decl.c (value_annotation_hasher::handle_cache_entry): Delete.
[gcc.git] / gcc / tree-vrp.c
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "flags.h"
26 #include "alias.h"
27 #include "symtab.h"
28 #include "tree.h"
29 #include "fold-const.h"
30 #include "stor-layout.h"
31 #include "calls.h"
32 #include "predict.h"
33 #include "hard-reg-set.h"
34 #include "function.h"
35 #include "dominance.h"
36 #include "cfg.h"
37 #include "cfganal.h"
38 #include "basic-block.h"
39 #include "tree-ssa-alias.h"
40 #include "internal-fn.h"
41 #include "gimple-fold.h"
42 #include "tree-eh.h"
43 #include "gimple-expr.h"
44 #include "gimple.h"
45 #include "gimple-iterator.h"
46 #include "gimple-walk.h"
47 #include "gimple-ssa.h"
48 #include "tree-cfg.h"
49 #include "tree-phinodes.h"
50 #include "ssa-iterators.h"
51 #include "stringpool.h"
52 #include "tree-ssanames.h"
53 #include "tree-ssa-loop-manip.h"
54 #include "tree-ssa-loop-niter.h"
55 #include "tree-ssa-loop.h"
56 #include "tree-into-ssa.h"
57 #include "tree-ssa.h"
58 #include "tree-pass.h"
59 #include "tree-dump.h"
60 #include "gimple-pretty-print.h"
61 #include "diagnostic-core.h"
62 #include "intl.h"
63 #include "cfgloop.h"
64 #include "tree-scalar-evolution.h"
65 #include "tree-ssa-propagate.h"
66 #include "tree-chrec.h"
67 #include "tree-ssa-threadupdate.h"
68 #include "rtl.h"
69 #include "insn-config.h"
70 #include "expmed.h"
71 #include "dojump.h"
72 #include "explow.h"
73 #include "emit-rtl.h"
74 #include "varasm.h"
75 #include "stmt.h"
76 #include "expr.h"
77 #include "insn-codes.h"
78 #include "optabs.h"
79 #include "tree-ssa-scopedtables.h"
80 #include "tree-ssa-threadedge.h"
81
82
83
84 /* Range of values that can be associated with an SSA_NAME after VRP
85 has executed. */
86 struct value_range_d
87 {
88 /* Lattice value represented by this range. */
89 enum value_range_type type;
90
91 /* Minimum and maximum values represented by this range. These
92 values should be interpreted as follows:
93
94 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
95 be NULL.
96
97 - If TYPE == VR_RANGE then MIN holds the minimum value and
98 MAX holds the maximum value of the range [MIN, MAX].
99
100 - If TYPE == ANTI_RANGE the variable is known to NOT
101 take any values in the range [MIN, MAX]. */
102 tree min;
103 tree max;
104
105 /* Set of SSA names whose value ranges are equivalent to this one.
106 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
107 bitmap equiv;
108 };
109
110 typedef struct value_range_d value_range_t;
111
112 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
113
114 /* Set of SSA names found live during the RPO traversal of the function
115 for still active basic-blocks. */
116 static sbitmap *live;
117
118 /* Return true if the SSA name NAME is live on the edge E. */
119
120 static bool
121 live_on_edge (edge e, tree name)
122 {
123 return (live[e->dest->index]
124 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
125 }
126
127 /* Local functions. */
128 static int compare_values (tree val1, tree val2);
129 static int compare_values_warnv (tree val1, tree val2, bool *);
130 static void vrp_meet (value_range_t *, value_range_t *);
131 static void vrp_intersect_ranges (value_range_t *, value_range_t *);
132 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
133 tree, tree, bool, bool *,
134 bool *);
135
136 /* Location information for ASSERT_EXPRs. Each instance of this
137 structure describes an ASSERT_EXPR for an SSA name. Since a single
138 SSA name may have more than one assertion associated with it, these
139 locations are kept in a linked list attached to the corresponding
140 SSA name. */
141 struct assert_locus_d
142 {
143 /* Basic block where the assertion would be inserted. */
144 basic_block bb;
145
146 /* Some assertions need to be inserted on an edge (e.g., assertions
147 generated by COND_EXPRs). In those cases, BB will be NULL. */
148 edge e;
149
150 /* Pointer to the statement that generated this assertion. */
151 gimple_stmt_iterator si;
152
153 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
154 enum tree_code comp_code;
155
156 /* Value being compared against. */
157 tree val;
158
159 /* Expression to compare. */
160 tree expr;
161
162 /* Next node in the linked list. */
163 struct assert_locus_d *next;
164 };
165
166 typedef struct assert_locus_d *assert_locus_t;
167
168 /* If bit I is present, it means that SSA name N_i has a list of
169 assertions that should be inserted in the IL. */
170 static bitmap need_assert_for;
171
172 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
173 holds a list of ASSERT_LOCUS_T nodes that describe where
174 ASSERT_EXPRs for SSA name N_I should be inserted. */
175 static assert_locus_t *asserts_for;
176
177 /* Value range array. After propagation, VR_VALUE[I] holds the range
178 of values that SSA name N_I may take. */
179 static unsigned num_vr_values;
180 static value_range_t **vr_value;
181 static bool values_propagated;
182
183 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
184 number of executable edges we saw the last time we visited the
185 node. */
186 static int *vr_phi_edge_counts;
187
188 typedef struct {
189 gswitch *stmt;
190 tree vec;
191 } switch_update;
192
193 static vec<edge> to_remove_edges;
194 static vec<switch_update> to_update_switch_stmts;
195
196
197 /* Return the maximum value for TYPE. */
198
199 static inline tree
200 vrp_val_max (const_tree type)
201 {
202 if (!INTEGRAL_TYPE_P (type))
203 return NULL_TREE;
204
205 return TYPE_MAX_VALUE (type);
206 }
207
208 /* Return the minimum value for TYPE. */
209
210 static inline tree
211 vrp_val_min (const_tree type)
212 {
213 if (!INTEGRAL_TYPE_P (type))
214 return NULL_TREE;
215
216 return TYPE_MIN_VALUE (type);
217 }
218
219 /* Return whether VAL is equal to the maximum value of its type. This
220 will be true for a positive overflow infinity. We can't do a
221 simple equality comparison with TYPE_MAX_VALUE because C typedefs
222 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
223 to the integer constant with the same value in the type. */
224
225 static inline bool
226 vrp_val_is_max (const_tree val)
227 {
228 tree type_max = vrp_val_max (TREE_TYPE (val));
229 return (val == type_max
230 || (type_max != NULL_TREE
231 && operand_equal_p (val, type_max, 0)));
232 }
233
234 /* Return whether VAL is equal to the minimum value of its type. This
235 will be true for a negative overflow infinity. */
236
237 static inline bool
238 vrp_val_is_min (const_tree val)
239 {
240 tree type_min = vrp_val_min (TREE_TYPE (val));
241 return (val == type_min
242 || (type_min != NULL_TREE
243 && operand_equal_p (val, type_min, 0)));
244 }
245
246
247 /* Return whether TYPE should use an overflow infinity distinct from
248 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
249 represent a signed overflow during VRP computations. An infinity
250 is distinct from a half-range, which will go from some number to
251 TYPE_{MIN,MAX}_VALUE. */
252
253 static inline bool
254 needs_overflow_infinity (const_tree type)
255 {
256 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
257 }
258
259 /* Return whether TYPE can support our overflow infinity
260 representation: we use the TREE_OVERFLOW flag, which only exists
261 for constants. If TYPE doesn't support this, we don't optimize
262 cases which would require signed overflow--we drop them to
263 VARYING. */
264
265 static inline bool
266 supports_overflow_infinity (const_tree type)
267 {
268 tree min = vrp_val_min (type), max = vrp_val_max (type);
269 #ifdef ENABLE_CHECKING
270 gcc_assert (needs_overflow_infinity (type));
271 #endif
272 return (min != NULL_TREE
273 && CONSTANT_CLASS_P (min)
274 && max != NULL_TREE
275 && CONSTANT_CLASS_P (max));
276 }
277
278 /* VAL is the maximum or minimum value of a type. Return a
279 corresponding overflow infinity. */
280
281 static inline tree
282 make_overflow_infinity (tree val)
283 {
284 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
285 val = copy_node (val);
286 TREE_OVERFLOW (val) = 1;
287 return val;
288 }
289
290 /* Return a negative overflow infinity for TYPE. */
291
292 static inline tree
293 negative_overflow_infinity (tree type)
294 {
295 gcc_checking_assert (supports_overflow_infinity (type));
296 return make_overflow_infinity (vrp_val_min (type));
297 }
298
299 /* Return a positive overflow infinity for TYPE. */
300
301 static inline tree
302 positive_overflow_infinity (tree type)
303 {
304 gcc_checking_assert (supports_overflow_infinity (type));
305 return make_overflow_infinity (vrp_val_max (type));
306 }
307
308 /* Return whether VAL is a negative overflow infinity. */
309
310 static inline bool
311 is_negative_overflow_infinity (const_tree val)
312 {
313 return (TREE_OVERFLOW_P (val)
314 && needs_overflow_infinity (TREE_TYPE (val))
315 && vrp_val_is_min (val));
316 }
317
318 /* Return whether VAL is a positive overflow infinity. */
319
320 static inline bool
321 is_positive_overflow_infinity (const_tree val)
322 {
323 return (TREE_OVERFLOW_P (val)
324 && needs_overflow_infinity (TREE_TYPE (val))
325 && vrp_val_is_max (val));
326 }
327
328 /* Return whether VAL is a positive or negative overflow infinity. */
329
330 static inline bool
331 is_overflow_infinity (const_tree val)
332 {
333 return (TREE_OVERFLOW_P (val)
334 && needs_overflow_infinity (TREE_TYPE (val))
335 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
336 }
337
338 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
339
340 static inline bool
341 stmt_overflow_infinity (gimple stmt)
342 {
343 if (is_gimple_assign (stmt)
344 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
345 GIMPLE_SINGLE_RHS)
346 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
347 return false;
348 }
349
350 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
351 the same value with TREE_OVERFLOW clear. This can be used to avoid
352 confusing a regular value with an overflow value. */
353
354 static inline tree
355 avoid_overflow_infinity (tree val)
356 {
357 if (!is_overflow_infinity (val))
358 return val;
359
360 if (vrp_val_is_max (val))
361 return vrp_val_max (TREE_TYPE (val));
362 else
363 {
364 gcc_checking_assert (vrp_val_is_min (val));
365 return vrp_val_min (TREE_TYPE (val));
366 }
367 }
368
369
370 /* Return true if ARG is marked with the nonnull attribute in the
371 current function signature. */
372
373 static bool
374 nonnull_arg_p (const_tree arg)
375 {
376 tree t, attrs, fntype;
377 unsigned HOST_WIDE_INT arg_num;
378
379 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
380
381 /* The static chain decl is always non null. */
382 if (arg == cfun->static_chain_decl)
383 return true;
384
385 /* THIS argument of method is always non-NULL. */
386 if (TREE_CODE (TREE_TYPE (current_function_decl)) == METHOD_TYPE
387 && arg == DECL_ARGUMENTS (current_function_decl)
388 && flag_delete_null_pointer_checks)
389 return true;
390
391 /* Values passed by reference are always non-NULL. */
392 if (TREE_CODE (TREE_TYPE (arg)) == REFERENCE_TYPE
393 && flag_delete_null_pointer_checks)
394 return true;
395
396 fntype = TREE_TYPE (current_function_decl);
397 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
398 {
399 attrs = lookup_attribute ("nonnull", attrs);
400
401 /* If "nonnull" wasn't specified, we know nothing about the argument. */
402 if (attrs == NULL_TREE)
403 return false;
404
405 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
406 if (TREE_VALUE (attrs) == NULL_TREE)
407 return true;
408
409 /* Get the position number for ARG in the function signature. */
410 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
411 t;
412 t = DECL_CHAIN (t), arg_num++)
413 {
414 if (t == arg)
415 break;
416 }
417
418 gcc_assert (t == arg);
419
420 /* Now see if ARG_NUM is mentioned in the nonnull list. */
421 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
422 {
423 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
424 return true;
425 }
426 }
427
428 return false;
429 }
430
431
432 /* Set value range VR to VR_UNDEFINED. */
433
434 static inline void
435 set_value_range_to_undefined (value_range_t *vr)
436 {
437 vr->type = VR_UNDEFINED;
438 vr->min = vr->max = NULL_TREE;
439 if (vr->equiv)
440 bitmap_clear (vr->equiv);
441 }
442
443
444 /* Set value range VR to VR_VARYING. */
445
446 static inline void
447 set_value_range_to_varying (value_range_t *vr)
448 {
449 vr->type = VR_VARYING;
450 vr->min = vr->max = NULL_TREE;
451 if (vr->equiv)
452 bitmap_clear (vr->equiv);
453 }
454
455
456 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
457
458 static void
459 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
460 tree max, bitmap equiv)
461 {
462 #if defined ENABLE_CHECKING
463 /* Check the validity of the range. */
464 if (t == VR_RANGE || t == VR_ANTI_RANGE)
465 {
466 int cmp;
467
468 gcc_assert (min && max);
469
470 gcc_assert ((!TREE_OVERFLOW_P (min) || is_overflow_infinity (min))
471 && (!TREE_OVERFLOW_P (max) || is_overflow_infinity (max)));
472
473 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
474 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
475
476 cmp = compare_values (min, max);
477 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
478
479 if (needs_overflow_infinity (TREE_TYPE (min)))
480 gcc_assert (!is_overflow_infinity (min)
481 || !is_overflow_infinity (max));
482 }
483
484 if (t == VR_UNDEFINED || t == VR_VARYING)
485 gcc_assert (min == NULL_TREE && max == NULL_TREE);
486
487 if (t == VR_UNDEFINED || t == VR_VARYING)
488 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
489 #endif
490
491 vr->type = t;
492 vr->min = min;
493 vr->max = max;
494
495 /* Since updating the equivalence set involves deep copying the
496 bitmaps, only do it if absolutely necessary. */
497 if (vr->equiv == NULL
498 && equiv != NULL)
499 vr->equiv = BITMAP_ALLOC (NULL);
500
501 if (equiv != vr->equiv)
502 {
503 if (equiv && !bitmap_empty_p (equiv))
504 bitmap_copy (vr->equiv, equiv);
505 else
506 bitmap_clear (vr->equiv);
507 }
508 }
509
510
511 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
512 This means adjusting T, MIN and MAX representing the case of a
513 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
514 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
515 In corner cases where MAX+1 or MIN-1 wraps this will fall back
516 to varying.
517 This routine exists to ease canonicalization in the case where we
518 extract ranges from var + CST op limit. */
519
520 static void
521 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
522 tree min, tree max, bitmap equiv)
523 {
524 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
525 if (t == VR_UNDEFINED)
526 {
527 set_value_range_to_undefined (vr);
528 return;
529 }
530 else if (t == VR_VARYING)
531 {
532 set_value_range_to_varying (vr);
533 return;
534 }
535
536 /* Nothing to canonicalize for symbolic ranges. */
537 if (TREE_CODE (min) != INTEGER_CST
538 || TREE_CODE (max) != INTEGER_CST)
539 {
540 set_value_range (vr, t, min, max, equiv);
541 return;
542 }
543
544 /* Wrong order for min and max, to swap them and the VR type we need
545 to adjust them. */
546 if (tree_int_cst_lt (max, min))
547 {
548 tree one, tmp;
549
550 /* For one bit precision if max < min, then the swapped
551 range covers all values, so for VR_RANGE it is varying and
552 for VR_ANTI_RANGE empty range, so drop to varying as well. */
553 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
554 {
555 set_value_range_to_varying (vr);
556 return;
557 }
558
559 one = build_int_cst (TREE_TYPE (min), 1);
560 tmp = int_const_binop (PLUS_EXPR, max, one);
561 max = int_const_binop (MINUS_EXPR, min, one);
562 min = tmp;
563
564 /* There's one corner case, if we had [C+1, C] before we now have
565 that again. But this represents an empty value range, so drop
566 to varying in this case. */
567 if (tree_int_cst_lt (max, min))
568 {
569 set_value_range_to_varying (vr);
570 return;
571 }
572
573 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
574 }
575
576 /* Anti-ranges that can be represented as ranges should be so. */
577 if (t == VR_ANTI_RANGE)
578 {
579 bool is_min = vrp_val_is_min (min);
580 bool is_max = vrp_val_is_max (max);
581
582 if (is_min && is_max)
583 {
584 /* We cannot deal with empty ranges, drop to varying.
585 ??? This could be VR_UNDEFINED instead. */
586 set_value_range_to_varying (vr);
587 return;
588 }
589 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
590 && (is_min || is_max))
591 {
592 /* Non-empty boolean ranges can always be represented
593 as a singleton range. */
594 if (is_min)
595 min = max = vrp_val_max (TREE_TYPE (min));
596 else
597 min = max = vrp_val_min (TREE_TYPE (min));
598 t = VR_RANGE;
599 }
600 else if (is_min
601 /* As a special exception preserve non-null ranges. */
602 && !(TYPE_UNSIGNED (TREE_TYPE (min))
603 && integer_zerop (max)))
604 {
605 tree one = build_int_cst (TREE_TYPE (max), 1);
606 min = int_const_binop (PLUS_EXPR, max, one);
607 max = vrp_val_max (TREE_TYPE (max));
608 t = VR_RANGE;
609 }
610 else if (is_max)
611 {
612 tree one = build_int_cst (TREE_TYPE (min), 1);
613 max = int_const_binop (MINUS_EXPR, min, one);
614 min = vrp_val_min (TREE_TYPE (min));
615 t = VR_RANGE;
616 }
617 }
618
619 /* Drop [-INF(OVF), +INF(OVF)] to varying. */
620 if (needs_overflow_infinity (TREE_TYPE (min))
621 && is_overflow_infinity (min)
622 && is_overflow_infinity (max))
623 {
624 set_value_range_to_varying (vr);
625 return;
626 }
627
628 set_value_range (vr, t, min, max, equiv);
629 }
630
631 /* Copy value range FROM into value range TO. */
632
633 static inline void
634 copy_value_range (value_range_t *to, value_range_t *from)
635 {
636 set_value_range (to, from->type, from->min, from->max, from->equiv);
637 }
638
639 /* Set value range VR to a single value. This function is only called
640 with values we get from statements, and exists to clear the
641 TREE_OVERFLOW flag so that we don't think we have an overflow
642 infinity when we shouldn't. */
643
644 static inline void
645 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
646 {
647 gcc_assert (is_gimple_min_invariant (val));
648 if (TREE_OVERFLOW_P (val))
649 val = drop_tree_overflow (val);
650 set_value_range (vr, VR_RANGE, val, val, equiv);
651 }
652
653 /* Set value range VR to a non-negative range of type TYPE.
654 OVERFLOW_INFINITY indicates whether to use an overflow infinity
655 rather than TYPE_MAX_VALUE; this should be true if we determine
656 that the range is nonnegative based on the assumption that signed
657 overflow does not occur. */
658
659 static inline void
660 set_value_range_to_nonnegative (value_range_t *vr, tree type,
661 bool overflow_infinity)
662 {
663 tree zero;
664
665 if (overflow_infinity && !supports_overflow_infinity (type))
666 {
667 set_value_range_to_varying (vr);
668 return;
669 }
670
671 zero = build_int_cst (type, 0);
672 set_value_range (vr, VR_RANGE, zero,
673 (overflow_infinity
674 ? positive_overflow_infinity (type)
675 : TYPE_MAX_VALUE (type)),
676 vr->equiv);
677 }
678
679 /* Set value range VR to a non-NULL range of type TYPE. */
680
681 static inline void
682 set_value_range_to_nonnull (value_range_t *vr, tree type)
683 {
684 tree zero = build_int_cst (type, 0);
685 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
686 }
687
688
689 /* Set value range VR to a NULL range of type TYPE. */
690
691 static inline void
692 set_value_range_to_null (value_range_t *vr, tree type)
693 {
694 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
695 }
696
697
698 /* Set value range VR to a range of a truthvalue of type TYPE. */
699
700 static inline void
701 set_value_range_to_truthvalue (value_range_t *vr, tree type)
702 {
703 if (TYPE_PRECISION (type) == 1)
704 set_value_range_to_varying (vr);
705 else
706 set_value_range (vr, VR_RANGE,
707 build_int_cst (type, 0), build_int_cst (type, 1),
708 vr->equiv);
709 }
710
711
712 /* If abs (min) < abs (max), set VR to [-max, max], if
713 abs (min) >= abs (max), set VR to [-min, min]. */
714
715 static void
716 abs_extent_range (value_range_t *vr, tree min, tree max)
717 {
718 int cmp;
719
720 gcc_assert (TREE_CODE (min) == INTEGER_CST);
721 gcc_assert (TREE_CODE (max) == INTEGER_CST);
722 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
723 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
724 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
725 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
726 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
727 {
728 set_value_range_to_varying (vr);
729 return;
730 }
731 cmp = compare_values (min, max);
732 if (cmp == -1)
733 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
734 else if (cmp == 0 || cmp == 1)
735 {
736 max = min;
737 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
738 }
739 else
740 {
741 set_value_range_to_varying (vr);
742 return;
743 }
744 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
745 }
746
747
748 /* Return value range information for VAR.
749
750 If we have no values ranges recorded (ie, VRP is not running), then
751 return NULL. Otherwise create an empty range if none existed for VAR. */
752
753 static value_range_t *
754 get_value_range (const_tree var)
755 {
756 static const struct value_range_d vr_const_varying
757 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
758 value_range_t *vr;
759 tree sym;
760 unsigned ver = SSA_NAME_VERSION (var);
761
762 /* If we have no recorded ranges, then return NULL. */
763 if (! vr_value)
764 return NULL;
765
766 /* If we query the range for a new SSA name return an unmodifiable VARYING.
767 We should get here at most from the substitute-and-fold stage which
768 will never try to change values. */
769 if (ver >= num_vr_values)
770 return CONST_CAST (value_range_t *, &vr_const_varying);
771
772 vr = vr_value[ver];
773 if (vr)
774 return vr;
775
776 /* After propagation finished do not allocate new value-ranges. */
777 if (values_propagated)
778 return CONST_CAST (value_range_t *, &vr_const_varying);
779
780 /* Create a default value range. */
781 vr_value[ver] = vr = XCNEW (value_range_t);
782
783 /* Defer allocating the equivalence set. */
784 vr->equiv = NULL;
785
786 /* If VAR is a default definition of a parameter, the variable can
787 take any value in VAR's type. */
788 if (SSA_NAME_IS_DEFAULT_DEF (var))
789 {
790 sym = SSA_NAME_VAR (var);
791 if (TREE_CODE (sym) == PARM_DECL)
792 {
793 /* Try to use the "nonnull" attribute to create ~[0, 0]
794 anti-ranges for pointers. Note that this is only valid with
795 default definitions of PARM_DECLs. */
796 if (POINTER_TYPE_P (TREE_TYPE (sym))
797 && nonnull_arg_p (sym))
798 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
799 else
800 set_value_range_to_varying (vr);
801 }
802 else if (TREE_CODE (sym) == RESULT_DECL
803 && DECL_BY_REFERENCE (sym))
804 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
805 }
806
807 return vr;
808 }
809
810 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
811
812 static inline bool
813 vrp_operand_equal_p (const_tree val1, const_tree val2)
814 {
815 if (val1 == val2)
816 return true;
817 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
818 return false;
819 return is_overflow_infinity (val1) == is_overflow_infinity (val2);
820 }
821
822 /* Return true, if the bitmaps B1 and B2 are equal. */
823
824 static inline bool
825 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
826 {
827 return (b1 == b2
828 || ((!b1 || bitmap_empty_p (b1))
829 && (!b2 || bitmap_empty_p (b2)))
830 || (b1 && b2
831 && bitmap_equal_p (b1, b2)));
832 }
833
834 /* Update the value range and equivalence set for variable VAR to
835 NEW_VR. Return true if NEW_VR is different from VAR's previous
836 value.
837
838 NOTE: This function assumes that NEW_VR is a temporary value range
839 object created for the sole purpose of updating VAR's range. The
840 storage used by the equivalence set from NEW_VR will be freed by
841 this function. Do not call update_value_range when NEW_VR
842 is the range object associated with another SSA name. */
843
844 static inline bool
845 update_value_range (const_tree var, value_range_t *new_vr)
846 {
847 value_range_t *old_vr;
848 bool is_new;
849
850 /* If there is a value-range on the SSA name from earlier analysis
851 factor that in. */
852 if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
853 {
854 wide_int min, max;
855 value_range_type rtype = get_range_info (var, &min, &max);
856 if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE)
857 {
858 value_range_d nr;
859 nr.type = rtype;
860 nr.min = wide_int_to_tree (TREE_TYPE (var), min);
861 nr.max = wide_int_to_tree (TREE_TYPE (var), max);
862 nr.equiv = NULL;
863 vrp_intersect_ranges (new_vr, &nr);
864 }
865 }
866
867 /* Update the value range, if necessary. */
868 old_vr = get_value_range (var);
869 is_new = old_vr->type != new_vr->type
870 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
871 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
872 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
873
874 if (is_new)
875 {
876 /* Do not allow transitions up the lattice. The following
877 is slightly more awkward than just new_vr->type < old_vr->type
878 because VR_RANGE and VR_ANTI_RANGE need to be considered
879 the same. We may not have is_new when transitioning to
880 UNDEFINED. If old_vr->type is VARYING, we shouldn't be
881 called. */
882 if (new_vr->type == VR_UNDEFINED)
883 {
884 BITMAP_FREE (new_vr->equiv);
885 set_value_range_to_varying (old_vr);
886 set_value_range_to_varying (new_vr);
887 return true;
888 }
889 else
890 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
891 new_vr->equiv);
892 }
893
894 BITMAP_FREE (new_vr->equiv);
895
896 return is_new;
897 }
898
899
900 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
901 point where equivalence processing can be turned on/off. */
902
903 static void
904 add_equivalence (bitmap *equiv, const_tree var)
905 {
906 unsigned ver = SSA_NAME_VERSION (var);
907 value_range_t *vr = vr_value[ver];
908
909 if (*equiv == NULL)
910 *equiv = BITMAP_ALLOC (NULL);
911 bitmap_set_bit (*equiv, ver);
912 if (vr && vr->equiv)
913 bitmap_ior_into (*equiv, vr->equiv);
914 }
915
916
917 /* Return true if VR is ~[0, 0]. */
918
919 static inline bool
920 range_is_nonnull (value_range_t *vr)
921 {
922 return vr->type == VR_ANTI_RANGE
923 && integer_zerop (vr->min)
924 && integer_zerop (vr->max);
925 }
926
927
928 /* Return true if VR is [0, 0]. */
929
930 static inline bool
931 range_is_null (value_range_t *vr)
932 {
933 return vr->type == VR_RANGE
934 && integer_zerop (vr->min)
935 && integer_zerop (vr->max);
936 }
937
938 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
939 a singleton. */
940
941 static inline bool
942 range_int_cst_p (value_range_t *vr)
943 {
944 return (vr->type == VR_RANGE
945 && TREE_CODE (vr->max) == INTEGER_CST
946 && TREE_CODE (vr->min) == INTEGER_CST);
947 }
948
949 /* Return true if VR is a INTEGER_CST singleton. */
950
951 static inline bool
952 range_int_cst_singleton_p (value_range_t *vr)
953 {
954 return (range_int_cst_p (vr)
955 && !is_overflow_infinity (vr->min)
956 && !is_overflow_infinity (vr->max)
957 && tree_int_cst_equal (vr->min, vr->max));
958 }
959
960 /* Return true if value range VR involves at least one symbol. */
961
962 static inline bool
963 symbolic_range_p (value_range_t *vr)
964 {
965 return (!is_gimple_min_invariant (vr->min)
966 || !is_gimple_min_invariant (vr->max));
967 }
968
969 /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
970 otherwise. We only handle additive operations and set NEG to true if the
971 symbol is negated and INV to the invariant part, if any. */
972
973 static tree
974 get_single_symbol (tree t, bool *neg, tree *inv)
975 {
976 bool neg_;
977 tree inv_;
978
979 if (TREE_CODE (t) == PLUS_EXPR
980 || TREE_CODE (t) == POINTER_PLUS_EXPR
981 || TREE_CODE (t) == MINUS_EXPR)
982 {
983 if (is_gimple_min_invariant (TREE_OPERAND (t, 0)))
984 {
985 neg_ = (TREE_CODE (t) == MINUS_EXPR);
986 inv_ = TREE_OPERAND (t, 0);
987 t = TREE_OPERAND (t, 1);
988 }
989 else if (is_gimple_min_invariant (TREE_OPERAND (t, 1)))
990 {
991 neg_ = false;
992 inv_ = TREE_OPERAND (t, 1);
993 t = TREE_OPERAND (t, 0);
994 }
995 else
996 return NULL_TREE;
997 }
998 else
999 {
1000 neg_ = false;
1001 inv_ = NULL_TREE;
1002 }
1003
1004 if (TREE_CODE (t) == NEGATE_EXPR)
1005 {
1006 t = TREE_OPERAND (t, 0);
1007 neg_ = !neg_;
1008 }
1009
1010 if (TREE_CODE (t) != SSA_NAME)
1011 return NULL_TREE;
1012
1013 *neg = neg_;
1014 *inv = inv_;
1015 return t;
1016 }
1017
1018 /* The reverse operation: build a symbolic expression with TYPE
1019 from symbol SYM, negated according to NEG, and invariant INV. */
1020
1021 static tree
1022 build_symbolic_expr (tree type, tree sym, bool neg, tree inv)
1023 {
1024 const bool pointer_p = POINTER_TYPE_P (type);
1025 tree t = sym;
1026
1027 if (neg)
1028 t = build1 (NEGATE_EXPR, type, t);
1029
1030 if (integer_zerop (inv))
1031 return t;
1032
1033 return build2 (pointer_p ? POINTER_PLUS_EXPR : PLUS_EXPR, type, t, inv);
1034 }
1035
1036 /* Return true if value range VR involves exactly one symbol SYM. */
1037
1038 static bool
1039 symbolic_range_based_on_p (value_range_t *vr, const_tree sym)
1040 {
1041 bool neg, min_has_symbol, max_has_symbol;
1042 tree inv;
1043
1044 if (is_gimple_min_invariant (vr->min))
1045 min_has_symbol = false;
1046 else if (get_single_symbol (vr->min, &neg, &inv) == sym)
1047 min_has_symbol = true;
1048 else
1049 return false;
1050
1051 if (is_gimple_min_invariant (vr->max))
1052 max_has_symbol = false;
1053 else if (get_single_symbol (vr->max, &neg, &inv) == sym)
1054 max_has_symbol = true;
1055 else
1056 return false;
1057
1058 return (min_has_symbol || max_has_symbol);
1059 }
1060
1061 /* Return true if value range VR uses an overflow infinity. */
1062
1063 static inline bool
1064 overflow_infinity_range_p (value_range_t *vr)
1065 {
1066 return (vr->type == VR_RANGE
1067 && (is_overflow_infinity (vr->min)
1068 || is_overflow_infinity (vr->max)));
1069 }
1070
1071 /* Return false if we can not make a valid comparison based on VR;
1072 this will be the case if it uses an overflow infinity and overflow
1073 is not undefined (i.e., -fno-strict-overflow is in effect).
1074 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
1075 uses an overflow infinity. */
1076
1077 static bool
1078 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
1079 {
1080 gcc_assert (vr->type == VR_RANGE);
1081 if (is_overflow_infinity (vr->min))
1082 {
1083 *strict_overflow_p = true;
1084 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
1085 return false;
1086 }
1087 if (is_overflow_infinity (vr->max))
1088 {
1089 *strict_overflow_p = true;
1090 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
1091 return false;
1092 }
1093 return true;
1094 }
1095
1096
1097 /* Return true if the result of assignment STMT is know to be non-negative.
1098 If the return value is based on the assumption that signed overflow is
1099 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1100 *STRICT_OVERFLOW_P.*/
1101
1102 static bool
1103 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
1104 {
1105 enum tree_code code = gimple_assign_rhs_code (stmt);
1106 switch (get_gimple_rhs_class (code))
1107 {
1108 case GIMPLE_UNARY_RHS:
1109 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
1110 gimple_expr_type (stmt),
1111 gimple_assign_rhs1 (stmt),
1112 strict_overflow_p);
1113 case GIMPLE_BINARY_RHS:
1114 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
1115 gimple_expr_type (stmt),
1116 gimple_assign_rhs1 (stmt),
1117 gimple_assign_rhs2 (stmt),
1118 strict_overflow_p);
1119 case GIMPLE_TERNARY_RHS:
1120 return false;
1121 case GIMPLE_SINGLE_RHS:
1122 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
1123 strict_overflow_p);
1124 case GIMPLE_INVALID_RHS:
1125 gcc_unreachable ();
1126 default:
1127 gcc_unreachable ();
1128 }
1129 }
1130
1131 /* Return true if return value of call STMT is know to be non-negative.
1132 If the return value is based on the assumption that signed overflow is
1133 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1134 *STRICT_OVERFLOW_P.*/
1135
1136 static bool
1137 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
1138 {
1139 tree arg0 = gimple_call_num_args (stmt) > 0 ?
1140 gimple_call_arg (stmt, 0) : NULL_TREE;
1141 tree arg1 = gimple_call_num_args (stmt) > 1 ?
1142 gimple_call_arg (stmt, 1) : NULL_TREE;
1143
1144 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
1145 gimple_call_fndecl (stmt),
1146 arg0,
1147 arg1,
1148 strict_overflow_p);
1149 }
1150
1151 /* Return true if STMT is know to to compute a non-negative value.
1152 If the return value is based on the assumption that signed overflow is
1153 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1154 *STRICT_OVERFLOW_P.*/
1155
1156 static bool
1157 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
1158 {
1159 switch (gimple_code (stmt))
1160 {
1161 case GIMPLE_ASSIGN:
1162 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
1163 case GIMPLE_CALL:
1164 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
1165 default:
1166 gcc_unreachable ();
1167 }
1168 }
1169
1170 /* Return true if the result of assignment STMT is know to be non-zero.
1171 If the return value is based on the assumption that signed overflow is
1172 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1173 *STRICT_OVERFLOW_P.*/
1174
1175 static bool
1176 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1177 {
1178 enum tree_code code = gimple_assign_rhs_code (stmt);
1179 switch (get_gimple_rhs_class (code))
1180 {
1181 case GIMPLE_UNARY_RHS:
1182 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1183 gimple_expr_type (stmt),
1184 gimple_assign_rhs1 (stmt),
1185 strict_overflow_p);
1186 case GIMPLE_BINARY_RHS:
1187 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1188 gimple_expr_type (stmt),
1189 gimple_assign_rhs1 (stmt),
1190 gimple_assign_rhs2 (stmt),
1191 strict_overflow_p);
1192 case GIMPLE_TERNARY_RHS:
1193 return false;
1194 case GIMPLE_SINGLE_RHS:
1195 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
1196 strict_overflow_p);
1197 case GIMPLE_INVALID_RHS:
1198 gcc_unreachable ();
1199 default:
1200 gcc_unreachable ();
1201 }
1202 }
1203
1204 /* Return true if STMT is known to compute a non-zero value.
1205 If the return value is based on the assumption that signed overflow is
1206 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1207 *STRICT_OVERFLOW_P.*/
1208
1209 static bool
1210 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1211 {
1212 switch (gimple_code (stmt))
1213 {
1214 case GIMPLE_ASSIGN:
1215 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
1216 case GIMPLE_CALL:
1217 {
1218 tree fndecl = gimple_call_fndecl (stmt);
1219 if (!fndecl) return false;
1220 if (flag_delete_null_pointer_checks && !flag_check_new
1221 && DECL_IS_OPERATOR_NEW (fndecl)
1222 && !TREE_NOTHROW (fndecl))
1223 return true;
1224 /* References are always non-NULL. */
1225 if (flag_delete_null_pointer_checks
1226 && TREE_CODE (TREE_TYPE (fndecl)) == REFERENCE_TYPE)
1227 return true;
1228 if (flag_delete_null_pointer_checks &&
1229 lookup_attribute ("returns_nonnull",
1230 TYPE_ATTRIBUTES (gimple_call_fntype (stmt))))
1231 return true;
1232 return gimple_alloca_call_p (stmt);
1233 }
1234 default:
1235 gcc_unreachable ();
1236 }
1237 }
1238
1239 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1240 obtained so far. */
1241
1242 static bool
1243 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
1244 {
1245 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1246 return true;
1247
1248 /* If we have an expression of the form &X->a, then the expression
1249 is nonnull if X is nonnull. */
1250 if (is_gimple_assign (stmt)
1251 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1252 {
1253 tree expr = gimple_assign_rhs1 (stmt);
1254 tree base = get_base_address (TREE_OPERAND (expr, 0));
1255
1256 if (base != NULL_TREE
1257 && TREE_CODE (base) == MEM_REF
1258 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1259 {
1260 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
1261 if (range_is_nonnull (vr))
1262 return true;
1263 }
1264 }
1265
1266 return false;
1267 }
1268
1269 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1270 a gimple invariant, or SSA_NAME +- CST. */
1271
1272 static bool
1273 valid_value_p (tree expr)
1274 {
1275 if (TREE_CODE (expr) == SSA_NAME)
1276 return true;
1277
1278 if (TREE_CODE (expr) == PLUS_EXPR
1279 || TREE_CODE (expr) == MINUS_EXPR)
1280 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1281 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1282
1283 return is_gimple_min_invariant (expr);
1284 }
1285
1286 /* Return
1287 1 if VAL < VAL2
1288 0 if !(VAL < VAL2)
1289 -2 if those are incomparable. */
1290 static inline int
1291 operand_less_p (tree val, tree val2)
1292 {
1293 /* LT is folded faster than GE and others. Inline the common case. */
1294 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1295 return tree_int_cst_lt (val, val2);
1296 else
1297 {
1298 tree tcmp;
1299
1300 fold_defer_overflow_warnings ();
1301
1302 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1303
1304 fold_undefer_and_ignore_overflow_warnings ();
1305
1306 if (!tcmp
1307 || TREE_CODE (tcmp) != INTEGER_CST)
1308 return -2;
1309
1310 if (!integer_zerop (tcmp))
1311 return 1;
1312 }
1313
1314 /* val >= val2, not considering overflow infinity. */
1315 if (is_negative_overflow_infinity (val))
1316 return is_negative_overflow_infinity (val2) ? 0 : 1;
1317 else if (is_positive_overflow_infinity (val2))
1318 return is_positive_overflow_infinity (val) ? 0 : 1;
1319
1320 return 0;
1321 }
1322
1323 /* Compare two values VAL1 and VAL2. Return
1324
1325 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1326 -1 if VAL1 < VAL2,
1327 0 if VAL1 == VAL2,
1328 +1 if VAL1 > VAL2, and
1329 +2 if VAL1 != VAL2
1330
1331 This is similar to tree_int_cst_compare but supports pointer values
1332 and values that cannot be compared at compile time.
1333
1334 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1335 true if the return value is only valid if we assume that signed
1336 overflow is undefined. */
1337
1338 static int
1339 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1340 {
1341 if (val1 == val2)
1342 return 0;
1343
1344 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1345 both integers. */
1346 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1347 == POINTER_TYPE_P (TREE_TYPE (val2)));
1348
1349 /* Convert the two values into the same type. This is needed because
1350 sizetype causes sign extension even for unsigned types. */
1351 val2 = fold_convert (TREE_TYPE (val1), val2);
1352 STRIP_USELESS_TYPE_CONVERSION (val2);
1353
1354 if ((TREE_CODE (val1) == SSA_NAME
1355 || (TREE_CODE (val1) == NEGATE_EXPR
1356 && TREE_CODE (TREE_OPERAND (val1, 0)) == SSA_NAME)
1357 || TREE_CODE (val1) == PLUS_EXPR
1358 || TREE_CODE (val1) == MINUS_EXPR)
1359 && (TREE_CODE (val2) == SSA_NAME
1360 || (TREE_CODE (val2) == NEGATE_EXPR
1361 && TREE_CODE (TREE_OPERAND (val2, 0)) == SSA_NAME)
1362 || TREE_CODE (val2) == PLUS_EXPR
1363 || TREE_CODE (val2) == MINUS_EXPR))
1364 {
1365 tree n1, c1, n2, c2;
1366 enum tree_code code1, code2;
1367
1368 /* If VAL1 and VAL2 are of the form '[-]NAME [+-] CST' or 'NAME',
1369 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1370 same name, return -2. */
1371 if (TREE_CODE (val1) == SSA_NAME || TREE_CODE (val1) == NEGATE_EXPR)
1372 {
1373 code1 = SSA_NAME;
1374 n1 = val1;
1375 c1 = NULL_TREE;
1376 }
1377 else
1378 {
1379 code1 = TREE_CODE (val1);
1380 n1 = TREE_OPERAND (val1, 0);
1381 c1 = TREE_OPERAND (val1, 1);
1382 if (tree_int_cst_sgn (c1) == -1)
1383 {
1384 if (is_negative_overflow_infinity (c1))
1385 return -2;
1386 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1387 if (!c1)
1388 return -2;
1389 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1390 }
1391 }
1392
1393 if (TREE_CODE (val2) == SSA_NAME || TREE_CODE (val2) == NEGATE_EXPR)
1394 {
1395 code2 = SSA_NAME;
1396 n2 = val2;
1397 c2 = NULL_TREE;
1398 }
1399 else
1400 {
1401 code2 = TREE_CODE (val2);
1402 n2 = TREE_OPERAND (val2, 0);
1403 c2 = TREE_OPERAND (val2, 1);
1404 if (tree_int_cst_sgn (c2) == -1)
1405 {
1406 if (is_negative_overflow_infinity (c2))
1407 return -2;
1408 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1409 if (!c2)
1410 return -2;
1411 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1412 }
1413 }
1414
1415 /* Both values must use the same name. */
1416 if (TREE_CODE (n1) == NEGATE_EXPR && TREE_CODE (n2) == NEGATE_EXPR)
1417 {
1418 n1 = TREE_OPERAND (n1, 0);
1419 n2 = TREE_OPERAND (n2, 0);
1420 }
1421 if (n1 != n2)
1422 return -2;
1423
1424 if (code1 == SSA_NAME && code2 == SSA_NAME)
1425 /* NAME == NAME */
1426 return 0;
1427
1428 /* If overflow is defined we cannot simplify more. */
1429 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1430 return -2;
1431
1432 if (strict_overflow_p != NULL
1433 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1434 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1435 *strict_overflow_p = true;
1436
1437 if (code1 == SSA_NAME)
1438 {
1439 if (code2 == PLUS_EXPR)
1440 /* NAME < NAME + CST */
1441 return -1;
1442 else if (code2 == MINUS_EXPR)
1443 /* NAME > NAME - CST */
1444 return 1;
1445 }
1446 else if (code1 == PLUS_EXPR)
1447 {
1448 if (code2 == SSA_NAME)
1449 /* NAME + CST > NAME */
1450 return 1;
1451 else if (code2 == PLUS_EXPR)
1452 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1453 return compare_values_warnv (c1, c2, strict_overflow_p);
1454 else if (code2 == MINUS_EXPR)
1455 /* NAME + CST1 > NAME - CST2 */
1456 return 1;
1457 }
1458 else if (code1 == MINUS_EXPR)
1459 {
1460 if (code2 == SSA_NAME)
1461 /* NAME - CST < NAME */
1462 return -1;
1463 else if (code2 == PLUS_EXPR)
1464 /* NAME - CST1 < NAME + CST2 */
1465 return -1;
1466 else if (code2 == MINUS_EXPR)
1467 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1468 C1 and C2 are swapped in the call to compare_values. */
1469 return compare_values_warnv (c2, c1, strict_overflow_p);
1470 }
1471
1472 gcc_unreachable ();
1473 }
1474
1475 /* We cannot compare non-constants. */
1476 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1477 return -2;
1478
1479 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1480 {
1481 /* We cannot compare overflowed values, except for overflow
1482 infinities. */
1483 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1484 {
1485 if (strict_overflow_p != NULL)
1486 *strict_overflow_p = true;
1487 if (is_negative_overflow_infinity (val1))
1488 return is_negative_overflow_infinity (val2) ? 0 : -1;
1489 else if (is_negative_overflow_infinity (val2))
1490 return 1;
1491 else if (is_positive_overflow_infinity (val1))
1492 return is_positive_overflow_infinity (val2) ? 0 : 1;
1493 else if (is_positive_overflow_infinity (val2))
1494 return -1;
1495 return -2;
1496 }
1497
1498 return tree_int_cst_compare (val1, val2);
1499 }
1500 else
1501 {
1502 tree t;
1503
1504 /* First see if VAL1 and VAL2 are not the same. */
1505 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1506 return 0;
1507
1508 /* If VAL1 is a lower address than VAL2, return -1. */
1509 if (operand_less_p (val1, val2) == 1)
1510 return -1;
1511
1512 /* If VAL1 is a higher address than VAL2, return +1. */
1513 if (operand_less_p (val2, val1) == 1)
1514 return 1;
1515
1516 /* If VAL1 is different than VAL2, return +2.
