re PR c++/24780 (ICE set_mem_attributes_minus_bitpos)
[gcc.git] / gcc / tree-vrp.c
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to
19 the Free Software Foundation, 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "ggc.h"
27 #include "flags.h"
28 #include "tree.h"
29 #include "basic-block.h"
30 #include "tree-flow.h"
31 #include "tree-pass.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "diagnostic.h"
35 #include "cfgloop.h"
36 #include "tree-scalar-evolution.h"
37 #include "tree-ssa-propagate.h"
38 #include "tree-chrec.h"
39
40 /* Set of SSA names found during the dominator traversal of a
41 sub-graph in find_assert_locations. */
42 static sbitmap found_in_subgraph;
43
44 /* Loop structure of the program. Used to analyze scalar evolutions
45 inside adjust_range_with_scev. */
46 static struct loops *cfg_loops;
47
48 /* Local functions. */
49 static int compare_values (tree val1, tree val2);
50
51 /* Location information for ASSERT_EXPRs. Each instance of this
52 structure describes an ASSERT_EXPR for an SSA name. Since a single
53 SSA name may have more than one assertion associated with it, these
54 locations are kept in a linked list attached to the corresponding
55 SSA name. */
56 struct assert_locus_d
57 {
58 /* Basic block where the assertion would be inserted. */
59 basic_block bb;
60
61 /* Some assertions need to be inserted on an edge (e.g., assertions
62 generated by COND_EXPRs). In those cases, BB will be NULL. */
63 edge e;
64
65 /* Pointer to the statement that generated this assertion. */
66 block_stmt_iterator si;
67
68 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
69 enum tree_code comp_code;
70
71 /* Value being compared against. */
72 tree val;
73
74 /* Next node in the linked list. */
75 struct assert_locus_d *next;
76 };
77
78 typedef struct assert_locus_d *assert_locus_t;
79
80 /* If bit I is present, it means that SSA name N_i has a list of
81 assertions that should be inserted in the IL. */
82 static bitmap need_assert_for;
83
84 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
85 holds a list of ASSERT_LOCUS_T nodes that describe where
86 ASSERT_EXPRs for SSA name N_I should be inserted. */
87 static assert_locus_t *asserts_for;
88
89 /* Set of blocks visited in find_assert_locations. Used to avoid
90 visiting the same block more than once. */
91 static sbitmap blocks_visited;
92
93 /* Value range array. After propagation, VR_VALUE[I] holds the range
94 of values that SSA name N_I may take. */
95 static value_range_t **vr_value;
96
97
98 /* Return true if ARG is marked with the nonnull attribute in the
99 current function signature. */
100
101 static bool
102 nonnull_arg_p (tree arg)
103 {
104 tree t, attrs, fntype;
105 unsigned HOST_WIDE_INT arg_num;
106
107 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
108
109 fntype = TREE_TYPE (current_function_decl);
110 attrs = lookup_attribute ("nonnull", TYPE_ATTRIBUTES (fntype));
111
112 /* If "nonnull" wasn't specified, we know nothing about the argument. */
113 if (attrs == NULL_TREE)
114 return false;
115
116 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
117 if (TREE_VALUE (attrs) == NULL_TREE)
118 return true;
119
120 /* Get the position number for ARG in the function signature. */
121 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
122 t;
123 t = TREE_CHAIN (t), arg_num++)
124 {
125 if (t == arg)
126 break;
127 }
128
129 gcc_assert (t == arg);
130
131 /* Now see if ARG_NUM is mentioned in the nonnull list. */
132 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
133 {
134 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
135 return true;
136 }
137
138 return false;
139 }
140
141
142 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
143
144 static void
145 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
146 tree max, bitmap equiv)
147 {
148 #if defined ENABLE_CHECKING
149 /* Check the validity of the range. */
150 if (t == VR_RANGE || t == VR_ANTI_RANGE)
151 {
152 int cmp;
153
154 gcc_assert (min && max);
155
156 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
157 gcc_assert (min != TYPE_MIN_VALUE (TREE_TYPE (min))
158 || max != TYPE_MAX_VALUE (TREE_TYPE (max)));
159
160 cmp = compare_values (min, max);
161 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
162 }
163
164 if (t == VR_UNDEFINED || t == VR_VARYING)
165 gcc_assert (min == NULL_TREE && max == NULL_TREE);
166
167 if (t == VR_UNDEFINED || t == VR_VARYING)
168 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
169 #endif
170
171 vr->type = t;
172 vr->min = min;
173 vr->max = max;
174
175 /* Since updating the equivalence set involves deep copying the
176 bitmaps, only do it if absolutely necessary. */
177 if (vr->equiv == NULL)
178 vr->equiv = BITMAP_ALLOC (NULL);
179
180 if (equiv != vr->equiv)
181 {
182 if (equiv && !bitmap_empty_p (equiv))
183 bitmap_copy (vr->equiv, equiv);
184 else
185 bitmap_clear (vr->equiv);
186 }
187 }
188
189
190 /* Copy value range FROM into value range TO. */
191
192 static inline void
193 copy_value_range (value_range_t *to, value_range_t *from)
194 {
195 set_value_range (to, from->type, from->min, from->max, from->equiv);
196 }
197
198
199 /* Set value range VR to a non-NULL range of type TYPE. */
200
201 static inline void
202 set_value_range_to_nonnull (value_range_t *vr, tree type)
203 {
204 tree zero = build_int_cst (type, 0);
205 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
206 }
207
208
209 /* Set value range VR to a NULL range of type TYPE. */
210
211 static inline void
212 set_value_range_to_null (value_range_t *vr, tree type)
213 {
214 tree zero = build_int_cst (type, 0);
215 set_value_range (vr, VR_RANGE, zero, zero, vr->equiv);
216 }
217
218
219 /* Set value range VR to VR_VARYING. */
220
221 static inline void
222 set_value_range_to_varying (value_range_t *vr)
223 {
224 vr->type = VR_VARYING;
225 vr->min = vr->max = NULL_TREE;
226 if (vr->equiv)
227 bitmap_clear (vr->equiv);
228 }
229
230
231 /* Set value range VR to VR_UNDEFINED. */
232
233 static inline void
234 set_value_range_to_undefined (value_range_t *vr)
235 {
236 vr->type = VR_UNDEFINED;
237 vr->min = vr->max = NULL_TREE;
238 if (vr->equiv)
239 bitmap_clear (vr->equiv);
240 }
241
242
243 /* Return value range information for VAR. Create an empty range
244 if none existed. */
245
246 static value_range_t *
247 get_value_range (tree var)
248 {
249 value_range_t *vr;
250 tree sym;
251 unsigned ver = SSA_NAME_VERSION (var);
252
253 vr = vr_value[ver];
254 if (vr)
255 return vr;
256
257 /* Create a default value range. */
258 vr_value[ver] = vr = xmalloc (sizeof (*vr));
259 memset (vr, 0, sizeof (*vr));
260
261 /* Allocate an equivalence set. */
262 vr->equiv = BITMAP_ALLOC (NULL);
263
264 /* If VAR is a default definition, the variable can take any value
265 in VAR's type. */
266 sym = SSA_NAME_VAR (var);
267 if (var == default_def (sym))
268 {
269 /* Try to use the "nonnull" attribute to create ~[0, 0]
270 anti-ranges for pointers. Note that this is only valid with
271 default definitions of PARM_DECLs. */
272 if (TREE_CODE (sym) == PARM_DECL
273 && POINTER_TYPE_P (TREE_TYPE (sym))
274 && nonnull_arg_p (sym))
275 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
276 else
277 set_value_range_to_varying (vr);
278 }
279
280 return vr;
281 }
282
283
284 /* Update the value range and equivalence set for variable VAR to
285 NEW_VR. Return true if NEW_VR is different from VAR's previous
286 value.
287
288 NOTE: This function assumes that NEW_VR is a temporary value range
289 object created for the sole purpose of updating VAR's range. The
290 storage used by the equivalence set from NEW_VR will be freed by
291 this function. Do not call update_value_range when NEW_VR
292 is the range object associated with another SSA name. */
293
294 static inline bool
295 update_value_range (tree var, value_range_t *new_vr)
296 {
297 value_range_t *old_vr;
298 bool is_new;
299
300 /* Update the value range, if necessary. */
301 old_vr = get_value_range (var);
302 is_new = old_vr->type != new_vr->type
303 || old_vr->min != new_vr->min
304 || old_vr->max != new_vr->max
305 || (old_vr->equiv == NULL && new_vr->equiv)
306 || (old_vr->equiv && new_vr->equiv == NULL)
307 || (!bitmap_equal_p (old_vr->equiv, new_vr->equiv));
308
309 if (is_new)
310 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
311 new_vr->equiv);
312
313 BITMAP_FREE (new_vr->equiv);
314 new_vr->equiv = NULL;
315
316 return is_new;
317 }
318
319
320 /* Add VAR and VAR's equivalence set to EQUIV. */
321
322 static void
323 add_equivalence (bitmap equiv, tree var)
324 {
325 unsigned ver = SSA_NAME_VERSION (var);
326 value_range_t *vr = vr_value[ver];
327
328 bitmap_set_bit (equiv, ver);
329 if (vr && vr->equiv)
330 bitmap_ior_into (equiv, vr->equiv);
331 }
332
333
334 /* Return true if VR is ~[0, 0]. */
335
336 static inline bool
337 range_is_nonnull (value_range_t *vr)
338 {
339 return vr->type == VR_ANTI_RANGE
340 && integer_zerop (vr->min)
341 && integer_zerop (vr->max);
342 }
343
344
345 /* Return true if VR is [0, 0]. */
346
347 static inline bool
348 range_is_null (value_range_t *vr)
349 {
350 return vr->type == VR_RANGE
351 && integer_zerop (vr->min)
352 && integer_zerop (vr->max);
353 }
354
355
356 /* Return true if value range VR involves at least one symbol. */
357
358 static inline bool
359 symbolic_range_p (value_range_t *vr)
360 {
361 return (!is_gimple_min_invariant (vr->min)
362 || !is_gimple_min_invariant (vr->max));
363 }
364
365
366 /* Like tree_expr_nonzero_p, but this function uses value ranges
367 obtained so far. */
368
369 static bool
370 vrp_expr_computes_nonzero (tree expr)
371 {
372 if (tree_expr_nonzero_p (expr))
373 return true;
374
375 /* If we have an expression of the form &X->a, then the expression
376 is nonnull if X is nonnull. */
377 if (TREE_CODE (expr) == ADDR_EXPR)
378 {
379 tree base = get_base_address (TREE_OPERAND (expr, 0));
380
381 if (base != NULL_TREE
382 && TREE_CODE (base) == INDIRECT_REF
383 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
384 {
385 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
386 if (range_is_nonnull (vr))
387 return true;
388 }
389 }
390
391 return false;
392 }
393
394
395 /* Compare two values VAL1 and VAL2. Return
396
397 -2 if VAL1 and VAL2 cannot be compared at compile-time,
398 -1 if VAL1 < VAL2,
399 0 if VAL1 == VAL2,
400 +1 if VAL1 > VAL2, and
401 +2 if VAL1 != VAL2
402
403 This is similar to tree_int_cst_compare but supports pointer values
404 and values that cannot be compared at compile time. */
405
406 static int
407 compare_values (tree val1, tree val2)
408 {
409 if (val1 == val2)
410 return 0;
411
412 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
413 both integers. */
414 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
415 == POINTER_TYPE_P (TREE_TYPE (val2)));
416
417 /* Do some limited symbolic comparisons. */
418 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
419 {
420 /* We can determine some comparisons against +INF and -INF even
421 if the other value is an expression. */
422 if (val1 == TYPE_MAX_VALUE (TREE_TYPE (val1))
423 && TREE_CODE (val2) == MINUS_EXPR)
424 {
425 /* +INF > NAME - CST. */
426 return 1;
427 }
428 else if (val1 == TYPE_MIN_VALUE (TREE_TYPE (val1))
429 && TREE_CODE (val2) == PLUS_EXPR)
430 {
431 /* -INF < NAME + CST. */
432 return -1;
433 }
434 else if (TREE_CODE (val1) == MINUS_EXPR
435 && val2 == TYPE_MAX_VALUE (TREE_TYPE (val2)))
436 {
437 /* NAME - CST < +INF. */
438 return -1;
439 }
440 else if (TREE_CODE (val1) == PLUS_EXPR
441 && val2 == TYPE_MIN_VALUE (TREE_TYPE (val2)))
442 {
443 /* NAME + CST > -INF. */
444 return 1;
445 }
446 }
447
448 if ((TREE_CODE (val1) == SSA_NAME
449 || TREE_CODE (val1) == PLUS_EXPR
450 || TREE_CODE (val1) == MINUS_EXPR)
451 && (TREE_CODE (val2) == SSA_NAME
452 || TREE_CODE (val2) == PLUS_EXPR
453 || TREE_CODE (val2) == MINUS_EXPR))
454 {
455 tree n1, c1, n2, c2;
456
457 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
458 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
459 same name, return -2. */
460 if (TREE_CODE (val1) == SSA_NAME)
461 {
462 n1 = val1;
463 c1 = NULL_TREE;
464 }
465 else
466 {
467 n1 = TREE_OPERAND (val1, 0);
468 c1 = TREE_OPERAND (val1, 1);
469 }
470
471 if (TREE_CODE (val2) == SSA_NAME)
472 {
473 n2 = val2;
474 c2 = NULL_TREE;
475 }
476 else
477 {
478 n2 = TREE_OPERAND (val2, 0);
479 c2 = TREE_OPERAND (val2, 1);
480 }
481
482 /* Both values must use the same name. */
483 if (n1 != n2)
484 return -2;
485
486 if (TREE_CODE (val1) == SSA_NAME)
487 {
488 if (TREE_CODE (val2) == SSA_NAME)
489 /* NAME == NAME */
490 return 0;
491 else if (TREE_CODE (val2) == PLUS_EXPR)
492 /* NAME < NAME + CST */
493 return -1;
494 else if (TREE_CODE (val2) == MINUS_EXPR)
495 /* NAME > NAME - CST */
496 return 1;
497 }
498 else if (TREE_CODE (val1) == PLUS_EXPR)
499 {
500 if (TREE_CODE (val2) == SSA_NAME)
501 /* NAME + CST > NAME */
502 return 1;
503 else if (TREE_CODE (val2) == PLUS_EXPR)
504 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
505 return compare_values (c1, c2);
506 else if (TREE_CODE (val2) == MINUS_EXPR)
507 /* NAME + CST1 > NAME - CST2 */
508 return 1;
509 }
510 else if (TREE_CODE (val1) == MINUS_EXPR)
511 {
512 if (TREE_CODE (val2) == SSA_NAME)
513 /* NAME - CST < NAME */
514 return -1;
515 else if (TREE_CODE (val2) == PLUS_EXPR)
516 /* NAME - CST1 < NAME + CST2 */
517 return -1;
518 else if (TREE_CODE (val2) == MINUS_EXPR)
519 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
520 C1 and C2 are swapped in the call to compare_values. */
521 return compare_values (c2, c1);
522 }
523
524 gcc_unreachable ();
525 }
526
527 /* We cannot compare non-constants. */
528 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
529 return -2;
530
531 /* We cannot compare overflowed values. */
532 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
533 return -2;
534
535 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
536 return tree_int_cst_compare (val1, val2);
537 else
538 {
539 tree t;
540
541 /* First see if VAL1 and VAL2 are not the same. */
542 if (val1 == val2 || operand_equal_p (val1, val2, 0))
543 return 0;
544
545 /* If VAL1 is a lower address than VAL2, return -1. */
546 t = fold_binary (LT_EXPR, boolean_type_node, val1, val2);
547 if (t == boolean_true_node)
548 return -1;
549
550 /* If VAL1 is a higher address than VAL2, return +1. */
551 t = fold_binary (GT_EXPR, boolean_type_node, val1, val2);
552 if (t == boolean_true_node)
553 return 1;
554
555 /* If VAL1 is different than VAL2, return +2. */
556 t = fold_binary (NE_EXPR, boolean_type_node, val1, val2);
557 if (t == boolean_true_node)
558 return 2;
559
560 return -2;
561 }
562 }
563
564
565 /* Return 1 if VAL is inside value range VR (VR->MIN <= VAL <= VR->MAX),
566 0 if VAL is not inside VR,
567 -2 if we cannot tell either way.
568
569 FIXME, the current semantics of this functions are a bit quirky
570 when taken in the context of VRP. In here we do not care
571 about VR's type. If VR is the anti-range ~[3, 5] the call
572 value_inside_range (4, VR) will return 1.
573
574 This is counter-intuitive in a strict sense, but the callers
575 currently expect this. They are calling the function
576 merely to determine whether VR->MIN <= VAL <= VR->MAX. The
577 callers are applying the VR_RANGE/VR_ANTI_RANGE semantics
578 themselves.
579
580 This also applies to value_ranges_intersect_p and
581 range_includes_zero_p. The semantics of VR_RANGE and
582 VR_ANTI_RANGE should be encoded here, but that also means
583 adapting the users of these functions to the new semantics. */
584
585 static inline int
586 value_inside_range (tree val, value_range_t *vr)
587 {
588 int cmp1, cmp2;
589
590 cmp1 = compare_values (val, vr->min);
591 if (cmp1 == -2 || cmp1 == 2)
592 return -2;
593
594 cmp2 = compare_values (val, vr->max);
595 if (cmp2 == -2 || cmp2 == 2)
596 return -2;
597
598 return (cmp1 == 0 || cmp1 == 1) && (cmp2 == -1 || cmp2 == 0);
599 }
600
601
602 /* Return true if value ranges VR0 and VR1 have a non-empty
603 intersection. */
604
605 static inline bool
606 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
607 {
608 return (value_inside_range (vr1->min, vr0) == 1
609 || value_inside_range (vr1->max, vr0) == 1
610 || value_inside_range (vr0->min, vr1) == 1
611 || value_inside_range (vr0->max, vr1) == 1);
612 }
613
614
615 /* Return true if VR includes the value zero, false otherwise. FIXME,
616 currently this will return false for an anti-range like ~[-4, 3].
