target.h (globalize_decl_name): New.
[gcc.git] / gcc / tree-vrp.c
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005, 2006 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "toplev.h"
36 #include "cfgloop.h"
37 #include "tree-scalar-evolution.h"
38 #include "tree-ssa-propagate.h"
39 #include "tree-chrec.h"
40
41 /* Set of SSA names found during the dominator traversal of a
42 sub-graph in find_assert_locations. */
43 static sbitmap found_in_subgraph;
44
45 /* Local functions. */
46 static int compare_values (tree val1, tree val2);
47 static void vrp_meet (value_range_t *, value_range_t *);
48
49 /* Location information for ASSERT_EXPRs. Each instance of this
50 structure describes an ASSERT_EXPR for an SSA name. Since a single
51 SSA name may have more than one assertion associated with it, these
52 locations are kept in a linked list attached to the corresponding
53 SSA name. */
54 struct assert_locus_d
55 {
56 /* Basic block where the assertion would be inserted. */
57 basic_block bb;
58
59 /* Some assertions need to be inserted on an edge (e.g., assertions
60 generated by COND_EXPRs). In those cases, BB will be NULL. */
61 edge e;
62
63 /* Pointer to the statement that generated this assertion. */
64 block_stmt_iterator si;
65
66 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
67 enum tree_code comp_code;
68
69 /* Value being compared against. */
70 tree val;
71
72 /* Next node in the linked list. */
73 struct assert_locus_d *next;
74 };
75
76 typedef struct assert_locus_d *assert_locus_t;
77
78 /* If bit I is present, it means that SSA name N_i has a list of
79 assertions that should be inserted in the IL. */
80 static bitmap need_assert_for;
81
82 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
83 holds a list of ASSERT_LOCUS_T nodes that describe where
84 ASSERT_EXPRs for SSA name N_I should be inserted. */
85 static assert_locus_t *asserts_for;
86
87 /* Set of blocks visited in find_assert_locations. Used to avoid
88 visiting the same block more than once. */
89 static sbitmap blocks_visited;
90
91 /* Value range array. After propagation, VR_VALUE[I] holds the range
92 of values that SSA name N_I may take. */
93 static value_range_t **vr_value;
94
95
96 /* Return true if ARG is marked with the nonnull attribute in the
97 current function signature. */
98
99 static bool
100 nonnull_arg_p (tree arg)
101 {
102 tree t, attrs, fntype;
103 unsigned HOST_WIDE_INT arg_num;
104
105 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
106
107 /* The static chain decl is always non null. */
108 if (arg == cfun->static_chain_decl)
109 return true;
110
111 fntype = TREE_TYPE (current_function_decl);
112 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
113
114 /* If "nonnull" wasn't specified, we know nothing about the argument. */
115 if (attrs == NULL_TREE)
116 return false;
117
118 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
119 if (TREE_VALUE (attrs) == NULL_TREE)
120 return true;
121
122 /* Get the position number for ARG in the function signature. */
123 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
124 t;
125 t = TREE_CHAIN (t), arg_num++)
126 {
127 if (t == arg)
128 break;
129 }
130
131 gcc_assert (t == arg);
132
133 /* Now see if ARG_NUM is mentioned in the nonnull list. */
134 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
135 {
136 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
137 return true;
138 }
139
140 return false;
141 }
142
143
144 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
145
146 static void
147 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
148 tree max, bitmap equiv)
149 {
150 #if defined ENABLE_CHECKING
151 /* Check the validity of the range. */
152 if (t == VR_RANGE || t == VR_ANTI_RANGE)
153 {
154 int cmp;
155
156 gcc_assert (min && max);
157
158 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
159 gcc_assert (min != TYPE_MIN_VALUE (TREE_TYPE (min))
160 || max != TYPE_MAX_VALUE (TREE_TYPE (max)));
161
162 cmp = compare_values (min, max);
163 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
164 }
165
166 if (t == VR_UNDEFINED || t == VR_VARYING)
167 gcc_assert (min == NULL_TREE && max == NULL_TREE);
168
169 if (t == VR_UNDEFINED || t == VR_VARYING)
170 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
171 #endif
172
173 vr->type = t;
174 vr->min = min;
175 vr->max = max;
176
177 /* Since updating the equivalence set involves deep copying the
178 bitmaps, only do it if absolutely necessary. */
179 if (vr->equiv == NULL)
180 vr->equiv = BITMAP_ALLOC (NULL);
181
182 if (equiv != vr->equiv)
183 {
184 if (equiv && !bitmap_empty_p (equiv))
185 bitmap_copy (vr->equiv, equiv);
186 else
187 bitmap_clear (vr->equiv);
188 }
189 }
190
191
192 /* Copy value range FROM into value range TO. */
193
194 static inline void
195 copy_value_range (value_range_t *to, value_range_t *from)
196 {
197 set_value_range (to, from->type, from->min, from->max, from->equiv);
198 }
199
200 /* Set value range VR to a non-negative range of type TYPE. */
201
202 static inline void
203 set_value_range_to_nonnegative (value_range_t *vr, tree type)
204 {
205 tree zero = build_int_cst (type, 0);
206 set_value_range (vr, VR_RANGE, zero, TYPE_MAX_VALUE (type), vr->equiv);
207 }
208
209 /* Set value range VR to a non-NULL range of type TYPE. */
210
211 static inline void
212 set_value_range_to_nonnull (value_range_t *vr, tree type)
213 {
214 tree zero = build_int_cst (type, 0);
215 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
216 }
217
218
219 /* Set value range VR to a NULL range of type TYPE. */
220
221 static inline void
222 set_value_range_to_null (value_range_t *vr, tree type)
223 {
224 tree zero = build_int_cst (type, 0);
225 set_value_range (vr, VR_RANGE, zero, zero, vr->equiv);
226 }
227
228
229 /* Set value range VR to VR_VARYING. */
230
231 static inline void
232 set_value_range_to_varying (value_range_t *vr)
233 {
234 vr->type = VR_VARYING;
235 vr->min = vr->max = NULL_TREE;
236 if (vr->equiv)
237 bitmap_clear (vr->equiv);
238 }
239
240
241 /* Set value range VR to a range of a truthvalue of type TYPE. */
242
243 static inline void
244 set_value_range_to_truthvalue (value_range_t *vr, tree type)
245 {
246 if (TYPE_PRECISION (type) == 1)
247 set_value_range_to_varying (vr);
248 else
249 set_value_range (vr, VR_RANGE,
250 build_int_cst (type, 0), build_int_cst (type, 1),
251 vr->equiv);
252 }
253
254
255 /* Set value range VR to VR_UNDEFINED. */
256
257 static inline void
258 set_value_range_to_undefined (value_range_t *vr)
259 {
260 vr->type = VR_UNDEFINED;
261 vr->min = vr->max = NULL_TREE;
262 if (vr->equiv)
263 bitmap_clear (vr->equiv);
264 }
265
266
267 /* Return value range information for VAR.
268
269 If we have no values ranges recorded (ie, VRP is not running), then
270 return NULL. Otherwise create an empty range if none existed for VAR. */
271
272 static value_range_t *
273 get_value_range (tree var)
274 {
275 value_range_t *vr;
276 tree sym;
277 unsigned ver = SSA_NAME_VERSION (var);
278
279 /* If we have no recorded ranges, then return NULL. */
280 if (! vr_value)
281 return NULL;
282
283 vr = vr_value[ver];
284 if (vr)
285 return vr;
286
287 /* Create a default value range. */
288 vr_value[ver] = vr = XCNEW (value_range_t);
289
290 /* Allocate an equivalence set. */
291 vr->equiv = BITMAP_ALLOC (NULL);
292
293 /* If VAR is a default definition, the variable can take any value
294 in VAR's type. */
295 sym = SSA_NAME_VAR (var);
296 if (SSA_NAME_IS_DEFAULT_DEF (var))
297 {
298 /* Try to use the "nonnull" attribute to create ~[0, 0]
299 anti-ranges for pointers. Note that this is only valid with
300 default definitions of PARM_DECLs. */
301 if (TREE_CODE (sym) == PARM_DECL
302 && POINTER_TYPE_P (TREE_TYPE (sym))
303 && nonnull_arg_p (sym))
304 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
305 else
306 set_value_range_to_varying (vr);
307 }
308
309 return vr;
310 }
311
312 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
313
314 static inline bool
315 vrp_operand_equal_p (tree val1, tree val2)
316 {
317 return (val1 == val2
318 || (val1 && val2
319 && operand_equal_p (val1, val2, 0)));
320 }
321
322 /* Return true, if the bitmaps B1 and B2 are equal. */
323
324 static inline bool
325 vrp_bitmap_equal_p (bitmap b1, bitmap b2)
326 {
327 return (b1 == b2
328 || (b1 && b2
329 && bitmap_equal_p (b1, b2)));
330 }
331
332 /* Update the value range and equivalence set for variable VAR to
333 NEW_VR. Return true if NEW_VR is different from VAR's previous
334 value.
335
336 NOTE: This function assumes that NEW_VR is a temporary value range
337 object created for the sole purpose of updating VAR's range. The
338 storage used by the equivalence set from NEW_VR will be freed by
339 this function. Do not call update_value_range when NEW_VR
340 is the range object associated with another SSA name. */
341
342 static inline bool
343 update_value_range (tree var, value_range_t *new_vr)
344 {
345 value_range_t *old_vr;
346 bool is_new;
347
348 /* Update the value range, if necessary. */
349 old_vr = get_value_range (var);
350 is_new = old_vr->type != new_vr->type
351 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
352 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
353 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
354
355 if (is_new)
356 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
357 new_vr->equiv);
358
359 BITMAP_FREE (new_vr->equiv);
360 new_vr->equiv = NULL;
361
362 return is_new;
363 }
364
365
366 /* Add VAR and VAR's equivalence set to EQUIV. */
367
368 static void
369 add_equivalence (bitmap equiv, tree var)
370 {
371 unsigned ver = SSA_NAME_VERSION (var);
372 value_range_t *vr = vr_value[ver];
373
374 bitmap_set_bit (equiv, ver);
375 if (vr && vr->equiv)
376 bitmap_ior_into (equiv, vr->equiv);
377 }
378
379
380 /* Return true if VR is ~[0, 0]. */
381
382 static inline bool
383 range_is_nonnull (value_range_t *vr)
384 {
385 return vr->type == VR_ANTI_RANGE
386 && integer_zerop (vr->min)
387 && integer_zerop (vr->max);
388 }
389
390
391 /* Return true if VR is [0, 0]. */
392
393 static inline bool
394 range_is_null (value_range_t *vr)
395 {
396 return vr->type == VR_RANGE
397 && integer_zerop (vr->min)
398 && integer_zerop (vr->max);
399 }
400
401
402 /* Return true if value range VR involves at least one symbol. */
403
404 static inline bool
405 symbolic_range_p (value_range_t *vr)
406 {
407 return (!is_gimple_min_invariant (vr->min)
408 || !is_gimple_min_invariant (vr->max));
409 }
410
411 /* Like tree_expr_nonnegative_p, but this function uses value ranges
412 obtained so far. */
413
414 static bool
415 vrp_expr_computes_nonnegative (tree expr)
416 {
417 return tree_expr_nonnegative_p (expr);
418 }
419
420 /* Like tree_expr_nonzero_p, but this function uses value ranges
421 obtained so far. */
422
423 static bool
424 vrp_expr_computes_nonzero (tree expr)
425 {
426 if (tree_expr_nonzero_p (expr))
427 return true;
428
429 /* If we have an expression of the form &X->a, then the expression
430 is nonnull if X is nonnull. */
431 if (TREE_CODE (expr) == ADDR_EXPR)
432 {
433 tree base = get_base_address (TREE_OPERAND (expr, 0));
434
435 if (base != NULL_TREE
436 && TREE_CODE (base) == INDIRECT_REF
437 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
438 {
439 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
440 if (range_is_nonnull (vr))
441 return true;
442 }
443 }
444
445 return false;
446 }
447
448 /* Returns true if EXPR is a valid value (as expected by compare_values) --
449 a gimple invariant, or SSA_NAME +- CST. */
450
451 static bool
452 valid_value_p (tree expr)
453 {
454 if (TREE_CODE (expr) == SSA_NAME)
455 return true;
456
457 if (TREE_CODE (expr) == PLUS_EXPR
458 || TREE_CODE (expr) == MINUS_EXPR)
459 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
460 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
461
462 return is_gimple_min_invariant (expr);
463 }
464
465 /* Return
466 1 if VAL < VAL2
467 0 if !(VAL < VAL2)
468 -2 if those are incomparable. */
469 static inline int
470 operand_less_p (tree val, tree val2)
471 {
472 tree tcmp;
473 /* LT is folded faster than GE and others. Inline the common case. */
474 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
475 {
476 if (TYPE_UNSIGNED (TREE_TYPE (val)))
477 return INT_CST_LT_UNSIGNED (val, val2);
478 else
479 return INT_CST_LT (val, val2);
480 }
481 else
482 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
483 if (!tcmp)
484 return -2;
485 return !integer_zerop (tcmp);
486 }
487
488 /* Compare two values VAL1 and VAL2. Return
489
490 -2 if VAL1 and VAL2 cannot be compared at compile-time,
491 -1 if VAL1 < VAL2,
492 0 if VAL1 == VAL2,
493 +1 if VAL1 > VAL2, and
494 +2 if VAL1 != VAL2
495
496 This is similar to tree_int_cst_compare but supports pointer values
497 and values that cannot be compared at compile time. */
498
499 static int
500 compare_values (tree val1, tree val2)
501 {
502 if (val1 == val2)
503 return 0;
504
505 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
506 both integers. */
507 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
508 == POINTER_TYPE_P (TREE_TYPE (val2)));
509
510 if ((TREE_CODE (val1) == SSA_NAME
511 || TREE_CODE (val1) == PLUS_EXPR
512 || TREE_CODE (val1) == MINUS_EXPR)
513 && (TREE_CODE (val2) == SSA_NAME
514 || TREE_CODE (val2) == PLUS_EXPR
515 || TREE_CODE (val2) == MINUS_EXPR))
516 {
517 tree n1, c1, n2, c2;
518 enum tree_code code1, code2;
519
520 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
521 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
522 same name, return -2. */
523 if (TREE_CODE (val1) == SSA_NAME)
524 {
525 code1 = SSA_NAME;
526 n1 = val1;
527 c1 = NULL_TREE;
528 }
529 else
530 {
531 code1 = TREE_CODE (val1);
532 n1 = TREE_OPERAND (val1, 0);
533 c1 = TREE_OPERAND (val1, 1);
534 if (tree_int_cst_sgn (c1) == -1)
535 {
536 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
537 if (!c1)
538 return -2;
539 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
540 }
541 }
542
543 if (TREE_CODE (val2) == SSA_NAME)
544 {
545 code2 = SSA_NAME;
546 n2 = val2;
547 c2 = NULL_TREE;
548 }
549 else
550 {
551 code2 = TREE_CODE (val2);
552 n2 = TREE_OPERAND (val2, 0);
553 c2 = TREE_OPERAND (val2, 1);
554 if (tree_int_cst_sgn (c2) == -1)
555 {
556 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
557 if (!c2)
558 return -2;
559 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
560 }
561 }
562
563 /* Both values must use the same name. */
564 if (n1 != n2)
565 return -2;
566
567 if (code1 == SSA_NAME
568 && code2 == SSA_NAME)
569 /* NAME == NAME */
570 return 0;
571
572 /* If overflow is defined we cannot simplify more. */
573 if (TYPE_UNSIGNED (TREE_TYPE (val1))
574 || flag_wrapv)
575 return -2;
576
577 if (code1 == SSA_NAME)
578 {
579 if (code2 == PLUS_EXPR)
580 /* NAME < NAME + CST */
581 return -1;
582 else if (code2 == MINUS_EXPR)
583 /* NAME > NAME - CST */
584 return 1;
585 }
586 else if (code1 == PLUS_EXPR)
587 {
588 if (code2 == SSA_NAME)
589 /* NAME + CST > NAME */
590 return 1;
591 else if (code2 == PLUS_EXPR)
592 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
593 return compare_values (c1, c2);
594 else if (code2 == MINUS_EXPR)
595 /* NAME + CST1 > NAME - CST2 */
596 return 1;
597 }
598 else if (code1 == MINUS_EXPR)
599 {
600 if (code2 == SSA_NAME)
601 /* NAME - CST < NAME */
602 return -1;
603 else if (code2 == PLUS_EXPR)
604 /* NAME - CST1 < NAME + CST2 */
605 return -1;
606 else if (code2 == MINUS_EXPR)
607 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
608 C1 and C2 are swapped in the call to compare_values. */
609 return compare_values (c2, c1);
610 }
611
612 gcc_unreachable ();
613 }
614
615 /* We cannot compare non-constants. */
616 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
617 return -2;
618
619 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
620 {
621 /* We cannot compare overflowed values. */
622 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
623 return -2;
624
625 return tree_int_cst_compare (val1, val2);
626 }
627 else
628 {
629 tree t;
630
631 /* First see if VAL1 and VAL2 are not the same. */
632 if (val1 == val2 || operand_equal_p (val1, val2, 0))
633 return 0;
634
635 /* If VAL1 is a lower address than VAL2, return -1. */
636 if (operand_less_p (val1, val2) == 1)
637 return -1;
638
639 /* If VAL1 is a higher address than VAL2, return +1. */
640 if (operand_less_p (val2, val1) == 1)
641 return 1;
642
643 /* If VAL1 is different than VAL2, return +2.
644 For integer constants we either have already returned -1 or 1
645 or they are equivalent. We still might succeed in proving
646 something about non-trivial operands. */
647 if (TREE_CODE (val1) != INTEGER_CST
648 || TREE_CODE (val2) != INTEGER_CST)
649 {
650 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
651 if (t && tree_expr_nonzero_p (t))
652 return 2;
653 }
654
655 return -2;
656 }
657 }
658
659
660 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
661 0 if VAL is not inside VR,
662 -2 if we cannot tell either way.
663
664 FIXME, the current semantics of this functions are a bit quirky
665 when taken in the context of VRP. In here we do not care
666 about VR's type. If VR is the anti-range ~[3, 5] the call
667 value_inside_range (4, VR) will return 1.
668
669 This is counter-intuitive in a strict sense, but the callers
670 currently expect this. They are calling the function
671 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
672 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
673 themselves.
674
675 This also applies to value_ranges_intersect_p and
676 range_includes_zero_p. The semantics of VR_RANGE and
677 VR_ANTI_RANGE should be encoded here, but that also means
678 adapting the users of these functions to the new semantics.
679
680 Benchmark compile/20001226-1.c compilation time after changing this
681 function. */
682
683 static inline int
684 value_inside_range (tree val, value_range_t * vr)
685 {
686 int cmp1, cmp2;
687
688 cmp1 = operand_less_p (val, vr->min);
689 if (cmp1 == -2)
690 return -2;
691 if (cmp1 == 1)
692 return 0;
693
694 cmp2 = operand_less_p (vr->max, val);
695 if (cmp2 == -2)
696 return -2;
697
698 return !cmp2;
699 }
700
701
702 /* Return true if value ranges VR0 and VR1 have a non-empty
703 intersection.
704
705 Benchmark compile/20001226-1.c compilation time after changing this
706 function.
707 */
708
709 static inline bool
710 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
711 {
712 /* The value ranges do not intersect if the maximum of the first range is
713 less than the minimum of the second range or vice versa.
714 When those relations are unknown, we can't do any better. */
715 if (operand_less_p (vr0->max, vr1->min) != 0)
716 return false;
717 if (operand_less_p (vr1->max, vr0->min) != 0)
718 return false;
719 return true;
720 }
721
722
723 /* Return true if VR includes the value zero, false otherwise. FIXME,
724 currently this will return false for an anti-range like ~[-4, 3].
