CODE (low_sub) == SSA_NAME)
4363 {
4364 vr = get_value_range (low_sub);
4365 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4366 {
4367 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
4368 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
4369 }
4370 }
4371
4372 if (vr && vr->type == VR_ANTI_RANGE)
4373 {
4374 if (TREE_CODE (up_sub) == INTEGER_CST
4375 && tree_int_cst_lt (up_bound, up_sub)
4376 && TREE_CODE (low_sub) == INTEGER_CST
4377 && tree_int_cst_lt (low_sub, low_bound))
4378 {
4379 warning (OPT_Warray_bounds,
4380 "%Harray subscript is outside array bounds", locus);
4381 TREE_NO_WARNING (ref) = 1;
4382 }
4383 }
4384 else if (TREE_CODE (up_sub) == INTEGER_CST
4385 && tree_int_cst_lt (up_bound, up_sub)
4386 && !tree_int_cst_equal (up_bound, up_sub)
4387 && (!ignore_off_by_one
4388 || !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
4389 up_bound,
4390 integer_one_node,
4391 0),
4392 up_sub)))
4393 {
4394 warning (OPT_Warray_bounds, "%Harray subscript is above array bounds",
4395 locus);
4396 TREE_NO_WARNING (ref) = 1;
4397 }
4398 else if (TREE_CODE (low_sub) == INTEGER_CST
4399 && tree_int_cst_lt (low_sub, low_bound))
4400 {
4401 warning (OPT_Warray_bounds, "%Harray subscript is below array bounds",
4402 locus);
4403 TREE_NO_WARNING (ref) = 1;
4404 }
4405 }
4406
4407 /* Searches if the expr T, located at LOCATION computes
4408 address of an ARRAY_REF, and call check_array_ref on it. */
4409
4410 static void
4411 search_for_addr_array(tree t, location_t* location)
4412 {
4413 while (TREE_CODE (t) == SSA_NAME)
4414 {
4415 t = SSA_NAME_DEF_STMT (t);
4416 if (TREE_CODE (t) != GIMPLE_MODIFY_STMT)
4417 return;
4418 t = GIMPLE_STMT_OPERAND (t, 1);
4419 }
4420
4421
4422 /* We are only interested in addresses of ARRAY_REF's. */
4423 if (TREE_CODE (t) != ADDR_EXPR)
4424 return;
4425
4426 /* Check each ARRAY_REFs in the reference chain. */
4427 do
4428 {
4429 if (TREE_CODE (t) == ARRAY_REF)
4430 check_array_ref (t, location, true /*ignore_off_by_one*/);
4431
4432 t = TREE_OPERAND(t,0);
4433 }
4434 while (handled_component_p (t));
4435 }
4436
4437 /* walk_tree() callback that checks if *TP is
4438 an ARRAY_REF inside an ADDR_EXPR (in which an array
4439 subscript one outside the valid range is allowed). Call
4440 check_array_ref for each ARRAY_REF found. The location is
4441 passed in DATA. */
4442
4443 static tree
4444 check_array_bounds (tree *tp, int *walk_subtree, void *data)
4445 {
4446 tree t = *tp;
4447 tree stmt = (tree)data;
4448 location_t *location = EXPR_LOCUS (stmt);
4449
4450 if (!EXPR_HAS_LOCATION (stmt))
4451 {
4452 *walk_subtree = FALSE;
4453 return NULL_TREE;
4454 }
4455
4456 *walk_subtree = TRUE;
4457
4458 if (TREE_CODE (t) == ARRAY_REF)
4459 check_array_ref (t, location, false /*ignore_off_by_one*/);
4460
4461 if (TREE_CODE (t) == INDIRECT_REF
4462 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
4463 search_for_addr_array (TREE_OPERAND (t, 0), location);
4464 else if (TREE_CODE (t) == CALL_EXPR)
4465 {
4466 tree arg;
4467 call_expr_arg_iterator iter;
4468
4469 FOR_EACH_CALL_EXPR_ARG (arg, iter, t)
4470 search_for_addr_array (arg, location);
4471 }
4472
4473 if (TREE_CODE (t) == ADDR_EXPR)
4474 *walk_subtree = FALSE;
4475
4476 return NULL_TREE;
4477 }
4478
4479 /* Walk over all statements of all reachable BBs and call check_array_bounds
4480 on them. */
4481
4482 static void
4483 check_all_array_refs (void)
4484 {
4485 basic_block bb;
4486 block_stmt_iterator si;
4487
4488 FOR_EACH_BB (bb)
4489 {
4490 /* Skip bb's that are clearly unreachable. */
4491 if (single_pred_p (bb))
4492 {
4493 basic_block pred_bb = EDGE_PRED (bb, 0)->src;
4494 tree ls = NULL_TREE;
4495
4496 if (!bsi_end_p (bsi_last (pred_bb)))
4497 ls = bsi_stmt (bsi_last (pred_bb));
4498
4499 if (ls && TREE_CODE (ls) == COND_EXPR
4500 && ((COND_EXPR_COND (ls) == boolean_false_node
4501 && (EDGE_PRED (bb, 0)->flags & EDGE_TRUE_VALUE))
4502 || (COND_EXPR_COND (ls) == boolean_true_node
4503 && (EDGE_PRED (bb, 0)->flags & EDGE_FALSE_VALUE))))
4504 continue;
4505 }
4506 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4507 walk_tree (bsi_stmt_ptr (si), check_array_bounds,
4508 bsi_stmt (si), NULL);
4509 }
4510 }
4511
4512 /* Convert range assertion expressions into the implied copies and
4513 copy propagate away the copies. Doing the trivial copy propagation
4514 here avoids the need to run the full copy propagation pass after
4515 VRP.
4516
4517 FIXME, this will eventually lead to copy propagation removing the
4518 names that had useful range information attached to them. For
4519 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
4520 then N_i will have the range [3, +INF].
4521
4522 However, by converting the assertion into the implied copy
4523 operation N_i = N_j, we will then copy-propagate N_j into the uses
4524 of N_i and lose the range information. We may want to hold on to
4525 ASSERT_EXPRs a little while longer as the ranges could be used in
4526 things like jump threading.