1517 For integer constants we either have already returned -1 or 1
1518 or they are equivalent. We still might succeed in proving
1519 something about non-trivial operands. */
1520 if (TREE_CODE (val1) != INTEGER_CST
1521 || TREE_CODE (val2) != INTEGER_CST)
1522 {
1523 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1524 if (t && integer_onep (t))
1525 return 2;
1526 }
1527
1528 return -2;
1529 }
1530 }
1531
1532 /* Compare values like compare_values_warnv, but treat comparisons of
1533 nonconstants which rely on undefined overflow as incomparable. */
1534
1535 static int
1536 compare_values (tree val1, tree val2)
1537 {
1538 bool sop;
1539 int ret;
1540
1541 sop = false;
1542 ret = compare_values_warnv (val1, val2, &sop);
1543 if (sop
1544 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1545 ret = -2;
1546 return ret;
1547 }
1548
1549
1550 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1551 0 if VAL is not inside [MIN, MAX],
1552 -2 if we cannot tell either way.
1553
1554 Benchmark compile/20001226-1.c compilation time after changing this
1555 function. */
1556
1557 static inline int
1558 value_inside_range (tree val, tree min, tree max)
1559 {
1560 int cmp1, cmp2;
1561
1562 cmp1 = operand_less_p (val, min);
1563 if (cmp1 == -2)
1564 return -2;
1565 if (cmp1 == 1)
1566 return 0;
1567
1568 cmp2 = operand_less_p (max, val);
1569 if (cmp2 == -2)
1570 return -2;
1571
1572 return !cmp2;
1573 }
1574
1575
1576 /* Return true if value ranges VR0 and VR1 have a non-empty
1577 intersection.
1578
1579 Benchmark compile/20001226-1.c compilation time after changing this
1580 function.
1581 */
1582
1583 static inline bool
1584 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1585 {
1586 /* The value ranges do not intersect if the maximum of the first range is
1587 less than the minimum of the second range or vice versa.
1588 When those relations are unknown, we can't do any better. */
1589 if (operand_less_p (vr0->max, vr1->min) != 0)
1590 return false;
1591 if (operand_less_p (vr1->max, vr0->min) != 0)
1592 return false;
1593 return true;
1594 }
1595
1596
1597 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1598 include the value zero, -2 if we cannot tell. */
1599
1600 static inline int
1601 range_includes_zero_p (tree min, tree max)
1602 {
1603 tree zero = build_int_cst (TREE_TYPE (min), 0);
1604 return value_inside_range (zero, min, max);
1605 }
1606
1607 /* Return true if *VR is know to only contain nonnegative values. */
1608
1609 static inline bool
1610 value_range_nonnegative_p (value_range_t *vr)
1611 {
1612 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1613 which would return a useful value should be encoded as a
1614 VR_RANGE. */
1615 if (vr->type == VR_RANGE)
1616 {
1617 int result = compare_values (vr->min, integer_zero_node);
1618 return (result == 0 || result == 1);
1619 }
1620
1621 return false;
1622 }
1623
1624 /* If *VR has a value rante that is a single constant value return that,
1625 otherwise return NULL_TREE. */
1626
1627 static tree
1628 value_range_constant_singleton (value_range_t *vr)
1629 {
1630 if (vr->type == VR_RANGE
1631 && operand_equal_p (vr->min, vr->max, 0)
1632 && is_gimple_min_invariant (vr->min))
1633 return vr->min;
1634
1635 return NULL_TREE;
1636 }
1637
1638 /* If OP has a value range with a single constant value return that,
1639 otherwise return NULL_TREE. This returns OP itself if OP is a
1640 constant. */
1641
1642 static tree
1643 op_with_constant_singleton_value_range (tree op)
1644 {
1645 if (is_gimple_min_invariant (op))
1646 return op;
1647
1648 if (TREE_CODE (op) != SSA_NAME)
1649 return NULL_TREE;
1650
1651 return value_range_constant_singleton (get_value_range (op));
1652 }
1653
1654 /* Return true if op is in a boolean [0, 1] value-range. */
1655
1656 static bool
1657 op_with_boolean_value_range_p (tree op)
1658 {
1659 value_range_t *vr;
1660
1661 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1662 return true;
1663
1664 if (integer_zerop (op)
1665 || integer_onep (op))
1666 return true;
1667
1668 if (TREE_CODE (op) != SSA_NAME)
1669 return false;
1670
1671 vr = get_value_range (op);
1672 return (vr->type == VR_RANGE
1673 && integer_zerop (vr->min)
1674 && integer_onep (vr->max));
1675 }
1676
1677 /* Extract value range information from an ASSERT_EXPR EXPR and store
1678 it in *VR_P. */
1679
1680 static void
1681 extract_range_from_assert (value_range_t *vr_p, tree expr)
1682 {
1683 tree var, cond, limit, min, max, type;
1684 value_range_t *limit_vr;
1685 enum tree_code cond_code;
1686
1687 var = ASSERT_EXPR_VAR (expr);
1688 cond = ASSERT_EXPR_COND (expr);
1689
1690 gcc_assert (COMPARISON_CLASS_P (cond));
1691
1692 /* Find VAR in the ASSERT_EXPR conditional. */
1693 if (var == TREE_OPERAND (cond, 0)
1694 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1695 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1696 {
1697 /* If the predicate is of the form VAR COMP LIMIT, then we just
1698 take LIMIT from the RHS and use the same comparison code. */
1699 cond_code = TREE_CODE (cond);
1700 limit = TREE_OPERAND (cond, 1);
1701 cond = TREE_OPERAND (cond, 0);
1702 }
1703 else
1704 {
1705 /* If the predicate is of the form LIMIT COMP VAR, then we need
1706 to flip around the comparison code to create the proper range
1707 for VAR. */
1708 cond_code = swap_tree_comparison (TREE_CODE (cond));
1709 limit = TREE_OPERAND (cond, 0);
1710 cond = TREE_OPERAND (cond, 1);
1711 }
1712
1713 limit = avoid_overflow_infinity (limit);
1714
1715 type = TREE_TYPE (var);
1716 gcc_assert (limit != var);
1717
1718 /* For pointer arithmetic, we only keep track of pointer equality
1719 and inequality. */
1720 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1721 {
1722 set_value_range_to_varying (vr_p);
1723 return;
1724 }
1725
1726 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1727 try to use LIMIT's range to avoid creating symbolic ranges
1728 unnecessarily. */
1729 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1730
1731 /* LIMIT's range is only interesting if it has any useful information. */
1732 if (limit_vr
1733 && (limit_vr->type == VR_UNDEFINED
1734 || limit_vr->type == VR_VARYING
1735 || symbolic_range_p (limit_vr)))
1736 limit_vr = NULL;
1737
1738 /* Initially, the new range has the same set of equivalences of
1739 VAR's range. This will be revised before returning the final
1740 value. Since assertions may be chained via mutually exclusive
1741 predicates, we will need to trim the set of equivalences before
1742 we are done. */
1743 gcc_assert (vr_p->equiv == NULL);
1744 add_equivalence (&vr_p->equiv, var);
1745
1746 /* Extract a new range based on the asserted comparison for VAR and
1747 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1748 will only use it for equality comparisons (EQ_EXPR). For any
1749 other kind of assertion, we cannot derive a range from LIMIT's
1750 anti-range that can be used to describe the new range. For
1751 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1752 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1753 no single range for x_2 that could describe LE_EXPR, so we might
1754 as well build the range [b_4, +INF] for it.
1755 One special case we handle is extracting a range from a
1756 range test encoded as (unsigned)var + CST <= limit. */
1757 if (TREE_CODE (cond) == NOP_EXPR
1758 || TREE_CODE (cond) == PLUS_EXPR)
1759 {
1760 if (TREE_CODE (cond) == PLUS_EXPR)
1761 {
1762 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1763 TREE_OPERAND (cond, 1));
1764 max = int_const_binop (PLUS_EXPR, limit, min);
1765 cond = TREE_OPERAND (cond, 0);
1766 }
1767 else
1768 {
1769 min = build_int_cst (TREE_TYPE (var), 0);
1770 max = limit;
1771 }
1772
1773 /* Make sure to not set TREE_OVERFLOW on the final type
1774 conversion. We are willingly interpreting large positive
1775 unsigned values as negative signed values here. */
1776 min = force_fit_type (TREE_TYPE (var), wi::to_widest (min), 0, false);
1777 max = force_fit_type (TREE_TYPE (var), wi::to_widest (max), 0, false);
1778
1779 /* We can transform a max, min range to an anti-range or
1780 vice-versa. Use set_and_canonicalize_value_range which does
1781 this for us. */
1782 if (cond_code == LE_EXPR)
1783 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1784 min, max, vr_p->equiv);
1785 else if (cond_code == GT_EXPR)
1786 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1787 min, max, vr_p->equiv);
1788 else
1789 gcc_unreachable ();
1790 }
1791 else if (cond_code == EQ_EXPR)
1792 {
1793 enum value_range_type range_type;
1794
1795 if (limit_vr)
1796 {
1797 range_type = limit_vr->type;
1798 min = limit_vr->min;
1799 max = limit_vr->max;
1800 }
1801 else
1802 {
1803 range_type = VR_RANGE;
1804 min = limit;
1805 max = limit;
1806 }
1807
1808 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1809
1810 /* When asserting the equality VAR == LIMIT and LIMIT is another
1811 SSA name, the new range will also inherit the equivalence set
1812 from LIMIT. */
1813 if (TREE_CODE (limit) == SSA_NAME)
1814 add_equivalence (&vr_p->equiv, limit);
1815 }
1816 else if (cond_code == NE_EXPR)
1817 {
1818 /* As described above, when LIMIT's range is an anti-range and
1819 this assertion is an inequality (NE_EXPR), then we cannot
1820 derive anything from the anti-range. For instance, if
1821 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1822 not imply that VAR's range is [0, 0]. So, in the case of
1823 anti-ranges, we just assert the inequality using LIMIT and
1824 not its anti-range.
1825
1826 If LIMIT_VR is a range, we can only use it to build a new
1827 anti-range if LIMIT_VR is a single-valued range. For
1828 instance, if LIMIT_VR is [0, 1], the predicate
1829 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1830 Rather, it means that for value 0 VAR should be ~[0, 0]
1831 and for value 1, VAR should be ~[1, 1]. We cannot
1832 represent these ranges.
1833
1834 The only situation in which we can build a valid
1835 anti-range is when LIMIT_VR is a single-valued range
1836 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1837 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1838 if (limit_vr
1839 && limit_vr->type == VR_RANGE
1840 && compare_values (limit_vr->min, limit_vr->max) == 0)
1841 {
1842 min = limit_vr->min;
1843 max = limit_vr->max;
1844 }
1845 else
1846 {
1847 /* In any other case, we cannot use LIMIT's range to build a
1848 valid anti-range. */
1849 min = max = limit;
1850 }
1851
1852 /* If MIN and MAX cover the whole range for their type, then
1853 just use the original LIMIT. */
1854 if (INTEGRAL_TYPE_P (type)
1855 && vrp_val_is_min (min)
1856 && vrp_val_is_max (max))
1857 min = max = limit;
1858
1859 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1860 min, max, vr_p->equiv);
1861 }
1862 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1863 {
1864 min = TYPE_MIN_VALUE (type);
1865
1866 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1867 max = limit;
1868 else
1869 {
1870 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1871 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1872 LT_EXPR. */
1873 max = limit_vr->max;
1874 }
1875
1876 /* If the maximum value forces us to be out of bounds, simply punt.
1877 It would be pointless to try and do anything more since this
1878 all should be optimized away above us. */
1879 if ((cond_code == LT_EXPR
1880 && compare_values (max, min) == 0)
1881 || is_overflow_infinity (max))
1882 set_value_range_to_varying (vr_p);
1883 else
1884 {
1885 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1886 if (cond_code == LT_EXPR)
1887 {
1888 if (TYPE_PRECISION (TREE_TYPE (max)) == 1
1889 && !TYPE_UNSIGNED (TREE_TYPE (max)))
1890 max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
1891 build_int_cst (TREE_TYPE (max), -1));
1892 else
1893 max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
1894 build_int_cst (TREE_TYPE (max), 1));
1895 if (EXPR_P (max))
1896 TREE_NO_WARNING (max) = 1;
1897 }
1898
1899 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1900 }
1901 }
1902 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1903 {
1904 max = TYPE_MAX_VALUE (type);
1905
1906 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1907 min = limit;
1908 else
1909 {
1910 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1911 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1912 GT_EXPR. */
1913 min = limit_vr->min;
1914 }
1915
1916 /* If the minimum value forces us to be out of bounds, simply punt.
1917 It would be pointless to try and do anything more since this
1918 all should be optimized away above us. */
1919 if ((cond_code == GT_EXPR
1920 && compare_values (min, max) == 0)
1921 || is_overflow_infinity (min))
1922 set_value_range_to_varying (vr_p);
1923 else
1924 {
1925 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1926 if (cond_code == GT_EXPR)
1927 {
1928 if (TYPE_PRECISION (TREE_TYPE (min)) == 1
1929 && !TYPE_UNSIGNED (TREE_TYPE (min)))
1930 min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
1931 build_int_cst (TREE_TYPE (min), -1));
1932 else
1933 min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
1934 build_int_cst (TREE_TYPE (min), 1));
1935 if (EXPR_P (min))
1936 TREE_NO_WARNING (min) = 1;
1937 }
1938
1939 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1940 }
1941 }
1942 else
1943 gcc_unreachable ();
1944
1945 /* Finally intersect the new range with what we already know about var. */
1946 vrp_intersect_ranges (vr_p, get_value_range (var));
1947 }
1948
1949
1950 /* Extract range information from SSA name VAR and store it in VR. If
1951 VAR has an interesting range, use it. Otherwise, create the
1952 range [VAR, VAR] and return it. This is useful in situations where
1953 we may have conditionals testing values of VARYING names. For
1954 instance,
1955
1956 x_3 = y_5;
1957 if (x_3 > y_5)
1958 ...
1959
1960 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1961 always false. */
1962
1963 static void
1964 extract_range_from_ssa_name (value_range_t *vr, tree var)
1965 {
1966 value_range_t *var_vr = get_value_range (var);
1967
1968 if (var_vr->type != VR_VARYING)
1969 copy_value_range (vr, var_vr);
1970 else
1971 set_value_range (vr, VR_RANGE, var, var, NULL);
1972
1973 add_equivalence (&vr->equiv, var);
1974 }
1975
1976
1977 /* Wrapper around int_const_binop. If the operation overflows and we
1978 are not using wrapping arithmetic, then adjust the result to be
1979 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1980 NULL_TREE if we need to use an overflow infinity representation but
1981 the type does not support it. */
1982
1983 static tree
1984 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1985 {
1986 tree res;
1987
1988 res = int_const_binop (code, val1, val2);
1989
1990 /* If we are using unsigned arithmetic, operate symbolically
1991 on -INF and +INF as int_const_binop only handles signed overflow. */
1992 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1993 {
1994 int checkz = compare_values (res, val1);
1995 bool overflow = false;
1996
1997 /* Ensure that res = val1 [+*] val2 >= val1
1998 or that res = val1 - val2 <= val1. */
1999 if ((code == PLUS_EXPR
2000 && !(checkz == 1 || checkz == 0))
2001 || (code == MINUS_EXPR
2002 && !(checkz == 0 || checkz == -1)))
2003 {
2004 overflow = true;
2005 }
2006 /* Checking for multiplication overflow is done by dividing the
2007 output of the multiplication by the first input of the
2008 multiplication. If the result of that division operation is
2009 not equal to the second input of the multiplication, then the
2010 multiplication overflowed. */
2011 else if (code == MULT_EXPR && !integer_zerop (val1))
2012 {
2013 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
2014 res,
2015 val1);
2016 int check = compare_values (tmp, val2);
2017
2018 if (check != 0)
2019 overflow = true;
2020 }
2021
2022 if (overflow)
2023 {
2024 res = copy_node (res);
2025 TREE_OVERFLOW (res) = 1;
2026 }
2027
2028 }
2029 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
2030 /* If the singed operation wraps then int_const_binop has done
2031 everything we want. */
2032 ;
2033 /* Signed division of -1/0 overflows and by the time it gets here
2034 returns NULL_TREE. */
2035 else if (!res)
2036 return NULL_TREE;
2037 else if ((TREE_OVERFLOW (res)
2038 && !TREE_OVERFLOW (val1)
2039 && !TREE_OVERFLOW (val2))
2040 || is_overflow_infinity (val1)
2041 || is_overflow_infinity (val2))
2042 {
2043 /* If the operation overflowed but neither VAL1 nor VAL2 are
2044 overflown, return -INF or +INF depending on the operation
2045 and the combination of signs of the operands. */
2046 int sgn1 = tree_int_cst_sgn (val1);
2047 int sgn2 = tree_int_cst_sgn (val2);
2048
2049 if (needs_overflow_infinity (TREE_TYPE (res))
2050 && !supports_overflow_infinity (TREE_TYPE (res)))
2051 return NULL_TREE;
2052
2053 /* We have to punt on adding infinities of different signs,
2054 since we can't tell what the sign of the result should be.
2055 Likewise for subtracting infinities of the same sign. */
2056 if (((code == PLUS_EXPR && sgn1 != sgn2)
2057 || (code == MINUS_EXPR && sgn1 == sgn2))
2058 && is_overflow_infinity (val1)
2059 && is_overflow_infinity (val2))
2060 return NULL_TREE;
2061
2062 /* Don't try to handle division or shifting of infinities. */
2063 if ((code == TRUNC_DIV_EXPR
2064 || code == FLOOR_DIV_EXPR
2065 || code == CEIL_DIV_EXPR
2066 || code == EXACT_DIV_EXPR
2067 || code == ROUND_DIV_EXPR
2068 || code == RSHIFT_EXPR)
2069 && (is_overflow_infinity (val1)
2070 || is_overflow_infinity (val2)))
2071 return NULL_TREE;
2072
2073 /* Notice that we only need to handle the restricted set of
2074 operations handled by extract_range_from_binary_expr.
2075 Among them, only multiplication, addition and subtraction
2076 can yield overflow without overflown operands because we
2077 are working with integral types only... except in the
2078 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2079 for division too. */
2080
2081 /* For multiplication, the sign of the overflow is given
2082 by the comparison of the signs of the operands. */
2083 if ((code == MULT_EXPR && sgn1 == sgn2)
2084 /* For addition, the operands must be of the same sign
2085 to yield an overflow. Its sign is therefore that
2086 of one of the operands, for example the first. For
2087 infinite operands X + -INF is negative, not positive. */
2088 || (code == PLUS_EXPR
2089 && (sgn1 >= 0
2090 ? !is_negative_overflow_infinity (val2)
2091 : is_positive_overflow_infinity (val2)))
2092 /* For subtraction, non-infinite operands must be of
2093 different signs to yield an overflow. Its sign is
2094 therefore that of the first operand or the opposite of
2095 that of the second operand. A first operand of 0 counts
2096 as positive here, for the corner case 0 - (-INF), which
2097 overflows, but must yield +INF. For infinite operands 0
2098 - INF is negative, not positive. */
2099 || (code == MINUS_EXPR
2100 && (sgn1 >= 0
2101 ? !is_positive_overflow_infinity (val2)
2102 : is_negative_overflow_infinity (val2)))
2103 /* We only get in here with positive shift count, so the
2104 overflow direction is the same as the sign of val1.
2105 Actually rshift does not overflow at all, but we only
2106 handle the case of shifting overflowed -INF and +INF. */
2107 || (code == RSHIFT_EXPR
2108 && sgn1 >= 0)
2109 /* For division, the only case is -INF / -1 = +INF. */
2110 || code == TRUNC_DIV_EXPR
2111 || code == FLOOR_DIV_EXPR
2112 || code == CEIL_DIV_EXPR
2113 || code == EXACT_DIV_EXPR
2114 || code == ROUND_DIV_EXPR)
2115 return (needs_overflow_infinity (TREE_TYPE (res))
2116 ? positive_overflow_infinity (TREE_TYPE (res))
2117 : TYPE_MAX_VALUE (TREE_TYPE (res)));
2118 else
2119 return (needs_overflow_infinity (TREE_TYPE (res))
2120 ? negative_overflow_infinity (TREE_TYPE (res))
2121 : TYPE_MIN_VALUE (TREE_TYPE (res)));
2122 }
2123
2124 return res;
2125 }
2126
2127
2128 /* For range VR compute two wide_int bitmasks. In *MAY_BE_NONZERO
2129 bitmask if some bit is unset, it means for all numbers in the range
2130 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
2131 bitmask if some bit is set, it means for all numbers in the range
2132 the bit is 1, otherwise it might be 0 or 1. */
2133
2134 static bool
2135 zero_nonzero_bits_from_vr (const tree expr_type,
2136 value_range_t *vr,
2137 wide_int *may_be_nonzero,
2138 wide_int *must_be_nonzero)
2139 {
2140 *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
2141 *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
2142 if (!range_int_cst_p (vr)
2143 || is_overflow_infinity (vr->min)
2144 || is_overflow_infinity (vr->max))
2145 return false;
2146
2147 if (range_int_cst_singleton_p (vr))
2148 {
2149 *may_be_nonzero = vr->min;
2150 *must_be_nonzero = *may_be_nonzero;
2151 }
2152 else if (tree_int_cst_sgn (vr->min) >= 0
2153 || tree_int_cst_sgn (vr->max) < 0)
2154 {
2155 wide_int xor_mask = wi::bit_xor (vr->min, vr->max);
2156 *may_be_nonzero = wi::bit_or (vr->min, vr->max);
2157 *must_be_nonzero = wi::bit_and (vr->min, vr->max);
2158 if (xor_mask != 0)
2159 {
2160 wide_int mask = wi::mask (wi::floor_log2 (xor_mask), false,
2161 may_be_nonzero->get_precision ());
2162 *may_be_nonzero = *may_be_nonzero | mask;
2163 *must_be_nonzero = must_be_nonzero->and_not (mask);
2164 }
2165 }
2166
2167 return true;
2168 }
2169
2170 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2171 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2172 false otherwise. If *AR can be represented with a single range
2173 *VR1 will be VR_UNDEFINED. */
2174
2175 static bool
2176 ranges_from_anti_range (value_range_t *ar,
2177 value_range_t *vr0, value_range_t *vr1)
2178 {
2179 tree type = TREE_TYPE (ar->min);
2180
2181 vr0->type = VR_UNDEFINED;
2182 vr1->type = VR_UNDEFINED;
2183
2184 if (ar->type != VR_ANTI_RANGE
2185 || TREE_CODE (ar->min) != INTEGER_CST
2186 || TREE_CODE (ar->max) != INTEGER_CST
2187 || !vrp_val_min (type)
2188 || !vrp_val_max (type))
2189 return false;
2190
2191 if (!vrp_val_is_min (ar->min))
2192 {
2193 vr0->type = VR_RANGE;
2194 vr0->min = vrp_val_min (type);
2195 vr0->max = wide_int_to_tree (type, wi::sub (ar->min, 1));
2196 }
2197 if (!vrp_val_is_max (ar->max))
2198 {
2199 vr1->type = VR_RANGE;
2200 vr1->min = wide_int_to_tree (type, wi::add (ar->max, 1));
2201 vr1->max = vrp_val_max (type);
2202 }
2203 if (vr0->type == VR_UNDEFINED)
2204 {
2205 *vr0 = *vr1;
2206 vr1->type = VR_UNDEFINED;
2207 }
2208
2209 return vr0->type != VR_UNDEFINED;
2210 }
2211
2212 /* Helper to extract a value-range *VR for a multiplicative operation
2213 *VR0 CODE *VR1. */
2214
2215 static void
2216 extract_range_from_multiplicative_op_1 (value_range_t *vr,
2217 enum tree_code code,
2218 value_range_t *vr0, value_range_t *vr1)
2219 {
2220 enum value_range_type type;
2221 tree val[4];
2222 size_t i;
2223 tree min, max;
2224 bool sop;
2225 int cmp;
2226
2227 /* Multiplications, divisions and shifts are a bit tricky to handle,
2228 depending on the mix of signs we have in the two ranges, we
2229 need to operate on different values to get the minimum and
2230 maximum values for the new range. One approach is to figure
2231 out all the variations of range combinations and do the
2232 operations.
2233
2234 However, this involves several calls to compare_values and it
2235 is pretty convoluted. It's simpler to do the 4 operations
2236 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2237 MAX1) and then figure the smallest and largest values to form
2238 the new range. */
2239 gcc_assert (code == MULT_EXPR
2240 || code == TRUNC_DIV_EXPR
2241 || code == FLOOR_DIV_EXPR
2242 || code == CEIL_DIV_EXPR
2243 || code == EXACT_DIV_EXPR
2244 || code == ROUND_DIV_EXPR
2245 || code == RSHIFT_EXPR
2246 || code == LSHIFT_EXPR);
2247 gcc_assert ((vr0->type == VR_RANGE
2248 || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
2249 && vr0->type == vr1->type);
2250
2251 type = vr0->type;
2252
2253 /* Compute the 4 cross operations. */
2254 sop = false;
2255 val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
2256 if (val[0] == NULL_TREE)
2257 sop = true;
2258
2259 if (vr1->max == vr1->min)
2260 val[1] = NULL_TREE;
2261 else
2262 {
2263 val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
2264 if (val[1] == NULL_TREE)
2265 sop = true;
2266 }
2267
2268 if (vr0->max == vr0->min)
2269 val[2] = NULL_TREE;
2270 else
2271 {
2272 val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
2273 if (val[2] == NULL_TREE)
2274 sop = true;
2275 }
2276
2277 if (vr0->min == vr0->max || vr1->min == vr1->max)
2278 val[3] = NULL_TREE;
2279 else
2280 {
2281 val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
2282 if (val[3] == NULL_TREE)
2283 sop = true;
2284 }
2285
2286 if (sop)
2287 {
2288 set_value_range_to_varying (vr);
2289 return;
2290 }
2291
2292 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2293 of VAL[i]. */
2294 min = val[0];
2295 max = val[0];
2296 for (i = 1; i < 4; i++)
2297 {
2298 if (!is_gimple_min_invariant (min)
2299 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2300 || !is_gimple_min_invariant (max)
2301 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2302 break;
2303
2304 if (val[i])
2305 {
2306 if (!is_gimple_min_invariant (val[i])
2307 || (TREE_OVERFLOW (val[i])
2308 && !is_overflow_infinity (val[i])))
2309 {
2310 /* If we found an overflowed value, set MIN and MAX
2311 to it so that we set the resulting range to
2312 VARYING. */
2313 min = max = val[i];
2314 break;
2315 }
2316
2317 if (compare_values (val[i], min) == -1)
2318 min = val[i];
2319
2320 if (compare_values (val[i], max) == 1)
2321 max = val[i];
2322 }
2323 }
2324
2325 /* If either MIN or MAX overflowed, then set the resulting range to
2326 VARYING. But we do accept an overflow infinity
2327 representation. */
2328 if (min == NULL_TREE
2329 || !is_gimple_min_invariant (min)
2330 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2331 || max == NULL_TREE
2332 || !is_gimple_min_invariant (max)
2333 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2334 {
2335 set_value_range_to_varying (vr);
2336 return;
2337 }
2338
2339 /* We punt if:
2340 1) [-INF, +INF]
2341 2) [-INF, +-INF(OVF)]
2342 3) [+-INF(OVF), +INF]
2343 4) [+-INF(OVF), +-INF(OVF)]
2344 We learn nothing when we have INF and INF(OVF) on both sides.
2345 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2346 overflow. */
2347 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2348 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2349 {
2350 set_value_range_to_varying (vr);
2351 return;
2352 }
2353
2354 cmp = compare_values (min, max);
2355 if (cmp == -2 || cmp == 1)
2356 {
2357 /* If the new range has its limits swapped around (MIN > MAX),
2358 then the operation caused one of them to wrap around, mark
2359 the new range VARYING. */
2360 set_value_range_to_varying (vr);
2361 }
2362 else
2363 set_value_range (vr, type, min, max, NULL);
2364 }
2365
2366 /* Extract range information from a binary operation CODE based on
2367 the ranges of each of its operands *VR0 and *VR1 with resulting
2368 type EXPR_TYPE. The resulting range is stored in *VR. */
2369
2370 static void
2371 extract_range_from_binary_expr_1 (value_range_t *vr,
2372 enum tree_code code, tree expr_type,
2373 value_range_t *vr0_, value_range_t *vr1_)
2374 {
2375 value_range_t vr0 = *vr0_, vr1 = *vr1_;
2376 value_range_t vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
2377 enum value_range_type type;
2378 tree min = NULL_TREE, max = NULL_TREE;
2379 int cmp;
2380
2381 if (!INTEGRAL_TYPE_P (expr_type)
2382 && !POINTER_TYPE_P (expr_type))
2383 {
2384 set_value_range_to_varying (vr);
2385 return;
2386 }
2387
2388 /* Not all binary expressions can be applied to ranges in a
2389 meaningful way. Handle only arithmetic operations. */
2390 if (code != PLUS_EXPR
2391 && code != MINUS_EXPR
2392 && code != POINTER_PLUS_EXPR
2393 && code != MULT_EXPR
2394 && code != TRUNC_DIV_EXPR
2395 && code != FLOOR_DIV_EXPR
2396 && code != CEIL_DIV_EXPR
2397 && code != EXACT_DIV_EXPR
2398 && code != ROUND_DIV_EXPR
2399 && code != TRUNC_MOD_EXPR
2400 && code != RSHIFT_EXPR
2401 && code != LSHIFT_EXPR
2402 && code != MIN_EXPR
2403 && code != MAX_EXPR
2404 && code != BIT_AND_EXPR
2405 && code != BIT_IOR_EXPR
2406 && code != BIT_XOR_EXPR)
2407 {
2408 set_value_range_to_varying (vr);
2409 return;
2410 }
2411
2412 /* If both ranges are UNDEFINED, so is the result. */
2413 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2414 {
2415 set_value_range_to_undefined (vr);
2416 return;
2417 }
2418 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2419 code. At some point we may want to special-case operations that
2420 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2421 operand. */
2422 else if (vr0.type == VR_UNDEFINED)
2423 set_value_range_to_varying (&vr0);
2424 else if (vr1.type == VR_UNDEFINED)
2425 set_value_range_to_varying (&vr1);
2426
2427 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2428 and express ~[] op X as ([]' op X) U ([]'' op X). */
2429 if (vr0.type == VR_ANTI_RANGE
2430 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2431 {
2432 extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
2433 if (vrtem1.type != VR_UNDEFINED)
2434 {
2435 value_range_t vrres = VR_INITIALIZER;
2436 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2437 &vrtem1, vr1_);
2438 vrp_meet (vr, &vrres);
2439 }
2440 return;
2441 }
2442 /* Likewise for X op ~[]. */
2443 if (vr1.type == VR_ANTI_RANGE
2444 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
2445 {
2446 extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
2447 if (vrtem1.type != VR_UNDEFINED)
2448 {
2449 value_range_t vrres = VR_INITIALIZER;
2450 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2451 vr0_, &vrtem1);
2452 vrp_meet (vr, &vrres);
2453 }
2454 return;
2455 }
2456
2457 /* The type of the resulting value range defaults to VR0.TYPE. */
2458 type = vr0.type;
2459
2460 /* Refuse to operate on VARYING ranges, ranges of different kinds
2461 and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
2462 because we may be able to derive a useful range even if one of
2463 the operands is VR_VARYING or symbolic range. Similarly for
2464 divisions, MIN/MAX and PLUS/MINUS.
2465
2466 TODO, we may be able to derive anti-ranges in some cases. */
2467 if (code != BIT_AND_EXPR
2468 && code != BIT_IOR_EXPR
2469 && code != TRUNC_DIV_EXPR
2470 && code != FLOOR_DIV_EXPR
2471 && code != CEIL_DIV_EXPR
2472 && code != EXACT_DIV_EXPR
2473 && code != ROUND_DIV_EXPR
2474 && code != TRUNC_MOD_EXPR
2475 && code != MIN_EXPR
2476 && code != MAX_EXPR
2477 && code != PLUS_EXPR
2478 && code != MINUS_EXPR
2479 && code != RSHIFT_EXPR
2480 && (vr0.type == VR_VARYING
2481 || vr1.type == VR_VARYING
2482 || vr0.type != vr1.type
2483 || symbolic_range_p (&vr0)
2484 || symbolic_range_p (&vr1)))
2485 {
2486 set_value_range_to_varying (vr);
2487 return;
2488 }
2489
2490 /* Now evaluate the expression to determine the new range. */
2491 if (POINTER_TYPE_P (expr_type))
2492 {
2493 if (code == MIN_EXPR || code == MAX_EXPR)
2494 {
2495 /* For MIN/MAX expressions with pointers, we only care about
2496 nullness, if both are non null, then the result is nonnull.
2497 If both are null, then the result is null. Otherwise they
2498 are varying. */
2499 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2500 set_value_range_to_nonnull (vr, expr_type);
2501 else if (range_is_null (&vr0) && range_is_null (&vr1))
2502 set_value_range_to_null (vr, expr_type);
2503 else
2504 set_value_range_to_varying (vr);
2505 }
2506 else if (code == POINTER_PLUS_EXPR)
2507 {
2508 /* For pointer types, we are really only interested in asserting
2509 whether the expression evaluates to non-NULL. */
2510 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2511 set_value_range_to_nonnull (vr, expr_type);
2512 else if (range_is_null (&vr0) && range_is_null (&vr1))
2513 set_value_range_to_null (vr, expr_type);
2514 else
2515 set_value_range_to_varying (vr);
2516 }
2517 else if (code == BIT_AND_EXPR)
2518 {
2519 /* For pointer types, we are really only interested in asserting
2520 whether the expression evaluates to non-NULL. */
2521 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2522 set_value_range_to_nonnull (vr, expr_type);
2523 else if (range_is_null (&vr0) || range_is_null (&vr1))
2524 set_value_range_to_null (vr, expr_type);
2525 else
2526 set_value_range_to_varying (vr);
2527 }
2528 else
2529 set_value_range_to_varying (vr);
2530
2531 return;
2532 }
2533
2534 /* For integer ranges, apply the operation to each end of the
2535 range and see what we end up with. */
2536 if (code == PLUS_EXPR || code == MINUS_EXPR)
2537 {
2538 const bool minus_p = (code == MINUS_EXPR);
2539 tree min_op0 = vr0.min;
2540 tree min_op1 = minus_p ? vr1.max : vr1.min;
2541 tree max_op0 = vr0.max;
2542 tree max_op1 = minus_p ? vr1.min : vr1.max;
2543 tree sym_min_op0 = NULL_TREE;
2544 tree sym_min_op1 = NULL_TREE;
2545 tree sym_max_op0 = NULL_TREE;
2546 tree sym_max_op1 = NULL_TREE;
2547 bool neg_min_op0, neg_min_op1, neg_max_op0, neg_max_op1;
2548
2549 /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
2550 single-symbolic ranges, try to compute the precise resulting range,
2551 but only if we know that this resulting range will also be constant
2552 or single-symbolic. */
2553 if (vr0.type == VR_RANGE && vr1.type == VR_RANGE
2554 && (TREE_CODE (min_op0) == INTEGER_CST
2555 || (sym_min_op0
2556 = get_single_symbol (min_op0, &neg_min_op0, &min_op0)))
2557 && (TREE_CODE (min_op1) == INTEGER_CST
2558 || (sym_min_op1
2559 = get_single_symbol (min_op1, &neg_min_op1, &min_op1)))
2560 && (!(sym_min_op0 && sym_min_op1)
2561 || (sym_min_op0 == sym_min_op1
2562 && neg_min_op0 == (minus_p ? neg_min_op1 : !neg_min_op1)))
2563 && (TREE_CODE (max_op0) == INTEGER_CST
2564 || (sym_max_op0
2565 = get_single_symbol (max_op0, &neg_max_op0, &max_op0)))
2566 && (TREE_CODE (max_op1) == INTEGER_CST
2567 || (sym_max_op1
2568 = get_single_symbol (max_op1, &neg_max_op1, &max_op1)))
2569 && (!(sym_max_op0 && sym_max_op1)
2570 || (sym_max_op0 == sym_max_op1
2571 && neg_max_op0 == (minus_p ? neg_max_op1 : !neg_max_op1))))
2572 {
2573 const signop sgn = TYPE_SIGN (expr_type);
2574 const unsigned int prec = TYPE_PRECISION (expr_type);
2575 wide_int type_min, type_max, wmin, wmax;
2576 int min_ovf = 0;
2577 int max_ovf = 0;
2578
2579 /* Get the lower and upper bounds of the type. */
2580 if (TYPE_OVERFLOW_WRAPS (expr_type))
2581 {
2582 type_min = wi::min_value (prec, sgn);
2583 type_max = wi::max_value (prec, sgn);
2584 }
2585 else
2586 {
2587 type_min = vrp_val_min (expr_type);
2588 type_max = vrp_val_max (expr_type);
2589 }
2590
2591 /* Combine the lower bounds, if any. */
2592 if (min_op0 && min_op1)
2593 {
2594 if (minus_p)
2595 {
2596 wmin = wi::sub (min_op0, min_op1);
2597
2598 /* Check for overflow. */
2599 if (wi::cmp (0, min_op1, sgn)
2600 != wi::cmp (wmin, min_op0, sgn))
2601 min_ovf = wi::cmp (min_op0, min_op1, sgn);
2602 }
2603 else
2604 {
2605 wmin = wi::add (min_op0, min_op1);
2606
2607 /* Check for overflow. */
2608 if (wi::cmp (min_op1, 0, sgn)
2609 != wi::cmp (wmin, min_op0, sgn))
2610 min_ovf = wi::cmp (min_op0, wmin, sgn);
2611 }
2612 }
2613 else if (min_op0)
2614 wmin = min_op0;
2615 else if (min_op1)
2616 wmin = minus_p ? wi::neg (min_op1) : min_op1;
2617 else
2618 wmin = wi::shwi (0, prec);
2619
2620 /* Combine the upper bounds, if any. */
2621 if (max_op0 && max_op1)
2622 {
2623 if (minus_p)
2624 {
2625 wmax = wi::sub (max_op0, max_op1);
2626
2627 /* Check for overflow. */
2628 if (wi::cmp (0, max_op1, sgn)
2629 != wi::cmp (wmax, max_op0, sgn))
2630 max_ovf = wi::cmp (max_op0, max_op1, sgn);
2631 }
2632 else
2633 {
2634 wmax = wi::add (max_op0, max_op1);
2635
2636 if (wi::cmp (max_op1, 0, sgn)
2637 != wi::cmp (wmax, max_op0, sgn))
2638 max_ovf = wi::cmp (max_op0, wmax, sgn);
2639 }
2640 }
2641 else if (max_op0)
2642 wmax = max_op0;
2643 else if (max_op1)
2644 wmax = minus_p ? wi::neg (max_op1) : max_op1;
2645 else
2646 wmax = wi::shwi (0, prec);
2647
2648 /* Check for type overflow. */
2649 if (min_ovf == 0)
2650 {
2651 if (wi::cmp (wmin, type_min, sgn) == -1)
2652 min_ovf = -1;
2653 else if (wi::cmp (wmin, type_max, sgn) == 1)
2654 min_ovf = 1;
2655 }
2656 if (max_ovf == 0)
2657 {
2658 if (wi::cmp (wmax, type_min, sgn) == -1)
2659 max_ovf = -1;
2660 else if (wi::cmp (wmax, type_max, sgn) == 1)
2661 max_ovf = 1;
2662 }
2663
2664 /* If we have overflow for the constant part and the resulting
2665 range will be symbolic, drop to VR_VARYING. */
2666 if ((min_ovf && sym_min_op0 != sym_min_op1)
2667 || (max_ovf && sym_max_op0 != sym_max_op1))
2668 {
2669 set_value_range_to_varying (vr);
2670 return;
2671 }
2672
2673 if (TYPE_OVERFLOW_WRAPS (expr_type))
2674 {
2675 /* If overflow wraps, truncate the values and adjust the
2676 range kind and bounds appropriately. */
2677 wide_int tmin = wide_int::from (wmin, prec, sgn);
2678 wide_int tmax = wide_int::from (wmax, prec, sgn);
2679 if (min_ovf == max_ovf)
2680 {
2681 /* No overflow or both overflow or underflow. The
2682 range kind stays VR_RANGE. */
2683 min = wide_int_to_tree (expr_type, tmin);
2684 max = wide_int_to_tree (expr_type, tmax);
2685 }
2686 else if (min_ovf == -1 && max_ovf == 1)
2687 {
2688 /* Underflow and overflow, drop to VR_VARYING. */
2689 set_value_range_to_varying (vr);
2690 return;
2691 }
2692 else
2693 {
2694 /* Min underflow or max overflow. The range kind
2695 changes to VR_ANTI_RANGE. */
2696 bool covers = false;
2697 wide_int tem = tmin;
2698 gcc_assert ((min_ovf == -1 && max_ovf == 0)
2699 || (max_ovf == 1 && min_ovf == 0));
2700 type = VR_ANTI_RANGE;
2701 tmin = tmax + 1;
2702 if (wi::cmp (tmin, tmax, sgn) < 0)
2703 covers = true;
2704 tmax = tem - 1;
2705 if (wi::cmp (tmax, tem, sgn) > 0)
2706 covers = true;
2707 /* If the anti-range would cover nothing, drop to varying.