617 This will be wrong when the semantics of value_inside_range are
618 modified (currently the users of this function expect these
619 semantics). */
620
621 static inline bool
622 range_includes_zero_p (value_range_t *vr)
623 {
624 tree zero;
625
626 gcc_assert (vr->type != VR_UNDEFINED
627 && vr->type != VR_VARYING
628 && !symbolic_range_p (vr));
629
630 zero = build_int_cst (TREE_TYPE (vr->min), 0);
631 return (value_inside_range (zero, vr) == 1);
632 }
633
634
635 /* When extracting ranges from X_i = ASSERT_EXPR <Y_j, pred>, we will
636 initially consider X_i and Y_j equivalent, so the equivalence set
637 of Y_j is added to the equivalence set of X_i. However, it is
638 possible to have a chain of ASSERT_EXPRs whose predicates are
639 actually incompatible. This is usually the result of nesting of
640 contradictory if-then-else statements. For instance, in PR 24670:
641
642 count_4 has range [-INF, 63]
643
644 if (count_4 != 0)
645 {
646 count_19 = ASSERT_EXPR <count_4, count_4 != 0>
647 if (count_19 > 63)
648 {
649 count_18 = ASSERT_EXPR <count_19, count_19 > 63>
650 if (count_18 <= 63)
651 ...
652 }
653 }
654
655 Notice that 'if (count_19 > 63)' is trivially false and will be
656 folded out at the end. However, during propagation, the flowgraph
657 is not cleaned up and so, VRP will evaluate predicates more
658 predicates than necessary, so it must support these
659 inconsistencies. The problem here is that because of the chaining
660 of ASSERT_EXPRs, the equivalency set for count_18 includes count_4.
661 Since count_4 has an incompatible range, we ICE when evaluating the
662 ranges in the equivalency set. So, we need to remove count_4 from
663 it. */
664
665 static void
666 fix_equivalence_set (value_range_t *vr_p)
667 {
668 bitmap_iterator bi;
669 unsigned i;
670 bitmap e = vr_p->equiv;
671 bitmap to_remove = BITMAP_ALLOC (NULL);
672
673 /* Only detect inconsistencies on numeric ranges. */
674 if (vr_p->type == VR_VARYING
675 || vr_p->type == VR_UNDEFINED
676 || symbolic_range_p (vr_p))
677 return;
678
679 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
680 {
681 value_range_t *equiv_vr = vr_value[i];
682
683 if (equiv_vr->type == VR_VARYING
684 || equiv_vr->type == VR_UNDEFINED
685 || symbolic_range_p (equiv_vr))
686 continue;
687
688 if (equiv_vr->type == VR_RANGE
689 && vr_p->type == VR_RANGE
690 && !value_ranges_intersect_p (vr_p, equiv_vr))
691 bitmap_set_bit (to_remove, i);
692 else if ((equiv_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
693 || (equiv_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
694 {
695 /* A range and an anti-range have an empty intersection if
696 their end points are the same. FIXME,
697 value_ranges_intersect_p should handle this
698 automatically. */
699 if (compare_values (equiv_vr->min, vr_p->min) == 0
700 && compare_values (equiv_vr->max, vr_p->max) == 0)
701 bitmap_set_bit (to_remove, i);
702 }
703 }
704
705 bitmap_and_compl_into (vr_p->equiv, to_remove);
706 BITMAP_FREE (to_remove);
707 }
708
709
710 /* Extract value range information from an ASSERT_EXPR EXPR and store
711 it in *VR_P. */
712
713 static void
714 extract_range_from_assert (value_range_t *vr_p, tree expr)
715 {
716 tree var, cond, limit, min, max, type;
717 value_range_t *var_vr, *limit_vr;
718 enum tree_code cond_code;
719
720 var = ASSERT_EXPR_VAR (expr);
721 cond = ASSERT_EXPR_COND (expr);
722
723 gcc_assert (COMPARISON_CLASS_P (cond));
724
725 /* Find VAR in the ASSERT_EXPR conditional. */
726 if (var == TREE_OPERAND (cond, 0))
727 {
728 /* If the predicate is of the form VAR COMP LIMIT, then we just
729 take LIMIT from the RHS and use the same comparison code. */
730 limit = TREE_OPERAND (cond, 1);
731 cond_code = TREE_CODE (cond);
732 }
733 else
734 {
735 /* If the predicate is of the form LIMIT COMP VAR, then we need
736 to flip around the comparison code to create the proper range
737 for VAR. */
738 limit = TREE_OPERAND (cond, 0);
739 cond_code = swap_tree_comparison (TREE_CODE (cond));
740 }
741
742 type = TREE_TYPE (limit);
743 gcc_assert (limit != var);
744
745 /* For pointer arithmetic, we only keep track of pointer equality
746 and inequality. */
747 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
748 {
749 set_value_range_to_varying (vr_p);
750 return;
751 }
752
753 /* If LIMIT is another SSA name and LIMIT has a range of its own,
754 try to use LIMIT's range to avoid creating symbolic ranges
755 unnecessarily. */
756 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
757
758 /* LIMIT's range is only interesting if it has any useful information. */
759 if (limit_vr
760 && (limit_vr->type == VR_UNDEFINED
761 || limit_vr->type == VR_VARYING
762 || symbolic_range_p (limit_vr)))
763 limit_vr = NULL;
764
765 /* Special handling for integral types with super-types. Some FEs
766 construct integral types derived from other types and restrict
767 the range of values these new types may take.
768
769 It may happen that LIMIT is actually smaller than TYPE's minimum
770 value. For instance, the Ada FE is generating code like this
771 during bootstrap:
772
773 D.1480_32 = nam_30 - 300000361;
774 if (D.1480_32 <= 1) goto <L112>; else goto <L52>;
775 <L112>:;
776 D.1480_94 = ASSERT_EXPR <D.1480_32, D.1480_32 <= 1>;
777
778 All the names are of type types__name_id___XDLU_300000000__399999999
779 which has min == 300000000 and max == 399999999. This means that
780 the ASSERT_EXPR would try to create the range [3000000, 1] which
781 is invalid.
782
783 The fact that the type specifies MIN and MAX values does not
784 automatically mean that every variable of that type will always
785 be within that range, so the predicate may well be true at run
786 time. If we had symbolic -INF and +INF values, we could
787 represent this range, but we currently represent -INF and +INF
788 using the type's min and max values.
789
790 So, the only sensible thing we can do for now is set the
791 resulting range to VR_VARYING. TODO, would having symbolic -INF
792 and +INF values be worth the trouble? */
793 if (TREE_CODE (limit) != SSA_NAME
794 && INTEGRAL_TYPE_P (type)
795 && TREE_TYPE (type))
796 {
797 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
798 {
799 tree type_min = TYPE_MIN_VALUE (type);
800 int cmp = compare_values (limit, type_min);
801
802 /* For < or <= comparisons, if LIMIT is smaller than
803 TYPE_MIN, set the range to VR_VARYING. */
804 if (cmp == -1 || cmp == 0)
805 {
806 set_value_range_to_varying (vr_p);
807 return;
808 }
809 }
810 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
811 {
812 tree type_max = TYPE_MIN_VALUE (type);
813 int cmp = compare_values (limit, type_max);
814
815 /* For > or >= comparisons, if LIMIT is bigger than
816 TYPE_MAX, set the range to VR_VARYING. */
817 if (cmp == 1 || cmp == 0)
818 {
819 set_value_range_to_varying (vr_p);
820 return;
821 }
822 }
823 }
824
825 /* Initially, the new range has the same set of equivalences of
826 VAR's range. This will be revised before returning the final
827 value. Since assertions may be chained via mutually exclusive
828 predicates, we will need to trim the set of equivalences before
829 we are done. */
830 gcc_assert (vr_p->equiv == NULL);
831 vr_p->equiv = BITMAP_ALLOC (NULL);
832 add_equivalence (vr_p->equiv, var);
833
834 /* Extract a new range based on the asserted comparison for VAR and
835 LIMIT's value range. Notice that if LIMIT has an anti-range, we
836 will only use it for equality comparisons (EQ_EXPR). For any
837 other kind of assertion, we cannot derive a range from LIMIT's
838 anti-range that can be used to describe the new range. For
839 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
840 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
841 no single range for x_2 that could describe LE_EXPR, so we might
842 as well build the range [b_4, +INF] for it. */
843 if (cond_code == EQ_EXPR)
844 {
845 enum value_range_type range_type;
846
847 if (limit_vr)
848 {
849 range_type = limit_vr->type;
850 min = limit_vr->min;
851 max = limit_vr->max;
852 }
853 else
854 {
855 range_type = VR_RANGE;
856 min = limit;
857 max = limit;
858 }
859
860 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
861
862 /* When asserting the equality VAR == LIMIT and LIMIT is another
863 SSA name, the new range will also inherit the equivalence set
864 from LIMIT. */
865 if (TREE_CODE (limit) == SSA_NAME)
866 add_equivalence (vr_p->equiv, limit);
867 }
868 else if (cond_code == NE_EXPR)
869 {
870 /* As described above, when LIMIT's range is an anti-range and
871 this assertion is an inequality (NE_EXPR), then we cannot
872 derive anything from the anti-range. For instance, if
873 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
874 not imply that VAR's range is [0, 0]. So, in the case of
875 anti-ranges, we just assert the inequality using LIMIT and
876 not its anti-range.
877
878 If LIMIT_VR is a range, we can only use it to build a new
879 anti-range if LIMIT_VR is a single-valued range. For
880 instance, if LIMIT_VR is [0, 1], the predicate
881 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
882 Rather, it means that for value 0 VAR should be ~[0, 0]
883 and for value 1, VAR should be ~[1, 1]. We cannot
884 represent these ranges.
885
886 The only situation in which we can build a valid
887 anti-range is when LIMIT_VR is a single-valued range
888 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
889 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
890 if (limit_vr
891 && limit_vr->type == VR_RANGE
892 && compare_values (limit_vr->min, limit_vr->max) == 0)
893 {
894 min = limit_vr->min;
895 max = limit_vr->max;
896 }
897 else
898 {
899 /* In any other case, we cannot use LIMIT's range to build a
900 valid anti-range. */
901 min = max = limit;
902 }
903
904 /* If MIN and MAX cover the whole range for their type, then
905 just use the original LIMIT. */
906 if (INTEGRAL_TYPE_P (type)
907 && min == TYPE_MIN_VALUE (type)
908 && max == TYPE_MAX_VALUE (type))
909 min = max = limit;
910
911 set_value_range (vr_p, VR_ANTI_RANGE, min, max, vr_p->equiv);
912 }
913 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
914 {
915 min = TYPE_MIN_VALUE (type);
916
917 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
918 max = limit;
919 else
920 {
921 /* If LIMIT_VR is of the form [N1, N2], we need to build the
922 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
923 LT_EXPR. */
924 max = limit_vr->max;
925 }
926
927 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
928 if (cond_code == LT_EXPR)
929 {
930 tree one = build_int_cst (type, 1);
931 max = fold_build2 (MINUS_EXPR, type, max, one);
932 }
933
934 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
935 }
936 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
937 {
938 max = TYPE_MAX_VALUE (type);
939
940 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
941 min = limit;
942 else
943 {
944 /* If LIMIT_VR is of the form [N1, N2], we need to build the
945 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
946 GT_EXPR. */
947 min = limit_vr->min;
948 }
949
950 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
951 if (cond_code == GT_EXPR)
952 {
953 tree one = build_int_cst (type, 1);
954 min = fold_build2 (PLUS_EXPR, type, min, one);
955 }
956
957 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
958 }
959 else
960 gcc_unreachable ();
961
962 /* If VAR already had a known range, it may happen that the new
963 range we have computed and VAR's range are not compatible. For
964 instance,
965
966 if (p_5 == NULL)
967 p_6 = ASSERT_EXPR <p_5, p_5 == NULL>;
968 x_7 = p_6->fld;
969 p_8 = ASSERT_EXPR <p_6, p_6 != NULL>;
970
971 While the above comes from a faulty program, it will cause an ICE
972 later because p_8 and p_6 will have incompatible ranges and at
973 the same time will be considered equivalent. A similar situation
974 would arise from
975
976 if (i_5 > 10)
977 i_6 = ASSERT_EXPR <i_5, i_5 > 10>;
978 if (i_5 < 5)
979 i_7 = ASSERT_EXPR <i_6, i_6 < 5>;
980
981 Again i_6 and i_7 will have incompatible ranges. It would be
982 pointless to try and do anything with i_7's range because
983 anything dominated by 'if (i_5 < 5)' will be optimized away.
984 Note, due to the wa in which simulation proceeds, the statement
985 i_7 = ASSERT_EXPR <...> we would never be visited because the
986 conditional 'if (i_5 < 5)' always evaluates to false. However,
987 this extra check does not hurt and may protect against future
988 changes to VRP that may get into a situation similar to the
989 NULL pointer dereference example.
990
991 Note that these compatibility tests are only needed when dealing
992 with ranges or a mix of range and anti-range. If VAR_VR and VR_P
993 are both anti-ranges, they will always be compatible, because two
994 anti-ranges will always have a non-empty intersection. */
995
996 var_vr = get_value_range (var);
997
998 /* We may need to make adjustments when VR_P and VAR_VR are numeric
999 ranges or anti-ranges. */
1000 if (vr_p->type == VR_VARYING
1001 || vr_p->type == VR_UNDEFINED
1002 || var_vr->type == VR_VARYING
1003 || var_vr->type == VR_UNDEFINED
1004 || symbolic_range_p (vr_p)
1005 || symbolic_range_p (var_vr))
1006 goto done;
1007
1008 if (var_vr->type == VR_RANGE && vr_p->type == VR_RANGE)
1009 {
1010 /* If the two ranges have a non-empty intersection, we can
1011 refine the resulting range. Since the assert expression
1012 creates an equivalency and at the same time it asserts a
1013 predicate, we can take the intersection of the two ranges to
1014 get better precision. */
1015 if (value_ranges_intersect_p (var_vr, vr_p))
1016 {
1017 /* Use the larger of the two minimums. */
1018 if (compare_values (vr_p->min, var_vr->min) == -1)
1019 min = var_vr->min;
1020 else
1021 min = vr_p->min;
1022
1023 /* Use the smaller of the two maximums. */
1024 if (compare_values (vr_p->max, var_vr->max) == 1)
1025 max = var_vr->max;
1026 else
1027 max = vr_p->max;
1028
1029 set_value_range (vr_p, vr_p->type, min, max, vr_p->equiv);
1030 }
1031 else
1032 {
1033 /* The two ranges do not intersect, set the new range to
1034 VARYING, because we will not be able to do anything
1035 meaningful with it. */
1036 set_value_range_to_varying (vr_p);
1037 }
1038 }
1039 else if ((var_vr->type == VR_RANGE && vr_p->type == VR_ANTI_RANGE)
1040 || (var_vr->type == VR_ANTI_RANGE && vr_p->type == VR_RANGE))
1041 {
1042 /* A range and an anti-range will cancel each other only if
1043 their ends are the same. For instance, in the example above,
1044 p_8's range ~[0, 0] and p_6's range [0, 0] are incompatible,
1045 so VR_P should be set to VR_VARYING. */
1046 if (compare_values (var_vr->min, vr_p->min) == 0
1047 && compare_values (var_vr->max, vr_p->max) == 0)
1048 set_value_range_to_varying (vr_p);
1049 }
1050
1051 /* Remove names from the equivalence set that have ranges
1052 incompatible with VR_P. */
1053 done:
1054 fix_equivalence_set (vr_p);
1055 }
1056
1057
1058 /* Extract range information from SSA name VAR and store it in VR. If
1059 VAR has an interesting range, use it. Otherwise, create the
1060 range [VAR, VAR] and return it. This is useful in situations where
1061 we may have conditionals testing values of VARYING names. For
1062 instance,
1063
1064 x_3 = y_5;
1065 if (x_3 > y_5)
1066 ...
1067
1068 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1069 always false. */
1070
1071 static void
1072 extract_range_from_ssa_name (value_range_t *vr, tree var)
1073 {
1074 value_range_t *var_vr = get_value_range (var);
1075
1076 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1077 copy_value_range (vr, var_vr);
1078 else
1079 set_value_range (vr, VR_RANGE, var, var, NULL);
1080
1081 add_equivalence (vr->equiv, var);
1082 }
1083
1084
1085 /* Wrapper around int_const_binop. If the operation overflows and we
1086 are not using wrapping arithmetic, then adjust the result to be
1087 -INF or +INF depending on CODE, VAL1 and VAL2. */
1088
1089 static inline tree
1090 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1091 {
1092 tree res;
1093
1094 if (flag_wrapv)
1095 return int_const_binop (code, val1, val2, 0);
1096
1097 /* If we are not using wrapping arithmetic, operate symbolically
1098 on -INF and +INF. */
1099 res = int_const_binop (code, val1, val2, 0);
1100
1101 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1102 {
1103 int checkz = compare_values (res, val1);
1104
1105 /* Ensure that res = val1 + val2 >= val1
1106 or that res = val1 - val2 <= val1. */
1107 if ((code == PLUS_EXPR && !(checkz == 1 || checkz == 0))
1108 || (code == MINUS_EXPR && !(checkz == 0 || checkz == -1)))
1109 {
1110 res = copy_node (res);
1111 TREE_OVERFLOW (res) = 1;
1112 }
1113 }
1114 /* If the operation overflowed but neither VAL1 nor VAL2 are
1115 overflown, return -INF or +INF depending on the operation
1116 and the combination of signs of the operands. */
1117 else if (TREE_OVERFLOW (res)
1118 && !TREE_OVERFLOW (val1)
1119 && !TREE_OVERFLOW (val2))
1120 {
1121 int sgn1 = tree_int_cst_sgn (val1);
1122 int sgn2 = tree_int_cst_sgn (val2);
1123
1124 /* Notice that we only need to handle the restricted set of
1125 operations handled by extract_range_from_binary_expr.