4527
4528 The problem with keeping ASSERT_EXPRs around is that passes after
4529 VRP need to handle them appropriately.
4530
4531 Another approach would be to make the range information a first
4532 class property of the SSA_NAME so that it can be queried from
4533 any pass. This is made somewhat more complex by the need for
4534 multiple ranges to be associated with one SSA_NAME. */
4535
4536 static void
4537 remove_range_assertions (void)
4538 {
4539 basic_block bb;
4540 block_stmt_iterator si;
4541
4542 /* Note that the BSI iterator bump happens at the bottom of the
4543 loop and no bump is necessary if we're removing the statement
4544 referenced by the current BSI. */
4545 FOR_EACH_BB (bb)
4546 for (si = bsi_start (bb); !bsi_end_p (si);)
4547 {
4548 tree stmt = bsi_stmt (si);
4549 tree use_stmt;
4550
4551 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
4552 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == ASSERT_EXPR)
4553 {
4554 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1), var;
4555 tree cond = fold (ASSERT_EXPR_COND (rhs));
4556 use_operand_p use_p;
4557 imm_use_iterator iter;
4558
4559 gcc_assert (cond != boolean_false_node);
4560
4561 /* Propagate the RHS into every use of the LHS. */
4562 var = ASSERT_EXPR_VAR (rhs);
4563 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
4564 GIMPLE_STMT_OPERAND (stmt, 0))
4565 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
4566 {
4567 SET_USE (use_p, var);
4568 gcc_assert (TREE_CODE (var) == SSA_NAME);
4569 }
4570
4571 /* And finally, remove the copy, it is not needed. */
4572 bsi_remove (&si, true);
4573 release_defs (stmt);
4574 }
4575 else
4576 bsi_next (&si);
4577 }
4578
4579 sbitmap_free (blocks_visited);
4580 }
4581
4582
4583 /* Return true if STMT is interesting for VRP. */
4584
4585 static bool
4586 stmt_interesting_for_vrp (tree stmt)
4587 {
4588 if (TREE_CODE (stmt) == PHI_NODE
4589 && is_gimple_reg (PHI_RESULT (stmt))
4590 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
4591 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
4592 return true;
4593 else if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
4594 {
4595 tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
4596 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4597
4598 /* In general, assignments with virtual operands are not useful
4599 for deriving ranges, with the obvious exception of calls to
4600 builtin functions. */
4601 if (TREE_CODE (lhs) == SSA_NAME
4602 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4603 || POINTER_TYPE_P (TREE_TYPE (lhs)))
4604 && ((TREE_CODE (rhs) == CALL_EXPR
4605 && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
4606 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
4607 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
4608 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
4609 return true;
4610 }
4611 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
4612 return true;
4613
4614 return false;
4615 }
4616
4617
4618 /* Initialize local data structures for VRP. */
4619
4620 static void
4621 vrp_initialize (void)
4622 {
4623 basic_block bb;
4624
4625 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
4626 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
4627
4628 FOR_EACH_BB (bb)
4629 {
4630 block_stmt_iterator si;
4631 tree phi;
4632
4633 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
4634 {
4635 if (!stmt_interesting_for_vrp (phi))
4636 {
4637 tree lhs = PHI_RESULT (phi);
4638 set_value_range_to_varying (get_value_range (lhs));
4639 DONT_SIMULATE_AGAIN (phi) = true;
4640 }
4641 else
4642 DONT_SIMULATE_AGAIN (phi) = false;
4643 }
4644
4645 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
4646 {
4647 tree stmt = bsi_stmt (si);
4648
4649 if (!stmt_interesting_for_vrp (stmt))
4650 {
4651 ssa_op_iter i;
4652 tree def;
4653 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
4654 set_value_range_to_varying (get_value_range (def));
4655 DONT_SIMULATE_AGAIN (stmt) = true;
4656 }
4657 else
4658 {
4659 DONT_SIMULATE_AGAIN (stmt) = false;
4660 }
4661 }
4662 }
4663 }
4664
4665
4666 /* Visit assignment STMT. If it produces an interesting range, record
4667 the SSA name in *OUTPUT_P. */
4668
4669 static enum ssa_prop_result
4670 vrp_visit_assignment (tree stmt, tree *output_p)
4671 {
4672 tree lhs, rhs, def;
4673 ssa_op_iter iter;
4674
4675 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
4676 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4677
4678 /* We only keep track of ranges in integral and pointer types. */
4679 if (TREE_CODE (lhs) == SSA_NAME
4680 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
4681 /* It is valid to have NULL MIN/MAX values on a type. See
4682 build_range_type. */
4683 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
4684 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
4685 || POINTER_TYPE_P (TREE_TYPE (lhs))))
4686 {
4687 struct loop *l;
4688 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4689
4690 extract_range_from_expr (&new_vr, rhs);
4691
4692 /* If STMT is inside a loop, we may be able to know something
4693 else about the range of LHS by examining scalar evolution
4694 information. */
4695 if (current_loops && (l = loop_containing_stmt (stmt)))
4696 adjust_range_with_scev (&new_vr, l, stmt, lhs);
4697
4698 if (update_value_range (lhs, &new_vr))
4699 {
4700 *output_p = lhs;
4701
4702 if (dump_file && (dump_flags & TDF_DETAILS))
4703 {
4704 fprintf (dump_file, "Found new range for ");
4705 print_generic_expr (dump_file, lhs, 0);
4706 fprintf (dump_file, ": ");
4707 dump_value_range (dump_file, &new_vr);
4708 fprintf (dump_file, "\n\n");
4709 }
4710
4711 if (new_vr.type == VR_VARYING)
4712 return SSA_PROP_VARYING;
4713
4714 return SSA_PROP_INTERESTING;
4715 }
4716
4717 return SSA_PROP_NOT_INTERESTING;
4718 }
4719
4720 /* Every other statement produces no useful ranges. */
4721 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
4722 set_value_range_to_varying (get_value_range (def));
4723
4724 return SSA_PROP_VARYING;
4725 }
4726
4727 /* Helper that gets the value range of the SSA_NAME with version I
4728 or a symbolic range containing the SSA_NAME only if the value range
4729 is varying or undefined. */
4730
4731 static inline value_range_t
4732 get_vr_for_comparison (int i)
4733 {
4734 value_range_t vr = *(vr_value[i]);
4735
4736 /* If name N_i does not have a valid range, use N_i as its own
4737 range. This allows us to compare against names that may
4738 have N_i in their ranges. */
4739 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
4740 {
4741 vr.type = VR_RANGE;
4742 vr.min = ssa_name (i);
4743 vr.max = ssa_name (i);
4744 }
4745
4746 return vr;
4747 }
4748
4749 /* Compare all the value ranges for names equivalent to VAR with VAL
4750 using comparison code COMP. Return the same value returned by
4751 compare_range_with_value, including the setting of
4752 *STRICT_OVERFLOW_P. */
4753
4754 static tree
4755 compare_name_with_value (enum tree_code comp, tree var, tree val,
4756 bool *strict_overflow_p)
4757 {
4758 bitmap_iterator bi;
4759 unsigned i;
4760 bitmap e;
4761 tree retval, t;
4762 int used_strict_overflow;
4763 bool sop;
4764 value_range_t equiv_vr;
4765
4766 /* Get the set of equivalences for VAR. */
4767 e = get_value_range (var)->equiv;
4768
4769 /* Start at -1. Set it to 0 if we do a comparison without relying
4770 on overflow, or 1 if all comparisons rely on overflow. */
4771 used_strict_overflow = -1;
4772
4773 /* Compare vars' value range with val. */
4774 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
4775 sop = false;
4776 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
4777 if (retval)
4778 used_strict_overflow = sop ? 1 : 0;
4779
4780 /* If the equiv set is empty we have done all work we need to do. */
4781 if (e == NULL)
4782 {
4783 if (retval
