re PR c++/23167 (internal compiler error: in create_tmp_var)
[gcc.git] / gcc / tree-vrp.c
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "cfgloop.h"
36 #include "tree-scalar-evolution.h"
37 #include "tree-ssa-propagate.h"
38 #include "tree-chrec.h"
39
40 /* Set of SSA names found during the dominator traversal of a
41 sub-graph in find_assert_locations. */
42 static sbitmap found_in_subgraph;
43
44 /* Loop structure of the program. Used to analyze scalar evolutions
45 inside adjust_range_with_scev. */
46 static struct loops *cfg_loops;
47
48 /* Local functions. */
49 static int compare_values (tree val1, tree val2);
50
51 /* Location information for ASSERT_EXPRs. Each instance of this
52 structure describes an ASSERT_EXPR for an SSA name. Since a single
53 SSA name may have more than one assertion associated with it, these
54 locations are kept in a linked list attached to the corresponding
55 SSA name. */
56 struct assert_locus_d
57 {
58 /* Basic block where the assertion would be inserted. */
59 basic_block bb;
60
61 /* Some assertions need to be inserted on an edge (e.g., assertions
62 generated by COND_EXPRs). In those cases, BB will be NULL. */
63 edge e;
64
65 /* Pointer to the statement that generated this assertion. */
66 block_stmt_iterator si;
67
68 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
69 enum tree_code comp_code;
70
71 /* Value being compared against. */
72 tree val;
73
74 /* Next node in the linked list. */
75 struct assert_locus_d *next;
76 };
77
78 typedef struct assert_locus_d *assert_locus_t;
79
80 /* If bit I is present, it means that SSA name N_i has a list of
81 assertions that should be inserted in the IL. */
82 static bitmap need_assert_for;
83
84 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
85 holds a list of ASSERT_LOCUS_T nodes that describe where
86 ASSERT_EXPRs for SSA name N_I should be inserted. */
87 static assert_locus_t *asserts_for;
88
89 /* Set of blocks visited in find_assert_locations. Used to avoid
90 visiting the same block more than once. */
91 static sbitmap blocks_visited;
92
93 /* Value range array. After propagation, VR_VALUE[I] holds the range
94 of values that SSA name N_I may take. */
95 static value_range_t **vr_value;
96
97
98 /* Return true if ARG is marked with the nonnull attribute in the
99 current function signature. */
100
101 static bool
102 nonnull_arg_p (tree arg)
103 {
104 tree t, attrs, fntype;
105 unsigned HOST_WIDE_INT arg_num;
106
107 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
108
109 fntype = TREE_TYPE (current_function_decl);
110 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
111
112 /* If "nonnull" wasn't specified, we know nothing about the argument. */
113 if (attrs == NULL_TREE)
114 return false;
115
116 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
117 if (TREE_VALUE (attrs) == NULL_TREE)
118 return true;
119
120 /* Get the position number for ARG in the function signature. */
121 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
122 t;
123 t = TREE_CHAIN (t), arg_num++)
124 {
125 if (t == arg)
126 break;
127 }
128
129 gcc_assert (t == arg);
130
131 /* Now see if ARG_NUM is mentioned in the nonnull list. */
132 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
133 {
134 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
135 return true;
136 }
137
138 return false;
139 }
140
141
142 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
143
144 static void
145 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
146 tree max, bitmap equiv)
147 {
148 #if defined ENABLE_CHECKING
149 /* Check the validity of the range. */
150 if (t == VR_RANGE || t == VR_ANTI_RANGE)
151 {
152 int cmp;
153
154 gcc_assert (min && max);
155
156 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
157 gcc_assert (min != TYPE_MIN_VALUE (TREE_TYPE (min))
158 || max != TYPE_MAX_VALUE (TREE_TYPE (max)));
159
160 cmp = compare_values (min, max);
161 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
162 }
163
164 if (t == VR_UNDEFINED || t == VR_VARYING)
165 gcc_assert (min == NULL_TREE && max == NULL_TREE);
166
167 if (t == VR_UNDEFINED || t == VR_VARYING)
168 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
169 #endif
170
171 vr->type = t;
172 vr->min = min;
173 vr->max = max;
174
175 /* Since updating the equivalence set involves deep copying the
176 bitmaps, only do it if absolutely necessary. */
177 if (vr->equiv == NULL)
178 vr->equiv = BITMAP_ALLOC (NULL);
179
180 if (equiv != vr->equiv)
181 {
182 if (equiv && !bitmap_empty_p (equiv))
183 bitmap_copy (vr->equiv, equiv);
184 else
185 bitmap_clear (vr->equiv);
186 }
187 }
188
189
190 /* Copy value range FROM into value range TO. */
191
192 static inline void
193 copy_value_range (value_range_t *to, value_range_t *from)
194 {
195 set_value_range (to, from->type, from->min, from->max, from->equiv);
196 }
197
198
199 /* Set value range VR to a non-NULL range of type TYPE. */
200
201 static inline void
202 set_value_range_to_nonnull (value_range_t *vr, tree type)
203 {
204 tree zero = build_int_cst (type, 0);
205 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
206 }
207
208
209 /* Set value range VR to a NULL range of type TYPE. */
210
211 static inline void
212 set_value_range_to_null (value_range_t *vr, tree type)
213 {
214 tree zero = build_int_cst (type, 0);
215 set_value_range (vr, VR_RANGE, zero, zero, vr->equiv);
216 }
217
218
219 /* Set value range VR to VR_VARYING. */
220
221 static inline void
222 set_value_range_to_varying (value_range_t *vr)
223 {
224 vr->type = VR_VARYING;
225 vr->min = vr->max = NULL_TREE;
226 if (vr->equiv)
227 bitmap_clear (vr->equiv);
228 }
229
230
231 /* Set value range VR to VR_UNDEFINED. */
232
233 static inline void
234 set_value_range_to_undefined (value_range_t *vr)
235 {
236 vr->type = VR_UNDEFINED;
237 vr->min = vr->max = NULL_TREE;
238 if (vr->equiv)
239 bitmap_clear (vr->equiv);
240 }
241
242
243 /* Return value range information for VAR. Create an empty range
244 if none existed. */
245
246 static value_range_t *
247 get_value_range (tree var)
248 {
249 value_range_t *vr;
250 tree sym;
251 unsigned ver = SSA_NAME_VERSION (var);
252
253 vr = vr_value[ver];
254 if (vr)
255 return vr;
256
257 /* Create a default value range. */
258 vr_value[ver] = vr = xmalloc (sizeof (*vr));
259 memset (vr, 0, sizeof (*vr));
260
261 /* Allocate an equivalence set. */
262 vr->equiv = BITMAP_ALLOC (NULL);
263
264 /* If VAR is a default definition, the variable can take any value
265 in VAR's type. */
266 sym = SSA_NAME_VAR (var);
267 if (var == default_def (sym))
268 {
269 /* Try to use the "nonnull" attribute to create ~[0, 0]
270 anti-ranges for pointers. Note that this is only valid with
271 default definitions of PARM_DECLs. */
272 if (TREE_CODE (sym) == PARM_DECL
273 && POINTER_TYPE_P (TREE_TYPE (sym))
274 && nonnull_arg_p (sym))
275 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
276 else
277 set_value_range_to_varying (vr);
278 }
279
280 return vr;
281 }
282
283
284 /* Update the value range and equivalence set for variable VAR to
285 NEW_VR. Return true if NEW_VR is different from VAR's previous
286 value.
287
288 NOTE: This function assumes that NEW_VR is a temporary value range
289 object created for the sole purpose of updating VAR's range. The
290 storage used by the equivalence set from NEW_VR will be freed by
291 this function. Do not call update_value_range when NEW_VR
292 is the range object associated with another SSA name. */
293
294 static inline bool
295 update_value_range (tree var, value_range_t *new_vr)
296 {
297 value_range_t *old_vr;
298 bool is_new;
299
300 /* Update the value range, if necessary. */
301 old_vr = get_value_range (var);
302 is_new = old_vr->type != new_vr->type
303 || old_vr->min != new_vr->min
304 || old_vr->max != new_vr->max
305 || (old_vr->equiv == NULL && new_vr->equiv)
306 || (old_vr->equiv && new_vr->equiv == NULL)
307 || (!bitmap_equal_p (old_vr->equiv, new_vr->equiv));
308
309 if (is_new)
310 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
311 new_vr->equiv);
312
313 BITMAP_FREE (new_vr->equiv);
314 new_vr->equiv = NULL;
315
316 return is_new;
317 }
318
319
320 /* Add VAR and VAR's equivalence set to EQUIV. */
321
322 static void
323 add_equivalence (bitmap equiv, tree var)
324 {
325 unsigned ver = SSA_NAME_VERSION (var);
326 value_range_t *vr = vr_value[ver];
327
328 bitmap_set_bit (equiv, ver);
329 if (vr && vr->equiv)
330 bitmap_ior_into (equiv, vr->equiv);
331 }
332
333
334 /* Return true if VR is ~[0, 0]. */
335
336 static inline bool
337 range_is_nonnull (value_range_t *vr)
338 {
339 return vr->type == VR_ANTI_RANGE
340 && integer_zerop (vr->min)
341 && integer_zerop (vr->max);
342 }
343
344
345 /* Return true if VR is [0, 0]. */
346
347 static inline bool
348 range_is_null (value_range_t *vr)
349 {
350 return vr->type == VR_RANGE
351 && integer_zerop (vr->min)
352 && integer_zerop (vr->max);
353 }
354
355
356 /* Return true if value range VR involves at least one symbol. */
357
358 static inline bool
359 symbolic_range_p (value_range_t *vr)
360 {
361 return (!is_gimple_min_invariant (vr->min)
362 || !is_gimple_min_invariant (vr->max));
363 }
364
365
366 /* Like tree_expr_nonzero_p, but this function uses value ranges
367 obtained so far. */
368
369 static bool
370 vrp_expr_computes_nonzero (tree expr)
371 {
372 if (tree_expr_nonzero_p (expr))
373 return true;
374
375 /* If we have an expression of the form &X->a, then the expression
376 is nonnull if X is nonnull. */
377 if (TREE_CODE (expr) == ADDR_EXPR)
378 {
379 tree base = get_base_address (TREE_OPERAND (expr, 0));
380
381 if (base != NULL_TREE
382 && TREE_CODE (base) == INDIRECT_REF
383 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
384 {
385 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
386 if (range_is_nonnull (vr))
387 return true;
388 }
389 }
390
391 return false;
392 }
393
394
395 /* Compare two values VAL1 and VAL2. Return
396
397 -2 if VAL1 and VAL2 cannot be compared at compile-time,
398 -1 if VAL1 < VAL2,
399 0 if VAL1 == VAL2,
400 +1 if VAL1 > VAL2, and
401 +2 if VAL1 != VAL2
402
403 This is similar to tree_int_cst_compare but supports pointer values
404 and values that cannot be compared at compile time. */
405
406 static int
407 compare_values (tree val1, tree val2)
408 {
409 if (val1 == val2)
410 return 0;
411
412 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
413 both integers. */
414 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
415 == POINTER_TYPE_P (TREE_TYPE (val2)));
416
417 /* Do some limited symbolic comparisons. */
418 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
419 {
420 /* We can determine some comparisons against +INF and -INF even
421 if the other value is an expression. */
422 if (val1 == TYPE_MAX_VALUE (TREE_TYPE (val1))
423 && TREE_CODE (val2) == MINUS_EXPR)
424 {
425 /* +INF > NAME - CST. */
426 return 1;
427 }
428 else if (val1 == TYPE_MIN_VALUE (TREE_TYPE (val1))
429 && TREE_CODE (val2) == PLUS_EXPR)
430 {
431 /* -INF < NAME + CST. */
432 return -1;
433 }
434 else if (TREE_CODE (val1) == MINUS_EXPR
435 && val2 == TYPE_MAX_VALUE (TREE_TYPE (val2)))
436 {
437 /* NAME - CST < +INF. */
438 return -1;
439 }
440 else if (TREE_CODE (val1) == PLUS_EXPR
441 && val2 == TYPE_MIN_VALUE (TREE_TYPE (val2)))
442 {
443 /* NAME + CST > -INF. */
444 return 1;
445 }
446 }
447
448 if ((TREE_CODE (val1) == SSA_NAME
449 || TREE_CODE (val1) == PLUS_EXPR
450 || TREE_CODE (val1) == MINUS_EXPR)
451 && (TREE_CODE (val2) == SSA_NAME
452 || TREE_CODE (val2) == PLUS_EXPR
453 || TREE_CODE (val2) == MINUS_EXPR))
454 {
455 tree n1, c1, n2, c2;
456
457 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
458 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
459 same name, return -2. */
460 if (TREE_CODE (val1) == SSA_NAME)
461 {
462 n1 = val1;
463 c1 = NULL_TREE;
464 }
465 else
466 {
467 n1 = TREE_OPERAND (val1, 0);
468 c1 = TREE_OPERAND (val1, 1);
469 }
470
471 if (TREE_CODE (val2) == SSA_NAME)
472 {
473 n2 = val2;
474 c2 = NULL_TREE;
475 }
476 else
477 {
478 n2 = TREE_OPERAND (val2, 0);
479 c2 = TREE_OPERAND (val2, 1);
480 }
481
482 /* Both values must use the same name. */
483 if (n1 != n2)
484 return -2;
485
486 if (TREE_CODE (val1) == SSA_NAME)
487 {
488 if (TREE_CODE (val2) == SSA_NAME)
489 /* NAME == NAME */
490 return 0;
491 else if (TREE_CODE (val2) == PLUS_EXPR)
492 /* NAME < NAME + CST */
493 return -1;
494 else if (TREE_CODE (val2) == MINUS_EXPR)
495 /* NAME > NAME - CST */
496 return 1;
497 }
498 else if (TREE_CODE (val1) == PLUS_EXPR)
499 {
500 if (TREE_CODE (val2) == SSA_NAME)
501 /* NAME + CST > NAME */
502 return 1;
503 else if (TREE_CODE (val2) == PLUS_EXPR)
504 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
505 return compare_values (c1, c2);
506 else if (TREE_CODE (val2) == MINUS_EXPR)
507 /* NAME + CST1 > NAME - CST2 */
508 return 1;
509 }
510 else if (TREE_CODE (val1) == MINUS_EXPR)
511 {
512 if (TREE_CODE (val2) == SSA_NAME)
513 /* NAME - CST < NAME */
514 return -1;
515 else if (TREE_CODE (val2) == PLUS_EXPR)
516 /* NAME - CST1 < NAME + CST2 */
517 return -1;
518 else if (TREE_CODE (val2) == MINUS_EXPR)
519 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
520 C1 and C2 are swapped in the call to compare_values. */
521 return compare_values (c2, c1);
522 }
523
524 gcc_unreachable ();
525 }
526
527 /* We cannot compare non-constants. */
528 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
529 return -2;
530
531 /* We cannot compare overflowed values. */
532 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
533 return -2;
534
535 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
536 return tree_int_cst_compare (val1, val2);
537 else
538 {
539 tree t;
540
541 /* First see if VAL1 and VAL2 are not the same. */
542 if (val1 == val2 || operand_equal_p (val1, val2, 0))
543 return 0;
544
545 /* If VAL1 is a lower address than VAL2, return -1. */
546 t = fold_binary (LT_EXPR, boolean_type_node, val1, val2);
547 if (t == boolean_true_node)
548 return -1;
549
550 /* If VAL1 is a higher address than VAL2, return +1. */
551 t = fold_binary (GT_EXPR, boolean_type_node, val1, val2);
552 if (t == boolean_true_node)
553 return 1;
554
555 /* If VAL1 is different than VAL2, return +2. */
556 t = fold_binary (NE_EXPR, boolean_type_node, val1, val2);
557 if (t == boolean_true_node)
558 return 2;
559
560 return -2;
561 }
562 }
563
564
565 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
566 0 if VAL is not inside VR,
567 -2 if we cannot tell either way. */
568
569 static inline int
570 value_inside_range (tree val, value_range_t *vr)
571 {
572 int cmp1, cmp2;
573
574 cmp1 = compare_values (val, vr->min);
575 if (cmp1 == -2 || cmp1 == 2)
576 return -2;
577
578 cmp2 = compare_values (val, vr->max);
579 if (cmp2 == -2 || cmp2 == 2)
580 return -2;
581
582 return (cmp1 == 0 || cmp1 == 1) && (cmp2 == -1 || cmp2 == 0);
583 }
584
585
586 /* Return true if value ranges VR0 and VR1 have a non-empty
587 intersection. */
588
589 static inline bool
590 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
591 {
592 return (value_inside_range (vr1->min, vr0) == 1
593 || value_inside_range (vr1->max, vr0) == 1
594 || value_inside_range (vr0->min, vr1) == 1
595 || value_inside_range (vr0->max, vr1) == 1);
596 }
597
598
599 /* Return true if VR includes the value zero, false otherwise. */
600
601 static inline bool
602 range_includes_zero_p (value_range_t *vr)
603 {
604 tree zero;
605
606 gcc_assert (vr->type != VR_UNDEFINED
607 && vr->type != VR_VARYING
608 && !symbolic_range_p (vr));
609
610 zero = build_int_cst (TREE_TYPE (vr->min), 0);
611 return (value_inside_range (zero, vr) == 1);
612 }
613
614
615 /* Extract value range information from an ASSERT_EXPR EXPR and store
616 it in *VR_P. */
617
618 static void
619 extract_range_from_assert (value_range_t *vr_p, tree expr)
620 {
621 tree var, cond, limit, min, max, type;
622 value_range_t *var_vr, *limit_vr;
623 enum tree_code cond_code;
624
625 var = ASSERT_EXPR_VAR (expr);
626 cond = ASSERT_EXPR_COND (expr);
627
628 gcc_assert (COMPARISON_CLASS_P (cond));
629
630 /* Find VAR in the ASSERT_EXPR conditional. */
631 if (var == TREE_OPERAND (cond, 0))
632 {
633 /* If the predicate is of the form VAR COMP LIMIT, then we just
634 take LIMIT from the RHS and use the same comparison code. */
635 limit = TREE_OPERAND (cond, 1);
636 cond_code = TREE_CODE (cond);
637 }
638 else
639 {
640 /* If the predicate is of the form LIMIT COMP VAR, then we need
641 to flip around the comparison code to create the proper range
642 for VAR. */
643 limit = TREE_OPERAND (cond, 0);
644 cond_code = swap_tree_comparison (TREE_CODE (cond));
645 }
646
647 type = TREE_TYPE (limit);
648 gcc_assert (limit != var);
649
650 /* For pointer arithmetic, we only keep track of pointer equality
651 and inequality. */
652 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
653 {
654 set_value_range_to_varying (vr_p);
655 return;
656 }
657
658 /* If LIMIT is another SSA name and LIMIT has a range of its own,
659 try to use LIMIT's range to avoid creating symbolic ranges
660 unnecessarily. */
661 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
662
663 /* LIMIT's range is only interesting if it has any useful information. */
664 if (limit_vr
665 && (limit_vr->type == VR_UNDEFINED
666 || limit_vr->type == VR_VARYING
667 || symbolic_range_p (limit_vr)))
668 limit_vr = NULL;
669
670 /* Special handling for integral types with super-types. Some FEs
671 construct integral types derived from other types and restrict
672 the range of values these new types may take.