1126 Among them, only multiplication, addition and subtraction
1127 can yield overflow without overflown operands because we
1128 are working with integral types only... except in the
1129 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1130 for division too. */
1131
1132 /* For multiplication, the sign of the overflow is given
1133 by the comparison of the signs of the operands. */
1134 if ((code == MULT_EXPR && sgn1 == sgn2)
1135 /* For addition, the operands must be of the same sign
1136 to yield an overflow. Its sign is therefore that
1137 of one of the operands, for example the first. */
1138 || (code == PLUS_EXPR && sgn1 > 0)
1139 /* For subtraction, the operands must be of different
1140 signs to yield an overflow. Its sign is therefore
1141 that of the first operand or the opposite of that
1142 of the second operand. A first operand of 0 counts
1143 as positive here, for the corner case 0 - (-INF),
1144 which overflows, but must yield +INF. */
1145 || (code == MINUS_EXPR && sgn1 >= 0)
1146 /* For division, the only case is -INF / -1 = +INF. */
1147 || code == TRUNC_DIV_EXPR
1148 || code == FLOOR_DIV_EXPR
1149 || code == CEIL_DIV_EXPR
1150 || code == EXACT_DIV_EXPR
1151 || code == ROUND_DIV_EXPR)
1152 return TYPE_MAX_VALUE (TREE_TYPE (res));
1153 else
1154 return TYPE_MIN_VALUE (TREE_TYPE (res));
1155 }
1156
1157 return res;
1158 }
1159
1160
1161 /* Extract range information from a binary expression EXPR based on
1162 the ranges of each of its operands and the expression code. */
1163
1164 static void
1165 extract_range_from_binary_expr (value_range_t *vr, tree expr)
1166 {
1167 enum tree_code code = TREE_CODE (expr);
1168 tree op0, op1, min, max;
1169 int cmp;
1170 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1171 value_range_t vr1 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1172
1173 /* Not all binary expressions can be applied to ranges in a
1174 meaningful way. Handle only arithmetic operations. */
1175 if (code != PLUS_EXPR
1176 && code != MINUS_EXPR
1177 && code != MULT_EXPR
1178 && code != TRUNC_DIV_EXPR
1179 && code != FLOOR_DIV_EXPR
1180 && code != CEIL_DIV_EXPR
1181 && code != EXACT_DIV_EXPR
1182 && code != ROUND_DIV_EXPR
1183 && code != MIN_EXPR
1184 && code != MAX_EXPR
1185 && code != TRUTH_ANDIF_EXPR
1186 && code != TRUTH_ORIF_EXPR
1187 && code != TRUTH_AND_EXPR
1188 && code != TRUTH_OR_EXPR
1189 && code != TRUTH_XOR_EXPR)
1190 {
1191 set_value_range_to_varying (vr);
1192 return;
1193 }
1194
1195 /* Get value ranges for each operand. For constant operands, create
1196 a new value range with the operand to simplify processing. */
1197 op0 = TREE_OPERAND (expr, 0);
1198 if (TREE_CODE (op0) == SSA_NAME)
1199 vr0 = *(get_value_range (op0));
1200 else if (is_gimple_min_invariant (op0))
1201 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1202 else
1203 set_value_range_to_varying (&vr0);
1204
1205 op1 = TREE_OPERAND (expr, 1);
1206 if (TREE_CODE (op1) == SSA_NAME)
1207 vr1 = *(get_value_range (op1));
1208 else if (is_gimple_min_invariant (op1))
1209 set_value_range (&vr1, VR_RANGE, op1, op1, NULL);
1210 else
1211 set_value_range_to_varying (&vr1);
1212
1213 /* If either range is UNDEFINED, so is the result. */
1214 if (vr0.type == VR_UNDEFINED || vr1.type == VR_UNDEFINED)
1215 {
1216 set_value_range_to_undefined (vr);
1217 return;
1218 }
1219
1220 /* Refuse to operate on VARYING ranges, ranges of different kinds
1221 and symbolic ranges. TODO, we may be able to derive anti-ranges
1222 in some cases. */
1223 if (vr0.type == VR_VARYING
1224 || vr1.type == VR_VARYING
1225 || vr0.type != vr1.type
1226 || symbolic_range_p (&vr0)
1227 || symbolic_range_p (&vr1))
1228 {
1229 set_value_range_to_varying (vr);
1230 return;
1231 }
1232
1233 /* Now evaluate the expression to determine the new range. */
1234 if (POINTER_TYPE_P (TREE_TYPE (expr))
1235 || POINTER_TYPE_P (TREE_TYPE (op0))
1236 || POINTER_TYPE_P (TREE_TYPE (op1)))
1237 {
1238 /* For pointer types, we are really only interested in asserting
1239 whether the expression evaluates to non-NULL. FIXME, we used
1240 to gcc_assert (code == PLUS_EXPR || code == MINUS_EXPR), but
1241 ivopts is generating expressions with pointer multiplication
1242 in them. */
1243 if (code == PLUS_EXPR)
1244 {
1245 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
1246 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1247 else if (range_is_null (&vr0) && range_is_null (&vr1))
1248 set_value_range_to_null (vr, TREE_TYPE (expr));
1249 else
1250 set_value_range_to_varying (vr);
1251 }
1252 else
1253 {
1254 /* Subtracting from a pointer, may yield 0, so just drop the
1255 resulting range to varying. */
1256 set_value_range_to_varying (vr);
1257 }
1258
1259 return;
1260 }
1261
1262 /* For integer ranges, apply the operation to each end of the
1263 range and see what we end up with. */
1264 if (code == TRUTH_ANDIF_EXPR
1265 || code == TRUTH_ORIF_EXPR
1266 || code == TRUTH_AND_EXPR
1267 || code == TRUTH_OR_EXPR
1268 || code == TRUTH_XOR_EXPR)
1269 {
1270 /* Boolean expressions cannot be folded with int_const_binop. */
1271 min = fold_binary (code, TREE_TYPE (expr), vr0.min, vr1.min);
1272 max = fold_binary (code, TREE_TYPE (expr), vr0.max, vr1.max);
1273 }
1274 else if (code == PLUS_EXPR
1275 || code == MIN_EXPR
1276 || code == MAX_EXPR)
1277 {
1278 /* If we have a PLUS_EXPR with two VR_ANTI_RANGEs, drop to
1279 VR_VARYING. It would take more effort to compute a precise
1280 range for such a case. For example, if we have op0 == 1 and
1281 op1 == -1 with their ranges both being ~[0,0], we would have
1282 op0 + op1 == 0, so we cannot claim that the sum is in ~[0,0].
1283 Note that we are guaranteed to have vr0.type == vr1.type at
1284 this point. */
1285 if (code == PLUS_EXPR && vr0.type == VR_ANTI_RANGE)
1286 {
1287 set_value_range_to_varying (vr);
1288 return;
1289 }
1290
1291 /* For operations that make the resulting range directly
1292 proportional to the original ranges, apply the operation to
1293 the same end of each range. */
1294 min = vrp_int_const_binop (code, vr0.min, vr1.min);
1295 max = vrp_int_const_binop (code, vr0.max, vr1.max);
1296 }
1297 else if (code == MULT_EXPR
1298 || code == TRUNC_DIV_EXPR
1299 || code == FLOOR_DIV_EXPR
1300 || code == CEIL_DIV_EXPR
1301 || code == EXACT_DIV_EXPR
1302 || code == ROUND_DIV_EXPR)
1303 {
1304 tree val[4];
1305 size_t i;
1306
1307 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
1308 drop to VR_VARYING. It would take more effort to compute a
1309 precise range for such a case. For example, if we have
1310 op0 == 65536 and op1 == 65536 with their ranges both being
1311 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
1312 we cannot claim that the product is in ~[0,0]. Note that we
1313 are guaranteed to have vr0.type == vr1.type at this
1314 point. */
1315 if (code == MULT_EXPR
1316 && vr0.type == VR_ANTI_RANGE
1317 && (flag_wrapv || TYPE_UNSIGNED (TREE_TYPE (op0))))
1318 {
1319 set_value_range_to_varying (vr);
1320 return;
1321 }
1322
1323 /* Multiplications and divisions are a bit tricky to handle,
1324 depending on the mix of signs we have in the two ranges, we
1325 need to operate on different values to get the minimum and
1326 maximum values for the new range. One approach is to figure
1327 out all the variations of range combinations and do the
1328 operations.
1329
1330 However, this involves several calls to compare_values and it
1331 is pretty convoluted. It's simpler to do the 4 operations
1332 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
1333 MAX1) and then figure the smallest and largest values to form
1334 the new range. */
1335
1336 /* Divisions by zero result in a VARYING value. */
1337 if (code != MULT_EXPR
1338 && (vr0.type == VR_ANTI_RANGE || range_includes_zero_p (&vr1)))
1339 {
1340 set_value_range_to_varying (vr);
1341 return;
1342 }
1343
1344 /* Compute the 4 cross operations. */
1345 val[0] = vrp_int_const_binop (code, vr0.min, vr1.min);
1346
1347 val[1] = (vr1.max != vr1.min)
1348 ? vrp_int_const_binop (code, vr0.min, vr1.max)
1349 : NULL_TREE;
1350
1351 val[2] = (vr0.max != vr0.min)
1352 ? vrp_int_const_binop (code, vr0.max, vr1.min)
1353 : NULL_TREE;
1354
1355 val[3] = (vr0.min != vr0.max && vr1.min != vr1.max)
1356 ? vrp_int_const_binop (code, vr0.max, vr1.max)
1357 : NULL_TREE;
1358
1359 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
1360 of VAL[i]. */
1361 min = val[0];
1362 max = val[0];
1363 for (i = 1; i < 4; i++)
1364 {
1365 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
1366 break;
1367
1368 if (val[i])
1369 {
1370 if (TREE_OVERFLOW (val[i]))
1371 {
1372 /* If we found an overflowed value, set MIN and MAX
1373 to it so that we set the resulting range to
1374 VARYING. */
1375 min = max = val[i];
1376 break;
1377 }
1378
1379 if (compare_values (val[i], min) == -1)
1380 min = val[i];
1381
1382 if (compare_values (val[i], max) == 1)
1383 max = val[i];
1384 }
1385 }
1386 }
1387 else if (code == MINUS_EXPR)
1388 {
1389 /* If we have a MINUS_EXPR with two VR_ANTI_RANGEs, drop to
1390 VR_VARYING. It would take more effort to compute a precise
1391 range for such a case. For example, if we have op0 == 1 and
1392 op1 == 1 with their ranges both being ~[0,0], we would have
1393 op0 - op1 == 0, so we cannot claim that the difference is in
1394 ~[0,0]. Note that we are guaranteed to have
1395 vr0.type == vr1.type at this point. */
1396 if (vr0.type == VR_ANTI_RANGE)
1397 {
1398 set_value_range_to_varying (vr);
1399 return;
1400 }
1401
1402 /* For MINUS_EXPR, apply the operation to the opposite ends of
1403 each range. */
1404 min = vrp_int_const_binop (code, vr0.min, vr1.max);
1405 max = vrp_int_const_binop (code, vr0.max, vr1.min);
1406 }
1407 else
1408 gcc_unreachable ();
1409
1410 /* If either MIN or MAX overflowed, then set the resulting range to
1411 VARYING. */
1412 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
1413 {
1414 set_value_range_to_varying (vr);
1415 return;
1416 }
1417
1418 cmp = compare_values (min, max);
1419 if (cmp == -2 || cmp == 1)
1420 {
1421 /* If the new range has its limits swapped around (MIN > MAX),
1422 then the operation caused one of them to wrap around, mark
1423 the new range VARYING. */
1424 set_value_range_to_varying (vr);
1425 }
1426 else
1427 set_value_range (vr, vr0.type, min, max, NULL);
1428 }
1429
1430
1431 /* Extract range information from a unary expression EXPR based on
1432 the range of its operand and the expression code. */
1433
1434 static void
1435 extract_range_from_unary_expr (value_range_t *vr, tree expr)
1436 {
1437 enum tree_code code = TREE_CODE (expr);
1438 tree min, max, op0;
1439 int cmp;
1440 value_range_t vr0 = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
1441
1442 /* Refuse to operate on certain unary expressions for which we
1443 cannot easily determine a resulting range. */
1444 if (code == FIX_TRUNC_EXPR
1445 || code == FIX_CEIL_EXPR
1446 || code == FIX_FLOOR_EXPR
1447 || code == FIX_ROUND_EXPR
1448 || code == FLOAT_EXPR
1449 || code == BIT_NOT_EXPR
1450 || code == NON_LVALUE_EXPR
1451 || code == CONJ_EXPR)
1452 {
1453 set_value_range_to_varying (vr);
1454 return;
1455 }
1456
1457 /* Get value ranges for the operand. For constant operands, create
1458 a new value range with the operand to simplify processing. */
1459 op0 = TREE_OPERAND (expr, 0);
1460 if (TREE_CODE (op0) == SSA_NAME)
1461 vr0 = *(get_value_range (op0));
1462 else if (is_gimple_min_invariant (op0))
1463 set_value_range (&vr0, VR_RANGE, op0, op0, NULL);
1464 else
1465 set_value_range_to_varying (&vr0);
1466
1467 /* If VR0 is UNDEFINED, so is the result. */
1468 if (vr0.type == VR_UNDEFINED)
1469 {
1470 set_value_range_to_undefined (vr);
1471 return;
1472 }
1473
1474 /* Refuse to operate on varying and symbolic ranges. Also, if the
1475 operand is neither a pointer nor an integral type, set the
1476 resulting range to VARYING. TODO, in some cases we may be able
1477 to derive anti-ranges (like nonzero values). */
1478 if (vr0.type == VR_VARYING
1479 || (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
1480 && !POINTER_TYPE_P (TREE_TYPE (op0)))
1481 || symbolic_range_p (&vr0))
1482 {
1483 set_value_range_to_varying (vr);
1484 return;
1485 }
1486
1487 /* If the expression involves pointers, we are only interested in
1488 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
1489 if (POINTER_TYPE_P (TREE_TYPE (expr)) || POINTER_TYPE_P (TREE_TYPE (op0)))
1490 {
1491 if (range_is_nonnull (&vr0) || tree_expr_nonzero_p (expr))
1492 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1493 else if (range_is_null (&vr0))
1494 set_value_range_to_null (vr, TREE_TYPE (expr));
1495 else
1496 set_value_range_to_varying (vr);
1497
1498 return;
1499 }
1500
1501 /* Handle unary expressions on integer ranges. */
1502 if (code == NOP_EXPR || code == CONVERT_EXPR)
1503 {
1504 tree inner_type = TREE_TYPE (op0);
1505 tree outer_type = TREE_TYPE (expr);
1506
1507 /* If VR0 represents a simple range, then try to convert
1508 the min and max values for the range to the same type
1509 as OUTER_TYPE. If the results compare equal to VR0's
1510 min and max values and the new min is still less than
1511 or equal to the new max, then we can safely use the newly
1512 computed range for EXPR. This allows us to compute
1513 accurate ranges through many casts. */
1514 if (vr0.type == VR_RANGE)
1515 {
1516 tree new_min, new_max;
1517
1518 /* Convert VR0's min/max to OUTER_TYPE. */
1519 new_min = fold_convert (outer_type, vr0.min);
1520 new_max = fold_convert (outer_type, vr0.max);
1521
1522 /* Verify the new min/max values are gimple values and
1523 that they compare equal to VR0's min/max values. */
1524 if (is_gimple_val (new_min)
1525 && is_gimple_val (new_max)
1526 && tree_int_cst_equal (new_min, vr0.min)
1527 && tree_int_cst_equal (new_max, vr0.max)
1528 && compare_values (new_min, new_max) <= 0
1529 && compare_values (new_min, new_max) >= -1)
1530 {
1531 set_value_range (vr, VR_RANGE, new_min, new_max, vr->equiv);
1532 return;
1533 }
1534 }
1535
1536 /* When converting types of different sizes, set the result to
1537 VARYING. Things like sign extensions and precision loss may
1538 change the range. For instance, if x_3 is of type 'long long
1539 int' and 'y_5 = (unsigned short) x_3', if x_3 is ~[0, 0], it
1540 is impossible to know at compile time whether y_5 will be
1541 ~[0, 0]. */
1542 if (TYPE_SIZE (inner_type) != TYPE_SIZE (outer_type)
1543 || TYPE_PRECISION (inner_type) != TYPE_PRECISION (outer_type))
1544 {
1545 set_value_range_to_varying (vr);
1546 return;
1547 }
1548 }
1549
1550 /* Apply the operation to each end of the range and see what we end
1551 up with. */
1552 if (code == NEGATE_EXPR
1553 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1554 {
1555 /* NEGATE_EXPR flips the range around. */
1556 min = (vr0.max == TYPE_MAX_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
1557 ? TYPE_MIN_VALUE (TREE_TYPE (expr))
1558 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1559
1560 max = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)) && !flag_wrapv)
1561 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1562 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1563 }
1564 else if (code == ABS_EXPR
1565 && !TYPE_UNSIGNED (TREE_TYPE (expr)))
1566 {
1567 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
1568 useful range. */
1569 if (flag_wrapv
1570 && ((vr0.type == VR_RANGE
1571 && vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1572 || (vr0.type == VR_ANTI_RANGE
1573 && vr0.min != TYPE_MIN_VALUE (TREE_TYPE (expr))
1574 && !range_includes_zero_p (&vr0))))
1575 {
1576 set_value_range_to_varying (vr);
1577 return;
1578 }
1579
1580 /* ABS_EXPR may flip the range around, if the original range
1581 included negative values. */
1582 min = (vr0.min == TYPE_MIN_VALUE (TREE_TYPE (expr)))
1583 ? TYPE_MAX_VALUE (TREE_TYPE (expr))
1584 : fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1585
1586 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1587
1588 cmp = compare_values (min, max);
1589
1590 /* If a VR_ANTI_RANGEs contains zero, then we have
1591 ~[-INF, min(MIN, MAX)]. */
1592 if (vr0.type == VR_ANTI_RANGE)
1593 {
1594 if (range_includes_zero_p (&vr0))
1595 {
1596 tree type_min_value = TYPE_MIN_VALUE (TREE_TYPE (expr));