725 This will be wrong when the semantics of value_inside_range are
726 modified (currently the users of this function expect these
727 semantics). */
728
729 static inline bool
730 range_includes_zero_p (value_range_t *vr)
731 {
732 tree zero;
733
734 gcc_assert (vr->type != VR_UNDEFINED
735 && vr->type != VR_VARYING
736 && !symbolic_range_p (vr));
737
738 zero = build_int_cst (TREE_TYPE (vr->min), 0);
739 return (value_inside_range (zero, vr) == 1);
740 }
741
742 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
743 false otherwise or if no value range information is available. */
744
745 bool
746 ssa_name_nonnegative_p (tree t)
747 {
748 value_range_t *vr = get_value_range (t);
749
750 if (!vr)
751 return false;
752
753 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
754 which would return a useful value should be encoded as a VR_RANGE. */
755 if (vr->type == VR_RANGE)
756 {
757 int result = compare_values (vr->min, integer_zero_node);
758
759 return (result == 0 || result == 1);
760 }
761 return false;
762 }
763
764 /* Return true if T, an SSA_NAME, is known to be nonzero. Return
765 false otherwise or if no value range information is available. */
766
767 bool
768 ssa_name_nonzero_p (tree t)
769 {
770 value_range_t *vr = get_value_range (t);
771
772 if (!vr)
773 return false;
774
775 /* A VR_RANGE which does not include zero is a nonzero value. */
776 if (vr->type == VR_RANGE && !symbolic_range_p (vr))
777 return ! range_includes_zero_p (vr);
778
779 /* A VR_ANTI_RANGE which does include zero is a nonzero value. */
780 if (vr->type == VR_ANTI_RANGE && !symbolic_range_p (vr))
781 return range_includes_zero_p (vr);
782
783 return false;
784 }
785
786
787 /* Extract value range information from an ASSERT_EXPR EXPR and store
788 it in *VR_P. */
789
790 static void
791 extract_range_from_assert (value_range_t *vr_p, tree expr)
792 {
793 tree var, cond, limit, min, max, type;
794 value_range_t *var_vr, *limit_vr;
795 enum tree_code cond_code;
796
797 var = ASSERT_EXPR_VAR (expr);
798 cond = ASSERT_EXPR_COND (expr);
799
800 gcc_assert (COMPARISON_CLASS_P (cond));
801
802 /* Find VAR in the ASSERT_EXPR conditional. */
803 if (var == TREE_OPERAND (cond, 0))
804 {
805 /* If the predicate is of the form VAR COMP LIMIT, then we just
806 take LIMIT from the RHS and use the same comparison code. */
807 limit = TREE_OPERAND (cond, 1);
808 cond_code = TREE_CODE (cond);
809 }
810 else
811 {
812 /* If the predicate is of the form LIMIT COMP VAR, then we need
813 to flip around the comparison code to create the proper range
814 for VAR. */
815 limit = TREE_OPERAND (cond, 0);
816 cond_code = swap_tree_comparison (TREE_CODE (cond));
817 }
818
819 type = TREE_TYPE (limit);
820 gcc_assert (limit != var);
821
822 /* For pointer arithmetic, we only keep track of pointer equality
823 and inequality. */
824 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
825 {
826 set_value_range_to_varying (vr_p);
827 return;
828 }
829
830 /* If LIMIT is another SSA name and LIMIT has a range of its own,
831 try to use LIMIT's range to avoid creating symbolic ranges
832 unnecessarily. */
833 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
834
835 /* LIMIT's range is only interesting if it has any useful information. */
836 if (limit_vr
837 && (limit_vr->type == VR_UNDEFINED
838 || limit_vr->type == VR_VARYING
839 || symbolic_range_p (limit_vr)))
840 limit_vr = NULL;
841
842 /* Initially, the new range has the same set of equivalences of
843 VAR's range. This will be revised before returning the final
844 value. Since assertions may be chained via mutually exclusive
845 predicates, we will need to trim the set of equivalences before
846 we are done. */
847 gcc_assert (vr_p->equiv == NULL);
848 vr_p->equiv = BITMAP_ALLOC (NULL);
849 add_equivalence (vr_p->equiv, var);
850
851 /* Extract a new range based on the asserted comparison for VAR and
852 LIMIT's value range. Notice that if LIMIT has an anti-range, we
853 will only use it for equality comparisons (EQ_EXPR). For any
854 other kind of assertion, we cannot derive a range from LIMIT's
855 anti-range that can be used to describe the new range. For
856 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
857 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
858 no single range for x_2 that could describe LE_EXPR, so we might
859 as well build the range [b_4, +INF] for it. */
860 if (cond_code == EQ_EXPR)
861 {
862 enum value_range_type range_type;
863
864 if (limit_vr)
865 {
866 range_type = limit_vr->type;
867 min = limit_vr->min;
868 max = limit_vr->max;
869 }
870 else
871 {
872 range_type = VR_RANGE;
873 min = limit;
874 max = limit;
875 }
876
877 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
878
879 /* When asserting the equality VAR == LIMIT and LIMIT is another
880 SSA name, the new range will also inherit the equivalence set
881 from LIMIT. */
882 if (TREE_CODE (limit) == SSA_NAME)
883 add_equivalence (vr_p->equiv, limit);
884 }
885 else if (cond_code == NE_EXPR)
886 {
887 /* As described above, when LIMIT's range is an anti-range and
888 this assertion is an inequality (NE_EXPR), then we cannot
889 derive anything from the anti-range. For instance, if
890 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
891 not imply that VAR's range is [0, 0]. So, in the case of
892 anti-ranges, we just assert the inequality using LIMIT and
893 not its anti-range.
894
895 If LIMIT_VR is a range, we can only use it to build a new
896 anti-range if LIMIT_VR is a single-valued range. For
897 instance, if LIMIT_VR is [0, 1], the predicate
898 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
899 Rather, it means that for value 0 VAR should be ~[0, 0]
900 and for value 1, VAR should be ~[1, 1]. We cannot
901 represent these ranges.
902
903 The only situation in which we can build a valid
904 anti-range is when LIMIT_VR is a single-valued range
905 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
906 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
907 if (limit_vr
908 && limit_vr->type == VR_RANGE
909 && compare_values (limit_vr->min, limit_vr->max) == 0)
910 {
911 min = limit_vr->min;
912 max = limit_vr->max;
913 }
914 else
915 {
916 /* In any other case, we cannot use LIMIT's range to build a
917 valid anti-range. */
918 min = max = limit;
919 }
920
921 /* If MIN and MAX cover the whole range for their type, then
922 just use the original LIMIT. */
923 if (INTEGRAL_TYPE_P (type)
924 && min == TYPE_MIN_VALUE (type)
925 && max == TYPE_MAX_VALUE (type))
926 min = max = limit;
927
928 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
929 }
930 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
931 {
932 min = TYPE_MIN_VALUE (type);
933
934 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
935 max = limit;
936 else
937 {
938 /* If LIMIT_VR is of the form [N1, N2], we need to build the
939 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
940 LT_EXPR. */
941 max = limit_vr->max;
942 }
943
944 /* If the maximum value forces us to be out of bounds, simply punt.
945 It would be pointless to try and do anything more since this
946 all should be optimized away above us. */
947 if (cond_code == LT_EXPR && compare_values (max, min) == 0)
948 set_value_range_to_varying (vr_p);
949 else
950 {
951 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
952 if (cond_code == LT_EXPR)
953 {
954 tree one = build_int_cst (type, 1);
955 max = fold_build2 (MINUS_EXPR, type, max, one);
956 }
957
958 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
959 }
960 }
961 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
962 {
963 max = TYPE_MAX_VALUE (type);
964
965 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
966 min = limit;
967 else
968 {
969 /* If LIMIT_VR is of the form [N1, N2], we need to build the
970 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
971 GT_EXPR. */
972 min = limit_vr->min;
973 }
974
975 /* If the minimum value forces us to be out of bounds, simply punt.
976 It would be pointless to try and do anything more since this
977 all should be optimized away above us. */
978 if (cond_code == GT_EXPR && compare_values (min, max) == 0)
979 set_value_range_to_varying (vr_p);
980 else
981 {
982 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
983 if (cond_code == GT_EXPR)
984 {
985 tree one = build_int_cst (type, 1);
986 min = fold_build2 (PLUS_EXPR, type, min, one);
987 }
988
989 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
990 }
991 }
992 else
993 gcc_unreachable ();
994
995 /* If VAR already had a known range, it may happen that the new
996 range we have computed and VAR's range are not compatible. For
997 instance,
998
999 if (p_5 == NULL)
1000 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
1001 x_7 = p_6->fld;
1002 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
1003
1004 While the above comes from a faulty program, it will cause an ICE
1005 later because p_8 and p_6 will have incompatible ranges and at
1006 the same time will be considered equivalent. A similar situation
1007 would arise from
1008
1009 if (i_5 > 10)
1010 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
1011 if (i_5 < 5)
1012 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
1013
1014 Again i_6 and i_7 will have incompatible ranges. It would be
1015 pointless to try and do anything with i_7's range because
1016 anything dominated by 'if (i_5 < 5)' will be optimized away.
1017 Note, due to the wa in which simulation proceeds, the statement
1018 i_7 = ASSERT_EXPR <...> we would never be visited because the
1019 conditional 'if (i_5 < 5)' always evaluates to false. However,
1020 this extra check does not hurt and may protect against future
1021 changes to VRP that may get into a situation similar to the
1022 NULL pointer dereference example.
1023
1024 Note that these compatibility tests are only needed when dealing
1025 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
1026 are both anti-ranges, they will always be compatible, because two
1027 anti-ranges will always have a non-empty intersection. */
1028
1029 var_vr = get_value_range (var);
1030
1031 /* We may need to make adjustments when VR_P and VAR_VR are numeric
1032 ranges or anti-ranges. */
1033 if (vr_p->type == VR_VARYING
1034 || vr_p->type == VR_UNDEFINED
1035 || var_vr->type == VR_VARYING
1036 || var_vr->type == VR_UNDEFINED
1037 || symbolic_range_p (vr_p)
1038 || symbolic_range_p (var_vr))
1039 return;
1040
1041 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1042 {
1043 /* If the two ranges have a non-empty intersection, we can
1044 refine the resulting range. Since the assert expression
1045 creates an equivalency and at the same time it asserts a
1046 predicate, we can take the intersection of the two ranges to
1047 get better precision. */
1048 if (value_ranges_intersect_p (var_vr, vr_p))
1049 {
1050 /* Use the larger of the two minimums. */
1051 if (compare_values (vr_p->min, var_vr->min) == -1)
1052 min = var_vr->min;
1053 else
1054 min = vr_p->min;
1055
1056 /* Use the smaller of the two maximums. */
1057 if (compare_values (vr_p->max, var_vr->max) == 1)
1058 max = var_vr->max;
1059 else
1060 max = vr_p->max;
1061
1062 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1063 }
1064 else
1065 {
1066 /* The two ranges do not intersect, set the new range to
1067 VARYING, because we will not be able to do anything
1068 meaningful with it. */
1069 set_value_range_to_varying (vr_p);
1070 }
1071 }
1072 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1073 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1074 {
1075 /* A range and an anti-range will cancel each other only if
1076 their ends are the same. For instance, in the example above,
1077 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1078 so VR_P should be set to VR_VARYING. */
1079 if (compare_values (var_vr->min, vr_p->min) == 0
1080 && compare_values (var_vr->max, vr_p->max) == 0)
1081 set_value_range_to_varying (vr_p);
1082 else
1083 {
1084 tree min, max, anti_min, anti_max, real_min, real_max;
1085 int cmp;
1086
1087 /* We want to compute the logical AND of the two ranges;
1088 there are three cases to consider.
1089
1090
1091 1. The VR_ANTI_RANGE range is completely within the
1092 VR_RANGE and the endpoints of the ranges are
1093 different. In that case the resulting range
1094 should be whichever range is more precise.
1095 Typically that will be the VR_RANGE.
1096
1097 2. The VR_ANTI_RANGE is completely disjoint from
1098 the VR_RANGE. In this case the resulting range
1099 should be the VR_RANGE.
1100
1101 3. There is some overlap between the VR_ANTI_RANGE
1102 and the VR_RANGE.
1103
1104 3a. If the high limit of the VR_ANTI_RANGE resides
1105 within the VR_RANGE, then the result is a new
1106 VR_RANGE starting at the high limit of the
1107 the VR_ANTI_RANGE + 1 and extending to the
1108 high limit of the original VR_RANGE.
1109
1110 3b. If the low limit of the VR_ANTI_RANGE resides
1111 within the VR_RANGE, then the result is a new
1112 VR_RANGE starting at the low limit of the original
1113 VR_RANGE and extending to the low limit of the
1114 VR_ANTI_RANGE - 1. */
1115 if (vr_p->type == VR_ANTI_RANGE)
1116 {
1117 anti_min = vr_p->min;
1118 anti_max = vr_p->max;
1119 real_min = var_vr->min;
1120 real_max = var_vr->max;
1121 }
1122 else
1123 {
1124 anti_min = var_vr->min;
1125 anti_max = var_vr->max;
1126 real_min = vr_p->min;
1127 real_max = vr_p->max;
1128 }
1129
1130
1131 /* Case 1, VR_ANTI_RANGE completely within VR_RANGE,
1132 not including any endpoints. */
1133 if (compare_values (anti_max, real_max) == -1
1134 && compare_values (anti_min, real_min) == 1)
1135 {
1136 set_value_range (vr_p, VR_RANGE, real_min,
1137 real_max, vr_p->equiv);
1138 }
1139 /* Case 2, VR_ANTI_RANGE completely disjoint from
1140 VR_RANGE. */
1141 else if (compare_values (anti_min, real_max) == 1
1142 || compare_values (anti_max, real_min) == -1)
1143 {
1144 set_value_range (vr_p, VR_RANGE, real_min,
1145 real_max, vr_p->equiv);
1146 }
1147 /* Case 3a, the anti-range extends into the low
1148 part of the real range. Thus creating a new
1149 low for the real range. */
1150 else if (((cmp = compare_values (anti_max, real_min)) == 1
1151 || cmp == 0)
1152 && compare_values (anti_max, real_max) == -1)
1153 {
1154 min = fold_build2 (PLUS_EXPR, TREE_TYPE (var_vr->min),
1155 anti_max,
1156 build_int_cst (TREE_TYPE (var_vr->min), 1));
1157 max = real_max;
1158 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1159 }
1160 /* Case 3b, the anti-range extends into the high
1161 part of the real range. Thus creating a new
1162 higher for the real range. */
1163 else if (compare_values (anti_min, real_min) == 1
1164 && ((cmp = compare_values (anti_min, real_max)) == -1
1165 || cmp == 0))
1166 {
1167 max = fold_build2 (MINUS_EXPR, TREE_TYPE (var_vr->min),
1168 anti_min,
1169 build_int_cst (TREE_TYPE (var_vr->min), 1));
1170 min = real_min;
1171 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1172 }
1173 }
1174 }
1175 }
1176
1177
1178 /* Extract range information from SSA name VAR and store it in VR. If
1179 VAR has an interesting range, use it. Otherwise, create the
1180 range [VAR, VAR] and return it. This is useful in situations where
1181 we may have conditionals testing values of VARYING names. For
1182 instance,
1183
1184 x_3 = y_5;
1185 if (x_3 > y_5)
1186 ...
1187
1188 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1189 always false. */
1190
1191 static void
1192 extract_range_from_ssa_name (value_range_t *vr, tree var)
1193 {
1194 value_range_t *var_vr = get_value_range (var);
1195
1196 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1197 copy_value_range (vr, var_vr);
1198 else
1199 set_value_range (vr, VR_RANGE, var, var, NULL);
1200
1201 add_equivalence (vr->equiv, var);
1202 }
1203
1204
1205 /* Wrapper around int_const_binop. If the operation overflows and we
1206 are not using wrapping arithmetic, then adjust the result to be
1207 -INF or +INF depending on CODE, VAL1 and VAL2. */
1208
1209 static inline tree
1210 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1211 {
1212 tree res;
1213
1214 res = int_const_binop (code, val1, val2, 0);
1215
1216 /* If we are not using wrapping arithmetic, operate symbolically
1217 on -INF and +INF. */
1218 if (TYPE_UNSIGNED (TREE_TYPE (val1))
1219 || flag_wrapv)
1220 {
1221 int checkz = compare_values (res, val1);
1222 bool overflow = false;
1223
1224 /* Ensure that res = val1 [+*] val2 >= val1
1225 or that res = val1 - val2 <= val1. */
1226 if ((code == PLUS_EXPR
1227 && !(checkz == 1 || checkz == 0))
1228 || (code == MINUS_EXPR
1229 && !(checkz == 0 || checkz == -1)))
1230 {
1231 overflow = true;
1232 }
1233 /* Checking for multiplication overflow is done by dividing the
1234 output of the multiplication by the first input of the
1235 multiplication. If the result of that division operation is
1236 not equal to the second input of the multiplication, then the
1237 multiplication overflowed. */
1238 else if (code == MULT_EXPR && !integer_zerop (val1))
1239 {
1240 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1241 res,
1242 val1, 0);
1243 int check = compare_values (tmp, val2);
1244
1245 if (check != 0)
1246 overflow = true;
1247 }
1248
1249 if (overflow)
1250 {
1251 res = copy_node (res);
1252 TREE_OVERFLOW (res) = 1;
1253 }
1254
1255 }
1256 else if (TREE_OVERFLOW (res)
1257 && !TREE_OVERFLOW (val1)
1258 && !TREE_OVERFLOW (val2))
1259 {
1260 /* If the operation overflowed but neither VAL1 nor VAL2 are
1261 overflown, return -INF or +INF depending on the operation
1262 and the combination of signs of the operands. */
1263 int sgn1 = tree_int_cst_sgn (val1);
1264 int sgn2 = tree_int_cst_sgn (val2);
1265
1266 /* Notice that we only need to handle the restricted set of
1267 operations handled by extract_range_from_binary_expr.
