tree-vrp.c (update_value_range): Intersect the range with old recorded SSA name range...
[gcc.git] / gcc / tree-vrp.c
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2015 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "flags.h"
26 #include "hash-set.h"
27 #include "machmode.h"
28 #include "vec.h"
29 #include "double-int.h"
30 #include "input.h"
31 #include "alias.h"
32 #include "symtab.h"
33 #include "wide-int.h"
34 #include "inchash.h"
35 #include "tree.h"
36 #include "fold-const.h"
37 #include "stor-layout.h"
38 #include "calls.h"
39 #include "predict.h"
40 #include "hard-reg-set.h"
41 #include "function.h"
42 #include "dominance.h"
43 #include "cfg.h"
44 #include "cfganal.h"
45 #include "basic-block.h"
46 #include "tree-ssa-alias.h"
47 #include "internal-fn.h"
48 #include "gimple-fold.h"
49 #include "tree-eh.h"
50 #include "gimple-expr.h"
51 #include "is-a.h"
52 #include "gimple.h"
53 #include "gimple-iterator.h"
54 #include "gimple-walk.h"
55 #include "gimple-ssa.h"
56 #include "tree-cfg.h"
57 #include "tree-phinodes.h"
58 #include "ssa-iterators.h"
59 #include "stringpool.h"
60 #include "tree-ssanames.h"
61 #include "tree-ssa-loop-manip.h"
62 #include "tree-ssa-loop-niter.h"
63 #include "tree-ssa-loop.h"
64 #include "tree-into-ssa.h"
65 #include "tree-ssa.h"
66 #include "tree-pass.h"
67 #include "tree-dump.h"
68 #include "gimple-pretty-print.h"
69 #include "diagnostic-core.h"
70 #include "intl.h"
71 #include "cfgloop.h"
72 #include "tree-scalar-evolution.h"
73 #include "tree-ssa-propagate.h"
74 #include "tree-chrec.h"
75 #include "tree-ssa-threadupdate.h"
76 #include "hashtab.h"
77 #include "rtl.h"
78 #include "statistics.h"
79 #include "real.h"
80 #include "fixed-value.h"
81 #include "insn-config.h"
82 #include "expmed.h"
83 #include "dojump.h"
84 #include "explow.h"
85 #include "emit-rtl.h"
86 #include "varasm.h"
87 #include "stmt.h"
88 #include "expr.h"
89 #include "insn-codes.h"
90 #include "optabs.h"
91 #include "tree-ssa-threadedge.h"
92
93
94
95 /* Range of values that can be associated with an SSA_NAME after VRP
96 has executed. */
97 struct value_range_d
98 {
99 /* Lattice value represented by this range. */
100 enum value_range_type type;
101
102 /* Minimum and maximum values represented by this range. These
103 values should be interpreted as follows:
104
105 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
106 be NULL.
107
108 - If TYPE == VR_RANGE then MIN holds the minimum value and
109 MAX holds the maximum value of the range [MIN, MAX].
110
111 - If TYPE == ANTI_RANGE the variable is known to NOT
112 take any values in the range [MIN, MAX]. */
113 tree min;
114 tree max;
115
116 /* Set of SSA names whose value ranges are equivalent to this one.
117 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
118 bitmap equiv;
119 };
120
121 typedef struct value_range_d value_range_t;
122
123 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
124
125 /* Set of SSA names found live during the RPO traversal of the function
126 for still active basic-blocks. */
127 static sbitmap *live;
128
129 /* Return true if the SSA name NAME is live on the edge E. */
130
131 static bool
132 live_on_edge (edge e, tree name)
133 {
134 return (live[e->dest->index]
135 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
136 }
137
138 /* Local functions. */
139 static int compare_values (tree val1, tree val2);
140 static int compare_values_warnv (tree val1, tree val2, bool *);
141 static void vrp_meet (value_range_t *, value_range_t *);
142 static void vrp_intersect_ranges (value_range_t *, value_range_t *);
143 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
144 tree, tree, bool, bool *,
145 bool *);
146
147 /* Location information for ASSERT_EXPRs. Each instance of this
148 structure describes an ASSERT_EXPR for an SSA name. Since a single
149 SSA name may have more than one assertion associated with it, these
150 locations are kept in a linked list attached to the corresponding
151 SSA name. */
152 struct assert_locus_d
153 {
154 /* Basic block where the assertion would be inserted. */
155 basic_block bb;
156
157 /* Some assertions need to be inserted on an edge (e.g., assertions
158 generated by COND_EXPRs). In those cases, BB will be NULL. */
159 edge e;
160
161 /* Pointer to the statement that generated this assertion. */
162 gimple_stmt_iterator si;
163
164 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
165 enum tree_code comp_code;
166
167 /* Value being compared against. */
168 tree val;
169
170 /* Expression to compare. */
171 tree expr;
172
173 /* Next node in the linked list. */
174 struct assert_locus_d *next;
175 };
176
177 typedef struct assert_locus_d *assert_locus_t;
178
179 /* If bit I is present, it means that SSA name N_i has a list of
180 assertions that should be inserted in the IL. */
181 static bitmap need_assert_for;
182
183 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
184 holds a list of ASSERT_LOCUS_T nodes that describe where
185 ASSERT_EXPRs for SSA name N_I should be inserted. */
186 static assert_locus_t *asserts_for;
187
188 /* Value range array. After propagation, VR_VALUE[I] holds the range
189 of values that SSA name N_I may take. */
190 static unsigned num_vr_values;
191 static value_range_t **vr_value;
192 static bool values_propagated;
193
194 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
195 number of executable edges we saw the last time we visited the
196 node. */
197 static int *vr_phi_edge_counts;
198
199 typedef struct {
200 gswitch *stmt;
201 tree vec;
202 } switch_update;
203
204 static vec<edge> to_remove_edges;
205 static vec<switch_update> to_update_switch_stmts;
206
207
208 /* Return the maximum value for TYPE. */
209
210 static inline tree
211 vrp_val_max (const_tree type)
212 {
213 if (!INTEGRAL_TYPE_P (type))
214 return NULL_TREE;
215
216 return TYPE_MAX_VALUE (type);
217 }
218
219 /* Return the minimum value for TYPE. */
220
221 static inline tree
222 vrp_val_min (const_tree type)
223 {
224 if (!INTEGRAL_TYPE_P (type))
225 return NULL_TREE;
226
227 return TYPE_MIN_VALUE (type);
228 }
229
230 /* Return whether VAL is equal to the maximum value of its type. This
231 will be true for a positive overflow infinity. We can't do a
232 simple equality comparison with TYPE_MAX_VALUE because C typedefs
233 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
234 to the integer constant with the same value in the type. */
235
236 static inline bool
237 vrp_val_is_max (const_tree val)
238 {
239 tree type_max = vrp_val_max (TREE_TYPE (val));
240 return (val == type_max
241 || (type_max != NULL_TREE
242 && operand_equal_p (val, type_max, 0)));
243 }
244
245 /* Return whether VAL is equal to the minimum value of its type. This
246 will be true for a negative overflow infinity. */
247
248 static inline bool
249 vrp_val_is_min (const_tree val)
250 {
251 tree type_min = vrp_val_min (TREE_TYPE (val));
252 return (val == type_min
253 || (type_min != NULL_TREE
254 && operand_equal_p (val, type_min, 0)));
255 }
256
257
258 /* Return whether TYPE should use an overflow infinity distinct from
259 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
260 represent a signed overflow during VRP computations. An infinity
261 is distinct from a half-range, which will go from some number to
262 TYPE_{MIN,MAX}_VALUE. */
263
264 static inline bool
265 needs_overflow_infinity (const_tree type)
266 {
267 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
268 }
269
270 /* Return whether TYPE can support our overflow infinity
271 representation: we use the TREE_OVERFLOW flag, which only exists
272 for constants. If TYPE doesn't support this, we don't optimize
273 cases which would require signed overflow--we drop them to
274 VARYING. */
275
276 static inline bool
277 supports_overflow_infinity (const_tree type)
278 {
279 tree min = vrp_val_min (type), max = vrp_val_max (type);
280 #ifdef ENABLE_CHECKING
281 gcc_assert (needs_overflow_infinity (type));
282 #endif
283 return (min != NULL_TREE
284 && CONSTANT_CLASS_P (min)
285 && max != NULL_TREE
286 && CONSTANT_CLASS_P (max));
287 }
288
289 /* VAL is the maximum or minimum value of a type. Return a
290 corresponding overflow infinity. */
291
292 static inline tree
293 make_overflow_infinity (tree val)
294 {
295 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
296 val = copy_node (val);
297 TREE_OVERFLOW (val) = 1;
298 return val;
299 }
300
301 /* Return a negative overflow infinity for TYPE. */
302
303 static inline tree
304 negative_overflow_infinity (tree type)
305 {
306 gcc_checking_assert (supports_overflow_infinity (type));
307 return make_overflow_infinity (vrp_val_min (type));
308 }
309
310 /* Return a positive overflow infinity for TYPE. */
311
312 static inline tree
313 positive_overflow_infinity (tree type)
314 {
315 gcc_checking_assert (supports_overflow_infinity (type));
316 return make_overflow_infinity (vrp_val_max (type));
317 }
318
319 /* Return whether VAL is a negative overflow infinity. */
320
321 static inline bool
322 is_negative_overflow_infinity (const_tree val)
323 {
324 return (TREE_OVERFLOW_P (val)
325 && needs_overflow_infinity (TREE_TYPE (val))
326 && vrp_val_is_min (val));
327 }
328
329 /* Return whether VAL is a positive overflow infinity. */
330
331 static inline bool
332 is_positive_overflow_infinity (const_tree val)
333 {
334 return (TREE_OVERFLOW_P (val)
335 && needs_overflow_infinity (TREE_TYPE (val))
336 && vrp_val_is_max (val));
337 }
338
339 /* Return whether VAL is a positive or negative overflow infinity. */
340
341 static inline bool
342 is_overflow_infinity (const_tree val)
343 {
344 return (TREE_OVERFLOW_P (val)
345 && needs_overflow_infinity (TREE_TYPE (val))
346 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
347 }
348
349 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
350
351 static inline bool
352 stmt_overflow_infinity (gimple stmt)
353 {
354 if (is_gimple_assign (stmt)
355 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
356 GIMPLE_SINGLE_RHS)
357 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
358 return false;
359 }
360
361 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
362 the same value with TREE_OVERFLOW clear. This can be used to avoid
363 confusing a regular value with an overflow value. */
364
365 static inline tree
366 avoid_overflow_infinity (tree val)
367 {
368 if (!is_overflow_infinity (val))
369 return val;
370
371 if (vrp_val_is_max (val))
372 return vrp_val_max (TREE_TYPE (val));
373 else
374 {
375 gcc_checking_assert (vrp_val_is_min (val));
376 return vrp_val_min (TREE_TYPE (val));
377 }
378 }
379
380
381 /* Return true if ARG is marked with the nonnull attribute in the
382 current function signature. */
383
384 static bool
385 nonnull_arg_p (const_tree arg)
386 {
387 tree t, attrs, fntype;
388 unsigned HOST_WIDE_INT arg_num;
389
390 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
391
392 /* The static chain decl is always non null. */
393 if (arg == cfun->static_chain_decl)
394 return true;
395
396 fntype = TREE_TYPE (current_function_decl);
397 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
398 {
399 attrs = lookup_attribute ("nonnull", attrs);
400
401 /* If "nonnull" wasn't specified, we know nothing about the argument. */
402 if (attrs == NULL_TREE)
403 return false;
404
405 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
406 if (TREE_VALUE (attrs) == NULL_TREE)
407 return true;
408
409 /* Get the position number for ARG in the function signature. */
410 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
411 t;
412 t = DECL_CHAIN (t), arg_num++)
413 {
414 if (t == arg)
415 break;
416 }
417
418 gcc_assert (t == arg);
419
420 /* Now see if ARG_NUM is mentioned in the nonnull list. */
421 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
422 {
423 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
424 return true;
425 }
426 }
427
428 return false;
429 }
430
431
432 /* Set value range VR to VR_UNDEFINED. */
433
434 static inline void
435 set_value_range_to_undefined (value_range_t *vr)
436 {
437 vr->type = VR_UNDEFINED;
438 vr->min = vr->max = NULL_TREE;
439 if (vr->equiv)
440 bitmap_clear (vr->equiv);
441 }
442
443
444 /* Set value range VR to VR_VARYING. */
445
446 static inline void
447 set_value_range_to_varying (value_range_t *vr)
448 {
449 vr->type = VR_VARYING;
450 vr->min = vr->max = NULL_TREE;
451 if (vr->equiv)
452 bitmap_clear (vr->equiv);
453 }
454
455
456 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
457
458 static void
459 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
460 tree max, bitmap equiv)
461 {
462 #if defined ENABLE_CHECKING
463 /* Check the validity of the range. */
464 if (t == VR_RANGE || t == VR_ANTI_RANGE)
465 {
466 int cmp;
467
468 gcc_assert (min && max);
469
470 gcc_assert ((!TREE_OVERFLOW_P (min) || is_overflow_infinity (min))
471 && (!TREE_OVERFLOW_P (max) || is_overflow_infinity (max)));
472
473 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
474 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
475
476 cmp = compare_values (min, max);
477 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
478
479 if (needs_overflow_infinity (TREE_TYPE (min)))
480 gcc_assert (!is_overflow_infinity (min)
481 || !is_overflow_infinity (max));
482 }
483
484 if (t == VR_UNDEFINED || t == VR_VARYING)
485 gcc_assert (min == NULL_TREE && max == NULL_TREE);
486
487 if (t == VR_UNDEFINED || t == VR_VARYING)
488 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
489 #endif
490
491 vr->type = t;
492 vr->min = min;
493 vr->max = max;
494
495 /* Since updating the equivalence set involves deep copying the
496 bitmaps, only do it if absolutely necessary. */
497 if (vr->equiv == NULL
498 && equiv != NULL)
499 vr->equiv = BITMAP_ALLOC (NULL);
500
501 if (equiv != vr->equiv)
502 {
503 if (equiv && !bitmap_empty_p (equiv))
504 bitmap_copy (vr->equiv, equiv);
505 else
506 bitmap_clear (vr->equiv);
507 }
508 }
509
510
511 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
512 This means adjusting T, MIN and MAX representing the case of a
513 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
514 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
515 In corner cases where MAX+1 or MIN-1 wraps this will fall back
516 to varying.
517 This routine exists to ease canonicalization in the case where we
518 extract ranges from var + CST op limit. */
519
520 static void
521 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
522 tree min, tree max, bitmap equiv)
523 {
524 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
525 if (t == VR_UNDEFINED)
526 {
527 set_value_range_to_undefined (vr);
528 return;
529 }
530 else if (t == VR_VARYING)
531 {
532 set_value_range_to_varying (vr);
533 return;
534 }
535
536 /* Nothing to canonicalize for symbolic ranges. */
537 if (TREE_CODE (min) != INTEGER_CST
538 || TREE_CODE (max) != INTEGER_CST)
539 {
540 set_value_range (vr, t, min, max, equiv);
541 return;
542 }
543
544 /* Wrong order for min and max, to swap them and the VR type we need
545 to adjust them. */
546 if (tree_int_cst_lt (max, min))
547 {
548 tree one, tmp;
549
550 /* For one bit precision if max < min, then the swapped
551 range covers all values, so for VR_RANGE it is varying and
552 for VR_ANTI_RANGE empty range, so drop to varying as well. */
553 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
554 {
555 set_value_range_to_varying (vr);
556 return;
557 }
558
559 one = build_int_cst (TREE_TYPE (min), 1);
560 tmp = int_const_binop (PLUS_EXPR, max, one);
561 max = int_const_binop (MINUS_EXPR, min, one);
562 min = tmp;
563
564 /* There's one corner case, if we had [C+1, C] before we now have
565 that again. But this represents an empty value range, so drop
566 to varying in this case. */
567 if (tree_int_cst_lt (max, min))
568 {
569 set_value_range_to_varying (vr);
570 return;
571 }
572
573 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
574 }
575
576 /* Anti-ranges that can be represented as ranges should be so. */
577 if (t == VR_ANTI_RANGE)
578 {
579 bool is_min = vrp_val_is_min (min);
580 bool is_max = vrp_val_is_max (max);
581
582 if (is_min && is_max)
583 {
584 /* We cannot deal with empty ranges, drop to varying.
585 ??? This could be VR_UNDEFINED instead. */
586 set_value_range_to_varying (vr);
587 return;
588 }
589 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
590 && (is_min || is_max))
591 {
592 /* Non-empty boolean ranges can always be represented
593 as a singleton range. */
594 if (is_min)
595 min = max = vrp_val_max (TREE_TYPE (min));
596 else
597 min = max = vrp_val_min (TREE_TYPE (min));
598 t = VR_RANGE;
599 }
600 else if (is_min
601 /* As a special exception preserve non-null ranges. */
602 && !(TYPE_UNSIGNED (TREE_TYPE (min))
603 && integer_zerop (max)))
604 {
605 tree one = build_int_cst (TREE_TYPE (max), 1);
606 min = int_const_binop (PLUS_EXPR, max, one);
607 max = vrp_val_max (TREE_TYPE (max));
608 t = VR_RANGE;
609 }
610 else if (is_max)
611 {
612 tree one = build_int_cst (TREE_TYPE (min), 1);
613 max = int_const_binop (MINUS_EXPR, min, one);
614 min = vrp_val_min (TREE_TYPE (min));
615 t = VR_RANGE;
616 }
617 }
618
619 /* Drop [-INF(OVF), +INF(OVF)] to varying. */
620 if (needs_overflow_infinity (TREE_TYPE (min))
621 && is_overflow_infinity (min)
622 && is_overflow_infinity (max))
623 {
624 set_value_range_to_varying (vr);
625 return;
626 }
627
628 set_value_range (vr, t, min, max, equiv);
629 }
630
631 /* Copy value range FROM into value range TO. */
632
633 static inline void
634 copy_value_range (value_range_t *to, value_range_t *from)
635 {
636 set_value_range (to, from->type, from->min, from->max, from->equiv);
637 }
638
639 /* Set value range VR to a single value. This function is only called
640 with values we get from statements, and exists to clear the
641 TREE_OVERFLOW flag so that we don't think we have an overflow
642 infinity when we shouldn't. */
643
644 static inline void
645 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
646 {
647 gcc_assert (is_gimple_min_invariant (val));
648 if (TREE_OVERFLOW_P (val))
649 val = drop_tree_overflow (val);
650 set_value_range (vr, VR_RANGE, val, val, equiv);
651 }
652
653 /* Set value range VR to a non-negative range of type TYPE.