1597
1598 /* Take the lower of the two values. */
1599 if (cmp != 1)
1600 max = min;
1601
1602 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
1603 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
1604 flag_wrapv is set and the original anti-range doesn't include
1605 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
1606 min = (flag_wrapv && vr0.min != type_min_value
1607 ? int_const_binop (PLUS_EXPR,
1608 type_min_value,
1609 integer_one_node, 0)
1610 : type_min_value);
1611 }
1612 else
1613 {
1614 /* All else has failed, so create the range [0, INF], even for
1615 flag_wrapv since TYPE_MIN_VALUE is in the original
1616 anti-range. */
1617 vr0.type = VR_RANGE;
1618 min = build_int_cst (TREE_TYPE (expr), 0);
1619 max = TYPE_MAX_VALUE (TREE_TYPE (expr));
1620 }
1621 }
1622
1623 /* If the range contains zero then we know that the minimum value in the
1624 range will be zero. */
1625 else if (range_includes_zero_p (&vr0))
1626 {
1627 if (cmp == 1)
1628 max = min;
1629 min = build_int_cst (TREE_TYPE (expr), 0);
1630 }
1631 else
1632 {
1633 /* If the range was reversed, swap MIN and MAX. */
1634 if (cmp == 1)
1635 {
1636 tree t = min;
1637 min = max;
1638 max = t;
1639 }
1640 }
1641 }
1642 else
1643 {
1644 /* Otherwise, operate on each end of the range. */
1645 min = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.min);
1646 max = fold_unary_to_constant (code, TREE_TYPE (expr), vr0.max);
1647 }
1648
1649 cmp = compare_values (min, max);
1650 if (cmp == -2 || cmp == 1)
1651 {
1652 /* If the new range has its limits swapped around (MIN > MAX),
1653 then the operation caused one of them to wrap around, mark
1654 the new range VARYING. */
1655 set_value_range_to_varying (vr);
1656 }
1657 else
1658 set_value_range (vr, vr0.type, min, max, NULL);
1659 }
1660
1661
1662 /* Extract range information from a comparison expression EXPR based
1663 on the range of its operand and the expression code. */
1664
1665 static void
1666 extract_range_from_comparison (value_range_t *vr, tree expr)
1667 {
1668 tree val = vrp_evaluate_conditional (expr, false);
1669 if (val)
1670 {
1671 /* Since this expression was found on the RHS of an assignment,
1672 its type may be different from _Bool. Convert VAL to EXPR's
1673 type. */
1674 val = fold_convert (TREE_TYPE (expr), val);
1675 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
1676 }
1677 else
1678 set_value_range_to_varying (vr);
1679 }
1680
1681
1682 /* Try to compute a useful range out of expression EXPR and store it
1683 in *VR. */
1684
1685 static void
1686 extract_range_from_expr (value_range_t *vr, tree expr)
1687 {
1688 enum tree_code code = TREE_CODE (expr);
1689
1690 if (code == ASSERT_EXPR)
1691 extract_range_from_assert (vr, expr);
1692 else if (code == SSA_NAME)
1693 extract_range_from_ssa_name (vr, expr);
1694 else if (TREE_CODE_CLASS (code) == tcc_binary
1695 || code == TRUTH_ANDIF_EXPR
1696 || code == TRUTH_ORIF_EXPR
1697 || code == TRUTH_AND_EXPR
1698 || code == TRUTH_OR_EXPR
1699 || code == TRUTH_XOR_EXPR)
1700 extract_range_from_binary_expr (vr, expr);
1701 else if (TREE_CODE_CLASS (code) == tcc_unary)
1702 extract_range_from_unary_expr (vr, expr);
1703 else if (TREE_CODE_CLASS (code) == tcc_comparison)
1704 extract_range_from_comparison (vr, expr);
1705 else if (is_gimple_min_invariant (expr))
1706 set_value_range (vr, VR_RANGE, expr, expr, NULL);
1707 else if (vrp_expr_computes_nonzero (expr))
1708 set_value_range_to_nonnull (vr, TREE_TYPE (expr));
1709 else
1710 set_value_range_to_varying (vr);
1711 }
1712
1713 /* Given a range VR, a LOOP and a variable VAR, determine whether it
1714 would be profitable to adjust VR using scalar evolution information
1715 for VAR. If so, update VR with the new limits. */
1716
1717 static void
1718 adjust_range_with_scev (value_range_t *vr, struct loop *loop, tree stmt,
1719 tree var)
1720 {
1721 tree init, step, chrec;
1722 bool init_is_max, unknown_max;
1723
1724 /* TODO. Don't adjust anti-ranges. An anti-range may provide
1725 better opportunities than a regular range, but I'm not sure. */
1726 if (vr->type == VR_ANTI_RANGE)
1727 return;
1728
1729 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
1730 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
1731 return;
1732
1733 init = initial_condition_in_loop_num (chrec, loop->num);
1734 step = evolution_part_in_loop_num (chrec, loop->num);
1735
1736 /* If STEP is symbolic, we can't know whether INIT will be the
1737 minimum or maximum value in the range. */
1738 if (step == NULL_TREE
1739 || !is_gimple_min_invariant (step))
1740 return;
1741
1742 /* Do not adjust ranges when chrec may wrap. */
1743 if (scev_probably_wraps_p (chrec_type (chrec), init, step, stmt,
1744 cfg_loops->parray[CHREC_VARIABLE (chrec)],
1745 &init_is_max, &unknown_max)
1746 || unknown_max)
1747 return;
1748
1749 if (!POINTER_TYPE_P (TREE_TYPE (init))
1750 && (vr->type == VR_VARYING || vr->type == VR_UNDEFINED))
1751 {
1752 /* For VARYING or UNDEFINED ranges, just about anything we get
1753 from scalar evolutions should be better. */
1754 if (init_is_max)
1755 set_value_range (vr, VR_RANGE, TYPE_MIN_VALUE (TREE_TYPE (init)),
1756 init, vr->equiv);
1757 else
1758 set_value_range (vr, VR_RANGE, init, TYPE_MAX_VALUE (TREE_TYPE (init)),
1759 vr->equiv);
1760 }
1761 else if (vr->type == VR_RANGE)
1762 {
1763 tree min = vr->min;
1764 tree max = vr->max;
1765
1766 if (init_is_max)
1767 {
1768 /* INIT is the maximum value. If INIT is lower than VR->MAX
1769 but no smaller than VR->MIN, set VR->MAX to INIT. */
1770 if (compare_values (init, max) == -1)
1771 {
1772 max = init;
1773
1774 /* If we just created an invalid range with the minimum
1775 greater than the maximum, take the minimum all the
1776 way to -INF. */
1777 if (compare_values (min, max) == 1)
1778 min = TYPE_MIN_VALUE (TREE_TYPE (min));
1779 }
1780 }
1781 else
1782 {
1783 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
1784 if (compare_values (init, min) == 1)
1785 {
1786 min = init;
1787
1788 /* If we just created an invalid range with the minimum
1789 greater than the maximum, take the maximum all the
1790 way to +INF. */
1791 if (compare_values (min, max) == 1)
1792 max = TYPE_MAX_VALUE (TREE_TYPE (max));
1793 }
1794 }
1795
1796 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
1797 }
1798 }
1799
1800
1801 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
1802
1803 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
1804 all the values in the ranges.
1805
1806 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
1807
1808 - Return NULL_TREE if it is not always possible to determine the
1809 value of the comparison. */
1810
1811
1812 static tree
1813 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1)
1814 {
1815 /* VARYING or UNDEFINED ranges cannot be compared. */
1816 if (vr0->type == VR_VARYING
1817 || vr0->type == VR_UNDEFINED
1818 || vr1->type == VR_VARYING
1819 || vr1->type == VR_UNDEFINED)
1820 return NULL_TREE;
1821
1822 /* Anti-ranges need to be handled separately. */
1823 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
1824 {
1825 /* If both are anti-ranges, then we cannot compute any
1826 comparison. */
1827 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
1828 return NULL_TREE;
1829
1830 /* These comparisons are never statically computable. */
1831 if (comp == GT_EXPR
1832 || comp == GE_EXPR
1833 || comp == LT_EXPR
1834 || comp == LE_EXPR)
1835 return NULL_TREE;
1836
1837 /* Equality can be computed only between a range and an
1838 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
1839 if (vr0->type == VR_RANGE)
1840 {
1841 /* To simplify processing, make VR0 the anti-range. */
1842 value_range_t *tmp = vr0;
1843 vr0 = vr1;
1844 vr1 = tmp;
1845 }
1846
1847 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
1848
1849 if (compare_values (vr0->min, vr1->min) == 0
1850 && compare_values (vr0->max, vr1->max) == 0)
1851 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
1852
1853 return NULL_TREE;
1854 }
1855
1856 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
1857 operands around and change the comparison code. */
1858 if (comp == GT_EXPR || comp == GE_EXPR)
1859 {
1860 value_range_t *tmp;
1861 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
1862 tmp = vr0;
1863 vr0 = vr1;
1864 vr1 = tmp;
1865 }
1866
1867 if (comp == EQ_EXPR)
1868 {
1869 /* Equality may only be computed if both ranges represent
1870 exactly one value. */
1871 if (compare_values (vr0->min, vr0->max) == 0
1872 && compare_values (vr1->min, vr1->max) == 0)
1873 {
1874 int cmp_min = compare_values (vr0->min, vr1->min);
1875 int cmp_max = compare_values (vr0->max, vr1->max);
1876 if (cmp_min == 0 && cmp_max == 0)
1877 return boolean_true_node;
1878 else if (cmp_min != -2 && cmp_max != -2)
1879 return boolean_false_node;
1880 }
1881
1882 return NULL_TREE;
1883 }
1884 else if (comp == NE_EXPR)
1885 {
1886 int cmp1, cmp2;
1887
1888 /* If VR0 is completely to the left or completely to the right
1889 of VR1, they are always different. Notice that we need to
1890 make sure that both comparisons yield similar results to
1891 avoid comparing values that cannot be compared at
1892 compile-time. */
1893 cmp1 = compare_values (vr0->max, vr1->min);
1894 cmp2 = compare_values (vr0->min, vr1->max);
1895 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
1896 return boolean_true_node;
1897
1898 /* If VR0 and VR1 represent a single value and are identical,
1899 return false. */
1900 else if (compare_values (vr0->min, vr0->max) == 0
1901 && compare_values (vr1->min, vr1->max) == 0
1902 && compare_values (vr0->min, vr1->min) == 0
1903 && compare_values (vr0->max, vr1->max) == 0)
1904 return boolean_false_node;
1905
1906 /* Otherwise, they may or may not be different. */
1907 else
1908 return NULL_TREE;
1909 }
1910 else if (comp == LT_EXPR || comp == LE_EXPR)
1911 {
1912 int tst;
1913
1914 /* If VR0 is to the left of VR1, return true. */
1915 tst = compare_values (vr0->max, vr1->min);
1916 if ((comp == LT_EXPR && tst == -1)
1917 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
1918 return boolean_true_node;
1919
1920 /* If VR0 is to the right of VR1, return false. */
1921 tst = compare_values (vr0->min, vr1->max);
1922 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
1923 || (comp == LE_EXPR && tst == 1))
1924 return boolean_false_node;
1925
1926 /* Otherwise, we don't know. */
1927 return NULL_TREE;
1928 }
1929
1930 gcc_unreachable ();
1931 }
1932
1933
1934 /* Given a value range VR, a value VAL and a comparison code COMP, return
1935 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
1936 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
1937 always returns false. Return NULL_TREE if it is not always
1938 possible to determine the value of the comparison. */
1939
1940 static tree
1941 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val)
1942 {
1943 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
1944 return NULL_TREE;
1945
1946 /* Anti-ranges need to be handled separately. */
1947 if (vr->type == VR_ANTI_RANGE)
1948 {
1949 /* For anti-ranges, the only predicates that we can compute at
1950 compile time are equality and inequality. */
1951 if (comp == GT_EXPR
1952 || comp == GE_EXPR
1953 || comp == LT_EXPR
1954 || comp == LE_EXPR)
1955 return NULL_TREE;
1956
1957 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
1958 if (value_inside_range (val, vr) == 1)
1959 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
1960
1961 return NULL_TREE;
1962 }
1963
1964 if (comp == EQ_EXPR)
1965 {
1966 /* EQ_EXPR may only be computed if VR represents exactly
1967 one value. */
1968 if (compare_values (vr->min, vr->max) == 0)
1969 {
1970 int cmp = compare_values (vr->min, val);
1971 if (cmp == 0)
1972 return boolean_true_node;
1973 else if (cmp == -1 || cmp == 1 || cmp == 2)
1974 return boolean_false_node;
1975 }
1976 else if (compare_values (val, vr->min) == -1
1977 || compare_values (vr->max, val) == -1)
1978 return boolean_false_node;
1979
1980 return NULL_TREE;
1981 }
1982 else if (comp == NE_EXPR)
1983 {
1984 /* If VAL is not inside VR, then they are always different. */
1985 if (compare_values (vr->max, val) == -1
1986 || compare_values (vr->min, val) == 1)
1987 return boolean_true_node;
1988
1989 /* If VR represents exactly one value equal to VAL, then return
1990 false. */
1991 if (compare_values (vr->min, vr->max) == 0
1992 && compare_values (vr->min, val) == 0)
1993 return boolean_false_node;
1994
1995 /* Otherwise, they may or may not be different. */
1996 return NULL_TREE;
1997 }
1998 else if (comp == LT_EXPR || comp == LE_EXPR)
1999 {
2000 int tst;
2001
2002 /* If VR is to the left of VAL, return true. */
2003 tst = compare_values (vr->max, val);
2004 if ((comp == LT_EXPR && tst == -1)
2005 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
2006 return boolean_true_node;
2007
2008 /* If VR is to the right of VAL, return false. */
2009 tst = compare_values (vr->min, val);
2010 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
2011 || (comp == LE_EXPR && tst == 1))
2012 return boolean_false_node;
2013
2014 /* Otherwise, we don't know. */
2015 return NULL_TREE;
2016 }
2017 else if (comp == GT_EXPR || comp == GE_EXPR)
2018 {
2019 int tst;
2020
2021 /* If VR is to the right of VAL, return true. */
2022 tst = compare_values (vr->min, val);
2023 if ((comp == GT_EXPR && tst == 1)
2024 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
2025 return boolean_true_node;
2026
2027 /* If VR is to the left of VAL, return false. */
2028 tst = compare_values (vr->max, val);
2029 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
2030 || (comp == GE_EXPR && tst == -1))
2031 return boolean_false_node;
2032
2033 /* Otherwise, we don't know. */
2034 return NULL_TREE;
2035 }
2036
2037 gcc_unreachable ();
2038 }
2039
2040
2041 /* Debugging dumps. */
2042
2043 void dump_value_range (FILE *, value_range_t *);
2044 void debug_value_range (value_range_t *);
2045 void dump_all_value_ranges (FILE *);
2046 void debug_all_value_ranges (void);
2047 void dump_vr_equiv (FILE *, bitmap);
2048 void debug_vr_equiv (bitmap);
2049
2050
2051 /* Dump value range VR to FILE. */
2052
2053 void
2054 dump_value_range (FILE *file, value_range_t *vr)
2055 {
2056 if (vr == NULL)
2057 fprintf (file, "[]");
2058 else if (vr->type == VR_UNDEFINED)
2059 fprintf (file, "UNDEFINED");
2060 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
2061 {
2062 tree type = TREE_TYPE (vr->min);
2063
2064 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
2065
2066 if (INTEGRAL_TYPE_P (type)
2067 && !TYPE_UNSIGNED (type)
2068 && vr->min == TYPE_MIN_VALUE (type))
2069 fprintf (file, "-INF");
2070 else
2071 print_generic_expr (file, vr->min, 0);
2072
2073 fprintf (file, ", ");
2074
2075 if (INTEGRAL_TYPE_P (type)
2076 && vr->max == TYPE_MAX_VALUE (type))
2077 fprintf (file, "+INF");
2078 else
2079 print_generic_expr (file, vr->max, 0);
2080
2081 fprintf (file, "]");
2082
2083 if (vr->equiv)
2084 {
2085 bitmap_iterator bi;
2086 unsigned i, c = 0;
2087
2088 fprintf (file, " EQUIVALENCES: { ");
2089
2090 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
2091 {
2092 print_generic_expr (file, ssa_name (i), 0);
2093 fprintf (file, " ");
2094 c++;
2095 }
2096
2097 fprintf (file, "} (%u elements)", c);
2098 }
2099 }
2100 else if (vr->type == VR_VARYING)
2101 fprintf (file, "VARYING");
2102 else
2103 fprintf (file, "INVALID RANGE");
2104 }
2105
2106
2107 /* Dump value range VR to stderr. */
2108
2109 void
2110 debug_value_range (value_range_t *vr)
2111 {
2112 dump_value_range (stderr, vr);
2113 }
2114
2115
2116 /* Dump value ranges of all SSA_NAMEs to FILE. */
2117
2118 void
2119 dump_all_value_ranges (FILE *file)
2120 {
2121 size_t i;
2122
2123 for (i = 0; i < num_ssa_names; i++)
2124 {
2125 if (vr_value[i])
2126 {
2127 print_generic_expr (file, ssa_name (i), 0);
2128 fprintf (file, ": ");
2129 dump_value_range (file, vr_value[i]);
2130 fprintf (file, "\n");
2131 }
2132 }
2133
2134 fprintf (file, "\n");
2135 }
2136
2137
2138 /* Dump all value ranges to stderr. */
2139
2140 void
2141 debug_all_value_ranges (void)
2142 {
2143 dump_all_value_ranges (stderr);
2144 }
2145
2146
2147 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2148 create a new SSA name N and return the assertion assignment