4784 && used_strict_overflow > 0)
4785 *strict_overflow_p = true;
4786 return retval;
4787 }
4788
4789 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
4790 {
4791 equiv_vr = get_vr_for_comparison (i);
4792 sop = false;
4793 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
4794 if (t)
4795 {
4796 /* If we get different answers from different members
4797 of the equivalence set this check must be in a dead
4798 code region. Folding it to a trap representation
4799 would be correct here. For now just return don't-know. */
4800 if (retval != NULL
4801 && t != retval)
4802 {
4803 retval = NULL_TREE;
4804 break;
4805 }
4806 retval = t;
4807
4808 if (!sop)
4809 used_strict_overflow = 0;
4810 else if (used_strict_overflow < 0)
4811 used_strict_overflow = 1;
4812 }
4813 }
4814
4815 if (retval
4816 && used_strict_overflow > 0)
4817 *strict_overflow_p = true;
4818
4819 return retval;
4820 }
4821
4822
4823 /* Given a comparison code COMP and names N1 and N2, compare all the
4824 ranges equivalent to N1 against all the ranges equivalent to N2
4825 to determine the value of N1 COMP N2. Return the same value
4826 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
4827 whether we relied on an overflow infinity in the comparison. */
4828
4829
4830 static tree
4831 compare_names (enum tree_code comp, tree n1, tree n2,
4832 bool *strict_overflow_p)
4833 {
4834 tree t, retval;
4835 bitmap e1, e2;
4836 bitmap_iterator bi1, bi2;
4837 unsigned i1, i2;
4838 int used_strict_overflow;
4839 static bitmap_obstack *s_obstack = NULL;
4840 static bitmap s_e1 = NULL, s_e2 = NULL;
4841
4842 /* Compare the ranges of every name equivalent to N1 against the
4843 ranges of every name equivalent to N2. */
4844 e1 = get_value_range (n1)->equiv;
4845 e2 = get_value_range (n2)->equiv;
4846
4847 /* Use the fake bitmaps if e1 or e2 are not available. */
4848 if (s_obstack == NULL)
4849 {
4850 s_obstack = XNEW (bitmap_obstack);
4851 bitmap_obstack_initialize (s_obstack);
4852 s_e1 = BITMAP_ALLOC (s_obstack);
4853 s_e2 = BITMAP_ALLOC (s_obstack);
4854 }
4855 if (e1 == NULL)
4856 e1 = s_e1;
4857 if (e2 == NULL)
4858 e2 = s_e2;
4859
4860 /* Add N1 and N2 to their own set of equivalences to avoid
4861 duplicating the body of the loop just to check N1 and N2
4862 ranges. */
4863 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
4864 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
4865
4866 /* If the equivalence sets have a common intersection, then the two
4867 names can be compared without checking their ranges. */
4868 if (bitmap_intersect_p (e1, e2))
4869 {
4870 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4871 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4872
4873 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
4874 ? boolean_true_node
4875 : boolean_false_node;
4876 }
4877
4878 /* Start at -1. Set it to 0 if we do a comparison without relying
4879 on overflow, or 1 if all comparisons rely on overflow. */
4880 used_strict_overflow = -1;
4881
4882 /* Otherwise, compare all the equivalent ranges. First, add N1 and
4883 N2 to their own set of equivalences to avoid duplicating the body
4884 of the loop just to check N1 and N2 ranges. */
4885 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
4886 {
4887 value_range_t vr1 = get_vr_for_comparison (i1);
4888
4889 t = retval = NULL_TREE;
4890 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
4891 {
4892 bool sop = false;
4893
4894 value_range_t vr2 = get_vr_for_comparison (i2);
4895
4896 t = compare_ranges (comp, &vr1, &vr2, &sop);
4897 if (t)
4898 {
4899 /* If we get different answers from different members
4900 of the equivalence set this check must be in a dead
4901 code region. Folding it to a trap representation
4902 would be correct here. For now just return don't-know. */
4903 if (retval != NULL
4904 && t != retval)
4905 {
4906 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4907 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4908 return NULL_TREE;
4909 }
4910 retval = t;
4911
4912 if (!sop)
4913 used_strict_overflow = 0;
4914 else if (used_strict_overflow < 0)
4915 used_strict_overflow = 1;
4916 }
4917 }
4918
4919 if (retval)
4920 {
4921 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4922 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4923 if (used_strict_overflow > 0)
4924 *strict_overflow_p = true;
4925 return retval;
4926 }
4927 }
4928
4929 /* None of the equivalent ranges are useful in computing this
4930 comparison. */
4931 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4932 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4933 return NULL_TREE;
4934 }
4935
4936
4937 /* Given a conditional predicate COND, try to determine if COND yields
4938 true or false based on the value ranges of its operands. Return
4939 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
4940 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
4941 NULL if the conditional cannot be evaluated at compile time.
4942
4943 If USE_EQUIV_P is true, the ranges of all the names equivalent with
4944 the operands in COND are used when trying to compute its value.
4945 This is only used during final substitution. During propagation,
4946 we only check the range of each variable and not its equivalents.
4947
4948 Set *STRICT_OVERFLOW_P to indicate whether we relied on an overflow
4949 infinity to produce the result. */
4950
4951 static tree
4952 vrp_evaluate_conditional_warnv (tree cond, bool use_equiv_p,
4953 bool *strict_overflow_p)
4954 {
4955 gcc_assert (TREE_CODE (cond) == SSA_NAME
4956 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
4957
4958 if (TREE_CODE (cond) == SSA_NAME)
4959 {
4960 value_range_t *vr;
4961 tree retval;
4962
4963 if (use_equiv_p)
4964 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node,
4965 strict_overflow_p);
4966 else
4967 {
4968 value_range_t *vr = get_value_range (cond);
4969 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node,
4970 strict_overflow_p);
4971 }
4972
4973 /* If COND has a known boolean range, return it. */
4974 if (retval)
4975 return retval;
4976
4977 /* Otherwise, if COND has a symbolic range of exactly one value,
4978 return it. */
4979 vr = get_value_range (cond);
4980 if (vr->type == VR_RANGE && vr->min == vr->max)
4981 return vr->min;
4982 }
4983 else
4984 {
4985 tree op0 = TREE_OPERAND (cond, 0);
4986 tree op1 = TREE_OPERAND (cond, 1);
4987
4988 /* We only deal with integral and pointer types. */
4989 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
4990 && !POINTER_TYPE_P (TREE_TYPE (op0)))
4991 return NULL_TREE;
4992
4993 if (use_equiv_p)
4994 {
4995 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
4996 return compare_names (TREE_CODE (cond), op0, op1,
4997 strict_overflow_p);
4998 else if (TREE_CODE (op0) == SSA_NAME)
4999 return compare_name_with_value (TREE_CODE (cond), op0, op1,
5000 strict_overflow_p);
5001 else if (TREE_CODE (op1) == SSA_NAME)
5002 return (compare_name_with_value
5003 (swap_tree_comparison (TREE_CODE (cond)), op1, op0,
5004 strict_overflow_p));
5005 }
5006 else
5007 {
5008 value_range_t *vr0, *vr1;
5009
5010 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
5011 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
5012
5013 if (vr0 && vr1)
5014 return compare_ranges (TREE_CODE (cond), vr0, vr1,
5015 strict_overflow_p);
5016 else if (vr0 && vr1 == NULL)
5017 return compare_range_with_value (TREE_CODE (cond), vr0, op1,
5018 strict_overflow_p);
5019 else if (vr0 == NULL && vr1)
5020 return (compare_range_with_value
5021 (swap_tree_comparison (TREE_CODE (cond)), vr1, op0,
5022 strict_overflow_p));
5023 }
5024 }
5025
5026 /* Anything else cannot be computed statically. */
5027 return NULL_TREE;
5028 }
5029
5030 /* Given COND within STMT, try to simplify it based on value range
5031 information. Return NULL if the conditional can not be evaluated.