654 OVERFLOW_INFINITY indicates whether to use an overflow infinity
655 rather than TYPE_MAX_VALUE; this should be true if we determine
656 that the range is nonnegative based on the assumption that signed
657 overflow does not occur. */
658
659 static inline void
660 set_value_range_to_nonnegative (value_range_t *vr, tree type,
661 bool overflow_infinity)
662 {
663 tree zero;
664
665 if (overflow_infinity && !supports_overflow_infinity (type))
666 {
667 set_value_range_to_varying (vr);
668 return;
669 }
670
671 zero = build_int_cst (type, 0);
672 set_value_range (vr, VR_RANGE, zero,
673 (overflow_infinity
674 ? positive_overflow_infinity (type)
675 : TYPE_MAX_VALUE (type)),
676 vr->equiv);
677 }
678
679 /* Set value range VR to a non-NULL range of type TYPE. */
680
681 static inline void
682 set_value_range_to_nonnull (value_range_t *vr, tree type)
683 {
684 tree zero = build_int_cst (type, 0);
685 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
686 }
687
688
689 /* Set value range VR to a NULL range of type TYPE. */
690
691 static inline void
692 set_value_range_to_null (value_range_t *vr, tree type)
693 {
694 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
695 }
696
697
698 /* Set value range VR to a range of a truthvalue of type TYPE. */
699
700 static inline void
701 set_value_range_to_truthvalue (value_range_t *vr, tree type)
702 {
703 if (TYPE_PRECISION (type) == 1)
704 set_value_range_to_varying (vr);
705 else
706 set_value_range (vr, VR_RANGE,
707 build_int_cst (type, 0), build_int_cst (type, 1),
708 vr->equiv);
709 }
710
711
712 /* If abs (min) < abs (max), set VR to [-max, max], if
713 abs (min) >= abs (max), set VR to [-min, min]. */
714
715 static void
716 abs_extent_range (value_range_t *vr, tree min, tree max)
717 {
718 int cmp;
719
720 gcc_assert (TREE_CODE (min) == INTEGER_CST);
721 gcc_assert (TREE_CODE (max) == INTEGER_CST);
722 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
723 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
724 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
725 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
726 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
727 {
728 set_value_range_to_varying (vr);
729 return;
730 }
731 cmp = compare_values (min, max);
732 if (cmp == -1)
733 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
734 else if (cmp == 0 || cmp == 1)
735 {
736 max = min;
737 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
738 }
739 else
740 {
741 set_value_range_to_varying (vr);
742 return;
743 }
744 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
745 }
746
747
748 /* Return value range information for VAR.
749
750 If we have no values ranges recorded (ie, VRP is not running), then
751 return NULL. Otherwise create an empty range if none existed for VAR. */
752
753 static value_range_t *
754 get_value_range (const_tree var)
755 {
756 static const struct value_range_d vr_const_varying
757 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
758 value_range_t *vr;
759 tree sym;
760 unsigned ver = SSA_NAME_VERSION (var);
761
762 /* If we have no recorded ranges, then return NULL. */
763 if (! vr_value)
764 return NULL;
765
766 /* If we query the range for a new SSA name return an unmodifiable VARYING.
767 We should get here at most from the substitute-and-fold stage which
768 will never try to change values. */
769 if (ver >= num_vr_values)
770 return CONST_CAST (value_range_t *, &vr_const_varying);
771
772 vr = vr_value[ver];
773 if (vr)
774 return vr;
775
776 /* After propagation finished do not allocate new value-ranges. */
777 if (values_propagated)
778 return CONST_CAST (value_range_t *, &vr_const_varying);
779
780 /* Create a default value range. */
781 vr_value[ver] = vr = XCNEW (value_range_t);
782
783 /* Defer allocating the equivalence set. */
784 vr->equiv = NULL;
785
786 /* If VAR is a default definition of a parameter, the variable can
787 take any value in VAR's type. */
788 if (SSA_NAME_IS_DEFAULT_DEF (var))
789 {
790 sym = SSA_NAME_VAR (var);
791 if (TREE_CODE (sym) == PARM_DECL)
792 {
793 /* Try to use the "nonnull" attribute to create ~[0, 0]
794 anti-ranges for pointers. Note that this is only valid with
795 default definitions of PARM_DECLs. */
796 if (POINTER_TYPE_P (TREE_TYPE (sym))
797 && nonnull_arg_p (sym))
798 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
799 else
800 set_value_range_to_varying (vr);
801 }
802 else if (TREE_CODE (sym) == RESULT_DECL
803 && DECL_BY_REFERENCE (sym))
804 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
805 }
806
807 return vr;
808 }
809
810 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
811
812 static inline bool
813 vrp_operand_equal_p (const_tree val1, const_tree val2)
814 {
815 if (val1 == val2)
816 return true;
817 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
818 return false;
819 return is_overflow_infinity (val1) == is_overflow_infinity (val2);
820 }
821
822 /* Return true, if the bitmaps B1 and B2 are equal. */
823
824 static inline bool
825 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
826 {
827 return (b1 == b2
828 || ((!b1 || bitmap_empty_p (b1))
829 && (!b2 || bitmap_empty_p (b2)))
830 || (b1 && b2
831 && bitmap_equal_p (b1, b2)));
832 }
833
834 /* Update the value range and equivalence set for variable VAR to
835 NEW_VR. Return true if NEW_VR is different from VAR's previous
836 value.
837
838 NOTE: This function assumes that NEW_VR is a temporary value range
839 object created for the sole purpose of updating VAR's range. The
840 storage used by the equivalence set from NEW_VR will be freed by
841 this function. Do not call update_value_range when NEW_VR
842 is the range object associated with another SSA name. */
843
844 static inline bool
845 update_value_range (const_tree var, value_range_t *new_vr)
846 {
847 value_range_t *old_vr;
848 bool is_new;
849
850 /* If there is a value-range on the SSA name from earlier analysis
851 factor that in. */
852 if (INTEGRAL_TYPE_P (TREE_TYPE (var)))
853 {
854 wide_int min, max;
855 value_range_type rtype = get_range_info (var, &min, &max);
856 if (rtype == VR_RANGE || rtype == VR_ANTI_RANGE)
857 {
858 value_range_d nr;
859 nr.type = rtype;
860 nr.min = wide_int_to_tree (TREE_TYPE (var), min);
861 nr.max = wide_int_to_tree (TREE_TYPE (var), max);
862 nr.equiv = NULL;
863 vrp_intersect_ranges (new_vr, &nr);
864 }
865 }
866
867 /* Update the value range, if necessary. */
868 old_vr = get_value_range (var);
869 is_new = old_vr->type != new_vr->type
870 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
871 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
872 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
873
874 if (is_new)
875 {
876 /* Do not allow transitions up the lattice. The following
877 is slightly more awkward than just new_vr->type < old_vr->type
878 because VR_RANGE and VR_ANTI_RANGE need to be considered
879 the same. We may not have is_new when transitioning to
880 UNDEFINED or from VARYING. */
881 if (new_vr->type == VR_UNDEFINED
882 || old_vr->type == VR_VARYING)
883 set_value_range_to_varying (old_vr);
884 else
885 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
886 new_vr->equiv);
887 }
888
889 BITMAP_FREE (new_vr->equiv);
890
891 return is_new;
892 }
893
894
895 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
896 point where equivalence processing can be turned on/off. */
897
898 static void
899 add_equivalence (bitmap *equiv, const_tree var)
900 {
901 unsigned ver = SSA_NAME_VERSION (var);
902 value_range_t *vr = vr_value[ver];
903
904 if (*equiv == NULL)
905 *equiv = BITMAP_ALLOC (NULL);
906 bitmap_set_bit (*equiv, ver);
907 if (vr && vr->equiv)
908 bitmap_ior_into (*equiv, vr->equiv);
909 }
910
911
912 /* Return true if VR is ~[0, 0]. */
913
914 static inline bool
915 range_is_nonnull (value_range_t *vr)
916 {
917 return vr->type == VR_ANTI_RANGE
918 && integer_zerop (vr->min)
919 && integer_zerop (vr->max);
920 }
921
922
923 /* Return true if VR is [0, 0]. */
924
925 static inline bool
926 range_is_null (value_range_t *vr)
927 {
928 return vr->type == VR_RANGE
929 && integer_zerop (vr->min)
930 && integer_zerop (vr->max);
931 }
932
933 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
934 a singleton. */
935
936 static inline bool
937 range_int_cst_p (value_range_t *vr)
938 {
939 return (vr->type == VR_RANGE
940 && TREE_CODE (vr->max) == INTEGER_CST
941 && TREE_CODE (vr->min) == INTEGER_CST);
942 }
943
944 /* Return true if VR is a INTEGER_CST singleton. */
945
946 static inline bool
947 range_int_cst_singleton_p (value_range_t *vr)
948 {
949 return (range_int_cst_p (vr)
950 && !is_overflow_infinity (vr->min)
951 && !is_overflow_infinity (vr->max)
952 && tree_int_cst_equal (vr->min, vr->max));
953 }
954
955 /* Return true if value range VR involves at least one symbol. */
956
957 static inline bool
958 symbolic_range_p (value_range_t *vr)
959 {
960 return (!is_gimple_min_invariant (vr->min)
961 || !is_gimple_min_invariant (vr->max));
962 }
963
964 /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
965 otherwise. We only handle additive operations and set NEG to true if the
966 symbol is negated and INV to the invariant part, if any. */
967
968 static tree
969 get_single_symbol (tree t, bool *neg, tree *inv)
970 {
971 bool neg_;
972 tree inv_;
973
974 if (TREE_CODE (t) == PLUS_EXPR
975 || TREE_CODE (t) == POINTER_PLUS_EXPR
976 || TREE_CODE (t) == MINUS_EXPR)
977 {
978 if (is_gimple_min_invariant (TREE_OPERAND (t, 0)))
979 {
980 neg_ = (TREE_CODE (t) == MINUS_EXPR);
981 inv_ = TREE_OPERAND (t, 0);
982 t = TREE_OPERAND (t, 1);
983 }
984 else if (is_gimple_min_invariant (TREE_OPERAND (t, 1)))
985 {
986 neg_ = false;
987 inv_ = TREE_OPERAND (t, 1);
988 t = TREE_OPERAND (t, 0);
989 }
990 else
991 return NULL_TREE;
992 }
993 else
994 {
995 neg_ = false;
996 inv_ = NULL_TREE;
997 }
998
999 if (TREE_CODE (t) == NEGATE_EXPR)
1000 {
1001 t = TREE_OPERAND (t, 0);
1002 neg_ = !neg_;
1003 }
1004
1005 if (TREE_CODE (t) != SSA_NAME)
1006 return NULL_TREE;
1007
1008 *neg = neg_;
1009 *inv = inv_;
1010 return t;
1011 }
1012
1013 /* The reverse operation: build a symbolic expression with TYPE
1014 from symbol SYM, negated according to NEG, and invariant INV. */
1015
1016 static tree
1017 build_symbolic_expr (tree type, tree sym, bool neg, tree inv)
1018 {
1019 const bool pointer_p = POINTER_TYPE_P (type);
1020 tree t = sym;
1021
1022 if (neg)
1023 t = build1 (NEGATE_EXPR, type, t);
1024
1025 if (integer_zerop (inv))
1026 return t;
1027
1028 return build2 (pointer_p ? POINTER_PLUS_EXPR : PLUS_EXPR, type, t, inv);
1029 }
1030
1031 /* Return true if value range VR involves exactly one symbol SYM. */
1032
1033 static bool
1034 symbolic_range_based_on_p (value_range_t *vr, const_tree sym)
1035 {
1036 bool neg, min_has_symbol, max_has_symbol;
1037 tree inv;
1038
1039 if (is_gimple_min_invariant (vr->min))
1040 min_has_symbol = false;
1041 else if (get_single_symbol (vr->min, &neg, &inv) == sym)
1042 min_has_symbol = true;
1043 else
1044 return false;
1045
1046 if (is_gimple_min_invariant (vr->max))
1047 max_has_symbol = false;
1048 else if (get_single_symbol (vr->max, &neg, &inv) == sym)
1049 max_has_symbol = true;
1050 else
1051 return false;
1052
1053 return (min_has_symbol || max_has_symbol);
1054 }
1055
1056 /* Return true if value range VR uses an overflow infinity. */
1057
1058 static inline bool
1059 overflow_infinity_range_p (value_range_t *vr)
1060 {
1061 return (vr->type == VR_RANGE
1062 && (is_overflow_infinity (vr->min)
1063 || is_overflow_infinity (vr->max)));
1064 }
1065
1066 /* Return false if we can not make a valid comparison based on VR;
1067 this will be the case if it uses an overflow infinity and overflow
1068 is not undefined (i.e., -fno-strict-overflow is in effect).
1069 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
1070 uses an overflow infinity. */
1071
1072 static bool
1073 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
1074 {
1075 gcc_assert (vr->type == VR_RANGE);
1076 if (is_overflow_infinity (vr->min))
1077 {
1078 *strict_overflow_p = true;
1079 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
1080 return false;
1081 }
1082 if (is_overflow_infinity (vr->max))
1083 {
1084 *strict_overflow_p = true;
1085 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
1086 return false;
1087 }
1088 return true;
1089 }
1090
1091
1092 /* Return true if the result of assignment STMT is know to be non-negative.
1093 If the return value is based on the assumption that signed overflow is
1094 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1095 *STRICT_OVERFLOW_P.*/
1096
1097 static bool
1098 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
1099 {
1100 enum tree_code code = gimple_assign_rhs_code (stmt);
1101 switch (get_gimple_rhs_class (code))
1102 {
1103 case GIMPLE_UNARY_RHS:
1104 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
1105 gimple_expr_type (stmt),
1106 gimple_assign_rhs1 (stmt),
1107 strict_overflow_p);
1108 case GIMPLE_BINARY_RHS:
1109 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
1110 gimple_expr_type (stmt),
1111 gimple_assign_rhs1 (stmt),
1112 gimple_assign_rhs2 (stmt),
1113 strict_overflow_p);
1114 case GIMPLE_TERNARY_RHS:
1115 return false;
1116 case GIMPLE_SINGLE_RHS:
1117 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
1118 strict_overflow_p);
1119 case GIMPLE_INVALID_RHS:
1120 gcc_unreachable ();
1121 default:
1122 gcc_unreachable ();
1123 }
1124 }
1125
1126 /* Return true if return value of call STMT is know to be non-negative.
1127 If the return value is based on the assumption that signed overflow is
1128 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1129 *STRICT_OVERFLOW_P.*/
1130
1131 static bool
1132 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
1133 {
1134 tree arg0 = gimple_call_num_args (stmt) > 0 ?
1135 gimple_call_arg (stmt, 0) : NULL_TREE;
1136 tree arg1 = gimple_call_num_args (stmt) > 1 ?
1137 gimple_call_arg (stmt, 1) : NULL_TREE;
1138
1139 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
1140 gimple_call_fndecl (stmt),
1141 arg0,
1142 arg1,
1143 strict_overflow_p);
1144 }
1145
1146 /* Return true if STMT is know to to compute a non-negative value.
1147 If the return value is based on the assumption that signed overflow is
1148 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1149 *STRICT_OVERFLOW_P.*/
1150
1151 static bool
1152 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
1153 {
1154 switch (gimple_code (stmt))
1155 {
1156 case GIMPLE_ASSIGN:
1157 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
1158 case GIMPLE_CALL:
1159 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
1160 default:
1161 gcc_unreachable ();
1162 }
1163 }
1164
1165 /* Return true if the result of assignment STMT is know to be non-zero.
1166 If the return value is based on the assumption that signed overflow is
1167 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1168 *STRICT_OVERFLOW_P.*/
1169
1170 static bool
1171 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1172 {
1173 enum tree_code code = gimple_assign_rhs_code (stmt);
1174 switch (get_gimple_rhs_class (code))
1175 {
1176 case GIMPLE_UNARY_RHS:
1177 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1178 gimple_expr_type (stmt),
1179 gimple_assign_rhs1 (stmt),
1180 strict_overflow_p);
1181 case GIMPLE_BINARY_RHS:
1182 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1183 gimple_expr_type (stmt),
1184 gimple_assign_rhs1 (stmt),
1185 gimple_assign_rhs2 (stmt),
1186 strict_overflow_p);
1187 case GIMPLE_TERNARY_RHS:
1188 return false;
1189 case GIMPLE_SINGLE_RHS:
1190 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
1191 strict_overflow_p);
1192 case GIMPLE_INVALID_RHS:
1193 gcc_unreachable ();
1194 default:
1195 gcc_unreachable ();
1196 }
1197 }
1198
1199 /* Return true if STMT is known to compute a non-zero value.
1200 If the return value is based on the assumption that signed overflow is
1201 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1202 *STRICT_OVERFLOW_P.*/
1203
1204 static bool
1205 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1206 {
1207 switch (gimple_code (stmt))
1208 {
1209 case GIMPLE_ASSIGN:
1210 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
1211 case GIMPLE_CALL:
1212 {
1213 tree fndecl = gimple_call_fndecl (stmt);
1214 if (!fndecl) return false;
1215 if (flag_delete_null_pointer_checks && !flag_check_new
1216 && DECL_IS_OPERATOR_NEW (fndecl)
1217 && !TREE_NOTHROW (fndecl))
1218 return true;
1219 if (flag_delete_null_pointer_checks &&
1220 lookup_attribute ("returns_nonnull",
1221 TYPE_ATTRIBUTES (gimple_call_fntype (stmt))))
1222 return true;
1223 return gimple_alloca_call_p (stmt);
1224 }
1225 default:
1226 gcc_unreachable ();
1227 }
1228 }
1229
1230 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1231 obtained so far. */
1232
1233 static bool
1234 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
1235 {
1236 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1237 return true;
1238
1239 /* If we have an expression of the form &X->a, then the expression
1240 is nonnull if X is nonnull. */
1241 if (is_gimple_assign (stmt)
1242 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1243 {
1244 tree expr = gimple_assign_rhs1 (stmt);
1245 tree base = get_base_address (TREE_OPERAND (expr, 0));
1246
1247 if (base != NULL_TREE
1248 && TREE_CODE (base) == MEM_REF
1249 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1250 {
1251 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
1252 if (range_is_nonnull (vr))
1253 return true;
1254 }
1255 }
1256
1257 return false;
1258 }
1259
1260 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1261 a gimple invariant, or SSA_NAME +- CST. */
1262
1263 static bool
1264 valid_value_p (tree expr)
1265 {
1266 if (TREE_CODE (expr) == SSA_NAME)
1267 return true;
1268
1269 if (TREE_CODE (expr) == PLUS_EXPR
1270 || TREE_CODE (expr) == MINUS_EXPR)
1271 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1272 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1273
1274 return is_gimple_min_invariant (expr);
1275 }
1276
1277 /* Return
1278 1 if VAL < VAL2
1279 0 if !(VAL < VAL2)
1280 -2 if those are incomparable. */
1281 static inline int
1282 operand_less_p (tree val, tree val2)
1283 {
1284 /* LT is folded faster than GE and others. Inline the common case. */
1285 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1286 return tree_int_cst_lt (val, val2);
1287 else
1288 {
1289 tree tcmp;
1290
1291 fold_defer_overflow_warnings ();
1292
1293 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1294
1295 fold_undefer_and_ignore_overflow_warnings ();
1296
1297 if (!tcmp
1298 || TREE_CODE (tcmp) != INTEGER_CST)
1299 return -2;
1300
1301 if (!integer_zerop (tcmp))
1302 return 1;
1303 }
1304
1305 /* val >= val2, not considering overflow infinity. */
1306 if (is_negative_overflow_infinity (val))
1307 return is_negative_overflow_infinity (val2) ? 0 : 1;
1308 else if (is_positive_overflow_infinity (val2))
1309 return is_positive_overflow_infinity (val) ? 0 : 1;
1310
1311 return 0;
1312 }
1313
1314 /* Compare two values VAL1 and VAL2. Return
1315
1316 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1317 -1 if VAL1 < VAL2,
1318 0 if VAL1 == VAL2,
1319 +1 if VAL1 > VAL2, and
1320 +2 if VAL1 != VAL2
1321
1322 This is similar to tree_int_cst_compare but supports pointer values
1323 and values that cannot be compared at compile time.