673
674 It may happen that LIMIT is actually smaller than TYPE's minimum
675 value. For instance, the Ada FE is generating code like this
676 during bootstrap:
677
678 D.1480_32 = nam_30 - 300000361;
679 if (D.1480_32 <= 1) goto <L112>; else goto <L52>;
680 <L112>:;
681 D.1480_94 = ASSERT_EXPR <D.1480_32, D.1480_32 <= 1>;
682
683 All the names are of type types__name_id___XDLU_300000000__399999999
684 which has min == 300000000 and max == 399999999. This means that
685 the ASSERT_EXPR would try to create the range [3000000, 1] which
686 is invalid.
687
688 The fact that the type specifies MIN and MAX values does not
689 automatically mean that every variable of that type will always
690 be within that range, so the predicate may well be true at run
691 time. If we had symbolic -INF and +INF values, we could
692 represent this range, but we currently represent -INF and +INF
693 using the type's min and max values.
694
695 So, the only sensible thing we can do for now is set the
696 resulting range to VR_VARYING. TODO, would having symbolic -INF
697 and +INF values be worth the trouble? */
698 if (TREE_CODE (limit) != SSA_NAME
699 && INTEGRAL_TYPE_P (type)
700 && TREE_TYPE (type))
701 {
702 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
703 {
704 tree type_min = TYPE_MIN_VALUE (type);
705 int cmp = compare_values (limit, type_min);
706
707 /* For < or <= comparisons, if LIMIT is smaller than
708 TYPE_MIN, set the range to VR_VARYING. */
709 if (cmp == -1 || cmp == 0)
710 {
711 set_value_range_to_varying (vr_p);
712 return;
713 }
714 }
715 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
716 {
717 tree type_max = TYPE_MIN_VALUE (type);
718 int cmp = compare_values (limit, type_max);
719
720 /* For > or >= comparisons, if LIMIT is bigger than
721 TYPE_MAX, set the range to VR_VARYING. */
722 if (cmp == 1 || cmp == 0)
723 {
724 set_value_range_to_varying (vr_p);
725 return;
726 }
727 }
728 }
729
730 /* The new range has the same set of equivalences of VAR's range. */
731 gcc_assert (vr_p->equiv == NULL);
732 vr_p->equiv = BITMAP_ALLOC (NULL);
733 add_equivalence (vr_p->equiv, var);
734
735 /* Extract a new range based on the asserted comparison for VAR and
736 LIMIT's value range. Notice that if LIMIT has an anti-range, we
737 will only use it for equality comparisons (EQ_EXPR). For any
738 other kind of assertion, we cannot derive a range from LIMIT's
739 anti-range that can be used to describe the new range. For
740 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
741 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
742 no single range for x_2 that could describe LE_EXPR, so we might
743 as well build the range [b_4, +INF] for it. */
744 if (cond_code == EQ_EXPR)
745 {
746 enum value_range_type range_type;
747
748 if (limit_vr)
749 {
750 range_type = limit_vr->type;
751 min = limit_vr->min;
752 max = limit_vr->max;
753 }
754 else
755 {
756 range_type = VR_RANGE;
757 min = limit;
758 max = limit;
759 }
760
761 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
762
763 /* When asserting the equality VAR == LIMIT and LIMIT is another
764 SSA name, the new range will also inherit the equivalence set
765 from LIMIT. */
766 if (TREE_CODE (limit) == SSA_NAME)
767 add_equivalence (vr_p->equiv, limit);
768 }
769 else if (cond_code == NE_EXPR)
770 {
771 /* As described above, when LIMIT's range is an anti-range and
772 this assertion is an inequality (NE_EXPR), then we cannot
773 derive anything from the anti-range. For instance, if
774 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
775 not imply that VAR's range is [0, 0]. So, in the case of
776 anti-ranges, we just assert the inequality using LIMIT and
777 not its anti-range. */
778 if (limit_vr == NULL
779 || limit_vr->type == VR_ANTI_RANGE)
780 {
781 min = limit;
782 max = limit;
783 }
784 else
785 {
786 min = limit_vr->min;
787 max = limit_vr->max;
788 }
789
790 /* If MIN and MAX cover the whole range for their type, then
791 just use the original LIMIT. */
792 if (INTEGRAL_TYPE_P (type)
793 && min == TYPE_MIN_VALUE (type)
794 && max == TYPE_MAX_VALUE (type))
795 min = max = limit;
796
797 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
798 }
799 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
800 {
801 min = TYPE_MIN_VALUE (type);
802
803 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
804 max = limit;
805 else
806 {
807 /* If LIMIT_VR is of the form [N1, N2], we need to build the
808 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
809 LT_EXPR. */
810 max = limit_vr->max;
811 }
812
813 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
814 if (cond_code == LT_EXPR)
815 {
816 tree one = build_int_cst (type, 1);
817 max = fold_build2 (MINUS_EXPR, type, max, one);
818 }
819
820 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
821 }
822 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
823 {
824 max = TYPE_MAX_VALUE (type);
825
826 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
827 min = limit;
828 else
829 {
830 /* If LIMIT_VR is of the form [N1, N2], we need to build the
831 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
832 GT_EXPR. */
833 min = limit_vr->min;
834 }
835
836 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
837 if (cond_code == GT_EXPR)
838 {
839 tree one = build_int_cst (type, 1);
840 min = fold_build2 (PLUS_EXPR, type, min, one);
841 }
842
843 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
844 }
845 else
846 gcc_unreachable ();
847
848 /* If VAR already had a known range and the two ranges have a
849 non-empty intersection, we can refine the resulting range.
850 Since the assert expression creates an equivalency and at the
851 same time it asserts a predicate, we can take the intersection of
852 the two ranges to get better precision. */
853 var_vr = get_value_range (var);
854 if (var_vr->type == VR_RANGE
855 && vr_p->type == VR_RANGE
856 && value_ranges_intersect_p (var_vr, vr_p))
857 {
858 /* Use the larger of the two minimums. */
859 if (compare_values (vr_p->min, var_vr->min) == -1)
860 min = var_vr->min;
861 else
862 min = vr_p->min;
863
864 /* Use the smaller of the two maximums. */
865 if (compare_values (vr_p->max, var_vr->max) == 1)
866 max = var_vr->max;
867 else
868 max = vr_p->max;
869
870 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
871 }
872 }
873
874
875 /* Extract range information from SSA name VAR and store it in VR. If
876 VAR has an interesting range, use it. Otherwise, create the
877 range [VAR, VAR] and return it. This is useful in situations where
878 we may have conditionals testing values of VARYING names. For
879 instance,
880
881 x_3 = y_5;
882 if (x_3 > y_5)
883 ...
884
885 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
886 always false. */
887
888 static void
889 extract_range_from_ssa_name (value_range_t *vr, tree var)
890 {
891 value_range_t *var_vr = get_value_range (var);
892
893 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
894 copy_value_range (vr, var_vr);
895 else
896 set_value_range (vr, VR_RANGE, var, var, NULL);
897
898 add_equivalence (vr->equiv, var);
899 }
900
901
902 /* Wrapper around int_const_binop. If the operation overflows and we
903 are not using wrapping arithmetic, then adjust the result to be
904 -INF or +INF depending on CODE, VAL1 and VAL2. */
905
906 static inline tree
907 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
908 {
909 tree res;
910
911 if (flag_wrapv)
912 return int_const_binop (code, val1, val2, 0);
913
914 /* If we are not using wrapping arithmetic, operate symbolically
915 on -INF and +INF. */
916 res = int_const_binop (code, val1, val2, 0);
917
918 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
919 {
920 int checkz = compare_values (res, val1);
921
922 /* Ensure that res = val1 + val2 >= val1
923 or that res = val1 - val2 <= val1. */
924 if ((code == PLUS_EXPR && !(checkz == 1 || checkz == 0))
925 || (code == MINUS_EXPR && !(checkz == 0 || checkz == -1)))
926 {
927 res = copy_node (res);
928 TREE_OVERFLOW (res) = 1;
929 }
930 }
931 /* If the operation overflowed but neither VAL1 nor VAL2 are
932 overflown, return -INF or +INF depending on the operation
933 and the combination of signs of the operands. */
934 else if (TREE_OVERFLOW (res)
935 && !TREE_OVERFLOW (val1)
936 && !TREE_OVERFLOW (val2))
937 {
938 int sgn1 = tree_int_cst_sgn (val1);
939 int sgn2 = tree_int_cst_sgn (val2);
940
941 /* Notice that we only need to handle the restricted set of
942 operations handled by extract_range_from_binary_expr.