5032 The ranges of all the names equivalent with the operands in COND
5033 will be used when trying to compute the value. If the result is
5034 based on undefined signed overflow, issue a warning if
5035 appropriate. */
5036
5037 tree
5038 vrp_evaluate_conditional (tree cond, tree stmt)
5039 {
5040 bool sop;
5041 tree ret;
5042
5043 sop = false;
5044 ret = vrp_evaluate_conditional_warnv (cond, true, &sop);
5045
5046 if (ret && sop)
5047 {
5048 enum warn_strict_overflow_code wc;
5049 const char* warnmsg;
5050
5051 if (is_gimple_min_invariant (ret))
5052 {
5053 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
5054 warnmsg = G_("assuming signed overflow does not occur when "
5055 "simplifying conditional to constant");
5056 }
5057 else
5058 {
5059 wc = WARN_STRICT_OVERFLOW_COMPARISON;
5060 warnmsg = G_("assuming signed overflow does not occur when "
5061 "simplifying conditional");
5062 }
5063
5064 if (issue_strict_overflow_warning (wc))
5065 {
5066 location_t locus;
5067
5068 if (!EXPR_HAS_LOCATION (stmt))
5069 locus = input_location;
5070 else
5071 locus = EXPR_LOCATION (stmt);
5072 warning (OPT_Wstrict_overflow, "%H%s", &locus, warnmsg);
5073 }
5074 }
5075
5076 return ret;
5077 }
5078
5079
5080 /* Visit conditional statement STMT. If we can determine which edge
5081 will be taken out of STMT's basic block, record it in
5082 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
5083 SSA_PROP_VARYING. */
5084
5085 static enum ssa_prop_result
5086 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
5087 {
5088 tree cond, val;
5089 bool sop;
5090
5091 *taken_edge_p = NULL;
5092
5093 /* FIXME. Handle SWITCH_EXPRs. */
5094 if (TREE_CODE (stmt) == SWITCH_EXPR)
5095 return SSA_PROP_VARYING;
5096
5097 cond = COND_EXPR_COND (stmt);
5098
5099 if (dump_file && (dump_flags & TDF_DETAILS))
5100 {
5101 tree use;
5102 ssa_op_iter i;
5103
5104 fprintf (dump_file, "\nVisiting conditional with predicate: ");
5105 print_generic_expr (dump_file, cond, 0);
5106 fprintf (dump_file, "\nWith known ranges\n");
5107
5108 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
5109 {
5110 fprintf (dump_file, "\t");
5111 print_generic_expr (dump_file, use, 0);
5112 fprintf (dump_file, ": ");
5113 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
5114 }
5115
5116 fprintf (dump_file, "\n");
5117 }
5118
5119 /* Compute the value of the predicate COND by checking the known
5120 ranges of each of its operands.
5121
5122 Note that we cannot evaluate all the equivalent ranges here
5123 because those ranges may not yet be final and with the current
5124 propagation strategy, we cannot determine when the value ranges
5125 of the names in the equivalence set have changed.
5126
5127 For instance, given the following code fragment
5128
5129 i_5 = PHI <8, i_13>
5130 ...
5131 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
5132 if (i_14 == 1)
5133 ...
5134
5135 Assume that on the first visit to i_14, i_5 has the temporary
5136 range [8, 8] because the second argument to the PHI function is
5137 not yet executable. We derive the range ~[0, 0] for i_14 and the
5138 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
5139 the first time, since i_14 is equivalent to the range [8, 8], we
5140 determine that the predicate is always false.
5141
5142 On the next round of propagation, i_13 is determined to be
5143 VARYING, which causes i_5 to drop down to VARYING. So, another
5144 visit to i_14 is scheduled. In this second visit, we compute the
5145 exact same range and equivalence set for i_14, namely ~[0, 0] and
5146 { i_5 }. But we did not have the previous range for i_5
5147 registered, so vrp_visit_assignment thinks that the range for
5148 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
5149 is not visited again, which stops propagation from visiting
5150 statements in the THEN clause of that if().
5151
5152 To properly fix this we would need to keep the previous range
5153 value for the names in the equivalence set. This way we would've
5154 discovered that from one visit to the other i_5 changed from
5155 range [8, 8] to VR_VARYING.
5156
5157 However, fixing this apparent limitation may not be worth the
5158 additional checking. Testing on several code bases (GCC, DLV,
5159 MICO, TRAMP3D and SPEC2000) showed that doing this results in
5160 4 more predicates folded in SPEC. */
5161 sop = false;
5162 val = vrp_evaluate_conditional_warnv (cond, false, &sop);
5163 if (val)
5164 {
5165 if (!sop)
5166 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
5167 else
5168 {
5169 if (dump_file && (dump_flags & TDF_DETAILS))
5170 fprintf (dump_file,
5171 "\nIgnoring predicate evaluation because "
5172 "it assumes that signed overflow is undefined");
5173 val = NULL_TREE;
5174 }
5175 }
5176
5177 if (dump_file && (dump_flags & TDF_DETAILS))
5178 {
5179 fprintf (dump_file, "\nPredicate evaluates to: ");
5180 if (val == NULL_TREE)
5181 fprintf (dump_file, "DON'T KNOW\n");
5182 else
5183 print_generic_stmt (dump_file, val, 0);
5184 }
5185
5186 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
5187 }
5188
5189
5190 /* Evaluate statement STMT. If the statement produces a useful range,
5191 return SSA_PROP_INTERESTING and record the SSA name with the
5192 interesting range into *OUTPUT_P.
5193
5194 If STMT is a conditional branch and we can determine its truth
5195 value, the taken edge is recorded in *TAKEN_EDGE_P.
5196
5197 If STMT produces a varying value, return SSA_PROP_VARYING. */
5198
5199 static enum ssa_prop_result
5200 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
5201 {
5202 tree def;
5203 ssa_op_iter iter;
5204 stmt_ann_t ann;
5205
5206 if (dump_file && (dump_flags & TDF_DETAILS))
5207 {
5208 fprintf (dump_file, "\nVisiting statement:\n");
5209 print_generic_stmt (dump_file, stmt, dump_flags);
5210 fprintf (dump_file, "\n");
5211 }
5212
5213 ann = stmt_ann (stmt);
5214 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
5215 {
5216 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
5217
5218 /* In general, assignments with virtual operands are not useful
5219 for deriving ranges, with the obvious exception of calls to
5220 builtin functions. */
5221 if ((TREE_CODE (rhs) == CALL_EXPR
5222 && TREE_CODE (CALL_EXPR_FN (rhs)) == ADDR_EXPR
5223 && DECL_P (TREE_OPERAND (CALL_EXPR_FN (rhs), 0))
5224 && DECL_IS_BUILTIN (TREE_OPERAND (CALL_EXPR_FN (rhs), 0)))
5225 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
5226 return vrp_visit_assignment (stmt, output_p);
5227 }
5228 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
5229 return vrp_visit_cond_stmt (stmt, taken_edge_p);
5230
5231 /* All other statements produce nothing of interest for VRP, so mark
5232 their outputs varying and prevent further simulation. */
5233 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
5234 set_value_range_to_varying (get_value_range (def));
5235
5236 return SSA_PROP_VARYING;
5237 }
5238
5239
5240 /* Meet operation for value ranges. Given two value ranges VR0 and
5241 VR1, store in VR0 a range that contains both VR0 and VR1. This
5242 may not be the smallest possible such range. */
5243
5244 static void
5245 vrp_meet (value_range_t *vr0, value_range_t *vr1)
5246 {
5247 if (vr0->type == VR_UNDEFINED)
5248 {
5249 copy_value_range (vr0, vr1);
5250 return;
5251 }
5252
5253 if (vr1->type == VR_UNDEFINED)
5254 {
5255 /* Nothing to do. VR0 already has the resulting range. */
5256 return;
5257 }
5258
5259 if (vr0->type == VR_VARYING)
5260 {
5261 /* Nothing to do. VR0 already has the resulting range. */
5262 return;
5263 }
5264
5265 if (vr1->type == VR_VARYING)
5266 {
5267 set_value_range_to_varying (vr0);
5268 return;
5269 }
5270
5271 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
5272 {
5273 int cmp;
5274 tree min, max;
5275
5276 /* Compute the convex hull of the ranges. The lower limit of
5277 the new range is the minimum of the two ranges. If they
5278 cannot be compared, then give up. */
5279 cmp = compare_values (vr0->min, vr1->min);
5280 if (cmp == 0 || cmp == 1)
5281 min = vr1->min;
5282 else if (cmp == -1)
5283 min = vr0->min;
5284 else
5285 goto give_up;
5286
5287 /* Similarly, the upper limit of the new range is the maximum
5288 of the two ranges. If they cannot be compared, then
5289 give up. */
5290 cmp = compare_values (vr0->max, vr1->max);
5291 if (cmp == 0 || cmp == -1)
5292 max = vr1->max;
5293 else if (cmp == 1)
5294 max = vr0->max;
5295 else
5296 goto give_up;
5297
5298 /* Check for useless ranges. */
5299 if (INTEGRAL_TYPE_P (TREE_TYPE (min))
5300 && ((vrp_val_is_min (min) || is_overflow_infinity (min))
5301 && (vrp_val_is_max (max) || is_overflow_infinity (max))))
5302 goto give_up;
5303
5304 /* The resulting set of equivalences is the intersection of
5305 the two sets. */
5306 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5307 bitmap_and_into (vr0->equiv, vr1->equiv);
5308 else if (vr0->equiv && !vr1->equiv)
5309 bitmap_clear (vr0->equiv);
5310
5311 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
5312 }
5313 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
5314 {
5315 /* Two anti-ranges meet only if their complements intersect.