2149 'V = ASSERT_EXPR <V, V OP W>'. */
2150
2151 static tree
2152 build_assert_expr_for (tree cond, tree v)
2153 {
2154 tree n, assertion;
2155
2156 gcc_assert (TREE_CODE (v) == SSA_NAME);
2157 n = duplicate_ssa_name (v, NULL_TREE);
2158
2159 if (COMPARISON_CLASS_P (cond))
2160 {
2161 tree a = build (ASSERT_EXPR, TREE_TYPE (v), v, cond);
2162 assertion = build (MODIFY_EXPR, TREE_TYPE (v), n, a);
2163 }
2164 else if (TREE_CODE (cond) == TRUTH_NOT_EXPR)
2165 {
2166 /* Given !V, build the assignment N = false. */
2167 tree op0 = TREE_OPERAND (cond, 0);
2168 gcc_assert (op0 == v);
2169 assertion = build (MODIFY_EXPR, TREE_TYPE (v), n, boolean_false_node);
2170 }
2171 else if (TREE_CODE (cond) == SSA_NAME)
2172 {
2173 /* Given V, build the assignment N = true. */
2174 gcc_assert (v == cond);
2175 assertion = build (MODIFY_EXPR, TREE_TYPE (v), n, boolean_true_node);
2176 }
2177 else
2178 gcc_unreachable ();
2179
2180 SSA_NAME_DEF_STMT (n) = assertion;
2181
2182 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2183 operand of the ASSERT_EXPR. Register the new name and the old one
2184 in the replacement table so that we can fix the SSA web after
2185 adding all the ASSERT_EXPRs. */
2186 register_new_name_mapping (n, v);
2187
2188 return assertion;
2189 }
2190
2191
2192 /* Return false if EXPR is a predicate expression involving floating
2193 point values. */
2194
2195 static inline bool
2196 fp_predicate (tree expr)
2197 {
2198 return (COMPARISON_CLASS_P (expr)
2199 && FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0))));
2200 }
2201
2202
2203 /* If the range of values taken by OP can be inferred after STMT executes,
2204 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2205 describes the inferred range. Return true if a range could be
2206 inferred. */
2207
2208 static bool
2209 infer_value_range (tree stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
2210 {
2211 *val_p = NULL_TREE;
2212 *comp_code_p = ERROR_MARK;
2213
2214 /* Do not attempt to infer anything in names that flow through
2215 abnormal edges. */
2216 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
2217 return false;
2218
2219 /* Similarly, don't infer anything from statements that may throw
2220 exceptions. */
2221 if (tree_could_throw_p (stmt))
2222 return false;
2223
2224 if (POINTER_TYPE_P (TREE_TYPE (op)))
2225 {
2226 bool is_store;
2227 unsigned num_uses, num_derefs;
2228
2229 count_uses_and_derefs (op, stmt, &num_uses, &num_derefs, &is_store);
2230 if (num_derefs > 0 && flag_delete_null_pointer_checks)
2231 {
2232 /* We can only assume that a pointer dereference will yield
2233 non-NULL if -fdelete-null-pointer-checks is enabled. */
2234 *val_p = build_int_cst (TREE_TYPE (op), 0);
2235 *comp_code_p = NE_EXPR;
2236 return true;
2237 }
2238 }
2239
2240 return false;
2241 }
2242
2243
2244 void dump_asserts_for (FILE *, tree);
2245 void debug_asserts_for (tree);
2246 void dump_all_asserts (FILE *);
2247 void debug_all_asserts (void);
2248
2249 /* Dump all the registered assertions for NAME to FILE. */
2250
2251 void
2252 dump_asserts_for (FILE *file, tree name)
2253 {
2254 assert_locus_t loc;
2255
2256 fprintf (file, "Assertions to be inserted for ");
2257 print_generic_expr (file, name, 0);
2258 fprintf (file, "\n");
2259
2260 loc = asserts_for[SSA_NAME_VERSION (name)];
2261 while (loc)
2262 {
2263 fprintf (file, "\t");
2264 print_generic_expr (file, bsi_stmt (loc->si), 0);
2265 fprintf (file, "\n\tBB #%d", loc->bb->index);
2266 if (loc->e)
2267 {
2268 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
2269 loc->e->dest->index);
2270 dump_edge_info (file, loc->e, 0);
2271 }
2272 fprintf (file, "\n\tPREDICATE: ");
2273 print_generic_expr (file, name, 0);
2274 fprintf (file, " %s ", tree_code_name[(int)loc->comp_code]);
2275 print_generic_expr (file, loc->val, 0);
2276 fprintf (file, "\n\n");
2277 loc = loc->next;
2278 }
2279
2280 fprintf (file, "\n");
2281 }
2282
2283
2284 /* Dump all the registered assertions for NAME to stderr. */
2285
2286 void
2287 debug_asserts_for (tree name)
2288 {
2289 dump_asserts_for (stderr, name);
2290 }
2291
2292
2293 /* Dump all the registered assertions for all the names to FILE. */
2294
2295 void
2296 dump_all_asserts (FILE *file)
2297 {
2298 unsigned i;
2299 bitmap_iterator bi;
2300
2301 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
2302 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2303 dump_asserts_for (file, ssa_name (i));
2304 fprintf (file, "\n");
2305 }
2306
2307
2308 /* Dump all the registered assertions for all the names to stderr. */
2309
2310 void
2311 debug_all_asserts (void)
2312 {
2313 dump_all_asserts (stderr);
2314 }
2315
2316
2317 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2318 'NAME COMP_CODE VAL' at a location that dominates block BB or
2319 E->DEST, then register this location as a possible insertion point
2320 for ASSERT_EXPR <NAME, NAME COMP_CODE VAL>.
2321
2322 BB, E and SI provide the exact insertion point for the new
2323 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2324 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2325 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2326 must not be NULL. */
2327
2328 static void
2329 register_new_assert_for (tree name,
2330 enum tree_code comp_code,
2331 tree val,
2332 basic_block bb,
2333 edge e,
2334 block_stmt_iterator si)
2335 {
2336 assert_locus_t n, loc, last_loc;
2337 bool found;
2338 basic_block dest_bb;
2339
2340 #if defined ENABLE_CHECKING
2341 gcc_assert (bb == NULL || e == NULL);
2342
2343 if (e == NULL)
2344 gcc_assert (TREE_CODE (bsi_stmt (si)) != COND_EXPR
2345 && TREE_CODE (bsi_stmt (si)) != SWITCH_EXPR);
2346 #endif
2347
2348 /* The new assertion A will be inserted at BB or E. We need to
2349 determine if the new location is dominated by a previously
2350 registered location for A. If we are doing an edge insertion,
2351 assume that A will be inserted at E->DEST. Note that this is not
2352 necessarily true.
2353
2354 If E is a critical edge, it will be split. But even if E is
2355 split, the new block will dominate the same set of blocks that
2356 E->DEST dominates.
2357
2358 The reverse, however, is not true, blocks dominated by E->DEST
2359 will not be dominated by the new block created to split E. So,
2360 if the insertion location is on a critical edge, we will not use
2361 the new location to move another assertion previously registered
2362 at a block dominated by E->DEST. */
2363 dest_bb = (bb) ? bb : e->dest;
2364
2365 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2366 VAL at a block dominating DEST_BB, then we don't need to insert a new
2367 one. Similarly, if the same assertion already exists at a block
2368 dominated by DEST_BB and the new location is not on a critical
2369 edge, then update the existing location for the assertion (i.e.,
2370 move the assertion up in the dominance tree).
2371
2372 Note, this is implemented as a simple linked list because there
2373 should not be more than a handful of assertions registered per
2374 name. If this becomes a performance problem, a table hashed by
2375 COMP_CODE and VAL could be implemented. */
2376 loc = asserts_for[SSA_NAME_VERSION (name)];
2377 last_loc = loc;
2378 found = false;
2379 while (loc)
2380 {
2381 if (loc->comp_code == comp_code
2382 && (loc->val == val
2383 || operand_equal_p (loc->val, val, 0)))
2384 {
2385 /* If the assertion NAME COMP_CODE VAL has already been
2386 registered at a basic block that dominates DEST_BB, then
2387 we don't need to insert the same assertion again. Note
2388 that we don't check strict dominance here to avoid
2389 replicating the same assertion inside the same basic
2390 block more than once (e.g., when a pointer is
2391 dereferenced several times inside a block).
2392
2393 An exception to this rule are edge insertions. If the
2394 new assertion is to be inserted on edge E, then it will
2395 dominate all the other insertions that we may want to
2396 insert in DEST_BB. So, if we are doing an edge
2397 insertion, don't do this dominance check. */
2398 if (e == NULL
2399 && dominated_by_p (CDI_DOMINATORS, dest_bb, loc->bb))
2400 return;
2401
2402 /* Otherwise, if E is not a critical edge and DEST_BB
2403 dominates the existing location for the assertion, move
2404 the assertion up in the dominance tree by updating its
2405 location information. */
2406 if ((e == NULL || !EDGE_CRITICAL_P (e))
2407 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
2408 {
2409 loc->bb = dest_bb;
2410 loc->e = e;
2411 loc->si = si;
2412 return;
2413 }
2414 }
2415
2416 /* Update the last node of the list and move to the next one. */
2417 last_loc = loc;
2418 loc = loc->next;
2419 }
2420
2421 /* If we didn't find an assertion already registered for
2422 NAME COMP_CODE VAL, add a new one at the end of the list of
2423 assertions associated with NAME. */
2424 n = xmalloc (sizeof (*n));
2425 n->bb = dest_bb;
2426 n->e = e;
2427 n->si = si;
2428 n->comp_code = comp_code;
2429 n->val = val;
2430 n->next = NULL;
2431
2432 if (last_loc)
2433 last_loc->next = n;
2434 else
2435 asserts_for[SSA_NAME_VERSION (name)] = n;
2436
2437 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
2438 }
2439
2440
2441 /* Try to register an edge assertion for SSA name NAME on edge E for
2442 the conditional jump pointed to by SI. Return true if an assertion
2443 for NAME could be registered. */
2444
2445 static bool
2446 register_edge_assert_for (tree name, edge e, block_stmt_iterator si)
2447 {
2448 tree val, stmt;
2449 enum tree_code comp_code;
2450
2451 stmt = bsi_stmt (si);
2452
2453 /* Do not attempt to infer anything in names that flow through
2454 abnormal edges. */
2455 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
2456 return false;
2457
2458 /* If NAME was not found in the sub-graph reachable from E, then
2459 there's nothing to do. */
2460 if (!TEST_BIT (found_in_subgraph, SSA_NAME_VERSION (name)))
2461 return false;
2462
2463 /* We found a use of NAME in the sub-graph rooted at E->DEST.
2464 Register an assertion for NAME according to the value that NAME
2465 takes on edge E. */
2466 if (TREE_CODE (stmt) == COND_EXPR)
2467 {
2468 /* If BB ends in a COND_EXPR then NAME then we should insert
2469 the original predicate on EDGE_TRUE_VALUE and the
2470 opposite predicate on EDGE_FALSE_VALUE. */
2471 tree cond = COND_EXPR_COND (stmt);
2472 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
2473
2474 /* Predicates may be a single SSA name or NAME OP VAL. */
2475 if (cond == name)
2476 {
2477 /* If the predicate is a name, it must be NAME, in which
2478 case we create the predicate NAME == true or
2479 NAME == false accordingly. */
2480 comp_code = EQ_EXPR;
2481 val = (is_else_edge) ? boolean_false_node : boolean_true_node;
2482 }
2483 else
2484 {
2485 /* Otherwise, we have a comparison of the form NAME COMP VAL
2486 or VAL COMP NAME. */
2487 if (name == TREE_OPERAND (cond, 1))
2488 {
2489 /* If the predicate is of the form VAL COMP NAME, flip
2490 COMP around because we need to register NAME as the
2491 first operand in the predicate. */
2492 comp_code = swap_tree_comparison (TREE_CODE (cond));
2493 val = TREE_OPERAND (cond, 0);
2494 }
2495 else
2496 {
2497 /* The comparison is of the form NAME COMP VAL, so the
2498 comparison code remains unchanged. */
2499 comp_code = TREE_CODE (cond);
2500 val = TREE_OPERAND (cond, 1);
2501 }
2502
2503 /* If we are inserting the assertion on the ELSE edge, we
2504 need to invert the sign comparison. */
2505 if (is_else_edge)
2506 comp_code = invert_tree_comparison (comp_code, 0);
2507
2508 /* Do not register always-false predicates. FIXME, this
2509 works around a limitation in fold() when dealing with
2510 enumerations. Given 'enum { N1, N2 } x;', fold will not
2511 fold 'if (x > N2)' to 'if (0)'. */
2512 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
2513 && (INTEGRAL_TYPE_P (TREE_TYPE (val))
2514 || SCALAR_FLOAT_TYPE_P (TREE_TYPE (val))))
2515 {
2516 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
2517 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
2518
2519 if (comp_code == GT_EXPR && compare_values (val, max) == 0)
2520 return false;
2521
2522 if (comp_code == LT_EXPR && compare_values (val, min) == 0)
2523 return false;
2524 }
2525 }
2526 }
2527 else
2528 {
2529 /* FIXME. Handle SWITCH_EXPR. */
2530 gcc_unreachable ();
2531 }
2532
2533 register_new_assert_for (name, comp_code, val, NULL, e, si);
2534 return true;
2535 }
2536
2537
2538 static bool find_assert_locations (basic_block bb);
2539
2540 /* Determine whether the outgoing edges of BB should receive an
2541 ASSERT_EXPR for each of the operands of BB's last statement. The
2542 last statement of BB must be a COND_EXPR or a SWITCH_EXPR.
2543
2544 If any of the sub-graphs rooted at BB have an interesting use of
2545 the predicate operands, an assert location node is added to the
2546 list of assertions for the corresponding operands. */
2547
2548 static bool
2549 find_conditional_asserts (basic_block bb)
2550 {
2551 bool need_assert;
2552 block_stmt_iterator last_si;
2553 tree op, last;
2554 edge_iterator ei;
2555 edge e;
2556 ssa_op_iter iter;
2557
2558 need_assert = false;
2559 last_si = bsi_last (bb);
2560 last = bsi_stmt (last_si);
2561
2562 /* Look for uses of the operands in each of the sub-graphs
2563 rooted at BB. We need to check each of the outgoing edges
2564 separately, so that we know what kind of ASSERT_EXPR to
2565 insert. */
2566 FOR_EACH_EDGE (e, ei, bb->succs)
2567 {
2568 if (e->dest == bb)
2569 continue;
2570
2571 /* Remove the COND_EXPR operands from the FOUND_IN_SUBGRAPH bitmap.
2572 Otherwise, when we finish traversing each of the sub-graphs, we
2573 won't know whether the variables were found in the sub-graphs or
2574 if they had been found in a block upstream from BB. */
2575 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2576 RESET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2577
2578 /* Traverse the strictly dominated sub-graph rooted at E->DEST
2579 to determine if any of the operands in the conditional
2580 predicate are used. */
2581 if (e->dest != bb)
2582 need_assert |= find_assert_locations (e->dest);
2583
2584 /* Register the necessary assertions for each operand in the
2585 conditional predicate. */
2586 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2587 need_assert |= register_edge_assert_for (op, e, last_si);
2588 }
2589
2590 /* Finally, indicate that we have found the operands in the
2591 conditional. */
2592 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
2593 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2594
2595 return need_assert;
2596 }
2597
2598
2599 /* Traverse all the statements in block BB looking for statements that
2600 may generate useful assertions for the SSA names in their operand.
2601 If a statement produces a useful assertion A for name N_i, then the
2602 list of assertions already generated for N_i is scanned to
2603 determine if A is actually needed.
2604
2605 If N_i already had the assertion A at a location dominating the
2606 current location, then nothing needs to be done. Otherwise, the
2607 new location for A is recorded instead.
2608
2609 1- For every statement S in BB, all the variables used by S are
2610 added to bitmap FOUND_IN_SUBGRAPH.
2611
2612 2- If statement S uses an operand N in a way that exposes a known
2613 value range for N, then if N was not already generated by an
2614 ASSERT_EXPR, create a new assert location for N. For instance,
2615 if N is a pointer and the statement dereferences it, we can
2616 assume that N is not NULL.
2617
2618 3- COND_EXPRs are a special case of #2. We can derive range
2619 information from the predicate but need to insert different
2620 ASSERT_EXPRs for each of the sub-graphs rooted at the
2621 conditional block. If the last statement of BB is a conditional
2622 expression of the form 'X op Y', then
2623
2624 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
2625
2626 b) If the conditional is the only entry point to the sub-graph
2627 corresponding to the THEN_CLAUSE, recurse into it. On
2628 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
2629 an ASSERT_EXPR is added for the corresponding variable.