1324
1325 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1326 true if the return value is only valid if we assume that signed
1327 overflow is undefined. */
1328
1329 static int
1330 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1331 {
1332 if (val1 == val2)
1333 return 0;
1334
1335 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1336 both integers. */
1337 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1338 == POINTER_TYPE_P (TREE_TYPE (val2)));
1339
1340 /* Convert the two values into the same type. This is needed because
1341 sizetype causes sign extension even for unsigned types. */
1342 val2 = fold_convert (TREE_TYPE (val1), val2);
1343 STRIP_USELESS_TYPE_CONVERSION (val2);
1344
1345 if ((TREE_CODE (val1) == SSA_NAME
1346 || (TREE_CODE (val1) == NEGATE_EXPR
1347 && TREE_CODE (TREE_OPERAND (val1, 0)) == SSA_NAME)
1348 || TREE_CODE (val1) == PLUS_EXPR
1349 || TREE_CODE (val1) == MINUS_EXPR)
1350 && (TREE_CODE (val2) == SSA_NAME
1351 || (TREE_CODE (val2) == NEGATE_EXPR
1352 && TREE_CODE (TREE_OPERAND (val2, 0)) == SSA_NAME)
1353 || TREE_CODE (val2) == PLUS_EXPR
1354 || TREE_CODE (val2) == MINUS_EXPR))
1355 {
1356 tree n1, c1, n2, c2;
1357 enum tree_code code1, code2;
1358
1359 /* If VAL1 and VAL2 are of the form '[-]NAME [+-] CST' or 'NAME',
1360 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1361 same name, return -2. */
1362 if (TREE_CODE (val1) == SSA_NAME || TREE_CODE (val1) == NEGATE_EXPR)
1363 {
1364 code1 = SSA_NAME;
1365 n1 = val1;
1366 c1 = NULL_TREE;
1367 }
1368 else
1369 {
1370 code1 = TREE_CODE (val1);
1371 n1 = TREE_OPERAND (val1, 0);
1372 c1 = TREE_OPERAND (val1, 1);
1373 if (tree_int_cst_sgn (c1) == -1)
1374 {
1375 if (is_negative_overflow_infinity (c1))
1376 return -2;
1377 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1378 if (!c1)
1379 return -2;
1380 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1381 }
1382 }
1383
1384 if (TREE_CODE (val2) == SSA_NAME || TREE_CODE (val2) == NEGATE_EXPR)
1385 {
1386 code2 = SSA_NAME;
1387 n2 = val2;
1388 c2 = NULL_TREE;
1389 }
1390 else
1391 {
1392 code2 = TREE_CODE (val2);
1393 n2 = TREE_OPERAND (val2, 0);
1394 c2 = TREE_OPERAND (val2, 1);
1395 if (tree_int_cst_sgn (c2) == -1)
1396 {
1397 if (is_negative_overflow_infinity (c2))
1398 return -2;
1399 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1400 if (!c2)
1401 return -2;
1402 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1403 }
1404 }
1405
1406 /* Both values must use the same name. */
1407 if (TREE_CODE (n1) == NEGATE_EXPR && TREE_CODE (n2) == NEGATE_EXPR)
1408 {
1409 n1 = TREE_OPERAND (n1, 0);
1410 n2 = TREE_OPERAND (n2, 0);
1411 }
1412 if (n1 != n2)
1413 return -2;
1414
1415 if (code1 == SSA_NAME && code2 == SSA_NAME)
1416 /* NAME == NAME */
1417 return 0;
1418
1419 /* If overflow is defined we cannot simplify more. */
1420 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1421 return -2;
1422
1423 if (strict_overflow_p != NULL
1424 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1425 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1426 *strict_overflow_p = true;
1427
1428 if (code1 == SSA_NAME)
1429 {
1430 if (code2 == PLUS_EXPR)
1431 /* NAME < NAME + CST */
1432 return -1;
1433 else if (code2 == MINUS_EXPR)
1434 /* NAME > NAME - CST */
1435 return 1;
1436 }
1437 else if (code1 == PLUS_EXPR)
1438 {
1439 if (code2 == SSA_NAME)
1440 /* NAME + CST > NAME */
1441 return 1;
1442 else if (code2 == PLUS_EXPR)
1443 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1444 return compare_values_warnv (c1, c2, strict_overflow_p);
1445 else if (code2 == MINUS_EXPR)
1446 /* NAME + CST1 > NAME - CST2 */
1447 return 1;
1448 }
1449 else if (code1 == MINUS_EXPR)
1450 {
1451 if (code2 == SSA_NAME)
1452 /* NAME - CST < NAME */
1453 return -1;
1454 else if (code2 == PLUS_EXPR)
1455 /* NAME - CST1 < NAME + CST2 */
1456 return -1;
1457 else if (code2 == MINUS_EXPR)
1458 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1459 C1 and C2 are swapped in the call to compare_values. */
1460 return compare_values_warnv (c2, c1, strict_overflow_p);
1461 }
1462
1463 gcc_unreachable ();
1464 }
1465
1466 /* We cannot compare non-constants. */
1467 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1468 return -2;
1469
1470 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1471 {
1472 /* We cannot compare overflowed values, except for overflow
1473 infinities. */
1474 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1475 {
1476 if (strict_overflow_p != NULL)
1477 *strict_overflow_p = true;
1478 if (is_negative_overflow_infinity (val1))
1479 return is_negative_overflow_infinity (val2) ? 0 : -1;
1480 else if (is_negative_overflow_infinity (val2))
1481 return 1;
1482 else if (is_positive_overflow_infinity (val1))
1483 return is_positive_overflow_infinity (val2) ? 0 : 1;
1484 else if (is_positive_overflow_infinity (val2))
1485 return -1;
1486 return -2;
1487 }
1488
1489 return tree_int_cst_compare (val1, val2);
1490 }
1491 else
1492 {
1493 tree t;
1494
1495 /* First see if VAL1 and VAL2 are not the same. */
1496 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1497 return 0;
1498
1499 /* If VAL1 is a lower address than VAL2, return -1. */
1500 if (operand_less_p (val1, val2) == 1)
1501 return -1;
1502
1503 /* If VAL1 is a higher address than VAL2, return +1. */
1504 if (operand_less_p (val2, val1) == 1)
1505 return 1;
1506
1507 /* If VAL1 is different than VAL2, return +2.
1508 For integer constants we either have already returned -1 or 1
1509 or they are equivalent. We still might succeed in proving
1510 something about non-trivial operands. */
1511 if (TREE_CODE (val1) != INTEGER_CST
1512 || TREE_CODE (val2) != INTEGER_CST)
1513 {
1514 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1515 if (t && integer_onep (t))
1516 return 2;
1517 }
1518
1519 return -2;
1520 }
1521 }
1522
1523 /* Compare values like compare_values_warnv, but treat comparisons of
1524 nonconstants which rely on undefined overflow as incomparable. */
1525
1526 static int
1527 compare_values (tree val1, tree val2)
1528 {
1529 bool sop;
1530 int ret;
1531
1532 sop = false;
1533 ret = compare_values_warnv (val1, val2, &sop);
1534 if (sop
1535 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1536 ret = -2;
1537 return ret;
1538 }
1539
1540
1541 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1542 0 if VAL is not inside [MIN, MAX],
1543 -2 if we cannot tell either way.
1544
1545 Benchmark compile/20001226-1.c compilation time after changing this
1546 function. */
1547
1548 static inline int
1549 value_inside_range (tree val, tree min, tree max)
1550 {
1551 int cmp1, cmp2;
1552
1553 cmp1 = operand_less_p (val, min);
1554 if (cmp1 == -2)
1555 return -2;
1556 if (cmp1 == 1)
1557 return 0;
1558
1559 cmp2 = operand_less_p (max, val);
1560 if (cmp2 == -2)
1561 return -2;
1562
1563 return !cmp2;
1564 }
1565
1566
1567 /* Return true if value ranges VR0 and VR1 have a non-empty
1568 intersection.
1569
1570 Benchmark compile/20001226-1.c compilation time after changing this
1571 function.
1572 */
1573
1574 static inline bool
1575 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1576 {
1577 /* The value ranges do not intersect if the maximum of the first range is
1578 less than the minimum of the second range or vice versa.
1579 When those relations are unknown, we can't do any better. */
1580 if (operand_less_p (vr0->max, vr1->min) != 0)
1581 return false;
1582 if (operand_less_p (vr1->max, vr0->min) != 0)
1583 return false;
1584 return true;
1585 }
1586
1587
1588 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1589 include the value zero, -2 if we cannot tell. */
1590
1591 static inline int
1592 range_includes_zero_p (tree min, tree max)
1593 {
1594 tree zero = build_int_cst (TREE_TYPE (min), 0);
1595 return value_inside_range (zero, min, max);
1596 }
1597
1598 /* Return true if *VR is know to only contain nonnegative values. */
1599
1600 static inline bool
1601 value_range_nonnegative_p (value_range_t *vr)
1602 {
1603 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1604 which would return a useful value should be encoded as a
1605 VR_RANGE. */
1606 if (vr->type == VR_RANGE)
1607 {
1608 int result = compare_values (vr->min, integer_zero_node);
1609 return (result == 0 || result == 1);
1610 }
1611
1612 return false;
1613 }
1614
1615 /* If *VR has a value rante that is a single constant value return that,
1616 otherwise return NULL_TREE. */
1617
1618 static tree
1619 value_range_constant_singleton (value_range_t *vr)
1620 {
1621 if (vr->type == VR_RANGE
1622 && operand_equal_p (vr->min, vr->max, 0)
1623 && is_gimple_min_invariant (vr->min))
1624 return vr->min;
1625
1626 return NULL_TREE;
1627 }
1628
1629 /* If OP has a value range with a single constant value return that,
1630 otherwise return NULL_TREE. This returns OP itself if OP is a
1631 constant. */
1632
1633 static tree
1634 op_with_constant_singleton_value_range (tree op)
1635 {
1636 if (is_gimple_min_invariant (op))
1637 return op;
1638
1639 if (TREE_CODE (op) != SSA_NAME)
1640 return NULL_TREE;
1641
1642 return value_range_constant_singleton (get_value_range (op));
1643 }
1644
1645 /* Return true if op is in a boolean [0, 1] value-range. */
1646
1647 static bool
1648 op_with_boolean_value_range_p (tree op)
1649 {
1650 value_range_t *vr;
1651
1652 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1653 return true;
1654
1655 if (integer_zerop (op)
1656 || integer_onep (op))
1657 return true;
1658
1659 if (TREE_CODE (op) != SSA_NAME)
1660 return false;
1661
1662 vr = get_value_range (op);
1663 return (vr->type == VR_RANGE
1664 && integer_zerop (vr->min)
1665 && integer_onep (vr->max));
1666 }
1667
1668 /* Extract value range information from an ASSERT_EXPR EXPR and store
1669 it in *VR_P. */
1670
1671 static void
1672 extract_range_from_assert (value_range_t *vr_p, tree expr)
1673 {
1674 tree var, cond, limit, min, max, type;
1675 value_range_t *limit_vr;
1676 enum tree_code cond_code;
1677
1678 var = ASSERT_EXPR_VAR (expr);
1679 cond = ASSERT_EXPR_COND (expr);
1680
1681 gcc_assert (COMPARISON_CLASS_P (cond));
1682
1683 /* Find VAR in the ASSERT_EXPR conditional. */
1684 if (var == TREE_OPERAND (cond, 0)
1685 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1686 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1687 {
1688 /* If the predicate is of the form VAR COMP LIMIT, then we just
1689 take LIMIT from the RHS and use the same comparison code. */
1690 cond_code = TREE_CODE (cond);
1691 limit = TREE_OPERAND (cond, 1);
1692 cond = TREE_OPERAND (cond, 0);
1693 }
1694 else
1695 {
1696 /* If the predicate is of the form LIMIT COMP VAR, then we need
1697 to flip around the comparison code to create the proper range
1698 for VAR. */
1699 cond_code = swap_tree_comparison (TREE_CODE (cond));
1700 limit = TREE_OPERAND (cond, 0);
1701 cond = TREE_OPERAND (cond, 1);
1702 }
1703
1704 limit = avoid_overflow_infinity (limit);
1705
1706 type = TREE_TYPE (var);
1707 gcc_assert (limit != var);
1708
1709 /* For pointer arithmetic, we only keep track of pointer equality
1710 and inequality. */
1711 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1712 {
1713 set_value_range_to_varying (vr_p);
1714 return;
1715 }
1716
1717 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1718 try to use LIMIT's range to avoid creating symbolic ranges
1719 unnecessarily. */
1720 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1721
1722 /* LIMIT's range is only interesting if it has any useful information. */
1723 if (limit_vr
1724 && (limit_vr->type == VR_UNDEFINED
1725 || limit_vr->type == VR_VARYING
1726 || symbolic_range_p (limit_vr)))
1727 limit_vr = NULL;
1728
1729 /* Initially, the new range has the same set of equivalences of
1730 VAR's range. This will be revised before returning the final
1731 value. Since assertions may be chained via mutually exclusive
1732 predicates, we will need to trim the set of equivalences before
1733 we are done. */
1734 gcc_assert (vr_p->equiv == NULL);
1735 add_equivalence (&vr_p->equiv, var);
1736
1737 /* Extract a new range based on the asserted comparison for VAR and
1738 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1739 will only use it for equality comparisons (EQ_EXPR). For any
1740 other kind of assertion, we cannot derive a range from LIMIT's
1741 anti-range that can be used to describe the new range. For
1742 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1743 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1744 no single range for x_2 that could describe LE_EXPR, so we might
1745 as well build the range [b_4, +INF] for it.
1746 One special case we handle is extracting a range from a
1747 range test encoded as (unsigned)var + CST <= limit. */
1748 if (TREE_CODE (cond) == NOP_EXPR
1749 || TREE_CODE (cond) == PLUS_EXPR)
1750 {
1751 if (TREE_CODE (cond) == PLUS_EXPR)
1752 {
1753 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1754 TREE_OPERAND (cond, 1));
1755 max = int_const_binop (PLUS_EXPR, limit, min);
1756 cond = TREE_OPERAND (cond, 0);
1757 }
1758 else
1759 {
1760 min = build_int_cst (TREE_TYPE (var), 0);
1761 max = limit;
1762 }
1763
1764 /* Make sure to not set TREE_OVERFLOW on the final type
1765 conversion. We are willingly interpreting large positive
1766 unsigned values as negative signed values here. */
1767 min = force_fit_type (TREE_TYPE (var), wi::to_widest (min), 0, false);
1768 max = force_fit_type (TREE_TYPE (var), wi::to_widest (max), 0, false);
1769
1770 /* We can transform a max, min range to an anti-range or
1771 vice-versa. Use set_and_canonicalize_value_range which does
1772 this for us. */
1773 if (cond_code == LE_EXPR)
1774 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1775 min, max, vr_p->equiv);
1776 else if (cond_code == GT_EXPR)
1777 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1778 min, max, vr_p->equiv);
1779 else
1780 gcc_unreachable ();
1781 }
1782 else if (cond_code == EQ_EXPR)
1783 {
1784 enum value_range_type range_type;
1785
1786 if (limit_vr)
1787 {
1788 range_type = limit_vr->type;
1789 min = limit_vr->min;
1790 max = limit_vr->max;
1791 }
1792 else
1793 {
1794 range_type = VR_RANGE;
1795 min = limit;
1796 max = limit;
1797 }
1798
1799 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1800
1801 /* When asserting the equality VAR == LIMIT and LIMIT is another
1802 SSA name, the new range will also inherit the equivalence set
1803 from LIMIT. */
1804 if (TREE_CODE (limit) == SSA_NAME)
1805 add_equivalence (&vr_p->equiv, limit);
1806 }
1807 else if (cond_code == NE_EXPR)
1808 {
1809 /* As described above, when LIMIT's range is an anti-range and
1810 this assertion is an inequality (NE_EXPR), then we cannot
1811 derive anything from the anti-range. For instance, if
1812 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1813 not imply that VAR's range is [0, 0]. So, in the case of
1814 anti-ranges, we just assert the inequality using LIMIT and
1815 not its anti-range.
1816
1817 If LIMIT_VR is a range, we can only use it to build a new
1818 anti-range if LIMIT_VR is a single-valued range. For
1819 instance, if LIMIT_VR is [0, 1], the predicate
1820 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1821 Rather, it means that for value 0 VAR should be ~[0, 0]
1822 and for value 1, VAR should be ~[1, 1]. We cannot
1823 represent these ranges.
1824
1825 The only situation in which we can build a valid
1826 anti-range is when LIMIT_VR is a single-valued range
1827 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1828 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1829 if (limit_vr
1830 && limit_vr->type == VR_RANGE
1831 && compare_values (limit_vr->min, limit_vr->max) == 0)
1832 {
1833 min = limit_vr->min;
1834 max = limit_vr->max;
1835 }
1836 else
1837 {
1838 /* In any other case, we cannot use LIMIT's range to build a
1839 valid anti-range. */
1840 min = max = limit;
1841 }
1842
1843 /* If MIN and MAX cover the whole range for their type, then
1844 just use the original LIMIT. */
1845 if (INTEGRAL_TYPE_P (type)
1846 && vrp_val_is_min (min)
1847 && vrp_val_is_max (max))
1848 min = max = limit;
1849
1850 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1851 min, max, vr_p->equiv);
1852 }
1853 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1854 {
1855 min = TYPE_MIN_VALUE (type);
1856
1857 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1858 max = limit;
1859 else
1860 {
1861 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1862 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1863 LT_EXPR. */
1864 max = limit_vr->max;
1865 }
1866
1867 /* If the maximum value forces us to be out of bounds, simply punt.
1868 It would be pointless to try and do anything more since this
1869 all should be optimized away above us. */
1870 if ((cond_code == LT_EXPR
1871 && compare_values (max, min) == 0)
1872 || is_overflow_infinity (max))
1873 set_value_range_to_varying (vr_p);
1874 else
1875 {
1876 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1877 if (cond_code == LT_EXPR)
1878 {
1879 if (TYPE_PRECISION (TREE_TYPE (max)) == 1
1880 && !TYPE_UNSIGNED (TREE_TYPE (max)))
1881 max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
1882 build_int_cst (TREE_TYPE (max), -1));
1883 else
1884 max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
1885 build_int_cst (TREE_TYPE (max), 1));
1886 if (EXPR_P (max))
1887 TREE_NO_WARNING (max) = 1;
1888 }
1889
1890 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1891 }
1892 }
1893 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1894 {
1895 max = TYPE_MAX_VALUE (type);
1896
1897 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1898 min = limit;
1899 else
1900 {
1901 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1902 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1903 GT_EXPR. */
1904 min = limit_vr->min;
1905 }
1906
1907 /* If the minimum value forces us to be out of bounds, simply punt.