943 Among them, only multiplication, addition and subtraction
944 can yield overflow without overflown operands because we
945 are working with integral types only... except in the
946 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
947 for division too. */
948
949 /* For multiplication, the sign of the overflow is given
950 by the comparison of the signs of the operands. */
951 if ((code == MULT_EXPR && sgn1 == sgn2)
952 /* For addition, the operands must be of the same sign
953 to yield an overflow. Its sign is therefore that
954 of one of the operands, for example the first. */
955 || (code == PLUS_EXPR && sgn1 > 0)
956 /* For subtraction, the operands must be of different
957 signs to yield an overflow. Its sign is therefore
958 that of the first operand or the opposite of that
959 of the second operand. */
960 || (code == MINUS_EXPR && sgn1 > 0)
961 /* For division, the only case is -INF / -1 = +INF. */
962 || code == TRUNC_DIV_EXPR
963 || code == FLOOR_DIV_EXPR
964 || code == CEIL_DIV_EXPR
965 || code == EXACT_DIV_EXPR
966 || code == ROUND_DIV_EXPR)
967 return TYPE_MAX_VALUE (TREE_TYPE (res));
968 else
969 return TYPE_MIN_VALUE (TREE_TYPE (res));
970 }
971
972 return res;
973 }
974
975
976 /* Extract range information from a binary expression EXPR based on
977 the ranges of each of its operands and the expression code. */
978
979 static void
980 extract_range_from_binary_expr (value_range_t *vr, tree expr)
981 {
982 enum tree_code code = TREE_CODE (expr);
983 tree op0, op1, min, max;
984 int cmp;
985 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
986 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
987
988 /* Not all binary expressions can be applied to ranges in a
989 meaningful way. Handle only arithmetic operations. */
990 if (code != PLUS_EXPR
991 && code != MINUS_EXPR
992 && code != MULT_EXPR
993 && code != TRUNC_DIV_EXPR
994 && code != FLOOR_DIV_EXPR
995 && code != CEIL_DIV_EXPR
996 && code != EXACT_DIV_EXPR
997 && code != ROUND_DIV_EXPR
998 && code != MIN_EXPR
999 && code != MAX_EXPR
1000 && code != TRUTH_ANDIF_EXPR
1001 && code != TRUTH_ORIF_EXPR
1002 && code != TRUTH_AND_EXPR
1003 && code != TRUTH_OR_EXPR
1004 && code != TRUTH_XOR_EXPR)
1005 {
1006 set_value_range_to_varying (vr);
1007 return;
1008 }
1009
1010 /* Get value ranges for each operand. For constant operands, create
1011 a new value range with the operand to simplify processing. */
1012 op0 = TREE_OPERAND (expr, 0);
1013 if (TREE_CODE (op0) == SSA_NAME)
1014 vr0 = *(get_value_range (op0));
1015 else if (is_gimple_min_invariant (op0))
1016 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1017 else
1018 set_value_range_to_varying (&vr0);
1019
1020 op1 = TREE_OPERAND (expr, 1);
1021 if (TREE_CODE (op1) == SSA_NAME)
1022 vr1 = *(get_value_range (op1));
1023 else if (is_gimple_min_invariant (op1))
1024 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
1025 else
1026 set_value_range_to_varying (&vr1);
1027
1028 /* If either range is UNDEFINED, so is the result. */
1029 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1030 {
1031 set_value_range_to_undefined (vr);
1032 return;
1033 }
1034
1035 /* Refuse to operate on VARYING ranges, ranges of different kinds
1036 and symbolic ranges. TODO, we may be able to derive anti-ranges
1037 in some cases. */
1038 if (vr0.type == VR_VARYING
1039 || vr1.type == VR_VARYING
1040 || vr0.type != vr1.type
1041 || symbolic_range_p (&vr0)
1042 || symbolic_range_p (&vr1))
1043 {
1044 set_value_range_to_varying (vr);
1045 return;
1046 }
1047
1048 /* Now evaluate the expression to determine the new range. */
1049 if (POINTER_TYPE_P (TREE_TYPE (expr))
1050 || POINTER_TYPE_P (TREE_TYPE (op0))
1051 || POINTER_TYPE_P (TREE_TYPE (op1)))
1052 {
1053 /* For pointer types, we are really only interested in asserting
1054 whether the expression evaluates to non-NULL. FIXME, we used
1055 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1056 ivopts is generating expressions with pointer multiplication
1057 in them. */
1058 if (code == PLUS_EXPR)
1059 {
1060 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1061 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1062 else if (range_is_null (&vr0) && range_is_null (&vr1))
1063 set_value_range_to_null (vr, TREE_TYPE (expr));
1064 else
1065 set_value_range_to_varying (vr);
1066 }
1067 else
1068 {
1069 /* Subtracting from a pointer, may yield 0, so just drop the
1070 resulting range to varying. */
1071 set_value_range_to_varying (vr);
1072 }
1073
1074 return;
1075 }
1076
1077 /* For integer ranges, apply the operation to each end of the
1078 range and see what we end up with. */
1079 if (code == TRUTH_ANDIF_EXPR
1080 || code == TRUTH_ORIF_EXPR
1081 || code == TRUTH_AND_EXPR
1082 || code == TRUTH_OR_EXPR
1083 || code == TRUTH_XOR_EXPR)
1084 {
1085 /* Boolean expressions cannot be folded with int_const_binop. */
1086 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1087 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1088 }
1089 else if (code == PLUS_EXPR
1090 || code == MIN_EXPR
1091 || code == MAX_EXPR)
1092 {
1093 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1094 VR_VARYING. It would take more effort to compute a precise
1095 range for such a case. For example, if we have op0 == 1 and
1096 op1 == -1 with their ranges both being ~[0,0], we would have
1097 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1098 Note that we are guaranteed to have vr0.type == vr1.type at
1099 this point. */
1100 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1101 {
1102 set_value_range_to_varying (vr);
1103 return;
1104 }
1105
1106 /* For operations that make the resulting range directly
1107 proportional to the original ranges, apply the operation to
1108 the same end of each range. */
1109 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1110 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1111 }
1112 else if (code == MULT_EXPR
1113 || code == TRUNC_DIV_EXPR
1114 || code == FLOOR_DIV_EXPR
1115 || code == CEIL_DIV_EXPR
1116 || code == EXACT_DIV_EXPR
1117 || code == ROUND_DIV_EXPR)
1118 {
1119 tree val[4];
1120 size_t i;
1121
1122 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1123 drop to VR_VARYING. It would take more effort to compute a
1124 precise range for such a case. For example, if we have
1125 op0 == 65536 and op1 == 65536 with their ranges both being
1126 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1127 we cannot claim that the product is in ~[0,0]. Note that we
1128 are guaranteed to have vr0.type == vr1.type at this
1129 point. */
1130 if (code == MULT_EXPR
1131 && vr0.type == VR_ANTI_RANGE
1132 && (flag_wrapv || TYPE_UNSIGNED (TREE_TYPE (op0))))
1133 {
1134 set_value_range_to_varying (vr);
1135 return;
1136 }
1137
1138 /* Multiplications and divisions are a bit tricky to handle,
1139 depending on the mix of signs we have in the two ranges, we
1140 need to operate on different values to get the minimum and
1141 maximum values for the new range. One approach is to figure
1142 out all the variations of range combinations and do the
1143 operations.
1144
1145 However, this involves several calls to compare_values and it
1146 is pretty convoluted. It's simpler to do the 4 operations
1147 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1148 MAX1) and then figure the smallest and largest values to form
1149 the new range. */
1150
1151 /* Divisions by zero result in a VARYING value. */
1152 if (code != MULT_EXPR
1153 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1154 {
1155 set_value_range_to_varying (vr);
1156 return;
1157 }
1158
1159 /* Compute the 4 cross operations. */
1160 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1161
1162 val[1] = (vr1.max != vr1.min)
1163 ? vrp_int_const_binop (code, vr0.min, vr1.max)
1164 : NULL_TREE;
1165
1166 val[2] = (vr0.max != vr0.min)
1167 ? vrp_int_const_binop (code, vr0.max, vr1.min)
1168 : NULL_TREE;
1169
1170 val[3] = (vr0.min != vr0.max && vr1.min != vr1.max)
1171 ? vrp_int_const_binop (code, vr0.max, vr1.max)
1172 : NULL_TREE;
1173
1174 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1175 of VAL[i]. */
1176 min = val[0];
1177 max = val[0];
1178 for (i = 1; i < 4; i++)
1179 {
1180 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
1181 break;
1182
1183 if (val[i])
1184 {
1185 if (TREE_OVERFLOW (val[i]))
1186 {
1187 /* If we found an overflowed value, set MIN and MAX
1188 to it so that we set the resulting range to
1189 VARYING. */
1190 min = max = val[i];
1191 break;
1192 }
1193
1194 if (compare_values (val[i], min) == -1)
1195 min = val[i];
1196
1197 if (compare_values (val[i], max) == 1)
1198 max = val[i];
1199 }
1200 }
1201 }
1202 else if (code == MINUS_EXPR)
1203 {
1204 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1205 VR_VARYING. It would take more effort to compute a precise
1206 range for such a case. For example, if we have op0 == 1 and
1207 op1 == 1 with their ranges both being ~[0,0], we would have
1208 op0 - op1 == 0, so we cannot claim that the difference is in
1209 ~[0,0]. Note that we are guaranteed to have
1210 vr0.type == vr1.type at this point. */
1211 if (vr0.type == VR_ANTI_RANGE)
1212 {
1213 set_value_range_to_varying (vr);
1214 return;
1215 }
1216
1217 /* For MINUS_EXPR, apply the operation to the opposite ends of
1218 each range. */
1219 min = vrp_int_const_binop (code, vr0.min, vr1.max);
1220 max = vrp_int_const_binop (code, vr0.max, vr1.min);
1221 }
1222 else
1223 gcc_unreachable ();
1224
1225 /* If either MIN or MAX overflowed, then set the resulting range to
1226 VARYING. */
1227 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
1228 {
1229 set_value_range_to_varying (vr);
1230 return;
1231 }
1232
1233 cmp = compare_values (min, max);
1234 if (cmp == -2 || cmp == 1)
1235 {
1236 /* If the new range has its limits swapped around (MIN > MAX),
1237 then the operation caused one of them to wrap around, mark
1238 the new range VARYING. */
1239 set_value_range_to_varying (vr);
1240 }
1241 else
1242 set_value_range (vr, vr0.type, min, max, NULL);
1243 }
1244
1245
1246 /* Extract range information from a unary expression EXPR based on
1247 the range of its operand and the expression code. */
1248
1249 static void
1250 extract_range_from_unary_expr (value_range_t *vr, tree expr)
1251 {
1252 enum tree_code code = TREE_CODE (expr);
1253 tree min, max, op0;
1254 int cmp;
1255 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1256
1257 /* Refuse to operate on certain unary expressions for which we
1258 cannot easily determine a resulting range. */
1259 if (code == FIX_TRUNC_EXPR
1260 || code == FIX_CEIL_EXPR
1261 || code == FIX_FLOOR_EXPR
1262 || code == FIX_ROUND_EXPR
1263 || code == FLOAT_EXPR
1264 || code == BIT_NOT_EXPR
1265 || code == NON_LVALUE_EXPR
1266 || code == CONJ_EXPR)
1267 {
1268 set_value_range_to_varying (vr);
1269 return;
1270 }
1271
1272 /* Get value ranges for the operand. For constant operands, create
1273 a new value range with the operand to simplify processing. */
1274 op0 = TREE_OPERAND (expr, 0);
1275 if (TREE_CODE (op0) == SSA_NAME)
1276 vr0 = *(get_value_range (op0));
1277 else if (is_gimple_min_invariant (op0))
1278 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1279 else
1280 set_value_range_to_varying (&vr0);
1281
1282 /* If VR0 is UNDEFINED, so is the result. */
1283 if (vr0.type == VR_UNDEFINED)
1284 {
1285 set_value_range_to_undefined (vr);
1286 return;
1287 }
1288
1289 /* Refuse to operate on varying and symbolic ranges. Also, if the
1290 operand is neither a pointer nor an integral type, set the
1291 resulting range to VARYING. TODO, in some cases we may be able
1292 to derive anti-ranges (like nonzero values). */
1293 if (vr0.type == VR_VARYING
1294 || (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
1295 && !POINTER_TYPE_P (TREE_TYPE (op0)))
1296 || symbolic_range_p (&vr0))
1297 {
1298 set_value_range_to_varying (vr);
1299 return;
1300 }
1301
1302 /* If the expression involves pointers, we are only interested in
1303 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
1304 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
1305 {
1306 if (range_is_nonnull (&vr0) || tree_expr_nonzero_p (expr))
1307 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1308 else if (range_is_null (&vr0))
1309 set_value_range_to_null (vr, TREE_TYPE (expr));
1310 else
1311 set_value_range_to_varying (vr);
1312
1313 return;
1314 }
1315
1316 /* Handle unary expressions on integer ranges. */
1317 if (code == NOP_EXPR || code == CONVERT_EXPR)
1318 {
1319 tree inner_type = TREE_TYPE (op0);
1320 tree outer_type = TREE_TYPE (expr);
1321
1322 /* If VR0 represents a simple range, then try to convert
1323 the min and max values for the range to the same type
1324 as OUTER_TYPE. If the results compare equal to VR0's
1325 min and max values and the new min is still less than
1326 or equal to the new max, then we can safely use the newly
1327 computed range for EXPR. This allows us to compute
1328 accurate ranges through many casts. */
1329 if (vr0.type == VR_RANGE)
1330 {
1331 tree new_min, new_max;
1332
1333 /* Convert VR0's min/max to OUTER_TYPE. */
1334 new_min = fold_convert (outer_type, vr0.min);
1335 new_max = fold_convert (outer_type, vr0.max);
1336
1337 /* Verify the new min/max values are gimple values and
1338 that they compare equal to VR0's min/max values. */
1339 if (is_gimple_val (new_min)
1340 && is_gimple_val (new_max)
1341 && tree_int_cst_equal (new_min, vr0.min)
1342 && tree_int_cst_equal (new_max, vr0.max)
1343 && compare_values (new_min, new_max) <= 0
1344 && compare_values (new_min, new_max) >= -2)
1345 {
1346 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
1347 return;
1348 }
1349 }
1350
1351 /* When converting types of different sizes, set the result to
1352 VARYING. Things like sign extensions and precision loss may
1353 change the range. For instance, if x_3 is of type 'long long
1354 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
1355 is impossible to know at compile time whether y_5 will be
1356 ~[0, 0]. */
1357 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
1358 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
1359 {
1360 set_value_range_to_varying (vr);
1361 return;
1362 }
1363 }
1364
1365 /* Apply the operation to each end of the range and see what we end
1366 up with. */
1367 if (code == NEGATE_EXPR
1368 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1369 {
1370 /* NEGATE_EXPR flips the range around. */
1371 min = (vr0.max == TYPE_MAX_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
1372 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1373 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1374
1375 max = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
1376 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1377 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1378 }
1379 else if (code == ABS_EXPR
1380 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1381 {
1382 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
1383 useful range. */
1384 if (flag_wrapv
1385 && ((vr0.type == VR_RANGE
1386 && vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1387 || (vr0.type == VR_ANTI_RANGE
1388 && vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr))
1389 && !range_includes_zero_p (&vr0))))
1390 {
1391 set_value_range_to_varying (vr);
1392 return;
1393 }
1394
1395 /* ABS_EXPR may flip the range around, if the original range
1396 included negative values. */
1397 min = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1398 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1399 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1400
1401 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1402
1403 cmp = compare_values (min, max);
1404
1405 /* If a VR_ANTI_RANGEs contains zero, then we have
1406 ~[-INF, min(MIN, MAX)]. */
1407 if (vr0.type == VR_ANTI_RANGE)
1408 {
1409 if (range_includes_zero_p (&vr0))
1410 {
1411 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
1412
1413 /* Take the lower of the two values. */
1414 if (cmp != 1)
1415 max = min;
1416
1417 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
1418 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
1419 flag_wrapv is set and the original anti-range doesn't include
1420 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
1421 min = (flag_wrapv && vr0.min != type_min_value
1422 ? int_const_binop (PLUS_EXPR,
1423 type_min_value,
1424 integer_one_node, 0)
1425 : type_min_value);
1426 }
1427 else
1428 {
1429 /* All else has failed, so create the range [0, INF], even for
1430 flag_wrapv since TYPE_MIN_VALUE is in the original
1431 anti-range. */
1432 vr0.type = VR_RANGE;
1433 min = build_int_cst (TREE_TYPE (expr), 0);
1434 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
1435 }
1436 }
1437
1438 /* If the range contains zero then we know that the minimum value in the
1439 range will be zero. */
1440 else if (range_includes_zero_p (&vr0))
1441 {
1442 if (cmp == 1)
1443 max = min;
1444 min = build_int_cst (TREE_TYPE (expr), 0);
1445 }
1446 else
1447 {
1448 /* If the range was reversed, swap MIN and MAX. */
1449 if (cmp == 1)
1450 {
1451 tree t = min;
1452 min = max;
1453 max = t;
1454 }
1455 }
1456 }
1457 else
1458 {
1459 /* Otherwise, operate on each end of the range. */
1460 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1461 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1462 }
1463
1464 cmp = compare_values (min, max);
1465 if (cmp == -2 || cmp == 1)
1466 {
1467 /* If the new range has its limits swapped around (MIN > MAX),
1468 then the operation caused one of them to wrap around, mark
1469 the new range VARYING. */
1470 set_value_range_to_varying (vr);
1471 }
1472 else
1473 set_value_range (vr, vr0.type, min, max, NULL);
1474 }
1475
1476
1477 /* Extract range information from a comparison expression EXPR based
1478 on the range of its operand and the expression code. */
1479
1480 static void
1481 extract_range_from_comparison (value_range_t *vr, tree expr)
1482 {
1483 tree val = vrp_evaluate_conditional (expr, false);
1484 if (val)
1485 {
1486 /* Since this expression was found on the RHS of an assignment,
1487 its type may be different from _Bool. Convert VAL to EXPR's
1488 type. */
1489 val = fold_convert (TREE_TYPE (expr), val);
1490 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
1491 }
1492 else
1493 set_value_range_to_varying (vr);
1494 }
1495
1496
1497 /* Try to compute a useful range out of expression EXPR and store it
1498 in *VR. */
1499
1500 static void
1501 extract_range_from_expr (value_range_t *vr, tree expr)
1502 {
1503 enum tree_code code = TREE_CODE (expr);
1504
1505 if (code == ASSERT_EXPR)
1506 extract_range_from_assert (vr, expr);
1507 else if (code == SSA_NAME)
1508 extract_range_from_ssa_name (vr, expr);
1509 else if (TREE_CODE_CLASS (code) == tcc_binary
1510 || code == TRUTH_ANDIF_EXPR
1511 || code == TRUTH_ORIF_EXPR
1512 || code == TRUTH_AND_EXPR
1513 || code == TRUTH_OR_EXPR
1514 || code == TRUTH_XOR_EXPR)
1515 extract_range_from_binary_expr (vr, expr);
1516 else if (TREE_CODE_CLASS (code) == tcc_unary)
1517 extract_range_from_unary_expr (vr, expr);
1518 else if (TREE_CODE_CLASS (code) == tcc_comparison)
1519 extract_range_from_comparison (vr, expr);
1520 else if (vrp_expr_computes_nonzero (expr))
1521 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1522 else if (is_gimple_min_invariant (expr))
1523 set_value_range (vr, VR_RANGE, expr, expr, NULL);
1524 else
1525 set_value_range_to_varying (vr);
1526 }
1527
1528 /* Given a range VR, a LOOP and a variable VAR, determine whether it
1529 would be profitable to adjust VR using scalar evolution information
1530 for VAR. If so, update VR with the new limits. */
1531
1532 static void
1533 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
1534 tree var)
1535 {
1536 tree init, step, chrec;
1537 bool init_is_max, unknown_max;
1538
1539 /* TODO. Don't adjust anti-ranges. An anti-range may provide
1540 better opportunities than a regular range, but I'm not sure. */
1541 if (vr->type == VR_ANTI_RANGE)
1542 return;
1543
1544 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
1545 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1546 return;
1547
1548 init = initial_condition_in_loop_num (chrec, loop->num);
1549 step = evolution_part_in_loop_num (chrec, loop->num);
1550
1551 /* If STEP is symbolic, we can't know whether INIT will be the
1552 minimum or maximum value in the range. */
1553 if (step == NULL_TREE
1554 || !is_gimple_min_invariant (step))
1555 return;
1556
1557 /* Do not adjust ranges when chrec may wrap. */
1558 if (scev_probably_wraps_p (chrec_type (chrec), init, step, stmt,
1559 cfg_loops->parray[CHREC_VARIABLE (chrec)],
1560 &init_is_max, &unknown_max)
1561 || unknown_max)
1562 return;
1563
1564 if (!POINTER_TYPE_P (TREE_TYPE (init))
1565 && (vr->type == VR_VARYING || vr->type == VR_UNDEFINED))
1566 {
1567 /* For VARYING or UNDEFINED ranges, just about anything we get
1568 from scalar evolutions should be better. */
1569 if (init_is_max)
1570 set_value_range (vr, VR_RANGE, TYPE_MIN_VALUE (TREE_TYPE (init)),
1571 init, vr->equiv);
1572 else
1573 set_value_range (vr, VR_RANGE, init, TYPE_MAX_VALUE (TREE_TYPE (init)),
1574 vr->equiv);
1575 }
1576 else if (vr->type == VR_RANGE)
1577 {
1578 tree min = vr->min;
1579 tree max = vr->max;
1580
1581 if (init_is_max)
1582 {
1583 /* INIT is the maximum value. If INIT is lower than VR->MAX
1584 but no smaller than VR->MIN, set VR->MAX to INIT. */
1585 if (compare_values (init, max) == -1)
1586 {
1587 max = init;
1588
1589 /* If we just created an invalid range with the minimum
1590 greater than the maximum, take the minimum all the
1591 way to -INF. */
1592 if (compare_values (min, max) == 1)
1593 min = TYPE_MIN_VALUE (TREE_TYPE (min));
1594 }
1595 }
1596 else
1597 {
1598 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
1599 if (compare_values (init, min) == 1)
1600 {
1601 min = init;
1602
1603 /* If we just created an invalid range with the minimum
1604 greater than the maximum, take the maximum all the
1605 way to +INF. */
1606 if (compare_values (min, max) == 1)
1607 max = TYPE_MAX_VALUE (TREE_TYPE (max));
1608 }
1609 }
1610
1611 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
1612 }
1613 }
1614
1615
1616 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
1617
1618 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
1619 all the values in the ranges.