1268 Among them, only multiplication, addition and subtraction
1269 can yield overflow without overflown operands because we
1270 are working with integral types only... except in the
1271 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1272 for division too. */
1273
1274 /* For multiplication, the sign of the overflow is given
1275 by the comparison of the signs of the operands. */
1276 if ((code == MULT_EXPR && sgn1 == sgn2)
1277 /* For addition, the operands must be of the same sign
1278 to yield an overflow. Its sign is therefore that
1279 of one of the operands, for example the first. */
1280 || (code == PLUS_EXPR && sgn1 > 0)
1281 /* For subtraction, the operands must be of different
1282 signs to yield an overflow. Its sign is therefore
1283 that of the first operand or the opposite of that
1284 of the second operand. A first operand of 0 counts
1285 as positive here, for the corner case 0 - (-INF),
1286 which overflows, but must yield +INF. */
1287 || (code == MINUS_EXPR && sgn1 >= 0)
1288 /* For division, the only case is -INF / -1 = +INF. */
1289 || code == TRUNC_DIV_EXPR
1290 || code == FLOOR_DIV_EXPR
1291 || code == CEIL_DIV_EXPR
1292 || code == EXACT_DIV_EXPR
1293 || code == ROUND_DIV_EXPR)
1294 return TYPE_MAX_VALUE (TREE_TYPE (res));
1295 else
1296 return TYPE_MIN_VALUE (TREE_TYPE (res));
1297 }
1298
1299 return res;
1300 }
1301
1302
1303 /* Extract range information from a binary expression EXPR based on
1304 the ranges of each of its operands and the expression code. */
1305
1306 static void
1307 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1308 {
1309 enum tree_code code = TREE_CODE (expr);
1310 enum value_range_type type;
1311 tree op0, op1, min, max;
1312 int cmp;
1313 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1314 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1315
1316 /* Not all binary expressions can be applied to ranges in a
1317 meaningful way. Handle only arithmetic operations. */
1318 if (code != PLUS_EXPR
1319 && code != MINUS_EXPR
1320 && code != MULT_EXPR
1321 && code != TRUNC_DIV_EXPR
1322 && code != FLOOR_DIV_EXPR
1323 && code != CEIL_DIV_EXPR
1324 && code != EXACT_DIV_EXPR
1325 && code != ROUND_DIV_EXPR
1326 && code != MIN_EXPR
1327 && code != MAX_EXPR
1328 && code != BIT_AND_EXPR
1329 && code != TRUTH_ANDIF_EXPR
1330 && code != TRUTH_ORIF_EXPR
1331 && code != TRUTH_AND_EXPR
1332 && code != TRUTH_OR_EXPR)
1333 {
1334 set_value_range_to_varying (vr);
1335 return;
1336 }
1337
1338 /* Get value ranges for each operand. For constant operands, create
1339 a new value range with the operand to simplify processing. */
1340 op0 = TREE_OPERAND (expr, 0);
1341 if (TREE_CODE (op0) == SSA_NAME)
1342 vr0 = *(get_value_range (op0));
1343 else if (is_gimple_min_invariant (op0))
1344 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1345 else
1346 set_value_range_to_varying (&vr0);
1347
1348 op1 = TREE_OPERAND (expr, 1);
1349 if (TREE_CODE (op1) == SSA_NAME)
1350 vr1 = *(get_value_range (op1));
1351 else if (is_gimple_min_invariant (op1))
1352 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
1353 else
1354 set_value_range_to_varying (&vr1);
1355
1356 /* If either range is UNDEFINED, so is the result. */
1357 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1358 {
1359 set_value_range_to_undefined (vr);
1360 return;
1361 }
1362
1363 /* The type of the resulting value range defaults to VR0.TYPE. */
1364 type = vr0.type;
1365
1366 /* Refuse to operate on VARYING ranges, ranges of different kinds
1367 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
1368 because we may be able to derive a useful range even if one of
1369 the operands is VR_VARYING or symbolic range. TODO, we may be
1370 able to derive anti-ranges in some cases. */
1371 if (code != BIT_AND_EXPR
1372 && code != TRUTH_AND_EXPR
1373 && code != TRUTH_OR_EXPR
1374 && (vr0.type == VR_VARYING
1375 || vr1.type == VR_VARYING
1376 || vr0.type != vr1.type
1377 || symbolic_range_p (&vr0)
1378 || symbolic_range_p (&vr1)))
1379 {
1380 set_value_range_to_varying (vr);
1381 return;
1382 }
1383
1384 /* Now evaluate the expression to determine the new range. */
1385 if (POINTER_TYPE_P (TREE_TYPE (expr))
1386 || POINTER_TYPE_P (TREE_TYPE (op0))
1387 || POINTER_TYPE_P (TREE_TYPE (op1)))
1388 {
1389 /* For pointer types, we are really only interested in asserting
1390 whether the expression evaluates to non-NULL. FIXME, we used
1391 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1392 ivopts is generating expressions with pointer multiplication
1393 in them. */
1394 if (code == PLUS_EXPR)
1395 {
1396 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1397 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1398 else if (range_is_null (&vr0) && range_is_null (&vr1))
1399 set_value_range_to_null (vr, TREE_TYPE (expr));
1400 else
1401 set_value_range_to_varying (vr);
1402 }
1403 else
1404 {
1405 /* Subtracting from a pointer, may yield 0, so just drop the
1406 resulting range to varying. */
1407 set_value_range_to_varying (vr);
1408 }
1409
1410 return;
1411 }
1412
1413 /* For integer ranges, apply the operation to each end of the
1414 range and see what we end up with. */
1415 if (code == TRUTH_ANDIF_EXPR
1416 || code == TRUTH_ORIF_EXPR
1417 || code == TRUTH_AND_EXPR
1418 || code == TRUTH_OR_EXPR)
1419 {
1420 /* If one of the operands is zero, we know that the whole
1421 expression evaluates zero. */
1422 if (code == TRUTH_AND_EXPR
1423 && ((vr0.type == VR_RANGE
1424 && integer_zerop (vr0.min)
1425 && integer_zerop (vr0.max))
1426 || (vr1.type == VR_RANGE
1427 && integer_zerop (vr1.min)
1428 && integer_zerop (vr1.max))))
1429 {
1430 type = VR_RANGE;
1431 min = max = build_int_cst (TREE_TYPE (expr), 0);
1432 }
1433 /* If one of the operands is one, we know that the whole
1434 expression evaluates one. */
1435 else if (code == TRUTH_OR_EXPR
1436 && ((vr0.type == VR_RANGE
1437 && integer_onep (vr0.min)
1438 && integer_onep (vr0.max))
1439 || (vr1.type == VR_RANGE
1440 && integer_onep (vr1.min)
1441 && integer_onep (vr1.max))))
1442 {
1443 type = VR_RANGE;
1444 min = max = build_int_cst (TREE_TYPE (expr), 1);
1445 }
1446 else if (vr0.type != VR_VARYING
1447 && vr1.type != VR_VARYING
1448 && vr0.type == vr1.type
1449 && !symbolic_range_p (&vr0)
1450 && !symbolic_range_p (&vr1))
1451 {
1452 /* Boolean expressions cannot be folded with int_const_binop. */
1453 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1454 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1455 }
1456 else
1457 {
1458 /* The result of a TRUTH_*_EXPR is always true or false. */
1459 set_value_range_to_truthvalue (vr, TREE_TYPE (expr));
1460 return;
1461 }
1462 }
1463 else if (code == PLUS_EXPR
1464 || code == MIN_EXPR
1465 || code == MAX_EXPR)
1466 {
1467 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1468 VR_VARYING. It would take more effort to compute a precise
1469 range for such a case. For example, if we have op0 == 1 and
1470 op1 == -1 with their ranges both being ~[0,0], we would have
1471 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1472 Note that we are guaranteed to have vr0.type == vr1.type at
1473 this point. */
1474 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1475 {
1476 set_value_range_to_varying (vr);
1477 return;
1478 }
1479
1480 /* For operations that make the resulting range directly
1481 proportional to the original ranges, apply the operation to
1482 the same end of each range. */
1483 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1484 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1485 }
1486 else if (code == MULT_EXPR
1487 || code == TRUNC_DIV_EXPR
1488 || code == FLOOR_DIV_EXPR
1489 || code == CEIL_DIV_EXPR
1490 || code == EXACT_DIV_EXPR
1491 || code == ROUND_DIV_EXPR)
1492 {
1493 tree val[4];
1494 size_t i;
1495
1496 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1497 drop to VR_VARYING. It would take more effort to compute a
1498 precise range for such a case. For example, if we have
1499 op0 == 65536 and op1 == 65536 with their ranges both being
1500 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1501 we cannot claim that the product is in ~[0,0]. Note that we
1502 are guaranteed to have vr0.type == vr1.type at this
1503 point. */
1504 if (code == MULT_EXPR
1505 && vr0.type == VR_ANTI_RANGE
1506 && (flag_wrapv || TYPE_UNSIGNED (TREE_TYPE (op0))))
1507 {
1508 set_value_range_to_varying (vr);
1509 return;
1510 }
1511
1512 /* Multiplications and divisions are a bit tricky to handle,
1513 depending on the mix of signs we have in the two ranges, we
1514 need to operate on different values to get the minimum and
1515 maximum values for the new range. One approach is to figure
1516 out all the variations of range combinations and do the
1517 operations.
1518
1519 However, this involves several calls to compare_values and it
1520 is pretty convoluted. It's simpler to do the 4 operations
1521 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1522 MAX1) and then figure the smallest and largest values to form
1523 the new range. */
1524
1525 /* Divisions by zero result in a VARYING value. */
1526 if (code != MULT_EXPR
1527 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1528 {
1529 set_value_range_to_varying (vr);
1530 return;
1531 }
1532
1533 /* Compute the 4 cross operations. */
1534 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1535
1536 val[1] = (vr1.max != vr1.min)
1537 ? vrp_int_const_binop (code, vr0.min, vr1.max)
1538 : NULL_TREE;
1539
1540 val[2] = (vr0.max != vr0.min)
1541 ? vrp_int_const_binop (code, vr0.max, vr1.min)
1542 : NULL_TREE;
1543
1544 val[3] = (vr0.min != vr0.max && vr1.min != vr1.max)
1545 ? vrp_int_const_binop (code, vr0.max, vr1.max)
1546 : NULL_TREE;
1547
1548 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1549 of VAL[i]. */
1550 min = val[0];
1551 max = val[0];
1552 for (i = 1; i < 4; i++)
1553 {
1554 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1555 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1556 break;
1557
1558 if (val[i])
1559 {
1560 if (!is_gimple_min_invariant (val[i]) || TREE_OVERFLOW (val[i]))
1561 {
1562 /* If we found an overflowed value, set MIN and MAX
1563 to it so that we set the resulting range to
1564 VARYING. */
1565 min = max = val[i];
1566 break;
1567 }
1568
1569 if (compare_values (val[i], min) == -1)
1570 min = val[i];
1571
1572 if (compare_values (val[i], max) == 1)
1573 max = val[i];
1574 }
1575 }
1576 }
1577 else if (code == MINUS_EXPR)
1578 {
1579 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1580 VR_VARYING. It would take more effort to compute a precise
1581 range for such a case. For example, if we have op0 == 1 and
1582 op1 == 1 with their ranges both being ~[0,0], we would have
1583 op0 - op1 == 0, so we cannot claim that the difference is in
1584 ~[0,0]. Note that we are guaranteed to have
1585 vr0.type == vr1.type at this point. */
1586 if (vr0.type == VR_ANTI_RANGE)
1587 {
1588 set_value_range_to_varying (vr);
1589 return;
1590 }
1591
1592 /* For MINUS_EXPR, apply the operation to the opposite ends of
1593 each range. */
1594 min = vrp_int_const_binop (code, vr0.min, vr1.max);
1595 max = vrp_int_const_binop (code, vr0.max, vr1.min);
1596 }
1597 else if (code == BIT_AND_EXPR)
1598 {
1599 if (vr0.type == VR_RANGE
1600 && vr0.min == vr0.max
1601 && tree_expr_nonnegative_p (vr0.max)
1602 && TREE_CODE (vr0.max) == INTEGER_CST)
1603 {
1604 min = build_int_cst (TREE_TYPE (expr), 0);
1605 max = vr0.max;
1606 }
1607 else if (vr1.type == VR_RANGE
1608 && vr1.min == vr1.max
1609 && tree_expr_nonnegative_p (vr1.max)
1610 && TREE_CODE (vr1.max) == INTEGER_CST)
1611 {
1612 type = VR_RANGE;
1613 min = build_int_cst (TREE_TYPE (expr), 0);
1614 max = vr1.max;
1615 }
1616 else
1617 {
1618 set_value_range_to_varying (vr);
1619 return;
1620 }
1621 }
1622 else
1623 gcc_unreachable ();
1624
1625 /* If either MIN or MAX overflowed, then set the resulting range to
1626 VARYING. */
1627 if (!is_gimple_min_invariant (min) || TREE_OVERFLOW (min)
1628 || !is_gimple_min_invariant (max) || TREE_OVERFLOW (max))
1629 {
1630 set_value_range_to_varying (vr);
1631 return;
1632 }
1633
1634 cmp = compare_values (min, max);
1635 if (cmp == -2 || cmp == 1)
1636 {
1637 /* If the new range has its limits swapped around (MIN > MAX),
1638 then the operation caused one of them to wrap around, mark
1639 the new range VARYING. */
1640 set_value_range_to_varying (vr);
1641 }
1642 else
1643 set_value_range (vr, type, min, max, NULL);
1644 }
1645
1646
1647 /* Extract range information from a unary expression EXPR based on
1648 the range of its operand and the expression code. */
1649
1650 static void
1651 extract_range_from_unary_expr (value_range_t *vr, tree expr)
1652 {
1653 enum tree_code code = TREE_CODE (expr);
1654 tree min, max, op0;
1655 int cmp;
1656 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1657
1658 /* Refuse to operate on certain unary expressions for which we
1659 cannot easily determine a resulting range. */
1660 if (code == FIX_TRUNC_EXPR
1661 || code == FLOAT_EXPR
1662 || code == BIT_NOT_EXPR
1663 || code == NON_LVALUE_EXPR
1664 || code == CONJ_EXPR)
1665 {
1666 set_value_range_to_varying (vr);
1667 return;
1668 }
1669
1670 /* Get value ranges for the operand. For constant operands, create
1671 a new value range with the operand to simplify processing. */
1672 op0 = TREE_OPERAND (expr, 0);
1673 if (TREE_CODE (op0) == SSA_NAME)
1674 vr0 = *(get_value_range (op0));
1675 else if (is_gimple_min_invariant (op0))
1676 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1677 else
1678 set_value_range_to_varying (&vr0);
1679
1680 /* If VR0 is UNDEFINED, so is the result. */
1681 if (vr0.type == VR_UNDEFINED)
1682 {
1683 set_value_range_to_undefined (vr);
1684 return;
1685 }
1686
1687 /* Refuse to operate on symbolic ranges, or if neither operand is
1688 a pointer or integral type. */
1689 if ((!INTEGRAL_TYPE_P (TREE_TYPE (op0))
1690 && !POINTER_TYPE_P (TREE_TYPE (op0)))
1691 || (vr0.type != VR_VARYING
1692 && symbolic_range_p (&vr0)))
1693 {
1694 set_value_range_to_varying (vr);
1695 return;
1696 }
1697
1698 /* If the expression involves pointers, we are only interested in
1699 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
1700 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
1701 {
1702 if (range_is_nonnull (&vr0) || tree_expr_nonzero_p (expr))
1703 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1704 else if (range_is_null (&vr0))
1705 set_value_range_to_null (vr, TREE_TYPE (expr));
1706 else
1707 set_value_range_to_varying (vr);
1708
1709 return;
1710 }
1711
1712 /* Handle unary expressions on integer ranges. */
1713 if (code == NOP_EXPR || code == CONVERT_EXPR)
1714 {
1715 tree inner_type = TREE_TYPE (op0);
1716 tree outer_type = TREE_TYPE (expr);
1717
1718 /* If VR0 represents a simple range, then try to convert
1719 the min and max values for the range to the same type
1720 as OUTER_TYPE. If the results compare equal to VR0's
1721 min and max values and the new min is still less than
1722 or equal to the new max, then we can safely use the newly
1723 computed range for EXPR. This allows us to compute
1724 accurate ranges through many casts. */
1725 if (vr0.type == VR_RANGE
1726 || (vr0.type == VR_VARYING
1727 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)))
1728 {
1729 tree new_min, new_max, orig_min, orig_max;
1730
1731 /* Convert the input operand min/max to OUTER_TYPE. If
1732 the input has no range information, then use the min/max
1733 for the input's type. */
1734 if (vr0.type == VR_RANGE)
1735 {
1736 orig_min = vr0.min;
1737 orig_max = vr0.max;
1738 }
1739 else
1740 {
1741 orig_min = TYPE_MIN_VALUE (inner_type);
1742 orig_max = TYPE_MAX_VALUE (inner_type);
1743 }
1744
1745 new_min = fold_convert (outer_type, orig_min);
1746 new_max = fold_convert (outer_type, orig_max);
1747
1748 /* Verify the new min/max values are gimple values and
1749 that they compare equal to the original input's
1750 min/max values. */
1751 if (is_gimple_val (new_min)
1752 && is_gimple_val (new_max)
1753 && tree_int_cst_equal (new_min, orig_min)
1754 && tree_int_cst_equal (new_max, orig_max)
1755 && (cmp = compare_values (new_min, new_max)) <= 0
1756 && cmp >= -1)
1757 {
1758 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
1759 return;
1760 }
1761 }
1762
1763 /* When converting types of different sizes, set the result to
1764 VARYING. Things like sign extensions and precision loss may
1765 change the range. For instance, if x_3 is of type 'long long
1766 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
1767 is impossible to know at compile time whether y_5 will be
1768 ~[0, 0]. */
1769 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
1770 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
1771 {
1772 set_value_range_to_varying (vr);
1773 return;
1774 }
1775 }
1776
1777 /* Conversion of a VR_VARYING value to a wider type can result
1778 in a usable range. So wait until after we've handled conversions
1779 before dropping the result to VR_VARYING if we had a source
1780 operand that is VR_VARYING. */
1781 if (vr0.type == VR_VARYING)
1782 {
1783 set_value_range_to_varying (vr);
1784 return;
1785 }
1786
1787 /* Apply the operation to each end of the range and see what we end
1788 up with. */
1789 if (code == NEGATE_EXPR
1790 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1791 {
1792 /* NEGATE_EXPR flips the range around. We need to treat
1793 TYPE_MIN_VALUE specially dependent on wrapping, range type
1794 and if it was used as minimum or maximum value:
1795 -~[MIN, MIN] == ~[MIN, MIN]
1796 -[MIN, 0] == [0, MAX] for -fno-wrapv
1797 -[MIN, 0] == [0, MIN] for -fwrapv (will be set to varying later) */
1798 min = vr0.max == TYPE_MIN_VALUE (TREE_TYPE (expr))
1799 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1800 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1801
1802 max = vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr))
1803 ? (vr0.type == VR_ANTI_RANGE || flag_wrapv
1804 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1805 : TYPE_MAX_VALUE (TREE_TYPE (expr)))
1806 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1807
1808 }
1809 else if (code == NEGATE_EXPR
1810 && TYPE_UNSIGNED (TREE_TYPE (expr)))
1811 {
1812 if (!range_includes_zero_p (&vr0))
1813 {
1814 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1815 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1816 }
1817 else
1818 {
1819 if (range_is_null (&vr0))
1820 set_value_range_to_null (vr, TREE_TYPE (expr));
1821 else
1822 set_value_range_to_varying (vr);
1823 return;
1824 }
1825 }
1826 else if (code == ABS_EXPR
1827 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1828 {
1829 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
1830 useful range. */
1831 if (flag_wrapv
1832 && ((vr0.type == VR_RANGE
1833 && vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1834 || (vr0.type == VR_ANTI_RANGE
1835 && vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr))
1836 && !range_includes_zero_p (&vr0))))
1837 {
1838 set_value_range_to_varying (vr);
1839 return;
1840 }
1841
1842 /* ABS_EXPR may flip the range around, if the original range
1843 included negative values. */
1844 min = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1845 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1846 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1847
1848 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1849
1850 cmp = compare_values (min, max);
1851
1852 /* If a VR_ANTI_RANGEs contains zero, then we have
1853 ~[-INF, min(MIN, MAX)]. */
1854 if (vr0.type == VR_ANTI_RANGE)
1855 {
1856 if (range_includes_zero_p (&vr0))
1857 {
1858 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
1859
1860 /* Take the lower of the two values. */
1861 if (cmp != 1)
1862 max = min;
1863
1864 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
1865 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
1866 flag_wrapv is set and the original anti-range doesn't include
1867 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
1868 min = (flag_wrapv && vr0.min != type_min_value
1869 ? int_const_binop (PLUS_EXPR,
1870 type_min_value,
1871 integer_one_node, 0)
1872 : type_min_value);
1873 }
1874 else
1875 {
1876 /* All else has failed, so create the range [0, INF], even for
1877 flag_wrapv since TYPE_MIN_VALUE is in the original
1878 anti-range. */
1879 vr0.type = VR_RANGE;
1880 min = build_int_cst (TREE_TYPE (expr), 0);
1881 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
1882 }
1883 }
1884
1885 /* If the range contains zero then we know that the minimum value in the
1886 range will be zero. */
1887 else if (range_includes_zero_p (&vr0))
1888 {
1889 if (cmp == 1)
1890 max = min;
1891 min = build_int_cst (TREE_TYPE (expr), 0);
1892 }
1893 else
1894 {
1895 /* If the range was reversed, swap MIN and MAX. */
1896 if (cmp == 1)
1897 {
1898 tree t = min;
1899 min = max;
1900 max = t;
1901 }
1902 }
1903 }
1904 else
1905 {
1906 /* Otherwise, operate on each end of the range. */
1907 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1908 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1909 }
1910
1911 cmp = compare_values (min, max);
1912 if (cmp == -2 || cmp == 1)
1913 {
1914 /* If the new range has its limits swapped around (MIN > MAX),
1915 then the operation caused one of them to wrap around, mark
1916 the new range VARYING. */
1917 set_value_range_to_varying (vr);
1918 }
1919 else
1920 set_value_range (vr, vr0.type, min, max, NULL);
1921 }
1922
1923
1924 /* Extract range information from a conditional expression EXPR based on
1925 the ranges of each of its operands and the expression code. */
1926
1927 static void
1928 extract_range_from_cond_expr (value_range_t *vr, tree expr)
1929 {
1930 tree op0, op1;
1931 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1932 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1933
1934 /* Get value ranges for each operand. For constant operands, create
1935 a new value range with the operand to simplify processing. */
1936 op0 = COND_EXPR_THEN (expr);
1937 if (TREE_CODE (op0) == SSA_NAME)
1938 vr0 = *(get_value_range (op0));
1939 else if (is_gimple_min_invariant (op0))
1940 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1941 else
1942 set_value_range_to_varying (&vr0);
1943
1944 op1 = COND_EXPR_ELSE (expr);
1945 if (TREE_CODE (op1) == SSA_NAME)
1946 vr1 = *(get_value_range (op1));
1947 else if (is_gimple_min_invariant (op1))
1948 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
1949 else
1950 set_value_range_to_varying (&vr1);
1951
1952 /* The resulting value range is the union of the operand ranges */
1953 vrp_meet (&vr0, &vr1);
1954 copy_value_range (vr, &vr0);
1955 }
1956
1957
1958 /* Extract range information from a comparison expression EXPR based
1959 on the range of its operand and the expression code. */
1960
1961 static void
1962 extract_range_from_comparison (value_range_t *vr, tree expr)
1963 {
1964 tree val = vrp_evaluate_conditional (expr, false);
1965 if (val)
1966 {
1967 /* Since this expression was found on the RHS of an assignment,
1968 its type may be different from _Bool. Convert VAL to EXPR's
1969 type. */
1970 val = fold_convert (TREE_TYPE (expr), val);
1971 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
1972 }
1973 else
1974 /* The result of a comparison is always true or false. */
1975 set_value_range_to_truthvalue (vr, TREE_TYPE (expr));
1976 }
1977
1978
1979 /* Try to compute a useful range out of expression EXPR and store it
1980 in *VR. */
1981
1982 static void
1983 extract_range_from_expr (value_range_t *vr, tree expr)
1984 {
1985 enum tree_code code = TREE_CODE (expr);
1986
1987 if (code == ASSERT_EXPR)
1988 extract_range_from_assert (vr, expr);
1989 else if (code == SSA_NAME)
1990 extract_range_from_ssa_name (vr, expr);
1991 else if (TREE_CODE_CLASS (code) == tcc_binary
1992 || code == TRUTH_ANDIF_EXPR
1993 || code == TRUTH_ORIF_EXPR
1994 || code == TRUTH_AND_EXPR
1995 || code == TRUTH_OR_EXPR
1996 || code == TRUTH_XOR_EXPR)
1997 extract_range_from_binary_expr (vr, expr);
1998 else if (TREE_CODE_CLASS (code) == tcc_unary)
1999 extract_range_from_unary_expr (vr, expr);
2000 else if (code == COND_EXPR)
2001 extract_range_from_cond_expr (vr, expr);
2002 else if (TREE_CODE_CLASS (code) == tcc_comparison)
2003 extract_range_from_comparison (vr, expr);
2004 else if (is_gimple_min_invariant (expr))
2005 set_value_range (vr, VR_RANGE, expr, expr, NULL);
2006 else
2007 set_value_range_to_varying (vr);
2008
2009 /* If we got a varying range from the tests above, try a final
2010 time to derive a nonnegative or nonzero range. This time
2011 relying primarily on generic routines in fold in conjunction
2012 with range data. */
2013 if (vr->type == VR_VARYING)
2014 {
2015 if (INTEGRAL_TYPE_P (TREE_TYPE (expr))
2016 && vrp_expr_computes_nonnegative (expr))
2017 set_value_range_to_nonnegative (vr, TREE_TYPE (expr));
2018 else if (vrp_expr_computes_nonzero (expr))
2019 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
2020 }
2021 }
2022
2023 /* Given a range VR, a LOOP and a variable VAR, determine whether it
2024 would be profitable to adjust VR using scalar evolution information
2025 for VAR. If so, update VR with the new limits. */
2026
2027 static void
2028 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
2029 tree var)
2030 {
2031 tree init, step, chrec, tmin, tmax, min, max, type;
2032 enum ev_direction dir;
2033
2034 /* TODO. Don't adjust anti-ranges. An anti-range may provide
2035 better opportunities than a regular range, but I'm not sure. */
2036 if (vr->type == VR_ANTI_RANGE)
2037 return;
2038
2039 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
2040 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
2041 return;
2042
2043 init = initial_condition_in_loop_num (chrec, loop->num);
2044 step = evolution_part_in_loop_num (chrec, loop->num);
2045
2046 /* If STEP is symbolic, we can't know whether INIT will be the
2047 minimum or maximum value in the range. Also, unless INIT is
2048 a simple expression, compare_values and possibly other functions
2049 in tree-vrp won't be able to handle it. */
2050 if (step == NULL_TREE
2051 || !is_gimple_min_invariant (step)
2052 || !valid_value_p (init))
2053 return;
2054
2055 dir = scev_direction (chrec);
2056 if (/* Do not adjust ranges if we do not know whether the iv increases
2057 or decreases, ... */
2058 dir == EV_DIR_UNKNOWN
2059 /* ... or if it may wrap. */
2060 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
2061 true))
2062 return;
2063
2064 type = TREE_TYPE (var);
2065 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
2066 tmin = lower_bound_in_type (type, type);
2067 else
2068 tmin = TYPE_MIN_VALUE (type);
2069 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
2070 tmax = upper_bound_in_type (type, type);
2071 else
2072 tmax = TYPE_MAX_VALUE (type);
2073
2074 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2075 {
2076 min = tmin;
2077 max = tmax;
2078
2079 /* For VARYING or UNDEFINED ranges, just about anything we get
2080 from scalar evolutions should be better. */
2081
2082 if (dir == EV_DIR_DECREASES)
2083 max = init;
2084 else
2085 min = init;
2086
2087 /* If we would create an invalid range, then just assume we
2088 know absolutely nothing. This may be over-conservative,
2089 but it's clearly safe, and should happen only in unreachable
2090 parts of code, or for invalid programs. */
2091 if (compare_values (min, max) == 1)
2092 return;
2093
2094 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2095 }
2096 else if (vr->type == VR_RANGE)
2097 {
2098 min = vr->min;
2099 max = vr->max;
2100
2101 if (dir == EV_DIR_DECREASES)
2102 {
2103 /* INIT is the maximum value. If INIT is lower than VR->MAX
2104 but no smaller than VR->MIN, set VR->MAX to INIT. */
2105 if (compare_values (init, max) == -1)
2106 {
2107 max = init;
2108
2109 /* If we just created an invalid range with the minimum
2110 greater than the maximum, we fail conservatively.