2708 Likewise if the anti-range bounds are outside of the
2709 types values. */
2710 if (covers || wi::cmp (tmin, tmax, sgn) > 0)
2711 {
2712 set_value_range_to_varying (vr);
2713 return;
2714 }
2715 min = wide_int_to_tree (expr_type, tmin);
2716 max = wide_int_to_tree (expr_type, tmax);
2717 }
2718 }
2719 else
2720 {
2721 /* If overflow does not wrap, saturate to the types min/max
2722 value. */
2723 if (min_ovf == -1)
2724 {
2725 if (needs_overflow_infinity (expr_type)
2726 && supports_overflow_infinity (expr_type))
2727 min = negative_overflow_infinity (expr_type);
2728 else
2729 min = wide_int_to_tree (expr_type, type_min);
2730 }
2731 else if (min_ovf == 1)
2732 {
2733 if (needs_overflow_infinity (expr_type)
2734 && supports_overflow_infinity (expr_type))
2735 min = positive_overflow_infinity (expr_type);
2736 else
2737 min = wide_int_to_tree (expr_type, type_max);
2738 }
2739 else
2740 min = wide_int_to_tree (expr_type, wmin);
2741
2742 if (max_ovf == -1)
2743 {
2744 if (needs_overflow_infinity (expr_type)
2745 && supports_overflow_infinity (expr_type))
2746 max = negative_overflow_infinity (expr_type);
2747 else
2748 max = wide_int_to_tree (expr_type, type_min);
2749 }
2750 else if (max_ovf == 1)
2751 {
2752 if (needs_overflow_infinity (expr_type)
2753 && supports_overflow_infinity (expr_type))
2754 max = positive_overflow_infinity (expr_type);
2755 else
2756 max = wide_int_to_tree (expr_type, type_max);
2757 }
2758 else
2759 max = wide_int_to_tree (expr_type, wmax);
2760 }
2761
2762 if (needs_overflow_infinity (expr_type)
2763 && supports_overflow_infinity (expr_type))
2764 {
2765 if ((min_op0 && is_negative_overflow_infinity (min_op0))
2766 || (min_op1
2767 && (minus_p
2768 ? is_positive_overflow_infinity (min_op1)
2769 : is_negative_overflow_infinity (min_op1))))
2770 min = negative_overflow_infinity (expr_type);
2771 if ((max_op0 && is_positive_overflow_infinity (max_op0))
2772 || (max_op1
2773 && (minus_p
2774 ? is_negative_overflow_infinity (max_op1)
2775 : is_positive_overflow_infinity (max_op1))))
2776 max = positive_overflow_infinity (expr_type);
2777 }
2778
2779 /* If the result lower bound is constant, we're done;
2780 otherwise, build the symbolic lower bound. */
2781 if (sym_min_op0 == sym_min_op1)
2782 ;
2783 else if (sym_min_op0)
2784 min = build_symbolic_expr (expr_type, sym_min_op0,
2785 neg_min_op0, min);
2786 else if (sym_min_op1)
2787 min = build_symbolic_expr (expr_type, sym_min_op1,
2788 neg_min_op1 ^ minus_p, min);
2789
2790 /* Likewise for the upper bound. */
2791 if (sym_max_op0 == sym_max_op1)
2792 ;
2793 else if (sym_max_op0)
2794 max = build_symbolic_expr (expr_type, sym_max_op0,
2795 neg_max_op0, max);
2796 else if (sym_max_op1)
2797 max = build_symbolic_expr (expr_type, sym_max_op1,
2798 neg_max_op1 ^ minus_p, max);
2799 }
2800 else
2801 {
2802 /* For other cases, for example if we have a PLUS_EXPR with two
2803 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2804 to compute a precise range for such a case.
2805 ??? General even mixed range kind operations can be expressed
2806 by for example transforming ~[3, 5] + [1, 2] to range-only
2807 operations and a union primitive:
2808 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2809 [-INF+1, 4] U [6, +INF(OVF)]
2810 though usually the union is not exactly representable with
2811 a single range or anti-range as the above is
2812 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2813 but one could use a scheme similar to equivalences for this. */
2814 set_value_range_to_varying (vr);
2815 return;
2816 }
2817 }
2818 else if (code == MIN_EXPR
2819 || code == MAX_EXPR)
2820 {
2821 if (vr0.type == VR_RANGE
2822 && !symbolic_range_p (&vr0))
2823 {
2824 type = VR_RANGE;
2825 if (vr1.type == VR_RANGE
2826 && !symbolic_range_p (&vr1))
2827 {
2828 /* For operations that make the resulting range directly
2829 proportional to the original ranges, apply the operation to
2830 the same end of each range. */
2831 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2832 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2833 }
2834 else if (code == MIN_EXPR)
2835 {
2836 min = vrp_val_min (expr_type);
2837 max = vr0.max;
2838 }
2839 else if (code == MAX_EXPR)
2840 {
2841 min = vr0.min;
2842 max = vrp_val_max (expr_type);
2843 }
2844 }
2845 else if (vr1.type == VR_RANGE
2846 && !symbolic_range_p (&vr1))
2847 {
2848 type = VR_RANGE;
2849 if (code == MIN_EXPR)
2850 {
2851 min = vrp_val_min (expr_type);
2852 max = vr1.max;
2853 }
2854 else if (code == MAX_EXPR)
2855 {
2856 min = vr1.min;
2857 max = vrp_val_max (expr_type);
2858 }
2859 }
2860 else
2861 {
2862 set_value_range_to_varying (vr);
2863 return;
2864 }
2865 }
2866 else if (code == MULT_EXPR)
2867 {
2868 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2869 drop to varying. This test requires 2*prec bits if both
2870 operands are signed and 2*prec + 2 bits if either is not. */
2871
2872 signop sign = TYPE_SIGN (expr_type);
2873 unsigned int prec = TYPE_PRECISION (expr_type);
2874
2875 if (range_int_cst_p (&vr0)
2876 && range_int_cst_p (&vr1)
2877 && TYPE_OVERFLOW_WRAPS (expr_type))
2878 {
2879 typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION * 2) vrp_int;
2880 typedef generic_wide_int
2881 <wi::extended_tree <WIDE_INT_MAX_PRECISION * 2> > vrp_int_cst;
2882 vrp_int sizem1 = wi::mask <vrp_int> (prec, false);
2883 vrp_int size = sizem1 + 1;
2884
2885 /* Extend the values using the sign of the result to PREC2.
2886 From here on out, everthing is just signed math no matter
2887 what the input types were. */
2888 vrp_int min0 = vrp_int_cst (vr0.min);
2889 vrp_int max0 = vrp_int_cst (vr0.max);
2890 vrp_int min1 = vrp_int_cst (vr1.min);
2891 vrp_int max1 = vrp_int_cst (vr1.max);
2892 /* Canonicalize the intervals. */
2893 if (sign == UNSIGNED)
2894 {
2895 if (wi::ltu_p (size, min0 + max0))
2896 {
2897 min0 -= size;
2898 max0 -= size;
2899 }
2900
2901 if (wi::ltu_p (size, min1 + max1))
2902 {
2903 min1 -= size;
2904 max1 -= size;
2905 }
2906 }
2907
2908 vrp_int prod0 = min0 * min1;
2909 vrp_int prod1 = min0 * max1;
2910 vrp_int prod2 = max0 * min1;
2911 vrp_int prod3 = max0 * max1;
2912
2913 /* Sort the 4 products so that min is in prod0 and max is in
2914 prod3. */
2915 /* min0min1 > max0max1 */
2916 if (wi::gts_p (prod0, prod3))
2917 std::swap (prod0, prod3);
2918
2919 /* min0max1 > max0min1 */
2920 if (wi::gts_p (prod1, prod2))
2921 std::swap (prod1, prod2);
2922
2923 if (wi::gts_p (prod0, prod1))
2924 std::swap (prod0, prod1);
2925
2926 if (wi::gts_p (prod2, prod3))
2927 std::swap (prod2, prod3);
2928
2929 /* diff = max - min. */
2930 prod2 = prod3 - prod0;
2931 if (wi::geu_p (prod2, sizem1))
2932 {
2933 /* the range covers all values. */
2934 set_value_range_to_varying (vr);
2935 return;
2936 }
2937
2938 /* The following should handle the wrapping and selecting
2939 VR_ANTI_RANGE for us. */
2940 min = wide_int_to_tree (expr_type, prod0);
2941 max = wide_int_to_tree (expr_type, prod3);
2942 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
2943 return;
2944 }
2945
2946 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2947 drop to VR_VARYING. It would take more effort to compute a
2948 precise range for such a case. For example, if we have
2949 op0 == 65536 and op1 == 65536 with their ranges both being
2950 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2951 we cannot claim that the product is in ~[0,0]. Note that we
2952 are guaranteed to have vr0.type == vr1.type at this
2953 point. */
2954 if (vr0.type == VR_ANTI_RANGE
2955 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2956 {
2957 set_value_range_to_varying (vr);
2958 return;
2959 }
2960
2961 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2962 return;
2963 }
2964 else if (code == RSHIFT_EXPR
2965 || code == LSHIFT_EXPR)
2966 {
2967 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2968 then drop to VR_VARYING. Outside of this range we get undefined
2969 behavior from the shift operation. We cannot even trust
2970 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2971 shifts, and the operation at the tree level may be widened. */
2972 if (range_int_cst_p (&vr1)
2973 && compare_tree_int (vr1.min, 0) >= 0
2974 && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
2975 {
2976 if (code == RSHIFT_EXPR)
2977 {
2978 /* Even if vr0 is VARYING or otherwise not usable, we can derive
2979 useful ranges just from the shift count. E.g.
2980 x >> 63 for signed 64-bit x is always [-1, 0]. */
2981 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2982 {
2983 vr0.type = type = VR_RANGE;
2984 vr0.min = vrp_val_min (expr_type);
2985 vr0.max = vrp_val_max (expr_type);
2986 }
2987 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2988 return;
2989 }
2990 /* We can map lshifts by constants to MULT_EXPR handling. */
2991 else if (code == LSHIFT_EXPR
2992 && range_int_cst_singleton_p (&vr1))
2993 {
2994 bool saved_flag_wrapv;
2995 value_range_t vr1p = VR_INITIALIZER;
2996 vr1p.type = VR_RANGE;
2997 vr1p.min = (wide_int_to_tree
2998 (expr_type,
2999 wi::set_bit_in_zero (tree_to_shwi (vr1.min),
3000 TYPE_PRECISION (expr_type))));
3001 vr1p.max = vr1p.min;
3002 /* We have to use a wrapping multiply though as signed overflow
3003 on lshifts is implementation defined in C89. */
3004 saved_flag_wrapv = flag_wrapv;
3005 flag_wrapv = 1;
3006 extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
3007 &vr0, &vr1p);
3008 flag_wrapv = saved_flag_wrapv;
3009 return;
3010 }
3011 else if (code == LSHIFT_EXPR
3012 && range_int_cst_p (&vr0))
3013 {
3014 int prec = TYPE_PRECISION (expr_type);
3015 int overflow_pos = prec;
3016 int bound_shift;
3017 wide_int low_bound, high_bound;
3018 bool uns = TYPE_UNSIGNED (expr_type);
3019 bool in_bounds = false;
3020
3021 if (!uns)
3022 overflow_pos -= 1;
3023
3024 bound_shift = overflow_pos - tree_to_shwi (vr1.max);
3025 /* If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
3026 overflow. However, for that to happen, vr1.max needs to be
3027 zero, which means vr1 is a singleton range of zero, which
3028 means it should be handled by the previous LSHIFT_EXPR
3029 if-clause. */
3030 wide_int bound = wi::set_bit_in_zero (bound_shift, prec);
3031 wide_int complement = ~(bound - 1);
3032
3033 if (uns)
3034 {
3035 low_bound = bound;
3036 high_bound = complement;
3037 if (wi::ltu_p (vr0.max, low_bound))
3038 {
3039 /* [5, 6] << [1, 2] == [10, 24]. */
3040 /* We're shifting out only zeroes, the value increases
3041 monotonically. */
3042 in_bounds = true;
3043 }
3044 else if (wi::ltu_p (high_bound, vr0.min))
3045 {
3046 /* [0xffffff00, 0xffffffff] << [1, 2]
3047 == [0xfffffc00, 0xfffffffe]. */
3048 /* We're shifting out only ones, the value decreases
3049 monotonically. */
3050 in_bounds = true;
3051 }
3052 }
3053 else
3054 {
3055 /* [-1, 1] << [1, 2] == [-4, 4]. */
3056 low_bound = complement;
3057 high_bound = bound;
3058 if (wi::lts_p (vr0.max, high_bound)
3059 && wi::lts_p (low_bound, vr0.min))
3060 {
3061 /* For non-negative numbers, we're shifting out only
3062 zeroes, the value increases monotonically.
3063 For negative numbers, we're shifting out only ones, the
3064 value decreases monotomically. */
3065 in_bounds = true;
3066 }
3067 }
3068
3069 if (in_bounds)
3070 {
3071 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
3072 return;
3073 }
3074 }
3075 }
3076 set_value_range_to_varying (vr);
3077 return;
3078 }
3079 else if (code == TRUNC_DIV_EXPR
3080 || code == FLOOR_DIV_EXPR
3081 || code == CEIL_DIV_EXPR
3082 || code == EXACT_DIV_EXPR
3083 || code == ROUND_DIV_EXPR)
3084 {
3085 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
3086 {
3087 /* For division, if op1 has VR_RANGE but op0 does not, something
3088 can be deduced just from that range. Say [min, max] / [4, max]
3089 gives [min / 4, max / 4] range. */
3090 if (vr1.type == VR_RANGE
3091 && !symbolic_range_p (&vr1)
3092 && range_includes_zero_p (vr1.min, vr1.max) == 0)
3093 {
3094 vr0.type = type = VR_RANGE;
3095 vr0.min = vrp_val_min (expr_type);
3096 vr0.max = vrp_val_max (expr_type);
3097 }
3098 else
3099 {
3100 set_value_range_to_varying (vr);
3101 return;
3102 }
3103 }
3104
3105 /* For divisions, if flag_non_call_exceptions is true, we must
3106 not eliminate a division by zero. */
3107 if (cfun->can_throw_non_call_exceptions
3108 && (vr1.type != VR_RANGE
3109 || range_includes_zero_p (vr1.min, vr1.max) != 0))
3110 {
3111 set_value_range_to_varying (vr);
3112 return;
3113 }
3114
3115 /* For divisions, if op0 is VR_RANGE, we can deduce a range
3116 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
3117 include 0. */
3118 if (vr0.type == VR_RANGE
3119 && (vr1.type != VR_RANGE
3120 || range_includes_zero_p (vr1.min, vr1.max) != 0))
3121 {
3122 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
3123 int cmp;
3124
3125 min = NULL_TREE;
3126 max = NULL_TREE;
3127 if (TYPE_UNSIGNED (expr_type)
3128 || value_range_nonnegative_p (&vr1))
3129 {
3130 /* For unsigned division or when divisor is known
3131 to be non-negative, the range has to cover
3132 all numbers from 0 to max for positive max
3133 and all numbers from min to 0 for negative min. */
3134 cmp = compare_values (vr0.max, zero);
3135 if (cmp == -1)
3136 max = zero;
3137 else if (cmp == 0 || cmp == 1)
3138 max = vr0.max;
3139 else
3140 type = VR_VARYING;
3141 cmp = compare_values (vr0.min, zero);
3142 if (cmp == 1)
3143 min = zero;
3144 else if (cmp == 0 || cmp == -1)
3145 min = vr0.min;
3146 else
3147 type = VR_VARYING;
3148 }
3149 else
3150 {
3151 /* Otherwise the range is -max .. max or min .. -min
3152 depending on which bound is bigger in absolute value,
3153 as the division can change the sign. */
3154 abs_extent_range (vr, vr0.min, vr0.max);
3155 return;
3156 }
3157 if (type == VR_VARYING)
3158 {
3159 set_value_range_to_varying (vr);
3160 return;
3161 }
3162 }
3163 else
3164 {
3165 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
3166 return;
3167 }
3168 }
3169 else if (code == TRUNC_MOD_EXPR)
3170 {
3171 if (range_is_null (&vr1))
3172 {
3173 set_value_range_to_undefined (vr);
3174 return;
3175 }
3176 /* ABS (A % B) < ABS (B) and either
3177 0 <= A % B <= A or A <= A % B <= 0. */
3178 type = VR_RANGE;
3179 signop sgn = TYPE_SIGN (expr_type);
3180 unsigned int prec = TYPE_PRECISION (expr_type);
3181 wide_int wmin, wmax, tmp;
3182 wide_int zero = wi::zero (prec);
3183 wide_int one = wi::one (prec);
3184 if (vr1.type == VR_RANGE && !symbolic_range_p (&vr1))
3185 {
3186 wmax = wi::sub (vr1.max, one);
3187 if (sgn == SIGNED)
3188 {
3189 tmp = wi::sub (wi::minus_one (prec), vr1.min);
3190 wmax = wi::smax (wmax, tmp);
3191 }
3192 }
3193 else
3194 {
3195 wmax = wi::max_value (prec, sgn);
3196 /* X % INT_MIN may be INT_MAX. */
3197 if (sgn == UNSIGNED)
3198 wmax = wmax - one;
3199 }
3200
3201 if (sgn == UNSIGNED)
3202 wmin = zero;
3203 else
3204 {
3205 wmin = -wmax;
3206 if (vr0.type == VR_RANGE && TREE_CODE (vr0.min) == INTEGER_CST)
3207 {
3208 tmp = vr0.min;
3209 if (wi::gts_p (tmp, zero))
3210 tmp = zero;
3211 wmin = wi::smax (wmin, tmp);
3212 }
3213 }
3214
3215 if (vr0.type == VR_RANGE && TREE_CODE (vr0.max) == INTEGER_CST)
3216 {
3217 tmp = vr0.max;
3218 if (sgn == SIGNED && wi::neg_p (tmp))
3219 tmp = zero;
3220 wmax = wi::min (wmax, tmp, sgn);
3221 }
3222
3223 min = wide_int_to_tree (expr_type, wmin);
3224 max = wide_int_to_tree (expr_type, wmax);
3225 }
3226 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
3227 {
3228 bool int_cst_range0, int_cst_range1;
3229 wide_int may_be_nonzero0, may_be_nonzero1;
3230 wide_int must_be_nonzero0, must_be_nonzero1;
3231
3232 int_cst_range0 = zero_nonzero_bits_from_vr (expr_type, &vr0,
3233 &may_be_nonzero0,
3234 &must_be_nonzero0);
3235 int_cst_range1 = zero_nonzero_bits_from_vr (expr_type, &vr1,
3236 &may_be_nonzero1,
3237 &must_be_nonzero1);
3238
3239 type = VR_RANGE;
3240 if (code == BIT_AND_EXPR)
3241 {
3242 min = wide_int_to_tree (expr_type,
3243 must_be_nonzero0 & must_be_nonzero1);
3244 wide_int wmax = may_be_nonzero0 & may_be_nonzero1;
3245 /* If both input ranges contain only negative values we can
3246 truncate the result range maximum to the minimum of the
3247 input range maxima. */
3248 if (int_cst_range0 && int_cst_range1
3249 && tree_int_cst_sgn (vr0.max) < 0
3250 && tree_int_cst_sgn (vr1.max) < 0)
3251 {
3252 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
3253 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
3254 }
3255 /* If either input range contains only non-negative values
3256 we can truncate the result range maximum to the respective
3257 maximum of the input range. */
3258 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
3259 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
3260 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
3261 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
3262 max = wide_int_to_tree (expr_type, wmax);
3263 }
3264 else if (code == BIT_IOR_EXPR)
3265 {
3266 max = wide_int_to_tree (expr_type,
3267 may_be_nonzero0 | may_be_nonzero1);
3268 wide_int wmin = must_be_nonzero0 | must_be_nonzero1;
3269 /* If the input ranges contain only positive values we can
3270 truncate the minimum of the result range to the maximum
3271 of the input range minima. */
3272 if (int_cst_range0 && int_cst_range1
3273 && tree_int_cst_sgn (vr0.min) >= 0
3274 && tree_int_cst_sgn (vr1.min) >= 0)
3275 {
3276 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
3277 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
3278 }
3279 /* If either input range contains only negative values
3280 we can truncate the minimum of the result range to the
3281 respective minimum range. */
3282 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
3283 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
3284 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
3285 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
3286 min = wide_int_to_tree (expr_type, wmin);
3287 }
3288 else if (code == BIT_XOR_EXPR)
3289 {
3290 wide_int result_zero_bits = ((must_be_nonzero0 & must_be_nonzero1)
3291 | ~(may_be_nonzero0 | may_be_nonzero1));
3292 wide_int result_one_bits
3293 = (must_be_nonzero0.and_not (may_be_nonzero1)
3294 | must_be_nonzero1.and_not (may_be_nonzero0));
3295 max = wide_int_to_tree (expr_type, ~result_zero_bits);
3296 min = wide_int_to_tree (expr_type, result_one_bits);
3297 /* If the range has all positive or all negative values the
3298 result is better than VARYING. */
3299 if (tree_int_cst_sgn (min) < 0
3300 || tree_int_cst_sgn (max) >= 0)
3301 ;
3302 else
3303 max = min = NULL_TREE;
3304 }
3305 }
3306 else
3307 gcc_unreachable ();
3308
3309 /* If either MIN or MAX overflowed, then set the resulting range to
3310 VARYING. But we do accept an overflow infinity representation. */
3311 if (min == NULL_TREE
3312 || (TREE_OVERFLOW_P (min) && !is_overflow_infinity (min))
3313 || max == NULL_TREE
3314 || (TREE_OVERFLOW_P (max) && !is_overflow_infinity (max)))
3315 {
3316 set_value_range_to_varying (vr);
3317 return;
3318 }
3319
3320 /* We punt if:
3321 1) [-INF, +INF]
3322 2) [-INF, +-INF(OVF)]
3323 3) [+-INF(OVF), +INF]
3324 4) [+-INF(OVF), +-INF(OVF)]
3325 We learn nothing when we have INF and INF(OVF) on both sides.
3326 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3327 overflow. */
3328 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
3329 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
3330 {
3331 set_value_range_to_varying (vr);
3332 return;
3333 }
3334
3335 cmp = compare_values (min, max);
3336 if (cmp == -2 || cmp == 1)
3337 {
3338 /* If the new range has its limits swapped around (MIN > MAX),
3339 then the operation caused one of them to wrap around, mark
3340 the new range VARYING. */
3341 set_value_range_to_varying (vr);
3342 }
3343 else
3344 set_value_range (vr, type, min, max, NULL);
3345 }
3346
3347 /* Extract range information from a binary expression OP0 CODE OP1 based on
3348 the ranges of each of its operands with resulting type EXPR_TYPE.
3349 The resulting range is stored in *VR. */
3350
3351 static void
3352 extract_range_from_binary_expr (value_range_t *vr,
3353 enum tree_code code,
3354 tree expr_type, tree op0, tree op1)
3355 {
3356 value_range_t vr0 = VR_INITIALIZER;
3357 value_range_t vr1 = VR_INITIALIZER;
3358
3359 /* Get value ranges for each operand. For constant operands, create
3360 a new value range with the operand to simplify processing. */
3361 if (TREE_CODE (op0) == SSA_NAME)
3362 vr0 = *(get_value_range (op0));
3363 else if (is_gimple_min_invariant (op0))
3364 set_value_range_to_value (&vr0, op0, NULL);
3365 else
3366 set_value_range_to_varying (&vr0);
3367
3368 if (TREE_CODE (op1) == SSA_NAME)
3369 vr1 = *(get_value_range (op1));
3370 else if (is_gimple_min_invariant (op1))
3371 set_value_range_to_value (&vr1, op1, NULL);
3372 else
3373 set_value_range_to_varying (&vr1);
3374
3375 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
3376
3377 /* Try harder for PLUS and MINUS if the range of one operand is symbolic
3378 and based on the other operand, for example if it was deduced from a
3379 symbolic comparison. When a bound of the range of the first operand
3380 is invariant, we set the corresponding bound of the new range to INF
3381 in order to avoid recursing on the range of the second operand. */
3382 if (vr->type == VR_VARYING
3383 && (code == PLUS_EXPR || code == MINUS_EXPR)
3384 && TREE_CODE (op1) == SSA_NAME
3385 && vr0.type == VR_RANGE
3386 && symbolic_range_based_on_p (&vr0, op1))
3387 {
3388 const bool minus_p = (code == MINUS_EXPR);
3389 value_range_t n_vr1 = VR_INITIALIZER;
3390
3391 /* Try with VR0 and [-INF, OP1]. */
3392 if (is_gimple_min_invariant (minus_p ? vr0.max : vr0.min))
3393 set_value_range (&n_vr1, VR_RANGE, vrp_val_min (expr_type), op1, NULL);
3394
3395 /* Try with VR0 and [OP1, +INF]. */
3396 else if (is_gimple_min_invariant (minus_p ? vr0.min : vr0.max))
3397 set_value_range (&n_vr1, VR_RANGE, op1, vrp_val_max (expr_type), NULL);
3398
3399 /* Try with VR0 and [OP1, OP1]. */
3400 else
3401 set_value_range (&n_vr1, VR_RANGE, op1, op1, NULL);
3402
3403 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &n_vr1);
3404 }
3405
3406 if (vr->type == VR_VARYING
3407 && (code == PLUS_EXPR || code == MINUS_EXPR)
3408 && TREE_CODE (op0) == SSA_NAME
3409 && vr1.type == VR_RANGE
3410 && symbolic_range_based_on_p (&vr1, op0))
3411 {
3412 const bool minus_p = (code == MINUS_EXPR);
3413 value_range_t n_vr0 = VR_INITIALIZER;
3414
3415 /* Try with [-INF, OP0] and VR1. */
3416 if (is_gimple_min_invariant (minus_p ? vr1.max : vr1.min))
3417 set_value_range (&n_vr0, VR_RANGE, vrp_val_min (expr_type), op0, NULL);
3418
3419 /* Try with [OP0, +INF] and VR1. */
3420 else if (is_gimple_min_invariant (minus_p ? vr1.min : vr1.max))
3421 set_value_range (&n_vr0, VR_RANGE, op0, vrp_val_max (expr_type), NULL);
3422
3423 /* Try with [OP0, OP0] and VR1. */
3424 else
3425 set_value_range (&n_vr0, VR_RANGE, op0, op0, NULL);
3426
3427 extract_range_from_binary_expr_1 (vr, code, expr_type, &n_vr0, &vr1);
3428 }
3429 }
3430
3431 /* Extract range information from a unary operation CODE based on
3432 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3433 The The resulting range is stored in *VR. */
3434
3435 static void
3436 extract_range_from_unary_expr_1 (value_range_t *vr,
3437 enum tree_code code, tree type,
3438 value_range_t *vr0_, tree op0_type)
3439 {
3440 value_range_t vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
3441
3442 /* VRP only operates on integral and pointer types. */
3443 if (!(INTEGRAL_TYPE_P (op0_type)
3444 || POINTER_TYPE_P (op0_type))
3445 || !(INTEGRAL_TYPE_P (type)
3446 || POINTER_TYPE_P (type)))
3447 {
3448 set_value_range_to_varying (vr);
3449 return;
3450 }
3451
3452 /* If VR0 is UNDEFINED, so is the result. */
3453 if (vr0.type == VR_UNDEFINED)
3454 {
3455 set_value_range_to_undefined (vr);
3456 return;
3457 }
3458
3459 /* Handle operations that we express in terms of others. */
3460 if (code == PAREN_EXPR || code == OBJ_TYPE_REF)
3461 {
3462 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
3463 copy_value_range (vr, &vr0);
3464 return;
3465 }
3466 else if (code == NEGATE_EXPR)
3467 {
3468 /* -X is simply 0 - X, so re-use existing code that also handles
3469 anti-ranges fine. */
3470 value_range_t zero = VR_INITIALIZER;
3471 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
3472 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
3473 return;
3474 }
3475 else if (code == BIT_NOT_EXPR)
3476 {
3477 /* ~X is simply -1 - X, so re-use existing code that also handles
3478 anti-ranges fine. */
3479 value_range_t minusone = VR_INITIALIZER;
3480 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3481 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3482 type, &minusone, &vr0);
3483 return;
3484 }
3485
3486 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3487 and express op ~[] as (op []') U (op []''). */
3488 if (vr0.type == VR_ANTI_RANGE
3489 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
3490 {
3491 extract_range_from_unary_expr_1 (vr, code, type, &vrtem0, op0_type);
3492 if (vrtem1.type != VR_UNDEFINED)
3493 {
3494 value_range_t vrres = VR_INITIALIZER;
3495 extract_range_from_unary_expr_1 (&vrres, code, type,
3496 &vrtem1, op0_type);
3497 vrp_meet (vr, &vrres);
3498 }
3499 return;
3500 }
3501
3502 if (CONVERT_EXPR_CODE_P (code))
3503 {
3504 tree inner_type = op0_type;
3505 tree outer_type = type;
3506
3507 /* If the expression evaluates to a pointer, we are only interested in
3508 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3509 if (POINTER_TYPE_P (type))
3510 {
3511 if (range_is_nonnull (&vr0))
3512 set_value_range_to_nonnull (vr, type);
3513 else if (range_is_null (&vr0))
3514 set_value_range_to_null (vr, type);
3515 else
3516 set_value_range_to_varying (vr);
3517 return;
3518 }
3519
3520 /* If VR0 is varying and we increase the type precision, assume
3521 a full range for the following transformation. */
3522 if (vr0.type == VR_VARYING
3523 && INTEGRAL_TYPE_P (inner_type)
3524 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
3525 {
3526 vr0.type = VR_RANGE;
3527 vr0.min = TYPE_MIN_VALUE (inner_type);
3528 vr0.max = TYPE_MAX_VALUE (inner_type);
3529 }
3530
3531 /* If VR0 is a constant range or anti-range and the conversion is
3532 not truncating we can convert the min and max values and
3533 canonicalize the resulting range. Otherwise we can do the
3534 conversion if the size of the range is less than what the
3535 precision of the target type can represent and the range is
3536 not an anti-range. */
3537 if ((vr0.type == VR_RANGE
3538 || vr0.type == VR_ANTI_RANGE)
3539 && TREE_CODE (vr0.min) == INTEGER_CST
3540 && TREE_CODE (vr0.max) == INTEGER_CST
3541 && (!is_overflow_infinity (vr0.min)
3542 || (vr0.type == VR_RANGE
3543 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3544 && needs_overflow_infinity (outer_type)
3545 && supports_overflow_infinity (outer_type)))
3546 && (!is_overflow_infinity (vr0.max)
3547 || (vr0.type == VR_RANGE
3548 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3549 && needs_overflow_infinity (outer_type)
3550 && supports_overflow_infinity (outer_type)))
3551 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
3552 || (vr0.type == VR_RANGE
3553 && integer_zerop (int_const_binop (RSHIFT_EXPR,
3554 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
3555 size_int (TYPE_PRECISION (outer_type)))))))
3556 {
3557 tree new_min, new_max;
3558 if (is_overflow_infinity (vr0.min))
3559 new_min = negative_overflow_infinity (outer_type);
3560 else
3561 new_min = force_fit_type (outer_type, wi::to_widest (vr0.min),
3562 0, false);
3563 if (is_overflow_infinity (vr0.max))
3564 new_max = positive_overflow_infinity (outer_type);
3565 else
3566 new_max = force_fit_type (outer_type, wi::to_widest (vr0.max),
3567 0, false);
3568 set_and_canonicalize_value_range (vr, vr0.type,
3569 new_min, new_max, NULL);
3570 return;
3571 }
3572
3573 set_value_range_to_varying (vr);
3574 return;
3575 }
3576 else if (code == ABS_EXPR)
3577 {
3578 tree min, max;
3579 int cmp;
3580
3581 /* Pass through vr0 in the easy cases. */
3582 if (TYPE_UNSIGNED (type)
3583 || value_range_nonnegative_p (&vr0))
3584 {
3585 copy_value_range (vr, &vr0);
3586 return;
3587 }
3588
3589 /* For the remaining varying or symbolic ranges we can't do anything
3590 useful. */
3591 if (vr0.type == VR_VARYING
3592 || symbolic_range_p (&vr0))
3593 {
3594 set_value_range_to_varying (vr);
3595 return;
3596 }
3597
3598 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3599 useful range. */
3600 if (!TYPE_OVERFLOW_UNDEFINED (type)
3601 && ((vr0.type == VR_RANGE
3602 && vrp_val_is_min (vr0.min))
3603 || (vr0.type == VR_ANTI_RANGE
3604 && !vrp_val_is_min (vr0.min))))
3605 {
3606 set_value_range_to_varying (vr);
3607 return;
3608 }
3609
3610 /* ABS_EXPR may flip the range around, if the original range
3611 included negative values. */
3612 if (is_overflow_infinity (vr0.min))
3613 min = positive_overflow_infinity (type);
3614 else if (!vrp_val_is_min (vr0.min))
3615 min = fold_unary_to_constant (code, type, vr0.min);
3616 else if (!needs_overflow_infinity (type))
3617 min = TYPE_MAX_VALUE (type);
3618 else if (supports_overflow_infinity (type))
3619 min = positive_overflow_infinity (type);
3620 else
3621 {
3622 set_value_range_to_varying (vr);
3623 return;
3624 }
3625
3626 if (is_overflow_infinity (vr0.max))
3627 max = positive_overflow_infinity (type);
3628 else if (!vrp_val_is_min (vr0.max))
3629 max = fold_unary_to_constant (code, type, vr0.max);
3630 else if (!needs_overflow_infinity (type))
3631 max = TYPE_MAX_VALUE (type);
3632 else if (supports_overflow_infinity (type)
3633 /* We shouldn't generate [+INF, +INF] as set_value_range
3634 doesn't like this and ICEs. */
3635 && !is_positive_overflow_infinity (min))
3636 max = positive_overflow_infinity (type);
3637 else
3638 {
3639 set_value_range_to_varying (vr);
3640 return;
3641 }
3642
3643 cmp = compare_values (min, max);
3644
3645 /* If a VR_ANTI_RANGEs contains zero, then we have
3646 ~[-INF, min(MIN, MAX)]. */
3647 if (vr0.type == VR_ANTI_RANGE)
3648 {
3649 if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3650 {
3651 /* Take the lower of the two values. */
3652 if (cmp != 1)
3653 max = min;
3654
3655 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3656 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3657 flag_wrapv is set and the original anti-range doesn't include
3658 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3659 if (TYPE_OVERFLOW_WRAPS (type))
3660 {
3661 tree type_min_value = TYPE_MIN_VALUE (type);
3662
3663 min = (vr0.min != type_min_value
3664 ? int_const_binop (PLUS_EXPR, type_min_value,
3665 build_int_cst (TREE_TYPE (type_min_value), 1))
3666 : type_min_value);
3667 }
3668 else
3669 {
3670 if (overflow_infinity_range_p (&vr0))
3671 min = negative_overflow_infinity (type);
3672 else
3673 min = TYPE_MIN_VALUE (type);
3674 }
3675 }
3676 else
3677 {
3678 /* All else has failed, so create the range [0, INF], even for
3679 flag_wrapv since TYPE_MIN_VALUE is in the original
3680 anti-range. */
3681 vr0.type = VR_RANGE;
3682 min = build_int_cst (type, 0);
3683 if (needs_overflow_infinity (type))
3684 {
3685 if (supports_overflow_infinity (type))
3686 max = positive_overflow_infinity (type);
3687 else
3688 {
3689 set_value_range_to_varying (vr);
3690 return;
3691 }
3692 }
3693 else
3694 max = TYPE_MAX_VALUE (type);
3695 }
3696 }
3697
3698 /* If the range contains zero then we know that the minimum value in the
3699 range will be zero. */
3700 else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3701 {
3702 if (cmp == 1)
3703 max = min;
3704 min = build_int_cst (type, 0);
3705 }
3706 else
3707 {
3708 /* If the range was reversed, swap MIN and MAX. */
3709 if (cmp == 1)
3710 std::swap (min, max);
3711 }
3712
3713 cmp = compare_values (min, max);
3714 if (cmp == -2 || cmp == 1)
3715 {
3716 /* If the new range has its limits swapped around (MIN > MAX),
3717 then the operation caused one of them to wrap around, mark
3718 the new range VARYING. */
3719 set_value_range_to_varying (vr);
3720 }
3721 else
3722 set_value_range (vr, vr0.type, min, max, NULL);
3723 return;
3724 }
3725
3726 /* For unhandled operations fall back to varying. */
3727 set_value_range_to_varying (vr);
3728 return;
3729 }
3730
3731
3732 /* Extract range information from a unary expression CODE OP0 based on
3733 the range of its operand with resulting type TYPE.
3734 The resulting range is stored in *VR. */
3735
3736 static void
3737 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
3738 tree type, tree op0)
3739 {
3740 value_range_t vr0 = VR_INITIALIZER;
3741
3742 /* Get value ranges for the operand. For constant operands, create
3743 a new value range with the operand to simplify processing. */
3744 if (TREE_CODE (op0) == SSA_NAME)
3745 vr0 = *(get_value_range (op0));
3746 else if (is_gimple_min_invariant (op0))
3747 set_value_range_to_value (&vr0, op0, NULL);
3748 else
3749 set_value_range_to_varying (&vr0);
3750
3751 extract_range_from_unary_expr_1 (vr, code, type, &vr0, TREE_TYPE (op0));
3752 }
3753
3754
3755 /* Extract range information from a conditional expression STMT based on
3756 the ranges of each of its operands and the expression code. */
3757
3758 static void
3759 extract_range_from_cond_expr (value_range_t *vr, gassign *stmt)
3760 {
3761 tree op0, op1;
3762 value_range_t vr0 = VR_INITIALIZER;
3763 value_range_t vr1 = VR_INITIALIZER;
3764
3765 /* Get value ranges for each operand. For constant operands, create
3766 a new value range with the operand to simplify processing. */
3767 op0 = gimple_assign_rhs2 (stmt);
3768 if (TREE_CODE (op0) == SSA_NAME)
3769 vr0 = *(get_value_range (op0));
3770 else if (is_gimple_min_invariant (op0))
3771 set_value_range_to_value (&vr0, op0, NULL);
3772 else
3773 set_value_range_to_varying (&vr0);
3774
3775 op1 = gimple_assign_rhs3 (stmt);
3776 if (TREE_CODE (op1) == SSA_NAME)
3777 vr1 = *(get_value_range (op1));
3778 else if (is_gimple_min_invariant (op1))
3779 set_value_range_to_value (&vr1, op1, NULL);
3780 else
3781 set_value_range_to_varying (&vr1);
3782
3783 /* The resulting value range is the union of the operand ranges */
3784 copy_value_range (vr, &vr0);
3785 vrp_meet (vr, &vr1);
3786 }
3787
3788
3789 /* Extract range information from a comparison expression EXPR based
3790 on the range of its operand and the expression code. */
3791
3792 static void
3793 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3794 tree type, tree op0, tree op1)
3795 {
3796 bool sop = false;
3797 tree val;
3798
3799 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3800 NULL);
3801
3802 /* A disadvantage of using a special infinity as an overflow
3803 representation is that we lose the ability to record overflow
3804 when we don't have an infinity. So we have to ignore a result
3805 which relies on overflow. */
3806
3807 if (val && !is_overflow_infinity (val) && !sop)
3808 {
3809 /* Since this expression was found on the RHS of an assignment,
3810 its type may be different from _Bool. Convert VAL to EXPR's
3811 type. */
3812 val = fold_convert (type, val);
3813 if (is_gimple_min_invariant (val))
3814 set_value_range_to_value (vr, val, vr->equiv);
3815 else
3816 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3817 }
3818 else
3819 /* The result of a comparison is always true or false. */
3820 set_value_range_to_truthvalue (vr, type);
3821 }
3822
3823 /* Helper function for simplify_internal_call_using_ranges and
3824 extract_range_basic. Return true if OP0 SUBCODE OP1 for
3825 SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or
3826 always overflow. Set *OVF to true if it is known to always
3827 overflow. */
3828
3829 static bool
3830 check_for_binary_op_overflow (enum tree_code subcode, tree type,
3831 tree op0, tree op1, bool *ovf)
3832 {
3833 value_range_t vr0 = VR_INITIALIZER;
3834 value_range_t vr1 = VR_INITIALIZER;
3835 if (TREE_CODE (op0) == SSA_NAME)
3836 vr0 = *get_value_range (op0);
3837 else if (TREE_CODE (op0) == INTEGER_CST)
3838 set_value_range_to_value (&vr0, op0, NULL);
3839 else
3840 set_value_range_to_varying (&vr0);
3841
3842 if (TREE_CODE (op1) == SSA_NAME)
3843 vr1 = *get_value_range (op1);
3844 else if (TREE_CODE (op1) == INTEGER_CST)
3845 set_value_range_to_value (&vr1, op1, NULL);
3846 else
3847 set_value_range_to_varying (&vr1);
3848
3849 if (!range_int_cst_p (&vr0)
3850 || TREE_OVERFLOW (vr0.min)
3851 || TREE_OVERFLOW (vr0.max))
3852 {
3853 vr0.min = vrp_val_min (TREE_TYPE (op0));
3854 vr0.max = vrp_val_max (TREE_TYPE (op0));
3855 }
3856 if (!range_int_cst_p (&vr1)
3857 || TREE_OVERFLOW (vr1.min)
3858 || TREE_OVERFLOW (vr1.max))
3859 {
3860 vr1.min = vrp_val_min (TREE_TYPE (op1));
3861 vr1.max = vrp_val_max (TREE_TYPE (op1));
3862 }
3863 *ovf = arith_overflowed_p (subcode, type, vr0.min,
3864 subcode == MINUS_EXPR ? vr1.max : vr1.min);
3865 if (arith_overflowed_p (subcode, type, vr0.max,
3866 subcode == MINUS_EXPR ? vr1.min : vr1.max) != *ovf)
3867 return false;
3868 if (subcode == MULT_EXPR)
3869 {
3870 if (arith_overflowed_p (subcode, type, vr0.min, vr1.max) != *ovf
3871 || arith_overflowed_p (subcode, type, vr0.max, vr1.min) != *ovf)
3872 return false;
3873 }
3874 if (*ovf)
3875 {
3876 /* So far we found that there is an overflow on the boundaries.
3877 That doesn't prove that there is an overflow even for all values
3878 in between the boundaries. For that compute widest_int range
3879 of the result and see if it doesn't overlap the range of
3880 type. */
3881 widest_int wmin, wmax;
3882 widest_int w[4];
3883 int i;
3884 w[0] = wi::to_widest (vr0.min);
3885 w[1] = wi::to_widest (vr0.max);
3886 w[2] = wi::to_widest (vr1.min);
3887 w[3] = wi::to_widest (vr1.max);
3888 for (i = 0; i < 4; i++)
3889 {
3890 widest_int wt;
3891 switch (subcode)
3892 {
3893 case PLUS_EXPR:
3894 wt = wi::add (w[i & 1], w[2 + (i & 2) / 2]);
3895 break;
3896 case MINUS_EXPR:
3897 wt = wi::sub (w[i & 1], w[2 + (i & 2) / 2]);
3898 break;
3899 case MULT_EXPR:
3900 wt = wi::mul (w[i & 1], w[2 + (i & 2) / 2]);
3901 break;
3902 default:
3903 gcc_unreachable ();
3904 }
3905 if (i == 0)
3906 {
3907 wmin = wt;
3908 wmax = wt;
3909 }
3910 else
3911 {
3912 wmin = wi::smin (wmin, wt);
3913 wmax = wi::smax (wmax, wt);
3914 }
3915 }
3916 /* The result of op0 CODE op1 is known to be in range
3917 [wmin, wmax]. */
3918 widest_int wtmin = wi::to_widest (vrp_val_min (type));
3919 widest_int wtmax = wi::to_widest (vrp_val_max (type));
3920 /* If all values in [wmin, wmax] are smaller than
3921 [wtmin, wtmax] or all are larger than [wtmin, wtmax],
3922 the arithmetic operation will always overflow. */
3923 if (wi::lts_p (wmax, wtmin) || wi::gts_p (wmin, wtmax))
3924 return true;
3925 return false;
3926 }
3927 return true;
3928 }
3929
3930 /* Try to derive a nonnegative or nonzero range out of STMT relying
3931 primarily on generic routines in fold in conjunction with range data.