5316 Only handle the case of identical ranges. */
5317 if (compare_values (vr0->min, vr1->min) == 0
5318 && compare_values (vr0->max, vr1->max) == 0
5319 && compare_values (vr0->min, vr0->max) == 0)
5320 {
5321 /* The resulting set of equivalences is the intersection of
5322 the two sets. */
5323 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5324 bitmap_and_into (vr0->equiv, vr1->equiv);
5325 else if (vr0->equiv && !vr1->equiv)
5326 bitmap_clear (vr0->equiv);
5327 }
5328 else
5329 goto give_up;
5330 }
5331 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
5332 {
5333 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
5334 only handle the case where the ranges have an empty intersection.
5335 The result of the meet operation is the anti-range. */
5336 if (!symbolic_range_p (vr0)
5337 && !symbolic_range_p (vr1)
5338 && !value_ranges_intersect_p (vr0, vr1))
5339 {
5340 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
5341 set. We need to compute the intersection of the two
5342 equivalence sets. */
5343 if (vr1->type == VR_ANTI_RANGE)
5344 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
5345
5346 /* The resulting set of equivalences is the intersection of
5347 the two sets. */
5348 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
5349 bitmap_and_into (vr0->equiv, vr1->equiv);
5350 else if (vr0->equiv && !vr1->equiv)
5351 bitmap_clear (vr0->equiv);
5352 }
5353 else
5354 goto give_up;
5355 }
5356 else
5357 gcc_unreachable ();
5358
5359 return;
5360
5361 give_up:
5362 /* Failed to find an efficient meet. Before giving up and setting
5363 the result to VARYING, see if we can at least derive a useful
5364 anti-range. FIXME, all this nonsense about distinguishing
5365 anti-ranges from ranges is necessary because of the odd
5366 semantics of range_includes_zero_p and friends. */
5367 if (!symbolic_range_p (vr0)
5368 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
5369 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
5370 && !symbolic_range_p (vr1)
5371 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
5372 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
5373 {
5374 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
5375
5376 /* Since this meet operation did not result from the meeting of
5377 two equivalent names, VR0 cannot have any equivalences. */
5378 if (vr0->equiv)
5379 bitmap_clear (vr0->equiv);
5380 }
5381 else
5382 set_value_range_to_varying (vr0);
5383 }
5384
5385
5386 /* Visit all arguments for PHI node PHI that flow through executable
5387 edges. If a valid value range can be derived from all the incoming
5388 value ranges, set a new range for the LHS of PHI. */
5389
5390 static enum ssa_prop_result
5391 vrp_visit_phi_node (tree phi)
5392 {
5393 int i;
5394 tree lhs = PHI_RESULT (phi);
5395 value_range_t *lhs_vr = get_value_range (lhs);
5396 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
5397 int edges, old_edges;
5398
5399 copy_value_range (&vr_result, lhs_vr);
5400
5401 if (dump_file && (dump_flags & TDF_DETAILS))
5402 {
5403 fprintf (dump_file, "\nVisiting PHI node: ");
5404 print_generic_expr (dump_file, phi, dump_flags);
5405 }
5406
5407 edges = 0;
5408 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
5409 {
5410 edge e = PHI_ARG_EDGE (phi, i);
5411
5412 if (dump_file && (dump_flags & TDF_DETAILS))
5413 {
5414 fprintf (dump_file,
5415 "\n Argument #%d (%d -> %d %sexecutable)\n",
5416 i, e->src->index, e->dest->index,
5417 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
5418 }
5419
5420 if (e->flags & EDGE_EXECUTABLE)
5421 {
5422 tree arg = PHI_ARG_DEF (phi, i);
5423 value_range_t vr_arg;
5424
5425 ++edges;
5426
5427 if (TREE_CODE (arg) == SSA_NAME)
5428 {
5429 vr_arg = *(get_value_range (arg));
5430 }
5431 else
5432 {
5433 if (is_overflow_infinity (arg))
5434 {
5435 arg = copy_node (arg);
5436 TREE_OVERFLOW (arg) = 0;
5437 }
5438
5439 vr_arg.type = VR_RANGE;
5440 vr_arg.min = arg;
5441 vr_arg.max = arg;
5442 vr_arg.equiv = NULL;
5443 }
5444
5445 if (dump_file && (dump_flags & TDF_DETAILS))
5446 {
5447 fprintf (dump_file, "\t");
5448 print_generic_expr (dump_file, arg, dump_flags);
5449 fprintf (dump_file, "\n\tValue: ");
5450 dump_value_range (dump_file, &vr_arg);
5451 fprintf (dump_file, "\n");
5452 }
5453
5454 vrp_meet (&vr_result, &vr_arg);
5455
5456 if (vr_result.type == VR_VARYING)
5457 break;
5458 }
5459 }
5460
5461 if (vr_result.type == VR_VARYING)
5462 goto varying;
5463
5464 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
5465 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
5466
5467 /* To prevent infinite iterations in the algorithm, derive ranges
5468 when the new value is slightly bigger or smaller than the
5469 previous one. We don't do this if we have seen a new executable
5470 edge; this helps us avoid an overflow infinity for conditionals
5471 which are not in a loop. */
5472 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
5473 && edges <= old_edges)
5474 {
5475 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
5476 {
5477 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
5478 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