2111 This should happen only in unreachable
2112 parts of code, or for invalid programs. */
2113 if (compare_values (min, max) == 1)
2114 return;
2115 }
2116 }
2117 else
2118 {
2119 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
2120 if (compare_values (init, min) == 1)
2121 {
2122 min = init;
2123
2124 /* Again, avoid creating invalid range by failing. */
2125 if (compare_values (min, max) == 1)
2126 return;
2127 }
2128 }
2129
2130 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
2131 }
2132 }
2133
2134
2135 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
2136
2137 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
2138 all the values in the ranges.
2139
2140 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
2141
2142 - Return NULL_TREE if it is not always possible to determine the
2143 value of the comparison. */
2144
2145
2146 static tree
2147 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
2148 {
2149 /* VARYING or UNDEFINED ranges cannot be compared. */
2150 if (vr0->type == VR_VARYING
2151 || vr0->type == VR_UNDEFINED
2152 || vr1->type == VR_VARYING
2153 || vr1->type == VR_UNDEFINED)
2154 return NULL_TREE;
2155
2156 /* Anti-ranges need to be handled separately. */
2157 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
2158 {
2159 /* If both are anti-ranges, then we cannot compute any
2160 comparison. */
2161 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
2162 return NULL_TREE;
2163
2164 /* These comparisons are never statically computable. */
2165 if (comp == GT_EXPR
2166 || comp == GE_EXPR
2167 || comp == LT_EXPR
2168 || comp == LE_EXPR)
2169 return NULL_TREE;
2170
2171 /* Equality can be computed only between a range and an
2172 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
2173 if (vr0->type == VR_RANGE)
2174 {
2175 /* To simplify processing, make VR0 the anti-range. */
2176 value_range_t *tmp = vr0;
2177 vr0 = vr1;
2178 vr1 = tmp;
2179 }
2180
2181 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
2182
2183 if (compare_values (vr0->min, vr1->min) == 0
2184 && compare_values (vr0->max, vr1->max) == 0)
2185 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2186
2187 return NULL_TREE;
2188 }
2189
2190 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
2191 operands around and change the comparison code. */
2192 if (comp == GT_EXPR || comp == GE_EXPR)
2193 {
2194 value_range_t *tmp;
2195 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
2196 tmp = vr0;
2197 vr0 = vr1;
2198 vr1 = tmp;
2199 }
2200
2201 if (comp == EQ_EXPR)
2202 {
2203 /* Equality may only be computed if both ranges represent
2204 exactly one value. */
2205 if (compare_values (vr0->min, vr0->max) == 0
2206 && compare_values (vr1->min, vr1->max) == 0)
2207 {
2208 int cmp_min = compare_values (vr0->min, vr1->min);
2209 int cmp_max = compare_values (vr0->max, vr1->max);
2210 if (cmp_min == 0 && cmp_max == 0)
2211 return boolean_true_node;
2212 else if (cmp_min != -2 && cmp_max != -2)
2213 return boolean_false_node;
2214 }
2215 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
2216 else if (compare_values (vr0->min, vr1->max) == 1
2217 || compare_values (vr1->min, vr0->max) == 1)
2218 return boolean_false_node;
2219
2220 return NULL_TREE;
2221 }
2222 else if (comp == NE_EXPR)
2223 {
2224 int cmp1, cmp2;
2225
2226 /* If VR0 is completely to the left or completely to the right
2227 of VR1, they are always different. Notice that we need to
2228 make sure that both comparisons yield similar results to
2229 avoid comparing values that cannot be compared at
2230 compile-time. */
2231 cmp1 = compare_values (vr0->max, vr1->min);
2232 cmp2 = compare_values (vr0->min, vr1->max);
2233 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
2234 return boolean_true_node;
2235
2236 /* If VR0 and VR1 represent a single value and are identical,
2237 return false. */
2238 else if (compare_values (vr0->min, vr0->max) == 0
2239 && compare_values (vr1->min, vr1->max) == 0
2240 && compare_values (vr0->min, vr1->min) == 0
2241 && compare_values (vr0->max, vr1->max) == 0)
2242 return boolean_false_node;
2243
2244 /* Otherwise, they may or may not be different. */
2245 else
2246 return NULL_TREE;
2247 }
2248 else if (comp == LT_EXPR || comp == LE_EXPR)
2249 {
2250 int tst;
2251
2252 /* If VR0 is to the left of VR1, return true. */
2253 tst = compare_values (vr0->max, vr1->min);
2254 if ((comp == LT_EXPR && tst == -1)
2255 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2256 return boolean_true_node;
2257
2258 /* If VR0 is to the right of VR1, return false. */
2259 tst = compare_values (vr0->min, vr1->max);
2260 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2261 || (comp == LE_EXPR && tst == 1))
2262 return boolean_false_node;
2263
2264 /* Otherwise, we don't know. */
2265 return NULL_TREE;
2266 }
2267
2268 gcc_unreachable ();
2269 }
2270
2271
2272 /* Given a value range VR, a value VAL and a comparison code COMP, return
2273 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
2274 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
2275 always returns false. Return NULL_TREE if it is not always
2276 possible to determine the value of the comparison. */
2277
2278 static tree
2279 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
2280 {
2281 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
2282 return NULL_TREE;
2283
2284 /* Anti-ranges need to be handled separately. */
2285 if (vr->type == VR_ANTI_RANGE)
2286 {
2287 /* For anti-ranges, the only predicates that we can compute at
2288 compile time are equality and inequality. */
2289 if (comp == GT_EXPR
2290 || comp == GE_EXPR
2291 || comp == LT_EXPR
2292 || comp == LE_EXPR)
2293 return NULL_TREE;
2294
2295 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
2296 if (value_inside_range (val, vr) == 1)
2297 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
2298
2299 return NULL_TREE;
2300 }
2301
2302 if (comp == EQ_EXPR)
2303 {
2304 /* EQ_EXPR may only be computed if VR represents exactly
2305 one value. */
2306 if (compare_values (vr->min, vr->max) == 0)
2307 {
2308 int cmp = compare_values (vr->min, val);
2309 if (cmp == 0)
2310 return boolean_true_node;
2311 else if (cmp == -1 || cmp == 1 || cmp == 2)
2312 return boolean_false_node;
2313 }
2314 else if (compare_values (val, vr->min) == -1
2315 || compare_values (vr->max, val) == -1)
2316 return boolean_false_node;
2317
2318 return NULL_TREE;
2319 }
2320 else if (comp == NE_EXPR)
2321 {
2322 /* If VAL is not inside VR, then they are always different. */
2323 if (compare_values (vr->max, val) == -1
2324 || compare_values (vr->min, val) == 1)
2325 return boolean_true_node;
2326
2327 /* If VR represents exactly one value equal to VAL, then return
2328 false. */
2329 if (compare_values (vr->min, vr->max) == 0
2330 && compare_values (vr->min, val) == 0)
2331 return boolean_false_node;
2332
2333 /* Otherwise, they may or may not be different. */
2334 return NULL_TREE;
2335 }
2336 else if (comp == LT_EXPR || comp == LE_EXPR)
2337 {
2338 int tst;
2339
2340 /* If VR is to the left of VAL, return true. */
2341 tst = compare_values (vr->max, val);
2342 if ((comp == LT_EXPR && tst == -1)
2343 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2344 return boolean_true_node;
2345
2346 /* If VR is to the right of VAL, return false. */
2347 tst = compare_values (vr->min, val);
2348 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2349 || (comp == LE_EXPR && tst == 1))
2350 return boolean_false_node;
2351
2352 /* Otherwise, we don't know. */
2353 return NULL_TREE;
2354 }
2355 else if (comp == GT_EXPR || comp == GE_EXPR)
2356 {
2357 int tst;
2358
2359 /* If VR is to the right of VAL, return true. */
2360 tst = compare_values (vr->min, val);
2361 if ((comp == GT_EXPR && tst == 1)
2362 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
2363 return boolean_true_node;
2364
2365 /* If VR is to the left of VAL, return false. */
2366 tst = compare_values (vr->max, val);
2367 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
2368 || (comp == GE_EXPR && tst == -1))
2369 return boolean_false_node;
2370
2371 /* Otherwise, we don't know. */
2372 return NULL_TREE;
2373 }
2374
2375 gcc_unreachable ();
2376 }
2377
2378
2379 /* Debugging dumps. */
2380
2381 void dump_value_range (FILE *, value_range_t *);
2382 void debug_value_range (value_range_t *);
2383 void dump_all_value_ranges (FILE *);
2384 void debug_all_value_ranges (void);
2385 void dump_vr_equiv (FILE *, bitmap);
2386 void debug_vr_equiv (bitmap);
2387
2388
2389 /* Dump value range VR to FILE. */
2390
2391 void
2392 dump_value_range (FILE *file, value_range_t *vr)
2393 {
2394 if (vr == NULL)
2395 fprintf (file, "[]");
2396 else if (vr->type == VR_UNDEFINED)
2397 fprintf (file, "UNDEFINED");
2398 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
2399 {
2400 tree type = TREE_TYPE (vr->min);
2401
2402 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
2403
2404 if (INTEGRAL_TYPE_P (type)
2405 && !TYPE_UNSIGNED (type)
2406 && vr->min == TYPE_MIN_VALUE (type))
2407 fprintf (file, "-INF");
2408 else
2409 print_generic_expr (file, vr->min, 0);
2410
2411 fprintf (file, ", ");
2412
2413 if (INTEGRAL_TYPE_P (type)
2414 && vr->max == TYPE_MAX_VALUE (type))
2415 fprintf (file, "+INF");
2416 else
2417 print_generic_expr (file, vr->max, 0);
2418
2419 fprintf (file, "]");
2420
2421 if (vr->equiv)
2422 {
2423 bitmap_iterator bi;
2424 unsigned i, c = 0;
2425
2426 fprintf (file, " EQUIVALENCES: { ");
2427
2428 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2429 {
2430 print_generic_expr (file, ssa_name (i), 0);
2431 fprintf (file, " ");
2432 c++;
2433 }
2434
2435 fprintf (file, "} (%u elements)", c);
2436 }
2437 }
2438 else if (vr->type == VR_VARYING)
2439 fprintf (file, "VARYING");
2440 else
2441 fprintf (file, "INVALID RANGE");
2442 }
2443
2444
2445 /* Dump value range VR to stderr. */
2446
2447 void
2448 debug_value_range (value_range_t *vr)
2449 {
2450 dump_value_range (stderr, vr);
2451 fprintf (stderr, "\n");
2452 }
2453
2454
2455 /* Dump value ranges of all SSA_NAMEs to FILE. */
2456
2457 void
2458 dump_all_value_ranges (FILE *file)
2459 {
2460 size_t i;
2461
2462 for (i = 0; i < num_ssa_names; i++)
2463 {
2464 if (vr_value[i])
2465 {
2466 print_generic_expr (file, ssa_name (i), 0);
2467 fprintf (file, ": ");
2468 dump_value_range (file, vr_value[i]);
2469 fprintf (file, "\n");
2470 }
2471 }
2472
2473 fprintf (file, "\n");
2474 }
2475
2476
2477 /* Dump all value ranges to stderr. */
2478
2479 void
2480 debug_all_value_ranges (void)
2481 {
2482 dump_all_value_ranges (stderr);
2483 }
2484
2485
2486 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2487 create a new SSA name N and return the assertion assignment
2488 'V = ASSERT_EXPR <V, V OP W>'. */
2489
2490 static tree
2491 build_assert_expr_for (tree cond, tree v)
2492 {
2493 tree n, assertion;
2494
2495 gcc_assert (TREE_CODE (v) == SSA_NAME);
2496 n = duplicate_ssa_name (v, NULL_TREE);
2497
2498 if (COMPARISON_CLASS_P (cond))
2499 {
2500 tree a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
2501 assertion = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (v), n, a);
2502 }
2503 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
2504 {
2505 /* Given !V, build the assignment N = false. */
2506 tree op0 = TREE_OPERAND (cond, 0);
2507 gcc_assert (op0 == v);
2508 assertion = build2 (GIMPLE_MODIFY_STMT, TREE_TYPE (v), n,
2509 boolean_false_node);
2510 }
2511 else if (TREE_CODE (cond) == SSA_NAME)
2512 {
2513 /* Given V, build the assignment N = true. */
2514 gcc_assert (v == cond);
2515 assertion = build2 (GIMPLE_MODIFY_STMT,
2516 TREE_TYPE (v), n, boolean_true_node);
2517 }
2518 else
2519 gcc_unreachable ();
2520
2521 SSA_NAME_DEF_STMT (n) = assertion;
2522
2523 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2524 operand of the ASSERT_EXPR. Register the new name and the old one
2525 in the replacement table so that we can fix the SSA web after
2526 adding all the ASSERT_EXPRs. */
2527 register_new_name_mapping (n, v);
2528
2529 return assertion;
2530 }
2531
2532
2533 /* Return false if EXPR is a predicate expression involving floating
2534 point values. */
2535
2536 static inline bool
2537 fp_predicate (tree expr)
2538 {
2539 return (COMPARISON_CLASS_P (expr)
2540 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
2541 }
2542
2543
2544 /* If the range of values taken by OP can be inferred after STMT executes,
2545 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2546 describes the inferred range. Return true if a range could be
2547 inferred. */
2548
2549 static bool
2550 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
2551 {
2552 *val_p = NULL_TREE;
2553 *comp_code_p = ERROR_MARK;
2554
2555 /* Do not attempt to infer anything in names that flow through
2556 abnormal edges. */
2557 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
2558 return false;
2559
2560 /* Similarly, don't infer anything from statements that may throw
2561 exceptions. */
2562 if (tree_could_throw_p (stmt))
2563 return false;
2564
2565 /* If STMT is the last statement of a basic block with no
2566 successors, there is no point inferring anything about any of its
2567 operands. We would not be able to find a proper insertion point
2568 for the assertion, anyway. */
2569 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (bb_for_stmt (stmt)->succs) == 0)
2570 return false;
2571
2572 /* We can only assume that a pointer dereference will yield
2573 non-NULL if -fdelete-null-pointer-checks is enabled. */
2574 if (flag_delete_null_pointer_checks && POINTER_TYPE_P (TREE_TYPE (op)))
2575 {
2576 bool is_store;
2577 unsigned num_uses, num_derefs;
2578
2579 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
2580 if (num_derefs > 0)
2581 {
2582 *val_p = build_int_cst (TREE_TYPE (op), 0);
2583 *comp_code_p = NE_EXPR;
2584 return true;
2585 }
2586 }
2587
2588 return false;
2589 }
2590
2591
2592 void dump_asserts_for (FILE *, tree);
2593 void debug_asserts_for (tree);
2594 void dump_all_asserts (FILE *);
2595 void debug_all_asserts (void);
2596
2597 /* Dump all the registered assertions for NAME to FILE. */
2598
2599 void
2600 dump_asserts_for (FILE *file, tree name)
2601 {
2602 assert_locus_t loc;
2603
2604 fprintf (file, "Assertions to be inserted for ");
2605 print_generic_expr (file, name, 0);
2606 fprintf (file, "\n");
2607
2608 loc = asserts_for[SSA_NAME_VERSION (name)];
2609 while (loc)
2610 {
2611 fprintf (file, "\t");
2612 print_generic_expr (file, bsi_stmt (loc->si), 0);
2613 fprintf (file, "\n\tBB #%d", loc->bb->index);
2614 if (loc->e)
2615 {
2616 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
2617 loc->e->dest->index);
2618 dump_edge_info (file, loc->e, 0);
2619 }
2620 fprintf (file, "\n\tPREDICATE: ");
2621 print_generic_expr (file, name, 0);
2622 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
2623 print_generic_expr (file, loc->val, 0);
2624 fprintf (file, "\n\n");
2625 loc = loc->next;
2626 }
2627
2628 fprintf (file, "\n");
2629 }
2630
2631
2632 /* Dump all the registered assertions for NAME to stderr. */
2633
2634 void
2635 debug_asserts_for (tree name)
2636 {
2637 dump_asserts_for (stderr, name);
2638 }
2639
2640
2641 /* Dump all the registered assertions for all the names to FILE. */
2642
2643 void
2644 dump_all_asserts (FILE *file)
2645 {
2646 unsigned i;
2647 bitmap_iterator bi;
2648
2649 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
2650 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2651 dump_asserts_for (file, ssa_name (i));
2652 fprintf (file, "\n");
2653 }
2654
2655
2656 /* Dump all the registered assertions for all the names to stderr. */
2657
2658 void
2659 debug_all_asserts (void)
2660 {
2661 dump_all_asserts (stderr);
2662 }
2663
2664
2665 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2666 'NAME COMP_CODE VAL' at a location that dominates block BB or
2667 E->DEST, then register this location as a possible insertion point
2668 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
2669
2670 BB, E and SI provide the exact insertion point for the new
2671 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2672 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2673 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2674 must not be NULL. */
2675
2676 static void
2677 register_new_assert_for (tree name,
2678 enum tree_code comp_code,
2679 tree val,
2680 basic_block bb,
2681 edge e,
2682 block_stmt_iterator si)
2683 {
2684 assert_locus_t n, loc, last_loc;
2685 bool found;
2686 basic_block dest_bb;
2687
2688 #if defined ENABLE_CHECKING
2689 gcc_assert (bb == NULL || e == NULL);
2690
2691 if (e == NULL)
2692 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
2693 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
2694 #endif
2695
2696 /* The new assertion A will be inserted at BB or E. We need to
2697 determine if the new location is dominated by a previously
2698 registered location for A. If we are doing an edge insertion,
2699 assume that A will be inserted at E->DEST. Note that this is not
2700 necessarily true.