2630
2631 c) Repeat step (b) on the ELSE_CLAUSE.
2632
2633 d) Mark X and Y in FOUND_IN_SUBGRAPH.
2634
2635 For instance,
2636
2637 if (a == 9)
2638 b = a;
2639 else
2640 b = c + 1;
2641
2642 In this case, an assertion on the THEN clause is useful to
2643 determine that 'a' is always 9 on that edge. However, an assertion
2644 on the ELSE clause would be unnecessary.
2645
2646 4- If BB does not end in a conditional expression, then we recurse
2647 into BB's dominator children.
2648
2649 At the end of the recursive traversal, every SSA name will have a
2650 list of locations where ASSERT_EXPRs should be added. When a new
2651 location for name N is found, it is registered by calling
2652 register_new_assert_for. That function keeps track of all the
2653 registered assertions to prevent adding unnecessary assertions.
2654 For instance, if a pointer P_4 is dereferenced more than once in a
2655 dominator tree, only the location dominating all the dereference of
2656 P_4 will receive an ASSERT_EXPR.
2657
2658 If this function returns true, then it means that there are names
2659 for which we need to generate ASSERT_EXPRs. Those assertions are
2660 inserted by process_assert_insertions.
2661
2662 TODO. Handle SWITCH_EXPR. */
2663
2664 static bool
2665 find_assert_locations (basic_block bb)
2666 {
2667 block_stmt_iterator si;
2668 tree last, phi;
2669 bool need_assert;
2670 basic_block son;
2671
2672 if (TEST_BIT (blocks_visited, bb->index))
2673 return false;
2674
2675 SET_BIT (blocks_visited, bb->index);
2676
2677 need_assert = false;
2678
2679 /* Traverse all PHI nodes in BB marking used operands. */
2680 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
2681 {
2682 use_operand_p arg_p;
2683 ssa_op_iter i;
2684
2685 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
2686 {
2687 tree arg = USE_FROM_PTR (arg_p);
2688 if (TREE_CODE (arg) == SSA_NAME)
2689 {
2690 gcc_assert (is_gimple_reg (PHI_RESULT (phi)));
2691 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (arg));
2692 }
2693 }
2694 }
2695
2696 /* Traverse all the statements in BB marking used names and looking
2697 for statements that may infer assertions for their used operands. */
2698 last = NULL_TREE;
2699 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
2700 {
2701 tree stmt, op;
2702 ssa_op_iter i;
2703
2704 stmt = bsi_stmt (si);
2705
2706 /* See if we can derive an assertion for any of STMT's operands. */
2707 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
2708 {
2709 tree value;
2710 enum tree_code comp_code;
2711
2712 /* Mark OP in bitmap FOUND_IN_SUBGRAPH. If STMT is inside
2713 the sub-graph of a conditional block, when we return from
2714 this recursive walk, our parent will use the
2715 FOUND_IN_SUBGRAPH bitset to determine if one of the
2716 operands it was looking for was present in the sub-graph. */
2717 SET_BIT (found_in_subgraph, SSA_NAME_VERSION (op));
2718
2719 /* If OP is used only once, namely in this STMT, don't
2720 bother creating an ASSERT_EXPR for it. Such an
2721 ASSERT_EXPR would do nothing but increase compile time.
2722 Experiments show that with this simple check, we can save
2723 more than 20% of ASSERT_EXPRs. */
2724 if (has_single_use (op))
2725 continue;
2726
2727 /* If OP is used in such a way that we can infer a value
2728 range for it, and we don't find a previous assertion for
2729 it, create a new assertion location node for OP. */
2730 if (infer_value_range (stmt, op, &comp_code, &value))
2731 {
2732 register_new_assert_for (op, comp_code, value, bb, NULL, si);
2733 need_assert = true;
2734 }
2735 }
2736
2737 /* Remember the last statement of the block. */
2738 last = stmt;
2739 }
2740
2741 /* If BB's last statement is a conditional expression
2742 involving integer operands, recurse into each of the sub-graphs
2743 rooted at BB to determine if we need to add ASSERT_EXPRs. */
2744 if (last
2745 && TREE_CODE (last) == COND_EXPR
2746 && !fp_predicate (COND_EXPR_COND (last))
2747 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
2748 need_assert |= find_conditional_asserts (bb);
2749
2750 /* Recurse into the dominator children of BB. */
2751 for (son = first_dom_son (CDI_DOMINATORS, bb);
2752 son;
2753 son = next_dom_son (CDI_DOMINATORS, son))
2754 need_assert |= find_assert_locations (son);
2755
2756 return need_assert;
2757 }
2758
2759
2760 /* Create an ASSERT_EXPR for NAME and insert it in the location
2761 indicated by LOC. Return true if we made any edge insertions. */
2762
2763 static bool
2764 process_assert_insertions_for (tree name, assert_locus_t loc)
2765 {
2766 /* Build the comparison expression NAME_i COMP_CODE VAL. */
2767 tree stmt, cond, assert_expr;
2768 edge_iterator ei;
2769 edge e;
2770
2771 cond = build (loc->comp_code, boolean_type_node, name, loc->val);
2772 assert_expr = build_assert_expr_for (cond, name);
2773
2774 if (loc->e)
2775 {
2776 /* We have been asked to insert the assertion on an edge. This
2777 is used only by COND_EXPR and SWITCH_EXPR assertions. */
2778 #if defined ENABLE_CHECKING
2779 gcc_assert (TREE_CODE (bsi_stmt (loc->si)) == COND_EXPR
2780 || TREE_CODE (bsi_stmt (loc->si)) == SWITCH_EXPR);
2781 #endif
2782
2783 bsi_insert_on_edge (loc->e, assert_expr);
2784 return true;
2785 }
2786
2787 /* Otherwise, we can insert right after LOC->SI iff the
2788 statement must not be the last statement in the block. */
2789 stmt = bsi_stmt (loc->si);
2790 if (!stmt_ends_bb_p (stmt))
2791 {
2792 bsi_insert_after (&loc->si, assert_expr, BSI_SAME_STMT);
2793 return false;
2794 }
2795
2796 /* If STMT must be the last statement in BB, we can only insert new
2797 assertions on the non-abnormal edge out of BB. Note that since
2798 STMT is not control flow, there may only be one non-abnormal edge
2799 out of BB. */
2800 FOR_EACH_EDGE (e, ei, loc->bb->succs)
2801 if (!(e->flags & EDGE_ABNORMAL))
2802 {
2803 bsi_insert_on_edge (e, assert_expr);
2804 return true;
2805 }
2806
2807 gcc_unreachable ();
2808 }
2809
2810
2811 /* Process all the insertions registered for every name N_i registered
2812 in NEED_ASSERT_FOR. The list of assertions to be inserted are
2813 found in ASSERTS_FOR[i]. */
2814
2815 static void
2816 process_assert_insertions (void)
2817 {
2818 unsigned i;
2819 bitmap_iterator bi;
2820 bool update_edges_p = false;
2821 int num_asserts = 0;
2822
2823 if (dump_file && (dump_flags & TDF_DETAILS))
2824 dump_all_asserts (dump_file);
2825
2826 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2827 {
2828 assert_locus_t loc = asserts_for[i];
2829 gcc_assert (loc);
2830
2831 while (loc)
2832 {
2833 assert_locus_t next = loc->next;
2834 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
2835 free (loc);
2836 loc = next;
2837 num_asserts++;
2838 }
2839 }
2840
2841 if (update_edges_p)
2842 bsi_commit_edge_inserts ();
2843
2844 if (dump_file && (dump_flags & TDF_STATS))
2845 fprintf (dump_file, "\nNumber of ASSERT_EXPR expressions inserted: %d\n\n",
2846 num_asserts);
2847 }
2848
2849
2850 /* Traverse the flowgraph looking for conditional jumps to insert range
2851 expressions. These range expressions are meant to provide information
2852 to optimizations that need to reason in terms of value ranges. They
2853 will not be expanded into RTL. For instance, given:
2854
2855 x = ...
2856 y = ...
2857 if (x < y)
2858 y = x - 2;
2859 else
2860 x = y + 3;
2861
2862 this pass will transform the code into:
2863
2864 x = ...
2865 y = ...
2866 if (x < y)
2867 {
2868 x = ASSERT_EXPR <x, x < y>
2869 y = x - 2
2870 }
2871 else
2872 {
2873 y = ASSERT_EXPR <y, x <= y>
2874 x = y + 3
2875 }
2876
2877 The idea is that once copy and constant propagation have run, other
2878 optimizations will be able to determine what ranges of values can 'x'
2879 take in different paths of the code, simply by checking the reaching
2880 definition of 'x'. */
2881
2882 static void
2883 insert_range_assertions (void)
2884 {
2885 edge e;
2886 edge_iterator ei;
2887 bool update_ssa_p;
2888
2889 found_in_subgraph = sbitmap_alloc (num_ssa_names);
2890 sbitmap_zero (found_in_subgraph);
2891
2892 blocks_visited = sbitmap_alloc (last_basic_block);
2893 sbitmap_zero (blocks_visited);
2894
2895 need_assert_for = BITMAP_ALLOC (NULL);
2896 asserts_for = xmalloc (num_ssa_names * sizeof (assert_locus_t));
2897 memset (asserts_for, 0, num_ssa_names * sizeof (assert_locus_t));
2898
2899 calculate_dominance_info (CDI_DOMINATORS);
2900
2901 update_ssa_p = false;
2902 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR->succs)
2903 if (find_assert_locations (e->dest))
2904 update_ssa_p = true;
2905
2906 if (update_ssa_p)
2907 {
2908 process_assert_insertions ();
2909 update_ssa (TODO_update_ssa_no_phi);
2910 }
2911
2912 if (dump_file && (dump_flags & TDF_DETAILS))
2913 {
2914 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
2915 dump_function_to_file (current_function_decl, dump_file, dump_flags);
2916 }
2917
2918 sbitmap_free (found_in_subgraph);
2919 free (asserts_for);
2920 BITMAP_FREE (need_assert_for);
2921 }
2922
2923
2924 /* Convert range assertion expressions into the implied copies and
2925 copy propagate away the copies. Doing the trivial copy propagation
2926 here avoids the need to run the full copy propagation pass after
2927 VRP.
2928
2929 FIXME, this will eventually lead to copy propagation removing the
2930 names that had useful range information attached to them. For
2931 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
2932 then N_i will have the range [3, +INF].
2933
2934 However, by converting the assertion into the implied copy
2935 operation N_i = N_j, we will then copy-propagate N_j into the uses
2936 of N_i and lose the range information. We may want to hold on to
2937 ASSERT_EXPRs a little while longer as the ranges could be used in
2938 things like jump threading.
2939
2940 The problem with keeping ASSERT_EXPRs around is that passes after
2941 VRP need to handle them appropriately.
2942
2943 Another approach would be to make the range information a first
2944 class property of the SSA_NAME so that it can be queried from
2945 any pass. This is made somewhat more complex by the need for
2946 multiple ranges to be associated with one SSA_NAME. */
2947
2948 static void
2949 remove_range_assertions (void)
2950 {
2951 basic_block bb;
2952 block_stmt_iterator si;
2953
2954 /* Note that the BSI iterator bump happens at the bottom of the
2955 loop and no bump is necessary if we're removing the statement
2956 referenced by the current BSI. */
2957 FOR_EACH_BB (bb)
2958 for (si = bsi_start (bb); !bsi_end_p (si);)
2959 {
2960 tree stmt = bsi_stmt (si);
2961
2962 if (TREE_CODE (stmt) == MODIFY_EXPR
2963 && TREE_CODE (TREE_OPERAND (stmt, 1)) == ASSERT_EXPR)
2964 {
2965 tree rhs = TREE_OPERAND (stmt, 1);
2966 tree cond = fold (ASSERT_EXPR_COND (rhs));
2967 use_operand_p use_p;
2968 imm_use_iterator iter;
2969
2970 gcc_assert (cond != boolean_false_node);
2971 TREE_OPERAND (stmt, 1) = ASSERT_EXPR_VAR (rhs);
2972 update_stmt (stmt);
2973
2974 /* The statement is now a copy. Propagate the RHS into
2975 every use of the LHS. */
2976 FOR_EACH_IMM_USE_SAFE (use_p, iter, TREE_OPERAND (stmt, 0))
2977 {
2978 SET_USE (use_p, ASSERT_EXPR_VAR (rhs));
2979 update_stmt (USE_STMT (use_p));
2980 }
2981
2982 /* And finally, remove the copy, it is not needed. */
2983 bsi_remove (&si);
2984 }
2985 else
2986 bsi_next (&si);
2987 }
2988
2989 sbitmap_free (blocks_visited);
2990 }
2991
2992
2993 /* Return true if STMT is interesting for VRP. */
2994
2995 static bool
2996 stmt_interesting_for_vrp (tree stmt)
2997 {
2998 if (TREE_CODE (stmt) == PHI_NODE
2999 && is_gimple_reg (PHI_RESULT (stmt))
3000 && (INTEGRAL_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))
3001 || POINTER_TYPE_P (TREE_TYPE (PHI_RESULT (stmt)))))
3002 return true;
3003 else if (TREE_CODE (stmt) == MODIFY_EXPR)
3004 {
3005 tree lhs = TREE_OPERAND (stmt, 0);
3006
3007 if (TREE_CODE (lhs) == SSA_NAME
3008 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3009 || POINTER_TYPE_P (TREE_TYPE (lhs)))
3010 && ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
3011 return true;
3012 }
3013 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3014 return true;
3015
3016 return false;
3017 }
3018
3019
3020 /* Initialize local data structures for VRP. */
3021
3022 static void
3023 vrp_initialize (void)
3024 {
3025 basic_block bb;
3026
3027 vr_value = xmalloc (num_ssa_names * sizeof (value_range_t *));
3028 memset (vr_value, 0, num_ssa_names * sizeof (value_range_t *));
3029
3030 FOR_EACH_BB (bb)
3031 {
3032 block_stmt_iterator si;
3033 tree phi;
3034
3035 for (phi = phi_nodes (bb); phi; phi = PHI_CHAIN (phi))
3036 {
3037 if (!stmt_interesting_for_vrp (phi))
3038 {
3039 tree lhs = PHI_RESULT (phi);
3040 set_value_range_to_varying (get_value_range (lhs));
3041 DONT_SIMULATE_AGAIN (phi) = true;
3042 }
3043 else
3044 DONT_SIMULATE_AGAIN (phi) = false;
3045 }
3046
3047 for (si = bsi_start (bb); !bsi_end_p (si); bsi_next (&si))
3048 {
3049 tree stmt = bsi_stmt (si);
3050
3051 if (!stmt_interesting_for_vrp (stmt))
3052 {
3053 ssa_op_iter i;
3054 tree def;
3055 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
3056 set_value_range_to_varying (get_value_range (def));
3057 DONT_SIMULATE_AGAIN (stmt) = true;
3058 }
3059 else
3060 {
3061 DONT_SIMULATE_AGAIN (stmt) = false;
3062 }
3063 }
3064 }
3065 }
3066
3067
3068 /* Visit assignment STMT. If it produces an interesting range, record
3069 the SSA name in *OUTPUT_P. */
3070
3071 static enum ssa_prop_result
3072 vrp_visit_assignment (tree stmt, tree *output_p)
3073 {
3074 tree lhs, rhs, def;
3075 ssa_op_iter iter;
3076
3077 lhs = TREE_OPERAND (stmt, 0);
3078 rhs = TREE_OPERAND (stmt, 1);
3079
3080 /* We only keep track of ranges in integral and pointer types. */
3081 if (TREE_CODE (lhs) == SSA_NAME
3082 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
3083 || POINTER_TYPE_P (TREE_TYPE (lhs))))
3084 {
3085 struct loop *l;
3086 value_range_t new_vr = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3087
3088 extract_range_from_expr (&new_vr, rhs);
3089
3090 /* If STMT is inside a loop, we may be able to know something
3091 else about the range of LHS by examining scalar evolution
3092 information. */
3093 if (cfg_loops && (l = loop_containing_stmt (stmt)))
3094 adjust_range_with_scev (&new_vr, l, stmt, lhs);
3095
3096 if (update_value_range (lhs, &new_vr))
3097 {
3098 *output_p = lhs;
3099
3100 if (dump_file && (dump_flags & TDF_DETAILS))
3101 {
3102 fprintf (dump_file, "Found new range for ");
3103 print_generic_expr (dump_file, lhs, 0);
3104 fprintf (dump_file, ": ");
3105 dump_value_range (dump_file, &new_vr);
3106 fprintf (dump_file, "\n\n");
3107 }
3108
3109 if (new_vr.type == VR_VARYING)
3110 return SSA_PROP_VARYING;
3111
3112 return SSA_PROP_INTERESTING;
3113 }
3114
3115 return SSA_PROP_NOT_INTERESTING;
3116 }
3117
3118 /* Every other statement produces no useful ranges. */
3119 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3120 set_value_range_to_varying (get_value_range (def));
3121
3122 return SSA_PROP_VARYING;
3123 }
3124
3125
3126 /* Compare all the value ranges for names equivalent to VAR with VAL
3127 using comparison code COMP. Return the same value returned by
3128 compare_range_with_value. */
3129
3130 static tree
3131 compare_name_with_value (enum tree_code comp, tree var, tree val)
3132 {
3133 bitmap_iterator bi;
3134 unsigned i;
3135 bitmap e;
3136 tree retval, t;
3137
3138 t = retval = NULL_TREE;
3139
3140 /* Get the set of equivalences for VAR. */
3141 e = get_value_range (var)->equiv;
3142
3143 /* Add VAR to its own set of equivalences so that VAR's value range
3144 is processed by this loop (otherwise, we would have to replicate
3145 the body of the loop just to check VAR's value range). */
3146 bitmap_set_bit (e, SSA_NAME_VERSION (var));
3147
3148 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
3149 {
3150 value_range_t equiv_vr = *(vr_value[i]);
3151
3152 /* If name N_i does not have a valid range, use N_i as its own
3153 range. This allows us to compare against names that may
3154 have N_i in their ranges. */
3155 if (equiv_vr.type == VR_VARYING || equiv_vr.type == VR_UNDEFINED)
3156 {
3157 equiv_vr.type = VR_RANGE;
3158 equiv_vr.min = ssa_name (i);
3159 equiv_vr.max = ssa_name (i);
3160 }
3161
3162 t = compare_range_with_value (comp, &equiv_vr, val);
3163 if (t)
3164 {
3165 /* All the ranges should compare the same against VAL. */
3166 gcc_assert (retval == NULL || t == retval);
3167 retval = t;
3168 }
3169 }
3170
3171 /* Remove VAR from its own equivalence set. */
3172 bitmap_clear_bit (e, SSA_NAME_VERSION (var));
3173
3174 if (retval)
3175 return retval;
3176
3177 /* We couldn't find a non-NULL value for the predicate. */
3178 return NULL_TREE;
3179 }
3180
3181
3182 /* Given a comparison code COMP and names N1 and N2, compare all the
3183 ranges equivalent to N1 against all the ranges equivalent to N2
3184 to determine the value of N1 COMP N2. Return the same value
3185 returned by compare_ranges. */
3186
3187 static tree
3188 compare_names (enum tree_code comp, tree n1, tree n2)
3189 {
3190 tree t, retval;
3191 bitmap e1, e2;
3192 bitmap_iterator bi1, bi2;
3193 unsigned i1, i2;
3194
3195 /* Compare the ranges of every name equivalent to N1 against the
3196 ranges of every name equivalent to N2. */
3197 e1 = get_value_range (n1)->equiv;
3198 e2 = get_value_range (n2)->equiv;
3199
3200 /* Add N1 and N2 to their own set of equivalences to avoid
3201 duplicating the body of the loop just to check N1 and N2
3202 ranges. */
3203 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
3204 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
3205
3206 /* If the equivalence sets have a common intersection, then the two
3207 names can be compared without checking their ranges. */
3208 if (bitmap_intersect_p (e1, e2))
3209 {
3210 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3211 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3212
3213 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
3214 ? boolean_true_node
3215 : boolean_false_node;
3216 }
3217
3218 /* Otherwise, compare all the equivalent ranges. First, add N1 and
3219 N2 to their own set of equivalences to avoid duplicating the body
3220 of the loop just to check N1 and N2 ranges. */
3221 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
3222 {
3223 value_range_t vr1 = *(vr_value[i1]);
3224
3225 /* If the range is VARYING or UNDEFINED, use the name itself. */
3226 if (vr1.type == VR_VARYING || vr1.type == VR_UNDEFINED)
3227 {
3228 vr1.type = VR_RANGE;
3229 vr1.min = ssa_name (i1);
3230 vr1.max = ssa_name (i1);
3231 }
3232
3233 t = retval = NULL_TREE;
3234 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
3235 {
3236 value_range_t vr2 = *(vr_value[i2]);
3237
3238 if (vr2.type == VR_VARYING || vr2.type == VR_UNDEFINED)
3239 {
3240 vr2.type = VR_RANGE;
3241 vr2.min = ssa_name (i2);
3242 vr2.max = ssa_name (i2);
3243 }
3244
3245 t = compare_ranges (comp, &vr1, &vr2);
3246 if (t)
3247 {
3248 /* All the ranges in the equivalent sets should compare
3249 the same. */
3250 gcc_assert (retval == NULL || t == retval);
3251 retval = t;
3252 }
3253 }
3254
3255 if (retval)
3256 {
3257 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3258 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3259 return retval;
3260 }
3261 }
3262
3263 /* None of the equivalent ranges are useful in computing this
3264 comparison. */
3265 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
3266 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
3267 return NULL_TREE;