5479
5480 /* If the new minimum is smaller or larger than the previous
5481 one, go all the way to -INF. In the first case, to avoid
5482 iterating millions of times to reach -INF, and in the
5483 other case to avoid infinite bouncing between different
5484 minimums. */
5485 if (cmp_min > 0 || cmp_min < 0)
5486 {
5487 /* If we will end up with a (-INF, +INF) range, set it
5488 to VARYING. */
5489 if (vrp_val_is_max (vr_result.max))
5490 goto varying;
5491
5492 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
5493 || !vrp_var_may_overflow (lhs, phi))
5494 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
5495 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
5496 vr_result.min =
5497 negative_overflow_infinity (TREE_TYPE (vr_result.min));
5498 else
5499 goto varying;
5500 }
5501
5502 /* Similarly, if the new maximum is smaller or larger than
5503 the previous one, go all the way to +INF. */
5504 if (cmp_max < 0 || cmp_max > 0)
5505 {
5506 /* If we will end up with a (-INF, +INF) range, set it
5507 to VARYING. */
5508 if (vrp_val_is_min (vr_result.min))
5509 goto varying;
5510
5511 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
5512 || !vrp_var_may_overflow (lhs, phi))
5513 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
5514 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
5515 vr_result.max =
5516 positive_overflow_infinity (TREE_TYPE (vr_result.max));
5517 else
5518 goto varying;
5519 }
5520 }
5521 }
5522
5523 /* If the new range is different than the previous value, keep
5524 iterating. */
5525 if (update_value_range (lhs, &vr_result))
5526 return SSA_PROP_INTERESTING;
5527
5528 /* Nothing changed, don't add outgoing edges. */
5529 return SSA_PROP_NOT_INTERESTING;
5530
5531 /* No match found. Set the LHS to VARYING. */
5532 varying:
5533 set_value_range_to_varying (lhs_vr);
5534 return SSA_PROP_VARYING;
5535 }
5536
5537 /* Simplify a division or modulo operator to a right shift or
5538 bitwise and if the first operand is unsigned or is greater
5539 than zero and the second operand is an exact power of two. */
5540
5541 static void
5542 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
5543 {
5544 tree val = NULL;
5545 tree op = TREE_OPERAND (rhs, 0);
5546 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
5547
5548 if (TYPE_UNSIGNED (TREE_TYPE (op)))
5549 {
5550 val = integer_one_node;
5551 }
5552 else
5553 {
5554 bool sop = false;
5555
5556 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
5557
5558 if (val
5559 && sop
5560 && integer_onep (val)
5561 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
5562 {
5563 location_t locus;
5564
5565 if (!EXPR_HAS_LOCATION (stmt))
5566 locus = input_location;
5567 else
5568 locus = EXPR_LOCATION (stmt);
5569 warning (OPT_Wstrict_overflow,
5570 ("%Hassuming signed overflow does not occur when "
5571 "simplifying / or %% to >> or &"),
5572 &locus);
5573 }
5574 }
5575
5576 if (val && integer_onep (val))
5577 {
5578 tree t;
5579 tree op0 = TREE_OPERAND (rhs, 0);
5580 tree op1 = TREE_OPERAND (rhs, 1);
5581
5582 if (rhs_code == TRUNC_DIV_EXPR)
5583 {
5584 t = build_int_cst (NULL_TREE, tree_log2 (op1));
5585 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
5586 }
5587 else
5588 {
5589 t = build_int_cst (TREE_TYPE (op1), 1);
5590 t = int_const_binop (MINUS_EXPR, op1, t, 0);
5591 t = fold_convert (TREE_TYPE (op0), t);
5592 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
5593 }
5594
5595 GIMPLE_STMT_OPERAND (stmt, 1) = t;
5596 update_stmt (stmt);
5597 }
5598 }
5599
5600 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
5601 ABS_EXPR. If the operand is <= 0, then simplify the
5602 ABS_EXPR into a NEGATE_EXPR. */
5603
5604 static void
5605 simplify_abs_using_ranges (tree stmt, tree rhs)
5606 {
5607 tree val = NULL;
5608 tree op = TREE_OPERAND (rhs, 0);
5609 tree type = TREE_TYPE (op);
5610 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
5611
5612 if (TYPE_UNSIGNED (type))
5613 {
5614 val = integer_zero_node;
5615 }
5616 else if (vr)
5617 {
5618 bool sop = false;
5619
5620 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
5621 if (!val)
5622 {
5623 sop = false;
5624 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
5625 &sop);
5626
5627 if (val)
5628 {
5629 if (integer_zerop (val))
5630 val = integer_one_node;
5631 else if (integer_onep (val))
5632 val = integer_zero_node;
5633 }
5634 }
5635
5636 if (val
5637 && (integer_onep (val) || integer_zerop (val)))
5638 {
5639 tree t;
5640
5641 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
5642 {
5643 location_t locus;
5644
5645 if (!EXPR_HAS_LOCATION (stmt))
5646 locus = input_location;
5647 else
5648 locus = EXPR_LOCATION (stmt);
5649 warning (OPT_Wstrict_overflow,
5650 ("%Hassuming signed overflow does not occur when "
5651 "simplifying abs (X) to X or -X"),
5652 &locus);
5653 }
5654
5655 if (integer_onep (val))
5656 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
5657 else
5658 t = op;
5659
5660 GIMPLE_STMT_OPERAND (stmt, 1) = t;
5661 update_stmt (stmt);
5662 }
5663 }
5664 }
5665
5666 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
5667 a known value range VR.