2701
2702 If E is a critical edge, it will be split. But even if E is
2703 split, the new block will dominate the same set of blocks that
2704 E->DEST dominates.
2705
2706 The reverse, however, is not true, blocks dominated by E->DEST
2707 will not be dominated by the new block created to split E. So,
2708 if the insertion location is on a critical edge, we will not use
2709 the new location to move another assertion previously registered
2710 at a block dominated by E->DEST. */
2711 dest_bb = (bb) ? bb : e->dest;
2712
2713 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2714 VAL at a block dominating DEST_BB, then we don't need to insert a new
2715 one. Similarly, if the same assertion already exists at a block
2716 dominated by DEST_BB and the new location is not on a critical
2717 edge, then update the existing location for the assertion (i.e.,
2718 move the assertion up in the dominance tree).
2719
2720 Note, this is implemented as a simple linked list because there
2721 should not be more than a handful of assertions registered per
2722 name. If this becomes a performance problem, a table hashed by
2723 COMP_CODE and VAL could be implemented. */
2724 loc = asserts_for[SSA_NAME_VERSION (name)];
2725 last_loc = loc;
2726 found = false;
2727 while (loc)
2728 {
2729 if (loc->comp_code == comp_code
2730 && (loc->val == val
2731 || operand_equal_p (loc->val, val, 0)))
2732 {
2733 /* If the assertion NAME COMP_CODE VAL has already been
2734 registered at a basic block that dominates DEST_BB, then
2735 we don't need to insert the same assertion again. Note
2736 that we don't check strict dominance here to avoid
2737 replicating the same assertion inside the same basic
2738 block more than once (e.g., when a pointer is
2739 dereferenced several times inside a block).
2740
2741 An exception to this rule are edge insertions. If the
2742 new assertion is to be inserted on edge E, then it will
2743 dominate all the other insertions that we may want to
2744 insert in DEST_BB. So, if we are doing an edge
2745 insertion, don't do this dominance check. */
2746 if (e == NULL
2747 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
2748 return;
2749
2750 /* Otherwise, if E is not a critical edge and DEST_BB
2751 dominates the existing location for the assertion, move
2752 the assertion up in the dominance tree by updating its
2753 location information. */
2754 if ((e == NULL || !EDGE_CRITICAL_P (e))
2755 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
2756 {
2757 loc->bb = dest_bb;
2758 loc->e = e;
2759 loc->si = si;
2760 return;
2761 }
2762 }
2763
2764 /* Update the last node of the list and move to the next one. */
2765 last_loc = loc;
2766 loc = loc->next;
2767 }
2768
2769 /* If we didn't find an assertion already registered for
2770 NAME COMP_CODE VAL, add a new one at the end of the list of
2771 assertions associated with NAME. */
2772 n = XNEW (struct assert_locus_d);
2773 n->bb = dest_bb;
2774 n->e = e;
2775 n->si = si;
2776 n->comp_code = comp_code;
2777 n->val = val;
2778 n->next = NULL;
2779
2780 if (last_loc)
2781 last_loc->next = n;
2782 else
2783 asserts_for[SSA_NAME_VERSION (name)] = n;
2784
2785 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
2786 }
2787
2788 /* COND is a predicate which uses NAME. Extract a suitable test code
2789 and value and store them into *CODE_P and *VAL_P so the predicate
2790 is normalized to NAME *CODE_P *VAL_P.
2791
2792 If no extraction was possible, return FALSE, otherwise return TRUE.
2793
2794 If INVERT is true, then we invert the result stored into *CODE_P. */
2795
2796 static bool
2797 extract_code_and_val_from_cond (tree name, tree cond, bool invert,
2798 enum tree_code *code_p, tree *val_p)
2799 {
2800 enum tree_code comp_code;
2801 tree val;
2802
2803 /* Predicates may be a single SSA name or NAME OP VAL. */
2804 if (cond == name)
2805 {
2806 /* If the predicate is a name, it must be NAME, in which
2807 case we create the predicate NAME == true or
2808 NAME == false accordingly. */
2809 comp_code = EQ_EXPR;
2810 val = invert ? boolean_false_node : boolean_true_node;
2811 }
2812 else
2813 {
2814 /* Otherwise, we have a comparison of the form NAME COMP VAL
2815 or VAL COMP NAME. */
2816 if (name == TREE_OPERAND (cond, 1))
2817 {
2818 /* If the predicate is of the form VAL COMP NAME, flip
2819 COMP around because we need to register NAME as the
2820 first operand in the predicate. */
2821 comp_code = swap_tree_comparison (TREE_CODE (cond));
2822 val = TREE_OPERAND (cond, 0);
2823 }
2824 else
2825 {
2826 /* The comparison is of the form NAME COMP VAL, so the
2827 comparison code remains unchanged. */
2828 comp_code = TREE_CODE (cond);
2829 val = TREE_OPERAND (cond, 1);
2830 }
2831
2832 /* Invert the comparison code as necessary. */
2833 if (invert)
2834 comp_code = invert_tree_comparison (comp_code, 0);
2835
2836 /* VRP does not handle float types. */
2837 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
2838 return false;
2839
2840 /* Do not register always-false predicates.
2841 FIXME: this works around a limitation in fold() when dealing with
2842 enumerations. Given 'enum { N1, N2 } x;', fold will not
2843 fold 'if (x > N2)' to 'if (0)'. */
2844 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
2845 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2846 {
2847 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
2848 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
2849
2850 if (comp_code == GT_EXPR
2851 && (!max
2852 || compare_values (val, max) == 0))
2853 return false;
2854
2855 if (comp_code == LT_EXPR
2856 && (!min
2857 || compare_values (val, min) == 0))
2858 return false;
2859 }
2860 }
2861 *code_p = comp_code;
2862 *val_p = val;
2863 return true;
2864 }
2865
2866 /* OP is an operand of a truth value expression which is known to have
2867 a particular value. Register any asserts for OP and for any
2868 operands in OP's defining statement.
2869
2870 If CODE is EQ_EXPR, then we want to register OP is zero (false),
2871 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
2872
2873 static bool
2874 register_edge_assert_for_1 (tree op, enum tree_code code,
2875 edge e, block_stmt_iterator bsi)
2876 {
2877 bool retval = false;
2878 tree op_def, rhs, val;
2879
2880 /* We only care about SSA_NAMEs. */
2881 if (TREE_CODE (op) != SSA_NAME)
2882 return false;
2883
2884 /* We know that OP will have a zero or nonzero value. If OP is used
2885 more than once go ahead and register an assert for OP.
2886
2887 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
2888 it will always be set for OP (because OP is used in a COND_EXPR in
2889 the subgraph). */
2890 if (!has_single_use (op))
2891 {
2892 val = build_int_cst (TREE_TYPE (op), 0);
2893 register_new_assert_for (op, code, val, NULL, e, bsi);
2894 retval = true;
2895 }
2896
2897 /* Now look at how OP is set. If it's set from a comparison,
2898 a truth operation or some bit operations, then we may be able
2899 to register information about the operands of that assignment. */
2900 op_def = SSA_NAME_DEF_STMT (op);
2901 if (TREE_CODE (op_def) != GIMPLE_MODIFY_STMT)
2902 return retval;
2903
2904 rhs = GIMPLE_STMT_OPERAND (op_def, 1);
2905
2906 if (COMPARISON_CLASS_P (rhs))
2907 {
2908 bool invert = (code == EQ_EXPR ? true : false);
2909 tree op0 = TREE_OPERAND (rhs, 0);
2910 tree op1 = TREE_OPERAND (rhs, 1);
2911
2912 /* Conditionally register an assert for each SSA_NAME in the
2913 comparison. */
2914 if (TREE_CODE (op0) == SSA_NAME
2915 && !has_single_use (op0)
2916 && extract_code_and_val_from_cond (op0, rhs,
2917 invert, &code, &val))
2918 {
2919 register_new_assert_for (op0, code, val, NULL, e, bsi);
2920 retval = true;
2921 }
2922
2923 /* Similarly for the second operand of the comparison. */
2924 if (TREE_CODE (op1) == SSA_NAME
2925 && !has_single_use (op1)
2926 && extract_code_and_val_from_cond (op1, rhs,
2927 invert, &code, &val))
2928 {
2929 register_new_assert_for (op1, code, val, NULL, e, bsi);
2930 retval = true;
2931 }
2932 }
2933 else if ((code == NE_EXPR
2934 && (TREE_CODE (rhs) == TRUTH_AND_EXPR
2935 || TREE_CODE (rhs) == BIT_AND_EXPR))
2936 || (code == EQ_EXPR
2937 && (TREE_CODE (rhs) == TRUTH_OR_EXPR
2938 || TREE_CODE (rhs) == BIT_IOR_EXPR)))
2939 {
2940 /* Recurse on each operand. */
2941 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
2942 code, e, bsi);
2943 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 1),
2944 code, e, bsi);
2945 }
2946 else if (TREE_CODE (rhs) == TRUTH_NOT_EXPR)
2947 {
2948 /* Recurse, flipping CODE. */
2949 code = invert_tree_comparison (code, false);
2950 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
2951 code, e, bsi);
2952 }
2953 else if (TREE_CODE (rhs) == SSA_NAME)
2954 {
2955 /* Recurse through the copy. */
2956 retval |= register_edge_assert_for_1 (rhs, code, e, bsi);
2957 }
2958 else if (TREE_CODE (rhs) == NOP_EXPR
2959 || TREE_CODE (rhs) == CONVERT_EXPR
2960 || TREE_CODE (rhs) == VIEW_CONVERT_EXPR
2961 || TREE_CODE (rhs) == NON_LVALUE_EXPR)
2962 {
2963 /* Recurse through the type conversion. */
2964 retval |= register_edge_assert_for_1 (TREE_OPERAND (rhs, 0),
2965 code, e, bsi);
2966 }
2967
2968 return retval;
2969 }
2970
2971 /* Try to register an edge assertion for SSA name NAME on edge E for
2972 the condition COND contributing to the conditional jump pointed to by SI.
2973 Return true if an assertion for NAME could be registered. */
2974
2975 static bool
2976 register_edge_assert_for (tree name, edge e, block_stmt_iterator si, tree cond)
2977 {
2978 tree val;
2979 enum tree_code comp_code;
2980 bool retval = false;
2981 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
2982
2983 /* Do not attempt to infer anything in names that flow through
2984 abnormal edges. */
2985 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2986 return false;
2987
2988 if (!extract_code_and_val_from_cond (name, cond, is_else_edge,
2989 &comp_code, &val))
2990 return false;
2991
2992 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
2993 reachable from E. */
2994 if (TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
2995 {
2996 register_new_assert_for (name, comp_code, val, NULL, e, si);
2997 retval = true;
2998 }
2999
3000 /* If COND is effectively an equality test of an SSA_NAME against
3001 the value zero or one, then we may be able to assert values
3002 for SSA_NAMEs which flow into COND. */
3003
3004 /* In the case of NAME == 1 or NAME != 0, for TRUTH_AND_EXPR defining
3005 statement of NAME we can assert both operands of the TRUTH_AND_EXPR
3006 have nonzero value. */
3007 if (((comp_code == EQ_EXPR && integer_onep (val))
3008 || (comp_code == NE_EXPR && integer_zerop (val))))
3009 {
3010 tree def_stmt = SSA_NAME_DEF_STMT (name);
3011
3012 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3013 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_AND_EXPR
3014 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_AND_EXPR))
3015 {
3016 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3017 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
3018 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
3019 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
3020 }
3021 }
3022
3023 /* In the case of NAME == 0 or NAME != 1, for TRUTH_OR_EXPR defining
3024 statement of NAME we can assert both operands of the TRUTH_OR_EXPR
3025 have zero value. */
3026 if (((comp_code == EQ_EXPR && integer_zerop (val))
3027 || (comp_code == NE_EXPR && integer_onep (val))))
3028 {
3029 tree def_stmt = SSA_NAME_DEF_STMT (name);
3030
3031 if (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3032 && (TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == TRUTH_OR_EXPR
3033 || TREE_CODE (GIMPLE_STMT_OPERAND (def_stmt, 1)) == BIT_IOR_EXPR))
3034 {
3035 tree op0 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3036 tree op1 = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 1);
3037 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
3038 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
3039 }
3040 }
3041
3042 return retval;
3043 }
3044
3045
3046 static bool find_assert_locations (basic_block bb);
3047
3048 /* Determine whether the outgoing edges of BB should receive an
3049 ASSERT_EXPR for each of the operands of BB's LAST statement.
3050 The last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
3051
3052 If any of the sub-graphs rooted at BB have an interesting use of
3053 the predicate operands, an assert location node is added to the
3054 list of assertions for the corresponding operands. */
3055
3056 static bool
3057 find_conditional_asserts (basic_block bb, tree last)
3058 {
3059 bool need_assert;
3060 block_stmt_iterator bsi;
3061 tree op;
3062 edge_iterator ei;
3063 edge e;
3064 ssa_op_iter iter;
3065
3066 need_assert = false;
3067 bsi = bsi_for_stmt (last);
3068
3069 /* Look for uses of the operands in each of the sub-graphs
3070 rooted at BB. We need to check each of the outgoing edges
3071 separately, so that we know what kind of ASSERT_EXPR to
3072 insert. */
3073 FOR_EACH_EDGE (e, ei, bb->succs)
3074 {
3075 if (e->dest == bb)
3076 continue;
3077
3078 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
3079 Otherwise, when we finish traversing each of the sub-graphs, we
3080 won't know whether the variables were found in the sub-graphs or
3081 if they had been found in a block upstream from BB.
3082
3083 This is actually a bad idea is some cases, particularly jump
3084 threading. Consider a CFG like the following:
3085
3086 0
3087 /|
3088 1 |
3089 \|
3090 2
3091 / \
3092 3 4
3093
3094 Assume that one or more operands in the conditional at the
3095 end of block 0 are used in a conditional in block 2, but not
3096 anywhere in block 1. In this case we will not insert any
3097 assert statements in block 1, which may cause us to miss
3098 opportunities to optimize, particularly for jump threading. */
3099 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3100 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3101
3102 /* Traverse the strictly dominated sub-graph rooted at E->DEST
3103 to determine if any of the operands in the conditional
3104 predicate are used. */
3105 if (e->dest != bb)
3106 need_assert |= find_assert_locations (e->dest);
3107
3108 /* Register the necessary assertions for each operand in the
3109 conditional predicate. */
3110 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3111 need_assert |= register_edge_assert_for (op, e, bsi,
3112 COND_EXPR_COND (last));
3113 }
3114
3115 /* Finally, indicate that we have found the operands in the
3116 conditional. */
3117 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3118 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3119
3120 return need_assert;
3121 }
3122
3123
3124 /* Traverse all the statements in block BB looking for statements that
3125 may generate useful assertions for the SSA names in their operand.
3126 If a statement produces a useful assertion A for name N_i, then the
3127 list of assertions already generated for N_i is scanned to
3128 determine if A is actually needed.
3129
3130 If N_i already had the assertion A at a location dominating the
3131 current location, then nothing needs to be done. Otherwise, the
3132 new location for A is recorded instead.
3133
3134 1- For every statement S in BB, all the variables used by S are
3135 added to bitmap FOUND_IN_SUBGRAPH.
3136
3137 2- If statement S uses an operand N in a way that exposes a known
3138 value range for N, then if N was not already generated by an
3139 ASSERT_EXPR, create a new assert location for N. For instance,
3140 if N is a pointer and the statement dereferences it, we can
3141 assume that N is not NULL.
3142
3143 3- COND_EXPRs are a special case of #2. We can derive range
3144 information from the predicate but need to insert different
3145 ASSERT_EXPRs for each of the sub-graphs rooted at the
3146 conditional block. If the last statement of BB is a conditional
3147 expression of the form 'X op Y', then
3148
3149 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
3150
3151 b) If the conditional is the only entry point to the sub-graph
3152 corresponding to the THEN_CLAUSE, recurse into it. On
3153 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
3154 an ASSERT_EXPR is added for the corresponding variable.
3155
3156 c) Repeat step (b) on the ELSE_CLAUSE.
3157
3158 d) Mark X and Y in FOUND_IN_SUBGRAPH.
3159
3160 For instance,
3161
3162 if (a == 9)
3163 b = a;
3164 else
3165 b = c + 1;
3166
3167 In this case, an assertion on the THEN clause is useful to
3168 determine that 'a' is always 9 on that edge. However, an assertion
3169 on the ELSE clause would be unnecessary.
3170
3171 4- If BB does not end in a conditional expression, then we recurse
3172 into BB's dominator children.
3173
3174 At the end of the recursive traversal, every SSA name will have a
3175 list of locations where ASSERT_EXPRs should be added. When a new
3176 location for name N is found, it is registered by calling
3177 register_new_assert_for. That function keeps track of all the
3178 registered assertions to prevent adding unnecessary assertions.
3179 For instance, if a pointer P_4 is dereferenced more than once in a
3180 dominator tree, only the location dominating all the dereference of
3181 P_4 will receive an ASSERT_EXPR.
3182
3183 If this function returns true, then it means that there are names
3184 for which we need to generate ASSERT_EXPRs. Those assertions are
3185 inserted by process_assert_insertions.