1620
1621 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
1622
1623 - Return NULL_TREE if it is not always possible to determine the
1624 value of the comparison. */
1625
1626
1627 static tree
1628 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
1629 {
1630 /* VARYING or UNDEFINED ranges cannot be compared. */
1631 if (vr0->type == VR_VARYING
1632 || vr0->type == VR_UNDEFINED
1633 || vr1->type == VR_VARYING
1634 || vr1->type == VR_UNDEFINED)
1635 return NULL_TREE;
1636
1637 /* Anti-ranges need to be handled separately. */
1638 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
1639 {
1640 /* If both are anti-ranges, then we cannot compute any
1641 comparison. */
1642 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
1643 return NULL_TREE;
1644
1645 /* These comparisons are never statically computable. */
1646 if (comp == GT_EXPR
1647 || comp == GE_EXPR
1648 || comp == LT_EXPR
1649 || comp == LE_EXPR)
1650 return NULL_TREE;
1651
1652 /* Equality can be computed only between a range and an
1653 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
1654 if (vr0->type == VR_RANGE)
1655 {
1656 /* To simplify processing, make VR0 the anti-range. */
1657 value_range_t *tmp = vr0;
1658 vr0 = vr1;
1659 vr1 = tmp;
1660 }
1661
1662 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
1663
1664 if (compare_values (vr0->min, vr1->min) == 0
1665 && compare_values (vr0->max, vr1->max) == 0)
1666 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
1667
1668 return NULL_TREE;
1669 }
1670
1671 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
1672 operands around and change the comparison code. */
1673 if (comp == GT_EXPR || comp == GE_EXPR)
1674 {
1675 value_range_t *tmp;
1676 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
1677 tmp = vr0;
1678 vr0 = vr1;
1679 vr1 = tmp;
1680 }
1681
1682 if (comp == EQ_EXPR)
1683 {
1684 /* Equality may only be computed if both ranges represent
1685 exactly one value. */
1686 if (compare_values (vr0->min, vr0->max) == 0
1687 && compare_values (vr1->min, vr1->max) == 0)
1688 {
1689 int cmp_min = compare_values (vr0->min, vr1->min);
1690 int cmp_max = compare_values (vr0->max, vr1->max);
1691 if (cmp_min == 0 && cmp_max == 0)
1692 return boolean_true_node;
1693 else if (cmp_min != -2 && cmp_max != -2)
1694 return boolean_false_node;
1695 }
1696
1697 return NULL_TREE;
1698 }
1699 else if (comp == NE_EXPR)
1700 {
1701 int cmp1, cmp2;
1702
1703 /* If VR0 is completely to the left or completely to the right
1704 of VR1, they are always different. Notice that we need to
1705 make sure that both comparisons yield similar results to
1706 avoid comparing values that cannot be compared at
1707 compile-time. */
1708 cmp1 = compare_values (vr0->max, vr1->min);
1709 cmp2 = compare_values (vr0->min, vr1->max);
1710 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
1711 return boolean_true_node;
1712
1713 /* If VR0 and VR1 represent a single value and are identical,
1714 return false. */
1715 else if (compare_values (vr0->min, vr0->max) == 0
1716 && compare_values (vr1->min, vr1->max) == 0
1717 && compare_values (vr0->min, vr1->min) == 0
1718 && compare_values (vr0->max, vr1->max) == 0)
1719 return boolean_false_node;
1720
1721 /* Otherwise, they may or may not be different. */
1722 else
1723 return NULL_TREE;
1724 }
1725 else if (comp == LT_EXPR || comp == LE_EXPR)
1726 {
1727 int tst;
1728
1729 /* If VR0 is to the left of VR1, return true. */
1730 tst = compare_values (vr0->max, vr1->min);
1731 if ((comp == LT_EXPR && tst == -1)
1732 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
1733 return boolean_true_node;
1734
1735 /* If VR0 is to the right of VR1, return false. */
1736 tst = compare_values (vr0->min, vr1->max);
1737 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
1738 || (comp == LE_EXPR && tst == 1))
1739 return boolean_false_node;
1740
1741 /* Otherwise, we don't know. */
1742 return NULL_TREE;
1743 }
1744
1745 gcc_unreachable ();
1746 }
1747
1748
1749 /* Given a value range VR, a value VAL and a comparison code COMP, return
1750 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
1751 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
1752 always returns false. Return NULL_TREE if it is not always
1753 possible to determine the value of the comparison. */
1754
1755 static tree
1756 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
1757 {
1758 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
1759 return NULL_TREE;
1760
1761 /* Anti-ranges need to be handled separately. */
1762 if (vr->type == VR_ANTI_RANGE)
1763 {
1764 /* For anti-ranges, the only predicates that we can compute at
1765 compile time are equality and inequality. */
1766 if (comp == GT_EXPR
1767 || comp == GE_EXPR
1768 || comp == LT_EXPR
1769 || comp == LE_EXPR)
1770 return NULL_TREE;
1771
1772 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
1773 if (value_inside_range (val, vr) == 1)
1774 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
1775
1776 return NULL_TREE;
1777 }
1778
1779 if (comp == EQ_EXPR)
1780 {
1781 /* EQ_EXPR may only be computed if VR represents exactly
1782 one value. */
1783 if (compare_values (vr->min, vr->max) == 0)
1784 {
1785 int cmp = compare_values (vr->min, val);
1786 if (cmp == 0)
1787 return boolean_true_node;
1788 else if (cmp == -1 || cmp == 1 || cmp == 2)
1789 return boolean_false_node;
1790 }
1791 else if (compare_values (val, vr->min) == -1
1792 || compare_values (vr->max, val) == -1)
1793 return boolean_false_node;
1794
1795 return NULL_TREE;
1796 }
1797 else if (comp == NE_EXPR)
1798 {
1799 /* If VAL is not inside VR, then they are always different. */
1800 if (compare_values (vr->max, val) == -1
1801 || compare_values (vr->min, val) == 1)
1802 return boolean_true_node;
1803
1804 /* If VR represents exactly one value equal to VAL, then return
1805 false. */
1806 if (compare_values (vr->min, vr->max) == 0
1807 && compare_values (vr->min, val) == 0)
1808 return boolean_false_node;
1809
1810 /* Otherwise, they may or may not be different. */
1811 return NULL_TREE;
1812 }
1813 else if (comp == LT_EXPR || comp == LE_EXPR)
1814 {
1815 int tst;
1816
1817 /* If VR is to the left of VAL, return true. */
1818 tst = compare_values (vr->max, val);
1819 if ((comp == LT_EXPR && tst == -1)
1820 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
1821 return boolean_true_node;
1822
1823 /* If VR is to the right of VAL, return false. */
1824 tst = compare_values (vr->min, val);
1825 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
1826 || (comp == LE_EXPR && tst == 1))
1827 return boolean_false_node;
1828
1829 /* Otherwise, we don't know. */
1830 return NULL_TREE;
1831 }
1832 else if (comp == GT_EXPR || comp == GE_EXPR)
1833 {
1834 int tst;
1835
1836 /* If VR is to the right of VAL, return true. */
1837 tst = compare_values (vr->min, val);
1838 if ((comp == GT_EXPR && tst == 1)
1839 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
1840 return boolean_true_node;
1841
1842 /* If VR is to the left of VAL, return false. */
1843 tst = compare_values (vr->max, val);
1844 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
1845 || (comp == GE_EXPR && tst == -1))
1846 return boolean_false_node;
1847
1848 /* Otherwise, we don't know. */
1849 return NULL_TREE;
1850 }
1851
1852 gcc_unreachable ();
1853 }
1854
1855
1856 /* Debugging dumps. */
1857
1858 void dump_value_range (FILE *, value_range_t *);
1859 void debug_value_range (value_range_t *);
1860 void dump_all_value_ranges (FILE *);
1861 void debug_all_value_ranges (void);
1862 void dump_vr_equiv (FILE *, bitmap);
1863 void debug_vr_equiv (bitmap);
1864
1865
1866 /* Dump value range VR to FILE. */
1867
1868 void
1869 dump_value_range (FILE *file, value_range_t *vr)
1870 {
1871 if (vr == NULL)
1872 fprintf (file, "[]");
1873 else if (vr->type == VR_UNDEFINED)
1874 fprintf (file, "UNDEFINED");
1875 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
1876 {
1877 tree type = TREE_TYPE (vr->min);
1878
1879 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
1880
1881 if (INTEGRAL_TYPE_P (type)
1882 && !TYPE_UNSIGNED (type)
1883 && vr->min == TYPE_MIN_VALUE (type))
1884 fprintf (file, "-INF");
1885 else
1886 print_generic_expr (file, vr->min, 0);
1887
1888 fprintf (file, ", ");
1889
1890 if (INTEGRAL_TYPE_P (type)
1891 && vr->max == TYPE_MAX_VALUE (type))
1892 fprintf (file, "+INF");
1893 else
1894 print_generic_expr (file, vr->max, 0);
1895
1896 fprintf (file, "]");
1897
1898 if (vr->equiv)
1899 {
1900 bitmap_iterator bi;
1901 unsigned i, c = 0;
1902
1903 fprintf (file, " EQUIVALENCES: { ");
1904
1905 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
1906 {
1907 print_generic_expr (file, ssa_name (i), 0);
1908 fprintf (file, " ");
1909 c++;
1910 }
1911
1912 fprintf (file, "} (%u elements)", c);
1913 }
1914 }
1915 else if (vr->type == VR_VARYING)
1916 fprintf (file, "VARYING");
1917 else
1918 fprintf (file, "INVALID RANGE");
1919 }
1920
1921
1922 /* Dump value range VR to stderr. */
1923
1924 void
1925 debug_value_range (value_range_t *vr)
1926 {
1927 dump_value_range (stderr, vr);
1928 }
1929
1930
1931 /* Dump value ranges of all SSA_NAMEs to FILE. */
1932
1933 void
1934 dump_all_value_ranges (FILE *file)
1935 {
1936 size_t i;
1937
1938 for (i = 0; i < num_ssa_names; i++)
1939 {
1940 if (vr_value[i])
1941 {
1942 print_generic_expr (file, ssa_name (i), 0);
1943 fprintf (file, ": ");
1944 dump_value_range (file, vr_value[i]);
1945 fprintf (file, "\n");
1946 }
1947 }
1948
1949 fprintf (file, "\n");
1950 }
1951
1952
1953 /* Dump all value ranges to stderr. */
1954
1955 void
1956 debug_all_value_ranges (void)
1957 {
1958 dump_all_value_ranges (stderr);
1959 }
1960
1961
1962 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
1963 create a new SSA name N and return the assertion assignment
1964 'V = ASSERT_EXPR <V, V OP W>'. */
1965
1966 static tree
1967 build_assert_expr_for (tree cond, tree v)
1968 {
1969 tree n, assertion;
1970
1971 gcc_assert (TREE_CODE (v) == SSA_NAME);
1972 n = duplicate_ssa_name (v, NULL_TREE);
1973
1974 if (COMPARISON_CLASS_P (cond))
1975 {
1976 tree a = build (ASSERT_EXPR, TREE_TYPE (v), v, cond);
1977 assertion = build (MODIFY_EXPR, TREE_TYPE (v), n, a);
1978 }
1979 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
1980 {
1981 /* Given !V, build the assignment N = false. */
1982 tree op0 = TREE_OPERAND (cond, 0);
1983 gcc_assert (op0 == v);
1984 assertion = build (MODIFY_EXPR, TREE_TYPE (v), n, boolean_false_node);
1985 }
1986 else if (TREE_CODE (cond) == SSA_NAME)
1987 {
1988 /* Given V, build the assignment N = true. */
1989 gcc_assert (v == cond);
1990 assertion = build (MODIFY_EXPR, TREE_TYPE (v), n, boolean_true_node);
1991 }
1992 else
1993 gcc_unreachable ();
1994
1995 SSA_NAME_DEF_STMT (n) = assertion;
1996
1997 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
1998 operand of the ASSERT_EXPR. Register the new name and the old one
1999 in the replacement table so that we can fix the SSA web after
2000 adding all the ASSERT_EXPRs. */
2001 register_new_name_mapping (n, v);
2002
2003 return assertion;
2004 }
2005
2006
2007 /* Return false if EXPR is a predicate expression involving floating
2008 point values. */
2009
2010 static inline bool
2011 fp_predicate (tree expr)
2012 {
2013 return (COMPARISON_CLASS_P (expr)
2014 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
2015 }
2016
2017
2018 /* If the range of values taken by OP can be inferred after STMT executes,
2019 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2020 describes the inferred range. Return true if a range could be
2021 inferred. */
2022
2023 static bool
2024 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
2025 {
2026 *val_p = NULL_TREE;
2027 *comp_code_p = ERROR_MARK;
2028
2029 /* Do not attempt to infer anything in names that flow through
2030 abnormal edges. */
2031 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
2032 return false;
2033
2034 /* Similarly, don't infer anything from statements that may throw
2035 exceptions. */
2036 if (tree_could_throw_p (stmt))
2037 return false;
2038
2039 if (POINTER_TYPE_P (TREE_TYPE (op)))
2040 {
2041 bool is_store;
2042 unsigned num_uses, num_derefs;
2043
2044 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
2045 if (num_derefs > 0 && flag_delete_null_pointer_checks)
2046 {
2047 /* We can only assume that a pointer dereference will yield
2048 non-NULL if -fdelete-null-pointer-checks is enabled. */
2049 *val_p = build_int_cst (TREE_TYPE (op), 0);
2050 *comp_code_p = NE_EXPR;
2051 return true;
2052 }
2053 }
2054
2055 return false;
2056 }
2057
2058
2059 void dump_asserts_for (FILE *, tree);
2060 void debug_asserts_for (tree);
2061 void dump_all_asserts (FILE *);
2062 void debug_all_asserts (void);
2063
2064 /* Dump all the registered assertions for NAME to FILE. */
2065
2066 void
2067 dump_asserts_for (FILE *file, tree name)
2068 {
2069 assert_locus_t loc;
2070
2071 fprintf (file, "Assertions to be inserted for ");
2072 print_generic_expr (file, name, 0);
2073 fprintf (file, "\n");
2074
2075 loc = asserts_for[SSA_NAME_VERSION (name)];
2076 while (loc)
2077 {
2078 fprintf (file, "\t");
2079 print_generic_expr (file, bsi_stmt (loc->si), 0);
2080 fprintf (file, "\n\tBB #%d", loc->bb->index);