3268 }
3269
3270
3271 /* Given a conditional predicate COND, try to determine if COND yields
3272 true or false based on the value ranges of its operands. Return
3273 BOOLEAN_TRUE_NODE if the conditional always evaluates to true,
3274 BOOLEAN_FALSE_NODE if the conditional always evaluates to false, and,
3275 NULL if the conditional cannot be evaluated at compile time.
3276
3277 If USE_EQUIV_P is true, the ranges of all the names equivalent with
3278 the operands in COND are used when trying to compute its value.
3279 This is only used during final substitution. During propagation,
3280 we only check the range of each variable and not its equivalents. */
3281
3282 tree
3283 vrp_evaluate_conditional (tree cond, bool use_equiv_p)
3284 {
3285 gcc_assert (TREE_CODE (cond) == SSA_NAME
3286 || TREE_CODE_CLASS (TREE_CODE (cond)) == tcc_comparison);
3287
3288 if (TREE_CODE (cond) == SSA_NAME)
3289 {
3290 value_range_t *vr;
3291 tree retval;
3292
3293 if (use_equiv_p)
3294 retval = compare_name_with_value (NE_EXPR, cond, boolean_false_node);
3295 else
3296 {
3297 value_range_t *vr = get_value_range (cond);
3298 retval = compare_range_with_value (NE_EXPR, vr, boolean_false_node);
3299 }
3300
3301 /* If COND has a known boolean range, return it. */
3302 if (retval)
3303 return retval;
3304
3305 /* Otherwise, if COND has a symbolic range of exactly one value,
3306 return it. */
3307 vr = get_value_range (cond);
3308 if (vr->type == VR_RANGE && vr->min == vr->max)
3309 return vr->min;
3310 }
3311 else
3312 {
3313 tree op0 = TREE_OPERAND (cond, 0);
3314 tree op1 = TREE_OPERAND (cond, 1);
3315
3316 /* We only deal with integral and pointer types. */
3317 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
3318 && !POINTER_TYPE_P (TREE_TYPE (op0)))
3319 return NULL_TREE;
3320
3321 if (use_equiv_p)
3322 {
3323 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
3324 return compare_names (TREE_CODE (cond), op0, op1);
3325 else if (TREE_CODE (op0) == SSA_NAME)
3326 return compare_name_with_value (TREE_CODE (cond), op0, op1);
3327 else if (TREE_CODE (op1) == SSA_NAME)
3328 return compare_name_with_value (
3329 swap_tree_comparison (TREE_CODE (cond)), op1, op0);
3330 }
3331 else
3332 {
3333 value_range_t *vr0, *vr1;
3334
3335 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
3336 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
3337
3338 if (vr0 && vr1)
3339 return compare_ranges (TREE_CODE (cond), vr0, vr1);
3340 else if (vr0 && vr1 == NULL)
3341 return compare_range_with_value (TREE_CODE (cond), vr0, op1);
3342 else if (vr0 == NULL && vr1)
3343 return compare_range_with_value (
3344 swap_tree_comparison (TREE_CODE (cond)), vr1, op0);
3345 }
3346 }
3347
3348 /* Anything else cannot be computed statically. */
3349 return NULL_TREE;
3350 }
3351
3352
3353 /* Visit conditional statement STMT. If we can determine which edge
3354 will be taken out of STMT's basic block, record it in
3355 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
3356 SSA_PROP_VARYING. */
3357
3358 static enum ssa_prop_result
3359 vrp_visit_cond_stmt (tree stmt, edge *taken_edge_p)
3360 {
3361 tree cond, val;
3362
3363 *taken_edge_p = NULL;
3364
3365 /* FIXME. Handle SWITCH_EXPRs. But first, the assert pass needs to
3366 add ASSERT_EXPRs for them. */
3367 if (TREE_CODE (stmt) == SWITCH_EXPR)
3368 return SSA_PROP_VARYING;
3369
3370 cond = COND_EXPR_COND (stmt);
3371
3372 if (dump_file && (dump_flags & TDF_DETAILS))
3373 {
3374 tree use;
3375 ssa_op_iter i;
3376
3377 fprintf (dump_file, "\nVisiting conditional with predicate: ");
3378 print_generic_expr (dump_file, cond, 0);
3379 fprintf (dump_file, "\nWith known ranges\n");
3380
3381 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
3382 {
3383 fprintf (dump_file, "\t");
3384 print_generic_expr (dump_file, use, 0);
3385 fprintf (dump_file, ": ");
3386 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
3387 }
3388
3389 fprintf (dump_file, "\n");
3390 }
3391
3392 /* Compute the value of the predicate COND by checking the known
3393 ranges of each of its operands.
3394
3395 Note that we cannot evaluate all the equivalent ranges here
3396 because those ranges may not yet be final and with the current
3397 propagation strategy, we cannot determine when the value ranges
3398 of the names in the equivalence set have changed.
3399
3400 For instance, given the following code fragment
3401
3402 i_5 = PHI <8, i_13>
3403 ...
3404 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
3405 if (i_14 == 1)
3406 ...
3407
3408 Assume that on the first visit to i_14, i_5 has the temporary
3409 range [8, 8] because the second argument to the PHI function is
3410 not yet executable. We derive the range ~[0, 0] for i_14 and the
3411 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
3412 the first time, since i_14 is equivalent to the range [8, 8], we
3413 determine that the predicate is always false.
3414
3415 On the next round of propagation, i_13 is determined to be
3416 VARYING, which causes i_5 to drop down to VARYING. So, another
3417 visit to i_14 is scheduled. In this second visit, we compute the
3418 exact same range and equivalence set for i_14, namely ~[0, 0] and
3419 { i_5 }. But we did not have the previous range for i_5
3420 registered, so vrp_visit_assignment thinks that the range for
3421 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
3422 is not visited again, which stops propagation from visiting
3423 statements in the THEN clause of that if().
3424
3425 To properly fix this we would need to keep the previous range
3426 value for the names in the equivalence set. This way we would've
3427 discovered that from one visit to the other i_5 changed from
3428 range [8, 8] to VR_VARYING.
3429
3430 However, fixing this apparent limitation may not be worth the
3431 additional checking. Testing on several code bases (GCC, DLV,
3432 MICO, TRAMP3D and SPEC2000) showed that doing this results in
3433 4 more predicates folded in SPEC. */
3434 val = vrp_evaluate_conditional (cond, false);
3435 if (val)
3436 *taken_edge_p = find_taken_edge (bb_for_stmt (stmt), val);
3437
3438 if (dump_file && (dump_flags & TDF_DETAILS))
3439 {
3440 fprintf (dump_file, "\nPredicate evaluates to: ");
3441 if (val == NULL_TREE)
3442 fprintf (dump_file, "DON'T KNOW\n");
3443 else
3444 print_generic_stmt (dump_file, val, 0);
3445 }
3446
3447 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
3448 }
3449
3450
3451 /* Evaluate statement STMT. If the statement produces a useful range,
3452 return SSA_PROP_INTERESTING and record the SSA name with the
3453 interesting range into *OUTPUT_P.
3454
3455 If STMT is a conditional branch and we can determine its truth
3456 value, the taken edge is recorded in *TAKEN_EDGE_P.
3457
3458 If STMT produces a varying value, return SSA_PROP_VARYING. */
3459
3460 static enum ssa_prop_result
3461 vrp_visit_stmt (tree stmt, edge *taken_edge_p, tree *output_p)
3462 {
3463 tree def;
3464 ssa_op_iter iter;
3465 stmt_ann_t ann;
3466
3467 if (dump_file && (dump_flags & TDF_DETAILS))
3468 {
3469 fprintf (dump_file, "\nVisiting statement:\n");
3470 print_generic_stmt (dump_file, stmt, dump_flags);
3471 fprintf (dump_file, "\n");
3472 }
3473
3474 ann = stmt_ann (stmt);
3475 if (TREE_CODE (stmt) == MODIFY_EXPR
3476 && ZERO_SSA_OPERANDS (stmt, SSA_OP_ALL_VIRTUALS))
3477 return vrp_visit_assignment (stmt, output_p);
3478 else if (TREE_CODE (stmt) == COND_EXPR || TREE_CODE (stmt) == SWITCH_EXPR)
3479 return vrp_visit_cond_stmt (stmt, taken_edge_p);
3480
3481 /* All other statements produce nothing of interest for VRP, so mark
3482 their outputs varying and prevent further simulation. */
3483 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
3484 set_value_range_to_varying (get_value_range (def));
3485
3486 return SSA_PROP_VARYING;
3487 }
3488
3489
3490 /* Meet operation for value ranges. Given two value ranges VR0 and
3491 VR1, store in VR0 the result of meeting VR0 and VR1.
3492
3493 The meeting rules are as follows:
3494
3495 1- If VR0 and VR1 have an empty intersection, set VR0 to VR_VARYING.