3186
3187 TODO. Handle SWITCH_EXPR. */
3188
3189 static bool
3190 find_assert_locations (basic_block bb)
3191 {
3192 block_stmt_iterator si;
3193 tree last, phi;
3194 bool need_assert;
3195 basic_block son;
3196
3197 if (TEST_BIT (blocks_visited, bb->index))
3198 return false;
3199
3200 SET_BIT (blocks_visited, bb->index);
3201
3202 need_assert = false;
3203
3204 /* Traverse all PHI nodes in BB marking used operands. */
3205 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3206 {
3207 use_operand_p arg_p;
3208 ssa_op_iter i;
3209
3210 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
3211 {
3212 tree arg = USE_FROM_PTR (arg_p);
3213 if (TREE_CODE (arg) == SSA_NAME)
3214 {
3215 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
3216 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
3217 }
3218 }
3219 }
3220
3221 /* Traverse all the statements in BB marking used names and looking
3222 for statements that may infer assertions for their used operands. */
3223 last = NULL_TREE;
3224 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3225 {
3226 tree stmt, op;
3227 ssa_op_iter i;
3228
3229 stmt = bsi_stmt (si);
3230
3231 /* See if we can derive an assertion for any of STMT's operands. */
3232 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3233 {
3234 tree value;
3235 enum tree_code comp_code;
3236
3237 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
3238 the sub-graph of a conditional block, when we return from
3239 this recursive walk, our parent will use the
3240 FOUND_IN_SUBGRAPH bitset to determine if one of the
3241 operands it was looking for was present in the sub-graph. */
3242 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
3243
3244 /* If OP is used in such a way that we can infer a value
3245 range for it, and we don't find a previous assertion for
3246 it, create a new assertion location node for OP. */
3247 if (infer_value_range (stmt, op, &comp_code, &value))
3248 {
3249 /* If we are able to infer a nonzero value range for OP,
3250 then walk backwards through the use-def chain to see if OP
3251 was set via a typecast.
3252
3253 If so, then we can also infer a nonzero value range
3254 for the operand of the NOP_EXPR. */
3255 if (comp_code == NE_EXPR && integer_zerop (value))
3256 {
3257 tree t = op;
3258 tree def_stmt = SSA_NAME_DEF_STMT (t);
3259
3260 while (TREE_CODE (def_stmt) == GIMPLE_MODIFY_STMT
3261 && TREE_CODE
3262 (GIMPLE_STMT_OPERAND (def_stmt, 1)) == NOP_EXPR
3263 && TREE_CODE
3264 (TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1),
3265 0)) == SSA_NAME
3266 && POINTER_TYPE_P
3267 (TREE_TYPE (TREE_OPERAND
3268 (GIMPLE_STMT_OPERAND (def_stmt,
3269 1), 0))))
3270 {
3271 t = TREE_OPERAND (GIMPLE_STMT_OPERAND (def_stmt, 1), 0);
3272 def_stmt = SSA_NAME_DEF_STMT (t);
3273
3274 /* Note we want to register the assert for the
3275 operand of the NOP_EXPR after SI, not after the
3276 conversion. */
3277 if (! has_single_use (t))
3278 {
3279 register_new_assert_for (t, comp_code, value,
3280 bb, NULL, si);
3281 need_assert = true;
3282 }
3283 }
3284 }
3285
3286 /* If OP is used only once, namely in this STMT, don't
3287 bother creating an ASSERT_EXPR for it. Such an
3288 ASSERT_EXPR would do nothing but increase compile time. */
3289 if (!has_single_use (op))
3290 {
3291 register_new_assert_for (op, comp_code, value, bb, NULL, si);
3292 need_assert = true;
3293 }
3294 }
3295 }
3296
3297 /* Remember the last statement of the block. */
3298 last = stmt;
3299 }
3300
3301 /* If BB's last statement is a conditional expression
3302 involving integer operands, recurse into each of the sub-graphs
3303 rooted at BB to determine if we need to add ASSERT_EXPRs. */
3304 if (last
3305 && TREE_CODE (last) == COND_EXPR
3306 && !fp_predicate (COND_EXPR_COND (last))
3307 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3308 need_assert |= find_conditional_asserts (bb, last);
3309
3310 /* Recurse into the dominator children of BB. */
3311 for (son = first_dom_son (CDI_DOMINATORS, bb);
3312 son;
3313 son = next_dom_son (CDI_DOMINATORS, son))
3314 need_assert |= find_assert_locations (son);
3315
3316 return need_assert;
3317 }
3318
3319
3320 /* Create an ASSERT_EXPR for NAME and insert it in the location
3321 indicated by LOC. Return true if we made any edge insertions. */
3322
3323 static bool
3324 process_assert_insertions_for (tree name, assert_locus_t loc)
3325 {
3326 /* Build the comparison expression NAME_i COMP_CODE VAL. */
3327 tree stmt, cond, assert_expr;
3328 edge_iterator ei;
3329 edge e;
3330
3331 cond = build2 (loc->comp_code, boolean_type_node, name, loc->val);
3332 assert_expr = build_assert_expr_for (cond, name);
3333
3334 if (loc->e)
3335 {
3336 /* We have been asked to insert the assertion on an edge. This
3337 is used only by COND_EXPR and SWITCH_EXPR assertions. */
3338 #if defined ENABLE_CHECKING
3339 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
3340 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
3341 #endif
3342
3343 bsi_insert_on_edge (loc->e, assert_expr);
3344 return true;
3345 }
3346
3347 /* Otherwise, we can insert right after LOC->SI iff the
3348 statement must not be the last statement in the block. */
3349 stmt = bsi_stmt (loc->si);
3350 if (!stmt_ends_bb_p (stmt))
3351 {
3352 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
3353 return false;
3354 }
3355
3356 /* If STMT must be the last statement in BB, we can only insert new
3357 assertions on the non-abnormal edge out of BB. Note that since
3358 STMT is not control flow, there may only be one non-abnormal edge
3359 out of BB. */
3360 FOR_EACH_EDGE (e, ei, loc->bb->succs)
3361 if (!(e->flags & EDGE_ABNORMAL))
3362 {
3363 bsi_insert_on_edge (e, assert_expr);
3364 return true;
3365 }
3366
3367 gcc_unreachable ();
3368 }
3369
3370
3371 /* Process all the insertions registered for every name N_i registered
3372 in NEED_ASSERT_FOR. The list of assertions to be inserted are
3373 found in ASSERTS_FOR[i]. */
3374
3375 static void
3376 process_assert_insertions (void)
3377 {
3378 unsigned i;
3379 bitmap_iterator bi;
3380 bool update_edges_p = false;
3381 int num_asserts = 0;
3382
3383 if (dump_file && (dump_flags & TDF_DETAILS))
3384 dump_all_asserts (dump_file);
3385
3386 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
3387 {
3388 assert_locus_t loc = asserts_for[i];
3389 gcc_assert (loc);
3390
3391 while (loc)
3392 {
3393 assert_locus_t next = loc->next;
3394 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
3395 free (loc);
3396 loc = next;
3397 num_asserts++;
3398 }
3399 }
3400
3401 if (update_edges_p)
3402 bsi_commit_edge_inserts ();
3403
3404 if (dump_file && (dump_flags & TDF_STATS))
3405 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
3406 num_asserts);
3407 }
3408
3409
3410 /* Traverse the flowgraph looking for conditional jumps to insert range
3411 expressions. These range expressions are meant to provide information
3412 to optimizations that need to reason in terms of value ranges. They
3413 will not be expanded into RTL. For instance, given:
3414
3415 x = ...
3416 y = ...
3417 if (x < y)
3418 y = x - 2;
3419 else
3420 x = y + 3;
3421
3422 this pass will transform the code into:
3423
3424 x = ...
3425 y = ...
3426 if (x < y)
3427 {
3428 x = ASSERT_EXPR <x, x < y>
3429 y = x - 2
3430 }
3431 else
3432 {
3433 y = ASSERT_EXPR <y, x <= y>
3434 x = y + 3
3435 }
3436
3437 The idea is that once copy and constant propagation have run, other
3438 optimizations will be able to determine what ranges of values can 'x'
3439 take in different paths of the code, simply by checking the reaching
3440 definition of 'x'. */
3441
3442 static void
3443 insert_range_assertions (void)
3444 {
3445 edge e;
3446 edge_iterator ei;
3447 bool update_ssa_p;
3448
3449 found_in_subgraph = sbitmap_alloc (num_ssa_names);
3450 sbitmap_zero (found_in_subgraph);
3451
3452 blocks_visited = sbitmap_alloc (last_basic_block);
3453 sbitmap_zero (blocks_visited);
3454
3455 need_assert_for = BITMAP_ALLOC (NULL);
3456 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
3457
3458 calculate_dominance_info (CDI_DOMINATORS);
3459
3460 update_ssa_p = false;
3461 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
3462 if (find_assert_locations (e->dest))
3463 update_ssa_p = true;
3464
3465 if (update_ssa_p)
3466 {
3467 process_assert_insertions ();
3468 update_ssa (TODO_update_ssa_no_phi);
3469 }
3470
3471 if (dump_file && (dump_flags & TDF_DETAILS))
3472 {
3473 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
3474 dump_function_to_file (current_function_decl, dump_file, dump_flags);
3475 }
3476
3477 sbitmap_free (found_in_subgraph);
3478 free (asserts_for);
3479 BITMAP_FREE (need_assert_for);
3480 }
3481
3482 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
3483 and "struct" hacks. If VRP can determine that the
3484 array subscript is a contant, check if it is outside valid
3485 range. If the array subscript is a RANGE, warn if it is
3486 non-overlapping with valid range.
3487 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
3488
3489 static void
3490 check_array_ref (tree ref, location_t* locus, bool ignore_off_by_one)
3491 {
3492 value_range_t* vr = NULL;
3493 tree low_sub, up_sub;
3494 tree low_bound, up_bound = array_ref_up_bound (ref);
3495
3496 low_sub = up_sub = TREE_OPERAND (ref, 1);
3497
3498 if (!up_bound || !locus || TREE_NO_WARNING (ref)
3499 || TREE_CODE (up_bound) != INTEGER_CST
3500 /* Can not check flexible arrays. */
3501 || (TYPE_SIZE (TREE_TYPE (ref)) == NULL_TREE
3502 && TYPE_DOMAIN (TREE_TYPE (ref)) != NULL_TREE
3503 && TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (ref))) == NULL_TREE)
3504 /* Accesses after the end of arrays of size 0 (gcc
3505 extension) and 1 are likely intentional ("struct
3506 hack"). */
3507 || compare_tree_int (up_bound, 1) <= 0)
3508 return;
3509
3510 low_bound = array_ref_low_bound (ref);
3511
3512 if (TREE_CODE (low_sub) == SSA_NAME)
3513 {
3514 vr = get_value_range (low_sub);
3515 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
3516 {
3517 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
3518 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
3519 }
3520 }
3521
3522 if (vr && vr->type == VR_ANTI_RANGE)
3523 {
3524 if (TREE_CODE (up_sub) == INTEGER_CST
3525 && tree_int_cst_lt (up_bound, up_sub)
3526 && TREE_CODE (low_sub) == INTEGER_CST
3527 && tree_int_cst_lt (low_sub, low_bound))
3528 {
3529 warning (OPT_Warray_bounds,
3530 "%Harray subscript is outside array bounds", locus);
3531 TREE_NO_WARNING (ref) = 1;
3532 }
3533 }
3534 else if (TREE_CODE (up_sub) == INTEGER_CST
3535 && tree_int_cst_lt (up_bound, up_sub)
3536 && !tree_int_cst_equal (up_bound, up_sub)
3537 && (!ignore_off_by_one
3538 || !tree_int_cst_equal (int_const_binop (PLUS_EXPR,
3539 up_bound,
3540 integer_one_node,
3541 0),
3542 up_sub)))
3543 {
3544 warning (OPT_Warray_bounds, "%Harray subscript is above array bounds",
3545 locus);
3546 TREE_NO_WARNING (ref) = 1;
3547 }
3548 else if (TREE_CODE (low_sub) == INTEGER_CST
3549 && tree_int_cst_lt (low_sub, low_bound))
3550 {
3551 warning (OPT_Warray_bounds, "%Harray subscript is below array bounds",
3552 locus);
3553 TREE_NO_WARNING (ref) = 1;
3554 }
3555 }
3556
3557 /* walk_tree() callback that checks if *TP is
3558 an ARRAY_REF inside an ADDR_EXPR (in which an array
3559 subscript one outside the valid range is allowed). Call
3560 check_array_ref for each ARRAY_REF found. The location is
3561 passed in DATA. */
3562
3563 static tree
3564 check_array_bounds (tree *tp, int *walk_subtree, void *data)
3565 {
3566 tree t = *tp;
3567 tree stmt = (tree)data;
3568 location_t *location = EXPR_LOCUS (stmt);
3569
3570 *walk_subtree = TRUE;
3571
3572 if (TREE_CODE (t) == ARRAY_REF)
3573 check_array_ref (t, location, false /*ignore_off_by_one*/);
3574 else if (TREE_CODE (t) == ADDR_EXPR)
3575 {
3576 use_operand_p op;
3577 tree use_stmt;
3578 t = TREE_OPERAND (t, 0);
3579
3580 /* Don't warn on statements like
3581
3582 ssa_name = 500 + &array[-200]
3583
3584 or
3585
3586 ssa_name = &array[-200]
3587 other_name = ssa_name + 300;
3588
3589 which are sometimes
3590 produced by other optimizing passes. */
3591
3592 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
3593 && BINARY_CLASS_P (GIMPLE_STMT_OPERAND (stmt, 1)))
3594 *walk_subtree = FALSE;
3595
3596 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
3597 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 0)) == SSA_NAME
3598 && single_imm_use (GIMPLE_STMT_OPERAND (stmt, 0), &op, &use_stmt)
3599 && TREE_CODE (use_stmt) == GIMPLE_MODIFY_STMT
3600 && BINARY_CLASS_P (GIMPLE_STMT_OPERAND (use_stmt, 1)))
3601 *walk_subtree = FALSE;
3602
3603 while (*walk_subtree && handled_component_p (t))
3604 {
3605 if (TREE_CODE (t) == ARRAY_REF)
3606 check_array_ref (t, location, true /*ignore_off_by_one*/);
3607 t = TREE_OPERAND (t, 0);
3608 }
3609 *walk_subtree = FALSE;
3610 }
3611
3612 return NULL_TREE;
3613 }
3614
3615 /* Walk over all statements of all reachable BBs and call check_array_bounds
3616 on them. */
3617
3618 static void
3619 check_all_array_refs (void)
3620 {
3621 basic_block bb;
3622 block_stmt_iterator si;
3623
3624 FOR_EACH_BB (bb)
3625 {
3626 /* Skip bb's that are clearly unreachable. */
3627 if (single_pred_p (bb))
3628 {
3629 basic_block pred_bb = EDGE_PRED (bb, 0)->src;
3630 tree ls = NULL_TREE;
3631
3632 if (!bsi_end_p (bsi_last (pred_bb)))
3633 ls = bsi_stmt (bsi_last (pred_bb));
3634
3635 if (ls && TREE_CODE (ls) == COND_EXPR
3636 && ((COND_EXPR_COND (ls) == boolean_false_node
3637 && (EDGE_PRED (bb, 0)->flags & EDGE_TRUE_VALUE))
3638 || (COND_EXPR_COND (ls) == boolean_true_node
3639 && (EDGE_PRED (bb, 0)->flags & EDGE_FALSE_VALUE))))
3640 continue;
3641 }
3642 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3643 walk_tree (bsi_stmt_ptr (si), check_array_bounds,
3644 bsi_stmt (si), NULL);
3645 }
3646 }
3647
3648 /* Convert range assertion expressions into the implied copies and
3649 copy propagate away the copies. Doing the trivial copy propagation
3650 here avoids the need to run the full copy propagation pass after
3651 VRP.
3652
3653 FIXME, this will eventually lead to copy propagation removing the
3654 names that had useful range information attached to them. For
3655 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
3656 then N_i will have the range [3, +INF].
3657
3658 However, by converting the assertion into the implied copy
3659 operation N_i = N_j, we will then copy-propagate N_j into the uses
3660 of N_i and lose the range information. We may want to hold on to
3661 ASSERT_EXPRs a little while longer as the ranges could be used in
3662 things like jump threading.