2081 if (loc->e)
2082 {
2083 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
2084 loc->e->dest->index);
2085 dump_edge_info (file, loc->e, 0);
2086 }
2087 fprintf (file, "\n\tPREDICATE: ");
2088 print_generic_expr (file, name, 0);
2089 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
2090 print_generic_expr (file, loc->val, 0);
2091 fprintf (file, "\n\n");
2092 loc = loc->next;
2093 }
2094
2095 fprintf (file, "\n");
2096 }
2097
2098
2099 /* Dump all the registered assertions for NAME to stderr. */
2100
2101 void
2102 debug_asserts_for (tree name)
2103 {
2104 dump_asserts_for (stderr, name);
2105 }
2106
2107
2108 /* Dump all the registered assertions for all the names to FILE. */
2109
2110 void
2111 dump_all_asserts (FILE *file)
2112 {
2113 unsigned i;
2114 bitmap_iterator bi;
2115
2116 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
2117 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2118 dump_asserts_for (file, ssa_name (i));
2119 fprintf (file, "\n");
2120 }
2121
2122
2123 /* Dump all the registered assertions for all the names to stderr. */
2124
2125 void
2126 debug_all_asserts (void)
2127 {
2128 dump_all_asserts (stderr);
2129 }
2130
2131
2132 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2133 'NAME COMP_CODE VAL' at a location that dominates block BB or
2134 E->DEST, then register this location as a possible insertion point
2135 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
2136
2137 BB, E and SI provide the exact insertion point for the new
2138 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2139 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2140 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2141 must not be NULL. */
2142
2143 static void
2144 register_new_assert_for (tree name,
2145 enum tree_code comp_code,
2146 tree val,
2147 basic_block bb,
2148 edge e,
2149 block_stmt_iterator si)
2150 {
2151 assert_locus_t n, loc, last_loc;
2152 bool found;
2153 basic_block dest_bb;
2154
2155 #if defined ENABLE_CHECKING
2156 gcc_assert (bb == NULL || e == NULL);
2157
2158 if (e == NULL)
2159 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
2160 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
2161 #endif
2162
2163 /* The new assertion A will be inserted at BB or E. We need to
2164 determine if the new location is dominated by a previously
2165 registered location for A. If we are doing an edge insertion,
2166 assume that A will be inserted at E->DEST. Note that this is not
2167 necessarily true.
2168
2169 If E is a critical edge, it will be split. But even if E is
2170 split, the new block will dominate the same set of blocks that
2171 E->DEST dominates.
2172
2173 The reverse, however, is not true, blocks dominated by E->DEST
2174 will not be dominated by the new block created to split E. So,
2175 if the insertion location is on a critical edge, we will not use
2176 the new location to move another assertion previously registered
2177 at a block dominated by E->DEST. */
2178 dest_bb = (bb) ? bb : e->dest;
2179
2180 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2181 VAL at a block dominating DEST_BB, then we don't need to insert a new
2182 one. Similarly, if the same assertion already exists at a block
2183 dominated by DEST_BB and the new location is not on a critical
2184 edge, then update the existing location for the assertion (i.e.,
2185 move the assertion up in the dominance tree).
2186
2187 Note, this is implemented as a simple linked list because there
2188 should not be more than a handful of assertions registered per
2189 name. If this becomes a performance problem, a table hashed by
2190 COMP_CODE and VAL could be implemented. */
2191 loc = asserts_for[SSA_NAME_VERSION (name)];
2192 last_loc = loc;
2193 found = false;
2194 while (loc)
2195 {
2196 if (loc->comp_code == comp_code
2197 && (loc->val == val
2198 || operand_equal_p (loc->val, val, 0)))
2199 {
2200 /* If the assertion NAME COMP_CODE VAL has already been
2201 registered at a basic block that dominates DEST_BB, then
2202 we don't need to insert the same assertion again. Note
2203 that we don't check strict dominance here to avoid
2204 replicating the same assertion inside the same basic
2205 block more than once (e.g., when a pointer is
2206 dereferenced several times inside a block).
2207
2208 An exception to this rule are edge insertions. If the
2209 new assertion is to be inserted on edge E, then it will
2210 dominate all the other insertions that we may want to
2211 insert in DEST_BB. So, if we are doing an edge
2212 insertion, don't do this dominance check. */
2213 if (e == NULL
2214 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
2215 return;
2216
2217 /* Otherwise, if E is not a critical edge and DEST_BB
2218 dominates the existing location for the assertion, move
2219 the assertion up in the dominance tree by updating its
2220 location information. */
2221 if ((e == NULL || !EDGE_CRITICAL_P (e))
2222 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
2223 {
2224 loc->bb = dest_bb;
2225 loc->e = e;
2226 loc->si = si;
2227 return;
2228 }
2229 }
2230
2231 /* Update the last node of the list and move to the next one. */
2232 last_loc = loc;
2233 loc = loc->next;
2234 }
2235
2236 /* If we didn't find an assertion already registered for
2237 NAME COMP_CODE VAL, add a new one at the end of the list of
2238 assertions associated with NAME. */
2239 n = xmalloc (sizeof (*n));
2240 n->bb = dest_bb;
2241 n->e = e;
2242 n->si = si;
2243 n->comp_code = comp_code;
2244 n->val = val;
2245 n->next = NULL;
2246
2247 if (last_loc)
2248 last_loc->next = n;
2249 else
2250 asserts_for[SSA_NAME_VERSION (name)] = n;
2251
2252 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
2253 }
2254
2255
2256 /* Try to register an edge assertion for SSA name NAME on edge E for
2257 the conditional jump pointed to by SI. Return true if an assertion
2258 for NAME could be registered. */
2259
2260 static bool
2261 register_edge_assert_for (tree name, edge e, block_stmt_iterator si)
2262 {
2263 tree val, stmt;
2264 enum tree_code comp_code;
2265
2266 stmt = bsi_stmt (si);
2267
2268 /* Do not attempt to infer anything in names that flow through
2269 abnormal edges. */
2270 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2271 return false;
2272
2273 /* If NAME was not found in the sub-graph reachable from E, then
2274 there's nothing to do. */
2275 if (!TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
2276 return false;
2277
2278 /* We found a use of NAME in the sub-graph rooted at E->DEST.
2279 Register an assertion for NAME according to the value that NAME
2280 takes on edge E. */
2281 if (TREE_CODE (stmt) == COND_EXPR)
2282 {
2283 /* If BB ends in a COND_EXPR then NAME then we should insert
2284 the original predicate on EDGE_TRUE_VALUE and the
2285 opposite predicate on EDGE_FALSE_VALUE. */
2286 tree cond = COND_EXPR_COND (stmt);
2287 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
2288
2289 /* Predicates may be a single SSA name or NAME OP VAL. */
2290 if (cond == name)
2291 {
2292 /* If the predicate is a name, it must be NAME, in which
2293 case we create the predicate NAME == true or
2294 NAME == false accordingly. */
2295 comp_code = EQ_EXPR;
2296 val = (is_else_edge) ? boolean_false_node : boolean_true_node;
2297 }
2298 else
2299 {
2300 /* Otherwise, we have a comparison of the form NAME COMP VAL
2301 or VAL COMP NAME. */
2302 if (name == TREE_OPERAND (cond, 1))
2303 {
2304 /* If the predicate is of the form VAL COMP NAME, flip
2305 COMP around because we need to register NAME as the
2306 first operand in the predicate. */
2307 comp_code = swap_tree_comparison (TREE_CODE (cond));
2308 val = TREE_OPERAND (cond, 0);
2309 }
2310 else
2311 {
2312 /* The comparison is of the form NAME COMP VAL, so the
2313 comparison code remains unchanged. */
2314 comp_code = TREE_CODE (cond);
2315 val = TREE_OPERAND (cond, 1);
2316 }
2317
2318 /* If we are inserting the assertion on the ELSE edge, we
2319 need to invert the sign comparison. */
2320 if (is_else_edge)
2321 comp_code = invert_tree_comparison (comp_code, 0);
2322 }
2323 }
2324 else
2325 {
2326 /* FIXME. Handle SWITCH_EXPR. */
2327 gcc_unreachable ();
2328 }
2329
2330 register_new_assert_for (name, comp_code, val, NULL, e, si);
2331 return true;
2332 }
2333
2334
2335 static bool find_assert_locations (basic_block bb);
2336
2337 /* Determine whether the outgoing edges of BB should receive an
2338 ASSERT_EXPR for each of the operands of BB's last statement. The
2339 last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
2340
2341 If any of the sub-graphs rooted at BB have an interesting use of
2342 the predicate operands, an assert location node is added to the
2343 list of assertions for the corresponding operands. */
2344
2345 static bool
2346 find_conditional_asserts (basic_block bb)
2347 {
2348 bool need_assert;
2349 block_stmt_iterator last_si;
2350 tree op, last;
2351 edge_iterator ei;
2352 edge e;
2353 ssa_op_iter iter;
2354
2355 need_assert = false;
2356 last_si = bsi_last (bb);
2357 last = bsi_stmt (last_si);
2358
2359 /* Look for uses of the operands in each of the sub-graphs
2360 rooted at BB. We need to check each of the outgoing edges
2361 separately, so that we know what kind of ASSERT_EXPR to
2362 insert. */
2363 FOR_EACH_EDGE (e, ei, bb->succs)
2364 {
2365 if (e->dest == bb)
2366 continue;
2367
2368 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
2369 Otherwise, when we finish traversing each of the sub-graphs, we
2370 won't know whether the variables were found in the sub-graphs or
2371 if they had been found in a block upstream from BB. */
2372 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2373 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2374
2375 /* Traverse the strictly dominated sub-graph rooted at E->DEST
2376 to determine if any of the operands in the conditional
2377 predicate are used. */
2378 if (e->dest != bb)
2379 need_assert |= find_assert_locations (e->dest);
2380
2381 /* Register the necessary assertions for each operand in the
2382 conditional predicate. */
2383 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2384 need_assert |= register_edge_assert_for (op, e, last_si);
2385 }
2386
2387 /* Finally, indicate that we have found the operands in the
2388 conditional. */
2389 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2390 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2391
2392 return need_assert;
2393 }
2394
2395
2396 /* Traverse all the statements in block BB looking for statements that
2397 may generate useful assertions for the SSA names in their operand.
2398 If a statement produces a useful assertion A for name N_i, then the
2399 list of assertions already generated for N_i is scanned to
2400 determine if A is actually needed.
2401
2402 If N_i already had the assertion A at a location dominating the
2403 current location, then nothing needs to be done. Otherwise, the
2404 new location for A is recorded instead.
2405
2406 1- For every statement S in BB, all the variables used by S are
2407 added to bitmap FOUND_IN_SUBGRAPH.
2408
2409 2- If statement S uses an operand N in a way that exposes a known
2410 value range for N, then if N was not already generated by an
2411 ASSERT_EXPR, create a new assert location for N. For instance,
2412 if N is a pointer and the statement dereferences it, we can
2413 assume that N is not NULL.
2414
2415 3- COND_EXPRs are a special case of #2. We can derive range
2416 information from the predicate but need to insert different
2417 ASSERT_EXPRs for each of the sub-graphs rooted at the
2418 conditional block. If the last statement of BB is a conditional
2419 expression of the form 'X op Y', then
2420
2421 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
2422
2423 b) If the conditional is the only entry point to the sub-graph
2424 corresponding to the THEN_CLAUSE, recurse into it. On
2425 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
2426 an ASSERT_EXPR is added for the corresponding variable.
2427
2428 c) Repeat step (b) on the ELSE_CLAUSE.
2429
2430 d) Mark X and Y in FOUND_IN_SUBGRAPH.
2431
2432 For instance,
2433
2434 if (a == 9)
2435 b = a;
2436 else
2437 b = c + 1;
2438
2439 In this case, an assertion on the THEN clause is useful to
2440 determine that 'a' is always 9 on that edge. However, an assertion
2441 on the ELSE clause would be unnecessary.
2442
2443 4- If BB does not end in a conditional expression, then we recurse
2444 into BB's dominator children.
2445
2446 At the end of the recursive traversal, every SSA name will have a
2447 list of locations where ASSERT_EXPRs should be added. When a new
2448 location for name N is found, it is registered by calling
2449 register_new_assert_for. That function keeps track of all the
2450 registered assertions to prevent adding unnecessary assertions.
2451 For instance, if a pointer P_4 is dereferenced more than once in a
2452 dominator tree, only the location dominating all the dereference of
2453 P_4 will receive an ASSERT_EXPR.
2454
2455 If this function returns true, then it means that there are names
2456 for which we need to generate ASSERT_EXPRs. Those assertions are
2457 inserted by process_assert_insertions.