1908 It would be pointless to try and do anything more since this
1909 all should be optimized away above us. */
1910 if ((cond_code == GT_EXPR
1911 && compare_values (min, max) == 0)
1912 || is_overflow_infinity (min))
1913 set_value_range_to_varying (vr_p);
1914 else
1915 {
1916 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1917 if (cond_code == GT_EXPR)
1918 {
1919 if (TYPE_PRECISION (TREE_TYPE (min)) == 1
1920 && !TYPE_UNSIGNED (TREE_TYPE (min)))
1921 min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
1922 build_int_cst (TREE_TYPE (min), -1));
1923 else
1924 min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
1925 build_int_cst (TREE_TYPE (min), 1));
1926 if (EXPR_P (min))
1927 TREE_NO_WARNING (min) = 1;
1928 }
1929
1930 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1931 }
1932 }
1933 else
1934 gcc_unreachable ();
1935
1936 /* Finally intersect the new range with what we already know about var. */
1937 vrp_intersect_ranges (vr_p, get_value_range (var));
1938 }
1939
1940
1941 /* Extract range information from SSA name VAR and store it in VR. If
1942 VAR has an interesting range, use it. Otherwise, create the
1943 range [VAR, VAR] and return it. This is useful in situations where
1944 we may have conditionals testing values of VARYING names. For
1945 instance,
1946
1947 x_3 = y_5;
1948 if (x_3 > y_5)
1949 ...
1950
1951 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1952 always false. */
1953
1954 static void
1955 extract_range_from_ssa_name (value_range_t *vr, tree var)
1956 {
1957 value_range_t *var_vr = get_value_range (var);
1958
1959 if (var_vr->type != VR_VARYING)
1960 copy_value_range (vr, var_vr);
1961 else
1962 set_value_range (vr, VR_RANGE, var, var, NULL);
1963
1964 add_equivalence (&vr->equiv, var);
1965 }
1966
1967
1968 /* Wrapper around int_const_binop. If the operation overflows and we
1969 are not using wrapping arithmetic, then adjust the result to be
1970 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1971 NULL_TREE if we need to use an overflow infinity representation but
1972 the type does not support it. */
1973
1974 static tree
1975 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1976 {
1977 tree res;
1978
1979 res = int_const_binop (code, val1, val2);
1980
1981 /* If we are using unsigned arithmetic, operate symbolically
1982 on -INF and +INF as int_const_binop only handles signed overflow. */
1983 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1984 {
1985 int checkz = compare_values (res, val1);
1986 bool overflow = false;
1987
1988 /* Ensure that res = val1 [+*] val2 >= val1
1989 or that res = val1 - val2 <= val1. */
1990 if ((code == PLUS_EXPR
1991 && !(checkz == 1 || checkz == 0))
1992 || (code == MINUS_EXPR
1993 && !(checkz == 0 || checkz == -1)))
1994 {
1995 overflow = true;
1996 }
1997 /* Checking for multiplication overflow is done by dividing the
1998 output of the multiplication by the first input of the
1999 multiplication. If the result of that division operation is
2000 not equal to the second input of the multiplication, then the
2001 multiplication overflowed. */
2002 else if (code == MULT_EXPR && !integer_zerop (val1))
2003 {
2004 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
2005 res,
2006 val1);
2007 int check = compare_values (tmp, val2);
2008
2009 if (check != 0)
2010 overflow = true;
2011 }
2012
2013 if (overflow)
2014 {
2015 res = copy_node (res);
2016 TREE_OVERFLOW (res) = 1;
2017 }
2018
2019 }
2020 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
2021 /* If the singed operation wraps then int_const_binop has done
2022 everything we want. */
2023 ;
2024 /* Signed division of -1/0 overflows and by the time it gets here
2025 returns NULL_TREE. */
2026 else if (!res)
2027 return NULL_TREE;
2028 else if ((TREE_OVERFLOW (res)
2029 && !TREE_OVERFLOW (val1)
2030 && !TREE_OVERFLOW (val2))
2031 || is_overflow_infinity (val1)
2032 || is_overflow_infinity (val2))
2033 {
2034 /* If the operation overflowed but neither VAL1 nor VAL2 are
2035 overflown, return -INF or +INF depending on the operation
2036 and the combination of signs of the operands. */
2037 int sgn1 = tree_int_cst_sgn (val1);
2038 int sgn2 = tree_int_cst_sgn (val2);
2039
2040 if (needs_overflow_infinity (TREE_TYPE (res))
2041 && !supports_overflow_infinity (TREE_TYPE (res)))
2042 return NULL_TREE;
2043
2044 /* We have to punt on adding infinities of different signs,
2045 since we can't tell what the sign of the result should be.
2046 Likewise for subtracting infinities of the same sign. */
2047 if (((code == PLUS_EXPR && sgn1 != sgn2)
2048 || (code == MINUS_EXPR && sgn1 == sgn2))
2049 && is_overflow_infinity (val1)
2050 && is_overflow_infinity (val2))
2051 return NULL_TREE;
2052
2053 /* Don't try to handle division or shifting of infinities. */
2054 if ((code == TRUNC_DIV_EXPR
2055 || code == FLOOR_DIV_EXPR
2056 || code == CEIL_DIV_EXPR
2057 || code == EXACT_DIV_EXPR
2058 || code == ROUND_DIV_EXPR
2059 || code == RSHIFT_EXPR)
2060 && (is_overflow_infinity (val1)
2061 || is_overflow_infinity (val2)))
2062 return NULL_TREE;
2063
2064 /* Notice that we only need to handle the restricted set of
2065 operations handled by extract_range_from_binary_expr.
2066 Among them, only multiplication, addition and subtraction
2067 can yield overflow without overflown operands because we
2068 are working with integral types only... except in the
2069 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
2070 for division too. */
2071
2072 /* For multiplication, the sign of the overflow is given
2073 by the comparison of the signs of the operands. */
2074 if ((code == MULT_EXPR && sgn1 == sgn2)
2075 /* For addition, the operands must be of the same sign
2076 to yield an overflow. Its sign is therefore that
2077 of one of the operands, for example the first. For
2078 infinite operands X + -INF is negative, not positive. */
2079 || (code == PLUS_EXPR
2080 && (sgn1 >= 0
2081 ? !is_negative_overflow_infinity (val2)
2082 : is_positive_overflow_infinity (val2)))
2083 /* For subtraction, non-infinite operands must be of
2084 different signs to yield an overflow. Its sign is
2085 therefore that of the first operand or the opposite of
2086 that of the second operand. A first operand of 0 counts
2087 as positive here, for the corner case 0 - (-INF), which
2088 overflows, but must yield +INF. For infinite operands 0
2089 - INF is negative, not positive. */
2090 || (code == MINUS_EXPR
2091 && (sgn1 >= 0
2092 ? !is_positive_overflow_infinity (val2)
2093 : is_negative_overflow_infinity (val2)))
2094 /* We only get in here with positive shift count, so the
2095 overflow direction is the same as the sign of val1.
2096 Actually rshift does not overflow at all, but we only
2097 handle the case of shifting overflowed -INF and +INF. */
2098 || (code == RSHIFT_EXPR
2099 && sgn1 >= 0)
2100 /* For division, the only case is -INF / -1 = +INF. */
2101 || code == TRUNC_DIV_EXPR
2102 || code == FLOOR_DIV_EXPR
2103 || code == CEIL_DIV_EXPR
2104 || code == EXACT_DIV_EXPR
2105 || code == ROUND_DIV_EXPR)
2106 return (needs_overflow_infinity (TREE_TYPE (res))
2107 ? positive_overflow_infinity (TREE_TYPE (res))
2108 : TYPE_MAX_VALUE (TREE_TYPE (res)));
2109 else
2110 return (needs_overflow_infinity (TREE_TYPE (res))
2111 ? negative_overflow_infinity (TREE_TYPE (res))
2112 : TYPE_MIN_VALUE (TREE_TYPE (res)));
2113 }
2114
2115 return res;
2116 }
2117
2118
2119 /* For range VR compute two wide_int bitmasks. In *MAY_BE_NONZERO
2120 bitmask if some bit is unset, it means for all numbers in the range
2121 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
2122 bitmask if some bit is set, it means for all numbers in the range
2123 the bit is 1, otherwise it might be 0 or 1. */
2124
2125 static bool
2126 zero_nonzero_bits_from_vr (const tree expr_type,
2127 value_range_t *vr,
2128 wide_int *may_be_nonzero,
2129 wide_int *must_be_nonzero)
2130 {
2131 *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
2132 *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
2133 if (!range_int_cst_p (vr)
2134 || is_overflow_infinity (vr->min)
2135 || is_overflow_infinity (vr->max))
2136 return false;
2137
2138 if (range_int_cst_singleton_p (vr))
2139 {
2140 *may_be_nonzero = vr->min;
2141 *must_be_nonzero = *may_be_nonzero;
2142 }
2143 else if (tree_int_cst_sgn (vr->min) >= 0
2144 || tree_int_cst_sgn (vr->max) < 0)
2145 {
2146 wide_int xor_mask = wi::bit_xor (vr->min, vr->max);
2147 *may_be_nonzero = wi::bit_or (vr->min, vr->max);
2148 *must_be_nonzero = wi::bit_and (vr->min, vr->max);
2149 if (xor_mask != 0)
2150 {
2151 wide_int mask = wi::mask (wi::floor_log2 (xor_mask), false,
2152 may_be_nonzero->get_precision ());
2153 *may_be_nonzero = *may_be_nonzero | mask;
2154 *must_be_nonzero = must_be_nonzero->and_not (mask);
2155 }
2156 }
2157
2158 return true;
2159 }
2160
2161 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2162 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2163 false otherwise. If *AR can be represented with a single range
2164 *VR1 will be VR_UNDEFINED. */
2165
2166 static bool
2167 ranges_from_anti_range (value_range_t *ar,
2168 value_range_t *vr0, value_range_t *vr1)
2169 {
2170 tree type = TREE_TYPE (ar->min);
2171
2172 vr0->type = VR_UNDEFINED;
2173 vr1->type = VR_UNDEFINED;
2174
2175 if (ar->type != VR_ANTI_RANGE
2176 || TREE_CODE (ar->min) != INTEGER_CST
2177 || TREE_CODE (ar->max) != INTEGER_CST
2178 || !vrp_val_min (type)
2179 || !vrp_val_max (type))
2180 return false;
2181
2182 if (!vrp_val_is_min (ar->min))
2183 {
2184 vr0->type = VR_RANGE;
2185 vr0->min = vrp_val_min (type);
2186 vr0->max = wide_int_to_tree (type, wi::sub (ar->min, 1));
2187 }
2188 if (!vrp_val_is_max (ar->max))
2189 {
2190 vr1->type = VR_RANGE;
2191 vr1->min = wide_int_to_tree (type, wi::add (ar->max, 1));
2192 vr1->max = vrp_val_max (type);
2193 }
2194 if (vr0->type == VR_UNDEFINED)
2195 {
2196 *vr0 = *vr1;
2197 vr1->type = VR_UNDEFINED;
2198 }
2199
2200 return vr0->type != VR_UNDEFINED;
2201 }
2202
2203 /* Helper to extract a value-range *VR for a multiplicative operation
2204 *VR0 CODE *VR1. */
2205
2206 static void
2207 extract_range_from_multiplicative_op_1 (value_range_t *vr,
2208 enum tree_code code,
2209 value_range_t *vr0, value_range_t *vr1)
2210 {
2211 enum value_range_type type;
2212 tree val[4];
2213 size_t i;
2214 tree min, max;
2215 bool sop;
2216 int cmp;
2217
2218 /* Multiplications, divisions and shifts are a bit tricky to handle,
2219 depending on the mix of signs we have in the two ranges, we
2220 need to operate on different values to get the minimum and
2221 maximum values for the new range. One approach is to figure
2222 out all the variations of range combinations and do the
2223 operations.
2224
2225 However, this involves several calls to compare_values and it
2226 is pretty convoluted. It's simpler to do the 4 operations
2227 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2228 MAX1) and then figure the smallest and largest values to form
2229 the new range. */
2230 gcc_assert (code == MULT_EXPR
2231 || code == TRUNC_DIV_EXPR
2232 || code == FLOOR_DIV_EXPR
2233 || code == CEIL_DIV_EXPR
2234 || code == EXACT_DIV_EXPR
2235 || code == ROUND_DIV_EXPR
2236 || code == RSHIFT_EXPR
2237 || code == LSHIFT_EXPR);
2238 gcc_assert ((vr0->type == VR_RANGE
2239 || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
2240 && vr0->type == vr1->type);
2241
2242 type = vr0->type;
2243
2244 /* Compute the 4 cross operations. */
2245 sop = false;
2246 val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
2247 if (val[0] == NULL_TREE)
2248 sop = true;
2249
2250 if (vr1->max == vr1->min)
2251 val[1] = NULL_TREE;
2252 else
2253 {
2254 val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
2255 if (val[1] == NULL_TREE)
2256 sop = true;
2257 }
2258
2259 if (vr0->max == vr0->min)
2260 val[2] = NULL_TREE;
2261 else
2262 {
2263 val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
2264 if (val[2] == NULL_TREE)
2265 sop = true;
2266 }
2267
2268 if (vr0->min == vr0->max || vr1->min == vr1->max)
2269 val[3] = NULL_TREE;
2270 else
2271 {
2272 val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
2273 if (val[3] == NULL_TREE)
2274 sop = true;
2275 }
2276
2277 if (sop)
2278 {
2279 set_value_range_to_varying (vr);
2280 return;
2281 }
2282
2283 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2284 of VAL[i]. */
2285 min = val[0];
2286 max = val[0];
2287 for (i = 1; i < 4; i++)
2288 {
2289 if (!is_gimple_min_invariant (min)
2290 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2291 || !is_gimple_min_invariant (max)
2292 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2293 break;
2294
2295 if (val[i])
2296 {
2297 if (!is_gimple_min_invariant (val[i])
2298 || (TREE_OVERFLOW (val[i])
2299 && !is_overflow_infinity (val[i])))
2300 {
2301 /* If we found an overflowed value, set MIN and MAX
2302 to it so that we set the resulting range to
2303 VARYING. */
2304 min = max = val[i];
2305 break;
2306 }
2307
2308 if (compare_values (val[i], min) == -1)
2309 min = val[i];
2310
2311 if (compare_values (val[i], max) == 1)
2312 max = val[i];
2313 }
2314 }
2315
2316 /* If either MIN or MAX overflowed, then set the resulting range to
2317 VARYING. But we do accept an overflow infinity
2318 representation. */
2319 if (min == NULL_TREE
2320 || !is_gimple_min_invariant (min)
2321 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2322 || max == NULL_TREE
2323 || !is_gimple_min_invariant (max)
2324 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2325 {
2326 set_value_range_to_varying (vr);
2327 return;
2328 }
2329
2330 /* We punt if:
2331 1) [-INF, +INF]
2332 2) [-INF, +-INF(OVF)]
2333 3) [+-INF(OVF), +INF]
2334 4) [+-INF(OVF), +-INF(OVF)]
2335 We learn nothing when we have INF and INF(OVF) on both sides.
2336 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2337 overflow. */
2338 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2339 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2340 {
2341 set_value_range_to_varying (vr);
2342 return;
2343 }
2344
2345 cmp = compare_values (min, max);
2346 if (cmp == -2 || cmp == 1)
2347 {
2348 /* If the new range has its limits swapped around (MIN > MAX),
2349 then the operation caused one of them to wrap around, mark
2350 the new range VARYING. */
2351 set_value_range_to_varying (vr);
2352 }
2353 else
2354 set_value_range (vr, type, min, max, NULL);
2355 }
2356
2357 /* Extract range information from a binary operation CODE based on
2358 the ranges of each of its operands *VR0 and *VR1 with resulting
2359 type EXPR_TYPE. The resulting range is stored in *VR. */
2360
2361 static void
2362 extract_range_from_binary_expr_1 (value_range_t *vr,
2363 enum tree_code code, tree expr_type,
2364 value_range_t *vr0_, value_range_t *vr1_)
2365 {
2366 value_range_t vr0 = *vr0_, vr1 = *vr1_;
2367 value_range_t vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
2368 enum value_range_type type;
2369 tree min = NULL_TREE, max = NULL_TREE;
2370 int cmp;
2371
2372 if (!INTEGRAL_TYPE_P (expr_type)
2373 && !POINTER_TYPE_P (expr_type))
2374 {
2375 set_value_range_to_varying (vr);
2376 return;
2377 }
2378
2379 /* Not all binary expressions can be applied to ranges in a
2380 meaningful way. Handle only arithmetic operations. */
2381 if (code != PLUS_EXPR
2382 && code != MINUS_EXPR
2383 && code != POINTER_PLUS_EXPR
2384 && code != MULT_EXPR
2385 && code != TRUNC_DIV_EXPR
2386 && code != FLOOR_DIV_EXPR
2387 && code != CEIL_DIV_EXPR
2388 && code != EXACT_DIV_EXPR
2389 && code != ROUND_DIV_EXPR
2390 && code != TRUNC_MOD_EXPR
2391 && code != RSHIFT_EXPR
2392 && code != LSHIFT_EXPR
2393 && code != MIN_EXPR
2394 && code != MAX_EXPR
2395 && code != BIT_AND_EXPR
2396 && code != BIT_IOR_EXPR
2397 && code != BIT_XOR_EXPR)
2398 {
2399 set_value_range_to_varying (vr);
2400 return;
2401 }
2402
2403 /* If both ranges are UNDEFINED, so is the result. */
2404 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2405 {
2406 set_value_range_to_undefined (vr);
2407 return;
2408 }
2409 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2410 code. At some point we may want to special-case operations that
2411 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2412 operand. */
2413 else if (vr0.type == VR_UNDEFINED)
2414 set_value_range_to_varying (&vr0);
2415 else if (vr1.type == VR_UNDEFINED)
2416 set_value_range_to_varying (&vr1);
2417
2418 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2419 and express ~[] op X as ([]' op X) U ([]'' op X). */
2420 if (vr0.type == VR_ANTI_RANGE
2421 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2422 {
2423 extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
2424 if (vrtem1.type != VR_UNDEFINED)
2425 {
2426 value_range_t vrres = VR_INITIALIZER;
2427 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2428 &vrtem1, vr1_);
2429 vrp_meet (vr, &vrres);
2430 }
2431 return;
2432 }
2433 /* Likewise for X op ~[]. */
2434 if (vr1.type == VR_ANTI_RANGE
2435 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
2436 {
2437 extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
2438 if (vrtem1.type != VR_UNDEFINED)
2439 {
2440 value_range_t vrres = VR_INITIALIZER;
2441 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2442 vr0_, &vrtem1);
2443 vrp_meet (vr, &vrres);
2444 }
2445 return;
2446 }
2447
2448 /* The type of the resulting value range defaults to VR0.TYPE. */
2449 type = vr0.type;
2450
2451 /* Refuse to operate on VARYING ranges, ranges of different kinds
2452 and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
2453 because we may be able to derive a useful range even if one of
2454 the operands is VR_VARYING or symbolic range. Similarly for
2455 divisions, MIN/MAX and PLUS/MINUS.