3932 Store the result in *VR */
3933
3934 static void
3935 extract_range_basic (value_range_t *vr, gimple stmt)
3936 {
3937 bool sop = false;
3938 tree type = gimple_expr_type (stmt);
3939
3940 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
3941 {
3942 tree fndecl = gimple_call_fndecl (stmt), arg;
3943 int mini, maxi, zerov = 0, prec;
3944
3945 switch (DECL_FUNCTION_CODE (fndecl))
3946 {
3947 case BUILT_IN_CONSTANT_P:
3948 /* If the call is __builtin_constant_p and the argument is a
3949 function parameter resolve it to false. This avoids bogus
3950 array bound warnings.
3951 ??? We could do this as early as inlining is finished. */
3952 arg = gimple_call_arg (stmt, 0);
3953 if (TREE_CODE (arg) == SSA_NAME
3954 && SSA_NAME_IS_DEFAULT_DEF (arg)
3955 && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL)
3956 {
3957 set_value_range_to_null (vr, type);
3958 return;
3959 }
3960 break;
3961 /* Both __builtin_ffs* and __builtin_popcount return
3962 [0, prec]. */
3963 CASE_INT_FN (BUILT_IN_FFS):
3964 CASE_INT_FN (BUILT_IN_POPCOUNT):
3965 arg = gimple_call_arg (stmt, 0);
3966 prec = TYPE_PRECISION (TREE_TYPE (arg));
3967 mini = 0;
3968 maxi = prec;
3969 if (TREE_CODE (arg) == SSA_NAME)
3970 {
3971 value_range_t *vr0 = get_value_range (arg);
3972 /* If arg is non-zero, then ffs or popcount
3973 are non-zero. */
3974 if (((vr0->type == VR_RANGE
3975 && range_includes_zero_p (vr0->min, vr0->max) == 0)
3976 || (vr0->type == VR_ANTI_RANGE
3977 && range_includes_zero_p (vr0->min, vr0->max) == 1))
3978 && !is_overflow_infinity (vr0->min)
3979 && !is_overflow_infinity (vr0->max))
3980 mini = 1;
3981 /* If some high bits are known to be zero,
3982 we can decrease the maximum. */
3983 if (vr0->type == VR_RANGE
3984 && TREE_CODE (vr0->max) == INTEGER_CST
3985 && !operand_less_p (vr0->min,
3986 build_zero_cst (TREE_TYPE (vr0->min)))
3987 && !is_overflow_infinity (vr0->max))
3988 maxi = tree_floor_log2 (vr0->max) + 1;
3989 }
3990 goto bitop_builtin;
3991 /* __builtin_parity* returns [0, 1]. */
3992 CASE_INT_FN (BUILT_IN_PARITY):
3993 mini = 0;
3994 maxi = 1;
3995 goto bitop_builtin;
3996 /* __builtin_c[lt]z* return [0, prec-1], except for
3997 when the argument is 0, but that is undefined behavior.
3998 On many targets where the CLZ RTL or optab value is defined
3999 for 0 the value is prec, so include that in the range
4000 by default. */
4001 CASE_INT_FN (BUILT_IN_CLZ):
4002 arg = gimple_call_arg (stmt, 0);
4003 prec = TYPE_PRECISION (TREE_TYPE (arg));
4004 mini = 0;
4005 maxi = prec;
4006 if (optab_handler (clz_optab, TYPE_MODE (TREE_TYPE (arg)))
4007 != CODE_FOR_nothing
4008 && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
4009 zerov)
4010 /* Handle only the single common value. */
4011 && zerov != prec)
4012 /* Magic value to give up, unless vr0 proves
4013 arg is non-zero. */
4014 mini = -2;
4015 if (TREE_CODE (arg) == SSA_NAME)
4016 {
4017 value_range_t *vr0 = get_value_range (arg);
4018 /* From clz of VR_RANGE minimum we can compute
4019 result maximum. */
4020 if (vr0->type == VR_RANGE
4021 && TREE_CODE (vr0->min) == INTEGER_CST
4022 && !is_overflow_infinity (vr0->min))
4023 {
4024 maxi = prec - 1 - tree_floor_log2 (vr0->min);
4025 if (maxi != prec)
4026 mini = 0;
4027 }
4028 else if (vr0->type == VR_ANTI_RANGE
4029 && integer_zerop (vr0->min)
4030 && !is_overflow_infinity (vr0->min))
4031 {
4032 maxi = prec - 1;
4033 mini = 0;
4034 }
4035 if (mini == -2)
4036 break;
4037 /* From clz of VR_RANGE maximum we can compute
4038 result minimum. */
4039 if (vr0->type == VR_RANGE
4040 && TREE_CODE (vr0->max) == INTEGER_CST
4041 && !is_overflow_infinity (vr0->max))
4042 {
4043 mini = prec - 1 - tree_floor_log2 (vr0->max);
4044 if (mini == prec)
4045 break;
4046 }
4047 }
4048 if (mini == -2)
4049 break;
4050 goto bitop_builtin;
4051 /* __builtin_ctz* return [0, prec-1], except for
4052 when the argument is 0, but that is undefined behavior.
4053 If there is a ctz optab for this mode and
4054 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
4055 otherwise just assume 0 won't be seen. */
4056 CASE_INT_FN (BUILT_IN_CTZ):
4057 arg = gimple_call_arg (stmt, 0);
4058 prec = TYPE_PRECISION (TREE_TYPE (arg));
4059 mini = 0;
4060 maxi = prec - 1;
4061 if (optab_handler (ctz_optab, TYPE_MODE (TREE_TYPE (arg)))
4062 != CODE_FOR_nothing
4063 && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
4064 zerov))
4065 {
4066 /* Handle only the two common values. */
4067 if (zerov == -1)
4068 mini = -1;
4069 else if (zerov == prec)
4070 maxi = prec;
4071 else
4072 /* Magic value to give up, unless vr0 proves
4073 arg is non-zero. */
4074 mini = -2;
4075 }
4076 if (TREE_CODE (arg) == SSA_NAME)
4077 {
4078 value_range_t *vr0 = get_value_range (arg);
4079 /* If arg is non-zero, then use [0, prec - 1]. */
4080 if (((vr0->type == VR_RANGE
4081 && integer_nonzerop (vr0->min))
4082 || (vr0->type == VR_ANTI_RANGE
4083 && integer_zerop (vr0->min)))
4084 && !is_overflow_infinity (vr0->min))
4085 {
4086 mini = 0;
4087 maxi = prec - 1;
4088 }
4089 /* If some high bits are known to be zero,
4090 we can decrease the result maximum. */
4091 if (vr0->type == VR_RANGE
4092 && TREE_CODE (vr0->max) == INTEGER_CST
4093 && !is_overflow_infinity (vr0->max))
4094 {
4095 maxi = tree_floor_log2 (vr0->max);
4096 /* For vr0 [0, 0] give up. */
4097 if (maxi == -1)
4098 break;
4099 }
4100 }
4101 if (mini == -2)
4102 break;
4103 goto bitop_builtin;
4104 /* __builtin_clrsb* returns [0, prec-1]. */
4105 CASE_INT_FN (BUILT_IN_CLRSB):
4106 arg = gimple_call_arg (stmt, 0);
4107 prec = TYPE_PRECISION (TREE_TYPE (arg));
4108 mini = 0;
4109 maxi = prec - 1;
4110 goto bitop_builtin;
4111 bitop_builtin:
4112 set_value_range (vr, VR_RANGE, build_int_cst (type, mini),
4113 build_int_cst (type, maxi), NULL);
4114 return;
4115 default:
4116 break;
4117 }
4118 }
4119 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
4120 {
4121 enum tree_code subcode = ERROR_MARK;
4122 switch (gimple_call_internal_fn (stmt))
4123 {
4124 case IFN_UBSAN_CHECK_ADD:
4125 subcode = PLUS_EXPR;
4126 break;
4127 case IFN_UBSAN_CHECK_SUB:
4128 subcode = MINUS_EXPR;
4129 break;
4130 case IFN_UBSAN_CHECK_MUL:
4131 subcode = MULT_EXPR;
4132 break;
4133 default:
4134 break;
4135 }
4136 if (subcode != ERROR_MARK)
4137 {
4138 bool saved_flag_wrapv = flag_wrapv;
4139 /* Pretend the arithmetics is wrapping. If there is
4140 any overflow, we'll complain, but will actually do
4141 wrapping operation. */
4142 flag_wrapv = 1;
4143 extract_range_from_binary_expr (vr, subcode, type,
4144 gimple_call_arg (stmt, 0),
4145 gimple_call_arg (stmt, 1));
4146 flag_wrapv = saved_flag_wrapv;
4147
4148 /* If for both arguments vrp_valueize returned non-NULL,
4149 this should have been already folded and if not, it
4150 wasn't folded because of overflow. Avoid removing the
4151 UBSAN_CHECK_* calls in that case. */
4152 if (vr->type == VR_RANGE
4153 && (vr->min == vr->max
4154 || operand_equal_p (vr->min, vr->max, 0)))
4155 set_value_range_to_varying (vr);
4156 return;
4157 }
4158 }
4159 /* Handle extraction of the two results (result of arithmetics and
4160 a flag whether arithmetics overflowed) from {ADD,SUB,MUL}_OVERFLOW
4161 internal function. */
4162 else if (is_gimple_assign (stmt)
4163 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
4164 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
4165 && INTEGRAL_TYPE_P (type))
4166 {
4167 enum tree_code code = gimple_assign_rhs_code (stmt);
4168 tree op = gimple_assign_rhs1 (stmt);
4169 if (TREE_CODE (op) == code && TREE_CODE (TREE_OPERAND (op, 0)) == SSA_NAME)
4170 {
4171 gimple g = SSA_NAME_DEF_STMT (TREE_OPERAND (op, 0));
4172 if (is_gimple_call (g) && gimple_call_internal_p (g))
4173 {
4174 enum tree_code subcode = ERROR_MARK;
4175 switch (gimple_call_internal_fn (g))
4176 {
4177 case IFN_ADD_OVERFLOW:
4178 subcode = PLUS_EXPR;
4179 break;
4180 case IFN_SUB_OVERFLOW:
4181 subcode = MINUS_EXPR;
4182 break;
4183 case IFN_MUL_OVERFLOW:
4184 subcode = MULT_EXPR;
4185 break;
4186 default:
4187 break;
4188 }
4189 if (subcode != ERROR_MARK)
4190 {
4191 tree op0 = gimple_call_arg (g, 0);
4192 tree op1 = gimple_call_arg (g, 1);
4193 if (code == IMAGPART_EXPR)
4194 {
4195 bool ovf = false;
4196 if (check_for_binary_op_overflow (subcode, type,
4197 op0, op1, &ovf))
4198 set_value_range_to_value (vr,
4199 build_int_cst (type, ovf),
4200 NULL);
4201 else
4202 set_value_range (vr, VR_RANGE, build_int_cst (type, 0),
4203 build_int_cst (type, 1), NULL);
4204 }
4205 else if (types_compatible_p (type, TREE_TYPE (op0))
4206 && types_compatible_p (type, TREE_TYPE (op1)))
4207 {
4208 bool saved_flag_wrapv = flag_wrapv;
4209 /* Pretend the arithmetics is wrapping. If there is
4210 any overflow, IMAGPART_EXPR will be set. */
4211 flag_wrapv = 1;
4212 extract_range_from_binary_expr (vr, subcode, type,
4213 op0, op1);
4214 flag_wrapv = saved_flag_wrapv;
4215 }
4216 else
4217 {
4218 value_range_t vr0 = VR_INITIALIZER;
4219 value_range_t vr1 = VR_INITIALIZER;
4220 bool saved_flag_wrapv = flag_wrapv;
4221 /* Pretend the arithmetics is wrapping. If there is
4222 any overflow, IMAGPART_EXPR will be set. */
4223 flag_wrapv = 1;
4224 extract_range_from_unary_expr (&vr0, NOP_EXPR,
4225 type, op0);
4226 extract_range_from_unary_expr (&vr1, NOP_EXPR,
4227 type, op1);
4228 extract_range_from_binary_expr_1 (vr, subcode, type,
4229 &vr0, &vr1);
4230 flag_wrapv = saved_flag_wrapv;
4231 }
4232 return;
4233 }
4234 }
4235 }
4236 }
4237 if (INTEGRAL_TYPE_P (type)
4238 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
4239 set_value_range_to_nonnegative (vr, type,
4240 sop || stmt_overflow_infinity (stmt));
4241 else if (vrp_stmt_computes_nonzero (stmt, &sop)
4242 && !sop)
4243 set_value_range_to_nonnull (vr, type);
4244 else
4245 set_value_range_to_varying (vr);
4246 }
4247
4248
4249 /* Try to compute a useful range out of assignment STMT and store it
4250 in *VR. */
4251
4252 static void
4253 extract_range_from_assignment (value_range_t *vr, gassign *stmt)
4254 {
4255 enum tree_code code = gimple_assign_rhs_code (stmt);
4256
4257 if (code == ASSERT_EXPR)
4258 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
4259 else if (code == SSA_NAME)
4260 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
4261 else if (TREE_CODE_CLASS (code) == tcc_binary)
4262 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
4263 gimple_expr_type (stmt),
4264 gimple_assign_rhs1 (stmt),
4265 gimple_assign_rhs2 (stmt));
4266 else if (TREE_CODE_CLASS (code) == tcc_unary)
4267 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
4268 gimple_expr_type (stmt),
4269 gimple_assign_rhs1 (stmt));
4270 else if (code == COND_EXPR)
4271 extract_range_from_cond_expr (vr, stmt);
4272 else if (TREE_CODE_CLASS (code) == tcc_comparison)
4273 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
4274 gimple_expr_type (stmt),
4275 gimple_assign_rhs1 (stmt),
4276 gimple_assign_rhs2 (stmt));
4277 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
4278 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
4279 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
4280 else
4281 set_value_range_to_varying (vr);
4282
4283 if (vr->type == VR_VARYING)
4284 extract_range_basic (vr, stmt);
4285 }
4286
4287 /* Given a range VR, a LOOP and a variable VAR, determine whether it
4288 would be profitable to adjust VR using scalar evolution information
4289 for VAR. If so, update VR with the new limits. */
4290
4291 static void
4292 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
4293 gimple stmt, tree var)
4294 {
4295 tree init, step, chrec, tmin, tmax, min, max, type, tem;
4296 enum ev_direction dir;
4297
4298 /* TODO. Don't adjust anti-ranges. An anti-range may provide
4299 better opportunities than a regular range, but I'm not sure. */
4300 if (vr->type == VR_ANTI_RANGE)
4301 return;
4302
4303 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
4304
4305 /* Like in PR19590, scev can return a constant function. */
4306 if (is_gimple_min_invariant (chrec))
4307 {
4308 set_value_range_to_value (vr, chrec, vr->equiv);
4309 return;
4310 }
4311
4312 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
4313 return;
4314
4315 init = initial_condition_in_loop_num (chrec, loop->num);
4316 tem = op_with_constant_singleton_value_range (init);
4317 if (tem)
4318 init = tem;
4319 step = evolution_part_in_loop_num (chrec, loop->num);
4320 tem = op_with_constant_singleton_value_range (step);
4321 if (tem)
4322 step = tem;
4323
4324 /* If STEP is symbolic, we can't know whether INIT will be the
4325 minimum or maximum value in the range. Also, unless INIT is
4326 a simple expression, compare_values and possibly other functions
4327 in tree-vrp won't be able to handle it. */
4328 if (step == NULL_TREE
4329 || !is_gimple_min_invariant (step)
4330 || !valid_value_p (init))
4331 return;
4332
4333 dir = scev_direction (chrec);
4334 if (/* Do not adjust ranges if we do not know whether the iv increases
4335 or decreases, ... */
4336 dir == EV_DIR_UNKNOWN
4337 /* ... or if it may wrap. */
4338 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
4339 true))
4340 return;
4341
4342 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
4343 negative_overflow_infinity and positive_overflow_infinity,
4344 because we have concluded that the loop probably does not
4345 wrap. */
4346
4347 type = TREE_TYPE (var);
4348 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
4349 tmin = lower_bound_in_type (type, type);
4350 else
4351 tmin = TYPE_MIN_VALUE (type);
4352 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
4353 tmax = upper_bound_in_type (type, type);
4354 else
4355 tmax = TYPE_MAX_VALUE (type);
4356
4357 /* Try to use estimated number of iterations for the loop to constrain the
4358 final value in the evolution. */
4359 if (TREE_CODE (step) == INTEGER_CST
4360 && is_gimple_val (init)
4361 && (TREE_CODE (init) != SSA_NAME
4362 || get_value_range (init)->type == VR_RANGE))
4363 {
4364 widest_int nit;
4365
4366 /* We are only entering here for loop header PHI nodes, so using
4367 the number of latch executions is the correct thing to use. */
4368 if (max_loop_iterations (loop, &nit))
4369 {
4370 value_range_t maxvr = VR_INITIALIZER;
4371 signop sgn = TYPE_SIGN (TREE_TYPE (step));
4372 bool overflow;
4373
4374 widest_int wtmp = wi::mul (wi::to_widest (step), nit, sgn,
4375 &overflow);
4376 /* If the multiplication overflowed we can't do a meaningful
4377 adjustment. Likewise if the result doesn't fit in the type
4378 of the induction variable. For a signed type we have to
4379 check whether the result has the expected signedness which
4380 is that of the step as number of iterations is unsigned. */
4381 if (!overflow
4382 && wi::fits_to_tree_p (wtmp, TREE_TYPE (init))
4383 && (sgn == UNSIGNED
4384 || wi::gts_p (wtmp, 0) == wi::gts_p (step, 0)))
4385 {
4386 tem = wide_int_to_tree (TREE_TYPE (init), wtmp);
4387 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
4388 TREE_TYPE (init), init, tem);
4389 /* Likewise if the addition did. */
4390 if (maxvr.type == VR_RANGE)
4391 {
4392 tmin = maxvr.min;
4393 tmax = maxvr.max;
4394 }
4395 }
4396 }
4397 }
4398
4399 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4400 {
4401 min = tmin;
4402 max = tmax;
4403
4404 /* For VARYING or UNDEFINED ranges, just about anything we get
4405 from scalar evolutions should be better. */
4406
4407 if (dir == EV_DIR_DECREASES)
4408 max = init;
4409 else
4410 min = init;
4411 }
4412 else if (vr->type == VR_RANGE)
4413 {
4414 min = vr->min;
4415 max = vr->max;
4416
4417 if (dir == EV_DIR_DECREASES)
4418 {
4419 /* INIT is the maximum value. If INIT is lower than VR->MAX
4420 but no smaller than VR->MIN, set VR->MAX to INIT. */
4421 if (compare_values (init, max) == -1)
4422 max = init;
4423
4424 /* According to the loop information, the variable does not
4425 overflow. If we think it does, probably because of an
4426 overflow due to arithmetic on a different INF value,
4427 reset now. */
4428 if (is_negative_overflow_infinity (min)
4429 || compare_values (min, tmin) == -1)
4430 min = tmin;
4431
4432 }
4433 else
4434 {
4435 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
4436 if (compare_values (init, min) == 1)
4437 min = init;
4438
4439 if (is_positive_overflow_infinity (max)
4440 || compare_values (tmax, max) == -1)
4441 max = tmax;
4442 }
4443 }
4444 else
4445 return;
4446
4447 /* If we just created an invalid range with the minimum
4448 greater than the maximum, we fail conservatively.
4449 This should happen only in unreachable
4450 parts of code, or for invalid programs. */
4451 if (compare_values (min, max) == 1
4452 || (is_negative_overflow_infinity (min)
4453 && is_positive_overflow_infinity (max)))
4454 return;
4455
4456 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
4457 }
4458
4459
4460 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
4461
4462 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4463 all the values in the ranges.
4464
4465 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4466
4467 - Return NULL_TREE if it is not always possible to determine the
4468 value of the comparison.
4469
4470 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
4471 overflow infinity was used in the test. */
4472
4473
4474 static tree
4475 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
4476 bool *strict_overflow_p)
4477 {
4478 /* VARYING or UNDEFINED ranges cannot be compared. */
4479 if (vr0->type == VR_VARYING
4480 || vr0->type == VR_UNDEFINED
4481 || vr1->type == VR_VARYING
4482 || vr1->type == VR_UNDEFINED)
4483 return NULL_TREE;
4484
4485 /* Anti-ranges need to be handled separately. */
4486 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4487 {
4488 /* If both are anti-ranges, then we cannot compute any
4489 comparison. */
4490 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4491 return NULL_TREE;
4492
4493 /* These comparisons are never statically computable. */
4494 if (comp == GT_EXPR
4495 || comp == GE_EXPR
4496 || comp == LT_EXPR
4497 || comp == LE_EXPR)
4498 return NULL_TREE;
4499
4500 /* Equality can be computed only between a range and an
4501 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
4502 if (vr0->type == VR_RANGE)
4503 {
4504 /* To simplify processing, make VR0 the anti-range. */
4505 value_range_t *tmp = vr0;
4506 vr0 = vr1;
4507 vr1 = tmp;
4508 }
4509
4510 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
4511
4512 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
4513 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
4514 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4515
4516 return NULL_TREE;
4517 }
4518
4519 if (!usable_range_p (vr0, strict_overflow_p)
4520 || !usable_range_p (vr1, strict_overflow_p))
4521 return NULL_TREE;
4522
4523 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4524 operands around and change the comparison code. */
4525 if (comp == GT_EXPR || comp == GE_EXPR)
4526 {
4527 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
4528 std::swap (vr0, vr1);
4529 }
4530
4531 if (comp == EQ_EXPR)
4532 {
4533 /* Equality may only be computed if both ranges represent
4534 exactly one value. */
4535 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
4536 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
4537 {
4538 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
4539 strict_overflow_p);
4540 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
4541 strict_overflow_p);
4542 if (cmp_min == 0 && cmp_max == 0)
4543 return boolean_true_node;
4544 else if (cmp_min != -2 && cmp_max != -2)
4545 return boolean_false_node;
4546 }
4547 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
4548 else if (compare_values_warnv (vr0->min, vr1->max,
4549 strict_overflow_p) == 1
4550 || compare_values_warnv (vr1->min, vr0->max,
4551 strict_overflow_p) == 1)
4552 return boolean_false_node;
4553
4554 return NULL_TREE;
4555 }
4556 else if (comp == NE_EXPR)
4557 {
4558 int cmp1, cmp2;
4559
4560 /* If VR0 is completely to the left or completely to the right
4561 of VR1, they are always different. Notice that we need to
4562 make sure that both comparisons yield similar results to
4563 avoid comparing values that cannot be compared at
4564 compile-time. */
4565 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4566 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4567 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
4568 return boolean_true_node;
4569
4570 /* If VR0 and VR1 represent a single value and are identical,
4571 return false. */
4572 else if (compare_values_warnv (vr0->min, vr0->max,
4573 strict_overflow_p) == 0
4574 && compare_values_warnv (vr1->min, vr1->max,
4575 strict_overflow_p) == 0
4576 && compare_values_warnv (vr0->min, vr1->min,
4577 strict_overflow_p) == 0
4578 && compare_values_warnv (vr0->max, vr1->max,
4579 strict_overflow_p) == 0)
4580 return boolean_false_node;
4581
4582 /* Otherwise, they may or may not be different. */
4583 else
4584 return NULL_TREE;
4585 }
4586 else if (comp == LT_EXPR || comp == LE_EXPR)
4587 {
4588 int tst;
4589
4590 /* If VR0 is to the left of VR1, return true. */
4591 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4592 if ((comp == LT_EXPR && tst == -1)
4593 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4594 {
4595 if (overflow_infinity_range_p (vr0)
4596 || overflow_infinity_range_p (vr1))
4597 *strict_overflow_p = true;
4598 return boolean_true_node;
4599 }
4600
4601 /* If VR0 is to the right of VR1, return false. */
4602 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4603 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4604 || (comp == LE_EXPR && tst == 1))
4605 {
4606 if (overflow_infinity_range_p (vr0)
4607 || overflow_infinity_range_p (vr1))
4608 *strict_overflow_p = true;
4609 return boolean_false_node;
4610 }
4611
4612 /* Otherwise, we don't know. */
4613 return NULL_TREE;
4614 }
4615
4616 gcc_unreachable ();
4617 }
4618
4619
4620 /* Given a value range VR, a value VAL and a comparison code COMP, return
4621 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4622 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4623 always returns false. Return NULL_TREE if it is not always
4624 possible to determine the value of the comparison. Also set
4625 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
4626 infinity was used in the test. */
4627
4628 static tree
4629 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
4630 bool *strict_overflow_p)
4631 {
4632 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4633 return NULL_TREE;
4634
4635 /* Anti-ranges need to be handled separately. */
4636 if (vr->type == VR_ANTI_RANGE)
4637 {
4638 /* For anti-ranges, the only predicates that we can compute at
4639 compile time are equality and inequality. */
4640 if (comp == GT_EXPR
4641 || comp == GE_EXPR
4642 || comp == LT_EXPR
4643 || comp == LE_EXPR)
4644 return NULL_TREE;
4645
4646 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4647 if (value_inside_range (val, vr->min, vr->max) == 1)
4648 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4649
4650 return NULL_TREE;
4651 }
4652
4653 if (!usable_range_p (vr, strict_overflow_p))
4654 return NULL_TREE;
4655
4656 if (comp == EQ_EXPR)
4657 {
4658 /* EQ_EXPR may only be computed if VR represents exactly
4659 one value. */
4660 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
4661 {
4662 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
4663 if (cmp == 0)
4664 return boolean_true_node;
4665 else if (cmp == -1 || cmp == 1 || cmp == 2)
4666 return boolean_false_node;
4667 }
4668 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
4669 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
4670 return boolean_false_node;
4671
4672 return NULL_TREE;
4673 }
4674 else if (comp == NE_EXPR)
4675 {
4676 /* If VAL is not inside VR, then they are always different. */
4677 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
4678 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
4679 return boolean_true_node;
4680
4681 /* If VR represents exactly one value equal to VAL, then return
4682 false. */
4683 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
4684 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
4685 return boolean_false_node;
4686
4687 /* Otherwise, they may or may not be different. */
4688 return NULL_TREE;
4689 }
4690 else if (comp == LT_EXPR || comp == LE_EXPR)
4691 {
4692 int tst;
4693
4694 /* If VR is to the left of VAL, return true. */
4695 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4696 if ((comp == LT_EXPR && tst == -1)
4697 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4698 {
4699 if (overflow_infinity_range_p (vr))
4700 *strict_overflow_p = true;
4701 return boolean_true_node;
4702 }
4703
4704 /* If VR is to the right of VAL, return false. */
4705 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4706 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4707 || (comp == LE_EXPR && tst == 1))
4708 {
4709 if (overflow_infinity_range_p (vr))
4710 *strict_overflow_p = true;
4711 return boolean_false_node;
4712 }
4713
4714 /* Otherwise, we don't know. */
4715 return NULL_TREE;
4716 }
4717 else if (comp == GT_EXPR || comp == GE_EXPR)
4718 {
4719 int tst;
4720
4721 /* If VR is to the right of VAL, return true. */
4722 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4723 if ((comp == GT_EXPR && tst == 1)
4724 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
4725 {
4726 if (overflow_infinity_range_p (vr))
4727 *strict_overflow_p = true;
4728 return boolean_true_node;
4729 }
4730
4731 /* If VR is to the left of VAL, return false. */
4732 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4733 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
4734 || (comp == GE_EXPR && tst == -1))
4735 {
4736 if (overflow_infinity_range_p (vr))
4737 *strict_overflow_p = true;
4738 return boolean_false_node;
4739 }
4740
4741 /* Otherwise, we don't know. */
4742 return NULL_TREE;
4743 }
4744
4745 gcc_unreachable ();
4746 }
4747
4748
4749 /* Debugging dumps. */
4750
4751 void dump_value_range (FILE *, value_range_t *);
4752 void debug_value_range (value_range_t *);
4753 void dump_all_value_ranges (FILE *);
4754 void debug_all_value_ranges (void);
4755 void dump_vr_equiv (FILE *, bitmap);
4756 void debug_vr_equiv (bitmap);
4757
4758
4759 /* Dump value range VR to FILE. */
4760
4761 void
4762 dump_value_range (FILE *file, value_range_t *vr)
4763 {
4764 if (vr == NULL)
4765 fprintf (file, "[]");
4766 else if (vr->type == VR_UNDEFINED)
4767 fprintf (file, "UNDEFINED");
4768 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4769 {
4770 tree type = TREE_TYPE (vr->min);
4771
4772 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
4773
4774 if (is_negative_overflow_infinity (vr->min))
4775 fprintf (file, "-INF(OVF)");
4776 else if (INTEGRAL_TYPE_P (type)
4777 && !TYPE_UNSIGNED (type)
4778 && vrp_val_is_min (vr->min))
4779 fprintf (file, "-INF");
4780 else
4781 print_generic_expr (file, vr->min, 0);
4782
4783 fprintf (file, ", ");
4784
4785 if (is_positive_overflow_infinity (vr->max))
4786 fprintf (file, "+INF(OVF)");
4787 else if (INTEGRAL_TYPE_P (type)
4788 && vrp_val_is_max (vr->max))
4789 fprintf (file, "+INF");
4790 else
4791 print_generic_expr (file, vr->max, 0);
4792
4793 fprintf (file, "]");
4794
4795 if (vr->equiv)
4796 {
4797 bitmap_iterator bi;
4798 unsigned i, c = 0;
4799
4800 fprintf (file, " EQUIVALENCES: { ");
4801
4802 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
4803 {
4804 print_generic_expr (file, ssa_name (i), 0);
4805 fprintf (file, " ");
4806 c++;
4807 }
4808
4809 fprintf (file, "} (%u elements)", c);
4810 }
4811 }
4812 else if (vr->type == VR_VARYING)
4813 fprintf (file, "VARYING");
4814 else
4815 fprintf (file, "INVALID RANGE");
4816 }
4817
4818
4819 /* Dump value range VR to stderr. */
4820
4821 DEBUG_FUNCTION void
4822 debug_value_range (value_range_t *vr)
4823 {
4824 dump_value_range (stderr, vr);
4825 fprintf (stderr, "\n");
4826 }
4827
4828
4829 /* Dump value ranges of all SSA_NAMEs to FILE. */
4830
4831 void
4832 dump_all_value_ranges (FILE *file)
4833 {
4834 size_t i;
4835
4836 for (i = 0; i < num_vr_values; i++)
4837 {
4838 if (vr_value[i])
4839 {
4840 print_generic_expr (file, ssa_name (i), 0);
4841 fprintf (file, ": ");
4842 dump_value_range (file, vr_value[i]);
4843 fprintf (file, "\n");
4844 }
4845 }
4846
4847 fprintf (file, "\n");
4848 }
4849
4850
4851 /* Dump all value ranges to stderr. */
4852
4853 DEBUG_FUNCTION void
4854 debug_all_value_ranges (void)
4855 {
4856 dump_all_value_ranges (stderr);
4857 }
4858
4859
4860 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4861 create a new SSA name N and return the assertion assignment
4862 'N = ASSERT_EXPR <V, V OP W>'. */
4863
4864 static gimple
4865 build_assert_expr_for (tree cond, tree v)
4866 {
4867 tree a;
4868 gassign *assertion;
4869
4870 gcc_assert (TREE_CODE (v) == SSA_NAME
4871 && COMPARISON_CLASS_P (cond));
4872
4873 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
4874 assertion = gimple_build_assign (NULL_TREE, a);
4875
4876 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4877 operand of the ASSERT_EXPR. Create it so the new name and the old one
4878 are registered in the replacement table so that we can fix the SSA web
4879 after adding all the ASSERT_EXPRs. */
4880 create_new_def_for (v, assertion, NULL);
4881
4882 return assertion;
4883 }
4884
4885
4886 /* Return false if EXPR is a predicate expression involving floating
4887 point values. */
4888
4889 static inline bool
4890 fp_predicate (gimple stmt)
4891 {
4892 GIMPLE_CHECK (stmt, GIMPLE_COND);
4893
4894 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4895 }
4896
4897 /* If the range of values taken by OP can be inferred after STMT executes,
4898 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4899 describes the inferred range. Return true if a range could be
4900 inferred. */
4901
4902 static bool
4903 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
4904 {
4905 *val_p = NULL_TREE;
4906 *comp_code_p = ERROR_MARK;
4907
4908 /* Do not attempt to infer anything in names that flow through
4909 abnormal edges. */
4910 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4911 return false;
4912
4913 /* Similarly, don't infer anything from statements that may throw
4914 exceptions. ??? Relax this requirement? */
4915 if (stmt_could_throw_p (stmt))
4916 return false;
4917
4918 /* If STMT is the last statement of a basic block with no normal
4919 successors, there is no point inferring anything about any of its
4920 operands. We would not be able to find a proper insertion point
4921 for the assertion, anyway. */
4922 if (stmt_ends_bb_p (stmt))
4923 {
4924 edge_iterator ei;
4925 edge e;
4926
4927 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
4928 if (!(e->flags & EDGE_ABNORMAL))
4929 break;
4930 if (e == NULL)
4931 return false;
4932 }
4933
4934 if (infer_nonnull_range (stmt, op, true, true))
4935 {
4936 *val_p = build_int_cst (TREE_TYPE (op), 0);
4937 *comp_code_p = NE_EXPR;
4938 return true;
4939 }
4940
4941 return false;
4942 }
4943
4944
4945 void dump_asserts_for (FILE *, tree);
4946 void debug_asserts_for (tree);
4947 void dump_all_asserts (FILE *);
4948 void debug_all_asserts (void);
4949
4950 /* Dump all the registered assertions for NAME to FILE. */
4951
4952 void
4953 dump_asserts_for (FILE *file, tree name)
4954 {
4955 assert_locus_t loc;
4956
4957 fprintf (file, "Assertions to be inserted for ");
4958 print_generic_expr (file, name, 0);
4959 fprintf (file, "\n");
4960
4961 loc = asserts_for[SSA_NAME_VERSION (name)];
4962 while (loc)
4963 {
4964 fprintf (file, "\t");
4965 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4966 fprintf (file, "\n\tBB #%d", loc->bb->index);
4967 if (loc->e)
4968 {
4969 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4970 loc->e->dest->index);
4971 dump_edge_info (file, loc->e, dump_flags, 0);
4972 }
4973 fprintf (file, "\n\tPREDICATE: ");
4974 print_generic_expr (file, name, 0);
4975 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
4976 print_generic_expr (file, loc->val, 0);
4977 fprintf (file, "\n\n");
4978 loc = loc->next;
4979 }
4980
4981 fprintf (file, "\n");
4982 }
4983
4984
4985 /* Dump all the registered assertions for NAME to stderr. */
4986
4987 DEBUG_FUNCTION void
4988 debug_asserts_for (tree name)
4989 {
4990 dump_asserts_for (stderr, name);
4991 }
4992
4993
4994 /* Dump all the registered assertions for all the names to FILE. */
4995
4996 void
4997 dump_all_asserts (FILE *file)
4998 {
4999 unsigned i;
5000 bitmap_iterator bi;
5001
5002 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
5003 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
5004 dump_asserts_for (file, ssa_name (i));
5005 fprintf (file, "\n");
5006 }
5007
5008
5009 /* Dump all the registered assertions for all the names to stderr. */
5010
5011 DEBUG_FUNCTION void
5012 debug_all_asserts (void)
5013 {
5014 dump_all_asserts (stderr);
5015 }
5016
5017
5018 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
5019 'EXPR COMP_CODE VAL' at a location that dominates block BB or
5020 E->DEST, then register this location as a possible insertion point
5021 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
5022
5023 BB, E and SI provide the exact insertion point for the new
5024 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
5025 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
5026 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
5027 must not be NULL. */
5028
5029 static void
5030 register_new_assert_for (tree name, tree expr,
5031 enum tree_code comp_code,
5032 tree val,
5033 basic_block bb,
5034 edge e,
5035 gimple_stmt_iterator si)
5036 {
5037 assert_locus_t n, loc, last_loc;
5038 basic_block dest_bb;
5039
5040 gcc_checking_assert (bb == NULL || e == NULL);
5041
5042 if (e == NULL)
5043 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
5044 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
5045
5046 /* Never build an assert comparing against an integer constant with
5047 TREE_OVERFLOW set. This confuses our undefined overflow warning
5048 machinery. */
5049 if (TREE_OVERFLOW_P (val))
5050 val = drop_tree_overflow (val);
5051
5052 /* The new assertion A will be inserted at BB or E. We need to
5053 determine if the new location is dominated by a previously
5054 registered location for A. If we are doing an edge insertion,
5055 assume that A will be inserted at E->DEST. Note that this is not
5056 necessarily true.
5057
5058 If E is a critical edge, it will be split. But even if E is
5059 split, the new block will dominate the same set of blocks that
5060 E->DEST dominates.
5061
5062 The reverse, however, is not true, blocks dominated by E->DEST
5063 will not be dominated by the new block created to split E. So,
5064 if the insertion location is on a critical edge, we will not use
5065 the new location to move another assertion previously registered
5066 at a block dominated by E->DEST. */
5067 dest_bb = (bb) ? bb : e->dest;
5068
5069 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
5070 VAL at a block dominating DEST_BB, then we don't need to insert a new
5071 one. Similarly, if the same assertion already exists at a block
5072 dominated by DEST_BB and the new location is not on a critical
5073 edge, then update the existing location for the assertion (i.e.,
5074 move the assertion up in the dominance tree).
5075
5076 Note, this is implemented as a simple linked list because there
5077 should not be more than a handful of assertions registered per
5078 name. If this becomes a performance problem, a table hashed by
5079 COMP_CODE and VAL could be implemented. */
5080 loc = asserts_for[SSA_NAME_VERSION (name)];
5081 last_loc = loc;
5082 while (loc)
5083 {
5084 if (loc->comp_code == comp_code
5085 && (loc->val == val
5086 || operand_equal_p (loc->val, val, 0))
5087 && (loc->expr == expr
5088 || operand_equal_p (loc->expr, expr, 0)))
5089 {
5090 /* If E is not a critical edge and DEST_BB
5091 dominates the existing location for the assertion, move
5092 the assertion up in the dominance tree by updating its
5093 location information. */
5094 if ((e == NULL || !EDGE_CRITICAL_P (e))
5095 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
5096 {
5097 loc->bb = dest_bb;
5098 loc->e = e;
5099 loc->si = si;
5100 return;
5101 }
5102 }
5103
5104 /* Update the last node of the list and move to the next one. */
5105 last_loc = loc;
5106 loc = loc->next;
5107 }
5108
5109 /* If we didn't find an assertion already registered for
5110 NAME COMP_CODE VAL, add a new one at the end of the list of
5111 assertions associated with NAME. */
5112 n = XNEW (struct assert_locus_d);
5113 n->bb = dest_bb;
5114 n->e = e;
5115 n->si = si;
5116 n->comp_code = comp_code;
5117 n->val = val;
5118 n->expr = expr;
5119 n->next = NULL;
5120
5121 if (last_loc)
5122 last_loc->next = n;
5123 else
5124 asserts_for[SSA_NAME_VERSION (name)] = n;
5125
5126 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
5127 }
5128
5129 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
5130 Extract a suitable test code and value and store them into *CODE_P and
5131 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
5132
5133 If no extraction was possible, return FALSE, otherwise return TRUE.
5134
5135 If INVERT is true, then we invert the result stored into *CODE_P. */
5136
5137 static bool
5138 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
5139 tree cond_op0, tree cond_op1,
5140 bool invert, enum tree_code *code_p,
5141 tree *val_p)
5142 {
5143 enum tree_code comp_code;
5144 tree val;
5145
5146 /* Otherwise, we have a comparison of the form NAME COMP VAL
5147 or VAL COMP NAME. */
5148 if (name == cond_op1)
5149 {
5150 /* If the predicate is of the form VAL COMP NAME, flip
5151 COMP around because we need to register NAME as the
5152 first operand in the predicate. */
5153 comp_code = swap_tree_comparison (cond_code);
5154 val = cond_op0;
5155 }
5156 else
5157 {
5158 /* The comparison is of the form NAME COMP VAL, so the
5159 comparison code remains unchanged. */
5160 comp_code = cond_code;
5161 val = cond_op1;
5162 }
5163
5164 /* Invert the comparison code as necessary. */
5165 if (invert)
5166 comp_code = invert_tree_comparison (comp_code, 0);
5167
5168 /* VRP does not handle float types. */
5169 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
5170 return false;
5171
5172 /* Do not register always-false predicates.
5173 FIXME: this works around a limitation in fold() when dealing with
5174 enumerations. Given 'enum { N1, N2 } x;', fold will not
5175 fold 'if (x > N2)' to 'if (0)'. */
5176 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
5177 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
5178 {
5179 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
5180 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
5181
5182 if (comp_code == GT_EXPR
5183 && (!max
5184 || compare_values (val, max) == 0))
5185 return false;
5186
5187 if (comp_code == LT_EXPR
5188 && (!min
5189 || compare_values (val, min) == 0))
5190 return false;
5191 }
5192 *code_p = comp_code;
5193 *val_p = val;
5194 return true;
5195 }
5196
5197 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
5198 (otherwise return VAL). VAL and MASK must be zero-extended for
5199 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
5200 (to transform signed values into unsigned) and at the end xor
5201 SGNBIT back. */
5202
5203 static wide_int
5204 masked_increment (const wide_int &val_in, const wide_int &mask,
5205 const wide_int &sgnbit, unsigned int prec)
5206 {
5207 wide_int bit = wi::one (prec), res;
5208 unsigned int i;
5209
5210 wide_int val = val_in ^ sgnbit;
5211 for (i = 0; i < prec; i++, bit += bit)
5212 {
5213 res = mask;
5214 if ((res & bit) == 0)
5215 continue;
5216 res = bit - 1;
5217 res = (val + bit).and_not (res);
5218 res &= mask;
5219 if (wi::gtu_p (res, val))
5220 return res ^ sgnbit;
5221 }
5222 return val ^ sgnbit;
5223 }
5224
5225 /* Try to register an edge assertion for SSA name NAME on edge E for
5226 the condition COND contributing to the conditional jump pointed to by BSI.