2458
2459 TODO. Handle SWITCH_EXPR. */
2460
2461 static bool
2462 find_assert_locations (basic_block bb)
2463 {
2464 block_stmt_iterator si;
2465 tree last, phi;
2466 bool need_assert;
2467 basic_block son;
2468
2469 if (TEST_BIT (blocks_visited, bb->index))
2470 return false;
2471
2472 SET_BIT (blocks_visited, bb->index);
2473
2474 need_assert = false;
2475
2476 /* Traverse all PHI nodes in BB marking used operands. */
2477 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2478 {
2479 use_operand_p arg_p;
2480 ssa_op_iter i;
2481
2482 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
2483 {
2484 tree arg = USE_FROM_PTR (arg_p);
2485 if (TREE_CODE (arg) == SSA_NAME)
2486 {
2487 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
2488 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
2489 }
2490 }
2491 }
2492
2493 /* Traverse all the statements in BB marking used names and looking
2494 for statements that may infer assertions for their used operands. */
2495 last = NULL_TREE;
2496 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
2497 {
2498 tree stmt, op;
2499 ssa_op_iter i;
2500
2501 stmt = bsi_stmt (si);
2502
2503 /* See if we can derive an assertion for any of STMT's operands. */
2504 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
2505 {
2506 tree value;
2507 enum tree_code comp_code;
2508
2509 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
2510 the sub-graph of a conditional block, when we return from
2511 this recursive walk, our parent will use the
2512 FOUND_IN_SUBGRAPH bitset to determine if one of the
2513 operands it was looking for was present in the sub-graph. */
2514 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2515
2516 /* If OP is used only once, namely in this STMT, don't
2517 bother creating an ASSERT_EXPR for it. Such an
2518 ASSERT_EXPR would do nothing but increase compile time.
2519 Experiments show that with this simple check, we can save
2520 more than 20% of ASSERT_EXPRs. */
2521 if (has_single_use (op))
2522 continue;
2523
2524 /* If OP is used in such a way that we can infer a value
2525 range for it, and we don't find a previous assertion for
2526 it, create a new assertion location node for OP. */
2527 if (infer_value_range (stmt, op, &comp_code, &value))
2528 {
2529 register_new_assert_for (op, comp_code, value, bb, NULL, si);
2530 need_assert = true;
2531 }
2532 }
2533
2534 /* Remember the last statement of the block. */
2535 last = stmt;
2536 }
2537
2538 /* If BB's last statement is a conditional expression
2539 involving integer operands, recurse into each of the sub-graphs
2540 rooted at BB to determine if we need to add ASSERT_EXPRs. */
2541 if (last
2542 && TREE_CODE (last) == COND_EXPR
2543 && !fp_predicate (COND_EXPR_COND (last))
2544 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
2545 need_assert |= find_conditional_asserts (bb);
2546
2547 /* Recurse into the dominator children of BB. */
2548 for (son = first_dom_son (CDI_DOMINATORS, bb);
2549 son;
2550 son = next_dom_son (CDI_DOMINATORS, son))
2551 need_assert |= find_assert_locations (son);
2552
2553 return need_assert;
2554 }
2555
2556
2557 /* Create an ASSERT_EXPR for NAME and insert it in the location
2558 indicated by LOC. Return true if we made any edge insertions. */
2559
2560 static bool
2561 process_assert_insertions_for (tree name, assert_locus_t loc)
2562 {
2563 /* Build the comparison expression NAME_i COMP_CODE VAL. */
2564 tree stmt, cond, assert_expr;
2565 edge_iterator ei;
2566 edge e;
2567
2568 cond = build (loc->comp_code, boolean_type_node, name, loc->val);
2569 assert_expr = build_assert_expr_for (cond, name);
2570
2571 if (loc->e)
2572 {
2573 /* We have been asked to insert the assertion on an edge. This
2574 is used only by COND_EXPR and SWITCH_EXPR assertions. */
2575 #if defined ENABLE_CHECKING
2576 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
2577 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
2578 #endif
2579
2580 bsi_insert_on_edge (loc->e, assert_expr);
2581 return true;
2582 }
2583
2584 /* Otherwise, we can insert right after LOC->SI iff the
2585 statement must not be the last statement in the block. */
2586 stmt = bsi_stmt (loc->si);
2587 if (!stmt_ends_bb_p (stmt))
2588 {
2589 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
2590 return false;
2591 }
2592
2593 /* If STMT must be the last statement in BB, we can only insert new
2594 assertions on the non-abnormal edge out of BB. Note that since
2595 STMT is not control flow, there may only be one non-abnormal edge
2596 out of BB. */
2597 FOR_EACH_EDGE (e, ei, loc->bb->succs)
2598 if (!(e->flags & EDGE_ABNORMAL))
2599 {
2600 bsi_insert_on_edge (e, assert_expr);
2601 return true;
2602 }
2603
2604 gcc_unreachable ();
2605 }
2606
2607
2608 /* Process all the insertions registered for every name N_i registered
2609 in NEED_ASSERT_FOR. The list of assertions to be inserted are
2610 found in ASSERTS_FOR[i]. */
2611
2612 static void
2613 process_assert_insertions (void)
2614 {
2615 unsigned i;
2616 bitmap_iterator bi;
2617 bool update_edges_p = false;
2618 int num_asserts = 0;
2619
2620 if (dump_file && (dump_flags & TDF_DETAILS))
2621 dump_all_asserts (dump_file);
2622
2623 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2624 {
2625 assert_locus_t loc = asserts_for[i];
2626 gcc_assert (loc);
2627
2628 while (loc)
2629 {
2630 assert_locus_t next = loc->next;
2631 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
2632 free (loc);
2633 loc = next;
2634 num_asserts++;
2635 }
2636 }
2637
2638 if (update_edges_p)
2639 bsi_commit_edge_inserts ();
2640
2641 if (dump_file && (dump_flags & TDF_STATS))
2642 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
2643 num_asserts);
2644 }
2645
2646
2647 /* Traverse the flowgraph looking for conditional jumps to insert range
2648 expressions. These range expressions are meant to provide information
2649 to optimizations that need to reason in terms of value ranges. They
2650 will not be expanded into RTL. For instance, given:
2651
2652 x = ...
2653 y = ...
2654 if (x < y)
2655 y = x - 2;
2656 else
2657 x = y + 3;
2658
2659 this pass will transform the code into:
2660
2661 x = ...
2662 y = ...
2663 if (x < y)
2664 {
2665 x = ASSERT_EXPR <x, x < y>
2666 y = x - 2
2667 }
2668 else
2669 {
2670 y = ASSERT_EXPR <y, x <= y>
2671 x = y + 3
2672 }
2673
2674 The idea is that once copy and constant propagation have run, other
2675 optimizations will be able to determine what ranges of values can 'x'
2676 take in different paths of the code, simply by checking the reaching
2677 definition of 'x'. */
2678
2679 static void
2680 insert_range_assertions (void)
2681 {
2682 edge e;
2683 edge_iterator ei;
2684 bool update_ssa_p;
2685
2686 found_in_subgraph = sbitmap_alloc (num_ssa_names);
2687 sbitmap_zero (found_in_subgraph);
2688
2689 blocks_visited = sbitmap_alloc (last_basic_block);
2690 sbitmap_zero (blocks_visited);
2691
2692 need_assert_for = BITMAP_ALLOC (NULL);
2693 asserts_for = xmalloc (num_ssa_names * sizeof (assert_locus_t));
2694 memset (asserts_for, 0, num_ssa_names * sizeof (assert_locus_t));
2695
2696 calculate_dominance_info (CDI_DOMINATORS);
2697
2698 update_ssa_p = false;
2699 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2700 if (find_assert_locations (e->dest))
2701 update_ssa_p = true;
2702
2703 if (update_ssa_p)
2704 {
2705 process_assert_insertions ();
2706 update_ssa (TODO_update_ssa_no_phi);
2707 }
2708
2709 if (dump_file && (dump_flags & TDF_DETAILS))
2710 {
2711 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
2712 dump_function_to_file (current_function_decl, dump_file, dump_flags);
2713 }
2714
2715 sbitmap_free (found_in_subgraph);
2716 free (asserts_for);
2717 BITMAP_FREE (need_assert_for);
2718 }
2719
2720
2721 /* Convert range assertion expressions into the implied copies and
2722 copy propagate away the copies. Doing the trivial copy propagation
2723 here avoids the need to run the full copy propagation pass after
2724 VRP.
2725
2726 FIXME, this will eventually lead to copy propagation removing the
2727 names that had useful range information attached to them. For
2728 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
2729 then N_i will have the range [3, +INF].
2730
2731 However, by converting the assertion into the implied copy
2732 operation N_i = N_j, we will then copy-propagate N_j into the uses
2733 of N_i and lose the range information. We may want to hold on to
2734 ASSERT_EXPRs a little while longer as the ranges could be used in
2735 things like jump threading.
2736
2737 The problem with keeping ASSERT_EXPRs around is that passes after
2738 VRP need to handle them appropriately.
2739
2740 Another approach would be to make the range information a first
2741 class property of the SSA_NAME so that it can be queried from
2742 any pass. This is made somewhat more complex by the need for
2743 multiple ranges to be associated with one SSA_NAME. */
2744
2745 static void
2746 remove_range_assertions (void)
2747 {
2748 basic_block bb;
2749 block_stmt_iterator si;
2750
2751 /* Note that the BSI iterator bump happens at the bottom of the
2752 loop and no bump is necessary if we're removing the statement
2753 referenced by the current BSI. */
2754 FOR_EACH_BB (bb)
2755 for (si = bsi_start (bb); !bsi_end_p (si);)
2756 {
2757 tree stmt = bsi_stmt (si);
2758
2759 if (TREE_CODE (stmt) == MODIFY_EXPR
2760 && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
2761 {
2762 tree rhs = TREE_OPERAND (stmt, 1);
2763 tree cond = fold (ASSERT_EXPR_COND (rhs));
2764 use_operand_p use_p;
2765 imm_use_iterator iter;
2766
2767 gcc_assert (cond != boolean_false_node);
2768 TREE_OPERAND (stmt, 1) = ASSERT_EXPR_VAR (rhs);
2769 update_stmt (stmt);
2770
2771 /* The statement is now a copy. Propagate the RHS into
2772 every use of the LHS. */
2773 FOR_EACH_IMM_USE_SAFE (use_p, iter, TREE_OPERAND (stmt, 0))
2774 {
2775 SET_USE (use_p, ASSERT_EXPR_VAR (rhs));
2776 update_stmt (USE_STMT (use_p));
2777 }
2778
2779 /* And finally, remove the copy, it is not needed. */
2780 bsi_remove (&si);
2781 }
2782 else
2783 bsi_next (&si);
2784 }
2785 }
2786
2787
2788 /* Return true if STMT is interesting for VRP. */
2789
2790 static bool
2791 stmt_interesting_for_vrp (tree stmt)
2792 {
2793 if (TREE_CODE (stmt) == PHI_NODE
2794 && is_gimple_reg (PHI_RESULT (stmt))
2795 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
2796 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
2797 return true;
2798 else if (TREE_CODE (stmt) == MODIFY_EXPR)
2799 {
2800 tree lhs = TREE_OPERAND (stmt, 0);
2801
2802 if (TREE_CODE (lhs) == SSA_NAME
2803 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
2804 || POINTER_TYPE_P (TREE_TYPE (lhs)))
2805 && ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
2806 return true;
2807 }
2808 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
2809 return true;
2810
2811 return false;
2812 }
2813
2814
2815 /* Initialize local data structures for VRP. */
2816
2817 static void
2818 vrp_initialize (void)
2819 {
2820 basic_block bb;
2821
2822 vr_value = xmalloc (num_ssa_names * sizeof (value_range_t *));
2823 memset (vr_value, 0, num_ssa_names * sizeof (value_range_t *));
2824
2825 FOR_EACH_BB (bb)
2826 {
2827 block_stmt_iterator si;
2828 tree phi;
2829
2830 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2831 {
2832 if (!stmt_interesting_for_vrp (phi))
2833 {
2834 tree lhs = PHI_RESULT (phi);
2835 set_value_range_to_varying (get_value_range (lhs));
2836 DONT_SIMULATE_AGAIN (phi) = true;
2837 }
2838 else
2839 DONT_SIMULATE_AGAIN (phi) = false;
2840 }
2841
2842 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
2843 {
2844 tree stmt = bsi_stmt (si);
2845
2846 if (!stmt_interesting_for_vrp (stmt))
2847 {
2848 ssa_op_iter i;
2849 tree def;
2850 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
2851 set_value_range_to_varying (get_value_range (def));
2852 DONT_SIMULATE_AGAIN (stmt) = true;
2853 }
2854 else
2855 {
2856 DONT_SIMULATE_AGAIN (stmt) = false;
2857 }
2858 }
2859 }
2860 }
2861
2862
2863 /* Visit assignment STMT. If it produces an interesting range, record
2864 the SSA name in *OUTPUT_P. */
2865
2866 static enum ssa_prop_result
2867 vrp_visit_assignment (tree stmt, tree *output_p)
2868 {
2869 tree lhs, rhs, def;
2870 ssa_op_iter iter;
2871
2872 lhs = TREE_OPERAND (stmt, 0);
2873 rhs = TREE_OPERAND (stmt, 1);
2874
2875 /* We only keep track of ranges in integral and pointer types. */
2876 if (TREE_CODE (lhs) == SSA_NAME
2877 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
2878 || POINTER_TYPE_P (TREE_TYPE (lhs))))
2879 {
2880 struct loop *l;
2881 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
2882
2883 extract_range_from_expr (&new_vr, rhs);
2884
2885 /* If STMT is inside a loop, we may be able to know something
2886 else about the range of LHS by examining scalar evolution
2887 information. */
2888 if (cfg_loops && (l = loop_containing_stmt (stmt)))
2889 adjust_range_with_scev (&new_vr, l, stmt, lhs);
2890
2891 if (update_value_range (lhs, &new_vr))
2892 {
2893 *output_p = lhs;
2894
2895 if (dump_file && (dump_flags & TDF_DETAILS))
2896 {
2897 fprintf (dump_file, "Found new range for ");
2898 print_generic_expr (dump_file, lhs, 0);
2899 fprintf (dump_file, ": ");
2900 dump_value_range (dump_file, &new_vr);
2901 fprintf (dump_file, "\n\n");
2902 }
2903
2904 if (new_vr.type == VR_VARYING)
2905 return SSA_PROP_VARYING;
2906
2907 return SSA_PROP_INTERESTING;
2908 }
2909
2910 return SSA_PROP_NOT_INTERESTING;
2911 }
2912
2913 /* Every other statement produces no useful ranges. */
2914 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
2915 set_value_range_to_varying (get_value_range (def));
2916
2917 return SSA_PROP_VARYING;
2918 }
2919
2920
2921 /* Compare all the value ranges for names equivalent to VAR with VAL
2922 using comparison code COMP. Return the same value returned by
2923 compare_range_with_value. */
2924
2925 static tree
2926 compare_name_with_value (enum tree_code comp, tree var, tree val)
2927 {
2928 bitmap_iterator bi;
2929 unsigned i;
2930 bitmap e;
2931 tree retval, t;
2932
2933 t = retval = NULL_TREE;
2934
2935 /* Get the set of equivalences for VAR. */
2936 e = get_value_range (var)->equiv;
2937
2938 /* Add VAR to its own set of equivalences so that VAR's value range
2939 is processed by this loop (otherwise, we would have to replicate
2940 the body of the loop just to check VAR's value range). */
2941 bitmap_set_bit (e, SSA_NAME_VERSION (var));
2942
2943 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
2944 {
2945 value_range_t equiv_vr = *(vr_value[i]);
2946
2947 /* If name N_i does not have a valid range, use N_i as its own
2948 range. This allows us to compare against names that may
2949 have N_i in their ranges. */
2950 if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
2951 {
2952 equiv_vr.type = VR_RANGE;
2953 equiv_vr.min = ssa_name (i);
2954 equiv_vr.max = ssa_name (i);
2955 }
2956
2957 t = compare_range_with_value (comp, &equiv_vr, val);
2958 if (t)
2959 {
2960 /* All the ranges should compare the same against VAL. */
2961 gcc_assert (retval == NULL || t == retval);
2962 retval = t;
2963 }
2964 }
2965
2966 /* Remove VAR from its own equivalence set. */
2967 bitmap_clear_bit (e, SSA_NAME_VERSION (var));
2968
2969 if (retval)
2970 return retval;
2971
2972 /* We couldn't find a non-NULL value for the predicate. */
2973 return NULL_TREE;
2974 }
2975
2976
2977 /* Given a comparison code COMP and names N1 and N2, compare all the
2978 ranges equivalent to N1 against all the ranges equivalent to N2
2979 to determine the value of N1 COMP N2. Return the same value
2980 returned by compare_ranges. */
2981
2982 static tree
2983 compare_names (enum tree_code comp, tree n1, tree n2)
2984 {
2985 tree t, retval;
2986 bitmap e1, e2;
2987 bitmap_iterator bi1, bi2;
2988 unsigned i1, i2;
2989
2990 /* Compare the ranges of every name equivalent to N1 against the
2991 ranges of every name equivalent to N2. */
2992 e1 = get_value_range (n1)->equiv;
2993 e2 = get_value_range (n2)->equiv;
2994
2995 /* Add N1 and N2 to their own set of equivalences to avoid
2996 duplicating the body of the loop just to check N1 and N2
2997 ranges. */
2998 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
2999 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
3000
3001 /* If the equivalence sets have a common intersection, then the two
3002 names can be compared without checking their ranges. */
3003 if (bitmap_intersect_p (e1, e2))
3004 {
3005 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3006 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3007
3008 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
3009 ? boolean_true_node
3010 : boolean_false_node;
3011 }
3012
3013 /* Otherwise, compare all the equivalent ranges. First, add N1 and
3014 N2 to their own set of equivalences to avoid duplicating the body
3015 of the loop just to check N1 and N2 ranges. */
3016 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
3017 {
3018 value_range_t vr1 = *(vr_value[i1]);
3019
3020 /* If the range is VARYING or UNDEFINED, use the name itself. */
3021 if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
3022 {
3023 vr1.type = VR_RANGE;
3024 vr1.min = ssa_name (i1);
3025 vr1.max = ssa_name (i1);
3026 }
3027
3028 t = retval = NULL_TREE;
3029 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
3030 {
3031 value_range_t vr2 = *(vr_value[i2]);
3032
3033 if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
3034 {
3035 vr2.type = VR_RANGE;
3036 vr2.min = ssa_name (i2);
3037 vr2.max = ssa_name (i2);
3038 }
3039
3040 t = compare_ranges (comp, &vr1, &vr2);
3041 if (t)
3042 {
3043 /* All the ranges in the equivalent sets should compare
3044 the same. */
3045 gcc_assert (retval == NULL || t == retval);
3046 retval = t;
3047 }
3048 }
3049
3050 if (retval)
3051 {
3052 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3053 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3054 return retval;
3055 }
3056 }
3057
3058 /* None of the equivalent ranges are useful in computing this
3059 comparison. */
3060 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3061 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3062 return NULL_TREE;