3496
3497 2- If VR0 and VR1 have a non-empty intersection, set VR0 to the
3498 union of VR0 and VR1. */
3499
3500 static void
3501 vrp_meet (value_range_t *vr0, value_range_t *vr1)
3502 {
3503 if (vr0->type == VR_UNDEFINED)
3504 {
3505 copy_value_range (vr0, vr1);
3506 return;
3507 }
3508
3509 if (vr1->type == VR_UNDEFINED)
3510 {
3511 /* Nothing to do. VR0 already has the resulting range. */
3512 return;
3513 }
3514
3515 if (vr0->type == VR_VARYING)
3516 {
3517 /* Nothing to do. VR0 already has the resulting range. */
3518 return;
3519 }
3520
3521 if (vr1->type == VR_VARYING)
3522 {
3523 set_value_range_to_varying (vr0);
3524 return;
3525 }
3526
3527 if (vr0->type == VR_RANGE && vr1->type == VR_RANGE)
3528 {
3529 /* If VR0 and VR1 have a non-empty intersection, compute the
3530 union of both ranges. */
3531 if (value_ranges_intersect_p (vr0, vr1))
3532 {
3533 int cmp;
3534 tree min, max;
3535
3536 /* The lower limit of the new range is the minimum of the
3537 two ranges. If they cannot be compared, the result is
3538 VARYING. */
3539 cmp = compare_values (vr0->min, vr1->min);
3540 if (cmp == 0 || cmp == 1)
3541 min = vr1->min;
3542 else if (cmp == -1)
3543 min = vr0->min;
3544 else
3545 {
3546 set_value_range_to_varying (vr0);
3547 return;
3548 }
3549
3550 /* Similarly, the upper limit of the new range is the
3551 maximum of the two ranges. If they cannot be compared,
3552 the result is VARYING. */
3553 cmp = compare_values (vr0->max, vr1->max);
3554 if (cmp == 0 || cmp == -1)
3555 max = vr1->max;
3556 else if (cmp == 1)
3557 max = vr0->max;
3558 else
3559 {
3560 set_value_range_to_varying (vr0);
3561 return;
3562 }
3563
3564 /* The resulting set of equivalences is the intersection of
3565 the two sets. */
3566 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3567 bitmap_and_into (vr0->equiv, vr1->equiv);
3568 else if (vr0->equiv && !vr1->equiv)
3569 bitmap_clear (vr0->equiv);
3570
3571 set_value_range (vr0, vr0->type, min, max, vr0->equiv);
3572 }
3573 else
3574 goto no_meet;
3575 }
3576 else if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
3577 {
3578 /* Two anti-ranges meet only if they are both identical. */
3579 if (compare_values (vr0->min, vr1->min) == 0
3580 && compare_values (vr0->max, vr1->max) == 0
3581 && compare_values (vr0->min, vr0->max) == 0)
3582 {
3583 /* The resulting set of equivalences is the intersection of
3584 the two sets. */
3585 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3586 bitmap_and_into (vr0->equiv, vr1->equiv);
3587 else if (vr0->equiv && !vr1->equiv)
3588 bitmap_clear (vr0->equiv);
3589 }
3590 else
3591 goto no_meet;
3592 }
3593 else if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
3594 {
3595 /* A numeric range [VAL1, VAL2] and an anti-range ~[VAL3, VAL4]
3596 meet only if the ranges have an empty intersection. The
3597 result of the meet operation is the anti-range. */
3598 if (!symbolic_range_p (vr0)
3599 && !symbolic_range_p (vr1)
3600 && !value_ranges_intersect_p (vr0, vr1))
3601 {
3602 /* Copy most of VR1 into VR0. Don't copy VR1's equivalence
3603 set. We need to compute the intersection of the two
3604 equivalence sets. */
3605 if (vr1->type == VR_ANTI_RANGE)
3606 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr0->equiv);
3607
3608 /* The resulting set of equivalences is the intersection of
3609 the two sets. */
3610 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
3611 bitmap_and_into (vr0->equiv, vr1->equiv);
3612 else if (vr0->equiv && !vr1->equiv)
3613 bitmap_clear (vr0->equiv);
3614 }
3615 else
3616 goto no_meet;
3617 }
3618 else
3619 gcc_unreachable ();
3620
3621 return;
3622
3623 no_meet:
3624 /* The two range VR0 and VR1 do not meet. Before giving up and
3625 setting the result to VARYING, see if we can at least derive a
3626 useful anti-range. FIXME, all this nonsense about distinguishing
3627 anti-ranges from ranges is necessary because of the odd
3628 semantics of range_includes_zero_p and friends. */
3629 if (!symbolic_range_p (vr0)
3630 && ((vr0->type == VR_RANGE && !range_includes_zero_p (vr0))
3631 || (vr0->type == VR_ANTI_RANGE && range_includes_zero_p (vr0)))
3632 && !symbolic_range_p (vr1)
3633 && ((vr1->type == VR_RANGE && !range_includes_zero_p (vr1))
3634 || (vr1->type == VR_ANTI_RANGE && range_includes_zero_p (vr1))))
3635 {
3636 set_value_range_to_nonnull (vr0, TREE_TYPE (vr0->min));
3637
3638 /* Since this meet operation did not result from the meeting of
3639 two equivalent names, VR0 cannot have any equivalences. */
3640 if (vr0->equiv)
3641 bitmap_clear (vr0->equiv);
3642 }
3643 else
3644 set_value_range_to_varying (vr0);
3645 }
3646
3647
3648 /* Visit all arguments for PHI node PHI that flow through executable
3649 edges. If a valid value range can be derived from all the incoming
3650 value ranges, set a new range for the LHS of PHI. */
3651
3652 static enum ssa_prop_result
3653 vrp_visit_phi_node (tree phi)
3654 {
3655 int i;
3656 tree lhs = PHI_RESULT (phi);
3657 value_range_t *lhs_vr = get_value_range (lhs);
3658 value_range_t vr_result = { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL };
3659
3660 copy_value_range (&vr_result, lhs_vr);
3661
3662 if (dump_file && (dump_flags & TDF_DETAILS))
3663 {
3664 fprintf (dump_file, "\nVisiting PHI node: ");
3665 print_generic_expr (dump_file, phi, dump_flags);
3666 }
3667
3668 for (i = 0; i < PHI_NUM_ARGS (phi); i++)
3669 {
3670 edge e = PHI_ARG_EDGE (phi, i);
3671
3672 if (dump_file && (dump_flags & TDF_DETAILS))
3673 {
3674 fprintf (dump_file,
3675 "\n Argument #%d (%d -> %d %sexecutable)\n",
3676 i, e->src->index, e->dest->index,
3677 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
3678 }
3679
3680 if (e->flags & EDGE_EXECUTABLE)
3681 {
3682 tree arg = PHI_ARG_DEF (phi, i);
3683 value_range_t vr_arg;
3684
3685 if (TREE_CODE (arg) == SSA_NAME)
3686 vr_arg = *(get_value_range (arg));
3687 else
3688 {
3689 vr_arg.type = VR_RANGE;
3690 vr_arg.min = arg;
3691 vr_arg.max = arg;
3692 vr_arg.equiv = NULL;
3693 }
3694
3695 if (dump_file && (dump_flags & TDF_DETAILS))
3696 {
3697 fprintf (dump_file, "\t");
3698 print_generic_expr (dump_file, arg, dump_flags);
3699 fprintf (dump_file, "\n\tValue: ");
3700 dump_value_range (dump_file, &vr_arg);
3701 fprintf (dump_file, "\n");
3702 }
3703
3704 vrp_meet (&vr_result, &vr_arg);
3705
3706 if (vr_result.type == VR_VARYING)
3707 break;
3708 }
3709 }
3710
3711 if (vr_result.type == VR_VARYING)
3712 goto varying;
3713
3714 /* To prevent infinite iterations in the algorithm, derive ranges
3715 when the new value is slightly bigger or smaller than the
3716 previous one. */
3717 if (lhs_vr->type == VR_RANGE && vr_result.type == VR_RANGE)
3718 {
3719 if (!POINTER_TYPE_P (TREE_TYPE (lhs)))
3720 {
3721 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
3722 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
3723
3724 /* If the new minimum is smaller or larger than the previous
3725 one, go all the way to -INF. In the first case, to avoid
3726 iterating millions of times to reach -INF, and in the
3727 other case to avoid infinite bouncing between different
3728 minimums. */
3729 if (cmp_min > 0 || cmp_min < 0)
3730 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
3731
3732 /* Similarly, if the new maximum is smaller or larger than
3733 the previous one, go all the way to +INF. */
3734 if (cmp_max < 0 || cmp_max > 0)
3735 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
3736
3737 /* If we ended up with a (-INF, +INF) range, set it to
3738 VARYING. */
3739 if (vr_result.min == TYPE_MIN_VALUE (TREE_TYPE (vr_result.min))
3740 && vr_result.max == TYPE_MAX_VALUE (TREE_TYPE (vr_result.max)))
3741 goto varying;
3742 }
3743 }
3744
3745 /* If the new range is different than the previous value, keep
3746 iterating. */
3747 if (update_value_range (lhs, &vr_result))
3748 return SSA_PROP_INTERESTING;
3749
3750 /* Nothing changed, don't add outgoing edges. */
3751 return SSA_PROP_NOT_INTERESTING;
3752
3753 /* No match found. Set the LHS to VARYING. */
3754 varying:
3755 set_value_range_to_varying (lhs_vr);
3756 return SSA_PROP_VARYING;
3757 }
3758
3759 /* Simplify a division or modulo operator to a right shift or
3760 bitwise and if the first operand is unsigned or is greater
3761 than zero and the second operand is an exact power of two. */
3762
3763 static void
3764 simplify_div_or_mod_using_ranges (tree stmt, tree rhs, enum tree_code rhs_code)
3765 {
3766 tree val = NULL;
3767 tree op = TREE_OPERAND (rhs, 0);
3768 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
3769
3770 if (TYPE_UNSIGNED (TREE_TYPE (op)))
3771 {
3772 val = integer_one_node;
3773 }
3774 else
3775 {
3776 val = compare_range_with_value (GT_EXPR, vr, integer_zero_node);
3777 }
3778
3779 if (val && integer_onep (val))
3780 {
3781 tree t;
3782 tree op0 = TREE_OPERAND (rhs, 0);
3783 tree op1 = TREE_OPERAND (rhs, 1);
3784
3785 if (rhs_code == TRUNC_DIV_EXPR)
3786 {
3787 t = build_int_cst (NULL_TREE, tree_log2 (op1));
3788 t = build2 (RSHIFT_EXPR, TREE_TYPE (op0), op0, t);
3789 }
3790 else
3791 {
3792 t = build_int_cst (TREE_TYPE (op1), 1);
3793 t = int_const_binop (MINUS_EXPR, op1, t, 0);
3794 t = fold_convert (TREE_TYPE (op0), t);
3795 t = build2 (BIT_AND_EXPR, TREE_TYPE (op0), op0, t);
3796 }
3797
3798 TREE_OPERAND (stmt, 1) = t;
3799 update_stmt (stmt);
3800 }
3801 }
3802
3803 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
3804 ABS_EXPR. If the operand is <= 0, then simplify the
3805 ABS_EXPR into a NEGATE_EXPR. */
3806
3807 static void
3808 simplify_abs_using_ranges (tree stmt, tree rhs)
3809 {
3810 tree val = NULL;
3811 tree op = TREE_OPERAND (rhs, 0);
3812 tree type = TREE_TYPE (op);
3813 value_range_t *vr = get_value_range (TREE_OPERAND (rhs, 0));
3814
3815 if (TYPE_UNSIGNED (type))
3816 {
3817 val = integer_zero_node;
3818 }
3819 else if (vr)
3820 {
3821 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node);
3822 if (!val)
3823 {
3824 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node);
3825
3826 if (val)
3827 {
3828 if (integer_zerop (val))
3829 val = integer_one_node;
3830 else if (integer_onep (val))
3831 val = integer_zero_node;
3832 }
3833 }
3834
3835 if (val
3836 && (integer_onep (val) || integer_zerop (val)))
3837 {
3838 tree t;
3839
3840 if (integer_onep (val))
3841 t = build1 (NEGATE_EXPR, TREE_TYPE (op), op);
3842 else
3843 t = op;
3844
3845 TREE_OPERAND (stmt, 1) = t;
3846 update_stmt (stmt);
3847 }
3848 }
3849 }
3850
3851 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
3852 a known value range VR.
3853
3854 If there is one and only one value which will satisfy the
3855 conditional, then return that value. Else return NULL. */
3856
3857 static tree
3858 test_for_singularity (enum tree_code cond_code, tree op0,
3859 tree op1, value_range_t *vr)
3860 {
3861 tree min = NULL;
3862 tree max = NULL;
3863
3864 /* Extract minimum/maximum values which satisfy the
3865 the conditional as it was written. */
3866 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
3867 {
3868 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
3869
3870 max = op1;
3871 if (cond_code == LT_EXPR)
3872 {
3873 tree one = build_int_cst (TREE_TYPE (op0), 1);
3874 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
3875 }
3876 }
3877 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
3878 {
3879 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
3880
3881 min = op1;
3882 if (cond_code == GT_EXPR)
3883 {
3884 tree one = build_int_cst (TREE_TYPE (op0), 1);
3885 max = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), max, one);
3886 }
3887 }
3888
3889 /* Now refine the minimum and maximum values using any
3890 value range information we have for op0. */
3891 if (min && max)
3892 {
3893 if (compare_values (vr->min, min) == -1)
3894 min = min;
3895 else
3896 min = vr->min;
3897 if (compare_values (vr->max, max) == 1)
3898 max = max;
3899 else
3900 max = vr->max;
3901
3902 /* If the new min/max values have converged to a
3903 single value, then there is only one value which
3904 can satisfy the condition, return that value. */
3905 if (min == max && is_gimple_min_invariant (min))
3906 return min;
3907 }
3908 return NULL;
3909 }
3910
3911 /* Simplify a conditional using a relational operator to an equality
3912 test if the range information indicates only one value can satisfy
3913 the original conditional. */
3914
3915 static void
3916 simplify_cond_using_ranges (tree stmt)
3917 {
3918 tree cond = COND_EXPR_COND (stmt);
3919 tree op0 = TREE_OPERAND (cond, 0);
3920 tree op1 = TREE_OPERAND (cond, 1);
3921 enum tree_code cond_code = TREE_CODE (cond);
3922
3923 if (cond_code != NE_EXPR
3924 && cond_code != EQ_EXPR
3925 && TREE_CODE (op0) == SSA_NAME
3926 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
3927 && is_gimple_min_invariant (op1))
3928 {
3929 value_range_t *vr = get_value_range (op0);
3930
3931 /* If we have range information for OP0, then we might be
3932 able to simplify this conditional. */
3933 if (vr->type == VR_RANGE)
3934 {
3935 tree new = test_for_singularity (cond_code, op0, op1, vr);
3936
3937 if (new)
3938 {
3939 if (dump_file)
3940 {
3941 fprintf (dump_file, "Simplified relational ");
3942 print_generic_expr (dump_file, cond, 0);
3943 fprintf (dump_file, " into ");
3944 }
3945
3946 COND_EXPR_COND (stmt)
3947 = build (EQ_EXPR, boolean_type_node, op0, new);
3948 update_stmt (stmt);
3949
3950 if (dump_file)
3951 {
3952 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
3953 fprintf (dump_file, "\n");
3954 }
3955 return;
3956
3957 }
3958
3959 /* Try again after inverting the condition. We only deal
3960 with integral types here, so no need to worry about
3961 issues with inverting FP comparisons. */
3962 cond_code = invert_tree_comparison (cond_code, false);
3963 new = test_for_singularity (cond_code, op0, op1, vr);
3964
3965 if (new)
3966 {
3967 if (dump_file)
3968 {
3969 fprintf (dump_file, "Simplified relational ");
3970 print_generic_expr (dump_file, cond, 0);
3971 fprintf (dump_file, " into ");
3972 }
3973
3974 COND_EXPR_COND (stmt)
3975 = build (NE_EXPR, boolean_type_node, op0, new);
3976 update_stmt (stmt);
3977
3978 if (dump_file)
3979 {
3980 print_generic_expr (dump_file, COND_EXPR_COND (stmt), 0);
3981 fprintf (dump_file, "\n");
3982 }
3983 return;
3984
3985 }
3986 }
3987 }
3988 }
3989
3990 /* Simplify STMT using ranges if possible. */
3991
3992 void
3993 simplify_stmt_using_ranges (tree stmt)
3994 {
3995 if (TREE_CODE (stmt) == MODIFY_EXPR)
3996 {
3997 tree rhs = TREE_OPERAND (stmt, 1);
3998 enum tree_code rhs_code = TREE_CODE (rhs);
3999
4000 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
4001 and BIT_AND_EXPR respectively if the first operand is greater
4002 than zero and the second operand is an exact power of two. */
4003 if ((rhs_code == TRUNC_DIV_EXPR || rhs_code == TRUNC_MOD_EXPR)
4004 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0)))
4005 && integer_pow2p (TREE_OPERAND (rhs, 1)))
4006 simplify_div_or_mod_using_ranges (stmt, rhs, rhs_code);
4007
4008 /* Transform ABS (X) into X or -X as appropriate. */
4009 if (rhs_code == ABS_EXPR
4010 && TREE_CODE (TREE_OPERAND (rhs, 0)) == SSA_NAME
4011 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_OPERAND (rhs, 0))))
4012 simplify_abs_using_ranges (stmt, rhs);
4013 }
4014 else if (TREE_CODE (stmt) == COND_EXPR
4015 && COMPARISON_CLASS_P (COND_EXPR_COND (stmt)))
4016 {
4017 simplify_cond_using_ranges (stmt);
4018 }
4019 }
4020
4021
4022
4023 /* Traverse all the blocks folding conditionals with known ranges. */
4024
4025 static void
4026 vrp_finalize (void)
4027 {
4028 size_t i;
4029 prop_value_t *single_val_range;
4030 bool do_value_subst_p;
4031
4032 if (dump_file)
4033 {
4034 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
4035 dump_all_value_ranges (dump_file);
4036 fprintf (dump_file, "\n");
4037 }
4038
4039 /* We may have ended with ranges that have exactly one value. Those
4040 values can be substituted as any other copy/const propagated
4041 value using substitute_and_fold. */
4042 single_val_range = xmalloc (num_ssa_names * sizeof (*single_val_range));
4043 memset (single_val_range, 0, num_ssa_names * sizeof (*single_val_range));
4044
4045 do_value_subst_p = false;
4046 for (i = 0; i < num_ssa_names; i++)
4047 if (vr_value[i]
4048 && vr_value[i]->type == VR_RANGE
4049 && vr_value[i]->min == vr_value[i]->max)
4050 {
4051 single_val_range[i].value = vr_value[i]->min;
4052 do_value_subst_p = true;
4053 }
4054
4055 if (!do_value_subst_p)
4056 {
4057 /* We found no single-valued ranges, don't waste time trying to
4058 do single value substitution in substitute_and_fold. */
4059 free (single_val_range);
4060 single_val_range = NULL;
4061 }
4062
4063 substitute_and_fold (single_val_range, true);
4064
4065 /* Free allocated memory. */
4066 for (i = 0; i < num_ssa_names; i++)
4067 if (vr_value[i])
4068 {
4069 BITMAP_FREE (vr_value[i]->equiv);
4070 free (vr_value[i]);
4071 }
4072
4073 free (single_val_range);
4074 free (vr_value);
4075 }
4076
4077
4078 /* Main entry point to VRP (Value Range Propagation). This pass is
4079 loosely based on J. R. C. Patterson, ``Accurate Static Branch
4080 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
4081 Programming Language Design and Implementation, pp. 67-78, 1995.
4082 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
4083
4084 This is essentially an SSA-CCP pass modified to deal with ranges
4085 instead of constants.
4086
4087 While propagating ranges, we may find that two or more SSA name
4088 have equivalent, though distinct ranges. For instance,
4089
4090 1 x_9 = p_3->a;
4091 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
4092 3 if (p_4 == q_2)
4093 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
4094 5 endif
4095 6 if (q_2)
4096
4097 In the code above, pointer p_5 has range [q_2, q_2], but from the
4098 code we can also determine that p_5 cannot be NULL and, if q_2 had
4099 a non-varying range, p_5's range should also be compatible with it.
4100
4101 These equivalences are created by two expressions: ASSERT_EXPR and
4102 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
4103 result of another assertion, then we can use the fact that p_5 and
4104 p_4 are equivalent when evaluating p_5's range.
4105
4106 Together with value ranges, we also propagate these equivalences
4107 between names so that we can take advantage of information from
4108 multiple ranges when doing final replacement. Note that this
4109 equivalency relation is transitive but not symmetric.
4110
4111 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
4112 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
4113 in contexts where that assertion does not hold (e.g., in line 6).
4114
4115 TODO, the main difference between this pass and Patterson's is that
4116 we do not propagate edge probabilities. We only compute whether
4117 edges can be taken or not. That is, instead of having a spectrum
4118 of jump probabilities between 0 and 1, we only deal with 0, 1 and
4119 DON'T KNOW. In the future, it may be worthwhile to propagate
4120 probabilities to aid branch prediction. */
4121
4122 static void
4123 execute_vrp (void)
4124 {
4125 insert_range_assertions ();
4126
4127 cfg_loops = loop_optimizer_init (NULL);
4128 if (cfg_loops)
4129 scev_initialize (cfg_loops);
4130
4131 vrp_initialize ();
4132 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
4133 vrp_finalize ();
4134
4135 if (cfg_loops)
4136 {
4137 scev_finalize ();
4138 loop_optimizer_finalize (cfg_loops, NULL);
4139 current_loops = NULL;
4140 }
4141
4142 remove_range_assertions ();
4143 }
4144
4145 static bool
4146 gate_vrp (void)
4147 {
4148 return flag_tree_vrp != 0;
4149 }
4150
4151 struct tree_opt_pass pass_vrp =
4152 {
4153 "vrp", /* name */
4154 gate_vrp, /* gate */
4155 execute_vrp, /* execute */
4156 NULL, /* sub */
4157 NULL, /* next */
4158 0, /* static_pass_number */
4159 TV_TREE_VRP, /* tv_id */
4160 PROP_ssa | PROP_alias, /* properties_required */
4161 0, /* properties_provided */
4162 0, /* properties_destroyed */
4163 0, /* todo_flags_start */
4164 TODO_cleanup_cfg
4165 | TODO_ggc_collect
4166 | TODO_verify_ssa
4167 | TODO_dump_func
4168 | TODO_update_ssa, /* todo_flags_finish */
4169 0 /* letter */
4170 };