2456
2457 TODO, we may be able to derive anti-ranges in some cases. */
2458 if (code != BIT_AND_EXPR
2459 && code != BIT_IOR_EXPR
2460 && code != TRUNC_DIV_EXPR
2461 && code != FLOOR_DIV_EXPR
2462 && code != CEIL_DIV_EXPR
2463 && code != EXACT_DIV_EXPR
2464 && code != ROUND_DIV_EXPR
2465 && code != TRUNC_MOD_EXPR
2466 && code != MIN_EXPR
2467 && code != MAX_EXPR
2468 && code != PLUS_EXPR
2469 && code != MINUS_EXPR
2470 && code != RSHIFT_EXPR
2471 && (vr0.type == VR_VARYING
2472 || vr1.type == VR_VARYING
2473 || vr0.type != vr1.type
2474 || symbolic_range_p (&vr0)
2475 || symbolic_range_p (&vr1)))
2476 {
2477 set_value_range_to_varying (vr);
2478 return;
2479 }
2480
2481 /* Now evaluate the expression to determine the new range. */
2482 if (POINTER_TYPE_P (expr_type))
2483 {
2484 if (code == MIN_EXPR || code == MAX_EXPR)
2485 {
2486 /* For MIN/MAX expressions with pointers, we only care about
2487 nullness, if both are non null, then the result is nonnull.
2488 If both are null, then the result is null. Otherwise they
2489 are varying. */
2490 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2491 set_value_range_to_nonnull (vr, expr_type);
2492 else if (range_is_null (&vr0) && range_is_null (&vr1))
2493 set_value_range_to_null (vr, expr_type);
2494 else
2495 set_value_range_to_varying (vr);
2496 }
2497 else if (code == POINTER_PLUS_EXPR)
2498 {
2499 /* For pointer types, we are really only interested in asserting
2500 whether the expression evaluates to non-NULL. */
2501 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2502 set_value_range_to_nonnull (vr, expr_type);
2503 else if (range_is_null (&vr0) && range_is_null (&vr1))
2504 set_value_range_to_null (vr, expr_type);
2505 else
2506 set_value_range_to_varying (vr);
2507 }
2508 else if (code == BIT_AND_EXPR)
2509 {
2510 /* For pointer types, we are really only interested in asserting
2511 whether the expression evaluates to non-NULL. */
2512 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2513 set_value_range_to_nonnull (vr, expr_type);
2514 else if (range_is_null (&vr0) || range_is_null (&vr1))
2515 set_value_range_to_null (vr, expr_type);
2516 else
2517 set_value_range_to_varying (vr);
2518 }
2519 else
2520 set_value_range_to_varying (vr);
2521
2522 return;
2523 }
2524
2525 /* For integer ranges, apply the operation to each end of the
2526 range and see what we end up with. */
2527 if (code == PLUS_EXPR || code == MINUS_EXPR)
2528 {
2529 const bool minus_p = (code == MINUS_EXPR);
2530 tree min_op0 = vr0.min;
2531 tree min_op1 = minus_p ? vr1.max : vr1.min;
2532 tree max_op0 = vr0.max;
2533 tree max_op1 = minus_p ? vr1.min : vr1.max;
2534 tree sym_min_op0 = NULL_TREE;
2535 tree sym_min_op1 = NULL_TREE;
2536 tree sym_max_op0 = NULL_TREE;
2537 tree sym_max_op1 = NULL_TREE;
2538 bool neg_min_op0, neg_min_op1, neg_max_op0, neg_max_op1;
2539
2540 /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
2541 single-symbolic ranges, try to compute the precise resulting range,
2542 but only if we know that this resulting range will also be constant
2543 or single-symbolic. */
2544 if (vr0.type == VR_RANGE && vr1.type == VR_RANGE
2545 && (TREE_CODE (min_op0) == INTEGER_CST
2546 || (sym_min_op0
2547 = get_single_symbol (min_op0, &neg_min_op0, &min_op0)))
2548 && (TREE_CODE (min_op1) == INTEGER_CST
2549 || (sym_min_op1
2550 = get_single_symbol (min_op1, &neg_min_op1, &min_op1)))
2551 && (!(sym_min_op0 && sym_min_op1)
2552 || (sym_min_op0 == sym_min_op1
2553 && neg_min_op0 == (minus_p ? neg_min_op1 : !neg_min_op1)))
2554 && (TREE_CODE (max_op0) == INTEGER_CST
2555 || (sym_max_op0
2556 = get_single_symbol (max_op0, &neg_max_op0, &max_op0)))
2557 && (TREE_CODE (max_op1) == INTEGER_CST
2558 || (sym_max_op1
2559 = get_single_symbol (max_op1, &neg_max_op1, &max_op1)))
2560 && (!(sym_max_op0 && sym_max_op1)
2561 || (sym_max_op0 == sym_max_op1
2562 && neg_max_op0 == (minus_p ? neg_max_op1 : !neg_max_op1))))
2563 {
2564 const signop sgn = TYPE_SIGN (expr_type);
2565 const unsigned int prec = TYPE_PRECISION (expr_type);
2566 wide_int type_min, type_max, wmin, wmax;
2567 int min_ovf = 0;
2568 int max_ovf = 0;
2569
2570 /* Get the lower and upper bounds of the type. */
2571 if (TYPE_OVERFLOW_WRAPS (expr_type))
2572 {
2573 type_min = wi::min_value (prec, sgn);
2574 type_max = wi::max_value (prec, sgn);
2575 }
2576 else
2577 {
2578 type_min = vrp_val_min (expr_type);
2579 type_max = vrp_val_max (expr_type);
2580 }
2581
2582 /* Combine the lower bounds, if any. */
2583 if (min_op0 && min_op1)
2584 {
2585 if (minus_p)
2586 {
2587 wmin = wi::sub (min_op0, min_op1);
2588
2589 /* Check for overflow. */
2590 if (wi::cmp (0, min_op1, sgn)
2591 != wi::cmp (wmin, min_op0, sgn))
2592 min_ovf = wi::cmp (min_op0, min_op1, sgn);
2593 }
2594 else
2595 {
2596 wmin = wi::add (min_op0, min_op1);
2597
2598 /* Check for overflow. */
2599 if (wi::cmp (min_op1, 0, sgn)
2600 != wi::cmp (wmin, min_op0, sgn))
2601 min_ovf = wi::cmp (min_op0, wmin, sgn);
2602 }
2603 }
2604 else if (min_op0)
2605 wmin = min_op0;
2606 else if (min_op1)
2607 wmin = minus_p ? wi::neg (min_op1) : min_op1;
2608 else
2609 wmin = wi::shwi (0, prec);
2610
2611 /* Combine the upper bounds, if any. */
2612 if (max_op0 && max_op1)
2613 {
2614 if (minus_p)
2615 {
2616 wmax = wi::sub (max_op0, max_op1);
2617
2618 /* Check for overflow. */
2619 if (wi::cmp (0, max_op1, sgn)
2620 != wi::cmp (wmax, max_op0, sgn))
2621 max_ovf = wi::cmp (max_op0, max_op1, sgn);
2622 }
2623 else
2624 {
2625 wmax = wi::add (max_op0, max_op1);
2626
2627 if (wi::cmp (max_op1, 0, sgn)
2628 != wi::cmp (wmax, max_op0, sgn))
2629 max_ovf = wi::cmp (max_op0, wmax, sgn);
2630 }
2631 }
2632 else if (max_op0)
2633 wmax = max_op0;
2634 else if (max_op1)
2635 wmax = minus_p ? wi::neg (max_op1) : max_op1;
2636 else
2637 wmax = wi::shwi (0, prec);
2638
2639 /* Check for type overflow. */
2640 if (min_ovf == 0)
2641 {
2642 if (wi::cmp (wmin, type_min, sgn) == -1)
2643 min_ovf = -1;
2644 else if (wi::cmp (wmin, type_max, sgn) == 1)
2645 min_ovf = 1;
2646 }
2647 if (max_ovf == 0)
2648 {
2649 if (wi::cmp (wmax, type_min, sgn) == -1)
2650 max_ovf = -1;
2651 else if (wi::cmp (wmax, type_max, sgn) == 1)
2652 max_ovf = 1;
2653 }
2654
2655 /* If we have overflow for the constant part and the resulting
2656 range will be symbolic, drop to VR_VARYING. */
2657 if ((min_ovf && sym_min_op0 != sym_min_op1)
2658 || (max_ovf && sym_max_op0 != sym_max_op1))
2659 {
2660 set_value_range_to_varying (vr);
2661 return;
2662 }
2663
2664 if (TYPE_OVERFLOW_WRAPS (expr_type))
2665 {
2666 /* If overflow wraps, truncate the values and adjust the
2667 range kind and bounds appropriately. */
2668 wide_int tmin = wide_int::from (wmin, prec, sgn);
2669 wide_int tmax = wide_int::from (wmax, prec, sgn);
2670 if (min_ovf == max_ovf)
2671 {
2672 /* No overflow or both overflow or underflow. The
2673 range kind stays VR_RANGE. */
2674 min = wide_int_to_tree (expr_type, tmin);
2675 max = wide_int_to_tree (expr_type, tmax);
2676 }
2677 else if (min_ovf == -1 && max_ovf == 1)
2678 {
2679 /* Underflow and overflow, drop to VR_VARYING. */
2680 set_value_range_to_varying (vr);
2681 return;
2682 }
2683 else
2684 {
2685 /* Min underflow or max overflow. The range kind
2686 changes to VR_ANTI_RANGE. */
2687 bool covers = false;
2688 wide_int tem = tmin;
2689 gcc_assert ((min_ovf == -1 && max_ovf == 0)
2690 || (max_ovf == 1 && min_ovf == 0));
2691 type = VR_ANTI_RANGE;
2692 tmin = tmax + 1;
2693 if (wi::cmp (tmin, tmax, sgn) < 0)
2694 covers = true;
2695 tmax = tem - 1;
2696 if (wi::cmp (tmax, tem, sgn) > 0)
2697 covers = true;
2698 /* If the anti-range would cover nothing, drop to varying.
2699 Likewise if the anti-range bounds are outside of the
2700 types values. */
2701 if (covers || wi::cmp (tmin, tmax, sgn) > 0)
2702 {
2703 set_value_range_to_varying (vr);
2704 return;
2705 }
2706 min = wide_int_to_tree (expr_type, tmin);
2707 max = wide_int_to_tree (expr_type, tmax);
2708 }
2709 }
2710 else
2711 {
2712 /* If overflow does not wrap, saturate to the types min/max
2713 value. */
2714 if (min_ovf == -1)
2715 {
2716 if (needs_overflow_infinity (expr_type)
2717 && supports_overflow_infinity (expr_type))
2718 min = negative_overflow_infinity (expr_type);
2719 else
2720 min = wide_int_to_tree (expr_type, type_min);
2721 }
2722 else if (min_ovf == 1)
2723 {
2724 if (needs_overflow_infinity (expr_type)
2725 && supports_overflow_infinity (expr_type))
2726 min = positive_overflow_infinity (expr_type);
2727 else
2728 min = wide_int_to_tree (expr_type, type_max);
2729 }
2730 else
2731 min = wide_int_to_tree (expr_type, wmin);
2732
2733 if (max_ovf == -1)
2734 {
2735 if (needs_overflow_infinity (expr_type)
2736 && supports_overflow_infinity (expr_type))
2737 max = negative_overflow_infinity (expr_type);
2738 else
2739 max = wide_int_to_tree (expr_type, type_min);
2740 }
2741 else if (max_ovf == 1)
2742 {
2743 if (needs_overflow_infinity (expr_type)
2744 && supports_overflow_infinity (expr_type))
2745 max = positive_overflow_infinity (expr_type);
2746 else
2747 max = wide_int_to_tree (expr_type, type_max);
2748 }
2749 else
2750 max = wide_int_to_tree (expr_type, wmax);
2751 }
2752
2753 if (needs_overflow_infinity (expr_type)
2754 && supports_overflow_infinity (expr_type))
2755 {
2756 if ((min_op0 && is_negative_overflow_infinity (min_op0))
2757 || (min_op1
2758 && (minus_p
2759 ? is_positive_overflow_infinity (min_op1)
2760 : is_negative_overflow_infinity (min_op1))))
2761 min = negative_overflow_infinity (expr_type);
2762 if ((max_op0 && is_positive_overflow_infinity (max_op0))
2763 || (max_op1
2764 && (minus_p
2765 ? is_negative_overflow_infinity (max_op1)
2766 : is_positive_overflow_infinity (max_op1))))
2767 max = positive_overflow_infinity (expr_type);
2768 }
2769
2770 /* If the result lower bound is constant, we're done;
2771 otherwise, build the symbolic lower bound. */
2772 if (sym_min_op0 == sym_min_op1)
2773 ;
2774 else if (sym_min_op0)
2775 min = build_symbolic_expr (expr_type, sym_min_op0,
2776 neg_min_op0, min);
2777 else if (sym_min_op1)
2778 min = build_symbolic_expr (expr_type, sym_min_op1,
2779 neg_min_op1 ^ minus_p, min);
2780
2781 /* Likewise for the upper bound. */
2782 if (sym_max_op0 == sym_max_op1)
2783 ;
2784 else if (sym_max_op0)
2785 max = build_symbolic_expr (expr_type, sym_max_op0,
2786 neg_max_op0, max);
2787 else if (sym_max_op1)
2788 max = build_symbolic_expr (expr_type, sym_max_op1,
2789 neg_max_op1 ^ minus_p, max);
2790 }
2791 else
2792 {
2793 /* For other cases, for example if we have a PLUS_EXPR with two
2794 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2795 to compute a precise range for such a case.
2796 ??? General even mixed range kind operations can be expressed
2797 by for example transforming ~[3, 5] + [1, 2] to range-only
2798 operations and a union primitive:
2799 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2800 [-INF+1, 4] U [6, +INF(OVF)]
2801 though usually the union is not exactly representable with
2802 a single range or anti-range as the above is
2803 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2804 but one could use a scheme similar to equivalences for this. */
2805 set_value_range_to_varying (vr);
2806 return;
2807 }
2808 }
2809 else if (code == MIN_EXPR
2810 || code == MAX_EXPR)
2811 {
2812 if (vr0.type == VR_RANGE
2813 && !symbolic_range_p (&vr0))
2814 {
2815 type = VR_RANGE;
2816 if (vr1.type == VR_RANGE
2817 && !symbolic_range_p (&vr1))
2818 {
2819 /* For operations that make the resulting range directly
2820 proportional to the original ranges, apply the operation to
2821 the same end of each range. */
2822 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2823 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2824 }
2825 else if (code == MIN_EXPR)
2826 {
2827 min = vrp_val_min (expr_type);
2828 max = vr0.max;
2829 }
2830 else if (code == MAX_EXPR)
2831 {
2832 min = vr0.min;
2833 max = vrp_val_max (expr_type);
2834 }
2835 }
2836 else if (vr1.type == VR_RANGE
2837 && !symbolic_range_p (&vr1))
2838 {
2839 type = VR_RANGE;
2840 if (code == MIN_EXPR)
2841 {
2842 min = vrp_val_min (expr_type);
2843 max = vr1.max;
2844 }
2845 else if (code == MAX_EXPR)
2846 {
2847 min = vr1.min;
2848 max = vrp_val_max (expr_type);
2849 }
2850 }
2851 else
2852 {
2853 set_value_range_to_varying (vr);
2854 return;
2855 }
2856 }
2857 else if (code == MULT_EXPR)
2858 {
2859 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2860 drop to varying. This test requires 2*prec bits if both
2861 operands are signed and 2*prec + 2 bits if either is not. */
2862
2863 signop sign = TYPE_SIGN (expr_type);
2864 unsigned int prec = TYPE_PRECISION (expr_type);
2865
2866 if (range_int_cst_p (&vr0)
2867 && range_int_cst_p (&vr1)
2868 && TYPE_OVERFLOW_WRAPS (expr_type))
2869 {
2870 typedef FIXED_WIDE_INT (WIDE_INT_MAX_PRECISION * 2) vrp_int;
2871 typedef generic_wide_int
2872 <wi::extended_tree <WIDE_INT_MAX_PRECISION * 2> > vrp_int_cst;
2873 vrp_int sizem1 = wi::mask <vrp_int> (prec, false);
2874 vrp_int size = sizem1 + 1;
2875
2876 /* Extend the values using the sign of the result to PREC2.
2877 From here on out, everthing is just signed math no matter
2878 what the input types were. */
2879 vrp_int min0 = vrp_int_cst (vr0.min);
2880 vrp_int max0 = vrp_int_cst (vr0.max);
2881 vrp_int min1 = vrp_int_cst (vr1.min);
2882 vrp_int max1 = vrp_int_cst (vr1.max);
2883 /* Canonicalize the intervals. */
2884 if (sign == UNSIGNED)
2885 {
2886 if (wi::ltu_p (size, min0 + max0))
2887 {
2888 min0 -= size;
2889 max0 -= size;
2890 }
2891
2892 if (wi::ltu_p (size, min1 + max1))
2893 {
2894 min1 -= size;
2895 max1 -= size;
2896 }
2897 }
2898
2899 vrp_int prod0 = min0 * min1;
2900 vrp_int prod1 = min0 * max1;
2901 vrp_int prod2 = max0 * min1;
2902 vrp_int prod3 = max0 * max1;
2903
2904 /* Sort the 4 products so that min is in prod0 and max is in
2905 prod3. */
2906 /* min0min1 > max0max1 */
2907 if (wi::gts_p (prod0, prod3))
2908 {
2909 vrp_int tmp = prod3;
2910 prod3 = prod0;
2911 prod0 = tmp;
2912 }
2913
2914 /* min0max1 > max0min1 */
2915 if (wi::gts_p (prod1, prod2))
2916 {
2917 vrp_int tmp = prod2;
2918 prod2 = prod1;
2919 prod1 = tmp;
2920 }
2921
2922 if (wi::gts_p (prod0, prod1))
2923 {
2924 vrp_int tmp = prod1;
2925 prod1 = prod0;
2926 prod0 = tmp;
2927 }
2928
2929 if (wi::gts_p (prod2, prod3))
2930 {
2931 vrp_int tmp = prod3;
2932 prod3 = prod2;
2933 prod2 = tmp;
2934 }
2935
2936 /* diff = max - min. */
2937 prod2 = prod3 - prod0;
2938 if (wi::geu_p (prod2, sizem1))
2939 {
2940 /* the range covers all values. */
2941 set_value_range_to_varying (vr);
2942 return;
2943 }
2944
2945 /* The following should handle the wrapping and selecting
2946 VR_ANTI_RANGE for us. */
2947 min = wide_int_to_tree (expr_type, prod0);
2948 max = wide_int_to_tree (expr_type, prod3);
2949 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
2950 return;
2951 }
2952
2953 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2954 drop to VR_VARYING. It would take more effort to compute a
2955 precise range for such a case. For example, if we have
2956 op0 == 65536 and op1 == 65536 with their ranges both being
2957 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2958 we cannot claim that the product is in ~[0,0]. Note that we
2959 are guaranteed to have vr0.type == vr1.type at this
2960 point. */
2961 if (vr0.type == VR_ANTI_RANGE
2962 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2963 {
2964 set_value_range_to_varying (vr);
2965 return;
2966 }
2967
2968 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2969 return;
2970 }
2971 else if (code == RSHIFT_EXPR
2972 || code == LSHIFT_EXPR)
2973 {
2974 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2975 then drop to VR_VARYING. Outside of this range we get undefined
2976 behavior from the shift operation. We cannot even trust
2977 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2978 shifts, and the operation at the tree level may be widened. */
2979 if (range_int_cst_p (&vr1)
2980 && compare_tree_int (vr1.min, 0) >= 0
2981 && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
2982 {
2983 if (code == RSHIFT_EXPR)
2984 {
2985 /* Even if vr0 is VARYING or otherwise not usable, we can derive
2986 useful ranges just from the shift count. E.g.