5227 Invert the condition COND if INVERT is true. */
5228
5229 static void
5230 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
5231 enum tree_code cond_code,
5232 tree cond_op0, tree cond_op1, bool invert)
5233 {
5234 tree val;
5235 enum tree_code comp_code;
5236
5237 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5238 cond_op0,
5239 cond_op1,
5240 invert, &comp_code, &val))
5241 return;
5242
5243 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
5244 reachable from E. */
5245 if (live_on_edge (e, name)
5246 && !has_single_use (name))
5247 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
5248
5249 /* In the case of NAME <= CST and NAME being defined as
5250 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
5251 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
5252 This catches range and anti-range tests. */
5253 if ((comp_code == LE_EXPR
5254 || comp_code == GT_EXPR)
5255 && TREE_CODE (val) == INTEGER_CST
5256 && TYPE_UNSIGNED (TREE_TYPE (val)))
5257 {
5258 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5259 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
5260
5261 /* Extract CST2 from the (optional) addition. */
5262 if (is_gimple_assign (def_stmt)
5263 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
5264 {
5265 name2 = gimple_assign_rhs1 (def_stmt);
5266 cst2 = gimple_assign_rhs2 (def_stmt);
5267 if (TREE_CODE (name2) == SSA_NAME
5268 && TREE_CODE (cst2) == INTEGER_CST)
5269 def_stmt = SSA_NAME_DEF_STMT (name2);
5270 }
5271
5272 /* Extract NAME2 from the (optional) sign-changing cast. */
5273 if (gimple_assign_cast_p (def_stmt))
5274 {
5275 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
5276 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5277 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
5278 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
5279 name3 = gimple_assign_rhs1 (def_stmt);
5280 }
5281
5282 /* If name3 is used later, create an ASSERT_EXPR for it. */
5283 if (name3 != NULL_TREE
5284 && TREE_CODE (name3) == SSA_NAME
5285 && (cst2 == NULL_TREE
5286 || TREE_CODE (cst2) == INTEGER_CST)
5287 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
5288 && live_on_edge (e, name3)
5289 && !has_single_use (name3))
5290 {
5291 tree tmp;
5292
5293 /* Build an expression for the range test. */
5294 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
5295 if (cst2 != NULL_TREE)
5296 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5297
5298 if (dump_file)
5299 {
5300 fprintf (dump_file, "Adding assert for ");
5301 print_generic_expr (dump_file, name3, 0);
5302 fprintf (dump_file, " from ");
5303 print_generic_expr (dump_file, tmp, 0);
5304 fprintf (dump_file, "\n");
5305 }
5306
5307 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
5308 }
5309
5310 /* If name2 is used later, create an ASSERT_EXPR for it. */
5311 if (name2 != NULL_TREE
5312 && TREE_CODE (name2) == SSA_NAME
5313 && TREE_CODE (cst2) == INTEGER_CST
5314 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5315 && live_on_edge (e, name2)
5316 && !has_single_use (name2))
5317 {
5318 tree tmp;
5319
5320 /* Build an expression for the range test. */
5321 tmp = name2;
5322 if (TREE_TYPE (name) != TREE_TYPE (name2))
5323 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
5324 if (cst2 != NULL_TREE)
5325 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5326
5327 if (dump_file)
5328 {
5329 fprintf (dump_file, "Adding assert for ");
5330 print_generic_expr (dump_file, name2, 0);
5331 fprintf (dump_file, " from ");
5332 print_generic_expr (dump_file, tmp, 0);
5333 fprintf (dump_file, "\n");
5334 }
5335
5336 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
5337 }
5338 }
5339
5340 /* In the case of post-in/decrement tests like if (i++) ... and uses
5341 of the in/decremented value on the edge the extra name we want to
5342 assert for is not on the def chain of the name compared. Instead
5343 it is in the set of use stmts. */
5344 if ((comp_code == NE_EXPR
5345 || comp_code == EQ_EXPR)
5346 && TREE_CODE (val) == INTEGER_CST)
5347 {
5348 imm_use_iterator ui;
5349 gimple use_stmt;
5350 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
5351 {
5352 /* Cut off to use-stmts that are in the predecessor. */
5353 if (gimple_bb (use_stmt) != e->src)
5354 continue;
5355
5356 if (!is_gimple_assign (use_stmt))
5357 continue;
5358
5359 enum tree_code code = gimple_assign_rhs_code (use_stmt);
5360 if (code != PLUS_EXPR
5361 && code != MINUS_EXPR)
5362 continue;
5363
5364 tree cst = gimple_assign_rhs2 (use_stmt);
5365 if (TREE_CODE (cst) != INTEGER_CST)
5366 continue;
5367
5368 tree name2 = gimple_assign_lhs (use_stmt);
5369 if (live_on_edge (e, name2))
5370 {
5371 cst = int_const_binop (code, val, cst);
5372 register_new_assert_for (name2, name2, comp_code, cst,
5373 NULL, e, bsi);
5374 }
5375 }
5376 }
5377
5378 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
5379 && TREE_CODE (val) == INTEGER_CST)
5380 {
5381 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5382 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
5383 tree val2 = NULL_TREE;
5384 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
5385 wide_int mask = wi::zero (prec);
5386 unsigned int nprec = prec;
5387 enum tree_code rhs_code = ERROR_MARK;
5388
5389 if (is_gimple_assign (def_stmt))
5390 rhs_code = gimple_assign_rhs_code (def_stmt);
5391
5392 /* Add asserts for NAME cmp CST and NAME being defined
5393 as NAME = (int) NAME2. */
5394 if (!TYPE_UNSIGNED (TREE_TYPE (val))
5395 && (comp_code == LE_EXPR || comp_code == LT_EXPR
5396 || comp_code == GT_EXPR || comp_code == GE_EXPR)
5397 && gimple_assign_cast_p (def_stmt))
5398 {
5399 name2 = gimple_assign_rhs1 (def_stmt);
5400 if (CONVERT_EXPR_CODE_P (rhs_code)
5401 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5402 && TYPE_UNSIGNED (TREE_TYPE (name2))
5403 && prec == TYPE_PRECISION (TREE_TYPE (name2))
5404 && (comp_code == LE_EXPR || comp_code == GT_EXPR
5405 || !tree_int_cst_equal (val,
5406 TYPE_MIN_VALUE (TREE_TYPE (val))))
5407 && live_on_edge (e, name2)
5408 && !has_single_use (name2))
5409 {
5410 tree tmp, cst;
5411 enum tree_code new_comp_code = comp_code;
5412
5413 cst = fold_convert (TREE_TYPE (name2),
5414 TYPE_MIN_VALUE (TREE_TYPE (val)));
5415 /* Build an expression for the range test. */
5416 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
5417 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
5418 fold_convert (TREE_TYPE (name2), val));
5419 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5420 {
5421 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
5422 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
5423 build_int_cst (TREE_TYPE (name2), 1));
5424 }
5425
5426 if (dump_file)
5427 {
5428 fprintf (dump_file, "Adding assert for ");
5429 print_generic_expr (dump_file, name2, 0);
5430 fprintf (dump_file, " from ");
5431 print_generic_expr (dump_file, tmp, 0);
5432 fprintf (dump_file, "\n");
5433 }
5434
5435 register_new_assert_for (name2, tmp, new_comp_code, cst, NULL,
5436 e, bsi);
5437 }
5438 }
5439
5440 /* Add asserts for NAME cmp CST and NAME being defined as
5441 NAME = NAME2 >> CST2.
5442
5443 Extract CST2 from the right shift. */
5444 if (rhs_code == RSHIFT_EXPR)
5445 {
5446 name2 = gimple_assign_rhs1 (def_stmt);
5447 cst2 = gimple_assign_rhs2 (def_stmt);
5448 if (TREE_CODE (name2) == SSA_NAME
5449 && tree_fits_uhwi_p (cst2)
5450 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5451 && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
5452 && prec == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val)))
5453 && live_on_edge (e, name2)
5454 && !has_single_use (name2))
5455 {
5456 mask = wi::mask (tree_to_uhwi (cst2), false, prec);
5457 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
5458 }
5459 }
5460 if (val2 != NULL_TREE
5461 && TREE_CODE (val2) == INTEGER_CST
5462 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
5463 TREE_TYPE (val),
5464 val2, cst2), val))
5465 {
5466 enum tree_code new_comp_code = comp_code;
5467 tree tmp, new_val;
5468
5469 tmp = name2;
5470 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
5471 {
5472 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5473 {
5474 tree type = build_nonstandard_integer_type (prec, 1);
5475 tmp = build1 (NOP_EXPR, type, name2);
5476 val2 = fold_convert (type, val2);
5477 }
5478 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
5479 new_val = wide_int_to_tree (TREE_TYPE (tmp), mask);
5480 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
5481 }
5482 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5483 {
5484 wide_int minval
5485 = wi::min_value (prec, TYPE_SIGN (TREE_TYPE (val)));
5486 new_val = val2;
5487 if (minval == new_val)
5488 new_val = NULL_TREE;
5489 }
5490 else
5491 {
5492 wide_int maxval
5493 = wi::max_value (prec, TYPE_SIGN (TREE_TYPE (val)));
5494 mask |= val2;
5495 if (mask == maxval)
5496 new_val = NULL_TREE;
5497 else
5498 new_val = wide_int_to_tree (TREE_TYPE (val2), mask);
5499 }
5500
5501 if (new_val)
5502 {
5503 if (dump_file)
5504 {
5505 fprintf (dump_file, "Adding assert for ");
5506 print_generic_expr (dump_file, name2, 0);
5507 fprintf (dump_file, " from ");
5508 print_generic_expr (dump_file, tmp, 0);
5509 fprintf (dump_file, "\n");
5510 }
5511
5512 register_new_assert_for (name2, tmp, new_comp_code, new_val,
5513 NULL, e, bsi);
5514 }
5515 }
5516
5517 /* Add asserts for NAME cmp CST and NAME being defined as
5518 NAME = NAME2 & CST2.
5519
5520 Extract CST2 from the and.
5521
5522 Also handle
5523 NAME = (unsigned) NAME2;
5524 casts where NAME's type is unsigned and has smaller precision
5525 than NAME2's type as if it was NAME = NAME2 & MASK. */
5526 names[0] = NULL_TREE;
5527 names[1] = NULL_TREE;
5528 cst2 = NULL_TREE;
5529 if (rhs_code == BIT_AND_EXPR
5530 || (CONVERT_EXPR_CODE_P (rhs_code)
5531 && TREE_CODE (TREE_TYPE (val)) == INTEGER_TYPE
5532 && TYPE_UNSIGNED (TREE_TYPE (val))
5533 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5534 > prec))
5535 {
5536 name2 = gimple_assign_rhs1 (def_stmt);
5537 if (rhs_code == BIT_AND_EXPR)
5538 cst2 = gimple_assign_rhs2 (def_stmt);
5539 else
5540 {
5541 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
5542 nprec = TYPE_PRECISION (TREE_TYPE (name2));
5543 }
5544 if (TREE_CODE (name2) == SSA_NAME
5545 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5546 && TREE_CODE (cst2) == INTEGER_CST
5547 && !integer_zerop (cst2)
5548 && (nprec > 1
5549 || TYPE_UNSIGNED (TREE_TYPE (val))))
5550 {
5551 gimple def_stmt2 = SSA_NAME_DEF_STMT (name2);
5552 if (gimple_assign_cast_p (def_stmt2))
5553 {
5554 names[1] = gimple_assign_rhs1 (def_stmt2);
5555 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
5556 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
5557 || (TYPE_PRECISION (TREE_TYPE (name2))
5558 != TYPE_PRECISION (TREE_TYPE (names[1])))
5559 || !live_on_edge (e, names[1])
5560 || has_single_use (names[1]))
5561 names[1] = NULL_TREE;
5562 }
5563 if (live_on_edge (e, name2)
5564 && !has_single_use (name2))
5565 names[0] = name2;
5566 }
5567 }
5568 if (names[0] || names[1])
5569 {
5570 wide_int minv, maxv, valv, cst2v;
5571 wide_int tem, sgnbit;
5572 bool valid_p = false, valn, cst2n;
5573 enum tree_code ccode = comp_code;
5574
5575 valv = wide_int::from (val, nprec, UNSIGNED);
5576 cst2v = wide_int::from (cst2, nprec, UNSIGNED);
5577 valn = wi::neg_p (valv, TYPE_SIGN (TREE_TYPE (val)));
5578 cst2n = wi::neg_p (cst2v, TYPE_SIGN (TREE_TYPE (val)));
5579 /* If CST2 doesn't have most significant bit set,
5580 but VAL is negative, we have comparison like
5581 if ((x & 0x123) > -4) (always true). Just give up. */
5582 if (!cst2n && valn)
5583 ccode = ERROR_MARK;
5584 if (cst2n)
5585 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5586 else
5587 sgnbit = wi::zero (nprec);
5588 minv = valv & cst2v;
5589 switch (ccode)
5590 {
5591 case EQ_EXPR:
5592 /* Minimum unsigned value for equality is VAL & CST2
5593 (should be equal to VAL, otherwise we probably should
5594 have folded the comparison into false) and
5595 maximum unsigned value is VAL | ~CST2. */
5596 maxv = valv | ~cst2v;
5597 valid_p = true;
5598 break;
5599
5600 case NE_EXPR:
5601 tem = valv | ~cst2v;
5602 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5603 if (valv == 0)
5604 {
5605 cst2n = false;
5606 sgnbit = wi::zero (nprec);
5607 goto gt_expr;
5608 }
5609 /* If (VAL | ~CST2) is all ones, handle it as
5610 (X & CST2) < VAL. */
5611 if (tem == -1)
5612 {
5613 cst2n = false;
5614 valn = false;
5615 sgnbit = wi::zero (nprec);
5616 goto lt_expr;
5617 }
5618 if (!cst2n && wi::neg_p (cst2v))
5619 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5620 if (sgnbit != 0)
5621 {
5622 if (valv == sgnbit)
5623 {
5624 cst2n = true;
5625 valn = true;
5626 goto gt_expr;
5627 }
5628 if (tem == wi::mask (nprec - 1, false, nprec))
5629 {
5630 cst2n = true;
5631 goto lt_expr;
5632 }
5633 if (!cst2n)
5634 sgnbit = wi::zero (nprec);
5635 }
5636 break;
5637
5638 case GE_EXPR:
5639 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5640 is VAL and maximum unsigned value is ~0. For signed
5641 comparison, if CST2 doesn't have most significant bit
5642 set, handle it similarly. If CST2 has MSB set,
5643 the minimum is the same, and maximum is ~0U/2. */
5644 if (minv != valv)
5645 {
5646 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5647 VAL. */
5648 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5649 if (minv == valv)
5650 break;
5651 }
5652 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5653 valid_p = true;
5654 break;
5655
5656 case GT_EXPR:
5657 gt_expr:
5658 /* Find out smallest MINV where MINV > VAL
5659 && (MINV & CST2) == MINV, if any. If VAL is signed and
5660 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5661 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5662 if (minv == valv)
5663 break;
5664 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5665 valid_p = true;
5666 break;
5667
5668 case LE_EXPR:
5669 /* Minimum unsigned value for <= is 0 and maximum
5670 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5671 Otherwise, find smallest VAL2 where VAL2 > VAL
5672 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5673 as maximum.
5674 For signed comparison, if CST2 doesn't have most
5675 significant bit set, handle it similarly. If CST2 has
5676 MSB set, the maximum is the same and minimum is INT_MIN. */
5677 if (minv == valv)
5678 maxv = valv;
5679 else
5680 {
5681 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5682 if (maxv == valv)
5683 break;
5684 maxv -= 1;
5685 }
5686 maxv |= ~cst2v;
5687 minv = sgnbit;
5688 valid_p = true;
5689 break;
5690
5691 case LT_EXPR:
5692 lt_expr:
5693 /* Minimum unsigned value for < is 0 and maximum
5694 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5695 Otherwise, find smallest VAL2 where VAL2 > VAL
5696 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5697 as maximum.
5698 For signed comparison, if CST2 doesn't have most
5699 significant bit set, handle it similarly. If CST2 has
5700 MSB set, the maximum is the same and minimum is INT_MIN. */
5701 if (minv == valv)
5702 {
5703 if (valv == sgnbit)
5704 break;
5705 maxv = valv;
5706 }
5707 else
5708 {
5709 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5710 if (maxv == valv)
5711 break;
5712 }
5713 maxv -= 1;
5714 maxv |= ~cst2v;
5715 minv = sgnbit;
5716 valid_p = true;
5717 break;
5718
5719 default:
5720 break;
5721 }
5722 if (valid_p
5723 && (maxv - minv) != -1)
5724 {
5725 tree tmp, new_val, type;
5726 int i;
5727
5728 for (i = 0; i < 2; i++)
5729 if (names[i])
5730 {
5731 wide_int maxv2 = maxv;
5732 tmp = names[i];
5733 type = TREE_TYPE (names[i]);
5734 if (!TYPE_UNSIGNED (type))
5735 {
5736 type = build_nonstandard_integer_type (nprec, 1);
5737 tmp = build1 (NOP_EXPR, type, names[i]);
5738 }
5739 if (minv != 0)
5740 {
5741 tmp = build2 (PLUS_EXPR, type, tmp,
5742 wide_int_to_tree (type, -minv));
5743 maxv2 = maxv - minv;
5744 }
5745 new_val = wide_int_to_tree (type, maxv2);
5746
5747 if (dump_file)
5748 {
5749 fprintf (dump_file, "Adding assert for ");
5750 print_generic_expr (dump_file, names[i], 0);
5751 fprintf (dump_file, " from ");
5752 print_generic_expr (dump_file, tmp, 0);
5753 fprintf (dump_file, "\n");
5754 }
5755
5756 register_new_assert_for (names[i], tmp, LE_EXPR,
5757 new_val, NULL, e, bsi);
5758 }
5759 }
5760 }
5761 }
5762 }
5763
5764 /* OP is an operand of a truth value expression which is known to have
5765 a particular value. Register any asserts for OP and for any
5766 operands in OP's defining statement.
5767
5768 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5769 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5770
5771 static void
5772 register_edge_assert_for_1 (tree op, enum tree_code code,
5773 edge e, gimple_stmt_iterator bsi)
5774 {
5775 gimple op_def;
5776 tree val;
5777 enum tree_code rhs_code;
5778
5779 /* We only care about SSA_NAMEs. */
5780 if (TREE_CODE (op) != SSA_NAME)
5781 return;
5782
5783 /* We know that OP will have a zero or nonzero value. If OP is used
5784 more than once go ahead and register an assert for OP. */
5785 if (live_on_edge (e, op)
5786 && !has_single_use (op))
5787 {
5788 val = build_int_cst (TREE_TYPE (op), 0);
5789 register_new_assert_for (op, op, code, val, NULL, e, bsi);
5790 }
5791
5792 /* Now look at how OP is set. If it's set from a comparison,
5793 a truth operation or some bit operations, then we may be able
5794 to register information about the operands of that assignment. */
5795 op_def = SSA_NAME_DEF_STMT (op);
5796 if (gimple_code (op_def) != GIMPLE_ASSIGN)
5797 return;
5798
5799 rhs_code = gimple_assign_rhs_code (op_def);
5800
5801 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
5802 {
5803 bool invert = (code == EQ_EXPR ? true : false);
5804 tree op0 = gimple_assign_rhs1 (op_def);
5805 tree op1 = gimple_assign_rhs2 (op_def);
5806
5807 if (TREE_CODE (op0) == SSA_NAME)
5808 register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1, invert);
5809 if (TREE_CODE (op1) == SSA_NAME)
5810 register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1, invert);
5811 }
5812 else if ((code == NE_EXPR
5813 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
5814 || (code == EQ_EXPR
5815 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
5816 {
5817 /* Recurse on each operand. */
5818 tree op0 = gimple_assign_rhs1 (op_def);
5819 tree op1 = gimple_assign_rhs2 (op_def);
5820 if (TREE_CODE (op0) == SSA_NAME
5821 && has_single_use (op0))
5822 register_edge_assert_for_1 (op0, code, e, bsi);
5823 if (TREE_CODE (op1) == SSA_NAME
5824 && has_single_use (op1))
5825 register_edge_assert_for_1 (op1, code, e, bsi);
5826 }
5827 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
5828 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
5829 {
5830 /* Recurse, flipping CODE. */
5831 code = invert_tree_comparison (code, false);
5832 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, bsi);
5833 }
5834 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
5835 {
5836 /* Recurse through the copy. */
5837 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, bsi);
5838 }
5839 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
5840 {
5841 /* Recurse through the type conversion, unless it is a narrowing
5842 conversion or conversion from non-integral type. */
5843 tree rhs = gimple_assign_rhs1 (op_def);
5844 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
5845 && (TYPE_PRECISION (TREE_TYPE (rhs))
5846 <= TYPE_PRECISION (TREE_TYPE (op))))
5847 register_edge_assert_for_1 (rhs, code, e, bsi);
5848 }
5849 }
5850
5851 /* Try to register an edge assertion for SSA name NAME on edge E for
5852 the condition COND contributing to the conditional jump pointed to by
5853 SI. */
5854
5855 static void
5856 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
5857 enum tree_code cond_code, tree cond_op0,
5858 tree cond_op1)
5859 {
5860 tree val;
5861 enum tree_code comp_code;
5862 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
5863
5864 /* Do not attempt to infer anything in names that flow through
5865 abnormal edges. */
5866 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
5867 return;
5868
5869 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5870 cond_op0, cond_op1,
5871 is_else_edge,
5872 &comp_code, &val))
5873 return;
5874
5875 /* Register ASSERT_EXPRs for name. */
5876 register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
5877 cond_op1, is_else_edge);
5878
5879
5880 /* If COND is effectively an equality test of an SSA_NAME against
5881 the value zero or one, then we may be able to assert values
5882 for SSA_NAMEs which flow into COND. */
5883
5884 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5885 statement of NAME we can assert both operands of the BIT_AND_EXPR
5886 have nonzero value. */
5887 if (((comp_code == EQ_EXPR && integer_onep (val))
5888 || (comp_code == NE_EXPR && integer_zerop (val))))
5889 {
5890 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5891
5892 if (is_gimple_assign (def_stmt)
5893 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
5894 {
5895 tree op0 = gimple_assign_rhs1 (def_stmt);
5896 tree op1 = gimple_assign_rhs2 (def_stmt);
5897 register_edge_assert_for_1 (op0, NE_EXPR, e, si);
5898 register_edge_assert_for_1 (op1, NE_EXPR, e, si);
5899 }
5900 }
5901
5902 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5903 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5904 have zero value. */
5905 if (((comp_code == EQ_EXPR && integer_zerop (val))
5906 || (comp_code == NE_EXPR && integer_onep (val))))
5907 {
5908 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5909
5910 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5911 necessarily zero value, or if type-precision is one. */
5912 if (is_gimple_assign (def_stmt)
5913 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
5914 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
5915 || comp_code == EQ_EXPR)))
5916 {
5917 tree op0 = gimple_assign_rhs1 (def_stmt);
5918 tree op1 = gimple_assign_rhs2 (def_stmt);
5919 register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
5920 register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
5921 }
5922 }
5923 }
5924
5925
5926 /* Determine whether the outgoing edges of BB should receive an
5927 ASSERT_EXPR for each of the operands of BB's LAST statement.
5928 The last statement of BB must be a COND_EXPR.
5929
5930 If any of the sub-graphs rooted at BB have an interesting use of
5931 the predicate operands, an assert location node is added to the
5932 list of assertions for the corresponding operands. */
5933
5934 static void
5935 find_conditional_asserts (basic_block bb, gcond *last)
5936 {
5937 gimple_stmt_iterator bsi;
5938 tree op;
5939 edge_iterator ei;
5940 edge e;
5941 ssa_op_iter iter;
5942
5943 bsi = gsi_for_stmt (last);
5944
5945 /* Look for uses of the operands in each of the sub-graphs
5946 rooted at BB. We need to check each of the outgoing edges
5947 separately, so that we know what kind of ASSERT_EXPR to
5948 insert. */
5949 FOR_EACH_EDGE (e, ei, bb->succs)
5950 {
5951 if (e->dest == bb)
5952 continue;
5953
5954 /* Register the necessary assertions for each operand in the
5955 conditional predicate. */
5956 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
5957 register_edge_assert_for (op, e, bsi,
5958 gimple_cond_code (last),
5959 gimple_cond_lhs (last),
5960 gimple_cond_rhs (last));
5961 }
5962 }
5963
5964 struct case_info
5965 {
5966 tree expr;
5967 basic_block bb;
5968 };
5969
5970 /* Compare two case labels sorting first by the destination bb index
5971 and then by the case value. */
5972
5973 static int
5974 compare_case_labels (const void *p1, const void *p2)
5975 {
5976 const struct case_info *ci1 = (const struct case_info *) p1;
5977 const struct case_info *ci2 = (const struct case_info *) p2;
5978 int idx1 = ci1->bb->index;
5979 int idx2 = ci2->bb->index;
5980
5981 if (idx1 < idx2)
5982 return -1;
5983 else if (idx1 == idx2)
5984 {
5985 /* Make sure the default label is first in a group. */
5986 if (!CASE_LOW (ci1->expr))
5987 return -1;
5988 else if (!CASE_LOW (ci2->expr))
5989 return 1;
5990 else
5991 return tree_int_cst_compare (CASE_LOW (ci1->expr),
5992 CASE_LOW (ci2->expr));
5993 }
5994 else
5995 return 1;
5996 }
5997
5998 /* Determine whether the outgoing edges of BB should receive an
5999 ASSERT_EXPR for each of the operands of BB's LAST statement.
6000 The last statement of BB must be a SWITCH_EXPR.
6001
6002 If any of the sub-graphs rooted at BB have an interesting use of
6003 the predicate operands, an assert location node is added to the
6004 list of assertions for the corresponding operands. */
6005
6006 static void
6007 find_switch_asserts (basic_block bb, gswitch *last)
6008 {
6009 gimple_stmt_iterator bsi;
6010 tree op;
6011 edge e;
6012 struct case_info *ci;
6013 size_t n = gimple_switch_num_labels (last);
6014 #if GCC_VERSION >= 4000
6015 unsigned int idx;
6016 #else
6017 /* Work around GCC 3.4 bug (PR 37086). */
6018 volatile unsigned int idx;
6019 #endif
6020
6021 bsi = gsi_for_stmt (last);
6022 op = gimple_switch_index (last);
6023 if (TREE_CODE (op) != SSA_NAME)
6024 return;
6025
6026 /* Build a vector of case labels sorted by destination label. */
6027 ci = XNEWVEC (struct case_info, n);
6028 for (idx = 0; idx < n; ++idx)
6029 {
6030 ci[idx].expr = gimple_switch_label (last, idx);
6031 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
6032 }
6033 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
6034
6035 for (idx = 0; idx < n; ++idx)
6036 {
6037 tree min, max;
6038 tree cl = ci[idx].expr;
6039 basic_block cbb = ci[idx].bb;
6040
6041 min = CASE_LOW (cl);
6042 max = CASE_HIGH (cl);
6043
6044 /* If there are multiple case labels with the same destination
6045 we need to combine them to a single value range for the edge. */
6046 if (idx + 1 < n && cbb == ci[idx + 1].bb)
6047 {
6048 /* Skip labels until the last of the group. */
6049 do {
6050 ++idx;
6051 } while (idx < n && cbb == ci[idx].bb);
6052 --idx;
6053
6054 /* Pick up the maximum of the case label range. */
6055 if (CASE_HIGH (ci[idx].expr))
6056 max = CASE_HIGH (ci[idx].expr);
6057 else
6058 max = CASE_LOW (ci[idx].expr);
6059 }
6060
6061 /* Nothing to do if the range includes the default label until we
6062 can register anti-ranges. */
6063 if (min == NULL_TREE)
6064 continue;
6065
6066 /* Find the edge to register the assert expr on. */
6067 e = find_edge (bb, cbb);
6068
6069 /* Register the necessary assertions for the operand in the
6070 SWITCH_EXPR. */
6071 register_edge_assert_for (op, e, bsi,
6072 max ? GE_EXPR : EQ_EXPR,
6073 op, fold_convert (TREE_TYPE (op), min));
6074 if (max)
6075 register_edge_assert_for (op, e, bsi, LE_EXPR, op,
6076 fold_convert (TREE_TYPE (op), max));
6077 }
6078
6079 XDELETEVEC (ci);
6080 }
6081
6082
6083 /* Traverse all the statements in block BB looking for statements that
6084 may generate useful assertions for the SSA names in their operand.
6085 If a statement produces a useful assertion A for name N_i, then the
6086 list of assertions already generated for N_i is scanned to
6087 determine if A is actually needed.
6088
6089 If N_i already had the assertion A at a location dominating the
6090 current location, then nothing needs to be done. Otherwise, the
6091 new location for A is recorded instead.
6092
6093 1- For every statement S in BB, all the variables used by S are
6094 added to bitmap FOUND_IN_SUBGRAPH.
6095
6096 2- If statement S uses an operand N in a way that exposes a known
6097 value range for N, then if N was not already generated by an
6098 ASSERT_EXPR, create a new assert location for N. For instance,
6099 if N is a pointer and the statement dereferences it, we can
6100 assume that N is not NULL.
6101
6102 3- COND_EXPRs are a special case of #2. We can derive range
6103 information from the predicate but need to insert different
6104 ASSERT_EXPRs for each of the sub-graphs rooted at the
6105 conditional block. If the last statement of BB is a conditional
6106 expression of the form 'X op Y', then
6107
6108 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
6109
6110 b) If the conditional is the only entry point to the sub-graph
6111 corresponding to the THEN_CLAUSE, recurse into it. On
6112 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
6113 an ASSERT_EXPR is added for the corresponding variable.
6114
6115 c) Repeat step (b) on the ELSE_CLAUSE.
6116
6117 d) Mark X and Y in FOUND_IN_SUBGRAPH.
6118
6119 For instance,
6120
6121 if (a == 9)
6122 b = a;
6123 else
6124 b = c + 1;
6125
6126 In this case, an assertion on the THEN clause is useful to
6127 determine that 'a' is always 9 on that edge. However, an assertion
6128 on the ELSE clause would be unnecessary.
6129
6130 4- If BB does not end in a conditional expression, then we recurse
6131 into BB's dominator children.
6132
6133 At the end of the recursive traversal, every SSA name will have a
6134 list of locations where ASSERT_EXPRs should be added. When a new
6135 location for name N is found, it is registered by calling
6136 register_new_assert_for. That function keeps track of all the
6137 registered assertions to prevent adding unnecessary assertions.
6138 For instance, if a pointer P_4 is dereferenced more than once in a
6139 dominator tree, only the location dominating all the dereference of
6140 P_4 will receive an ASSERT_EXPR. */
6141
6142 static void
6143 find_assert_locations_1 (basic_block bb, sbitmap live)
6144 {
6145 gimple last;
6146
6147 last = last_stmt (bb);
6148
6149 /* If BB's last statement is a conditional statement involving integer
6150 operands, determine if we need to add ASSERT_EXPRs. */
6151 if (last
6152 && gimple_code (last) == GIMPLE_COND
6153 && !fp_predicate (last)
6154 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
6155 find_conditional_asserts (bb, as_a <gcond *> (last));
6156
6157 /* If BB's last statement is a switch statement involving integer
6158 operands, determine if we need to add ASSERT_EXPRs. */
6159 if (last
6160 && gimple_code (last) == GIMPLE_SWITCH
6161 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
6162 find_switch_asserts (bb, as_a <gswitch *> (last));
6163
6164 /* Traverse all the statements in BB marking used names and looking
6165 for statements that may infer assertions for their used operands. */
6166 for (gimple_stmt_iterator si = gsi_last_bb (bb); !gsi_end_p (si);
6167 gsi_prev (&si))
6168 {
6169 gimple stmt;
6170 tree op;
6171 ssa_op_iter i;
6172
6173 stmt = gsi_stmt (si);
6174
6175 if (is_gimple_debug (stmt))
6176 continue;
6177
6178 /* See if we can derive an assertion for any of STMT's operands. */
6179 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6180 {
6181 tree value;
6182 enum tree_code comp_code;
6183
6184 /* If op is not live beyond this stmt, do not bother to insert
6185 asserts for it. */
6186 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
6187 continue;
6188
6189 /* If OP is used in such a way that we can infer a value
6190 range for it, and we don't find a previous assertion for
6191 it, create a new assertion location node for OP. */
6192 if (infer_value_range (stmt, op, &comp_code, &value))
6193 {
6194 /* If we are able to infer a nonzero value range for OP,
6195 then walk backwards through the use-def chain to see if OP
6196 was set via a typecast.
6197
6198 If so, then we can also infer a nonzero value range
6199 for the operand of the NOP_EXPR. */
6200 if (comp_code == NE_EXPR && integer_zerop (value))
6201 {
6202 tree t = op;
6203 gimple def_stmt = SSA_NAME_DEF_STMT (t);
6204
6205 while (is_gimple_assign (def_stmt)
6206 && CONVERT_EXPR_CODE_P
6207 (gimple_assign_rhs_code (def_stmt))
6208 && TREE_CODE
6209 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
6210 && POINTER_TYPE_P
6211 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
6212 {
6213 t = gimple_assign_rhs1 (def_stmt);
6214 def_stmt = SSA_NAME_DEF_STMT (t);
6215
6216 /* Note we want to register the assert for the
6217 operand of the NOP_EXPR after SI, not after the
6218 conversion. */
6219 if (! has_single_use (t))
6220 register_new_assert_for (t, t, comp_code, value,
6221 bb, NULL, si);
6222 }
6223 }
6224
6225 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
6226 }
6227 }
6228
6229 /* Update live. */
6230 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6231 bitmap_set_bit (live, SSA_NAME_VERSION (op));
6232 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
6233 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
6234 }
6235
6236 /* Traverse all PHI nodes in BB, updating live. */
6237 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
6238 gsi_next (&si))
6239 {
6240 use_operand_p arg_p;
6241 ssa_op_iter i;
6242 gphi *phi = si.phi ();
6243 tree res = gimple_phi_result (phi);
6244
6245 if (virtual_operand_p (res))
6246 continue;
6247
6248 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
6249 {
6250 tree arg = USE_FROM_PTR (arg_p);
6251 if (TREE_CODE (arg) == SSA_NAME)
6252 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
6253 }
6254
6255 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
6256 }
6257 }
6258
6259 /* Do an RPO walk over the function computing SSA name liveness
6260 on-the-fly and deciding on assert expressions to insert. */
6261
6262 static void
6263 find_assert_locations (void)
6264 {
6265 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6266 int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6267 int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6268 int rpo_cnt, i;
6269
6270 live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun));
6271 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
6272 for (i = 0; i < rpo_cnt; ++i)
6273 bb_rpo[rpo[i]] = i;
6274
6275 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
6276 the order we compute liveness and insert asserts we otherwise
6277 fail to insert asserts into the loop latch. */
6278 loop_p loop;
6279 FOR_EACH_LOOP (loop, 0)
6280 {
6281 i = loop->latch->index;
6282 unsigned int j = single_succ_edge (loop->latch)->dest_idx;
6283 for (gphi_iterator gsi = gsi_start_phis (loop->header);
6284 !gsi_end_p (gsi); gsi_next (&gsi))
6285 {
6286 gphi *phi = gsi.phi ();
6287 if (virtual_operand_p (gimple_phi_result (phi)))
6288 continue;
6289 tree arg = gimple_phi_arg_def (phi, j);
6290 if (TREE_CODE (arg) == SSA_NAME)
6291 {
6292 if (live[i] == NULL)
6293 {
6294 live[i] = sbitmap_alloc (num_ssa_names);
6295 bitmap_clear (live[i]);
6296 }
6297 bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
6298 }
6299 }
6300 }
6301
6302 for (i = rpo_cnt - 1; i >= 0; --i)
6303 {
6304 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
6305 edge e;
6306 edge_iterator ei;
6307
6308 if (!live[rpo[i]])
6309 {
6310 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
6311 bitmap_clear (live[rpo[i]]);
6312 }
6313
6314 /* Process BB and update the live information with uses in
6315 this block. */
6316 find_assert_locations_1 (bb, live[rpo[i]]);
6317
6318 /* Merge liveness into the predecessor blocks and free it. */
6319 if (!bitmap_empty_p (live[rpo[i]]))
6320 {
6321 int pred_rpo = i;
6322 FOR_EACH_EDGE (e, ei, bb->preds)
6323 {
6324 int pred = e->src->index;
6325 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
6326 continue;
6327
6328 if (!live[pred])
6329 {
6330 live[pred] = sbitmap_alloc (num_ssa_names);
6331 bitmap_clear (live[pred]);
6332 }
6333 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
6334
6335 if (bb_rpo[pred] < pred_rpo)
6336 pred_rpo = bb_rpo[pred];
6337 }
6338
6339 /* Record the RPO number of the last visited block that needs
6340 live information from this block. */
6341 last_rpo[rpo[i]] = pred_rpo;
6342 }
6343 else
6344 {
6345 sbitmap_free (live[rpo[i]]);
6346 live[rpo[i]] = NULL;
6347 }
6348
6349 /* We can free all successors live bitmaps if all their
6350 predecessors have been visited already. */
6351 FOR_EACH_EDGE (e, ei, bb->succs)
6352 if (last_rpo[e->dest->index] == i
6353 && live[e->dest->index])
6354 {
6355 sbitmap_free (live[e->dest->index]);
6356 live[e->dest->index] = NULL;
6357 }
6358 }
6359
6360 XDELETEVEC (rpo);
6361 XDELETEVEC (bb_rpo);
6362 XDELETEVEC (last_rpo);
6363 for (i = 0; i < last_basic_block_for_fn (cfun); ++i)
6364 if (live[i])
6365 sbitmap_free (live[i]);
6366 XDELETEVEC (live);
6367 }
6368
6369 /* Create an ASSERT_EXPR for NAME and insert it in the location
6370 indicated by LOC. Return true if we made any edge insertions. */
6371
6372 static bool
6373 process_assert_insertions_for (tree name, assert_locus_t loc)
6374 {
6375 /* Build the comparison expression NAME_i COMP_CODE VAL. */
6376 gimple stmt;
6377 tree cond;
6378 gimple assert_stmt;
6379 edge_iterator ei;
6380 edge e;
6381
6382 /* If we have X <=> X do not insert an assert expr for that. */
6383 if (loc->expr == loc->val)
6384 return false;
6385
6386 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
6387 assert_stmt = build_assert_expr_for (cond, name);
6388 if (loc->e)
6389 {
6390 /* We have been asked to insert the assertion on an edge. This
6391 is used only by COND_EXPR and SWITCH_EXPR assertions. */
6392 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
6393 || (gimple_code (gsi_stmt (loc->si))
6394 == GIMPLE_SWITCH));
6395
6396 gsi_insert_on_edge (loc->e, assert_stmt);
6397 return true;
6398 }
6399
6400 /* Otherwise, we can insert right after LOC->SI iff the
6401 statement must not be the last statement in the block. */
6402 stmt = gsi_stmt (loc->si);
6403 if (!stmt_ends_bb_p (stmt))
6404 {
6405 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
6406 return false;
6407 }
6408
6409 /* If STMT must be the last statement in BB, we can only insert new
6410 assertions on the non-abnormal edge out of BB. Note that since
6411 STMT is not control flow, there may only be one non-abnormal edge
6412 out of BB. */
6413 FOR_EACH_EDGE (e, ei, loc->bb->succs)
6414 if (!(e->flags & EDGE_ABNORMAL))
6415 {
6416 gsi_insert_on_edge (e, assert_stmt);
6417 return true;
6418 }
6419
6420 gcc_unreachable ();
6421 }
6422
6423
6424 /* Process all the insertions registered for every name N_i registered
6425 in NEED_ASSERT_FOR. The list of assertions to be inserted are
6426 found in ASSERTS_FOR[i]. */
6427
6428 static void
6429 process_assert_insertions (void)
6430 {
6431 unsigned i;
6432 bitmap_iterator bi;
6433 bool update_edges_p = false;
6434 int num_asserts = 0;
6435
6436 if (dump_file && (dump_flags & TDF_DETAILS))
6437 dump_all_asserts (dump_file);
6438
6439 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
6440 {
6441 assert_locus_t loc = asserts_for[i];
6442 gcc_assert (loc);
6443
6444 while (loc)
6445 {
6446 assert_locus_t next = loc->next;
6447 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
6448 free (loc);
6449 loc = next;
6450 num_asserts++;
6451 }
6452 }
6453
6454 if (update_edges_p)
6455 gsi_commit_edge_inserts ();
6456
6457 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
6458 num_asserts);
6459 }
6460
6461
6462 /* Traverse the flowgraph looking for conditional jumps to insert range
6463 expressions. These range expressions are meant to provide information
6464 to optimizations that need to reason in terms of value ranges. They
6465 will not be expanded into RTL. For instance, given:
6466
6467 x = ...
6468 y = ...
6469 if (x < y)
6470 y = x - 2;
6471 else
6472 x = y + 3;
6473
6474 this pass will transform the code into:
6475
6476 x = ...
6477 y = ...
6478 if (x < y)
6479 {
6480 x = ASSERT_EXPR <x, x < y>
6481 y = x - 2
6482 }
6483 else
6484 {
6485 y = ASSERT_EXPR <y, x >= y>
6486 x = y + 3
6487 }
6488
6489 The idea is that once copy and constant propagation have run, other
6490 optimizations will be able to determine what ranges of values can 'x'
6491 take in different paths of the code, simply by checking the reaching
6492 definition of 'x'. */
6493
6494 static void
6495 insert_range_assertions (void)
6496 {
6497 need_assert_for = BITMAP_ALLOC (NULL);
6498 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
6499
6500 calculate_dominance_info (CDI_DOMINATORS);
6501
6502 find_assert_locations ();
6503 if (!bitmap_empty_p (need_assert_for))
6504 {
6505 process_assert_insertions ();
6506 update_ssa (TODO_update_ssa_no_phi);
6507 }
6508
6509 if (dump_file && (dump_flags & TDF_DETAILS))
6510 {
6511 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
6512 dump_function_to_file (current_function_decl, dump_file, dump_flags);
6513 }
6514
6515 free (asserts_for);
6516 BITMAP_FREE (need_assert_for);
6517 }
6518
6519 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6520 and "struct" hacks. If VRP can determine that the
6521 array subscript is a constant, check if it is outside valid
6522 range. If the array subscript is a RANGE, warn if it is
6523 non-overlapping with valid range.