5668
5669 If there is one and only one value which will satisfy the
5670 conditional, then return that value. Else return NULL. */
5671
5672 static tree
5673 test_for_singularity (enum tree_code cond_code, tree op0,
5674 tree op1, value_range_t *vr)
5675 {
5676 tree min = NULL;
5677 tree max = NULL;
5678
5679 /* Extract minimum/maximum values which satisfy the
5680 the conditional as it was written. */
5681 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
5682 {
5683 /* This should not be negative infinity; there is no overflow
5684 here. */
5685 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
5686
5687 max = op1;
5688 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
5689 {
5690 tree one = build_int_cst (TREE_TYPE (op0), 1);
5691 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
5692 if (EXPR_P (max))
5693 TREE_NO_WARNING (max) = 1;
5694 }
5695 }
5696 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
5697 {
5698 /* This should not be positive infinity; there is no overflow
5699 here. */
5700 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
5701
5702 min = op1;
5703 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
5704 {
5705 tree one = build_int_cst (TREE_TYPE (op0), 1);
5706 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
5707 if (EXPR_P (min))
5708 TREE_NO_WARNING (min) = 1;
5709 }
5710 }
5711
5712 /* Now refine the minimum and maximum values using any
5713 value range information we have for op0. */
5714 if (min && max)
5715 {
5716 if (compare_values (vr->min, min) == -1)
5717 min = min;
5718 else
5719 min = vr->min;
5720 if (compare_values (vr->max, max) == 1)
5721 max = max;
5722 else
5723 max = vr->max;
5724
5725 /* If the new min/max values have converged to a single value,
5726 then there is only one value which can satisfy the condition,
5727 return that value. */
5728 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
5729 return min;
5730 }
5731 return NULL;
5732 }
5733
5734 /* Simplify a conditional using a relational operator to an equality
5735 test if the range information indicates only one value can satisfy
5736 the original conditional. */
5737
5738 static void
5739 simplify_cond_using_ranges (tree stmt)
5740 {
5741 tree cond = COND_EXPR_COND (stmt);
5742 tree op0 = TREE_OPERAND (cond, 0);
5743 tree op1 = TREE_OPERAND (cond, 1);
5744 enum tree_code cond_code = TREE_CODE (cond);
5745
5746 if (cond_code != NE_EXPR
5747 && cond_code != EQ_EXPR
5748 && TREE_CODE (op0) == SSA_NAME
5749 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
5750 && is_gimple_min_invariant (op1))
5751 {
5752 value_range_t *vr = get_value_range (op0);
5753
5754 /* If we have range information for OP0, then we might be
5755 able to simplify this conditional. */
5756 if (vr->type == VR_RANGE)
5757 {
5758 tree new = test_for_singularity (cond_code, op0, op1, vr);
5759
5760 if (new)
5761 {
5762 if (dump_file)
5763 {
5764 fprintf (dump_file, "Simplified relational ");
5765 print_generic_expr (dump_file, cond, 0);
5766 fprintf (dump_file, " into ");
5767 }
5768
5769 COND_EXPR_COND (stmt)
5770 = build2 (EQ_EXPR, boolean_type_node, op0, new);
5771 update_stmt (stmt);
5772
5773 if (dump_file)
5774 {
5775 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5776 fprintf (dump_file, "\n");
5777 }
5778 return;
5779
5780 }
5781
5782 /* Try again after inverting the condition. We only deal
5783 with integral types here, so no need to worry about
5784 issues with inverting FP comparisons. */
5785 cond_code = invert_tree_comparison (cond_code, false);
5786 new = test_for_singularity (cond_code, op0, op1, vr);
5787
5788 if (new)
5789 {
5790 if (dump_file)
5791 {
5792 fprintf (dump_file, "Simplified relational ");
5793 print_generic_expr (dump_file, cond, 0);
5794 fprintf (dump_file, " into ");
5795 }
5796
5797 COND_EXPR_COND (stmt)
5798 = build2 (NE_EXPR, boolean_type_node, op0, new);
5799 update_stmt (stmt);
5800
5801 if (dump_file)
5802 {
5803 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
5804 fprintf (dump_file, "\n");
5805 }
5806 return;
5807
5808 }
5809 }
5810 }
5811 }
5812
5813 /* Simplify STMT using ranges if possible. */
5814
5815 void
5816 simplify_stmt_using_ranges (tree stmt)
5817 {
5818 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
5819 {
5820 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
5821 enum tree_code rhs_code = TREE_CODE (rhs);
5822
5823 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
5824 and BIT_AND_EXPR respectively if the first operand is greater
5825 than zero and the second operand is an exact power of two. */
5826 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
5827 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
5828 && integer_pow2p (TREE_OPERAND (rhs, 1)))
5829 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
5830
5831 /* Transform ABS (X) into X or -X as appropriate. */
5832 if (rhs_code == ABS_EXPR
5833 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
5834 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
5835 simplify_abs_using_ranges (stmt, rhs);
5836 }
5837 else if (TREE_CODE (stmt) == COND_EXPR
5838 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
5839 {
5840 simplify_cond_using_ranges (stmt);
5841 }
5842 }
5843
5844 /* Stack of dest,src equivalency pairs that need to be restored after
5845 each attempt to thread a block's incoming edge to an outgoing edge.
5846
5847 A NULL entry is used to mark the end of pairs which need to be
5848 restored. */
5849 static VEC(tree,heap) *stack;
5850
5851 /* A trivial wrapper so that we can present the generic jump threading
5852 code with a simple API for simplifying statements. STMT is the
5853 statement we want to simplify, WITHIN_STMT provides the location
5854 for any overflow warnings. */
5855
5856 static tree
5857 simplify_stmt_for_jump_threading (tree stmt, tree within_stmt)
5858 {
5859 /* We only use VRP information to simplify conditionals. This is
5860 overly conservative, but it's unclear if doing more would be
5861 worth the compile time cost. */
5862 if (TREE_CODE (stmt) != COND_EXPR)
5863 return NULL;
5864
5865 return vrp_evaluate_conditional (COND_EXPR_COND (stmt), within_stmt);
5866 }
5867
5868 /* Blocks which have more than one predecessor and more than
5869 one successor present jump threading opportunities. ie,
5870 when the block is reached from a specific predecessor, we
5871 may be able to determine which of the outgoing edges will
5872 be traversed. When this optimization applies, we are able
5873 to avoid conditionals at runtime and we may expose secondary
5874 optimization opportunities.
5875
5876 This routine is effectively a driver for the generic jump
5877 threading code. It basically just presents the generic code
5878 with edges that may be suitable for jump threading.
5879
5880 Unlike DOM, we do not iterate VRP if jump threading was successful.
5881 While iterating may expose new opportunities for VRP, it is expected
5882 those opportunities would be very limited and the compile time cost
5883 to expose those opportunities would be significant.
5884
5885 As jump threading opportunities are discovered, they are registered
5886 for later realization. */
5887
5888 static void
5889 identify_jump_threads (void)
5890 {
5891 basic_block bb;
5892 tree dummy;
5893
5894 /* Ugh. When substituting values earlier in this pass we can
5895 wipe the dominance information. So rebuild the dominator
5896 information as we need it within the jump threading code. */
5897 calculate_dominance_info (CDI_DOMINATORS);
5898
5899 /* We do not allow VRP information to be used for jump threading
5900 across a back edge in the CFG. Otherwise it becomes too
5901 difficult to avoid eliminating loop exit tests. Of course
5902 EDGE_DFS_BACK is not accurate at this time so we have to
5903 recompute it. */
5904 mark_dfs_back_edges ();
5905
5906 /* Allocate our unwinder stack to unwind any temporary equivalences
5907 that might be recorded. */
5908 stack = VEC_alloc (tree, heap, 20);
5909
5910 /* To avoid lots of silly node creation, we create a single
5911 conditional and just modify it in-place when attempting to
5912 thread jumps. */
5913 dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
5914 dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
5915
5916 /* Walk through all the blocks finding those which present a
5917 potential jump threading opportunity. We could set this up
5918 as a dominator walker and record data during the walk, but
5919 I doubt it's worth the effort for the classes of jump
5920 threading opportunities we are trying to identify at this
5921 point in compilation. */
5922 FOR_EACH_BB (bb)
5923 {
5924 tree last, cond;
5925
5926 /* If the generic jump threading code does not find this block
5927 interesting, then there is nothing to do. */
5928 if (! potentially_threadable_block (bb))
5929 continue;
5930
5931 /* We only care about blocks ending in a COND_EXPR. While there
5932 may be some value in handling SWITCH_EXPR here, I doubt it's
5933 terribly important. */
5934 last = bsi_stmt (bsi_last (bb));
5935 if (TREE_CODE (last) != COND_EXPR)
5936 continue;
5937
5938 /* We're basically looking for any kind of conditional with
5939 integral type arguments. */
5940 cond = COND_EXPR_COND (last);
5941 if ((TREE_CODE (cond) == SSA_NAME
5942 && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
5943 || (COMPARISON_CLASS_P (cond)
5944 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
5945 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
5946 && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
5947 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
5948 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
5949 {
5950 edge_iterator ei;
5951 edge e;
5952
5953 /* We've got a block with multiple predecessors and multiple
5954 successors which also ends in a suitable conditional. For
5955 each predecessor, see if we can thread it to a specific
5956 successor. */
5957 FOR_EACH_EDGE (e, ei, bb->preds)
5958 {
5959 /* Do not thread across back edges or abnormal edges
5960 in the CFG. */
5961 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
5962 continue;
5963
5964 thread_across_edge (dummy, e, true,
5965 &stack,
5966 simplify_stmt_for_jump_threading);