2987 x >> 63 for signed 64-bit x is always [-1, 0]. */
2988 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2989 {
2990 vr0.type = type = VR_RANGE;
2991 vr0.min = vrp_val_min (expr_type);
2992 vr0.max = vrp_val_max (expr_type);
2993 }
2994 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2995 return;
2996 }
2997 /* We can map lshifts by constants to MULT_EXPR handling. */
2998 else if (code == LSHIFT_EXPR
2999 && range_int_cst_singleton_p (&vr1))
3000 {
3001 bool saved_flag_wrapv;
3002 value_range_t vr1p = VR_INITIALIZER;
3003 vr1p.type = VR_RANGE;
3004 vr1p.min = (wide_int_to_tree
3005 (expr_type,
3006 wi::set_bit_in_zero (tree_to_shwi (vr1.min),
3007 TYPE_PRECISION (expr_type))));
3008 vr1p.max = vr1p.min;
3009 /* We have to use a wrapping multiply though as signed overflow
3010 on lshifts is implementation defined in C89. */
3011 saved_flag_wrapv = flag_wrapv;
3012 flag_wrapv = 1;
3013 extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
3014 &vr0, &vr1p);
3015 flag_wrapv = saved_flag_wrapv;
3016 return;
3017 }
3018 else if (code == LSHIFT_EXPR
3019 && range_int_cst_p (&vr0))
3020 {
3021 int prec = TYPE_PRECISION (expr_type);
3022 int overflow_pos = prec;
3023 int bound_shift;
3024 wide_int low_bound, high_bound;
3025 bool uns = TYPE_UNSIGNED (expr_type);
3026 bool in_bounds = false;
3027
3028 if (!uns)
3029 overflow_pos -= 1;
3030
3031 bound_shift = overflow_pos - tree_to_shwi (vr1.max);
3032 /* If bound_shift == HOST_BITS_PER_WIDE_INT, the llshift can
3033 overflow. However, for that to happen, vr1.max needs to be
3034 zero, which means vr1 is a singleton range of zero, which
3035 means it should be handled by the previous LSHIFT_EXPR
3036 if-clause. */
3037 wide_int bound = wi::set_bit_in_zero (bound_shift, prec);
3038 wide_int complement = ~(bound - 1);
3039
3040 if (uns)
3041 {
3042 low_bound = bound;
3043 high_bound = complement;
3044 if (wi::ltu_p (vr0.max, low_bound))
3045 {
3046 /* [5, 6] << [1, 2] == [10, 24]. */
3047 /* We're shifting out only zeroes, the value increases
3048 monotonically. */
3049 in_bounds = true;
3050 }
3051 else if (wi::ltu_p (high_bound, vr0.min))
3052 {
3053 /* [0xffffff00, 0xffffffff] << [1, 2]
3054 == [0xfffffc00, 0xfffffffe]. */
3055 /* We're shifting out only ones, the value decreases
3056 monotonically. */
3057 in_bounds = true;
3058 }
3059 }
3060 else
3061 {
3062 /* [-1, 1] << [1, 2] == [-4, 4]. */
3063 low_bound = complement;
3064 high_bound = bound;
3065 if (wi::lts_p (vr0.max, high_bound)
3066 && wi::lts_p (low_bound, vr0.min))
3067 {
3068 /* For non-negative numbers, we're shifting out only
3069 zeroes, the value increases monotonically.
3070 For negative numbers, we're shifting out only ones, the
3071 value decreases monotomically. */
3072 in_bounds = true;
3073 }
3074 }
3075
3076 if (in_bounds)
3077 {
3078 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
3079 return;
3080 }
3081 }
3082 }
3083 set_value_range_to_varying (vr);
3084 return;
3085 }
3086 else if (code == TRUNC_DIV_EXPR
3087 || code == FLOOR_DIV_EXPR
3088 || code == CEIL_DIV_EXPR
3089 || code == EXACT_DIV_EXPR
3090 || code == ROUND_DIV_EXPR)
3091 {
3092 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
3093 {
3094 /* For division, if op1 has VR_RANGE but op0 does not, something
3095 can be deduced just from that range. Say [min, max] / [4, max]
3096 gives [min / 4, max / 4] range. */
3097 if (vr1.type == VR_RANGE
3098 && !symbolic_range_p (&vr1)
3099 && range_includes_zero_p (vr1.min, vr1.max) == 0)
3100 {
3101 vr0.type = type = VR_RANGE;
3102 vr0.min = vrp_val_min (expr_type);
3103 vr0.max = vrp_val_max (expr_type);
3104 }
3105 else
3106 {
3107 set_value_range_to_varying (vr);
3108 return;
3109 }
3110 }
3111
3112 /* For divisions, if flag_non_call_exceptions is true, we must
3113 not eliminate a division by zero. */
3114 if (cfun->can_throw_non_call_exceptions
3115 && (vr1.type != VR_RANGE
3116 || range_includes_zero_p (vr1.min, vr1.max) != 0))
3117 {
3118 set_value_range_to_varying (vr);
3119 return;
3120 }
3121
3122 /* For divisions, if op0 is VR_RANGE, we can deduce a range
3123 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
3124 include 0. */
3125 if (vr0.type == VR_RANGE
3126 && (vr1.type != VR_RANGE
3127 || range_includes_zero_p (vr1.min, vr1.max) != 0))
3128 {
3129 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
3130 int cmp;
3131
3132 min = NULL_TREE;
3133 max = NULL_TREE;
3134 if (TYPE_UNSIGNED (expr_type)
3135 || value_range_nonnegative_p (&vr1))
3136 {
3137 /* For unsigned division or when divisor is known
3138 to be non-negative, the range has to cover
3139 all numbers from 0 to max for positive max
3140 and all numbers from min to 0 for negative min. */
3141 cmp = compare_values (vr0.max, zero);
3142 if (cmp == -1)
3143 max = zero;
3144 else if (cmp == 0 || cmp == 1)
3145 max = vr0.max;
3146 else
3147 type = VR_VARYING;
3148 cmp = compare_values (vr0.min, zero);
3149 if (cmp == 1)
3150 min = zero;
3151 else if (cmp == 0 || cmp == -1)
3152 min = vr0.min;
3153 else
3154 type = VR_VARYING;
3155 }
3156 else
3157 {
3158 /* Otherwise the range is -max .. max or min .. -min
3159 depending on which bound is bigger in absolute value,
3160 as the division can change the sign. */
3161 abs_extent_range (vr, vr0.min, vr0.max);
3162 return;
3163 }
3164 if (type == VR_VARYING)
3165 {
3166 set_value_range_to_varying (vr);
3167 return;
3168 }
3169 }
3170 else
3171 {
3172 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
3173 return;
3174 }
3175 }
3176 else if (code == TRUNC_MOD_EXPR)
3177 {
3178 if (vr1.type != VR_RANGE
3179 || range_includes_zero_p (vr1.min, vr1.max) != 0
3180 || vrp_val_is_min (vr1.min))
3181 {
3182 set_value_range_to_varying (vr);
3183 return;
3184 }
3185 type = VR_RANGE;
3186 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
3187 max = fold_unary_to_constant (ABS_EXPR, expr_type, vr1.min);
3188 if (tree_int_cst_lt (max, vr1.max))
3189 max = vr1.max;
3190 max = int_const_binop (MINUS_EXPR, max, build_int_cst (TREE_TYPE (max), 1));
3191 /* If the dividend is non-negative the modulus will be
3192 non-negative as well. */
3193 if (TYPE_UNSIGNED (expr_type)
3194 || value_range_nonnegative_p (&vr0))
3195 min = build_int_cst (TREE_TYPE (max), 0);
3196 else
3197 min = fold_unary_to_constant (NEGATE_EXPR, expr_type, max);
3198 }
3199 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
3200 {
3201 bool int_cst_range0, int_cst_range1;
3202 wide_int may_be_nonzero0, may_be_nonzero1;
3203 wide_int must_be_nonzero0, must_be_nonzero1;
3204
3205 int_cst_range0 = zero_nonzero_bits_from_vr (expr_type, &vr0,
3206 &may_be_nonzero0,
3207 &must_be_nonzero0);
3208 int_cst_range1 = zero_nonzero_bits_from_vr (expr_type, &vr1,
3209 &may_be_nonzero1,
3210 &must_be_nonzero1);
3211
3212 type = VR_RANGE;
3213 if (code == BIT_AND_EXPR)
3214 {
3215 min = wide_int_to_tree (expr_type,
3216 must_be_nonzero0 & must_be_nonzero1);
3217 wide_int wmax = may_be_nonzero0 & may_be_nonzero1;
3218 /* If both input ranges contain only negative values we can
3219 truncate the result range maximum to the minimum of the
3220 input range maxima. */
3221 if (int_cst_range0 && int_cst_range1
3222 && tree_int_cst_sgn (vr0.max) < 0
3223 && tree_int_cst_sgn (vr1.max) < 0)
3224 {
3225 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
3226 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
3227 }
3228 /* If either input range contains only non-negative values
3229 we can truncate the result range maximum to the respective
3230 maximum of the input range. */
3231 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
3232 wmax = wi::min (wmax, vr0.max, TYPE_SIGN (expr_type));
3233 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
3234 wmax = wi::min (wmax, vr1.max, TYPE_SIGN (expr_type));
3235 max = wide_int_to_tree (expr_type, wmax);
3236 }
3237 else if (code == BIT_IOR_EXPR)
3238 {
3239 max = wide_int_to_tree (expr_type,
3240 may_be_nonzero0 | may_be_nonzero1);
3241 wide_int wmin = must_be_nonzero0 | must_be_nonzero1;
3242 /* If the input ranges contain only positive values we can
3243 truncate the minimum of the result range to the maximum
3244 of the input range minima. */
3245 if (int_cst_range0 && int_cst_range1
3246 && tree_int_cst_sgn (vr0.min) >= 0
3247 && tree_int_cst_sgn (vr1.min) >= 0)
3248 {
3249 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
3250 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
3251 }
3252 /* If either input range contains only negative values
3253 we can truncate the minimum of the result range to the
3254 respective minimum range. */
3255 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
3256 wmin = wi::max (wmin, vr0.min, TYPE_SIGN (expr_type));
3257 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
3258 wmin = wi::max (wmin, vr1.min, TYPE_SIGN (expr_type));
3259 min = wide_int_to_tree (expr_type, wmin);
3260 }
3261 else if (code == BIT_XOR_EXPR)
3262 {
3263 wide_int result_zero_bits = ((must_be_nonzero0 & must_be_nonzero1)
3264 | ~(may_be_nonzero0 | may_be_nonzero1));
3265 wide_int result_one_bits
3266 = (must_be_nonzero0.and_not (may_be_nonzero1)
3267 | must_be_nonzero1.and_not (may_be_nonzero0));
3268 max = wide_int_to_tree (expr_type, ~result_zero_bits);
3269 min = wide_int_to_tree (expr_type, result_one_bits);
3270 /* If the range has all positive or all negative values the
3271 result is better than VARYING. */
3272 if (tree_int_cst_sgn (min) < 0
3273 || tree_int_cst_sgn (max) >= 0)
3274 ;
3275 else
3276 max = min = NULL_TREE;
3277 }
3278 }
3279 else
3280 gcc_unreachable ();
3281
3282 /* If either MIN or MAX overflowed, then set the resulting range to
3283 VARYING. But we do accept an overflow infinity representation. */
3284 if (min == NULL_TREE
3285 || (TREE_OVERFLOW_P (min) && !is_overflow_infinity (min))
3286 || max == NULL_TREE
3287 || (TREE_OVERFLOW_P (max) && !is_overflow_infinity (max)))
3288 {
3289 set_value_range_to_varying (vr);
3290 return;
3291 }
3292
3293 /* We punt if:
3294 1) [-INF, +INF]
3295 2) [-INF, +-INF(OVF)]
3296 3) [+-INF(OVF), +INF]
3297 4) [+-INF(OVF), +-INF(OVF)]
3298 We learn nothing when we have INF and INF(OVF) on both sides.
3299 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3300 overflow. */
3301 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
3302 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
3303 {
3304 set_value_range_to_varying (vr);
3305 return;
3306 }
3307
3308 cmp = compare_values (min, max);
3309 if (cmp == -2 || cmp == 1)
3310 {
3311 /* If the new range has its limits swapped around (MIN > MAX),
3312 then the operation caused one of them to wrap around, mark
3313 the new range VARYING. */
3314 set_value_range_to_varying (vr);
3315 }
3316 else
3317 set_value_range (vr, type, min, max, NULL);
3318 }
3319
3320 /* Extract range information from a binary expression OP0 CODE OP1 based on
3321 the ranges of each of its operands with resulting type EXPR_TYPE.