3663
3664 The problem with keeping ASSERT_EXPRs around is that passes after
3665 VRP need to handle them appropriately.
3666
3667 Another approach would be to make the range information a first
3668 class property of the SSA_NAME so that it can be queried from
3669 any pass. This is made somewhat more complex by the need for
3670 multiple ranges to be associated with one SSA_NAME. */
3671
3672 static void
3673 remove_range_assertions (void)
3674 {
3675 basic_block bb;
3676 block_stmt_iterator si;
3677
3678 /* Note that the BSI iterator bump happens at the bottom of the
3679 loop and no bump is necessary if we're removing the statement
3680 referenced by the current BSI. */
3681 FOR_EACH_BB (bb)
3682 for (si = bsi_start (bb); !bsi_end_p (si);)
3683 {
3684 tree stmt = bsi_stmt (si);
3685 tree use_stmt;
3686
3687 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT
3688 && TREE_CODE (GIMPLE_STMT_OPERAND (stmt, 1)) == ASSERT_EXPR)
3689 {
3690 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1), var;
3691 tree cond = fold (ASSERT_EXPR_COND (rhs));
3692 use_operand_p use_p;
3693 imm_use_iterator iter;
3694
3695 gcc_assert (cond != boolean_false_node);
3696
3697 /* Propagate the RHS into every use of the LHS. */
3698 var = ASSERT_EXPR_VAR (rhs);
3699 FOR_EACH_IMM_USE_STMT (use_stmt, iter,
3700 GIMPLE_STMT_OPERAND (stmt, 0))
3701 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3702 {
3703 SET_USE (use_p, var);
3704 gcc_assert (TREE_CODE (var) == SSA_NAME);
3705 }
3706
3707 /* And finally, remove the copy, it is not needed. */
3708 bsi_remove (&si, true);
3709 release_defs (stmt);
3710 }
3711 else
3712 bsi_next (&si);
3713 }
3714
3715 sbitmap_free (blocks_visited);
3716 }
3717
3718
3719 /* Return true if STMT is interesting for VRP. */
3720
3721 static bool
3722 stmt_interesting_for_vrp (tree stmt)
3723 {
3724 if (TREE_CODE (stmt) == PHI_NODE
3725 && is_gimple_reg (PHI_RESULT (stmt))
3726 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
3727 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
3728 return true;
3729 else if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
3730 {
3731 tree lhs = GIMPLE_STMT_OPERAND (stmt, 0);
3732 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
3733
3734 /* In general, assignments with virtual operands are not useful
3735 for deriving ranges, with the obvious exception of calls to
3736 builtin functions. */
3737 if (TREE_CODE (lhs) == SSA_NAME
3738 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3739 || POINTER_TYPE_P (TREE_TYPE (lhs)))
3740 && ((TREE_CODE (rhs) == CALL_EXPR
3741 && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
3742 && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
3743 && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
3744 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS)))
3745 return true;
3746 }
3747 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3748 return true;
3749
3750 return false;
3751 }
3752
3753
3754 /* Initialize local data structures for VRP. */
3755
3756 static void
3757 vrp_initialize (void)
3758 {
3759 basic_block bb;
3760
3761 vr_value = XCNEWVEC (value_range_t *, num_ssa_names);
3762
3763 FOR_EACH_BB (bb)
3764 {
3765 block_stmt_iterator si;
3766 tree phi;
3767
3768 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3769 {
3770 if (!stmt_interesting_for_vrp (phi))
3771 {
3772 tree lhs = PHI_RESULT (phi);
3773 set_value_range_to_varying (get_value_range (lhs));
3774 DONT_SIMULATE_AGAIN (phi) = true;
3775 }
3776 else
3777 DONT_SIMULATE_AGAIN (phi) = false;
3778 }
3779
3780 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3781 {
3782 tree stmt = bsi_stmt (si);
3783
3784 if (!stmt_interesting_for_vrp (stmt))
3785 {
3786 ssa_op_iter i;
3787 tree def;
3788 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
3789 set_value_range_to_varying (get_value_range (def));
3790 DONT_SIMULATE_AGAIN (stmt) = true;
3791 }
3792 else
3793 {
3794 DONT_SIMULATE_AGAIN (stmt) = false;
3795 }
3796 }
3797 }
3798 }
3799
3800
3801 /* Visit assignment STMT. If it produces an interesting range, record
3802 the SSA name in *OUTPUT_P. */
3803
3804 static enum ssa_prop_result
3805 vrp_visit_assignment (tree stmt, tree *output_p)
3806 {
3807 tree lhs, rhs, def;
3808 ssa_op_iter iter;
3809
3810 lhs = GIMPLE_STMT_OPERAND (stmt, 0);
3811 rhs = GIMPLE_STMT_OPERAND (stmt, 1);
3812
3813 /* We only keep track of ranges in integral and pointer types. */
3814 if (TREE_CODE (lhs) == SSA_NAME
3815 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3816 /* It is valid to have NULL MIN/MAX values on a type. See
3817 build_range_type. */
3818 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
3819 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
3820 || POINTER_TYPE_P (TREE_TYPE (lhs))))
3821 {
3822 struct loop *l;
3823 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3824
3825 extract_range_from_expr (&new_vr, rhs);
3826
3827 /* If STMT is inside a loop, we may be able to know something
3828 else about the range of LHS by examining scalar evolution
3829 information. */
3830 if (current_loops && (l = loop_containing_stmt (stmt)))
3831 adjust_range_with_scev (&new_vr, l, stmt, lhs);
3832
3833 if (update_value_range (lhs, &new_vr))
3834 {
3835 *output_p = lhs;
3836
3837 if (dump_file && (dump_flags & TDF_DETAILS))
3838 {
3839 fprintf (dump_file, "Found new range for ");
3840 print_generic_expr (dump_file, lhs, 0);
3841 fprintf (dump_file, ": ");
3842 dump_value_range (dump_file, &new_vr);
3843 fprintf (dump_file, "\n\n");
3844 }
3845
3846 if (new_vr.type == VR_VARYING)
3847 return SSA_PROP_VARYING;
3848
3849 return SSA_PROP_INTERESTING;
3850 }
3851
3852 return SSA_PROP_NOT_INTERESTING;
3853 }
3854
3855 /* Every other statement produces no useful ranges. */
3856 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3857 set_value_range_to_varying (get_value_range (def));
3858
3859 return SSA_PROP_VARYING;
3860 }
3861
3862
3863 /* Compare all the value ranges for names equivalent to VAR with VAL
3864 using comparison code COMP. Return the same value returned by
3865 compare_range_with_value. */
3866
3867 static tree
3868 compare_name_with_value (enum tree_code comp, tree var, tree val)
3869 {
3870 bitmap_iterator bi;
3871 unsigned i;
3872 bitmap e;
3873 tree retval, t;
3874
3875 t = retval = NULL_TREE;
3876
3877 /* Get the set of equivalences for VAR. */
3878 e = get_value_range (var)->equiv;
3879
3880 /* Add VAR to its own set of equivalences so that VAR's value range
3881 is processed by this loop (otherwise, we would have to replicate
3882 the body of the loop just to check VAR's value range). */
3883 bitmap_set_bit (e, SSA_NAME_VERSION (var));
3884
3885 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
3886 {
3887 value_range_t equiv_vr = *(vr_value[i]);
3888
3889 /* If name N_i does not have a valid range, use N_i as its own
3890 range. This allows us to compare against names that may
3891 have N_i in their ranges. */
3892 if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
3893 {
3894 equiv_vr.type = VR_RANGE;
3895 equiv_vr.min = ssa_name (i);
3896 equiv_vr.max = ssa_name (i);
3897 }
3898
3899 t = compare_range_with_value (comp, &equiv_vr, val);
3900 if (t)
3901 {
3902 /* If we get different answers from different members
3903 of the equivalence set this check must be in a dead
3904 code region. Folding it to a trap representation
3905 would be correct here. For now just return don't-know. */
3906 if (retval != NULL
3907 && t != retval)
3908 {
3909 retval = NULL_TREE;
3910 break;
3911 }
3912 retval = t;
3913 }
3914 }
3915
3916 /* Remove VAR from its own equivalence set. */
3917 bitmap_clear_bit (e, SSA_NAME_VERSION (var));
3918
3919 if (retval)
3920 return retval;
3921
3922 /* We couldn't find a non-NULL value for the predicate. */
3923 return NULL_TREE;
3924 }
3925
3926
3927 /* Given a comparison code COMP and names N1 and N2, compare all the
3928 ranges equivalent to N1 against all the ranges equivalent to N2
3929 to determine the value of N1 COMP N2. Return the same value
3930 returned by compare_ranges. */
3931
3932 static tree
3933 compare_names (enum tree_code comp, tree n1, tree n2)
3934 {
3935 tree t, retval;
3936 bitmap e1, e2;
3937 bitmap_iterator bi1, bi2;
3938 unsigned i1, i2;
3939
3940 /* Compare the ranges of every name equivalent to N1 against the
3941 ranges of every name equivalent to N2. */
3942 e1 = get_value_range (n1)->equiv;
3943 e2 = get_value_range (n2)->equiv;
3944
3945 /* Add N1 and N2 to their own set of equivalences to avoid
3946 duplicating the body of the loop just to check N1 and N2
3947 ranges. */
3948 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
3949 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
3950
3951 /* If the equivalence sets have a common intersection, then the two
3952 names can be compared without checking their ranges. */
3953 if (bitmap_intersect_p (e1, e2))
3954 {
3955 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3956 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3957
3958 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
3959 ? boolean_true_node
3960 : boolean_false_node;
3961 }
3962
3963 /* Otherwise, compare all the equivalent ranges. First, add N1 and
3964 N2 to their own set of equivalences to avoid duplicating the body
3965 of the loop just to check N1 and N2 ranges. */
3966 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
3967 {
3968 value_range_t vr1 = *(vr_value[i1]);
3969
3970 /* If the range is VARYING or UNDEFINED, use the name itself. */
3971 if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
3972 {
3973 vr1.type = VR_RANGE;
3974 vr1.min = ssa_name (i1);
3975 vr1.max = ssa_name (i1);
3976 }
3977
3978 t = retval = NULL_TREE;
3979 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
3980 {
3981 value_range_t vr2 = *(vr_value[i2]);
3982
3983 if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
3984 {
3985 vr2.type = VR_RANGE;
3986 vr2.min = ssa_name (i2);
3987 vr2.max = ssa_name (i2);
3988 }
3989
3990 t = compare_ranges (comp, &vr1, &vr2);
3991 if (t)
3992 {
3993 /* If we get different answers from different members
3994 of the equivalence set this check must be in a dead
3995 code region. Folding it to a trap representation
3996 would be correct here. For now just return don't-know. */
3997 if (retval != NULL
3998 && t != retval)
3999 {
4000 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4001 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4002 return NULL_TREE;
4003 }
4004 retval = t;
4005 }
4006 }
4007
4008 if (retval)
4009 {
4010 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4011 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4012 return retval;
4013 }
4014 }
4015
4016 /* None of the equivalent ranges are useful in computing this
4017 comparison. */
4018 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
4019 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
4020 return NULL_TREE;
4021 }
4022
4023
4024 /* Given a conditional predicate COND, try to determine if COND yields
4025 true or false based on the value ranges of its operands. Return
4026 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
4027 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
4028 NULL if the conditional cannot be evaluated at compile time.
4029
4030 If USE_EQUIV_P is true, the ranges of all the names equivalent with
4031 the operands in COND are used when trying to compute its value.
4032 This is only used during final substitution. During propagation,
4033 we only check the range of each variable and not its equivalents. */
4034
4035 tree
4036 vrp_evaluate_conditional (tree cond, bool use_equiv_p)
4037 {
4038 gcc_assert (TREE_CODE (cond) == SSA_NAME
4039 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
4040
4041 if (TREE_CODE (cond) == SSA_NAME)
4042 {
4043 value_range_t *vr;
4044 tree retval;
4045
4046 if (use_equiv_p)
4047 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node);
4048 else
4049 {
4050 value_range_t *vr = get_value_range (cond);
4051 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node);
4052 }
4053
4054 /* If COND has a known boolean range, return it. */
4055 if (retval)
4056 return retval;
4057
4058 /* Otherwise, if COND has a symbolic range of exactly one value,
4059 return it. */
4060 vr = get_value_range (cond);
4061 if (vr->type == VR_RANGE && vr->min == vr->max)
4062 return vr->min;
4063 }
4064 else
4065 {
4066 tree op0 = TREE_OPERAND (cond, 0);
4067 tree op1 = TREE_OPERAND (cond, 1);
4068
4069 /* We only deal with integral and pointer types. */
4070 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
4071 && !POINTER_TYPE_P (TREE_TYPE (op0)))
4072 return NULL_TREE;
4073
4074 if (use_equiv_p)
4075 {
4076 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
4077 return compare_names (TREE_CODE (cond), op0, op1);
4078 else if (TREE_CODE (op0) == SSA_NAME)
4079 return compare_name_with_value (TREE_CODE (cond), op0, op1);
4080 else if (TREE_CODE (op1) == SSA_NAME)
4081 return compare_name_with_value (
4082 swap_tree_comparison (TREE_CODE (cond)), op1, op0);
4083 }
4084 else
4085 {
4086 value_range_t *vr0, *vr1;
4087
4088 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
4089 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
4090
4091 if (vr0 && vr1)
4092 return compare_ranges (TREE_CODE (cond), vr0, vr1);
4093 else if (vr0 && vr1 == NULL)
4094 return compare_range_with_value (TREE_CODE (cond), vr0, op1);
4095 else if (vr0 == NULL && vr1)
4096 return compare_range_with_value (
4097 swap_tree_comparison (TREE_CODE (cond)), vr1, op0);
4098 }
4099 }
4100
4101 /* Anything else cannot be computed statically. */
4102 return NULL_TREE;
4103 }
4104
4105
4106 /* Visit conditional statement STMT. If we can determine which edge
4107 will be taken out of STMT's basic block, record it in
4108 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
4109 SSA_PROP_VARYING. */
4110
4111 static enum ssa_prop_result
4112 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
4113 {
4114 tree cond, val;
4115
4116 *taken_edge_p = NULL;
4117
4118 /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
4119 add ASSERT_EXPRs for them. */
4120 if (TREE_CODE (stmt) == SWITCH_EXPR)
4121 return SSA_PROP_VARYING;
4122
4123 cond = COND_EXPR_COND (stmt);
4124
4125 if (dump_file && (dump_flags & TDF_DETAILS))
4126 {
4127 tree use;
4128 ssa_op_iter i;
4129
4130 fprintf (dump_file, "\nVisiting conditional with predicate: ");
4131 print_generic_expr (dump_file, cond, 0);
4132 fprintf (dump_file, "\nWith known ranges\n");
4133
4134 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
4135 {
4136 fprintf (dump_file, "\t");
4137 print_generic_expr (dump_file, use, 0);
4138 fprintf (dump_file, ": ");
4139 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
4140 }
4141
4142 fprintf (dump_file, "\n");
4143 }
4144
4145 /* Compute the value of the predicate COND by checking the known
4146 ranges of each of its operands.
4147
4148 Note that we cannot evaluate all the equivalent ranges here
4149 because those ranges may not yet be final and with the current
4150 propagation strategy, we cannot determine when the value ranges
4151 of the names in the equivalence set have changed.
4152
4153 For instance, given the following code fragment
4154
4155 i_5 = PHI <8, i_13>
4156 ...
4157 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
4158 if (i_14 == 1)
4159 ...
4160
4161 Assume that on the first visit to i_14, i_5 has the temporary
4162 range [8, 8] because the second argument to the PHI function is
4163 not yet executable. We derive the range ~[0, 0] for i_14 and the
4164 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
4165 the first time, since i_14 is equivalent to the range [8, 8], we
4166 determine that the predicate is always false.
4167
4168 On the next round of propagation, i_13 is determined to be
4169 VARYING, which causes i_5 to drop down to VARYING. So, another
4170 visit to i_14 is scheduled. In this second visit, we compute the
4171 exact same range and equivalence set for i_14, namely ~[0, 0] and
4172 { i_5 }. But we did not have the previous range for i_5
4173 registered, so vrp_visit_assignment thinks that the range for
4174 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
4175 is not visited again, which stops propagation from visiting
4176 statements in the THEN clause of that if().
4177
4178 To properly fix this we would need to keep the previous range
4179 value for the names in the equivalence set. This way we would've
4180 discovered that from one visit to the other i_5 changed from
4181 range [8, 8] to VR_VARYING.
4182
4183 However, fixing this apparent limitation may not be worth the
4184 additional checking. Testing on several code bases (GCC, DLV,
4185 MICO, TRAMP3D and SPEC2000) showed that doing this results in
4186 4 more predicates folded in SPEC. */
4187 val = vrp_evaluate_conditional (cond, false);
4188 if (val)
4189 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
4190
4191 if (dump_file && (dump_flags & TDF_DETAILS))
4192 {
4193 fprintf (dump_file, "\nPredicate evaluates to: ");
4194 if (val == NULL_TREE)
4195 fprintf (dump_file, "DON'T KNOW\n");
4196 else
4197 print_generic_stmt (dump_file, val, 0);
4198 }
4199
4200 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
4201 }
4202
4203
4204 /* Evaluate statement STMT. If the statement produces a useful range,
4205 return SSA_PROP_INTERESTING and record the SSA name with the
4206 interesting range into *OUTPUT_P.
4207
4208 If STMT is a conditional branch and we can determine its truth
4209 value, the taken edge is recorded in *TAKEN_EDGE_P.
4210
4211 If STMT produces a varying value, return SSA_PROP_VARYING. */
4212
4213 static enum ssa_prop_result
4214 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
4215 {
4216 tree def;
4217 ssa_op_iter iter;
4218 stmt_ann_t ann;
4219
4220 if (dump_file && (dump_flags & TDF_DETAILS))
4221 {
4222 fprintf (dump_file, "\nVisiting statement:\n");
4223 print_generic_stmt (dump_file, stmt, dump_flags);
4224 fprintf (dump_file, "\n");
4225 }
4226
4227 ann = stmt_ann (stmt);
4228 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
4229 {
4230 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4231
4232 /* In general, assignments with virtual operands are not useful
4233 for deriving ranges, with the obvious exception of calls to
4234 builtin functions. */
4235 if ((TREE_CODE (rhs) == CALL_EXPR
4236 && TREE_CODE (TREE_OPERAND (rhs, 0)) == ADDR_EXPR
4237 && DECL_P (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0))
4238 && DECL_IS_BUILTIN (TREE_OPERAND (TREE_OPERAND (rhs, 0), 0)))
4239 || ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
4240 return vrp_visit_assignment (stmt, output_p);
4241 }
4242 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
4243 return vrp_visit_cond_stmt (stmt, taken_edge_p);
4244
4245 /* All other statements produce nothing of interest for VRP, so mark
4246 their outputs varying and prevent further simulation. */
4247 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
4248 set_value_range_to_varying (get_value_range (def));
4249
4250 return SSA_PROP_VARYING;
4251 }
4252
4253
4254 /* Meet operation for value ranges. Given two value ranges VR0 and
4255 VR1, store in VR0 a range that contains both VR0 and VR1. This
4256 may not be the smallest possible such range. */
4257
4258 static void
4259 vrp_meet (value_range_t *vr0, value_range_t *vr1)
4260 {
4261 if (vr0->type == VR_UNDEFINED)
4262 {
4263 copy_value_range (vr0, vr1);
4264 return;
4265 }
4266
4267 if (vr1->type == VR_UNDEFINED)
4268 {
4269 /* Nothing to do. VR0 already has the resulting range. */
4270 return;
4271 }
4272
4273 if (vr0->type == VR_VARYING)
4274 {
4275 /* Nothing to do. VR0 already has the resulting range. */
4276 return;
4277 }
4278
4279 if (vr1->type == VR_VARYING)
4280 {
4281 set_value_range_to_varying (vr0);
4282 return;
4283 }
4284
4285 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
4286 {
4287 int cmp;
4288 tree min, max;
4289
4290 /* Compute the convex hull of the ranges. The lower limit of
4291 the new range is the minimum of the two ranges. If they
4292 cannot be compared, then give up. */
4293 cmp = compare_values (vr0->min, vr1->min);
4294 if (cmp == 0 || cmp == 1)
4295 min = vr1->min;
4296 else if (cmp == -1)
4297 min = vr0->min;
4298 else
4299 goto give_up;
4300
4301 /* Similarly, the upper limit of the new range is the maximum
4302 of the two ranges. If they cannot be compared, then
4303 give up. */
4304 cmp = compare_values (vr0->max, vr1->max);
4305 if (cmp == 0 || cmp == -1)
4306 max = vr1->max;
4307 else if (cmp == 1)
4308 max = vr0->max;
4309 else
4310 goto give_up;
4311
4312 /* The resulting set of equivalences is the intersection of
4313 the two sets. */
4314 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4315 bitmap_and_into (vr0->equiv, vr1->equiv);
4316 else if (vr0->equiv && !vr1->equiv)
4317 bitmap_clear (vr0->equiv);
4318
4319 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
4320 }
4321 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4322 {
4323 /* Two anti-ranges meet only if their complements intersect.
4324 Only handle the case of identical ranges. */
4325 if (compare_values (vr0->min, vr1->min) == 0
4326 && compare_values (vr0->max, vr1->max) == 0
4327 && compare_values (vr0->min, vr0->max) == 0)
4328 {
4329 /* The resulting set of equivalences is the intersection of
4330 the two sets. */
4331 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4332 bitmap_and_into (vr0->equiv, vr1->equiv);
4333 else if (vr0->equiv && !vr1->equiv)
4334 bitmap_clear (vr0->equiv);
4335 }
4336 else
4337 goto give_up;
4338 }
4339 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4340 {
4341 /* For a numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4],
4342 only handle the case where the ranges have an empty intersection.