5967 }
5968 }
5969 }
5970
5971 /* We do not actually update the CFG or SSA graphs at this point as
5972 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
5973 handle ASSERT_EXPRs gracefully. */
5974 }
5975
5976 /* We identified all the jump threading opportunities earlier, but could
5977 not transform the CFG at that time. This routine transforms the
5978 CFG and arranges for the dominator tree to be rebuilt if necessary.
5979
5980 Note the SSA graph update will occur during the normal TODO
5981 processing by the pass manager. */
5982 static void
5983 finalize_jump_threads (void)
5984 {
5985 thread_through_all_blocks (false);
5986 VEC_free (tree, heap, stack);
5987 }
5988
5989
5990 /* Traverse all the blocks folding conditionals with known ranges. */
5991
5992 static void
5993 vrp_finalize (void)
5994 {
5995 size_t i;
5996 prop_value_t *single_val_range;
5997 bool do_value_subst_p;
5998
5999 if (dump_file)
6000 {
6001 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
6002 dump_all_value_ranges (dump_file);
6003 fprintf (dump_file, "\n");
6004 }
6005
6006 /* We may have ended with ranges that have exactly one value. Those
6007 values can be substituted as any other copy/const propagated
6008 value using substitute_and_fold. */
6009 single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
6010
6011 do_value_subst_p = false;
6012 for (i = 0; i < num_ssa_names; i++)
6013 if (vr_value[i]
6014 && vr_value[i]->type == VR_RANGE
6015 && vr_value[i]->min == vr_value[i]->max)
6016 {
6017 single_val_range[i].value = vr_value[i]->min;
6018 do_value_subst_p = true;
6019 }
6020
6021 if (!do_value_subst_p)
6022 {
6023 /* We found no single-valued ranges, don't waste time trying to
6024 do single value substitution in substitute_and_fold. */
6025 free (single_val_range);
6026 single_val_range = NULL;
6027 }
6028
6029 substitute_and_fold (single_val_range, true);
6030
6031 if (warn_array_bounds)
6032 check_all_array_refs ();
6033
6034 /* We must identify jump threading opportunities before we release
6035 the datastructures built by VRP. */
6036 identify_jump_threads ();
6037
6038 /* Free allocated memory. */
6039 for (i = 0; i < num_ssa_names; i++)
6040 if (vr_value[i])
6041 {
6042 BITMAP_FREE (vr_value[i]->equiv);
6043 free (vr_value[i]);
6044 }
6045
6046 free (single_val_range);
6047 free (vr_value);
6048 free (vr_phi_edge_counts);
6049
6050 /* So that we can distinguish between VRP data being available
6051 and not available. */
6052 vr_value = NULL;
6053 vr_phi_edge_counts = NULL;
6054 }
6055
6056 /* Calculates number of iterations for all loops, to ensure that they are
6057 cached. */
6058
6059 static void
6060 record_numbers_of_iterations (void)
6061 {
6062 loop_iterator li;
6063 struct loop *loop;
6064
6065 FOR_EACH_LOOP (li, loop, 0)
6066 {
6067 number_of_latch_executions (loop);
6068 }
6069 }
6070
6071 /* Main entry point to VRP (Value Range Propagation). This pass is
6072 loosely based on J. R. C. Patterson, ``Accurate Static Branch
6073 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
6074 Programming Language Design and Implementation, pp. 67-78, 1995.
6075 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
6076
6077 This is essentially an SSA-CCP pass modified to deal with ranges
6078 instead of constants.
6079
6080 While propagating ranges, we may find that two or more SSA name
6081 have equivalent, though distinct ranges. For instance,
6082
6083 1 x_9 = p_3->a;
6084 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
6085 3 if (p_4 == q_2)
6086 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
6087 5 endif
6088 6 if (q_2)
6089
6090 In the code above, pointer p_5 has range [q_2, q_2], but from the
6091 code we can also determine that p_5 cannot be NULL and, if q_2 had
6092 a non-varying range, p_5's range should also be compatible with it.
6093
6094 These equivalences are created by two expressions: ASSERT_EXPR and
6095 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
6096 result of another assertion, then we can use the fact that p_5 and
6097 p_4 are equivalent when evaluating p_5's range.
6098
6099 Together with value ranges, we also propagate these equivalences
6100 between names so that we can take advantage of information from
6101 multiple ranges when doing final replacement. Note that this
6102 equivalency relation is transitive but not symmetric.
6103
6104 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
6105 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
6106 in contexts where that assertion does not hold (e.g., in line 6).
6107
6108 TODO, the main difference between this pass and Patterson's is that
6109 we do not propagate edge probabilities. We only compute whether
6110 edges can be taken or not. That is, instead of having a spectrum
6111 of jump probabilities between 0 and 1, we only deal with 0, 1 and
6112 DON'T KNOW. In the future, it may be worthwhile to propagate
6113 probabilities to aid branch prediction. */
6114
6115 static unsigned int
6116 execute_vrp (void)
6117 {
6118 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
6119 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
6120 scev_initialize ();
6121
6122 insert_range_assertions ();
6123
6124 /* Compute the # of iterations for each loop before we start the VRP
6125 analysis. The value ranges determined by VRP are used in expression
6126 simplification, that is also used by the # of iterations analysis.
6127 However, in the middle of the VRP analysis, the value ranges do not take
6128 all the possible paths in CFG into account, so they do not have to be
6129 correct, and the # of iterations analysis can obtain wrong results.
6130 This is a problem, since the results of the # of iterations analysis
6131 are cached, so these mistakes would not be corrected when the value
6132 ranges are corrected. */
6133 record_numbers_of_iterations ();
6134
6135 vrp_initialize ();
6136 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
6137 vrp_finalize ();
6138
6139 /* ASSERT_EXPRs must be removed before finalizing jump threads
6140 as finalizing jump threads calls the CFG cleanup code which
6141 does not properly handle ASSERT_EXPRs. */
6142 remove_range_assertions ();
6143
6144 /* If we exposed any new variables, go ahead and put them into
6145 SSA form now, before we handle jump threading. This simplifies
6146 interactions between rewriting of _DECL nodes into SSA form
6147 and rewriting SSA_NAME nodes into SSA form after block
6148 duplication and CFG manipulation. */
6149 update_ssa (TODO_update_ssa);
6150
6151 finalize_jump_threads ();
6152 scev_finalize ();
6153 loop_optimizer_finalize ();
6154
6155 return 0;
6156 }
6157
6158 static bool
6159 gate_vrp (void)
6160 {
6161 return flag_tree_vrp != 0;
6162 }
6163
6164 struct tree_opt_pass pass_vrp =
6165 {
6166 "vrp", /* name */
6167 gate_vrp, /* gate */
6168 execute_vrp, /* execute */
6169 NULL, /* sub */
6170 NULL, /* next */
6171 0, /* static_pass_number */
6172 TV_TREE_VRP, /* tv_id */
6173 PROP_ssa | PROP_alias, /* properties_required */
6174 0, /* properties_provided */
6175 0, /* properties_destroyed */
6176 0, /* todo_flags_start */
6177 TODO_cleanup_cfg
6178 | TODO_ggc_collect
6179 | TODO_verify_ssa
6180 | TODO_dump_func
6181 | TODO_update_ssa, /* todo_flags_finish */
6182 0 /* letter */
6183 };