3322 The resulting range is stored in *VR. */
3323
3324 static void
3325 extract_range_from_binary_expr (value_range_t *vr,
3326 enum tree_code code,
3327 tree expr_type, tree op0, tree op1)
3328 {
3329 value_range_t vr0 = VR_INITIALIZER;
3330 value_range_t vr1 = VR_INITIALIZER;
3331
3332 /* Get value ranges for each operand. For constant operands, create
3333 a new value range with the operand to simplify processing. */
3334 if (TREE_CODE (op0) == SSA_NAME)
3335 vr0 = *(get_value_range (op0));
3336 else if (is_gimple_min_invariant (op0))
3337 set_value_range_to_value (&vr0, op0, NULL);
3338 else
3339 set_value_range_to_varying (&vr0);
3340
3341 if (TREE_CODE (op1) == SSA_NAME)
3342 vr1 = *(get_value_range (op1));
3343 else if (is_gimple_min_invariant (op1))
3344 set_value_range_to_value (&vr1, op1, NULL);
3345 else
3346 set_value_range_to_varying (&vr1);
3347
3348 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
3349
3350 /* Try harder for PLUS and MINUS if the range of one operand is symbolic
3351 and based on the other operand, for example if it was deduced from a
3352 symbolic comparison. When a bound of the range of the first operand
3353 is invariant, we set the corresponding bound of the new range to INF
3354 in order to avoid recursing on the range of the second operand. */
3355 if (vr->type == VR_VARYING
3356 && (code == PLUS_EXPR || code == MINUS_EXPR)
3357 && TREE_CODE (op1) == SSA_NAME
3358 && vr0.type == VR_RANGE
3359 && symbolic_range_based_on_p (&vr0, op1))
3360 {
3361 const bool minus_p = (code == MINUS_EXPR);
3362 value_range_t n_vr1 = VR_INITIALIZER;
3363
3364 /* Try with VR0 and [-INF, OP1]. */
3365 if (is_gimple_min_invariant (minus_p ? vr0.max : vr0.min))
3366 set_value_range (&n_vr1, VR_RANGE, vrp_val_min (expr_type), op1, NULL);
3367
3368 /* Try with VR0 and [OP1, +INF]. */
3369 else if (is_gimple_min_invariant (minus_p ? vr0.min : vr0.max))
3370 set_value_range (&n_vr1, VR_RANGE, op1, vrp_val_max (expr_type), NULL);
3371
3372 /* Try with VR0 and [OP1, OP1]. */
3373 else
3374 set_value_range (&n_vr1, VR_RANGE, op1, op1, NULL);
3375
3376 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &n_vr1);
3377 }
3378
3379 if (vr->type == VR_VARYING
3380 && (code == PLUS_EXPR || code == MINUS_EXPR)
3381 && TREE_CODE (op0) == SSA_NAME
3382 && vr1.type == VR_RANGE
3383 && symbolic_range_based_on_p (&vr1, op0))
3384 {
3385 const bool minus_p = (code == MINUS_EXPR);
3386 value_range_t n_vr0 = VR_INITIALIZER;
3387
3388 /* Try with [-INF, OP0] and VR1. */
3389 if (is_gimple_min_invariant (minus_p ? vr1.max : vr1.min))
3390 set_value_range (&n_vr0, VR_RANGE, vrp_val_min (expr_type), op0, NULL);
3391
3392 /* Try with [OP0, +INF] and VR1. */
3393 else if (is_gimple_min_invariant (minus_p ? vr1.min : vr1.max))
3394 set_value_range (&n_vr0, VR_RANGE, op0, vrp_val_max (expr_type), NULL);
3395
3396 /* Try with [OP0, OP0] and VR1. */
3397 else
3398 set_value_range (&n_vr0, VR_RANGE, op0, op0, NULL);
3399
3400 extract_range_from_binary_expr_1 (vr, code, expr_type, &n_vr0, &vr1);
3401 }
3402 }
3403
3404 /* Extract range information from a unary operation CODE based on
3405 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3406 The The resulting range is stored in *VR. */
3407
3408 static void
3409 extract_range_from_unary_expr_1 (value_range_t *vr,
3410 enum tree_code code, tree type,
3411 value_range_t *vr0_, tree op0_type)
3412 {
3413 value_range_t vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
3414
3415 /* VRP only operates on integral and pointer types. */
3416 if (!(INTEGRAL_TYPE_P (op0_type)
3417 || POINTER_TYPE_P (op0_type))
3418 || !(INTEGRAL_TYPE_P (type)
3419 || POINTER_TYPE_P (type)))
3420 {
3421 set_value_range_to_varying (vr);
3422 return;
3423 }
3424
3425 /* If VR0 is UNDEFINED, so is the result. */
3426 if (vr0.type == VR_UNDEFINED)
3427 {
3428 set_value_range_to_undefined (vr);
3429 return;
3430 }
3431
3432 /* Handle operations that we express in terms of others. */
3433 if (code == PAREN_EXPR || code == OBJ_TYPE_REF)
3434 {
3435 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
3436 copy_value_range (vr, &vr0);
3437 return;
3438 }
3439 else if (code == NEGATE_EXPR)
3440 {
3441 /* -X is simply 0 - X, so re-use existing code that also handles
3442 anti-ranges fine. */
3443 value_range_t zero = VR_INITIALIZER;
3444 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
3445 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
3446 return;
3447 }
3448 else if (code == BIT_NOT_EXPR)
3449 {
3450 /* ~X is simply -1 - X, so re-use existing code that also handles
3451 anti-ranges fine. */
3452 value_range_t minusone = VR_INITIALIZER;
3453 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3454 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3455 type, &minusone, &vr0);
3456 return;
3457 }
3458
3459 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3460 and express op ~[] as (op []') U (op []''). */
3461 if (vr0.type == VR_ANTI_RANGE
3462 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
3463 {
3464 extract_range_from_unary_expr_1 (vr, code, type, &vrtem0, op0_type);
3465 if (vrtem1.type != VR_UNDEFINED)
3466 {
3467 value_range_t vrres = VR_INITIALIZER;
3468 extract_range_from_unary_expr_1 (&vrres, code, type,
3469 &vrtem1, op0_type);
3470 vrp_meet (vr, &vrres);
3471 }
3472 return;
3473 }
3474
3475 if (CONVERT_EXPR_CODE_P (code))
3476 {
3477 tree inner_type = op0_type;
3478 tree outer_type = type;
3479
3480 /* If the expression evaluates to a pointer, we are only interested in
3481 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3482 if (POINTER_TYPE_P (type))
3483 {
3484 if (range_is_nonnull (&vr0))
3485 set_value_range_to_nonnull (vr, type);
3486 else if (range_is_null (&vr0))
3487 set_value_range_to_null (vr, type);
3488 else
3489 set_value_range_to_varying (vr);
3490 return;
3491 }
3492
3493 /* If VR0 is varying and we increase the type precision, assume
3494 a full range for the following transformation. */
3495 if (vr0.type == VR_VARYING
3496 && INTEGRAL_TYPE_P (inner_type)
3497 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
3498 {
3499 vr0.type = VR_RANGE;
3500 vr0.min = TYPE_MIN_VALUE (inner_type);
3501 vr0.max = TYPE_MAX_VALUE (inner_type);
3502 }
3503
3504 /* If VR0 is a constant range or anti-range and the conversion is
3505 not truncating we can convert the min and max values and
3506 canonicalize the resulting range. Otherwise we can do the
3507 conversion if the size of the range is less than what the
3508 precision of the target type can represent and the range is
3509 not an anti-range. */
3510 if ((vr0.type == VR_RANGE
3511 || vr0.type == VR_ANTI_RANGE)
3512 && TREE_CODE (vr0.min) == INTEGER_CST
3513 && TREE_CODE (vr0.max) == INTEGER_CST
3514 && (!is_overflow_infinity (vr0.min)
3515 || (vr0.type == VR_RANGE
3516 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3517 && needs_overflow_infinity (outer_type)
3518 && supports_overflow_infinity (outer_type)))
3519 && (!is_overflow_infinity (vr0.max)
3520 || (vr0.type == VR_RANGE
3521 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3522 && needs_overflow_infinity (outer_type)
3523 && supports_overflow_infinity (outer_type)))
3524 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
3525 || (vr0.type == VR_RANGE
3526 && integer_zerop (int_const_binop (RSHIFT_EXPR,
3527 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
3528 size_int (TYPE_PRECISION (outer_type)))))))
3529 {
3530 tree new_min, new_max;
3531 if (is_overflow_infinity (vr0.min))
3532 new_min = negative_overflow_infinity (outer_type);
3533 else
3534 new_min = force_fit_type (outer_type, wi::to_widest (vr0.min),
3535 0, false);
3536 if (is_overflow_infinity (vr0.max))
3537 new_max = positive_overflow_infinity (outer_type);
3538 else
3539 new_max = force_fit_type (outer_type, wi::to_widest (vr0.max),
3540 0, false);
3541 set_and_canonicalize_value_range (vr, vr0.type,
3542 new_min, new_max, NULL);
3543 return;
3544 }
3545
3546 set_value_range_to_varying (vr);
3547 return;
3548 }
3549 else if (code == ABS_EXPR)
3550 {
3551 tree min, max;
3552 int cmp;
3553
3554 /* Pass through vr0 in the easy cases. */
3555 if (TYPE_UNSIGNED (type)
3556 || value_range_nonnegative_p (&vr0))
3557 {
3558 copy_value_range (vr, &vr0);
3559 return;
3560 }
3561
3562 /* For the remaining varying or symbolic ranges we can't do anything
3563 useful. */
3564 if (vr0.type == VR_VARYING
3565 || symbolic_range_p (&vr0))
3566 {
3567 set_value_range_to_varying (vr);
3568 return;
3569 }
3570
3571 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3572 useful range. */
3573 if (!TYPE_OVERFLOW_UNDEFINED (type)
3574 && ((vr0.type == VR_RANGE
3575 && vrp_val_is_min (vr0.min))
3576 || (vr0.type == VR_ANTI_RANGE
3577 && !vrp_val_is_min (vr0.min))))
3578 {
3579 set_value_range_to_varying (vr);
3580 return;
3581 }
3582
3583 /* ABS_EXPR may flip the range around, if the original range
3584 included negative values. */
3585 if (is_overflow_infinity (vr0.min))
3586 min = positive_overflow_infinity (type);
3587 else if (!vrp_val_is_min (vr0.min))
3588 min = fold_unary_to_constant (code, type, vr0.min);
3589 else if (!needs_overflow_infinity (type))
3590 min = TYPE_MAX_VALUE (type);
3591 else if (supports_overflow_infinity (type))
3592 min = positive_overflow_infinity (type);
3593 else
3594 {
3595 set_value_range_to_varying (vr);
3596 return;
3597 }
3598
3599 if (is_overflow_infinity (vr0.max))
3600 max = positive_overflow_infinity (type);
3601 else if (!vrp_val_is_min (vr0.max))
3602 max = fold_unary_to_constant (code, type, vr0.max);
3603 else if (!needs_overflow_infinity (type))
3604 max = TYPE_MAX_VALUE (type);
3605 else if (supports_overflow_infinity (type)
3606 /* We shouldn't generate [+INF, +INF] as set_value_range
3607 doesn't like this and ICEs. */
3608 && !is_positive_overflow_infinity (min))
3609 max = positive_overflow_infinity (type);
3610 else
3611 {
3612 set_value_range_to_varying (vr);
3613 return;
3614 }
3615
3616 cmp = compare_values (min, max);
3617
3618 /* If a VR_ANTI_RANGEs contains zero, then we have
3619 ~[-INF, min(MIN, MAX)]. */
3620 if (vr0.type == VR_ANTI_RANGE)
3621 {
3622 if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3623 {
3624 /* Take the lower of the two values. */
3625 if (cmp != 1)
3626 max = min;
3627
3628 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3629 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3630 flag_wrapv is set and the original anti-range doesn't include
3631 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3632 if (TYPE_OVERFLOW_WRAPS (type))
3633 {
3634 tree type_min_value = TYPE_MIN_VALUE (type);
3635
3636 min = (vr0.min != type_min_value
3637 ? int_const_binop (PLUS_EXPR, type_min_value,
3638 build_int_cst (TREE_TYPE (type_min_value), 1))
3639 : type_min_value);
3640 }
3641 else
3642 {
3643 if (overflow_infinity_range_p (&vr0))
3644 min = negative_overflow_infinity (type);
3645 else
3646 min = TYPE_MIN_VALUE (type);
3647 }
3648 }
3649 else
3650 {
3651 /* All else has failed, so create the range [0, INF], even for
3652 flag_wrapv since TYPE_MIN_VALUE is in the original
3653 anti-range. */
3654 vr0.type = VR_RANGE;
3655 min = build_int_cst (type, 0);
3656 if (needs_overflow_infinity (type))
3657 {
3658 if (supports_overflow_infinity (type))
3659 max = positive_overflow_infinity (type);
3660 else
3661 {
3662 set_value_range_to_varying (vr);
3663 return;
3664 }
3665 }
3666 else
3667 max = TYPE_MAX_VALUE (type);
3668 }
3669 }
3670
3671 /* If the range contains zero then we know that the minimum value in the
3672 range will be zero. */
3673 else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3674 {
3675 if (cmp == 1)
3676 max = min;
3677 min = build_int_cst (type, 0);
3678 }
3679 else
3680 {
3681 /* If the range was reversed, swap MIN and MAX. */
3682 if (cmp == 1)
3683 {
3684 tree t = min;
3685 min = max;
3686 max = t;
3687 }
3688 }
3689
3690 cmp = compare_values (min, max);
3691 if (cmp == -2 || cmp == 1)
3692 {
3693 /* If the new range has its limits swapped around (MIN > MAX),
3694 then the operation caused one of them to wrap around, mark
3695 the new range VARYING. */
3696 set_value_range_to_varying (vr);
3697 }
3698 else
3699 set_value_range (vr, vr0.type, min, max, NULL);
3700 return;
3701 }
3702
3703 /* For unhandled operations fall back to varying. */
3704 set_value_range_to_varying (vr);
3705 return;
3706 }
3707
3708
3709 /* Extract range information from a unary expression CODE OP0 based on
3710 the range of its operand with resulting type TYPE.
3711 The resulting range is stored in *VR. */
3712
3713 static void
3714 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
3715 tree type, tree op0)
3716 {
3717 value_range_t vr0 = VR_INITIALIZER;
3718
3719 /* Get value ranges for the operand. For constant operands, create
3720 a new value range with the operand to simplify processing. */
3721 if (TREE_CODE (op0) == SSA_NAME)
3722 vr0 = *(get_value_range (op0));
3723 else if (is_gimple_min_invariant (op0))
3724 set_value_range_to_value (&vr0, op0, NULL);
3725 else
3726 set_value_range_to_varying (&vr0);
3727
3728 extract_range_from_unary_expr_1 (vr, code, type, &vr0, TREE_TYPE (op0));
3729 }
3730
3731
3732 /* Extract range information from a conditional expression STMT based on
3733 the ranges of each of its operands and the expression code. */
3734
3735 static void
3736 extract_range_from_cond_expr (value_range_t *vr, gassign *stmt)
3737 {
3738 tree op0, op1;
3739 value_range_t vr0 = VR_INITIALIZER;
3740 value_range_t vr1 = VR_INITIALIZER;
3741
3742 /* Get value ranges for each operand. For constant operands, create
3743 a new value range with the operand to simplify processing. */
3744 op0 = gimple_assign_rhs2 (stmt);
3745 if (TREE_CODE (op0) == SSA_NAME)
3746 vr0 = *(get_value_range (op0));
3747 else if (is_gimple_min_invariant (op0))
3748 set_value_range_to_value (&vr0, op0, NULL);
3749 else
3750 set_value_range_to_varying (&vr0);
3751
3752 op1 = gimple_assign_rhs3 (stmt);
3753 if (TREE_CODE (op1) == SSA_NAME)
3754 vr1 = *(get_value_range (op1));
3755 else if (is_gimple_min_invariant (op1))
3756 set_value_range_to_value (&vr1, op1, NULL);
3757 else
3758 set_value_range_to_varying (&vr1);
3759
3760 /* The resulting value range is the union of the operand ranges */
3761 copy_value_range (vr, &vr0);
3762 vrp_meet (vr, &vr1);
3763 }
3764
3765
3766 /* Extract range information from a comparison expression EXPR based
3767 on the range of its operand and the expression code. */
3768
3769 static void
3770 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3771 tree type, tree op0, tree op1)
3772 {
3773 bool sop = false;
3774 tree val;
3775
3776 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3777 NULL);
3778
3779 /* A disadvantage of using a special infinity as an overflow
3780 representation is that we lose the ability to record overflow
3781 when we don't have an infinity. So we have to ignore a result
3782 which relies on overflow. */
3783
3784 if (val && !is_overflow_infinity (val) && !sop)
3785 {
3786 /* Since this expression was found on the RHS of an assignment,
3787 its type may be different from _Bool. Convert VAL to EXPR's
3788 type. */
3789 val = fold_convert (type, val);
3790 if (is_gimple_min_invariant (val))
3791 set_value_range_to_value (vr, val, vr->equiv);
3792 else
3793 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3794 }
3795 else
3796 /* The result of a comparison is always true or false. */
3797 set_value_range_to_truthvalue (vr, type);
3798 }
3799
3800 /* Helper function for simplify_internal_call_using_ranges and
3801 extract_range_basic. Return true if OP0 SUBCODE OP1 for
3802 SUBCODE {PLUS,MINUS,MULT}_EXPR is known to never overflow or
3803 always overflow. Set *OVF to true if it is known to always
3804 overflow. */
3805
3806 static bool
3807 check_for_binary_op_overflow (enum tree_code subcode, tree type,
3808 tree op0, tree op1, bool *ovf)
3809 {
3810 value_range_t vr0 = VR_INITIALIZER;
3811 value_range_t vr1 = VR_INITIALIZER;
3812 if (TREE_CODE (op0) == SSA_NAME)
3813 vr0 = *get_value_range (op0);
3814 else if (TREE_CODE (op0) == INTEGER_CST)
3815 set_value_range_to_value (&vr0, op0, NULL);
3816 else
3817 set_value_range_to_varying (&vr0);
3818
3819 if (TREE_CODE (op1) == SSA_NAME)
3820 vr1 = *get_value_range (op1);
3821 else if (TREE_CODE (op1) == INTEGER_CST)
3822 set_value_range_to_value (&vr1, op1, NULL);
3823 else
3824 set_value_range_to_varying (&vr1);
3825
3826 if (!range_int_cst_p (&vr0)
3827 || TREE_OVERFLOW (vr0.min)
3828 || TREE_OVERFLOW (vr0.max))
3829 {
3830 vr0.min = vrp_val_min (TREE_TYPE (op0));
3831 vr0.max = vrp_val_max (TREE_TYPE (op0));
3832 }
3833 if (!range_int_cst_p (&vr1)
3834 || TREE_OVERFLOW (vr1.min)
3835 || TREE_OVERFLOW (vr1.max))
3836 {
3837 vr1.min = vrp_val_min (TREE_TYPE (op1));
3838 vr1.max = vrp_val_max (TREE_TYPE (op1));
3839 }
3840 *ovf = arith_overflowed_p (subcode, type, vr0.min,
3841 subcode == MINUS_EXPR ? vr1.max : vr1.min);
3842 if (arith_overflowed_p (subcode, type, vr0.max,
3843 subcode == MINUS_EXPR ? vr1.min : vr1.max) != *ovf)
3844 return false;
3845 if (subcode == MULT_EXPR)
3846 {
3847 if (arith_overflowed_p (subcode, type, vr0.min, vr1.max) != *ovf
3848 || arith_overflowed_p (subcode, type, vr0.max, vr1.min) != *ovf)
3849 return false;
3850 }
3851 if (*ovf)
3852 {
3853 /* So far we found that there is an overflow on the boundaries.
3854 That doesn't prove that there is an overflow even for all values
3855 in between the boundaries. For that compute widest_int range
3856 of the result and see if it doesn't overlap the range of
3857 type. */
3858 widest_int wmin, wmax;
3859 widest_int w[4];
3860 int i;
3861 w[0] = wi::to_widest (vr0.min);
3862 w[1] = wi::to_widest (vr0.max);
3863 w[2] = wi::to_widest (vr1.min);
3864 w[3] = wi::to_widest (vr1.max);
3865 for (i = 0; i < 4; i++)
3866 {
3867 widest_int wt;
3868 switch (subcode)
3869 {
3870 case PLUS_EXPR:
3871 wt = wi::add (w[i & 1], w[2 + (i & 2) / 2]);
3872 break;
3873 case MINUS_EXPR:
3874 wt = wi::sub (w[i & 1], w[2 + (i & 2) / 2]);
3875 break;
3876 case MULT_EXPR:
3877 wt = wi::mul (w[i & 1], w[2 + (i & 2) / 2]);
3878 break;
3879 default:
3880 gcc_unreachable ();
3881 }
3882 if (i == 0)
3883 {
3884 wmin = wt;
3885 wmax = wt;
3886 }
3887 else
3888 {
3889 wmin = wi::smin (wmin, wt);
3890 wmax = wi::smax (wmax, wt);
3891 }
3892 }
3893 /* The result of op0 CODE op1 is known to be in range
3894 [wmin, wmax]. */
3895 widest_int wtmin = wi::to_widest (vrp_val_min (type));
3896 widest_int wtmax = wi::to_widest (vrp_val_max (type));
3897 /* If all values in [wmin, wmax] are smaller than
3898 [wtmin, wtmax] or all are larger than [wtmin, wtmax],
3899 the arithmetic operation will always overflow. */
3900 if (wi::lts_p (wmax, wtmin) || wi::gts_p (wmin, wtmax))
3901 return true;
3902 return false;
3903 }
3904 return true;
3905 }
3906
3907 /* Try to derive a nonnegative or nonzero range out of STMT relying
3908 primarily on generic routines in fold in conjunction with range data.
3909 Store the result in *VR */
3910
3911 static void
3912 extract_range_basic (value_range_t *vr, gimple stmt)
3913 {
3914 bool sop = false;
3915 tree type = gimple_expr_type (stmt);
3916
3917 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
3918 {
3919 tree fndecl = gimple_call_fndecl (stmt), arg;
3920 int mini, maxi, zerov = 0, prec;
3921
3922 switch (DECL_FUNCTION_CODE (fndecl))
3923 {
3924 case BUILT_IN_CONSTANT_P:
3925 /* If the call is __builtin_constant_p and the argument is a
3926 function parameter resolve it to false. This avoids bogus
3927 array bound warnings.
3928 ??? We could do this as early as inlining is finished. */
3929 arg = gimple_call_arg (stmt, 0);
3930 if (TREE_CODE (arg) == SSA_NAME
3931 && SSA_NAME_IS_DEFAULT_DEF (arg)
3932 && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL)
3933 {
3934 set_value_range_to_null (vr, type);
3935 return;
3936 }
3937 break;
3938 /* Both __builtin_ffs* and __builtin_popcount return
3939 [0, prec]. */
3940 CASE_INT_FN (BUILT_IN_FFS):
3941 CASE_INT_FN (BUILT_IN_POPCOUNT):
3942 arg = gimple_call_arg (stmt, 0);
3943 prec = TYPE_PRECISION (TREE_TYPE (arg));
3944 mini = 0;
3945 maxi = prec;
3946 if (TREE_CODE (arg) == SSA_NAME)
3947 {
3948 value_range_t *vr0 = get_value_range (arg);
3949 /* If arg is non-zero, then ffs or popcount
3950 are non-zero. */
3951 if (((vr0->type == VR_RANGE
3952 && range_includes_zero_p (vr0->min, vr0->max) == 0)
3953 || (vr0->type == VR_ANTI_RANGE
3954 && range_includes_zero_p (vr0->min, vr0->max) == 1))
3955 && !is_overflow_infinity (vr0->min)
3956 && !is_overflow_infinity (vr0->max))
3957 mini = 1;
3958 /* If some high bits are known to be zero,
3959 we can decrease the maximum. */
3960 if (vr0->type == VR_RANGE
3961 && TREE_CODE (vr0->max) == INTEGER_CST
3962 && !operand_less_p (vr0->min,
3963 build_zero_cst (TREE_TYPE (vr0->min)))
3964 && !is_overflow_infinity (vr0->max))
3965 maxi = tree_floor_log2 (vr0->max) + 1;
3966 }
3967 goto bitop_builtin;
3968 /* __builtin_parity* returns [0, 1]. */
3969 CASE_INT_FN (BUILT_IN_PARITY):
3970 mini = 0;
3971 maxi = 1;
3972 goto bitop_builtin;
3973 /* __builtin_c[lt]z* return [0, prec-1], except for
3974 when the argument is 0, but that is undefined behavior.