6524 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6525
6526 static void
6527 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
6528 {
6529 value_range_t* vr = NULL;
6530 tree low_sub, up_sub;
6531 tree low_bound, up_bound, up_bound_p1;
6532 tree base;
6533
6534 if (TREE_NO_WARNING (ref))
6535 return;
6536
6537 low_sub = up_sub = TREE_OPERAND (ref, 1);
6538 up_bound = array_ref_up_bound (ref);
6539
6540 /* Can not check flexible arrays. */
6541 if (!up_bound
6542 || TREE_CODE (up_bound) != INTEGER_CST)
6543 return;
6544
6545 /* Accesses to trailing arrays via pointers may access storage
6546 beyond the types array bounds. */
6547 base = get_base_address (ref);
6548 if ((warn_array_bounds < 2)
6549 && base && TREE_CODE (base) == MEM_REF)
6550 {
6551 tree cref, next = NULL_TREE;
6552
6553 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
6554 return;
6555
6556 cref = TREE_OPERAND (ref, 0);
6557 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
6558 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
6559 next && TREE_CODE (next) != FIELD_DECL;
6560 next = DECL_CHAIN (next))
6561 ;
6562
6563 /* If this is the last field in a struct type or a field in a
6564 union type do not warn. */
6565 if (!next)
6566 return;
6567 }
6568
6569 low_bound = array_ref_low_bound (ref);
6570 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound,
6571 build_int_cst (TREE_TYPE (up_bound), 1));
6572
6573 /* Empty array. */
6574 if (tree_int_cst_equal (low_bound, up_bound_p1))
6575 {
6576 warning_at (location, OPT_Warray_bounds,
6577 "array subscript is above array bounds");
6578 TREE_NO_WARNING (ref) = 1;
6579 }
6580
6581 if (TREE_CODE (low_sub) == SSA_NAME)
6582 {
6583 vr = get_value_range (low_sub);
6584 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
6585 {
6586 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
6587 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
6588 }
6589 }
6590
6591 if (vr && vr->type == VR_ANTI_RANGE)
6592 {
6593 if (TREE_CODE (up_sub) == INTEGER_CST
6594 && (ignore_off_by_one
6595 ? tree_int_cst_lt (up_bound, up_sub)
6596 : tree_int_cst_le (up_bound, up_sub))
6597 && TREE_CODE (low_sub) == INTEGER_CST
6598 && tree_int_cst_le (low_sub, low_bound))
6599 {
6600 warning_at (location, OPT_Warray_bounds,
6601 "array subscript is outside array bounds");
6602 TREE_NO_WARNING (ref) = 1;
6603 }
6604 }
6605 else if (TREE_CODE (up_sub) == INTEGER_CST
6606 && (ignore_off_by_one
6607 ? !tree_int_cst_le (up_sub, up_bound_p1)
6608 : !tree_int_cst_le (up_sub, up_bound)))
6609 {
6610 if (dump_file && (dump_flags & TDF_DETAILS))
6611 {
6612 fprintf (dump_file, "Array bound warning for ");
6613 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6614 fprintf (dump_file, "\n");
6615 }
6616 warning_at (location, OPT_Warray_bounds,
6617 "array subscript is above array bounds");
6618 TREE_NO_WARNING (ref) = 1;
6619 }
6620 else if (TREE_CODE (low_sub) == INTEGER_CST
6621 && tree_int_cst_lt (low_sub, low_bound))
6622 {
6623 if (dump_file && (dump_flags & TDF_DETAILS))
6624 {
6625 fprintf (dump_file, "Array bound warning for ");
6626 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6627 fprintf (dump_file, "\n");
6628 }
6629 warning_at (location, OPT_Warray_bounds,
6630 "array subscript is below array bounds");
6631 TREE_NO_WARNING (ref) = 1;
6632 }
6633 }
6634
6635 /* Searches if the expr T, located at LOCATION computes
6636 address of an ARRAY_REF, and call check_array_ref on it. */
6637
6638 static void
6639 search_for_addr_array (tree t, location_t location)
6640 {
6641 /* Check each ARRAY_REFs in the reference chain. */
6642 do
6643 {
6644 if (TREE_CODE (t) == ARRAY_REF)
6645 check_array_ref (location, t, true /*ignore_off_by_one*/);
6646
6647 t = TREE_OPERAND (t, 0);
6648 }
6649 while (handled_component_p (t));
6650
6651 if (TREE_CODE (t) == MEM_REF
6652 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
6653 && !TREE_NO_WARNING (t))
6654 {
6655 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
6656 tree low_bound, up_bound, el_sz;
6657 offset_int idx;
6658 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
6659 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
6660 || !TYPE_DOMAIN (TREE_TYPE (tem)))
6661 return;
6662
6663 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6664 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6665 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
6666 if (!low_bound
6667 || TREE_CODE (low_bound) != INTEGER_CST
6668 || !up_bound
6669 || TREE_CODE (up_bound) != INTEGER_CST
6670 || !el_sz
6671 || TREE_CODE (el_sz) != INTEGER_CST)
6672 return;
6673
6674 idx = mem_ref_offset (t);
6675 idx = wi::sdiv_trunc (idx, wi::to_offset (el_sz));
6676 if (wi::lts_p (idx, 0))
6677 {
6678 if (dump_file && (dump_flags & TDF_DETAILS))
6679 {
6680 fprintf (dump_file, "Array bound warning for ");
6681 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6682 fprintf (dump_file, "\n");
6683 }
6684 warning_at (location, OPT_Warray_bounds,
6685 "array subscript is below array bounds");
6686 TREE_NO_WARNING (t) = 1;
6687 }
6688 else if (wi::gts_p (idx, (wi::to_offset (up_bound)
6689 - wi::to_offset (low_bound) + 1)))
6690 {
6691 if (dump_file && (dump_flags & TDF_DETAILS))
6692 {
6693 fprintf (dump_file, "Array bound warning for ");
6694 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6695 fprintf (dump_file, "\n");
6696 }
6697 warning_at (location, OPT_Warray_bounds,
6698 "array subscript is above array bounds");
6699 TREE_NO_WARNING (t) = 1;
6700 }
6701 }
6702 }
6703
6704 /* walk_tree() callback that checks if *TP is
6705 an ARRAY_REF inside an ADDR_EXPR (in which an array
6706 subscript one outside the valid range is allowed). Call
6707 check_array_ref for each ARRAY_REF found. The location is
6708 passed in DATA. */
6709
6710 static tree
6711 check_array_bounds (tree *tp, int *walk_subtree, void *data)
6712 {
6713 tree t = *tp;
6714 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6715 location_t location;
6716
6717 if (EXPR_HAS_LOCATION (t))
6718 location = EXPR_LOCATION (t);
6719 else
6720 {
6721 location_t *locp = (location_t *) wi->info;
6722 location = *locp;
6723 }
6724
6725 *walk_subtree = TRUE;
6726
6727 if (TREE_CODE (t) == ARRAY_REF)
6728 check_array_ref (location, t, false /*ignore_off_by_one*/);
6729
6730 else if (TREE_CODE (t) == ADDR_EXPR)
6731 {
6732 search_for_addr_array (t, location);
6733 *walk_subtree = FALSE;
6734 }
6735
6736 return NULL_TREE;
6737 }
6738
6739 /* Walk over all statements of all reachable BBs and call check_array_bounds
6740 on them. */
6741
6742 static void
6743 check_all_array_refs (void)
6744 {
6745 basic_block bb;
6746 gimple_stmt_iterator si;
6747
6748 FOR_EACH_BB_FN (bb, cfun)
6749 {
6750 edge_iterator ei;
6751 edge e;
6752 bool executable = false;
6753
6754 /* Skip blocks that were found to be unreachable. */
6755 FOR_EACH_EDGE (e, ei, bb->preds)
6756 executable |= !!(e->flags & EDGE_EXECUTABLE);
6757 if (!executable)
6758 continue;
6759
6760 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6761 {
6762 gimple stmt = gsi_stmt (si);
6763 struct walk_stmt_info wi;
6764 if (!gimple_has_location (stmt)
6765 || is_gimple_debug (stmt))
6766 continue;
6767
6768 memset (&wi, 0, sizeof (wi));
6769 wi.info = CONST_CAST (void *, (const void *)
6770 gimple_location_ptr (stmt));
6771
6772 walk_gimple_op (gsi_stmt (si),
6773 check_array_bounds,
6774 &wi);
6775 }
6776 }
6777 }
6778
6779 /* Return true if all imm uses of VAR are either in STMT, or
6780 feed (optionally through a chain of single imm uses) GIMPLE_COND
6781 in basic block COND_BB. */
6782
6783 static bool
6784 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple stmt, basic_block cond_bb)
6785 {
6786 use_operand_p use_p, use2_p;
6787 imm_use_iterator iter;
6788
6789 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
6790 if (USE_STMT (use_p) != stmt)
6791 {
6792 gimple use_stmt = USE_STMT (use_p), use_stmt2;
6793 if (is_gimple_debug (use_stmt))
6794 continue;
6795 while (is_gimple_assign (use_stmt)
6796 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
6797 && single_imm_use (gimple_assign_lhs (use_stmt),
6798 &use2_p, &use_stmt2))
6799 use_stmt = use_stmt2;
6800 if (gimple_code (use_stmt) != GIMPLE_COND
6801 || gimple_bb (use_stmt) != cond_bb)
6802 return false;
6803 }
6804 return true;
6805 }
6806
6807 /* Handle
6808 _4 = x_3 & 31;
6809 if (_4 != 0)
6810 goto <bb 6>;
6811 else
6812 goto <bb 7>;
6813 <bb 6>:
6814 __builtin_unreachable ();
6815 <bb 7>:
6816 x_5 = ASSERT_EXPR <x_3, ...>;
6817 If x_3 has no other immediate uses (checked by caller),
6818 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
6819 from the non-zero bitmask. */
6820
6821 static void
6822 maybe_set_nonzero_bits (basic_block bb, tree var)
6823 {
6824 edge e = single_pred_edge (bb);
6825 basic_block cond_bb = e->src;
6826 gimple stmt = last_stmt (cond_bb);
6827 tree cst;
6828
6829 if (stmt == NULL
6830 || gimple_code (stmt) != GIMPLE_COND
6831 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
6832 ? EQ_EXPR : NE_EXPR)
6833 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
6834 || !integer_zerop (gimple_cond_rhs (stmt)))
6835 return;
6836
6837 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
6838 if (!is_gimple_assign (stmt)
6839 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
6840 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
6841 return;
6842 if (gimple_assign_rhs1 (stmt) != var)
6843 {
6844 gimple stmt2;
6845
6846 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
6847 return;
6848 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
6849 if (!gimple_assign_cast_p (stmt2)
6850 || gimple_assign_rhs1 (stmt2) != var
6851 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
6852 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6853 != TYPE_PRECISION (TREE_TYPE (var))))
6854 return;
6855 }
6856 cst = gimple_assign_rhs2 (stmt);
6857 set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var), cst));
6858 }
6859
6860 /* Convert range assertion expressions into the implied copies and
6861 copy propagate away the copies. Doing the trivial copy propagation
6862 here avoids the need to run the full copy propagation pass after
6863 VRP.
6864
6865 FIXME, this will eventually lead to copy propagation removing the
6866 names that had useful range information attached to them. For
6867 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6868 then N_i will have the range [3, +INF].
6869
6870 However, by converting the assertion into the implied copy
6871 operation N_i = N_j, we will then copy-propagate N_j into the uses
6872 of N_i and lose the range information. We may want to hold on to
6873 ASSERT_EXPRs a little while longer as the ranges could be used in
6874 things like jump threading.
6875
6876 The problem with keeping ASSERT_EXPRs around is that passes after
6877 VRP need to handle them appropriately.
6878
6879 Another approach would be to make the range information a first
6880 class property of the SSA_NAME so that it can be queried from
6881 any pass. This is made somewhat more complex by the need for
6882 multiple ranges to be associated with one SSA_NAME. */
6883
6884 static void
6885 remove_range_assertions (void)
6886 {
6887 basic_block bb;
6888 gimple_stmt_iterator si;
6889 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
6890 a basic block preceeded by GIMPLE_COND branching to it and
6891 __builtin_trap, -1 if not yet checked, 0 otherwise. */
6892 int is_unreachable;
6893
6894 /* Note that the BSI iterator bump happens at the bottom of the
6895 loop and no bump is necessary if we're removing the statement
6896 referenced by the current BSI. */
6897 FOR_EACH_BB_FN (bb, cfun)
6898 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
6899 {
6900 gimple stmt = gsi_stmt (si);
6901 gimple use_stmt;
6902
6903 if (is_gimple_assign (stmt)
6904 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
6905 {
6906 tree lhs = gimple_assign_lhs (stmt);
6907 tree rhs = gimple_assign_rhs1 (stmt);
6908 tree var;
6909 tree cond = fold (ASSERT_EXPR_COND (rhs));
6910 use_operand_p use_p;
6911 imm_use_iterator iter;
6912
6913 gcc_assert (cond != boolean_false_node);
6914
6915 var = ASSERT_EXPR_VAR (rhs);
6916 gcc_assert (TREE_CODE (var) == SSA_NAME);
6917
6918 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
6919 && SSA_NAME_RANGE_INFO (lhs))
6920 {
6921 if (is_unreachable == -1)
6922 {
6923 is_unreachable = 0;
6924 if (single_pred_p (bb)
6925 && assert_unreachable_fallthru_edge_p
6926 (single_pred_edge (bb)))
6927 is_unreachable = 1;
6928 }
6929 /* Handle
6930 if (x_7 >= 10 && x_7 < 20)
6931 __builtin_unreachable ();
6932 x_8 = ASSERT_EXPR <x_7, ...>;
6933 if the only uses of x_7 are in the ASSERT_EXPR and
6934 in the condition. In that case, we can copy the
6935 range info from x_8 computed in this pass also
6936 for x_7. */
6937 if (is_unreachable
6938 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
6939 single_pred (bb)))
6940 {
6941 set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
6942 SSA_NAME_RANGE_INFO (lhs)->get_min (),
6943 SSA_NAME_RANGE_INFO (lhs)->get_max ());
6944 maybe_set_nonzero_bits (bb, var);
6945 }
6946 }
6947
6948 /* Propagate the RHS into every use of the LHS. */
6949 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
6950 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
6951 SET_USE (use_p, var);
6952
6953 /* And finally, remove the copy, it is not needed. */
6954 gsi_remove (&si, true);
6955 release_defs (stmt);
6956 }
6957 else
6958 {
6959 if (!is_gimple_debug (gsi_stmt (si)))
6960 is_unreachable = 0;
6961 gsi_next (&si);
6962 }
6963 }
6964 }
6965
6966
6967 /* Return true if STMT is interesting for VRP. */
6968
6969 static bool
6970 stmt_interesting_for_vrp (gimple stmt)
6971 {
6972 if (gimple_code (stmt) == GIMPLE_PHI)
6973 {
6974 tree res = gimple_phi_result (stmt);
6975 return (!virtual_operand_p (res)
6976 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
6977 || POINTER_TYPE_P (TREE_TYPE (res))));
6978 }
6979 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6980 {
6981 tree lhs = gimple_get_lhs (stmt);
6982
6983 /* In general, assignments with virtual operands are not useful
6984 for deriving ranges, with the obvious exception of calls to
6985 builtin functions. */
6986 if (lhs && TREE_CODE (lhs) == SSA_NAME
6987 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6988 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6989 && (is_gimple_call (stmt)
6990 || !gimple_vuse (stmt)))
6991 return true;
6992 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
6993 switch (gimple_call_internal_fn (stmt))
6994 {
6995 case IFN_ADD_OVERFLOW:
6996 case IFN_SUB_OVERFLOW:
6997 case IFN_MUL_OVERFLOW:
6998 /* These internal calls return _Complex integer type,
6999 but are interesting to VRP nevertheless. */
7000 if (lhs && TREE_CODE (lhs) == SSA_NAME)
7001 return true;
7002 break;
7003 default:
7004 break;
7005 }
7006 }
7007 else if (gimple_code (stmt) == GIMPLE_COND
7008 || gimple_code (stmt) == GIMPLE_SWITCH)
7009 return true;
7010
7011 return false;
7012 }
7013
7014
7015 /* Initialize local data structures for VRP. */
7016
7017 static void
7018 vrp_initialize (void)
7019 {
7020 basic_block bb;
7021
7022 values_propagated = false;
7023 num_vr_values = num_ssa_names;
7024 vr_value = XCNEWVEC (value_range_t *, num_vr_values);
7025 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
7026
7027 FOR_EACH_BB_FN (bb, cfun)
7028 {
7029 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
7030 gsi_next (&si))
7031 {
7032 gphi *phi = si.phi ();
7033 if (!stmt_interesting_for_vrp (phi))
7034 {
7035 tree lhs = PHI_RESULT (phi);
7036 set_value_range_to_varying (get_value_range (lhs));
7037 prop_set_simulate_again (phi, false);
7038 }
7039 else
7040 prop_set_simulate_again (phi, true);
7041 }
7042
7043 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
7044 gsi_next (&si))
7045 {
7046 gimple stmt = gsi_stmt (si);
7047
7048 /* If the statement is a control insn, then we do not
7049 want to avoid simulating the statement once. Failure
7050 to do so means that those edges will never get added. */
7051 if (stmt_ends_bb_p (stmt))
7052 prop_set_simulate_again (stmt, true);
7053 else if (!stmt_interesting_for_vrp (stmt))
7054 {
7055 ssa_op_iter i;
7056 tree def;
7057 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
7058 set_value_range_to_varying (get_value_range (def));
7059 prop_set_simulate_again (stmt, false);
7060 }
7061 else
7062 prop_set_simulate_again (stmt, true);
7063 }
7064 }
7065 }
7066
7067 /* Return the singleton value-range for NAME or NAME. */
7068
7069 static inline tree
7070 vrp_valueize (tree name)
7071 {
7072 if (TREE_CODE (name) == SSA_NAME)
7073 {
7074 value_range_t *vr = get_value_range (name);
7075 if (vr->type == VR_RANGE
7076 && (vr->min == vr->max
7077 || operand_equal_p (vr->min, vr->max, 0)))
7078 return vr->min;
7079 }
7080 return name;
7081 }
7082
7083 /* Return the singleton value-range for NAME if that is a constant
7084 but signal to not follow SSA edges. */
7085
7086 static inline tree
7087 vrp_valueize_1 (tree name)
7088 {
7089 if (TREE_CODE (name) == SSA_NAME)
7090 {
7091 /* If the definition may be simulated again we cannot follow
7092 this SSA edge as the SSA propagator does not necessarily
7093 re-visit the use. */
7094 gimple def_stmt = SSA_NAME_DEF_STMT (name);
7095 if (!gimple_nop_p (def_stmt)
7096 && prop_simulate_again_p (def_stmt))
7097 return NULL_TREE;
7098 value_range_t *vr = get_value_range (name);
7099 if (range_int_cst_singleton_p (vr))
7100 return vr->min;
7101 }
7102 return name;
7103 }
7104
7105 /* Visit assignment STMT. If it produces an interesting range, record
7106 the SSA name in *OUTPUT_P. */
7107
7108 static enum ssa_prop_result
7109 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
7110 {
7111 tree def, lhs;
7112 ssa_op_iter iter;
7113 enum gimple_code code = gimple_code (stmt);
7114 lhs = gimple_get_lhs (stmt);
7115
7116 /* We only keep track of ranges in integral and pointer types. */
7117 if (TREE_CODE (lhs) == SSA_NAME
7118 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
7119 /* It is valid to have NULL MIN/MAX values on a type. See
7120 build_range_type. */
7121 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
7122 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
7123 || POINTER_TYPE_P (TREE_TYPE (lhs))))
7124 {
7125 value_range_t new_vr = VR_INITIALIZER;
7126
7127 /* Try folding the statement to a constant first. */
7128 tree tem = gimple_fold_stmt_to_constant_1 (stmt, vrp_valueize,
7129 vrp_valueize_1);
7130 if (tem && is_gimple_min_invariant (tem))
7131 set_value_range_to_value (&new_vr, tem, NULL);
7132 /* Then dispatch to value-range extracting functions. */
7133 else if (code == GIMPLE_CALL)
7134 extract_range_basic (&new_vr, stmt);
7135 else
7136 extract_range_from_assignment (&new_vr, as_a <gassign *> (stmt));
7137
7138 if (update_value_range (lhs, &new_vr))
7139 {
7140 *output_p = lhs;
7141
7142 if (dump_file && (dump_flags & TDF_DETAILS))
7143 {
7144 fprintf (dump_file, "Found new range for ");
7145 print_generic_expr (dump_file, lhs, 0);
7146 fprintf (dump_file, ": ");
7147 dump_value_range (dump_file, &new_vr);
7148 fprintf (dump_file, "\n");
7149 }
7150
7151 if (new_vr.type == VR_VARYING)
7152 return SSA_PROP_VARYING;
7153
7154 return SSA_PROP_INTERESTING;
7155 }
7156
7157 return SSA_PROP_NOT_INTERESTING;
7158 }
7159 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
7160 switch (gimple_call_internal_fn (stmt))
7161 {
7162 case IFN_ADD_OVERFLOW:
7163 case IFN_SUB_OVERFLOW:
7164 case IFN_MUL_OVERFLOW:
7165 /* These internal calls return _Complex integer type,
7166 which VRP does not track, but the immediate uses
7167 thereof might be interesting. */
7168 if (lhs && TREE_CODE (lhs) == SSA_NAME)
7169 {
7170 imm_use_iterator iter;
7171 use_operand_p use_p;
7172 enum ssa_prop_result res = SSA_PROP_VARYING;
7173
7174 set_value_range_to_varying (get_value_range (lhs));
7175
7176 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
7177 {
7178 gimple use_stmt = USE_STMT (use_p);
7179 if (!is_gimple_assign (use_stmt))
7180 continue;
7181 enum tree_code rhs_code = gimple_assign_rhs_code (use_stmt);
7182 if (rhs_code != REALPART_EXPR && rhs_code != IMAGPART_EXPR)
7183 continue;
7184 tree rhs1 = gimple_assign_rhs1 (use_stmt);
7185 tree use_lhs = gimple_assign_lhs (use_stmt);
7186 if (TREE_CODE (rhs1) != rhs_code
7187 || TREE_OPERAND (rhs1, 0) != lhs
7188 || TREE_CODE (use_lhs) != SSA_NAME
7189 || !stmt_interesting_for_vrp (use_stmt)
7190 || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs))
7191 || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs))
7192 || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs))))
7193 continue;
7194
7195 /* If there is a change in the value range for any of the
7196 REALPART_EXPR/IMAGPART_EXPR immediate uses, return
7197 SSA_PROP_INTERESTING. If there are any REALPART_EXPR
7198 or IMAGPART_EXPR immediate uses, but none of them have
7199 a change in their value ranges, return
7200 SSA_PROP_NOT_INTERESTING. If there are no
7201 {REAL,IMAG}PART_EXPR uses at all,
7202 return SSA_PROP_VARYING. */
7203 value_range_t new_vr = VR_INITIALIZER;
7204 extract_range_basic (&new_vr, use_stmt);
7205 value_range_t *old_vr = get_value_range (use_lhs);
7206 if (old_vr->type != new_vr.type
7207 || !vrp_operand_equal_p (old_vr->min, new_vr.min)
7208 || !vrp_operand_equal_p (old_vr->max, new_vr.max)
7209 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr.equiv))
7210 res = SSA_PROP_INTERESTING;
7211 else
7212 res = SSA_PROP_NOT_INTERESTING;
7213 BITMAP_FREE (new_vr.equiv);
7214 if (res == SSA_PROP_INTERESTING)
7215 {
7216 *output_p = lhs;
7217 return res;
7218 }
7219 }
7220
7221 return res;
7222 }
7223 break;
7224 default:
7225 break;
7226 }
7227
7228 /* Every other statement produces no useful ranges. */
7229 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
7230 set_value_range_to_varying (get_value_range (def));
7231
7232 return SSA_PROP_VARYING;
7233 }
7234
7235 /* Helper that gets the value range of the SSA_NAME with version I
7236 or a symbolic range containing the SSA_NAME only if the value range
7237 is varying or undefined. */
7238
7239 static inline value_range_t
7240 get_vr_for_comparison (int i)
7241 {
7242 value_range_t vr = *get_value_range (ssa_name (i));
7243
7244 /* If name N_i does not have a valid range, use N_i as its own
7245 range. This allows us to compare against names that may
7246 have N_i in their ranges. */
7247 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
7248 {
7249 vr.type = VR_RANGE;
7250 vr.min = ssa_name (i);
7251 vr.max = ssa_name (i);
7252 }
7253
7254 return vr;
7255 }
7256
7257 /* Compare all the value ranges for names equivalent to VAR with VAL
7258 using comparison code COMP. Return the same value returned by
7259 compare_range_with_value, including the setting of
7260 *STRICT_OVERFLOW_P. */
7261
7262 static tree
7263 compare_name_with_value (enum tree_code comp, tree var, tree val,
7264 bool *strict_overflow_p)
7265 {
7266 bitmap_iterator bi;
7267 unsigned i;
7268 bitmap e;
7269 tree retval, t;
7270 int used_strict_overflow;
7271 bool sop;
7272 value_range_t equiv_vr;
7273
7274 /* Get the set of equivalences for VAR. */
7275 e = get_value_range (var)->equiv;
7276
7277 /* Start at -1. Set it to 0 if we do a comparison without relying
7278 on overflow, or 1 if all comparisons rely on overflow. */
7279 used_strict_overflow = -1;
7280
7281 /* Compare vars' value range with val. */
7282 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
7283 sop = false;
7284 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
7285 if (retval)
7286 used_strict_overflow = sop ? 1 : 0;
7287
7288 /* If the equiv set is empty we have done all work we need to do. */
7289 if (e == NULL)
7290 {
7291 if (retval
7292 && used_strict_overflow > 0)
7293 *strict_overflow_p = true;
7294 return retval;
7295 }
7296
7297 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
7298 {
7299 equiv_vr = get_vr_for_comparison (i);
7300 sop = false;
7301 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
7302 if (t)
7303 {
7304 /* If we get different answers from different members
7305 of the equivalence set this check must be in a dead
7306 code region. Folding it to a trap representation
7307 would be correct here. For now just return don't-know. */
7308 if (retval != NULL
7309 && t != retval)
7310 {
7311 retval = NULL_TREE;
7312 break;
7313 }
7314 retval = t;
7315
7316 if (!sop)
7317 used_strict_overflow = 0;
7318 else if (used_strict_overflow < 0)
7319 used_strict_overflow = 1;
7320 }
7321 }
7322
7323 if (retval
7324 && used_strict_overflow > 0)
7325 *strict_overflow_p = true;
7326
7327 return retval;
7328 }
7329
7330
7331 /* Given a comparison code COMP and names N1 and N2, compare all the
7332 ranges equivalent to N1 against all the ranges equivalent to N2
7333 to determine the value of N1 COMP N2. Return the same value
7334 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
7335 whether we relied on an overflow infinity in the comparison. */
7336
7337
7338 static tree
7339 compare_names (enum tree_code comp, tree n1, tree n2,
7340 bool *strict_overflow_p)
7341 {
7342 tree t, retval;
7343 bitmap e1, e2;
7344 bitmap_iterator bi1, bi2;
7345 unsigned i1, i2;
7346 int used_strict_overflow;
7347 static bitmap_obstack *s_obstack = NULL;
7348 static bitmap s_e1 = NULL, s_e2 = NULL;
7349
7350 /* Compare the ranges of every name equivalent to N1 against the
7351 ranges of every name equivalent to N2. */
7352 e1 = get_value_range (n1)->equiv;
7353 e2 = get_value_range (n2)->equiv;
7354
7355 /* Use the fake bitmaps if e1 or e2 are not available. */
7356 if (s_obstack == NULL)
7357 {
7358 s_obstack = XNEW (bitmap_obstack);
7359 bitmap_obstack_initialize (s_obstack);
7360 s_e1 = BITMAP_ALLOC (s_obstack);
7361 s_e2 = BITMAP_ALLOC (s_obstack);
7362 }
7363 if (e1 == NULL)
7364 e1 = s_e1;
7365 if (e2 == NULL)
7366 e2 = s_e2;
7367
7368 /* Add N1 and N2 to their own set of equivalences to avoid
7369 duplicating the body of the loop just to check N1 and N2
7370 ranges. */
7371 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
7372 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
7373
7374 /* If the equivalence sets have a common intersection, then the two
7375 names can be compared without checking their ranges. */
7376 if (bitmap_intersect_p (e1, e2))
7377 {
7378 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7379 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7380
7381 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
7382 ? boolean_true_node
7383 : boolean_false_node;
7384 }
7385
7386 /* Start at -1. Set it to 0 if we do a comparison without relying
7387 on overflow, or 1 if all comparisons rely on overflow. */
7388 used_strict_overflow = -1;
7389
7390 /* Otherwise, compare all the equivalent ranges. First, add N1 and
7391 N2 to their own set of equivalences to avoid duplicating the body
7392 of the loop just to check N1 and N2 ranges. */
7393 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
7394 {
7395 value_range_t vr1 = get_vr_for_comparison (i1);
7396
7397 t = retval = NULL_TREE;
7398 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
7399 {
7400 bool sop = false;
7401
7402 value_range_t vr2 = get_vr_for_comparison (i2);
7403
7404 t = compare_ranges (comp, &vr1, &vr2, &sop);
7405 if (t)
7406 {
7407 /* If we get different answers from different members
7408 of the equivalence set this check must be in a dead
7409 code region. Folding it to a trap representation
7410 would be correct here. For now just return don't-know. */
7411 if (retval != NULL
7412 && t != retval)
7413 {
7414 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7415 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7416 return NULL_TREE;
7417 }
7418 retval = t;
7419
7420 if (!sop)
7421 used_strict_overflow = 0;
7422 else if (used_strict_overflow < 0)
7423 used_strict_overflow = 1;
7424 }
7425 }
7426
7427 if (retval)
7428 {
7429 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7430 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7431 if (used_strict_overflow > 0)
7432 *strict_overflow_p = true;
7433 return retval;
7434 }
7435 }
7436
7437 /* None of the equivalent ranges are useful in computing this
7438 comparison. */
7439 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7440 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7441 return NULL_TREE;
7442 }
7443
7444 /* Helper function for vrp_evaluate_conditional_warnv. */
7445
7446 static tree
7447 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
7448 tree op0, tree op1,
7449 bool * strict_overflow_p)
7450 {
7451 value_range_t *vr0, *vr1;
7452
7453 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
7454 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
7455
7456 tree res = NULL_TREE;
7457 if (vr0 && vr1)
7458 res = compare_ranges (code, vr0, vr1, strict_overflow_p);
7459 if (!res && vr0)
7460 res = compare_range_with_value (code, vr0, op1, strict_overflow_p);
7461 if (!res && vr1)
7462 res = (compare_range_with_value
7463 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
7464 return res;
7465 }
7466
7467 /* Helper function for vrp_evaluate_conditional_warnv. */
7468
7469 static tree
7470 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
7471 tree op1, bool use_equiv_p,
7472 bool *strict_overflow_p, bool *only_ranges)
7473 {
7474 tree ret;
7475 if (only_ranges)
7476 *only_ranges = true;
7477
7478 /* We only deal with integral and pointer types. */
7479 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
7480 && !POINTER_TYPE_P (TREE_TYPE (op0)))
7481 return NULL_TREE;
7482
7483 if (use_equiv_p)
7484 {
7485 if (only_ranges
7486 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
7487 (code, op0, op1, strict_overflow_p)))
7488 return ret;
7489 *only_ranges = false;
7490 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
7491 return compare_names (code, op0, op1, strict_overflow_p);
7492 else if (TREE_CODE (op0) == SSA_NAME)
7493 return compare_name_with_value (code, op0, op1, strict_overflow_p);
7494 else if (TREE_CODE (op1) == SSA_NAME)
7495 return (compare_name_with_value
7496 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
7497 }
7498 else
7499 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
7500 strict_overflow_p);
7501 return NULL_TREE;
7502 }
7503
7504 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
7505 information. Return NULL if the conditional can not be evaluated.
7506 The ranges of all the names equivalent with the operands in COND
7507 will be used when trying to compute the value. If the result is
7508 based on undefined signed overflow, issue a warning if
7509 appropriate. */
7510
7511 static tree
7512 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
7513 {
7514 bool sop;
7515 tree ret;
7516 bool only_ranges;
7517
7518 /* Some passes and foldings leak constants with overflow flag set
7519 into the IL. Avoid doing wrong things with these and bail out. */
7520 if ((TREE_CODE (op0) == INTEGER_CST
7521 && TREE_OVERFLOW (op0))
7522 || (TREE_CODE (op1) == INTEGER_CST
7523 && TREE_OVERFLOW (op1)))
7524 return NULL_TREE;
7525
7526 sop = false;
7527 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
7528 &only_ranges);
7529
7530 if (ret && sop)
7531 {
7532 enum warn_strict_overflow_code wc;
7533 const char* warnmsg;
7534
7535 if (is_gimple_min_invariant (ret))
7536 {
7537 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
7538 warnmsg = G_("assuming signed overflow does not occur when "
7539 "simplifying conditional to constant");
7540 }
7541 else
7542 {
7543 wc = WARN_STRICT_OVERFLOW_COMPARISON;
7544 warnmsg = G_("assuming signed overflow does not occur when "
7545 "simplifying conditional");
7546 }
7547
7548 if (issue_strict_overflow_warning (wc))
7549 {
7550 location_t location;
7551
7552 if (!gimple_has_location (stmt))
7553 location = input_location;
7554 else
7555 location = gimple_location (stmt);
7556 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
7557 }
7558 }
7559
7560 if (warn_type_limits
7561 && ret && only_ranges
7562 && TREE_CODE_CLASS (code) == tcc_comparison
7563 && TREE_CODE (op0) == SSA_NAME)
7564 {
7565 /* If the comparison is being folded and the operand on the LHS
7566 is being compared against a constant value that is outside of
7567 the natural range of OP0's type, then the predicate will
7568 always fold regardless of the value of OP0. If -Wtype-limits
7569 was specified, emit a warning. */
7570 tree type = TREE_TYPE (op0);
7571 value_range_t *vr0 = get_value_range (op0);
7572
7573 if (vr0->type == VR_RANGE
7574 && INTEGRAL_TYPE_P (type)
7575 && vrp_val_is_min (vr0->min)
7576 && vrp_val_is_max (vr0->max)
7577 && is_gimple_min_invariant (op1))
7578 {
7579 location_t location;
7580
7581 if (!gimple_has_location (stmt))
7582 location = input_location;
7583 else
7584 location = gimple_location (stmt);
7585
7586 warning_at (location, OPT_Wtype_limits,
7587 integer_zerop (ret)
7588 ? G_("comparison always false "
7589 "due to limited range of data type")
7590 : G_("comparison always true "
7591 "due to limited range of data type"));
7592 }
7593 }
7594
7595 return ret;
7596 }
7597
7598
7599 /* Visit conditional statement STMT. If we can determine which edge
7600 will be taken out of STMT's basic block, record it in
7601 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7602 SSA_PROP_VARYING. */
7603
7604 static enum ssa_prop_result
7605 vrp_visit_cond_stmt (gcond *stmt, edge *taken_edge_p)
7606 {
7607 tree val;
7608 bool sop;
7609
7610 *taken_edge_p = NULL;
7611
7612 if (dump_file && (dump_flags & TDF_DETAILS))
7613 {
7614 tree use;
7615 ssa_op_iter i;
7616
7617 fprintf (dump_file, "\nVisiting conditional with predicate: ");
7618 print_gimple_stmt (dump_file, stmt, 0, 0);
7619 fprintf (dump_file, "\nWith known ranges\n");
7620
7621 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
7622 {
7623 fprintf (dump_file, "\t");
7624 print_generic_expr (dump_file, use, 0);
7625 fprintf (dump_file, ": ");
7626 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
7627 }
7628
7629 fprintf (dump_file, "\n");
7630 }
7631
7632 /* Compute the value of the predicate COND by checking the known
7633 ranges of each of its operands.
7634
7635 Note that we cannot evaluate all the equivalent ranges here
7636 because those ranges may not yet be final and with the current
7637 propagation strategy, we cannot determine when the value ranges
7638 of the names in the equivalence set have changed.
7639
7640 For instance, given the following code fragment
7641
7642 i_5 = PHI <8, i_13>
7643 ...
7644 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7645 if (i_14 == 1)
7646 ...
7647
7648 Assume that on the first visit to i_14, i_5 has the temporary
7649 range [8, 8] because the second argument to the PHI function is
7650 not yet executable. We derive the range ~[0, 0] for i_14 and the
7651 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7652 the first time, since i_14 is equivalent to the range [8, 8], we
7653 determine that the predicate is always false.
7654
7655 On the next round of propagation, i_13 is determined to be
7656 VARYING, which causes i_5 to drop down to VARYING. So, another
7657 visit to i_14 is scheduled. In this second visit, we compute the
7658 exact same range and equivalence set for i_14, namely ~[0, 0] and
7659 { i_5 }. But we did not have the previous range for i_5
7660 registered, so vrp_visit_assignment thinks that the range for
7661 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7662 is not visited again, which stops propagation from visiting
7663 statements in the THEN clause of that if().
7664
7665 To properly fix this we would need to keep the previous range
7666 value for the names in the equivalence set. This way we would've
7667 discovered that from one visit to the other i_5 changed from
7668 range [8, 8] to VR_VARYING.
7669
7670 However, fixing this apparent limitation may not be worth the
7671 additional checking. Testing on several code bases (GCC, DLV,
7672 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7673 4 more predicates folded in SPEC. */
7674 sop = false;
7675
7676 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
7677 gimple_cond_lhs (stmt),
7678 gimple_cond_rhs (stmt),
7679 false, &sop, NULL);
7680 if (val)
7681 {
7682 if (!sop)
7683 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
7684 else
7685 {
7686 if (dump_file && (dump_flags & TDF_DETAILS))
7687 fprintf (dump_file,
7688 "\nIgnoring predicate evaluation because "
7689 "it assumes that signed overflow is undefined");
7690 val = NULL_TREE;
7691 }
7692 }
7693
7694 if (dump_file && (dump_flags & TDF_DETAILS))
7695 {
7696 fprintf (dump_file, "\nPredicate evaluates to: ");
7697 if (val == NULL_TREE)
7698 fprintf (dump_file, "DON'T KNOW\n");
7699 else
7700 print_generic_stmt (dump_file, val, 0);
7701 }
7702
7703 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
7704 }
7705
7706 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7707 that includes the value VAL. The search is restricted to the range
7708 [START_IDX, n - 1] where n is the size of VEC.
7709
7710 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
7711 returned.
7712
7713 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
7714 it is placed in IDX and false is returned.
7715
7716 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
7717 returned. */
7718
7719 static bool
7720 find_case_label_index (gswitch *stmt, size_t start_idx, tree val, size_t *idx)
7721 {
7722 size_t n = gimple_switch_num_labels (stmt);
7723 size_t low, high;
7724
7725 /* Find case label for minimum of the value range or the next one.
7726 At each iteration we are searching in [low, high - 1]. */
7727
7728 for (low = start_idx, high = n; high != low; )
7729 {
7730 tree t;
7731 int cmp;
7732 /* Note that i != high, so we never ask for n. */
7733 size_t i = (high + low) / 2;
7734 t = gimple_switch_label (stmt, i);
7735
7736 /* Cache the result of comparing CASE_LOW and val. */
7737 cmp = tree_int_cst_compare (CASE_LOW (t), val);
7738
7739 if (cmp == 0)
7740 {
7741 /* Ranges cannot be empty. */
7742 *idx = i;
7743 return true;
7744 }
7745 else if (cmp > 0)
7746 high = i;
7747 else
7748 {
7749 low = i + 1;
7750 if (CASE_HIGH (t) != NULL
7751 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
7752 {
7753 *idx = i;
7754 return true;
7755 }
7756 }
7757 }
7758
7759 *idx = high;
7760 return false;
7761 }
7762
7763 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
7764 for values between MIN and MAX. The first index is placed in MIN_IDX. The
7765 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
7766 then MAX_IDX < MIN_IDX.
7767 Returns true if the default label is not needed. */
7768
7769 static bool
7770 find_case_label_range (gswitch *stmt, tree min, tree max, size_t *min_idx,
7771 size_t *max_idx)
7772 {
7773 size_t i, j;
7774 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
7775 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
7776
7777 if (i == j
7778 && min_take_default
7779 && max_take_default)
7780 {
7781 /* Only the default case label reached.
7782 Return an empty range. */
7783 *min_idx = 1;
7784 *max_idx = 0;
7785 return false;
7786 }
7787 else
7788 {
7789 bool take_default = min_take_default || max_take_default;
7790 tree low, high;
7791 size_t k;
7792
7793 if (max_take_default)
7794 j--;
7795
7796 /* If the case label range is continuous, we do not need
7797 the default case label. Verify that. */
7798 high = CASE_LOW (gimple_switch_label (stmt, i));
7799 if (CASE_HIGH (gimple_switch_label (stmt, i)))
7800 high = CASE_HIGH (gimple_switch_label (stmt, i));
7801 for (k = i + 1; k <= j; ++k)
7802 {
7803 low = CASE_LOW (gimple_switch_label (stmt, k));
7804 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
7805 {
7806 take_default = true;
7807 break;
7808 }
7809 high = low;
7810 if (CASE_HIGH (gimple_switch_label (stmt, k)))
7811 high = CASE_HIGH (gimple_switch_label (stmt, k));
7812 }
7813
7814 *min_idx = i;
7815 *max_idx = j;
7816 return !take_default;
7817 }
7818 }
7819
7820 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7821 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7822 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7823 Returns true if the default label is not needed. */
7824
7825 static bool
7826 find_case_label_ranges (gswitch *stmt, value_range_t *vr, size_t *min_idx1,
7827 size_t *max_idx1, size_t *min_idx2,
7828 size_t *max_idx2)
7829 {
7830 size_t i, j, k, l;
7831 unsigned int n = gimple_switch_num_labels (stmt);
7832 bool take_default;
7833 tree case_low, case_high;
7834 tree min = vr->min, max = vr->max;
7835
7836 gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE);
7837
7838 take_default = !find_case_label_range (stmt, min, max, &i, &j);
7839
7840 /* Set second range to emtpy. */
7841 *min_idx2 = 1;
7842 *max_idx2 = 0;
7843
7844 if (vr->type == VR_RANGE)
7845 {
7846 *min_idx1 = i;
7847 *max_idx1 = j;
7848 return !take_default;
7849 }
7850
7851 /* Set first range to all case labels. */
7852 *min_idx1 = 1;
7853 *max_idx1 = n - 1;
7854
7855 if (i > j)
7856 return false;
7857
7858 /* Make sure all the values of case labels [i , j] are contained in
7859 range [MIN, MAX]. */
7860 case_low = CASE_LOW (gimple_switch_label (stmt, i));
7861 case_high = CASE_HIGH (gimple_switch_label (stmt, j));
7862 if (tree_int_cst_compare (case_low, min) < 0)
7863 i += 1;
7864 if (case_high != NULL_TREE
7865 && tree_int_cst_compare (max, case_high) < 0)
7866 j -= 1;
7867
7868 if (i > j)
7869 return false;
7870
7871 /* If the range spans case labels [i, j], the corresponding anti-range spans
7872 the labels [1, i - 1] and [j + 1, n - 1]. */
7873 k = j + 1;
7874 l = n - 1;
7875 if (k > l)
7876 {
7877 k = 1;
7878 l = 0;
7879 }
7880
7881 j = i - 1;
7882 i = 1;
7883 if (i > j)
7884 {
7885 i = k;
7886 j = l;
7887 k = 1;
7888 l = 0;
7889 }
7890
7891 *min_idx1 = i;
7892 *max_idx1 = j;
7893 *min_idx2 = k;
7894 *max_idx2 = l;
7895 return false;
7896 }
7897
7898 /* Visit switch statement STMT. If we can determine which edge
7899 will be taken out of STMT's basic block, record it in
7900 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7901 SSA_PROP_VARYING. */
7902
7903 static enum ssa_prop_result
7904 vrp_visit_switch_stmt (gswitch *stmt, edge *taken_edge_p)
7905 {
7906 tree op, val;
7907 value_range_t *vr;
7908 size_t i = 0, j = 0, k, l;
7909 bool take_default;
7910
7911 *taken_edge_p = NULL;
7912 op = gimple_switch_index (stmt);
7913 if (TREE_CODE (op) != SSA_NAME)
7914 return SSA_PROP_VARYING;
7915
7916 vr = get_value_range (op);
7917 if (dump_file && (dump_flags & TDF_DETAILS))
7918 {
7919 fprintf (dump_file, "\nVisiting switch expression with operand ");
7920 print_generic_expr (dump_file, op, 0);
7921 fprintf (dump_file, " with known range ");
7922 dump_value_range (dump_file, vr);
7923 fprintf (dump_file, "\n");
7924 }
7925
7926 if ((vr->type != VR_RANGE
7927 && vr->type != VR_ANTI_RANGE)
7928 || symbolic_range_p (vr))
7929 return SSA_PROP_VARYING;
7930
7931 /* Find the single edge that is taken from the switch expression. */
7932 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
7933
7934 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7935 label */
7936 if (j < i)
7937 {
7938 gcc_assert (take_default);
7939 val = gimple_switch_default_label (stmt);
7940 }
7941 else
7942 {
7943 /* Check if labels with index i to j and maybe the default label
7944 are all reaching the same label. */
7945
7946 val = gimple_switch_label (stmt, i);
7947 if (take_default
7948 && CASE_LABEL (gimple_switch_default_label (stmt))
7949 != CASE_LABEL (val))
7950 {
7951 if (dump_file && (dump_flags & TDF_DETAILS))
7952 fprintf (dump_file, " not a single destination for this "
7953 "range\n");
7954 return SSA_PROP_VARYING;
7955 }
7956 for (++i; i <= j; ++i)
7957 {
7958 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
7959 {
7960 if (dump_file && (dump_flags & TDF_DETAILS))
7961 fprintf (dump_file, " not a single destination for this "
7962 "range\n");
7963 return SSA_PROP_VARYING;
7964 }
7965 }
7966 for (; k <= l; ++k)
7967 {
7968 if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
7969 {
7970 if (dump_file && (dump_flags & TDF_DETAILS))
7971 fprintf (dump_file, " not a single destination for this "
7972 "range\n");
7973 return SSA_PROP_VARYING;
7974 }
7975 }
7976 }
7977
7978 *taken_edge_p = find_edge (gimple_bb (stmt),
7979 label_to_block (CASE_LABEL (val)));
7980
7981 if (dump_file && (dump_flags & TDF_DETAILS))
7982 {
7983 fprintf (dump_file, " will take edge to ");
7984 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
7985 }
7986
7987 return SSA_PROP_INTERESTING;
7988 }
7989
7990
7991 /* Evaluate statement STMT. If the statement produces a useful range,
7992 return SSA_PROP_INTERESTING and record the SSA name with the
7993 interesting range into *OUTPUT_P.