4343 The result of the meet operation is the anti-range. */
4344 if (!symbolic_range_p (vr0)
4345 && !symbolic_range_p (vr1)
4346 && !value_ranges_intersect_p (vr0, vr1))
4347 {
4348 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
4349 set. We need to compute the intersection of the two
4350 equivalence sets. */
4351 if (vr1->type == VR_ANTI_RANGE)
4352 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
4353
4354 /* The resulting set of equivalences is the intersection of
4355 the two sets. */
4356 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
4357 bitmap_and_into (vr0->equiv, vr1->equiv);
4358 else if (vr0->equiv && !vr1->equiv)
4359 bitmap_clear (vr0->equiv);
4360 }
4361 else
4362 goto give_up;
4363 }
4364 else
4365 gcc_unreachable ();
4366
4367 return;
4368
4369 give_up:
4370 /* Failed to find an efficient meet. Before giving up and setting
4371 the result to VARYING, see if we can at least derive a useful
4372 anti-range. FIXME, all this nonsense about distinguishing
4373 anti-ranges from ranges is necessary because of the odd
4374 semantics of range_includes_zero_p and friends. */
4375 if (!symbolic_range_p (vr0)
4376 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
4377 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
4378 && !symbolic_range_p (vr1)
4379 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
4380 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
4381 {
4382 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
4383
4384 /* Since this meet operation did not result from the meeting of
4385 two equivalent names, VR0 cannot have any equivalences. */
4386 if (vr0->equiv)
4387 bitmap_clear (vr0->equiv);
4388 }
4389 else
4390 set_value_range_to_varying (vr0);
4391 }
4392
4393
4394 /* Visit all arguments for PHI node PHI that flow through executable
4395 edges. If a valid value range can be derived from all the incoming
4396 value ranges, set a new range for the LHS of PHI. */
4397
4398 static enum ssa_prop_result
4399 vrp_visit_phi_node (tree phi)
4400 {
4401 int i;
4402 tree lhs = PHI_RESULT (phi);
4403 value_range_t *lhs_vr = get_value_range (lhs);
4404 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
4405 bool all_const = true;
4406
4407 copy_value_range (&vr_result, lhs_vr);
4408
4409 if (dump_file && (dump_flags & TDF_DETAILS))
4410 {
4411 fprintf (dump_file, "\nVisiting PHI node: ");
4412 print_generic_expr (dump_file, phi, dump_flags);
4413 }
4414
4415 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
4416 {
4417 edge e = PHI_ARG_EDGE (phi, i);
4418
4419 if (dump_file && (dump_flags & TDF_DETAILS))
4420 {
4421 fprintf (dump_file,
4422 "\n Argument #%d (%d -> %d %sexecutable)\n",
4423 i, e->src->index, e->dest->index,
4424 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
4425 }
4426
4427 if (e->flags & EDGE_EXECUTABLE)
4428 {
4429 tree arg = PHI_ARG_DEF (phi, i);
4430 value_range_t vr_arg;
4431
4432 if (TREE_CODE (arg) == SSA_NAME)
4433 {
4434 vr_arg = *(get_value_range (arg));
4435 all_const = false;
4436 }
4437 else
4438 {
4439 vr_arg.type = VR_RANGE;
4440 vr_arg.min = arg;
4441 vr_arg.max = arg;
4442 vr_arg.equiv = NULL;
4443 }
4444
4445 if (dump_file && (dump_flags & TDF_DETAILS))
4446 {
4447 fprintf (dump_file, "\t");
4448 print_generic_expr (dump_file, arg, dump_flags);
4449 fprintf (dump_file, "\n\tValue: ");
4450 dump_value_range (dump_file, &vr_arg);
4451 fprintf (dump_file, "\n");
4452 }
4453
4454 vrp_meet (&vr_result, &vr_arg);
4455
4456 if (vr_result.type == VR_VARYING)
4457 break;
4458 }
4459 }
4460
4461 if (vr_result.type == VR_VARYING)
4462 goto varying;
4463
4464 /* To prevent infinite iterations in the algorithm, derive ranges
4465 when the new value is slightly bigger or smaller than the
4466 previous one. */
4467 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE
4468 && !all_const)
4469 {
4470 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
4471 {
4472 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
4473 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
4474
4475 /* If the new minimum is smaller or larger than the previous
4476 one, go all the way to -INF. In the first case, to avoid
4477 iterating millions of times to reach -INF, and in the
4478 other case to avoid infinite bouncing between different
4479 minimums. */
4480 if (cmp_min > 0 || cmp_min < 0)
4481 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
4482
4483 /* Similarly, if the new maximum is smaller or larger than
4484 the previous one, go all the way to +INF. */
4485 if (cmp_max < 0 || cmp_max > 0)
4486 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
4487
4488 /* If we ended up with a (-INF, +INF) range, set it to
4489 VARYING. */
4490 if (vr_result.min == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))
4491 && vr_result.max == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)))
4492 goto varying;
4493 }
4494 }
4495
4496 /* If the new range is different than the previous value, keep
4497 iterating. */
4498 if (update_value_range (lhs, &vr_result))
4499 return SSA_PROP_INTERESTING;
4500
4501 /* Nothing changed, don't add outgoing edges. */
4502 return SSA_PROP_NOT_INTERESTING;
4503
4504 /* No match found. Set the LHS to VARYING. */
4505 varying:
4506 set_value_range_to_varying (lhs_vr);
4507 return SSA_PROP_VARYING;
4508 }
4509
4510 /* Simplify a division or modulo operator to a right shift or
4511 bitwise and if the first operand is unsigned or is greater
4512 than zero and the second operand is an exact power of two. */
4513
4514 static void
4515 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
4516 {
4517 tree val = NULL;
4518 tree op = TREE_OPERAND (rhs, 0);
4519 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4520
4521 if (TYPE_UNSIGNED (TREE_TYPE (op)))
4522 {
4523 val = integer_one_node;
4524 }
4525 else
4526 {
4527 val = compare_range_with_value (GT_EXPR, vr, integer_zero_node);
4528 }
4529
4530 if (val && integer_onep (val))
4531 {
4532 tree t;
4533 tree op0 = TREE_OPERAND (rhs, 0);
4534 tree op1 = TREE_OPERAND (rhs, 1);
4535
4536 if (rhs_code == TRUNC_DIV_EXPR)
4537 {
4538 t = build_int_cst (NULL_TREE, tree_log2 (op1));
4539 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
4540 }
4541 else
4542 {
4543 t = build_int_cst (TREE_TYPE (op1), 1);
4544 t = int_const_binop (MINUS_EXPR, op1, t, 0);
4545 t = fold_convert (TREE_TYPE (op0), t);
4546 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
4547 }
4548
4549 GIMPLE_STMT_OPERAND (stmt, 1) = t;
4550 update_stmt (stmt);
4551 }
4552 }
4553
4554 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
4555 ABS_EXPR. If the operand is <= 0, then simplify the
4556 ABS_EXPR into a NEGATE_EXPR. */
4557
4558 static void
4559 simplify_abs_using_ranges (tree stmt, tree rhs)
4560 {
4561 tree val = NULL;
4562 tree op = TREE_OPERAND (rhs, 0);
4563 tree type = TREE_TYPE (op);
4564 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
4565
4566 if (TYPE_UNSIGNED (type))
4567 {
4568 val = integer_zero_node;
4569 }
4570 else if (vr)
4571 {
4572 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node);
4573 if (!val)
4574 {
4575 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node);
4576
4577 if (val)
4578 {
4579 if (integer_zerop (val))
4580 val = integer_one_node;
4581 else if (integer_onep (val))
4582 val = integer_zero_node;
4583 }
4584 }
4585
4586 if (val
4587 && (integer_onep (val) || integer_zerop (val)))
4588 {
4589 tree t;
4590
4591 if (integer_onep (val))
4592 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
4593 else
4594 t = op;
4595
4596 GIMPLE_STMT_OPERAND (stmt, 1) = t;
4597 update_stmt (stmt);
4598 }
4599 }
4600 }
4601
4602 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
4603 a known value range VR.
4604
4605 If there is one and only one value which will satisfy the
4606 conditional, then return that value. Else return NULL. */
4607
4608 static tree
4609 test_for_singularity (enum tree_code cond_code, tree op0,
4610 tree op1, value_range_t *vr)
4611 {
4612 tree min = NULL;
4613 tree max = NULL;
4614
4615 /* Extract minimum/maximum values which satisfy the
4616 the conditional as it was written. */
4617 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
4618 {
4619 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
4620
4621 max = op1;
4622 if (cond_code == LT_EXPR)
4623 {
4624 tree one = build_int_cst (TREE_TYPE (op0), 1);
4625 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
4626 }
4627 }
4628 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
4629 {
4630 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
4631
4632 min = op1;
4633 if (cond_code == GT_EXPR)
4634 {
4635 tree one = build_int_cst (TREE_TYPE (op0), 1);
4636 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
4637 }
4638 }
4639
4640 /* Now refine the minimum and maximum values using any
4641 value range information we have for op0. */
4642 if (min && max)
4643 {
4644 if (compare_values (vr->min, min) == -1)
4645 min = min;
4646 else
4647 min = vr->min;
4648 if (compare_values (vr->max, max) == 1)
4649 max = max;
4650 else
4651 max = vr->max;
4652
4653 /* If the new min/max values have converged to a single value,
4654 then there is only one value which can satisfy the condition,
4655 return that value. */
4656 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
4657 return min;
4658 }
4659 return NULL;
4660 }
4661
4662 /* Simplify a conditional using a relational operator to an equality
4663 test if the range information indicates only one value can satisfy
4664 the original conditional. */
4665
4666 static void
4667 simplify_cond_using_ranges (tree stmt)
4668 {
4669 tree cond = COND_EXPR_COND (stmt);
4670 tree op0 = TREE_OPERAND (cond, 0);
4671 tree op1 = TREE_OPERAND (cond, 1);
4672 enum tree_code cond_code = TREE_CODE (cond);
4673
4674 if (cond_code != NE_EXPR
4675 && cond_code != EQ_EXPR
4676 && TREE_CODE (op0) == SSA_NAME
4677 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
4678 && is_gimple_min_invariant (op1))
4679 {
4680 value_range_t *vr = get_value_range (op0);
4681
4682 /* If we have range information for OP0, then we might be
4683 able to simplify this conditional. */
4684 if (vr->type == VR_RANGE)
4685 {
4686 tree new = test_for_singularity (cond_code, op0, op1, vr);
4687
4688 if (new)
4689 {
4690 if (dump_file)
4691 {
4692 fprintf (dump_file, "Simplified relational ");
4693 print_generic_expr (dump_file, cond, 0);
4694 fprintf (dump_file, " into ");
4695 }
4696
4697 COND_EXPR_COND (stmt)
4698 = build2 (EQ_EXPR, boolean_type_node, op0, new);
4699 update_stmt (stmt);
4700
4701 if (dump_file)
4702 {
4703 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4704 fprintf (dump_file, "\n");
4705 }
4706 return;
4707
4708 }
4709
4710 /* Try again after inverting the condition. We only deal
4711 with integral types here, so no need to worry about
4712 issues with inverting FP comparisons. */
4713 cond_code = invert_tree_comparison (cond_code, false);
4714 new = test_for_singularity (cond_code, op0, op1, vr);
4715
4716 if (new)
4717 {
4718 if (dump_file)
4719 {
4720 fprintf (dump_file, "Simplified relational ");
4721 print_generic_expr (dump_file, cond, 0);
4722 fprintf (dump_file, " into ");
4723 }
4724
4725 COND_EXPR_COND (stmt)
4726 = build2 (NE_EXPR, boolean_type_node, op0, new);
4727 update_stmt (stmt);
4728
4729 if (dump_file)
4730 {
4731 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
4732 fprintf (dump_file, "\n");
4733 }
4734 return;
4735
4736 }
4737 }
4738 }
4739 }
4740
4741 /* Simplify STMT using ranges if possible. */
4742
4743 void
4744 simplify_stmt_using_ranges (tree stmt)
4745 {
4746 if (TREE_CODE (stmt) == GIMPLE_MODIFY_STMT)
4747 {
4748 tree rhs = GIMPLE_STMT_OPERAND (stmt, 1);
4749 enum tree_code rhs_code = TREE_CODE (rhs);
4750
4751 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
4752 and BIT_AND_EXPR respectively if the first operand is greater
4753 than zero and the second operand is an exact power of two. */
4754 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
4755 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
4756 && integer_pow2p (TREE_OPERAND (rhs, 1)))
4757 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
4758
4759 /* Transform ABS (X) into X or -X as appropriate. */
4760 if (rhs_code == ABS_EXPR
4761 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
4762 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
4763 simplify_abs_using_ranges (stmt, rhs);
4764 }
4765 else if (TREE_CODE (stmt) == COND_EXPR
4766 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
4767 {
4768 simplify_cond_using_ranges (stmt);
4769 }
4770 }
4771
4772 /* Stack of dest,src equivalency pairs that need to be restored after
4773 each attempt to thread a block's incoming edge to an outgoing edge.
4774
4775 A NULL entry is used to mark the end of pairs which need to be
4776 restored. */
4777 static VEC(tree,heap) *stack;
4778
4779 /* A trivial wrapper so that we can present the generic jump
4780 threading code with a simple API for simplifying statements. */
4781 static tree
4782 simplify_stmt_for_jump_threading (tree stmt)
4783 {
4784 /* We only use VRP information to simplify conditionals. This is
4785 overly conservative, but it's unclear if doing more would be
4786 worth the compile time cost. */
4787 if (TREE_CODE (stmt) != COND_EXPR)
4788 return NULL;
4789
4790 return vrp_evaluate_conditional (COND_EXPR_COND (stmt), true);
4791 }
4792
4793 /* Blocks which have more than one predecessor and more than
4794 one successor present jump threading opportunities. ie,
4795 when the block is reached from a specific predecessor, we
4796 may be able to determine which of the outgoing edges will
4797 be traversed. When this optimization applies, we are able
4798 to avoid conditionals at runtime and we may expose secondary
4799 optimization opportunities.
4800
4801 This routine is effectively a driver for the generic jump
4802 threading code. It basically just presents the generic code
4803 with edges that may be suitable for jump threading.
4804
4805 Unlike DOM, we do not iterate VRP if jump threading was successful.
4806 While iterating may expose new opportunities for VRP, it is expected
4807 those opportunities would be very limited and the compile time cost
4808 to expose those opportunities would be significant.
4809
4810 As jump threading opportunities are discovered, they are registered
4811 for later realization. */
4812
4813 static void
4814 identify_jump_threads (void)
4815 {
4816 basic_block bb;
4817 tree dummy;
4818
4819 /* Ugh. When substituting values earlier in this pass we can
4820 wipe the dominance information. So rebuild the dominator
4821 information as we need it within the jump threading code. */
4822 calculate_dominance_info (CDI_DOMINATORS);
4823
4824 /* We do not allow VRP information to be used for jump threading
4825 across a back edge in the CFG. Otherwise it becomes too
4826 difficult to avoid eliminating loop exit tests. Of course
4827 EDGE_DFS_BACK is not accurate at this time so we have to
4828 recompute it. */
4829 mark_dfs_back_edges ();
4830
4831 /* Allocate our unwinder stack to unwind any temporary equivalences
4832 that might be recorded. */
4833 stack = VEC_alloc (tree, heap, 20);
4834
4835 /* To avoid lots of silly node creation, we create a single
4836 conditional and just modify it in-place when attempting to
4837 thread jumps. */
4838 dummy = build2 (EQ_EXPR, boolean_type_node, NULL, NULL);
4839 dummy = build3 (COND_EXPR, void_type_node, dummy, NULL, NULL);
4840
4841 /* Walk through all the blocks finding those which present a
4842 potential jump threading opportunity. We could set this up
4843 as a dominator walker and record data during the walk, but
4844 I doubt it's worth the effort for the classes of jump
4845 threading opportunities we are trying to identify at this
4846 point in compilation. */
4847 FOR_EACH_BB (bb)
4848 {
4849 tree last, cond;
4850
4851 /* If the generic jump threading code does not find this block
4852 interesting, then there is nothing to do. */
4853 if (! potentially_threadable_block (bb))
4854 continue;
4855
4856 /* We only care about blocks ending in a COND_EXPR. While there
4857 may be some value in handling SWITCH_EXPR here, I doubt it's
4858 terribly important. */
4859 last = bsi_stmt (bsi_last (bb));
4860 if (TREE_CODE (last) != COND_EXPR)
4861 continue;
4862
4863 /* We're basically looking for any kind of conditional with
4864 integral type arguments. */
4865 cond = COND_EXPR_COND (last);
4866 if ((TREE_CODE (cond) == SSA_NAME
4867 && INTEGRAL_TYPE_P (TREE_TYPE (cond)))
4868 || (COMPARISON_CLASS_P (cond)
4869 && TREE_CODE (TREE_OPERAND (cond, 0)) == SSA_NAME
4870 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 0)))
4871 && (TREE_CODE (TREE_OPERAND (cond, 1)) == SSA_NAME
4872 || is_gimple_min_invariant (TREE_OPERAND (cond, 1)))
4873 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (cond, 1)))))
4874 {
4875 edge_iterator ei;
4876 edge e;
4877
4878 /* We've got a block with multiple predecessors and multiple
4879 successors which also ends in a suitable conditional. For
4880 each predecessor, see if we can thread it to a specific
4881 successor. */
4882 FOR_EACH_EDGE (e, ei, bb->preds)
4883 {
4884 /* Do not thread across back edges or abnormal edges
4885 in the CFG. */
4886 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
4887 continue;
4888
4889 thread_across_edge (dummy, e, true,
4890 &stack,
4891 simplify_stmt_for_jump_threading);
4892 }
4893 }
4894 }
4895
4896 /* We do not actually update the CFG or SSA graphs at this point as
4897 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
4898 handle ASSERT_EXPRs gracefully. */
4899 }
4900
4901 /* We identified all the jump threading opportunities earlier, but could
4902 not transform the CFG at that time. This routine transforms the
4903 CFG and arranges for the dominator tree to be rebuilt if necessary.
4904
4905 Note the SSA graph update will occur during the normal TODO
4906 processing by the pass manager. */
4907 static void
4908 finalize_jump_threads (void)
4909 {
4910 bool cfg_altered = false;
4911 cfg_altered = thread_through_all_blocks ();
4912
4913 /* If we threaded jumps, then we need to recompute the dominance
4914 information. */
4915 if (cfg_altered)
4916 free_dominance_info (CDI_DOMINATORS);
4917 VEC_free (tree, heap, stack);
4918 }
4919
4920
4921 /* Traverse all the blocks folding conditionals with known ranges. */
4922
4923 static void
4924 vrp_finalize (void)
4925 {
4926 size_t i;
4927 prop_value_t *single_val_range;
4928 bool do_value_subst_p;
4929
4930 if (dump_file)
4931 {
4932 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
4933 dump_all_value_ranges (dump_file);
4934 fprintf (dump_file, "\n");
4935 }
4936
4937 /* We may have ended with ranges that have exactly one value. Those
4938 values can be substituted as any other copy/const propagated
4939 value using substitute_and_fold. */
4940 single_val_range = XCNEWVEC (prop_value_t, num_ssa_names);
4941
4942 do_value_subst_p = false;
4943 for (i = 0; i < num_ssa_names; i++)
4944 if (vr_value[i]
4945 && vr_value[i]->type == VR_RANGE
4946 && vr_value[i]->min == vr_value[i]->max)
4947 {
4948 single_val_range[i].value = vr_value[i]->min;
4949 do_value_subst_p = true;
4950 }
4951
4952 if (!do_value_subst_p)
4953 {
4954 /* We found no single-valued ranges, don't waste time trying to
4955 do single value substitution in substitute_and_fold. */
4956 free (single_val_range);
4957 single_val_range = NULL;
4958 }
4959
4960 substitute_and_fold (single_val_range, true);
4961
4962 if (warn_array_bounds)
4963 check_all_array_refs();
4964
4965 /* We must identify jump threading opportunities before we release
4966 the datastructures built by VRP. */
4967 identify_jump_threads ();
4968
4969 /* Free allocated memory. */
4970 for (i = 0; i < num_ssa_names; i++)
4971 if (vr_value[i])
4972 {
4973 BITMAP_FREE (vr_value[i]->equiv);
4974 free (vr_value[i]);
4975 }
4976
4977 free (single_val_range);
4978 free (vr_value);
4979
4980 /* So that we can distinguish between VRP data being available
4981 and not available. */
4982 vr_value = NULL;
4983 }
4984
4985
4986 /* Main entry point to VRP (Value Range Propagation). This pass is
4987 loosely based on J. R. C. Patterson, ``Accurate Static Branch
4988 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
4989 Programming Language Design and Implementation, pp. 67-78, 1995.
4990 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
4991
4992 This is essentially an SSA-CCP pass modified to deal with ranges
4993 instead of constants.
4994
4995 While propagating ranges, we may find that two or more SSA name
4996 have equivalent, though distinct ranges. For instance,
4997
4998 1 x_9 = p_3->a;
4999 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
5000 3 if (p_4 == q_2)
5001 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
5002 5 endif
5003 6 if (q_2)
5004
5005 In the code above, pointer p_5 has range [q_2, q_2], but from the
5006 code we can also determine that p_5 cannot be NULL and, if q_2 had
5007 a non-varying range, p_5's range should also be compatible with it.
5008
5009 These equivalences are created by two expressions: ASSERT_EXPR and
5010 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
5011 result of another assertion, then we can use the fact that p_5 and
5012 p_4 are equivalent when evaluating p_5's range.
5013
5014 Together with value ranges, we also propagate these equivalences
5015 between names so that we can take advantage of information from
5016 multiple ranges when doing final replacement. Note that this
5017 equivalency relation is transitive but not symmetric.
5018
5019 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
5020 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
5021 in contexts where that assertion does not hold (e.g., in line 6).
5022
5023 TODO, the main difference between this pass and Patterson's is that
5024 we do not propagate edge probabilities. We only compute whether
5025 edges can be taken or not. That is, instead of having a spectrum
5026 of jump probabilities between 0 and 1, we only deal with 0, 1 and
5027 DON'T KNOW. In the future, it may be worthwhile to propagate
5028 probabilities to aid branch prediction. */
5029
5030 static unsigned int
5031 execute_vrp (void)
5032 {
5033 insert_range_assertions ();
5034
5035 loop_optimizer_init (LOOPS_NORMAL);
5036 if (current_loops)
5037 scev_initialize ();
5038
5039 vrp_initialize ();
5040 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
5041 vrp_finalize ();
5042
5043 if (current_loops)
5044 {
5045 scev_finalize ();
5046 loop_optimizer_finalize ();
5047 }
5048
5049 /* ASSERT_EXPRs must be removed before finalizing jump threads
5050 as finalizing jump threads calls the CFG cleanup code which
5051 does not properly handle ASSERT_EXPRs. */
5052 remove_range_assertions ();
5053
5054 /* If we exposed any new variables, go ahead and put them into
5055 SSA form now, before we handle jump threading. This simplifies
5056 interactions between rewriting of _DECL nodes into SSA form
5057 and rewriting SSA_NAME nodes into SSA form after block
5058 duplication and CFG manipulation. */
5059 update_ssa (TODO_update_ssa);
5060
5061 finalize_jump_threads ();
5062 return 0;
5063 }
5064
5065 static bool
5066 gate_vrp (void)
5067 {
5068 return flag_tree_vrp != 0;
5069 }
5070
5071 struct tree_opt_pass pass_vrp =
5072 {
5073 "vrp", /* name */
5074 gate_vrp, /* gate */
5075 execute_vrp, /* execute */
5076 NULL, /* sub */
5077 NULL, /* next */
5078 0, /* static_pass_number */
5079 TV_TREE_VRP, /* tv_id */
5080 PROP_ssa | PROP_alias, /* properties_required */
5081 0, /* properties_provided */
5082 0, /* properties_destroyed */
5083 0, /* todo_flags_start */
5084 TODO_cleanup_cfg
5085 | TODO_ggc_collect
5086 | TODO_verify_ssa
5087 | TODO_dump_func
5088 | TODO_update_ssa
5089 | TODO_update_smt_usage, /* todo_flags_finish */
5090 0 /* letter */
5091 };