3063 }
3064
3065
3066 /* Given a conditional predicate COND, try to determine if COND yields
3067 true or false based on the value ranges of its operands. Return
3068 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
3069 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
3070 NULL if the conditional cannot be evaluated at compile time.
3071
3072 If USE_EQUIV_P is true, the ranges of all the names equivalent with
3073 the operands in COND are used when trying to compute its value.
3074 This is only used during final substitution. During propagation,
3075 we only check the range of each variable and not its equivalents. */
3076
3077 tree
3078 vrp_evaluate_conditional (tree cond, bool use_equiv_p)
3079 {
3080 gcc_assert (TREE_CODE (cond) == SSA_NAME
3081 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
3082
3083 if (TREE_CODE (cond) == SSA_NAME)
3084 {
3085 value_range_t *vr;
3086 tree retval;
3087
3088 if (use_equiv_p)
3089 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node);
3090 else
3091 {
3092 value_range_t *vr = get_value_range (cond);
3093 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node);
3094 }
3095
3096 /* If COND has a known boolean range, return it. */
3097 if (retval)
3098 return retval;
3099
3100 /* Otherwise, if COND has a symbolic range of exactly one value,
3101 return it. */
3102 vr = get_value_range (cond);
3103 if (vr->type == VR_RANGE && vr->min == vr->max)
3104 return vr->min;
3105 }
3106 else
3107 {
3108 tree op0 = TREE_OPERAND (cond, 0);
3109 tree op1 = TREE_OPERAND (cond, 1);
3110
3111 /* We only deal with integral and pointer types. */
3112 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
3113 && !POINTER_TYPE_P (TREE_TYPE (op0)))
3114 return NULL_TREE;
3115
3116 if (use_equiv_p)
3117 {
3118 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
3119 return compare_names (TREE_CODE (cond), op0, op1);
3120 else if (TREE_CODE (op0) == SSA_NAME)
3121 return compare_name_with_value (TREE_CODE (cond), op0, op1);
3122 else if (TREE_CODE (op1) == SSA_NAME)
3123 return compare_name_with_value (
3124 swap_tree_comparison (TREE_CODE (cond)), op1, op0);
3125 }
3126 else
3127 {
3128 value_range_t *vr0, *vr1;
3129
3130 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
3131 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
3132
3133 if (vr0 && vr1)
3134 return compare_ranges (TREE_CODE (cond), vr0, vr1);
3135 else if (vr0 && vr1 == NULL)
3136 return compare_range_with_value (TREE_CODE (cond), vr0, op1);
3137 else if (vr0 == NULL && vr1)
3138 return compare_range_with_value (
3139 swap_tree_comparison (TREE_CODE (cond)), vr1, op0);
3140 }
3141 }
3142
3143 /* Anything else cannot be computed statically. */
3144 return NULL_TREE;
3145 }
3146
3147
3148 /* Visit conditional statement STMT. If we can determine which edge
3149 will be taken out of STMT's basic block, record it in
3150 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
3151 SSA_PROP_VARYING. */
3152
3153 static enum ssa_prop_result
3154 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
3155 {
3156 tree cond, val;
3157
3158 *taken_edge_p = NULL;
3159
3160 /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
3161 add ASSERT_EXPRs for them. */
3162 if (TREE_CODE (stmt) == SWITCH_EXPR)
3163 return SSA_PROP_VARYING;
3164
3165 cond = COND_EXPR_COND (stmt);
3166
3167 if (dump_file && (dump_flags & TDF_DETAILS))
3168 {
3169 tree use;
3170 ssa_op_iter i;
3171
3172 fprintf (dump_file, "\nVisiting conditional with predicate: ");
3173 print_generic_expr (dump_file, cond, 0);
3174 fprintf (dump_file, "\nWith known ranges\n");
3175
3176 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
3177 {
3178 fprintf (dump_file, "\t");
3179 print_generic_expr (dump_file, use, 0);
3180 fprintf (dump_file, ": ");
3181 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
3182 }
3183
3184 fprintf (dump_file, "\n");
3185 }
3186
3187 /* Compute the value of the predicate COND by checking the known
3188 ranges of each of its operands.
3189
3190 Note that we cannot evaluate all the equivalent ranges here
3191 because those ranges may not yet be final and with the current
3192 propagation strategy, we cannot determine when the value ranges
3193 of the names in the equivalence set have changed.
3194
3195 For instance, given the following code fragment
3196
3197 i_5 = PHI <8, i_13>
3198 ...
3199 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
3200 if (i_14 == 1)
3201 ...
3202
3203 Assume that on the first visit to i_14, i_5 has the temporary
3204 range [8, 8] because the second argument to the PHI function is
3205 not yet executable. We derive the range ~[0, 0] for i_14 and the
3206 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
3207 the first time, since i_14 is equivalent to the range [8, 8], we
3208 determine that the predicate is always false.
3209
3210 On the next round of propagation, i_13 is determined to be
3211 VARYING, which causes i_5 to drop down to VARYING. So, another
3212 visit to i_14 is scheduled. In this second visit, we compute the
3213 exact same range and equivalence set for i_14, namely ~[0, 0] and
3214 { i_5 }. But we did not have the previous range for i_5
3215 registered, so vrp_visit_assignment thinks that the range for
3216 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
3217 is not visited again, which stops propagation from visiting
3218 statements in the THEN clause of that if().
3219
3220 To properly fix this we would need to keep the previous range
3221 value for the names in the equivalence set. This way we would've
3222 discovered that from one visit to the other i_5 changed from
3223 range [8, 8] to VR_VARYING.
3224
3225 However, fixing this apparent limitation may not be worth the
3226 additional checking. Testing on several code bases (GCC, DLV,
3227 MICO, TRAMP3D and SPEC2000) showed that doing this results in
3228 4 more predicates folded in SPEC. */
3229 val = vrp_evaluate_conditional (cond, false);
3230 if (val)
3231 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
3232
3233 if (dump_file && (dump_flags & TDF_DETAILS))
3234 {
3235 fprintf (dump_file, "\nPredicate evaluates to: ");
3236 if (val == NULL_TREE)
3237 fprintf (dump_file, "DON'T KNOW\n");
3238 else
3239 print_generic_stmt (dump_file, val, 0);
3240 }
3241
3242 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
3243 }
3244
3245
3246 /* Evaluate statement STMT. If the statement produces a useful range,
3247 return SSA_PROP_INTERESTING and record the SSA name with the
3248 interesting range into *OUTPUT_P.
3249
3250 If STMT is a conditional branch and we can determine its truth
3251 value, the taken edge is recorded in *TAKEN_EDGE_P.
3252
3253 If STMT produces a varying value, return SSA_PROP_VARYING. */
3254
3255 static enum ssa_prop_result
3256 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
3257 {
3258 tree def;
3259 ssa_op_iter iter;
3260 stmt_ann_t ann;
3261
3262 if (dump_file && (dump_flags & TDF_DETAILS))
3263 {
3264 fprintf (dump_file, "\nVisiting statement:\n");
3265 print_generic_stmt (dump_file, stmt, dump_flags);
3266 fprintf (dump_file, "\n");
3267 }
3268
3269 ann = stmt_ann (stmt);
3270 if (TREE_CODE (stmt) == MODIFY_EXPR
3271 && ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
3272 return vrp_visit_assignment (stmt, output_p);
3273 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3274 return vrp_visit_cond_stmt (stmt, taken_edge_p);
3275
3276 /* All other statements produce nothing of interest for VRP, so mark
3277 their outputs varying and prevent further simulation. */
3278 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3279 set_value_range_to_varying (get_value_range (def));
3280
3281 return SSA_PROP_VARYING;
3282 }
3283
3284
3285 /* Meet operation for value ranges. Given two value ranges VR0 and
3286 VR1, store in VR0 the result of meeting VR0 and VR1.
3287
3288 The meeting rules are as follows:
3289
3290 1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
3291
3292 2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
3293 union of VR0 and VR1. */
3294
3295 static void
3296 vrp_meet (value_range_t *vr0, value_range_t *vr1)
3297 {
3298 if (vr0->type == VR_UNDEFINED)
3299 {
3300 copy_value_range (vr0, vr1);
3301 return;
3302 }
3303
3304 if (vr1->type == VR_UNDEFINED)
3305 {
3306 /* Nothing to do. VR0 already has the resulting range. */
3307 return;
3308 }
3309
3310 if (vr0->type == VR_VARYING)
3311 {
3312 /* Nothing to do. VR0 already has the resulting range. */
3313 return;
3314 }
3315
3316 if (vr1->type == VR_VARYING)
3317 {
3318 set_value_range_to_varying (vr0);
3319 return;
3320 }
3321
3322 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
3323 {
3324 /* If VR0 and VR1 have a non-empty intersection, compute the
3325 union of both ranges. */
3326 if (value_ranges_intersect_p (vr0, vr1))
3327 {
3328 int cmp;
3329 tree min, max;
3330
3331 /* The lower limit of the new range is the minimum of the
3332 two ranges. If they cannot be compared, the result is
3333 VARYING. */
3334 cmp = compare_values (vr0->min, vr1->min);
3335 if (cmp == 0 || cmp == 1)
3336 min = vr1->min;
3337 else if (cmp == -1)
3338 min = vr0->min;
3339 else
3340 {
3341 set_value_range_to_varying (vr0);
3342 return;
3343 }
3344
3345 /* Similarly, the upper limit of the new range is the
3346 maximum of the two ranges. If they cannot be compared,
3347 the result is VARYING. */
3348 cmp = compare_values (vr0->max, vr1->max);
3349 if (cmp == 0 || cmp == -1)
3350 max = vr1->max;
3351 else if (cmp == 1)
3352 max = vr0->max;
3353 else
3354 {
3355 set_value_range_to_varying (vr0);
3356 return;
3357 }
3358
3359 /* The resulting set of equivalences is the intersection of
3360 the two sets. */
3361 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3362 bitmap_and_into (vr0->equiv, vr1->equiv);
3363 else if (vr0->equiv && !vr1->equiv)
3364 bitmap_clear (vr0->equiv);
3365
3366 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
3367 }
3368 else
3369 goto no_meet;
3370 }
3371 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3372 {
3373 /* Two anti-ranges meet only if they are both identical. */
3374 if (compare_values (vr0->min, vr1->min) == 0
3375 && compare_values (vr0->max, vr1->max) == 0
3376 && compare_values (vr0->min, vr0->max) == 0)
3377 {
3378 /* The resulting set of equivalences is the intersection of
3379 the two sets. */
3380 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3381 bitmap_and_into (vr0->equiv, vr1->equiv);
3382 else if (vr0->equiv && !vr1->equiv)
3383 bitmap_clear (vr0->equiv);
3384 }
3385 else
3386 goto no_meet;
3387 }
3388 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3389 {
3390 /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
3391 meet only if the ranges have an empty intersection. The
3392 result of the meet operation is the anti-range. */
3393 if (!symbolic_range_p (vr0)
3394 && !symbolic_range_p (vr1)
3395 && !value_ranges_intersect_p (vr0, vr1))
3396 {
3397 if (vr1->type == VR_ANTI_RANGE)
3398 copy_value_range (vr0, vr1);
3399
3400 /* The resulting set of equivalences is the intersection of
3401 the two sets. */
3402 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3403 bitmap_and_into (vr0->equiv, vr1->equiv);
3404 else if (vr0->equiv && !vr1->equiv)
3405 bitmap_clear (vr0->equiv);
3406 }
3407 else
3408 goto no_meet;
3409 }
3410 else
3411 gcc_unreachable ();
3412
3413 return;
3414
3415 no_meet:
3416 /* The two range VR0 and VR1 do not meet. Before giving up and
3417 setting the result to VARYING, see if we can at least derive a
3418 useful anti-range. */
3419 if (!symbolic_range_p (vr0)
3420 && !range_includes_zero_p (vr0)
3421 && !symbolic_range_p (vr1)
3422 && !range_includes_zero_p (vr1))
3423 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
3424 else
3425 set_value_range_to_varying (vr0);
3426 }
3427
3428
3429 /* Visit all arguments for PHI node PHI that flow through executable
3430 edges. If a valid value range can be derived from all the incoming
3431 value ranges, set a new range for the LHS of PHI. */
3432
3433 static enum ssa_prop_result
3434 vrp_visit_phi_node (tree phi)
3435 {
3436 int i;
3437 tree lhs = PHI_RESULT (phi);
3438 value_range_t *lhs_vr = get_value_range (lhs);
3439 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3440
3441 copy_value_range (&vr_result, lhs_vr);
3442
3443 if (dump_file && (dump_flags & TDF_DETAILS))
3444 {
3445 fprintf (dump_file, "\nVisiting PHI node: ");
3446 print_generic_expr (dump_file, phi, dump_flags);
3447 }
3448
3449 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
3450 {
3451 edge e = PHI_ARG_EDGE (phi, i);
3452
3453 if (dump_file && (dump_flags & TDF_DETAILS))
3454 {
3455 fprintf (dump_file,
3456 "\n Argument #%d (%d -> %d %sexecutable)\n",
3457 i, e->src->index, e->dest->index,
3458 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
3459 }
3460
3461 if (e->flags & EDGE_EXECUTABLE)
3462 {
3463 tree arg = PHI_ARG_DEF (phi, i);
3464 value_range_t vr_arg;
3465
3466 if (TREE_CODE (arg) == SSA_NAME)
3467 vr_arg = *(get_value_range (arg));
3468 else
3469 {
3470 vr_arg.type = VR_RANGE;
3471 vr_arg.min = arg;
3472 vr_arg.max = arg;
3473 vr_arg.equiv = NULL;
3474 }
3475
3476 if (dump_file && (dump_flags & TDF_DETAILS))
3477 {
3478 fprintf (dump_file, "\t");
3479 print_generic_expr (dump_file, arg, dump_flags);
3480 fprintf (dump_file, "\n\tValue: ");
3481 dump_value_range (dump_file, &vr_arg);
3482 fprintf (dump_file, "\n");
3483 }
3484
3485 vrp_meet (&vr_result, &vr_arg);
3486
3487 if (vr_result.type == VR_VARYING)
3488 break;
3489 }
3490 }
3491
3492 if (vr_result.type == VR_VARYING)
3493 goto varying;
3494
3495 /* To prevent infinite iterations in the algorithm, derive ranges