7994
7995 If STMT is a conditional branch and we can determine its truth
7996 value, the taken edge is recorded in *TAKEN_EDGE_P.
7997
7998 If STMT produces a varying value, return SSA_PROP_VARYING. */
7999
8000 static enum ssa_prop_result
8001 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
8002 {
8003 tree def;
8004 ssa_op_iter iter;
8005
8006 if (dump_file && (dump_flags & TDF_DETAILS))
8007 {
8008 fprintf (dump_file, "\nVisiting statement:\n");
8009 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
8010 }
8011
8012 if (!stmt_interesting_for_vrp (stmt))
8013 gcc_assert (stmt_ends_bb_p (stmt));
8014 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
8015 return vrp_visit_assignment_or_call (stmt, output_p);
8016 else if (gimple_code (stmt) == GIMPLE_COND)
8017 return vrp_visit_cond_stmt (as_a <gcond *> (stmt), taken_edge_p);
8018 else if (gimple_code (stmt) == GIMPLE_SWITCH)
8019 return vrp_visit_switch_stmt (as_a <gswitch *> (stmt), taken_edge_p);
8020
8021 /* All other statements produce nothing of interest for VRP, so mark
8022 their outputs varying and prevent further simulation. */
8023 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
8024 set_value_range_to_varying (get_value_range (def));
8025
8026 return SSA_PROP_VARYING;
8027 }
8028
8029 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8030 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8031 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8032 possible such range. The resulting range is not canonicalized. */
8033
8034 static void
8035 union_ranges (enum value_range_type *vr0type,
8036 tree *vr0min, tree *vr0max,
8037 enum value_range_type vr1type,
8038 tree vr1min, tree vr1max)
8039 {
8040 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
8041 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
8042
8043 /* [] is vr0, () is vr1 in the following classification comments. */
8044 if (mineq && maxeq)
8045 {
8046 /* [( )] */
8047 if (*vr0type == vr1type)
8048 /* Nothing to do for equal ranges. */
8049 ;
8050 else if ((*vr0type == VR_RANGE
8051 && vr1type == VR_ANTI_RANGE)
8052 || (*vr0type == VR_ANTI_RANGE
8053 && vr1type == VR_RANGE))
8054 {
8055 /* For anti-range with range union the result is varying. */
8056 goto give_up;
8057 }
8058 else
8059 gcc_unreachable ();
8060 }
8061 else if (operand_less_p (*vr0max, vr1min) == 1
8062 || operand_less_p (vr1max, *vr0min) == 1)
8063 {
8064 /* [ ] ( ) or ( ) [ ]
8065 If the ranges have an empty intersection, result of the union
8066 operation is the anti-range or if both are anti-ranges
8067 it covers all. */
8068 if (*vr0type == VR_ANTI_RANGE
8069 && vr1type == VR_ANTI_RANGE)
8070 goto give_up;
8071 else if (*vr0type == VR_ANTI_RANGE
8072 && vr1type == VR_RANGE)
8073 ;
8074 else if (*vr0type == VR_RANGE
8075 && vr1type == VR_ANTI_RANGE)
8076 {
8077 *vr0type = vr1type;
8078 *vr0min = vr1min;
8079 *vr0max = vr1max;
8080 }
8081 else if (*vr0type == VR_RANGE
8082 && vr1type == VR_RANGE)
8083 {
8084 /* The result is the convex hull of both ranges. */
8085 if (operand_less_p (*vr0max, vr1min) == 1)
8086 {
8087 /* If the result can be an anti-range, create one. */
8088 if (TREE_CODE (*vr0max) == INTEGER_CST
8089 && TREE_CODE (vr1min) == INTEGER_CST
8090 && vrp_val_is_min (*vr0min)
8091 && vrp_val_is_max (vr1max))
8092 {
8093 tree min = int_const_binop (PLUS_EXPR,
8094 *vr0max,
8095 build_int_cst (TREE_TYPE (*vr0max), 1));
8096 tree max = int_const_binop (MINUS_EXPR,
8097 vr1min,
8098 build_int_cst (TREE_TYPE (vr1min), 1));
8099 if (!operand_less_p (max, min))
8100 {
8101 *vr0type = VR_ANTI_RANGE;
8102 *vr0min = min;
8103 *vr0max = max;
8104 }
8105 else
8106 *vr0max = vr1max;
8107 }
8108 else
8109 *vr0max = vr1max;
8110 }
8111 else
8112 {
8113 /* If the result can be an anti-range, create one. */
8114 if (TREE_CODE (vr1max) == INTEGER_CST
8115 && TREE_CODE (*vr0min) == INTEGER_CST
8116 && vrp_val_is_min (vr1min)
8117 && vrp_val_is_max (*vr0max))
8118 {
8119 tree min = int_const_binop (PLUS_EXPR,
8120 vr1max,
8121 build_int_cst (TREE_TYPE (vr1max), 1));
8122 tree max = int_const_binop (MINUS_EXPR,
8123 *vr0min,
8124 build_int_cst (TREE_TYPE (*vr0min), 1));
8125 if (!operand_less_p (max, min))
8126 {
8127 *vr0type = VR_ANTI_RANGE;
8128 *vr0min = min;
8129 *vr0max = max;
8130 }
8131 else
8132 *vr0min = vr1min;
8133 }
8134 else
8135 *vr0min = vr1min;
8136 }
8137 }
8138 else
8139 gcc_unreachable ();
8140 }
8141 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8142 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
8143 {
8144 /* [ ( ) ] or [( ) ] or [ ( )] */
8145 if (*vr0type == VR_RANGE
8146 && vr1type == VR_RANGE)
8147 ;
8148 else if (*vr0type == VR_ANTI_RANGE
8149 && vr1type == VR_ANTI_RANGE)
8150 {
8151 *vr0type = vr1type;
8152 *vr0min = vr1min;
8153 *vr0max = vr1max;
8154 }
8155 else if (*vr0type == VR_ANTI_RANGE
8156 && vr1type == VR_RANGE)
8157 {
8158 /* Arbitrarily choose the right or left gap. */
8159 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
8160 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8161 build_int_cst (TREE_TYPE (vr1min), 1));
8162 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
8163 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8164 build_int_cst (TREE_TYPE (vr1max), 1));
8165 else
8166 goto give_up;
8167 }
8168 else if (*vr0type == VR_RANGE
8169 && vr1type == VR_ANTI_RANGE)
8170 /* The result covers everything. */
8171 goto give_up;
8172 else
8173 gcc_unreachable ();
8174 }
8175 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8176 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8177 {
8178 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8179 if (*vr0type == VR_RANGE
8180 && vr1type == VR_RANGE)
8181 {
8182 *vr0type = vr1type;
8183 *vr0min = vr1min;
8184 *vr0max = vr1max;
8185 }
8186 else if (*vr0type == VR_ANTI_RANGE
8187 && vr1type == VR_ANTI_RANGE)
8188 ;
8189 else if (*vr0type == VR_RANGE
8190 && vr1type == VR_ANTI_RANGE)
8191 {
8192 *vr0type = VR_ANTI_RANGE;
8193 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
8194 {
8195 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8196 build_int_cst (TREE_TYPE (*vr0min), 1));
8197 *vr0min = vr1min;
8198 }
8199 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
8200 {
8201 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8202 build_int_cst (TREE_TYPE (*vr0max), 1));
8203 *vr0max = vr1max;
8204 }
8205 else
8206 goto give_up;
8207 }
8208 else if (*vr0type == VR_ANTI_RANGE
8209 && vr1type == VR_RANGE)
8210 /* The result covers everything. */
8211 goto give_up;
8212 else
8213 gcc_unreachable ();
8214 }
8215 else if ((operand_less_p (vr1min, *vr0max) == 1
8216 || operand_equal_p (vr1min, *vr0max, 0))
8217 && operand_less_p (*vr0min, vr1min) == 1
8218 && operand_less_p (*vr0max, vr1max) == 1)
8219 {
8220 /* [ ( ] ) or [ ]( ) */
8221 if (*vr0type == VR_RANGE
8222 && vr1type == VR_RANGE)
8223 *vr0max = vr1max;
8224 else if (*vr0type == VR_ANTI_RANGE
8225 && vr1type == VR_ANTI_RANGE)
8226 *vr0min = vr1min;
8227 else if (*vr0type == VR_ANTI_RANGE
8228 && vr1type == VR_RANGE)
8229 {
8230 if (TREE_CODE (vr1min) == INTEGER_CST)
8231 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8232 build_int_cst (TREE_TYPE (vr1min), 1));
8233 else
8234 goto give_up;
8235 }
8236 else if (*vr0type == VR_RANGE
8237 && vr1type == VR_ANTI_RANGE)
8238 {
8239 if (TREE_CODE (*vr0max) == INTEGER_CST)
8240 {
8241 *vr0type = vr1type;
8242 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8243 build_int_cst (TREE_TYPE (*vr0max), 1));
8244 *vr0max = vr1max;
8245 }
8246 else
8247 goto give_up;
8248 }
8249 else
8250 gcc_unreachable ();
8251 }
8252 else if ((operand_less_p (*vr0min, vr1max) == 1
8253 || operand_equal_p (*vr0min, vr1max, 0))
8254 && operand_less_p (vr1min, *vr0min) == 1
8255 && operand_less_p (vr1max, *vr0max) == 1)
8256 {
8257 /* ( [ ) ] or ( )[ ] */
8258 if (*vr0type == VR_RANGE
8259 && vr1type == VR_RANGE)
8260 *vr0min = vr1min;
8261 else if (*vr0type == VR_ANTI_RANGE
8262 && vr1type == VR_ANTI_RANGE)
8263 *vr0max = vr1max;
8264 else if (*vr0type == VR_ANTI_RANGE
8265 && vr1type == VR_RANGE)
8266 {
8267 if (TREE_CODE (vr1max) == INTEGER_CST)
8268 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8269 build_int_cst (TREE_TYPE (vr1max), 1));
8270 else
8271 goto give_up;
8272 }
8273 else if (*vr0type == VR_RANGE
8274 && vr1type == VR_ANTI_RANGE)
8275 {
8276 if (TREE_CODE (*vr0min) == INTEGER_CST)
8277 {
8278 *vr0type = vr1type;
8279 *vr0min = vr1min;
8280 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8281 build_int_cst (TREE_TYPE (*vr0min), 1));
8282 }
8283 else
8284 goto give_up;
8285 }
8286 else
8287 gcc_unreachable ();
8288 }
8289 else
8290 goto give_up;
8291
8292 return;
8293
8294 give_up:
8295 *vr0type = VR_VARYING;
8296 *vr0min = NULL_TREE;
8297 *vr0max = NULL_TREE;
8298 }
8299
8300 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8301 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8302 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8303 possible such range. The resulting range is not canonicalized. */
8304
8305 static void
8306 intersect_ranges (enum value_range_type *vr0type,
8307 tree *vr0min, tree *vr0max,
8308 enum value_range_type vr1type,
8309 tree vr1min, tree vr1max)
8310 {
8311 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
8312 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
8313
8314 /* [] is vr0, () is vr1 in the following classification comments. */
8315 if (mineq && maxeq)
8316 {
8317 /* [( )] */
8318 if (*vr0type == vr1type)
8319 /* Nothing to do for equal ranges. */
8320 ;
8321 else if ((*vr0type == VR_RANGE
8322 && vr1type == VR_ANTI_RANGE)
8323 || (*vr0type == VR_ANTI_RANGE
8324 && vr1type == VR_RANGE))
8325 {
8326 /* For anti-range with range intersection the result is empty. */
8327 *vr0type = VR_UNDEFINED;
8328 *vr0min = NULL_TREE;
8329 *vr0max = NULL_TREE;
8330 }
8331 else
8332 gcc_unreachable ();
8333 }
8334 else if (operand_less_p (*vr0max, vr1min) == 1
8335 || operand_less_p (vr1max, *vr0min) == 1)
8336 {
8337 /* [ ] ( ) or ( ) [ ]
8338 If the ranges have an empty intersection, the result of the
8339 intersect operation is the range for intersecting an
8340 anti-range with a range or empty when intersecting two ranges. */
8341 if (*vr0type == VR_RANGE
8342 && vr1type == VR_ANTI_RANGE)
8343 ;
8344 else if (*vr0type == VR_ANTI_RANGE
8345 && vr1type == VR_RANGE)
8346 {
8347 *vr0type = vr1type;
8348 *vr0min = vr1min;
8349 *vr0max = vr1max;
8350 }
8351 else if (*vr0type == VR_RANGE
8352 && vr1type == VR_RANGE)
8353 {
8354 *vr0type = VR_UNDEFINED;
8355 *vr0min = NULL_TREE;
8356 *vr0max = NULL_TREE;
8357 }
8358 else if (*vr0type == VR_ANTI_RANGE
8359 && vr1type == VR_ANTI_RANGE)
8360 {
8361 /* If the anti-ranges are adjacent to each other merge them. */
8362 if (TREE_CODE (*vr0max) == INTEGER_CST
8363 && TREE_CODE (vr1min) == INTEGER_CST
8364 && operand_less_p (*vr0max, vr1min) == 1
8365 && integer_onep (int_const_binop (MINUS_EXPR,
8366 vr1min, *vr0max)))
8367 *vr0max = vr1max;
8368 else if (TREE_CODE (vr1max) == INTEGER_CST
8369 && TREE_CODE (*vr0min) == INTEGER_CST
8370 && operand_less_p (vr1max, *vr0min) == 1
8371 && integer_onep (int_const_binop (MINUS_EXPR,
8372 *vr0min, vr1max)))
8373 *vr0min = vr1min;
8374 /* Else arbitrarily take VR0. */
8375 }
8376 }
8377 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8378 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
8379 {
8380 /* [ ( ) ] or [( ) ] or [ ( )] */
8381 if (*vr0type == VR_RANGE
8382 && vr1type == VR_RANGE)
8383 {
8384 /* If both are ranges the result is the inner one. */
8385 *vr0type = vr1type;
8386 *vr0min = vr1min;
8387 *vr0max = vr1max;
8388 }
8389 else if (*vr0type == VR_RANGE
8390 && vr1type == VR_ANTI_RANGE)
8391 {
8392 /* Choose the right gap if the left one is empty. */
8393 if (mineq)
8394 {
8395 if (TREE_CODE (vr1max) == INTEGER_CST)
8396 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8397 build_int_cst (TREE_TYPE (vr1max), 1));
8398 else
8399 *vr0min = vr1max;
8400 }
8401 /* Choose the left gap if the right one is empty. */
8402 else if (maxeq)
8403 {
8404 if (TREE_CODE (vr1min) == INTEGER_CST)
8405 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8406 build_int_cst (TREE_TYPE (vr1min), 1));
8407 else
8408 *vr0max = vr1min;
8409 }
8410 /* Choose the anti-range if the range is effectively varying. */
8411 else if (vrp_val_is_min (*vr0min)
8412 && vrp_val_is_max (*vr0max))
8413 {
8414 *vr0type = vr1type;
8415 *vr0min = vr1min;
8416 *vr0max = vr1max;
8417 }
8418 /* Else choose the range. */
8419 }
8420 else if (*vr0type == VR_ANTI_RANGE
8421 && vr1type == VR_ANTI_RANGE)
8422 /* If both are anti-ranges the result is the outer one. */
8423 ;
8424 else if (*vr0type == VR_ANTI_RANGE
8425 && vr1type == VR_RANGE)
8426 {
8427 /* The intersection is empty. */
8428 *vr0type = VR_UNDEFINED;
8429 *vr0min = NULL_TREE;
8430 *vr0max = NULL_TREE;
8431 }
8432 else
8433 gcc_unreachable ();
8434 }
8435 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8436 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8437 {
8438 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8439 if (*vr0type == VR_RANGE
8440 && vr1type == VR_RANGE)
8441 /* Choose the inner range. */
8442 ;
8443 else if (*vr0type == VR_ANTI_RANGE
8444 && vr1type == VR_RANGE)
8445 {
8446 /* Choose the right gap if the left is empty. */
8447 if (mineq)
8448 {
8449 *vr0type = VR_RANGE;
8450 if (TREE_CODE (*vr0max) == INTEGER_CST)
8451 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8452 build_int_cst (TREE_TYPE (*vr0max), 1));
8453 else
8454 *vr0min = *vr0max;
8455 *vr0max = vr1max;
8456 }
8457 /* Choose the left gap if the right is empty. */
8458 else if (maxeq)
8459 {
8460 *vr0type = VR_RANGE;
8461 if (TREE_CODE (*vr0min) == INTEGER_CST)
8462 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8463 build_int_cst (TREE_TYPE (*vr0min), 1));
8464 else
8465 *vr0max = *vr0min;
8466 *vr0min = vr1min;
8467 }
8468 /* Choose the anti-range if the range is effectively varying. */
8469 else if (vrp_val_is_min (vr1min)
8470 && vrp_val_is_max (vr1max))
8471 ;
8472 /* Else choose the range. */
8473 else
8474 {
8475 *vr0type = vr1type;
8476 *vr0min = vr1min;
8477 *vr0max = vr1max;
8478 }
8479 }
8480 else if (*vr0type == VR_ANTI_RANGE
8481 && vr1type == VR_ANTI_RANGE)
8482 {
8483 /* If both are anti-ranges the result is the outer one. */
8484 *vr0type = vr1type;
8485 *vr0min = vr1min;
8486 *vr0max = vr1max;
8487 }
8488 else if (vr1type == VR_ANTI_RANGE
8489 && *vr0type == VR_RANGE)
8490 {
8491 /* The intersection is empty. */
8492 *vr0type = VR_UNDEFINED;
8493 *vr0min = NULL_TREE;
8494 *vr0max = NULL_TREE;
8495 }
8496 else
8497 gcc_unreachable ();
8498 }
8499 else if ((operand_less_p (vr1min, *vr0max) == 1
8500 || operand_equal_p (vr1min, *vr0max, 0))
8501 && operand_less_p (*vr0min, vr1min) == 1)
8502 {
8503 /* [ ( ] ) or [ ]( ) */
8504 if (*vr0type == VR_ANTI_RANGE
8505 && vr1type == VR_ANTI_RANGE)
8506 *vr0max = vr1max;
8507 else if (*vr0type == VR_RANGE
8508 && vr1type == VR_RANGE)
8509 *vr0min = vr1min;
8510 else if (*vr0type == VR_RANGE
8511 && vr1type == VR_ANTI_RANGE)
8512 {
8513 if (TREE_CODE (vr1min) == INTEGER_CST)
8514 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8515 build_int_cst (TREE_TYPE (vr1min), 1));
8516 else
8517 *vr0max = vr1min;
8518 }
8519 else if (*vr0type == VR_ANTI_RANGE
8520 && vr1type == VR_RANGE)
8521 {
8522 *vr0type = VR_RANGE;
8523 if (TREE_CODE (*vr0max) == INTEGER_CST)
8524 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8525 build_int_cst (TREE_TYPE (*vr0max), 1));
8526 else
8527 *vr0min = *vr0max;
8528 *vr0max = vr1max;
8529 }
8530 else
8531 gcc_unreachable ();
8532 }
8533 else if ((operand_less_p (*vr0min, vr1max) == 1
8534 || operand_equal_p (*vr0min, vr1max, 0))
8535 && operand_less_p (vr1min, *vr0min) == 1)
8536 {
8537 /* ( [ ) ] or ( )[ ] */
8538 if (*vr0type == VR_ANTI_RANGE
8539 && vr1type == VR_ANTI_RANGE)
8540 *vr0min = vr1min;
8541 else if (*vr0type == VR_RANGE
8542 && vr1type == VR_RANGE)
8543 *vr0max = vr1max;
8544 else if (*vr0type == VR_RANGE
8545 && vr1type == VR_ANTI_RANGE)
8546 {
8547 if (TREE_CODE (vr1max) == INTEGER_CST)
8548 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8549 build_int_cst (TREE_TYPE (vr1max), 1));
8550 else
8551 *vr0min = vr1max;
8552 }
8553 else if (*vr0type == VR_ANTI_RANGE
8554 && vr1type == VR_RANGE)
8555 {
8556 *vr0type = VR_RANGE;
8557 if (TREE_CODE (*vr0min) == INTEGER_CST)
8558 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8559 build_int_cst (TREE_TYPE (*vr0min), 1));
8560 else
8561 *vr0max = *vr0min;
8562 *vr0min = vr1min;
8563 }
8564 else
8565 gcc_unreachable ();
8566 }
8567
8568 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
8569 result for the intersection. That's always a conservative
8570 correct estimate. */
8571
8572 return;
8573 }
8574
8575
8576 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
8577 in *VR0. This may not be the smallest possible such range. */
8578
8579 static void
8580 vrp_intersect_ranges_1 (value_range_t *vr0, value_range_t *vr1)
8581 {
8582 value_range_t saved;
8583
8584 /* If either range is VR_VARYING the other one wins. */
8585 if (vr1->type == VR_VARYING)
8586 return;
8587 if (vr0->type == VR_VARYING)
8588 {
8589 copy_value_range (vr0, vr1);
8590 return;
8591 }
8592
8593 /* When either range is VR_UNDEFINED the resulting range is
8594 VR_UNDEFINED, too. */
8595 if (vr0->type == VR_UNDEFINED)
8596 return;
8597 if (vr1->type == VR_UNDEFINED)
8598 {
8599 set_value_range_to_undefined (vr0);
8600 return;
8601 }
8602
8603 /* Save the original vr0 so we can return it as conservative intersection
8604 result when our worker turns things to varying. */
8605 saved = *vr0;
8606 intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
8607 vr1->type, vr1->min, vr1->max);
8608 /* Make sure to canonicalize the result though as the inversion of a
8609 VR_RANGE can still be a VR_RANGE. */
8610 set_and_canonicalize_value_range (vr0, vr0->type,
8611 vr0->min, vr0->max, vr0->equiv);
8612 /* If that failed, use the saved original VR0. */
8613 if (vr0->type == VR_VARYING)
8614 {
8615 *vr0 = saved;
8616 return;
8617 }
8618 /* If the result is VR_UNDEFINED there is no need to mess with
8619 the equivalencies. */
8620 if (vr0->type == VR_UNDEFINED)
8621 return;
8622
8623 /* The resulting set of equivalences for range intersection is the union of
8624 the two sets. */
8625 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8626 bitmap_ior_into (vr0->equiv, vr1->equiv);
8627 else if (vr1->equiv && !vr0->equiv)
8628 bitmap_copy (vr0->equiv, vr1->equiv);
8629 }
8630
8631 static void
8632 vrp_intersect_ranges (value_range_t *vr0, value_range_t *vr1)
8633 {
8634 if (dump_file && (dump_flags & TDF_DETAILS))
8635 {
8636 fprintf (dump_file, "Intersecting\n ");
8637 dump_value_range (dump_file, vr0);
8638 fprintf (dump_file, "\nand\n ");
8639 dump_value_range (dump_file, vr1);
8640 fprintf (dump_file, "\n");
8641 }
8642 vrp_intersect_ranges_1 (vr0, vr1);
8643 if (dump_file && (dump_flags & TDF_DETAILS))
8644 {
8645 fprintf (dump_file, "to\n ");
8646 dump_value_range (dump_file, vr0);
8647 fprintf (dump_file, "\n");
8648 }
8649 }
8650
8651 /* Meet operation for value ranges. Given two value ranges VR0 and
8652 VR1, store in VR0 a range that contains both VR0 and VR1. This
8653 may not be the smallest possible such range. */
8654
8655 static void
8656 vrp_meet_1 (value_range_t *vr0, value_range_t *vr1)
8657 {
8658 value_range_t saved;
8659
8660 if (vr0->type == VR_UNDEFINED)
8661 {
8662 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr1->equiv);
8663 return;
8664 }
8665
8666 if (vr1->type == VR_UNDEFINED)
8667 {
8668 /* VR0 already has the resulting range. */
8669 return;
8670 }
8671
8672 if (vr0->type == VR_VARYING)
8673 {
8674 /* Nothing to do. VR0 already has the resulting range. */
8675 return;
8676 }
8677
8678 if (vr1->type == VR_VARYING)
8679 {
8680 set_value_range_to_varying (vr0);
8681 return;
8682 }
8683
8684 saved = *vr0;
8685 union_ranges (&vr0->type, &vr0->min, &vr0->max,
8686 vr1->type, vr1->min, vr1->max);
8687 if (vr0->type == VR_VARYING)
8688 {
8689 /* Failed to find an efficient meet. Before giving up and setting
8690 the result to VARYING, see if we can at least derive a useful
8691 anti-range. FIXME, all this nonsense about distinguishing
8692 anti-ranges from ranges is necessary because of the odd
8693 semantics of range_includes_zero_p and friends. */
8694 if (((saved.type == VR_RANGE
8695 && range_includes_zero_p (saved.min, saved.max) == 0)
8696 || (saved.type == VR_ANTI_RANGE
8697 && range_includes_zero_p (saved.min, saved.max) == 1))
8698 && ((vr1->type == VR_RANGE
8699 && range_includes_zero_p (vr1->min, vr1->max) == 0)
8700 || (vr1->type == VR_ANTI_RANGE
8701 && range_includes_zero_p (vr1->min, vr1->max) == 1)))
8702 {
8703 set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min));
8704
8705 /* Since this meet operation did not result from the meeting of
8706 two equivalent names, VR0 cannot have any equivalences. */
8707 if (vr0->equiv)
8708 bitmap_clear (vr0->equiv);
8709 return;
8710 }
8711
8712 set_value_range_to_varying (vr0);
8713 return;
8714 }
8715 set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max,
8716 vr0->equiv);
8717 if (vr0->type == VR_VARYING)
8718 return;
8719
8720 /* The resulting set of equivalences is always the intersection of
8721 the two sets. */
8722 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8723 bitmap_and_into (vr0->equiv, vr1->equiv);
8724 else if (vr0->equiv && !vr1->equiv)
8725 bitmap_clear (vr0->equiv);
8726 }
8727
8728 static void
8729 vrp_meet (value_range_t *vr0, value_range_t *vr1)
8730 {
8731 if (dump_file && (dump_flags & TDF_DETAILS))
8732 {
8733 fprintf (dump_file, "Meeting\n ");
8734 dump_value_range (dump_file, vr0);
8735 fprintf (dump_file, "\nand\n ");
8736 dump_value_range (dump_file, vr1);
8737 fprintf (dump_file, "\n");
8738 }
8739 vrp_meet_1 (vr0, vr1);
8740 if (dump_file && (dump_flags & TDF_DETAILS))
8741 {
8742 fprintf (dump_file, "to\n ");
8743 dump_value_range (dump_file, vr0);
8744 fprintf (dump_file, "\n");
8745 }
8746 }
8747
8748
8749 /* Visit all arguments for PHI node PHI that flow through executable
8750 edges. If a valid value range can be derived from all the incoming
8751 value ranges, set a new range for the LHS of PHI. */
8752
8753 static enum ssa_prop_result
8754 vrp_visit_phi_node (gphi *phi)
8755 {
8756 size_t i;
8757 tree lhs = PHI_RESULT (phi);
8758 value_range_t *lhs_vr = get_value_range (lhs);
8759 value_range_t vr_result = VR_INITIALIZER;
8760 bool first = true;
8761 int edges, old_edges;
8762 struct loop *l;
8763
8764 if (dump_file && (dump_flags & TDF_DETAILS))
8765 {
8766 fprintf (dump_file, "\nVisiting PHI node: ");
8767 print_gimple_stmt (dump_file, phi, 0, dump_flags);
8768 }
8769
8770 edges = 0;
8771 for (i = 0; i < gimple_phi_num_args (phi); i++)
8772 {
8773 edge e = gimple_phi_arg_edge (phi, i);
8774
8775 if (dump_file && (dump_flags & TDF_DETAILS))
8776 {
8777 fprintf (dump_file,
8778 " Argument #%d (%d -> %d %sexecutable)\n",
8779 (int) i, e->src->index, e->dest->index,
8780 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
8781 }
8782
8783 if (e->flags & EDGE_EXECUTABLE)
8784 {
8785 tree arg = PHI_ARG_DEF (phi, i);
8786 value_range_t vr_arg;
8787
8788 ++edges;
8789
8790 if (TREE_CODE (arg) == SSA_NAME)
8791 {
8792 vr_arg = *(get_value_range (arg));
8793 /* Do not allow equivalences or symbolic ranges to leak in from
8794 backedges. That creates invalid equivalencies.
8795 See PR53465 and PR54767. */
8796 if (e->flags & EDGE_DFS_BACK)
8797 {
8798 if (vr_arg.type == VR_RANGE
8799 || vr_arg.type == VR_ANTI_RANGE)
8800 {
8801 vr_arg.equiv = NULL;
8802 if (symbolic_range_p (&vr_arg))
8803 {
8804 vr_arg.type = VR_VARYING;
8805 vr_arg.min = NULL_TREE;
8806 vr_arg.max = NULL_TREE;
8807 }
8808 }
8809 }
8810 else
8811 {
8812 /* If the non-backedge arguments range is VR_VARYING then
8813 we can still try recording a simple equivalence. */
8814 if (vr_arg.type == VR_VARYING)
8815 {
8816 vr_arg.type = VR_RANGE;
8817 vr_arg.min = arg;
8818 vr_arg.max = arg;
8819 vr_arg.equiv = NULL;
8820 }
8821 }
8822 }
8823 else
8824 {
8825 if (TREE_OVERFLOW_P (arg))
8826 arg = drop_tree_overflow (arg);
8827
8828 vr_arg.type = VR_RANGE;
8829 vr_arg.min = arg;
8830 vr_arg.max = arg;
8831 vr_arg.equiv = NULL;
8832 }
8833
8834 if (dump_file && (dump_flags & TDF_DETAILS))
8835 {
8836 fprintf (dump_file, "\t");
8837 print_generic_expr (dump_file, arg, dump_flags);
8838 fprintf (dump_file, ": ");
8839 dump_value_range (dump_file, &vr_arg);
8840 fprintf (dump_file, "\n");
8841 }
8842
8843 if (first)
8844 copy_value_range (&vr_result, &vr_arg);
8845 else
8846 vrp_meet (&vr_result, &vr_arg);
8847 first = false;
8848
8849 if (vr_result.type == VR_VARYING)
8850 break;
8851 }
8852 }
8853
8854 if (vr_result.type == VR_VARYING)
8855 goto varying;
8856 else if (vr_result.type == VR_UNDEFINED)
8857 goto update_range;
8858
8859 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
8860 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
8861
8862 /* To prevent infinite iterations in the algorithm, derive ranges
8863 when the new value is slightly bigger or smaller than the
8864 previous one. We don't do this if we have seen a new executable
8865 edge; this helps us avoid an overflow infinity for conditionals
8866 which are not in a loop. If the old value-range was VR_UNDEFINED
8867 use the updated range and iterate one more time. */
8868 if (edges > 0
8869 && gimple_phi_num_args (phi) > 1
8870 && edges == old_edges
8871 && lhs_vr->type != VR_UNDEFINED)
8872 {
8873 /* Compare old and new ranges, fall back to varying if the
8874 values are not comparable. */
8875 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
8876 if (cmp_min == -2)
8877 goto varying;
8878 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
8879 if (cmp_max == -2)
8880 goto varying;
8881
8882 /* For non VR_RANGE or for pointers fall back to varying if
8883 the range changed. */
8884 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
8885 || POINTER_TYPE_P (TREE_TYPE (lhs)))
8886 && (cmp_min != 0 || cmp_max != 0))
8887 goto varying;
8888
8889 /* If the new minimum is larger than than the previous one
8890 retain the old value. If the new minimum value is smaller
8891 than the previous one and not -INF go all the way to -INF + 1.
8892 In the first case, to avoid infinite bouncing between different
8893 minimums, and in the other case to avoid iterating millions of
8894 times to reach -INF. Going to -INF + 1 also lets the following
8895 iteration compute whether there will be any overflow, at the
8896 expense of one additional iteration. */
8897 if (cmp_min < 0)
8898 vr_result.min = lhs_vr->min;
8899 else if (cmp_min > 0
8900 && !vrp_val_is_min (vr_result.min))
8901 vr_result.min
8902 = int_const_binop (PLUS_EXPR,
8903 vrp_val_min (TREE_TYPE (vr_result.min)),
8904 build_int_cst (TREE_TYPE (vr_result.min), 1));
8905
8906 /* Similarly for the maximum value. */
8907 if (cmp_max > 0)
8908 vr_result.max = lhs_vr->max;
8909 else if (cmp_max < 0
8910 && !vrp_val_is_max (vr_result.max))
8911 vr_result.max
8912 = int_const_binop (MINUS_EXPR,
8913 vrp_val_max (TREE_TYPE (vr_result.min)),
8914 build_int_cst (TREE_TYPE (vr_result.min), 1));
8915
8916 /* If we dropped either bound to +-INF then if this is a loop
8917 PHI node SCEV may known more about its value-range. */
8918 if ((cmp_min > 0 || cmp_min < 0
8919 || cmp_max < 0 || cmp_max > 0)
8920 && (l = loop_containing_stmt (phi))
8921 && l->header == gimple_bb (phi))
8922 adjust_range_with_scev (&vr_result, l, phi, lhs);
8923
8924 /* If we will end up with a (-INF, +INF) range, set it to
8925 VARYING. Same if the previous max value was invalid for
8926 the type and we end up with vr_result.min > vr_result.max. */
8927 if ((vrp_val_is_max (vr_result.max)
8928 && vrp_val_is_min (vr_result.min))
8929 || compare_values (vr_result.min,
8930 vr_result.max) > 0)
8931 goto varying;
8932 }
8933
8934 /* If the new range is different than the previous value, keep
8935 iterating. */
8936 update_range:
8937 if (update_value_range (lhs, &vr_result))
8938 {
8939 if (dump_file && (dump_flags & TDF_DETAILS))
8940 {
8941 fprintf (dump_file, "Found new range for ");
8942 print_generic_expr (dump_file, lhs, 0);
8943 fprintf (dump_file, ": ");
8944 dump_value_range (dump_file, &vr_result);
8945 fprintf (dump_file, "\n");
8946 }
8947
8948 if (vr_result.type == VR_VARYING)
8949 return SSA_PROP_VARYING;
8950
8951 return SSA_PROP_INTERESTING;
8952 }
8953
8954 /* Nothing changed, don't add outgoing edges. */
8955 return SSA_PROP_NOT_INTERESTING;
8956
8957 /* No match found. Set the LHS to VARYING. */
8958 varying:
8959 set_value_range_to_varying (lhs_vr);
8960 return SSA_PROP_VARYING;
8961 }
8962
8963 /* Simplify boolean operations if the source is known
8964 to be already a boolean. */
8965 static bool
8966 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
8967 {
8968 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8969 tree lhs, op0, op1;
8970 bool need_conversion;
8971
8972 /* We handle only !=/== case here. */
8973 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
8974
8975 op0 = gimple_assign_rhs1 (stmt);
8976 if (!op_with_boolean_value_range_p (op0))
8977 return false;
8978
8979 op1 = gimple_assign_rhs2 (stmt);
8980 if (!op_with_boolean_value_range_p (op1))
8981 return false;
8982
8983 /* Reduce number of cases to handle to NE_EXPR. As there is no
8984 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
8985 if (rhs_code == EQ_EXPR)
8986 {
8987 if (TREE_CODE (op1) == INTEGER_CST)
8988 op1 = int_const_binop (BIT_XOR_EXPR, op1,
8989 build_int_cst (TREE_TYPE (op1), 1));
8990 else
8991 return false;
8992 }
8993
8994 lhs = gimple_assign_lhs (stmt);
8995 need_conversion
8996 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
8997
8998 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
8999 if (need_conversion
9000 && !TYPE_UNSIGNED (TREE_TYPE (op0))
9001 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
9002 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
9003 return false;
9004
9005 /* For A != 0 we can substitute A itself. */
9006 if (integer_zerop (op1))
9007 gimple_assign_set_rhs_with_ops (gsi,
9008 need_conversion
9009 ? NOP_EXPR : TREE_CODE (op0), op0);
9010 /* For A != B we substitute A ^ B. Either with conversion. */
9011 else if (need_conversion)
9012 {
9013 tree tem = make_ssa_name (TREE_TYPE (op0));
9014 gassign *newop
9015 = gimple_build_assign (tem, BIT_XOR_EXPR, op0, op1);
9016 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
9017 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem);
9018 }
9019 /* Or without. */
9020 else
9021 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
9022 update_stmt (gsi_stmt (*gsi));
9023
9024 return true;
9025 }
9026
9027 /* Simplify a division or modulo operator to a right shift or
9028 bitwise and if the first operand is unsigned or is greater
9029 than zero and the second operand is an exact power of two.
9030 For TRUNC_MOD_EXPR op0 % op1 with constant op1, optimize it
9031 into just op0 if op0's range is known to be a subset of
9032 [-op1 + 1, op1 - 1] for signed and [0, op1 - 1] for unsigned
9033 modulo. */
9034
9035 static bool
9036 simplify_div_or_mod_using_ranges (gimple stmt)
9037 {
9038 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9039 tree val = NULL;
9040 tree op0 = gimple_assign_rhs1 (stmt);
9041 tree op1 = gimple_assign_rhs2 (stmt);
9042 value_range_t *vr = get_value_range (op0);
9043
9044 if (rhs_code == TRUNC_MOD_EXPR
9045 && TREE_CODE (op1) == INTEGER_CST
9046 && tree_int_cst_sgn (op1) == 1
9047 && range_int_cst_p (vr)
9048 && tree_int_cst_lt (vr->max, op1))
9049 {
9050 if (TYPE_UNSIGNED (TREE_TYPE (op0))
9051 || tree_int_cst_sgn (vr->min) >= 0
9052 || tree_int_cst_lt (fold_unary (NEGATE_EXPR, TREE_TYPE (op1), op1),
9053 vr->min))
9054 {
9055 /* If op0 already has the range op0 % op1 has,
9056 then TRUNC_MOD_EXPR won't change anything. */
9057 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
9058 gimple_assign_set_rhs_from_tree (&gsi, op0);
9059 update_stmt (stmt);
9060 return true;
9061 }
9062 }
9063
9064 if (!integer_pow2p (op1))
9065 return false;
9066
9067 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
9068 {
9069 val = integer_one_node;
9070 }
9071 else
9072 {
9073 bool sop = false;
9074
9075 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
9076
9077 if (val
9078 && sop
9079 && integer_onep (val)
9080 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9081 {
9082 location_t location;
9083
9084 if (!gimple_has_location (stmt))
9085 location = input_location;
9086 else
9087 location = gimple_location (stmt);
9088 warning_at (location, OPT_Wstrict_overflow,
9089 "assuming signed overflow does not occur when "
9090 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
9091 }
9092 }
9093
9094 if (val && integer_onep (val))
9095 {
9096 tree t;
9097
9098 if (rhs_code == TRUNC_DIV_EXPR)
9099 {
9100 t = build_int_cst (integer_type_node, tree_log2 (op1));
9101 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
9102 gimple_assign_set_rhs1 (stmt, op0);
9103 gimple_assign_set_rhs2 (stmt, t);
9104 }
9105 else
9106 {
9107 t = build_int_cst (TREE_TYPE (op1), 1);
9108 t = int_const_binop (MINUS_EXPR, op1, t);
9109 t = fold_convert (TREE_TYPE (op0), t);
9110
9111 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
9112 gimple_assign_set_rhs1 (stmt, op0);
9113 gimple_assign_set_rhs2 (stmt, t);
9114 }
9115
9116 update_stmt (stmt);
9117 return true;
9118 }
9119
9120 return false;
9121 }
9122
9123 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
9124 ABS_EXPR. If the operand is <= 0, then simplify the
9125 ABS_EXPR into a NEGATE_EXPR. */
9126
9127 static bool
9128 simplify_abs_using_ranges (gimple stmt)
9129 {
9130 tree val = NULL;
9131 tree op = gimple_assign_rhs1 (stmt);
9132 tree type = TREE_TYPE (op);
9133 value_range_t *vr = get_value_range (op);
9134
9135 if (TYPE_UNSIGNED (type))
9136 {
9137 val = integer_zero_node;
9138 }
9139 else if (vr)
9140 {
9141 bool sop = false;
9142
9143 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
9144 if (!val)
9145 {
9146 sop = false;
9147 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
9148 &sop);
9149
9150 if (val)
9151 {
9152 if (integer_zerop (val))
9153 val = integer_one_node;
9154 else if (integer_onep (val))
9155 val = integer_zero_node;
9156 }
9157 }
9158
9159 if (val
9160 && (integer_onep (val) || integer_zerop (val)))
9161 {
9162 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9163 {
9164 location_t location;
9165
9166 if (!gimple_has_location (stmt))
9167 location = input_location;
9168 else
9169 location = gimple_location (stmt);
9170 warning_at (location, OPT_Wstrict_overflow,
9171 "assuming signed overflow does not occur when "
9172 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
9173 }
9174
9175 gimple_assign_set_rhs1 (stmt, op);
9176 if (integer_onep (val))
9177 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
9178 else
9179 gimple_assign_set_rhs_code (stmt, SSA_NAME);
9180 update_stmt (stmt);
9181 return true;
9182 }
9183 }
9184
9185 return false;
9186 }
9187
9188 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
9189 If all the bits that are being cleared by & are already
9190 known to be zero from VR, or all the bits that are being
9191 set by | are already known to be one from VR, the bit
9192 operation is redundant. */
9193
9194 static bool
9195 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
9196 {
9197 tree op0 = gimple_assign_rhs1 (stmt);
9198 tree op1 = gimple_assign_rhs2 (stmt);
9199 tree op = NULL_TREE;
9200 value_range_t vr0 = VR_INITIALIZER;
9201 value_range_t vr1 = VR_INITIALIZER;
9202 wide_int may_be_nonzero0, may_be_nonzero1;
9203 wide_int must_be_nonzero0, must_be_nonzero1;
9204 wide_int mask;
9205
9206 if (TREE_CODE (op0) == SSA_NAME)
9207 vr0 = *(get_value_range (op0));
9208 else if (is_gimple_min_invariant (op0))
9209 set_value_range_to_value (&vr0, op0, NULL);
9210 else
9211 return false;
9212
9213 if (TREE_CODE (op1) == SSA_NAME)
9214 vr1 = *(get_value_range (op1));
9215 else if (is_gimple_min_invariant (op1))
9216 set_value_range_to_value (&vr1, op1, NULL);
9217 else
9218 return false;
9219
9220 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op0), &vr0, &may_be_nonzero0,
9221 &must_be_nonzero0))
9222 return false;
9223 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op1), &vr1, &may_be_nonzero1,
9224 &must_be_nonzero1))
9225 return false;
9226
9227 switch (gimple_assign_rhs_code (stmt))
9228 {
9229 case BIT_AND_EXPR:
9230 mask = may_be_nonzero0.and_not (must_be_nonzero1);
9231 if (mask == 0)
9232 {
9233 op = op0;
9234 break;
9235 }
9236 mask = may_be_nonzero1.and_not (must_be_nonzero0);
9237 if (mask == 0)
9238 {
9239 op = op1;
9240 break;
9241 }
9242 break;
9243 case BIT_IOR_EXPR:
9244 mask = may_be_nonzero0.and_not (must_be_nonzero1);
9245 if (mask == 0)
9246 {
9247 op = op1;
9248 break;
9249 }
9250 mask = may_be_nonzero1.and_not (must_be_nonzero0);
9251 if (mask == 0)
9252 {
9253 op = op0;
9254 break;
9255 }
9256 break;
9257 default:
9258 gcc_unreachable ();
9259 }
9260
9261 if (op == NULL_TREE)
9262 return false;
9263
9264 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op);
9265 update_stmt (gsi_stmt (*gsi));
9266 return true;
9267 }
9268
9269 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
9270 a known value range VR.
9271
9272 If there is one and only one value which will satisfy the
9273 conditional, then return that value. Else return NULL.
9274
9275 If signed overflow must be undefined for the value to satisfy
9276 the conditional, then set *STRICT_OVERFLOW_P to true. */
9277
9278 static tree
9279 test_for_singularity (enum tree_code cond_code, tree op0,
9280 tree op1, value_range_t *vr,
9281 bool *strict_overflow_p)
9282 {
9283 tree min = NULL;
9284 tree max = NULL;
9285
9286 /* Extract minimum/maximum values which satisfy the
9287 the conditional as it was written. */
9288 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
9289 {
9290 /* This should not be negative infinity; there is no overflow
9291 here. */
9292 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
9293
9294 max = op1;
9295 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
9296 {
9297 tree one = build_int_cst (TREE_TYPE (op0), 1);
9298 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
9299 if (EXPR_P (max))
9300 TREE_NO_WARNING (max) = 1;
9301 }
9302 }
9303 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
9304 {
9305 /* This should not be positive infinity; there is no overflow
9306 here. */
9307 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
9308
9309 min = op1;
9310 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
9311 {
9312 tree one = build_int_cst (TREE_TYPE (op0), 1);
9313 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
9314 if (EXPR_P (min))
9315 TREE_NO_WARNING (min) = 1;
9316 }
9317 }
9318
9319 /* Now refine the minimum and maximum values using any
9320 value range information we have for op0. */
9321 if (min && max)
9322 {
9323 if (compare_values (vr->min, min) == 1)
9324 min = vr->min;
9325 if (compare_values (vr->max, max) == -1)
9326 max = vr->max;
9327
9328 /* If the new min/max values have converged to a single value,
9329 then there is only one value which can satisfy the condition,
9330 return that value. */
9331 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
9332 {
9333 if ((cond_code == LE_EXPR || cond_code == LT_EXPR)
9334 && is_overflow_infinity (vr->max))
9335 *strict_overflow_p = true;
9336 if ((cond_code == GE_EXPR || cond_code == GT_EXPR)
9337 && is_overflow_infinity (vr->min))
9338 *strict_overflow_p = true;
9339
9340 return min;
9341 }
9342 }
9343 return NULL;
9344 }
9345
9346 /* Return whether the value range *VR fits in an integer type specified
9347 by PRECISION and UNSIGNED_P. */
9348
9349 static bool
9350 range_fits_type_p (value_range_t *vr, unsigned dest_precision, signop dest_sgn)
9351 {
9352 tree src_type;
9353 unsigned src_precision;
9354 widest_int tem;
9355 signop src_sgn;
9356
9357 /* We can only handle integral and pointer types. */
9358 src_type = TREE_TYPE (vr->min);
9359 if (!INTEGRAL_TYPE_P (src_type)
9360 && !POINTER_TYPE_P (src_type))
9361 return false;
9362
9363 /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED,
9364 and so is an identity transform. */
9365 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
9366 src_sgn = TYPE_SIGN (src_type);
9367 if ((src_precision < dest_precision
9368 && !(dest_sgn == UNSIGNED && src_sgn == SIGNED))
9369 || (src_precision == dest_precision && src_sgn == dest_sgn))
9370 return true;
9371
9372 /* Now we can only handle ranges with constant bounds. */
9373 if (vr->type != VR_RANGE
9374 || TREE_CODE (vr->min) != INTEGER_CST
9375 || TREE_CODE (vr->max) != INTEGER_CST)
9376 return false;
9377
9378 /* For sign changes, the MSB of the wide_int has to be clear.
9379 An unsigned value with its MSB set cannot be represented by
9380 a signed wide_int, while a negative value cannot be represented
9381 by an unsigned wide_int. */
9382 if (src_sgn != dest_sgn
9383 && (wi::lts_p (vr->min, 0) || wi::lts_p (vr->max, 0)))
9384 return false;
9385
9386 /* Then we can perform the conversion on both ends and compare
9387 the result for equality. */
9388 tem = wi::ext (wi::to_widest (vr->min), dest_precision, dest_sgn);
9389 if (tem != wi::to_widest (vr->min))
9390 return false;
9391 tem = wi::ext (wi::to_widest (vr->max), dest_precision, dest_sgn);
9392 if (tem != wi::to_widest (vr->max))
9393 return false;
9394
9395 return true;
9396 }
9397
9398 /* Simplify a conditional using a relational operator to an equality
9399 test if the range information indicates only one value can satisfy
9400 the original conditional. */
9401
9402 static bool
9403 simplify_cond_using_ranges (gcond *stmt)
9404 {
9405 tree op0 = gimple_cond_lhs (stmt);
9406 tree op1 = gimple_cond_rhs (stmt);
9407 enum tree_code cond_code = gimple_cond_code (stmt);
9408
9409 if (cond_code != NE_EXPR
9410 && cond_code != EQ_EXPR
9411 && TREE_CODE (op0) == SSA_NAME
9412 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
9413 && is_gimple_min_invariant (op1))
9414 {
9415 value_range_t *vr = get_value_range (op0);
9416
9417 /* If we have range information for OP0, then we might be
9418 able to simplify this conditional. */
9419 if (vr->type == VR_RANGE)
9420 {
9421 enum warn_strict_overflow_code wc = WARN_STRICT_OVERFLOW_COMPARISON;
9422 bool sop = false;
9423 tree new_tree = test_for_singularity (cond_code, op0, op1, vr, &sop);
9424
9425 if (new_tree
9426 && (!sop || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))))
9427 {
9428 if (dump_file)
9429 {
9430 fprintf (dump_file, "Simplified relational ");
9431 print_gimple_stmt (dump_file, stmt, 0, 0);
9432 fprintf (dump_file, " into ");
9433 }
9434
9435 gimple_cond_set_code (stmt, EQ_EXPR);
9436 gimple_cond_set_lhs (stmt, op0);
9437 gimple_cond_set_rhs (stmt, new_tree);
9438
9439 update_stmt (stmt);
9440
9441 if (dump_file)
9442 {
9443 print_gimple_stmt (dump_file, stmt, 0, 0);
9444 fprintf (dump_file, "\n");
9445 }
9446
9447 if (sop && issue_strict_overflow_warning (wc))
9448 {
9449 location_t location = input_location;
9450 if (gimple_has_location (stmt))
9451 location = gimple_location (stmt);
9452
9453 warning_at (location, OPT_Wstrict_overflow,
9454 "assuming signed overflow does not occur when "
9455 "simplifying conditional");
9456 }
9457
9458 return true;
9459 }
9460
9461 /* Try again after inverting the condition. We only deal
9462 with integral types here, so no need to worry about
9463 issues with inverting FP comparisons. */
9464 sop = false;
9465 new_tree = test_for_singularity
9466 (invert_tree_comparison (cond_code, false),
9467 op0, op1, vr, &sop);
9468
9469 if (new_tree
9470 && (!sop || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))))
9471 {
9472 if (dump_file)
9473 {
9474 fprintf (dump_file, "Simplified relational ");
9475 print_gimple_stmt (dump_file, stmt, 0, 0);
9476 fprintf (dump_file, " into ");
9477 }
9478
9479 gimple_cond_set_code (stmt, NE_EXPR);
9480 gimple_cond_set_lhs (stmt, op0);
9481 gimple_cond_set_rhs (stmt, new_tree);
9482
9483 update_stmt (stmt);
9484
9485 if (dump_file)
9486 {
9487 print_gimple_stmt (dump_file, stmt, 0, 0);
9488 fprintf (dump_file, "\n");
9489 }
9490
9491 if (sop && issue_strict_overflow_warning (wc))
9492 {
9493 location_t location = input_location;
9494 if (gimple_has_location (stmt))
9495 location = gimple_location (stmt);
9496
9497 warning_at (location, OPT_Wstrict_overflow,
9498 "assuming signed overflow does not occur when "
9499 "simplifying conditional");
9500 }
9501
9502 return true;
9503 }
9504 }
9505 }
9506
9507 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
9508 see if OP0 was set by a type conversion where the source of
9509 the conversion is another SSA_NAME with a range that fits
9510 into the range of OP0's type.
9511
9512 If so, the conversion is redundant as the earlier SSA_NAME can be
9513 used for the comparison directly if we just massage the constant in the
9514 comparison. */
9515 if (TREE_CODE (op0) == SSA_NAME
9516 && TREE_CODE (op1) == INTEGER_CST)
9517 {
9518 gimple def_stmt = SSA_NAME_DEF_STMT (op0);
9519 tree innerop;
9520
9521 if (!is_gimple_assign (def_stmt)
9522 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9523 return false;
9524
9525 innerop = gimple_assign_rhs1 (def_stmt);
9526
9527 if (TREE_CODE (innerop) == SSA_NAME
9528 && !POINTER_TYPE_P (TREE_TYPE (innerop)))
9529 {
9530 value_range_t *vr = get_value_range (innerop);
9531
9532 if (range_int_cst_p (vr)
9533 && range_fits_type_p (vr,
9534 TYPE_PRECISION (TREE_TYPE (op0)),
9535 TYPE_SIGN (TREE_TYPE (op0)))
9536 && int_fits_type_p (op1, TREE_TYPE (innerop))
9537 /* The range must not have overflowed, or if it did overflow
9538 we must not be wrapping/trapping overflow and optimizing
9539 with strict overflow semantics. */
9540 && ((!is_negative_overflow_infinity (vr->min)
9541 && !is_positive_overflow_infinity (vr->max))
9542 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (innerop))))
9543 {
9544 /* If the range overflowed and the user has asked for warnings
9545 when strict overflow semantics were used to optimize code,
9546 issue an appropriate warning. */
9547 if (cond_code != EQ_EXPR && cond_code != NE_EXPR
9548 && (is_negative_overflow_infinity (vr->min)
9549 || is_positive_overflow_infinity (vr->max))
9550 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_CONDITIONAL))
9551 {
9552 location_t location;
9553
9554 if (!gimple_has_location (stmt))
9555 location = input_location;
9556 else
9557 location = gimple_location (stmt);
9558 warning_at (location, OPT_Wstrict_overflow,
9559 "assuming signed overflow does not occur when "
9560 "simplifying conditional");
9561 }
9562
9563 tree newconst = fold_convert (TREE_TYPE (innerop), op1);
9564 gimple_cond_set_lhs (stmt, innerop);
9565 gimple_cond_set_rhs (stmt, newconst);
9566 return true;
9567 }
9568 }
9569 }
9570
9571 return false;
9572 }
9573
9574 /* Simplify a switch statement using the value range of the switch
9575 argument. */
9576
9577 static bool
9578 simplify_switch_using_ranges (gswitch *stmt)
9579 {
9580 tree op = gimple_switch_index (stmt);
9581 value_range_t *vr;
9582 bool take_default;
9583 edge e;
9584 edge_iterator ei;
9585 size_t i = 0, j = 0, n, n2;
9586 tree vec2;
9587 switch_update su;
9588 size_t k = 1, l = 0;
9589
9590 if (TREE_CODE (op) == SSA_NAME)
9591 {
9592 vr = get_value_range (op);
9593
9594 /* We can only handle integer ranges. */
9595 if ((vr->type != VR_RANGE
9596 && vr->type != VR_ANTI_RANGE)
9597 || symbolic_range_p (vr))
9598 return false;
9599
9600 /* Find case label for min/max of the value range. */
9601 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
9602 }
9603 else if (TREE_CODE (op) == INTEGER_CST)
9604 {
9605 take_default = !find_case_label_index (stmt, 1, op, &i);
9606 if (take_default)
9607 {
9608 i = 1;
9609 j = 0;
9610 }
9611 else
9612 {
9613 j = i;
9614 }
9615 }
9616 else
9617 return false;
9618
9619 n = gimple_switch_num_labels (stmt);
9620
9621 /* Bail out if this is just all edges taken. */
9622 if (i == 1
9623 && j == n - 1
9624 && take_default)
9625 return false;
9626
9627 /* Build a new vector of taken case labels. */
9628 vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
9629 n2 = 0;
9630
9631 /* Add the default edge, if necessary. */
9632 if (take_default)
9633 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
9634
9635 for (; i <= j; ++i, ++n2)
9636 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
9637
9638 for (; k <= l; ++k, ++n2)
9639 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
9640
9641 /* Mark needed edges. */
9642 for (i = 0; i < n2; ++i)
9643 {
9644 e = find_edge (gimple_bb (stmt),
9645 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
9646 e->aux = (void *)-1;
9647 }
9648
9649 /* Queue not needed edges for later removal. */
9650 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
9651 {
9652 if (e->aux == (void *)-1)
9653 {
9654 e->aux = NULL;
9655 continue;
9656 }
9657
9658 if (dump_file && (dump_flags & TDF_DETAILS))
9659 {
9660 fprintf (dump_file, "removing unreachable case label\n");
9661 }
9662 to_remove_edges.safe_push (e);
9663 e->flags &= ~EDGE_EXECUTABLE;
9664 }
9665
9666 /* And queue an update for the stmt. */
9667 su.stmt = stmt;
9668 su.vec = vec2;
9669 to_update_switch_stmts.safe_push (su);
9670 return false;
9671 }
9672
9673 /* Simplify an integral conversion from an SSA name in STMT. */
9674
9675 static bool
9676 simplify_conversion_using_ranges (gimple stmt)
9677 {
9678 tree innerop, middleop, finaltype;
9679 gimple def_stmt;
9680 value_range_t *innervr;
9681 signop inner_sgn, middle_sgn, final_sgn;
9682 unsigned inner_prec, middle_prec, final_prec;
9683 widest_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
9684
9685 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
9686 if (!INTEGRAL_TYPE_P (finaltype))
9687 return false;
9688 middleop = gimple_assign_rhs1 (stmt);
9689 def_stmt = SSA_NAME_DEF_STMT (middleop);
9690 if (!is_gimple_assign (def_stmt)
9691 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9692 return false;
9693 innerop = gimple_assign_rhs1 (def_stmt);
9694 if (TREE_CODE (innerop) != SSA_NAME
9695 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
9696 return false;
9697
9698 /* Get the value-range of the inner operand. */
9699 innervr = get_value_range (innerop);
9700 if (innervr->type != VR_RANGE
9701 || TREE_CODE (innervr->min) != INTEGER_CST
9702 || TREE_CODE (innervr->max) != INTEGER_CST)
9703 return false;
9704
9705 /* Simulate the conversion chain to check if the result is equal if
9706 the middle conversion is removed. */
9707 innermin = wi::to_widest (innervr->min);
9708 innermax = wi::to_widest (innervr->max);
9709
9710 inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
9711 middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
9712 final_prec = TYPE_PRECISION (finaltype);
9713
9714 /* If the first conversion is not injective, the second must not
9715 be widening. */
9716 if (wi::gtu_p (innermax - innermin,
9717 wi::mask <widest_int> (middle_prec, false))
9718 && middle_prec < final_prec)
9719 return false;
9720 /* We also want a medium value so that we can track the effect that
9721 narrowing conversions with sign change have. */
9722 inner_sgn = TYPE_SIGN (TREE_TYPE (innerop));
9723 if (inner_sgn == UNSIGNED)
9724 innermed = wi::shifted_mask <widest_int> (1, inner_prec - 1, false);
9725 else
9726 innermed = 0;
9727 if (wi::cmp (innermin, innermed, inner_sgn) >= 0
9728 || wi::cmp (innermed, innermax, inner_sgn) >= 0)
9729 innermed = innermin;
9730
9731 middle_sgn = TYPE_SIGN (TREE_TYPE (middleop));
9732 middlemin = wi::ext (innermin, middle_prec, middle_sgn);
9733 middlemed = wi::ext (innermed, middle_prec, middle_sgn);
9734 middlemax = wi::ext (innermax, middle_prec, middle_sgn);
9735
9736 /* Require that the final conversion applied to both the original
9737 and the intermediate range produces the same result. */
9738 final_sgn = TYPE_SIGN (finaltype);
9739 if (wi::ext (middlemin, final_prec, final_sgn)
9740 != wi::ext (innermin, final_prec, final_sgn)
9741 || wi::ext (middlemed, final_prec, final_sgn)
9742 != wi::ext (innermed, final_prec, final_sgn)
9743 || wi::ext (middlemax, final_prec, final_sgn)
9744 != wi::ext (innermax, final_prec, final_sgn))
9745 return false;
9746
9747 gimple_assign_set_rhs1 (stmt, innerop);
9748 update_stmt (stmt);
9749 return true;
9750 }
9751
9752 /* Simplify a conversion from integral SSA name to float in STMT. */
9753
9754 static bool
9755 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
9756 {
9757 tree rhs1 = gimple_assign_rhs1 (stmt);
9758 value_range_t *vr = get_value_range (rhs1);
9759 machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
9760 machine_mode mode;
9761 tree tem;
9762 gassign *conv;
9763
9764 /* We can only handle constant ranges. */
9765 if (vr->type != VR_RANGE
9766 || TREE_CODE (vr->min) != INTEGER_CST
9767 || TREE_CODE (vr->max) != INTEGER_CST)
9768 return false;
9769
9770 /* First check if we can use a signed type in place of an unsigned. */
9771 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
9772 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
9773 != CODE_FOR_nothing)
9774 && range_fits_type_p (vr, TYPE_PRECISION (TREE_TYPE (rhs1)), SIGNED))
9775 mode = TYPE_MODE (TREE_TYPE (rhs1));
9776 /* If we can do the conversion in the current input mode do nothing. */
9777 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
9778 TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
9779 return false;
9780 /* Otherwise search for a mode we can use, starting from the narrowest
9781 integer mode available. */
9782 else
9783 {
9784 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
9785 do
9786 {
9787 /* If we cannot do a signed conversion to float from mode
9788 or if the value-range does not fit in the signed type
9789 try with a wider mode. */
9790 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
9791 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), SIGNED))
9792 break;
9793
9794 mode = GET_MODE_WIDER_MODE (mode);
9795 /* But do not widen the input. Instead leave that to the
9796 optabs expansion code. */
9797 if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
9798 return false;
9799 }
9800 while (mode != VOIDmode);
9801 if (mode == VOIDmode)
9802 return false;
9803 }
9804
9805 /* It works, insert a truncation or sign-change before the
9806 float conversion. */
9807 tem = make_ssa_name (build_nonstandard_integer_type
9808 (GET_MODE_PRECISION (mode), 0));
9809 conv = gimple_build_assign (tem, NOP_EXPR, rhs1);
9810 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
9811 gimple_assign_set_rhs1 (stmt, tem);
9812 update_stmt (stmt);
9813
9814 return true;
9815 }
9816
9817 /* Simplify an internal fn call using ranges if possible. */
9818
9819 static bool
9820 simplify_internal_call_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
9821 {
9822 enum tree_code subcode;
9823 bool is_ubsan = false;
9824 bool ovf = false;
9825 switch (gimple_call_internal_fn (stmt))
9826 {
9827 case IFN_UBSAN_CHECK_ADD:
9828 subcode = PLUS_EXPR;
9829 is_ubsan = true;
9830 break;
9831 case IFN_UBSAN_CHECK_SUB:
9832 subcode = MINUS_EXPR;
9833 is_ubsan = true;
9834 break;
9835 case IFN_UBSAN_CHECK_MUL:
9836 subcode = MULT_EXPR;
9837 is_ubsan = true;
9838 break;
9839 case IFN_ADD_OVERFLOW:
9840 subcode = PLUS_EXPR;
9841 break;
9842 case IFN_SUB_OVERFLOW:
9843 subcode = MINUS_EXPR;
9844 break;
9845 case IFN_MUL_OVERFLOW:
9846 subcode = MULT_EXPR;
9847 break;
9848 default:
9849 return false;
9850 }
9851
9852 tree op0 = gimple_call_arg (stmt, 0);
9853 tree op1 = gimple_call_arg (stmt, 1);
9854 tree type;
9855 if (is_ubsan)
9856 type = TREE_TYPE (op0);
9857 else if (gimple_call_lhs (stmt) == NULL_TREE)
9858 return false;
9859 else
9860 type = TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt)));
9861 if (!check_for_binary_op_overflow (subcode, type, op0, op1, &ovf)
9862 || (is_ubsan && ovf))
9863 return false;
9864
9865 gimple g;
9866 location_t loc = gimple_location (stmt);
9867 if (is_ubsan)
9868 g = gimple_build_assign (gimple_call_lhs (stmt), subcode, op0, op1);
9869 else
9870 {
9871 int prec = TYPE_PRECISION (type);
9872 tree utype = type;
9873 if (ovf
9874 || !useless_type_conversion_p (type, TREE_TYPE (op0))
9875 || !useless_type_conversion_p (type, TREE_TYPE (op1)))
9876 utype = build_nonstandard_integer_type (prec, 1);
9877 if (TREE_CODE (op0) == INTEGER_CST)
9878 op0 = fold_convert (utype, op0);
9879 else if (!useless_type_conversion_p (utype, TREE_TYPE (op0)))
9880 {
9881 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op0);
9882 gimple_set_location (g, loc);
9883 gsi_insert_before (gsi, g, GSI_SAME_STMT);
9884 op0 = gimple_assign_lhs (g);
9885 }
9886 if (TREE_CODE (op1) == INTEGER_CST)
9887 op1 = fold_convert (utype, op1);
9888 else if (!useless_type_conversion_p (utype, TREE_TYPE (op1)))
9889 {
9890 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op1);
9891 gimple_set_location (g, loc);
9892 gsi_insert_before (gsi, g, GSI_SAME_STMT);
9893 op1 = gimple_assign_lhs (g);
9894 }
9895 g = gimple_build_assign (make_ssa_name (utype), subcode, op0, op1);
9896 gimple_set_location (g, loc);
9897 gsi_insert_before (gsi, g, GSI_SAME_STMT);
9898 if (utype != type)
9899 {
9900 g = gimple_build_assign (make_ssa_name (type), NOP_EXPR,
9901 gimple_assign_lhs (g));
9902 gimple_set_location (g, loc);
9903 gsi_insert_before (gsi, g, GSI_SAME_STMT);
9904 }
9905 g = gimple_build_assign (gimple_call_lhs (stmt), COMPLEX_EXPR,
9906 gimple_assign_lhs (g),
9907 build_int_cst (type, ovf));
9908 }
9909 gimple_set_location (g, loc);
9910 gsi_replace (gsi, g, false);
9911 return true;
9912 }
9913
9914 /* Simplify STMT using ranges if possible. */
9915
9916 static bool
9917 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
9918 {
9919 gimple stmt = gsi_stmt (*gsi);
9920 if (is_gimple_assign (stmt))
9921 {
9922 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9923 tree rhs1 = gimple_assign_rhs1 (stmt);
9924
9925 switch (rhs_code)
9926 {
9927 case EQ_EXPR:
9928 case NE_EXPR:
9929 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
9930 if the RHS is zero or one, and the LHS are known to be boolean
9931 values. */
9932 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9933 return simplify_truth_ops_using_ranges (gsi, stmt);
9934 break;
9935
9936 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
9937 and BIT_AND_EXPR respectively if the first operand is greater
9938 than zero and the second operand is an exact power of two.
9939 Also optimize TRUNC_MOD_EXPR away if the second operand is
9940 constant and the first operand already has the right value
9941 range. */
9942 case TRUNC_DIV_EXPR:
9943 case TRUNC_MOD_EXPR:
9944 if (TREE_CODE (rhs1) == SSA_NAME
9945 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9946 return simplify_div_or_mod_using_ranges (stmt);
9947 break;
9948
9949 /* Transform ABS (X) into X or -X as appropriate. */
9950 case ABS_EXPR:
9951 if (TREE_CODE (rhs1) == SSA_NAME
9952 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9953 return simplify_abs_using_ranges (stmt);
9954 break;
9955
9956 case BIT_AND_EXPR:
9957 case BIT_IOR_EXPR:
9958 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
9959 if all the bits being cleared are already cleared or
9960 all the bits being set are already set. */
9961 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9962 return simplify_bit_ops_using_ranges (gsi, stmt);
9963 break;
9964
9965 CASE_CONVERT:
9966 if (TREE_CODE (rhs1) == SSA_NAME
9967 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9968 return simplify_conversion_using_ranges (stmt);
9969 break;
9970
9971 case FLOAT_EXPR:
9972 if (TREE_CODE (rhs1) == SSA_NAME
9973 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9974 return simplify_float_conversion_using_ranges (gsi, stmt);
9975 break;
9976
9977 default:
9978 break;
9979 }
9980 }
9981 else if (gimple_code (stmt) == GIMPLE_COND)
9982 return simplify_cond_using_ranges (as_a <gcond *> (stmt));
9983 else if (gimple_code (stmt) == GIMPLE_SWITCH)
9984 return simplify_switch_using_ranges (as_a <gswitch *> (stmt));
9985 else if (is_gimple_call (stmt)
9986 && gimple_call_internal_p (stmt))
9987 return simplify_internal_call_using_ranges (gsi, stmt);
9988
9989 return false;
9990 }
9991
9992 /* If the statement pointed by SI has a predicate whose value can be
9993 computed using the value range information computed by VRP, compute
9994 its value and return true. Otherwise, return false. */
9995
9996 static bool
9997 fold_predicate_in (gimple_stmt_iterator *si)
9998 {
9999 bool assignment_p = false;
10000 tree val;
10001 gimple stmt = gsi_stmt (*si);
10002
10003 if (is_gimple_assign (stmt)
10004 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
10005 {
10006 assignment_p = true;
10007 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
10008 gimple_assign_rhs1 (stmt),
10009 gimple_assign_rhs2 (stmt),
10010 stmt);
10011 }
10012 else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
10013 val = vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
10014 gimple_cond_lhs (cond_stmt),
10015 gimple_cond_rhs (cond_stmt),
10016 stmt);
10017 else
10018 return false;
10019
10020 if (val)
10021 {
10022 if (assignment_p)
10023 val = fold_convert (gimple_expr_type (stmt), val);
10024
10025 if (dump_file)
10026 {
10027 fprintf (dump_file, "Folding predicate ");
10028 print_gimple_expr (dump_file, stmt, 0, 0);
10029 fprintf (dump_file, " to ");
10030 print_generic_expr (dump_file, val, 0);
10031 fprintf (dump_file, "\n");
10032 }
10033
10034 if (is_gimple_assign (stmt))
10035 gimple_assign_set_rhs_from_tree (si, val);
10036 else
10037 {
10038 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
10039 gcond *cond_stmt = as_a <gcond *> (stmt);
10040 if (integer_zerop (val))
10041 gimple_cond_make_false (cond_stmt);
10042 else if (integer_onep (val))
10043 gimple_cond_make_true (cond_stmt);
10044 else
10045 gcc_unreachable ();
10046 }
10047
10048 return true;
10049 }
10050
10051 return false;
10052 }
10053
10054 /* Callback for substitute_and_fold folding the stmt at *SI. */
10055
10056 static bool
10057 vrp_fold_stmt (gimple_stmt_iterator *si)
10058 {
10059 if (fold_predicate_in (si))
10060 return true;
10061
10062 return simplify_stmt_using_ranges (si);
10063 }
10064
10065 /* Unwindable const/copy equivalences. */
10066 const_and_copies *equiv_stack;
10067
10068 /* A trivial wrapper so that we can present the generic jump threading
10069 code with a simple API for simplifying statements. STMT is the
10070 statement we want to simplify, WITHIN_STMT provides the location
10071 for any overflow warnings. */
10072
10073 static tree
10074 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
10075 {
10076 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
10077 return vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
10078 gimple_cond_lhs (cond_stmt),
10079 gimple_cond_rhs (cond_stmt),
10080 within_stmt);
10081
10082 if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
10083 {
10084 value_range_t new_vr = VR_INITIALIZER;
10085 tree lhs = gimple_assign_lhs (assign_stmt);
10086
10087 if (TREE_CODE (lhs) == SSA_NAME
10088 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
10089 || POINTER_TYPE_P (TREE_TYPE (lhs))))
10090 {
10091 extract_range_from_assignment (&new_vr, assign_stmt);
10092 if (range_int_cst_singleton_p (&new_vr))
10093 return new_vr.min;
10094 }
10095 }
10096
10097 return NULL_TREE;
10098 }
10099
10100 /* Blocks which have more than one predecessor and more than
10101 one successor present jump threading opportunities, i.e.,
10102 when the block is reached from a specific predecessor, we
10103 may be able to determine which of the outgoing edges will
10104 be traversed. When this optimization applies, we are able
10105 to avoid conditionals at runtime and we may expose secondary
10106 optimization opportunities.
10107
10108 This routine is effectively a driver for the generic jump
10109 threading code. It basically just presents the generic code
10110 with edges that may be suitable for jump threading.
10111
10112 Unlike DOM, we do not iterate VRP if jump threading was successful.
10113 While iterating may expose new opportunities for VRP, it is expected
10114 those opportunities would be very limited and the compile time cost
10115 to expose those opportunities would be significant.
10116
10117 As jump threading opportunities are discovered, they are registered
10118 for later realization. */
10119
10120 static void
10121 identify_jump_threads (void)
10122 {
10123 basic_block bb;
10124 gcond *dummy;
10125 int i;
10126 edge e;
10127
10128 /* Ugh. When substituting values earlier in this pass we can
10129 wipe the dominance information. So rebuild the dominator
10130 information as we need it within the jump threading code. */
10131 calculate_dominance_info (CDI_DOMINATORS);
10132
10133 /* We do not allow VRP information to be used for jump threading
10134 across a back edge in the CFG. Otherwise it becomes too
10135 difficult to avoid eliminating loop exit tests. Of course
10136 EDGE_DFS_BACK is not accurate at this time so we have to
10137 recompute it. */
10138 mark_dfs_back_edges ();
10139
10140 /* Do not thread across edges we are about to remove. Just marking
10141 them as EDGE_DFS_BACK will do. */
10142 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
10143 e->flags |= EDGE_DFS_BACK;
10144
10145 /* Allocate our unwinder stack to unwind any temporary equivalences
10146 that might be recorded. */
10147 equiv_stack = new const_and_copies (dump_file, dump_flags);
10148
10149 /* To avoid lots of silly node creation, we create a single
10150 conditional and just modify it in-place when attempting to
10151 thread jumps. */
10152 dummy = gimple_build_cond (EQ_EXPR,
10153 integer_zero_node, integer_zero_node,
10154 NULL, NULL);
10155
10156 /* Walk through all the blocks finding those which present a
10157 potential jump threading opportunity. We could set this up
10158 as a dominator walker and record data during the walk, but
10159 I doubt it's worth the effort for the classes of jump
10160 threading opportunities we are trying to identify at this
10161 point in compilation. */
10162 FOR_EACH_BB_FN (bb, cfun)
10163 {
10164 gimple last;
10165
10166 /* If the generic jump threading code does not find this block
10167 interesting, then there is nothing to do. */
10168 if (! potentially_threadable_block (bb))
10169 continue;
10170
10171 last = last_stmt (bb);
10172
10173 /* We're basically looking for a switch or any kind of conditional with
10174 integral or pointer type arguments. Note the type of the second
10175 argument will be the same as the first argument, so no need to
10176 check it explicitly.
10177
10178 We also handle the case where there are no statements in the
10179 block. This come up with forwarder blocks that are not
10180 optimized away because they lead to a loop header. But we do
10181 want to thread through them as we can sometimes thread to the
10182 loop exit which is obviously profitable. */
10183 if (!last
10184 || gimple_code (last) == GIMPLE_SWITCH
10185 || (gimple_code (last) == GIMPLE_COND
10186 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
10187 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
10188 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
10189 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
10190 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
10191 {
10192 edge_iterator ei;
10193
10194 /* We've got a block with multiple predecessors and multiple
10195 successors which also ends in a suitable conditional or
10196 switch statement. For each predecessor, see if we can thread
10197 it to a specific successor. */
10198 FOR_EACH_EDGE (e, ei, bb->preds)
10199 {
10200 /* Do not thread across back edges or abnormal edges
10201 in the CFG. */
10202 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
10203 continue;
10204
10205 thread_across_edge (dummy, e, true, equiv_stack,
10206 simplify_stmt_for_jump_threading);
10207 }
10208 }
10209 }
10210
10211 /* We do not actually update the CFG or SSA graphs at this point as
10212 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
10213 handle ASSERT_EXPRs gracefully. */
10214 }
10215
10216 /* We identified all the jump threading opportunities earlier, but could
10217 not transform the CFG at that time. This routine transforms the
10218 CFG and arranges for the dominator tree to be rebuilt if necessary.
10219
10220 Note the SSA graph update will occur during the normal TODO
10221 processing by the pass manager. */
10222 static void
10223 finalize_jump_threads (void)
10224 {
10225 thread_through_all_blocks (false);
10226 delete equiv_stack;
10227 }
10228
10229
10230 /* Traverse all the blocks folding conditionals with known ranges. */
10231
10232 static void
10233 vrp_finalize (void)
10234 {
10235 size_t i;
10236
10237 values_propagated = true;
10238
10239 if (dump_file)
10240 {
10241 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
10242 dump_all_value_ranges (dump_file);
10243 fprintf (dump_file, "\n");
10244 }
10245
10246 substitute_and_fold (op_with_constant_singleton_value_range,
10247 vrp_fold_stmt, false);
10248
10249 if (warn_array_bounds && first_pass_instance)
10250 check_all_array_refs ();
10251
10252 /* We must identify jump threading opportunities before we release
10253 the datastructures built by VRP. */
10254 identify_jump_threads ();
10255
10256 /* Set value range to non pointer SSA_NAMEs. */
10257 for (i = 0; i < num_vr_values; i++)
10258 if (vr_value[i])
10259 {
10260 tree name = ssa_name (i);
10261
10262 if (!name
10263 || POINTER_TYPE_P (TREE_TYPE (name))
10264 || (vr_value[i]->type == VR_VARYING)
10265 || (vr_value[i]->type == VR_UNDEFINED))
10266 continue;
10267
10268 if ((TREE_CODE (vr_value[i]->min) == INTEGER_CST)
10269 && (TREE_CODE (vr_value[i]->max) == INTEGER_CST)
10270 && (vr_value[i]->type == VR_RANGE
10271 || vr_value[i]->type == VR_ANTI_RANGE))
10272 set_range_info (name, vr_value[i]->type, vr_value[i]->min,
10273 vr_value[i]->max);
10274 }
10275
10276 /* Free allocated memory. */
10277 for (i = 0; i < num_vr_values; i++)
10278 if (vr_value[i])
10279 {
10280 BITMAP_FREE (vr_value[i]->equiv);
10281 free (vr_value[i]);
10282 }
10283
10284 free (vr_value);
10285 free (vr_phi_edge_counts);
10286
10287 /* So that we can distinguish between VRP data being available
10288 and not available. */
10289 vr_value = NULL;
10290 vr_phi_edge_counts = NULL;
10291 }
10292
10293
10294 /* Main entry point to VRP (Value Range Propagation). This pass is
10295 loosely based on J. R. C. Patterson, ``Accurate Static Branch
10296 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
10297 Programming Language Design and Implementation, pp. 67-78, 1995.
10298 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
10299
10300 This is essentially an SSA-CCP pass modified to deal with ranges
10301 instead of constants.
10302
10303 While propagating ranges, we may find that two or more SSA name
10304 have equivalent, though distinct ranges. For instance,
10305
10306 1 x_9 = p_3->a;
10307 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
10308 3 if (p_4 == q_2)
10309 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
10310 5 endif
10311 6 if (q_2)
10312
10313 In the code above, pointer p_5 has range [q_2, q_2], but from the
10314 code we can also determine that p_5 cannot be NULL and, if q_2 had
10315 a non-varying range, p_5's range should also be compatible with it.
10316
10317 These equivalences are created by two expressions: ASSERT_EXPR and
10318 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
10319 result of another assertion, then we can use the fact that p_5 and
10320 p_4 are equivalent when evaluating p_5's range.
10321
10322 Together with value ranges, we also propagate these equivalences
10323 between names so that we can take advantage of information from
10324 multiple ranges when doing final replacement. Note that this
10325 equivalency relation is transitive but not symmetric.
10326
10327 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
10328 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
10329 in contexts where that assertion does not hold (e.g., in line 6).
10330
10331 TODO, the main difference between this pass and Patterson's is that
10332 we do not propagate edge probabilities. We only compute whether
10333 edges can be taken or not. That is, instead of having a spectrum
10334 of jump probabilities between 0 and 1, we only deal with 0, 1 and
10335 DON'T KNOW. In the future, it may be worthwhile to propagate
10336 probabilities to aid branch prediction. */
10337
10338 static unsigned int
10339 execute_vrp (void)
10340 {
10341 int i;
10342 edge e;
10343 switch_update *su;
10344
10345 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
10346 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
10347 scev_initialize ();
10348
10349 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
10350 Inserting assertions may split edges which will invalidate
10351 EDGE_DFS_BACK. */
10352 insert_range_assertions ();
10353
10354 to_remove_edges.create (10);
10355 to_update_switch_stmts.create (5);
10356 threadedge_initialize_values ();
10357
10358 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
10359 mark_dfs_back_edges ();
10360
10361 vrp_initialize ();
10362 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
10363 vrp_finalize ();
10364
10365 free_numbers_of_iterations_estimates ();
10366
10367 /* ASSERT_EXPRs must be removed before finalizing jump threads
10368 as finalizing jump threads calls the CFG cleanup code which
10369 does not properly handle ASSERT_EXPRs. */
10370 remove_range_assertions ();
10371
10372 /* If we exposed any new variables, go ahead and put them into
10373 SSA form now, before we handle jump threading. This simplifies
10374 interactions between rewriting of _DECL nodes into SSA form
10375 and rewriting SSA_NAME nodes into SSA form after block
10376 duplication and CFG manipulation. */
10377 update_ssa (TODO_update_ssa);
10378
10379 finalize_jump_threads ();
10380
10381 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
10382 CFG in a broken state and requires a cfg_cleanup run. */
10383 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
10384 remove_edge (e);
10385 /* Update SWITCH_EXPR case label vector. */
10386 FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
10387 {
10388 size_t j;
10389 size_t n = TREE_VEC_LENGTH (su->vec);
10390 tree label;
10391 gimple_switch_set_num_labels (su->stmt, n);
10392 for (j = 0; j < n; j++)
10393 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
10394 /* As we may have replaced the default label with a regular one
10395 make sure to make it a real default label again. This ensures
10396 optimal expansion. */
10397 label = gimple_switch_label (su->stmt, 0);
10398 CASE_LOW (label) = NULL_TREE;
10399 CASE_HIGH (label) = NULL_TREE;
10400 }
10401
10402 if (to_remove_edges.length () > 0)
10403 {
10404 free_dominance_info (CDI_DOMINATORS);
10405 loops_state_set (LOOPS_NEED_FIXUP);
10406 }
10407
10408 to_remove_edges.release ();
10409 to_update_switch_stmts.release ();
10410 threadedge_finalize_values ();
10411
10412 scev_finalize ();
10413 loop_optimizer_finalize ();
10414 return 0;
10415 }
10416
10417 namespace {
10418
10419 const pass_data pass_data_vrp =
10420 {
10421 GIMPLE_PASS, /* type */
10422 "vrp", /* name */
10423 OPTGROUP_NONE, /* optinfo_flags */
10424 TV_TREE_VRP, /* tv_id */
10425 PROP_ssa, /* properties_required */
10426 0, /* properties_provided */
10427 0, /* properties_destroyed */
10428 0, /* todo_flags_start */
10429 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
10430 };
10431
10432 class pass_vrp : public gimple_opt_pass
10433 {
10434 public:
10435 pass_vrp (gcc::context *ctxt)
10436 : gimple_opt_pass (pass_data_vrp, ctxt)
10437 {}
10438
10439 /* opt_pass methods: */
10440 opt_pass * clone () { return new pass_vrp (m_ctxt); }
10441 virtual bool gate (function *) { return flag_tree_vrp != 0; }
10442 virtual unsigned int execute (function *) { return execute_vrp (); }
10443
10444 }; // class pass_vrp
10445
10446 } // anon namespace
10447
10448 gimple_opt_pass *
10449 make_pass_vrp (gcc::context *ctxt)
10450 {
10451 return new pass_vrp (ctxt);
10452 }