3496 when the new value is slightly bigger or smaller than the
3497 previous one. */
3498 if (lhs_vr->type == VR_RANGE)
3499 {
3500 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
3501 {
3502 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
3503 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
3504
3505 /* If the new minimum is smaller or larger than the previous
3506 one, go all the way to -INF. In the first case, to avoid
3507 iterating millions of times to reach -INF, and in the
3508 other case to avoid infinite bouncing between different
3509 minimums. */
3510 if (cmp_min > 0 || cmp_min < 0)
3511 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
3512
3513 /* Similarly, if the new maximum is smaller or larger than
3514 the previous one, go all the way to +INF. */
3515 if (cmp_max < 0 || cmp_max > 0)
3516 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
3517
3518 /* If we ended up with a (-INF, +INF) range, set it to
3519 VARYING. */
3520 if (vr_result.min == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))
3521 && vr_result.max == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)))
3522 goto varying;
3523 }
3524 }
3525
3526 /* If the new range is different than the previous value, keep
3527 iterating. */
3528 if (update_value_range (lhs, &vr_result))
3529 return SSA_PROP_INTERESTING;
3530
3531 /* Nothing changed, don't add outgoing edges. */
3532 return SSA_PROP_NOT_INTERESTING;
3533
3534 /* No match found. Set the LHS to VARYING. */
3535 varying:
3536 set_value_range_to_varying (lhs_vr);
3537 return SSA_PROP_VARYING;
3538 }
3539
3540 /* Simplify a division or modulo operator to a right shift or
3541 bitwise and if the first operand is unsigned or is greater
3542 than zero and the second operand is an exact power of two. */
3543
3544 static void
3545 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
3546 {
3547 tree val = NULL;
3548 tree op = TREE_OPERAND (rhs, 0);
3549 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
3550
3551 if (TYPE_UNSIGNED (TREE_TYPE (op)))
3552 {
3553 val = integer_one_node;
3554 }
3555 else
3556 {
3557 val = compare_range_with_value (GT_EXPR, vr, integer_zero_node);
3558 }
3559
3560 if (val && integer_onep (val))
3561 {
3562 tree t;
3563 tree op0 = TREE_OPERAND (rhs, 0);
3564 tree op1 = TREE_OPERAND (rhs, 1);
3565
3566 if (rhs_code == TRUNC_DIV_EXPR)
3567 {
3568 t = build_int_cst (NULL_TREE, tree_log2 (op1));
3569 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
3570 }
3571 else
3572 {
3573 t = build_int_cst (TREE_TYPE (op1), 1);
3574 t = int_const_binop (MINUS_EXPR, op1, t, 0);
3575 t = fold_convert (TREE_TYPE (op0), t);
3576 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
3577 }
3578
3579 TREE_OPERAND (stmt, 1) = t;
3580 update_stmt (stmt);
3581 }
3582 }
3583
3584 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
3585 ABS_EXPR. If the operand is <= 0, then simplify the
3586 ABS_EXPR into a NEGATE_EXPR. */
3587
3588 static void
3589 simplify_abs_using_ranges (tree stmt, tree rhs)
3590 {
3591 tree val = NULL;
3592 tree op = TREE_OPERAND (rhs, 0);
3593 tree type = TREE_TYPE (op);
3594 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
3595
3596 if (TYPE_UNSIGNED (type))
3597 {
3598 val = integer_zero_node;
3599 }
3600 else if (vr)
3601 {
3602 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node);
3603 if (!val)
3604 {
3605 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node);
3606
3607 if (val)
3608 {
3609 if (integer_zerop (val))
3610 val = integer_one_node;
3611 else if (integer_onep (val))
3612 val = integer_zero_node;
3613 }
3614 }
3615
3616 if (val
3617 && (integer_onep (val) || integer_zerop (val)))
3618 {
3619 tree t;
3620
3621 if (integer_onep (val))
3622 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
3623 else
3624 t = op;
3625
3626 TREE_OPERAND (stmt, 1) = t;
3627 update_stmt (stmt);
3628 }
3629 }
3630 }
3631
3632 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
3633 a known value range VR.
3634
3635 If there is one and only one value which will satisfy the
3636 conditional, then return that value. Else return NULL. */
3637
3638 static tree
3639 test_for_singularity (enum tree_code cond_code, tree op0,
3640 tree op1, value_range_t *vr)
3641 {
3642 tree min = NULL;
3643 tree max = NULL;
3644
3645 /* Extract minimum/maximum values which satisfy the
3646 the conditional as it was written. */
3647 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
3648 {
3649 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
3650
3651 max = op1;
3652 if (cond_code == LT_EXPR)
3653 {
3654 tree one = build_int_cst (TREE_TYPE (op0), 1);
3655 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
3656 }
3657 }
3658 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
3659 {
3660 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
3661
3662 min = op1;
3663 if (cond_code == GT_EXPR)
3664 {
3665 tree one = build_int_cst (TREE_TYPE (op0), 1);
3666 max = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), max, one);
3667 }
3668 }
3669
3670 /* Now refine the minimum and maximum values using any
3671 value range information we have for op0. */
3672 if (min && max)
3673 {
3674 if (compare_values (vr->min, min) == -1)
3675 min = min;
3676 else
3677 min = vr->min;
3678 if (compare_values (vr->max, max) == 1)
3679 max = max;
3680 else
3681 max = vr->max;
3682
3683 /* If the new min/max values have converged to a
3684 single value, then there is only one value which
3685 can satisfy the condition, return that value. */
3686 if (min == max && is_gimple_min_invariant (min))
3687 return min;
3688 }
3689 return NULL;
3690 }
3691
3692 /* Simplify a conditional using a relational operator to an equality
3693 test if the range information indicates only one value can satisfy
3694 the original conditional. */
3695
3696 static void
3697 simplify_cond_using_ranges (tree stmt)
3698 {
3699 tree cond = COND_EXPR_COND (stmt);
3700 tree op0 = TREE_OPERAND (cond, 0);
3701 tree op1 = TREE_OPERAND (cond, 1);
3702 enum tree_code cond_code = TREE_CODE (cond);
3703
3704 if (cond_code != NE_EXPR
3705 && cond_code != EQ_EXPR
3706 && TREE_CODE (op0) == SSA_NAME
3707 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
3708 && is_gimple_min_invariant (op1))
3709 {
3710 value_range_t *vr = get_value_range (op0);
3711
3712 /* If we have range information for OP0, then we might be
3713 able to simplify this conditional. */
3714 if (vr->type == VR_RANGE)
3715 {
3716 tree new = test_for_singularity (cond_code, op0, op1, vr);
3717
3718 if (new)
3719 {
3720 if (dump_file)
3721 {
3722 fprintf (dump_file, "Simplified relational ");
3723 print_generic_expr (dump_file, cond, 0);
3724 fprintf (dump_file, " into ");
3725 }
3726
3727 COND_EXPR_COND (stmt)
3728 = build (EQ_EXPR, boolean_type_node, op0, new);
3729 update_stmt (stmt);
3730
3731 if (dump_file)
3732 {
3733 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
3734 fprintf (dump_file, "\n");
3735 }
3736 return;
3737
3738 }
3739
3740 /* Try again after inverting the condition. We only deal
3741 with integral types here, so no need to worry about
3742 issues with inverting FP comparisons. */
3743 cond_code = invert_tree_comparison (cond_code, false);
3744 new = test_for_singularity (cond_code, op0, op1, vr);
3745
3746 if (new)
3747 {
3748 if (dump_file)
3749 {
3750 fprintf (dump_file, "Simplified relational ");
3751 print_generic_expr (dump_file, cond, 0);
3752 fprintf (dump_file, " into ");
3753 }
3754
3755 COND_EXPR_COND (stmt)
3756 = build (NE_EXPR, boolean_type_node, op0, new);
3757 update_stmt (stmt);
3758
3759 if (dump_file)
3760 {
3761 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
3762 fprintf (dump_file, "\n");
3763 }
3764 return;
3765
3766 }
3767 }
3768 }
3769 }
3770
3771 /* Simplify STMT using ranges if possible. */
3772
3773 void
3774 simplify_stmt_using_ranges (tree stmt)
3775 {
3776 if (TREE_CODE (stmt) == MODIFY_EXPR)
3777 {
3778 tree rhs = TREE_OPERAND (stmt, 1);
3779 enum tree_code rhs_code = TREE_CODE (rhs);
3780
3781 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
3782 and BIT_AND_EXPR respectively if the first operand is greater
3783 than zero and the second operand is an exact power of two. */
3784 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
3785 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
3786 && integer_pow2p (TREE_OPERAND (rhs, 1)))
3787 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
3788
3789 /* Transform ABS (X) into X or -X as appropriate. */
3790 if (rhs_code == ABS_EXPR
3791 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
3792 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
3793 simplify_abs_using_ranges (stmt, rhs);
3794 }
3795 else if (TREE_CODE (stmt) == COND_EXPR
3796 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
3797 {
3798 simplify_cond_using_ranges (stmt);
3799 }
3800 }
3801
3802
3803
3804 /* Traverse all the blocks folding conditionals with known ranges. */
3805
3806 static void
3807 vrp_finalize (void)
3808 {
3809 size_t i;
3810 prop_value_t *single_val_range;
3811 bool do_value_subst_p;
3812
3813 if (dump_file)
3814 {
3815 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
3816 dump_all_value_ranges (dump_file);
3817 fprintf (dump_file, "\n");
3818 }
3819
3820 /* We may have ended with ranges that have exactly one value. Those
3821 values can be substituted as any other copy/const propagated
3822 value using substitute_and_fold. */
3823 single_val_range = xmalloc (num_ssa_names * sizeof (*single_val_range));
3824 memset (single_val_range, 0, num_ssa_names * sizeof (*single_val_range));
3825
3826 do_value_subst_p = false;
3827 for (i = 0; i < num_ssa_names; i++)
3828 if (vr_value[i]
3829 && vr_value[i]->type == VR_RANGE
3830 && vr_value[i]->min == vr_value[i]->max)
3831 {
3832 single_val_range[i].value = vr_value[i]->min;
3833 do_value_subst_p = true;
3834 }
3835
3836 if (!do_value_subst_p)
3837 {
3838 /* We found no single-valued ranges, don't waste time trying to
3839 do single value substitution in substitute_and_fold. */
3840 free (single_val_range);
3841 single_val_range = NULL;
3842 }
3843
3844 substitute_and_fold (single_val_range, true);
3845
3846 /* Free allocated memory. */
3847 for (i = 0; i < num_ssa_names; i++)
3848 if (vr_value[i])
3849 {
3850 BITMAP_FREE (vr_value[i]->equiv);
3851 free (vr_value[i]);
3852 }
3853
3854 free (single_val_range);
3855 free (vr_value);
3856 }
3857
3858
3859 /* Main entry point to VRP (Value Range Propagation). This pass is
3860 loosely based on J. R. C. Patterson, ``Accurate Static Branch
3861 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
3862 Programming Language Design and Implementation, pp. 67-78, 1995.
3863 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
3864
3865 This is essentially an SSA-CCP pass modified to deal with ranges
3866 instead of constants.
3867
3868 While propagating ranges, we may find that two or more SSA name
3869 have equivalent, though distinct ranges. For instance,
3870
3871 1 x_9 = p_3->a;
3872 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
3873 3 if (p_4 == q_2)
3874 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
3875 5 endif
3876 6 if (q_2)
3877
3878 In the code above, pointer p_5 has range [q_2, q_2], but from the
3879 code we can also determine that p_5 cannot be NULL and, if q_2 had
3880 a non-varying range, p_5's range should also be compatible with it.
3881
3882 These equivalences are created by two expressions: ASSERT_EXPR and
3883 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
3884 result of another assertion, then we can use the fact that p_5 and
3885 p_4 are equivalent when evaluating p_5's range.
3886
3887 Together with value ranges, we also propagate these equivalences
3888 between names so that we can take advantage of information from
3889 multiple ranges when doing final replacement. Note that this
3890 equivalency relation is transitive but not symmetric.
3891
3892 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
3893 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
3894 in contexts where that assertion does not hold (e.g., in line 6).
3895
3896 TODO, the main difference between this pass and Patterson's is that
3897 we do not propagate edge probabilities. We only compute whether
3898 edges can be taken or not. That is, instead of having a spectrum
3899 of jump probabilities between 0 and 1, we only deal with 0, 1 and
3900 DON'T KNOW. In the future, it may be worthwhile to propagate
3901 probabilities to aid branch prediction. */
3902
3903 static void
3904 execute_vrp (void)
3905 {
3906 insert_range_assertions ();
3907
3908 cfg_loops = loop_optimizer_init (NULL);
3909 if (cfg_loops)
3910 scev_initialize (cfg_loops);
3911
3912 vrp_initialize ();
3913 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
3914 vrp_finalize ();
3915
3916 if (cfg_loops)
3917 {
3918 scev_finalize ();
3919 loop_optimizer_finalize (cfg_loops, NULL);
3920 current_loops = NULL;
3921 }
3922
3923 remove_range_assertions ();
3924 }
3925
3926 static bool
3927 gate_vrp (void)
3928 {
3929 return flag_tree_vrp != 0;
3930 }
3931
3932 struct tree_opt_pass pass_vrp =
3933 {
3934 "vrp", /* name */
3935 gate_vrp, /* gate */
3936 execute_vrp, /* execute */
3937 NULL, /* sub */
3938 NULL, /* next */
3939 0, /* static_pass_number */
3940 TV_TREE_VRP, /* tv_id */
3941 PROP_ssa | PROP_alias, /* properties_required */
3942 0, /* properties_provided */
3943 0, /* properties_destroyed */
3944 0, /* todo_flags_start */
3945 TODO_cleanup_cfg
3946 | TODO_ggc_collect
3947 | TODO_verify_ssa
3948 | TODO_dump_func
3949 | TODO_update_ssa, /* todo_flags_finish */
3950 0 /* letter */
3951 };