3975 On many targets where the CLZ RTL or optab value is defined
3976 for 0 the value is prec, so include that in the range
3977 by default. */
3978 CASE_INT_FN (BUILT_IN_CLZ):
3979 arg = gimple_call_arg (stmt, 0);
3980 prec = TYPE_PRECISION (TREE_TYPE (arg));
3981 mini = 0;
3982 maxi = prec;
3983 if (optab_handler (clz_optab, TYPE_MODE (TREE_TYPE (arg)))
3984 != CODE_FOR_nothing
3985 && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3986 zerov)
3987 /* Handle only the single common value. */
3988 && zerov != prec)
3989 /* Magic value to give up, unless vr0 proves
3990 arg is non-zero. */
3991 mini = -2;
3992 if (TREE_CODE (arg) == SSA_NAME)
3993 {
3994 value_range_t *vr0 = get_value_range (arg);
3995 /* From clz of VR_RANGE minimum we can compute
3996 result maximum. */
3997 if (vr0->type == VR_RANGE
3998 && TREE_CODE (vr0->min) == INTEGER_CST
3999 && !is_overflow_infinity (vr0->min))
4000 {
4001 maxi = prec - 1 - tree_floor_log2 (vr0->min);
4002 if (maxi != prec)
4003 mini = 0;
4004 }
4005 else if (vr0->type == VR_ANTI_RANGE
4006 && integer_zerop (vr0->min)
4007 && !is_overflow_infinity (vr0->min))
4008 {
4009 maxi = prec - 1;
4010 mini = 0;
4011 }
4012 if (mini == -2)
4013 break;
4014 /* From clz of VR_RANGE maximum we can compute
4015 result minimum. */
4016 if (vr0->type == VR_RANGE
4017 && TREE_CODE (vr0->max) == INTEGER_CST
4018 && !is_overflow_infinity (vr0->max))
4019 {
4020 mini = prec - 1 - tree_floor_log2 (vr0->max);
4021 if (mini == prec)
4022 break;
4023 }
4024 }
4025 if (mini == -2)
4026 break;
4027 goto bitop_builtin;
4028 /* __builtin_ctz* return [0, prec-1], except for
4029 when the argument is 0, but that is undefined behavior.
4030 If there is a ctz optab for this mode and
4031 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
4032 otherwise just assume 0 won't be seen. */
4033 CASE_INT_FN (BUILT_IN_CTZ):
4034 arg = gimple_call_arg (stmt, 0);
4035 prec = TYPE_PRECISION (TREE_TYPE (arg));
4036 mini = 0;
4037 maxi = prec - 1;
4038 if (optab_handler (ctz_optab, TYPE_MODE (TREE_TYPE (arg)))
4039 != CODE_FOR_nothing
4040 && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
4041 zerov))
4042 {
4043 /* Handle only the two common values. */
4044 if (zerov == -1)
4045 mini = -1;
4046 else if (zerov == prec)
4047 maxi = prec;
4048 else
4049 /* Magic value to give up, unless vr0 proves
4050 arg is non-zero. */
4051 mini = -2;
4052 }
4053 if (TREE_CODE (arg) == SSA_NAME)
4054 {
4055 value_range_t *vr0 = get_value_range (arg);
4056 /* If arg is non-zero, then use [0, prec - 1]. */
4057 if (((vr0->type == VR_RANGE
4058 && integer_nonzerop (vr0->min))
4059 || (vr0->type == VR_ANTI_RANGE
4060 && integer_zerop (vr0->min)))
4061 && !is_overflow_infinity (vr0->min))
4062 {
4063 mini = 0;
4064 maxi = prec - 1;
4065 }
4066 /* If some high bits are known to be zero,
4067 we can decrease the result maximum. */
4068 if (vr0->type == VR_RANGE
4069 && TREE_CODE (vr0->max) == INTEGER_CST
4070 && !is_overflow_infinity (vr0->max))
4071 {
4072 maxi = tree_floor_log2 (vr0->max);
4073 /* For vr0 [0, 0] give up. */
4074 if (maxi == -1)
4075 break;
4076 }
4077 }
4078 if (mini == -2)
4079 break;
4080 goto bitop_builtin;
4081 /* __builtin_clrsb* returns [0, prec-1]. */
4082 CASE_INT_FN (BUILT_IN_CLRSB):
4083 arg = gimple_call_arg (stmt, 0);
4084 prec = TYPE_PRECISION (TREE_TYPE (arg));
4085 mini = 0;
4086 maxi = prec - 1;
4087 goto bitop_builtin;
4088 bitop_builtin:
4089 set_value_range (vr, VR_RANGE, build_int_cst (type, mini),
4090 build_int_cst (type, maxi), NULL);
4091 return;
4092 default:
4093 break;
4094 }
4095 }
4096 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
4097 {
4098 enum tree_code subcode = ERROR_MARK;
4099 switch (gimple_call_internal_fn (stmt))
4100 {
4101 case IFN_UBSAN_CHECK_ADD:
4102 subcode = PLUS_EXPR;
4103 break;
4104 case IFN_UBSAN_CHECK_SUB:
4105 subcode = MINUS_EXPR;
4106 break;
4107 case IFN_UBSAN_CHECK_MUL:
4108 subcode = MULT_EXPR;
4109 break;
4110 default:
4111 break;
4112 }
4113 if (subcode != ERROR_MARK)
4114 {
4115 bool saved_flag_wrapv = flag_wrapv;
4116 /* Pretend the arithmetics is wrapping. If there is
4117 any overflow, we'll complain, but will actually do
4118 wrapping operation. */
4119 flag_wrapv = 1;
4120 extract_range_from_binary_expr (vr, subcode, type,
4121 gimple_call_arg (stmt, 0),
4122 gimple_call_arg (stmt, 1));
4123 flag_wrapv = saved_flag_wrapv;
4124
4125 /* If for both arguments vrp_valueize returned non-NULL,
4126 this should have been already folded and if not, it
4127 wasn't folded because of overflow. Avoid removing the
4128 UBSAN_CHECK_* calls in that case. */
4129 if (vr->type == VR_RANGE
4130 && (vr->min == vr->max
4131 || operand_equal_p (vr->min, vr->max, 0)))
4132 set_value_range_to_varying (vr);
4133 return;
4134 }
4135 }
4136 /* Handle extraction of the two results (result of arithmetics and
4137 a flag whether arithmetics overflowed) from {ADD,SUB,MUL}_OVERFLOW
4138 internal function. */
4139 else if (is_gimple_assign (stmt)
4140 && (gimple_assign_rhs_code (stmt) == REALPART_EXPR
4141 || gimple_assign_rhs_code (stmt) == IMAGPART_EXPR)
4142 && INTEGRAL_TYPE_P (type))
4143 {
4144 enum tree_code code = gimple_assign_rhs_code (stmt);
4145 tree op = gimple_assign_rhs1 (stmt);
4146 if (TREE_CODE (op) == code && TREE_CODE (TREE_OPERAND (op, 0)) == SSA_NAME)
4147 {
4148 gimple g = SSA_NAME_DEF_STMT (TREE_OPERAND (op, 0));
4149 if (is_gimple_call (g) && gimple_call_internal_p (g))
4150 {
4151 enum tree_code subcode = ERROR_MARK;
4152 switch (gimple_call_internal_fn (g))
4153 {
4154 case IFN_ADD_OVERFLOW:
4155 subcode = PLUS_EXPR;
4156 break;
4157 case IFN_SUB_OVERFLOW:
4158 subcode = MINUS_EXPR;
4159 break;
4160 case IFN_MUL_OVERFLOW:
4161 subcode = MULT_EXPR;
4162 break;
4163 default:
4164 break;
4165 }
4166 if (subcode != ERROR_MARK)
4167 {
4168 tree op0 = gimple_call_arg (g, 0);
4169 tree op1 = gimple_call_arg (g, 1);
4170 if (code == IMAGPART_EXPR)
4171 {
4172 bool ovf = false;
4173 if (check_for_binary_op_overflow (subcode, type,
4174 op0, op1, &ovf))
4175 set_value_range_to_value (vr,
4176 build_int_cst (type, ovf),
4177 NULL);
4178 else
4179 set_value_range (vr, VR_RANGE, build_int_cst (type, 0),
4180 build_int_cst (type, 1), NULL);
4181 }
4182 else if (types_compatible_p (type, TREE_TYPE (op0))
4183 && types_compatible_p (type, TREE_TYPE (op1)))
4184 {
4185 bool saved_flag_wrapv = flag_wrapv;
4186 /* Pretend the arithmetics is wrapping. If there is
4187 any overflow, IMAGPART_EXPR will be set. */
4188 flag_wrapv = 1;
4189 extract_range_from_binary_expr (vr, subcode, type,
4190 op0, op1);
4191 flag_wrapv = saved_flag_wrapv;
4192 }
4193 else
4194 {
4195 value_range_t vr0 = VR_INITIALIZER;
4196 value_range_t vr1 = VR_INITIALIZER;
4197 bool saved_flag_wrapv = flag_wrapv;
4198 /* Pretend the arithmetics is wrapping. If there is
4199 any overflow, IMAGPART_EXPR will be set. */
4200 flag_wrapv = 1;
4201 extract_range_from_unary_expr (&vr0, NOP_EXPR,
4202 type, op0);
4203 extract_range_from_unary_expr (&vr1, NOP_EXPR,
4204 type, op1);
4205 extract_range_from_binary_expr_1 (vr, subcode, type,
4206 &vr0, &vr1);
4207 flag_wrapv = saved_flag_wrapv;
4208 }
4209 return;
4210 }
4211 }
4212 }
4213 }
4214 if (INTEGRAL_TYPE_P (type)
4215 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
4216 set_value_range_to_nonnegative (vr, type,
4217 sop || stmt_overflow_infinity (stmt));
4218 else if (vrp_stmt_computes_nonzero (stmt, &sop)
4219 && !sop)
4220 set_value_range_to_nonnull (vr, type);
4221 else
4222 set_value_range_to_varying (vr);
4223 }
4224
4225
4226 /* Try to compute a useful range out of assignment STMT and store it
4227 in *VR. */
4228
4229 static void
4230 extract_range_from_assignment (value_range_t *vr, gassign *stmt)
4231 {
4232 enum tree_code code = gimple_assign_rhs_code (stmt);
4233
4234 if (code == ASSERT_EXPR)
4235 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
4236 else if (code == SSA_NAME)
4237 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
4238 else if (TREE_CODE_CLASS (code) == tcc_binary)
4239 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
4240 gimple_expr_type (stmt),
4241 gimple_assign_rhs1 (stmt),
4242 gimple_assign_rhs2 (stmt));
4243 else if (TREE_CODE_CLASS (code) == tcc_unary)
4244 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
4245 gimple_expr_type (stmt),
4246 gimple_assign_rhs1 (stmt));
4247 else if (code == COND_EXPR)
4248 extract_range_from_cond_expr (vr, stmt);
4249 else if (TREE_CODE_CLASS (code) == tcc_comparison)
4250 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
4251 gimple_expr_type (stmt),
4252 gimple_assign_rhs1 (stmt),
4253 gimple_assign_rhs2 (stmt));
4254 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
4255 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
4256 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
4257 else
4258 set_value_range_to_varying (vr);
4259
4260 if (vr->type == VR_VARYING)
4261 extract_range_basic (vr, stmt);
4262 }
4263
4264 /* Given a range VR, a LOOP and a variable VAR, determine whether it
4265 would be profitable to adjust VR using scalar evolution information
4266 for VAR. If so, update VR with the new limits. */
4267
4268 static void
4269 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
4270 gimple stmt, tree var)
4271 {
4272 tree init, step, chrec, tmin, tmax, min, max, type, tem;
4273 enum ev_direction dir;
4274
4275 /* TODO. Don't adjust anti-ranges. An anti-range may provide
4276 better opportunities than a regular range, but I'm not sure. */
4277 if (vr->type == VR_ANTI_RANGE)
4278 return;
4279
4280 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
4281
4282 /* Like in PR19590, scev can return a constant function. */
4283 if (is_gimple_min_invariant (chrec))
4284 {
4285 set_value_range_to_value (vr, chrec, vr->equiv);
4286 return;
4287 }
4288
4289 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
4290 return;
4291
4292 init = initial_condition_in_loop_num (chrec, loop->num);
4293 tem = op_with_constant_singleton_value_range (init);
4294 if (tem)
4295 init = tem;
4296 step = evolution_part_in_loop_num (chrec, loop->num);
4297 tem = op_with_constant_singleton_value_range (step);
4298 if (tem)
4299 step = tem;
4300
4301 /* If STEP is symbolic, we can't know whether INIT will be the
4302 minimum or maximum value in the range. Also, unless INIT is
4303 a simple expression, compare_values and possibly other functions
4304 in tree-vrp won't be able to handle it. */
4305 if (step == NULL_TREE
4306 || !is_gimple_min_invariant (step)
4307 || !valid_value_p (init))
4308 return;
4309
4310 dir = scev_direction (chrec);
4311 if (/* Do not adjust ranges if we do not know whether the iv increases
4312 or decreases, ... */
4313 dir == EV_DIR_UNKNOWN
4314 /* ... or if it may wrap. */
4315 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
4316 true))
4317 return;
4318
4319 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
4320 negative_overflow_infinity and positive_overflow_infinity,
4321 because we have concluded that the loop probably does not
4322 wrap. */
4323
4324 type = TREE_TYPE (var);
4325 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
4326 tmin = lower_bound_in_type (type, type);
4327 else
4328 tmin = TYPE_MIN_VALUE (type);
4329 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
4330 tmax = upper_bound_in_type (type, type);
4331 else
4332 tmax = TYPE_MAX_VALUE (type);
4333
4334 /* Try to use estimated number of iterations for the loop to constrain the
4335 final value in the evolution. */
4336 if (TREE_CODE (step) == INTEGER_CST
4337 && is_gimple_val (init)
4338 && (TREE_CODE (init) != SSA_NAME
4339 || get_value_range (init)->type == VR_RANGE))
4340 {
4341 widest_int nit;
4342
4343 /* We are only entering here for loop header PHI nodes, so using
4344 the number of latch executions is the correct thing to use. */
4345 if (max_loop_iterations (loop, &nit))
4346 {
4347 value_range_t maxvr = VR_INITIALIZER;
4348 signop sgn = TYPE_SIGN (TREE_TYPE (step));
4349 bool overflow;
4350
4351 widest_int wtmp = wi::mul (wi::to_widest (step), nit, sgn,
4352 &overflow);
4353 /* If the multiplication overflowed we can't do a meaningful
4354 adjustment. Likewise if the result doesn't fit in the type
4355 of the induction variable. For a signed type we have to
4356 check whether the result has the expected signedness which
4357 is that of the step as number of iterations is unsigned. */
4358 if (!overflow
4359 && wi::fits_to_tree_p (wtmp, TREE_TYPE (init))
4360 && (sgn == UNSIGNED
4361 || wi::gts_p (wtmp, 0) == wi::gts_p (step, 0)))
4362 {
4363 tem = wide_int_to_tree (TREE_TYPE (init), wtmp);
4364 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
4365 TREE_TYPE (init), init, tem);
4366 /* Likewise if the addition did. */
4367 if (maxvr.type == VR_RANGE)
4368 {
4369 tmin = maxvr.min;
4370 tmax = maxvr.max;
4371 }
4372 }
4373 }
4374 }
4375
4376 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4377 {
4378 min = tmin;
4379 max = tmax;
4380
4381 /* For VARYING or UNDEFINED ranges, just about anything we get
4382 from scalar evolutions should be better. */
4383
4384 if (dir == EV_DIR_DECREASES)
4385 max = init;
4386 else
4387 min = init;
4388 }
4389 else if (vr->type == VR_RANGE)
4390 {
4391 min = vr->min;
4392 max = vr->max;
4393
4394 if (dir == EV_DIR_DECREASES)
4395 {
4396 /* INIT is the maximum value. If INIT is lower than VR->MAX
4397 but no smaller than VR->MIN, set VR->MAX to INIT. */
4398 if (compare_values (init, max) == -1)
4399 max = init;
4400
4401 /* According to the loop information, the variable does not
4402 overflow. If we think it does, probably because of an
4403 overflow due to arithmetic on a different INF value,
4404 reset now. */
4405 if (is_negative_overflow_infinity (min)
4406 || compare_values (min, tmin) == -1)
4407 min = tmin;
4408
4409 }
4410 else
4411 {
4412 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
4413 if (compare_values (init, min) == 1)
4414 min = init;
4415
4416 if (is_positive_overflow_infinity (max)
4417 || compare_values (tmax, max) == -1)
4418 max = tmax;
4419 }
4420 }
4421 else
4422 return;
4423
4424 /* If we just created an invalid range with the minimum
4425 greater than the maximum, we fail conservatively.
4426 This should happen only in unreachable
4427 parts of code, or for invalid programs. */
4428 if (compare_values (min, max) == 1
4429 || (is_negative_overflow_infinity (min)
4430 && is_positive_overflow_infinity (max)))
4431 return;
4432
4433 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
4434 }
4435
4436
4437 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
4438
4439 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4440 all the values in the ranges.
4441
4442 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4443
4444 - Return NULL_TREE if it is not always possible to determine the
4445 value of the comparison.
4446
4447 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
4448 overflow infinity was used in the test. */
4449
4450
4451 static tree
4452 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
4453 bool *strict_overflow_p)
4454 {
4455 /* VARYING or UNDEFINED ranges cannot be compared. */
4456 if (vr0->type == VR_VARYING
4457 || vr0->type == VR_UNDEFINED
4458 || vr1->type == VR_VARYING
4459 || vr1->type == VR_UNDEFINED)
4460 return NULL_TREE;
4461
4462 /* Anti-ranges need to be handled separately. */
4463 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4464 {
4465 /* If both are anti-ranges, then we cannot compute any
4466 comparison. */
4467 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4468 return NULL_TREE;
4469
4470 /* These comparisons are never statically computable. */
4471 if (comp == GT_EXPR
4472 || comp == GE_EXPR
4473 || comp == LT_EXPR
4474 || comp == LE_EXPR)
4475 return NULL_TREE;
4476
4477 /* Equality can be computed only between a range and an
4478 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
4479 if (vr0->type == VR_RANGE)
4480 {
4481 /* To simplify processing, make VR0 the anti-range. */
4482 value_range_t *tmp = vr0;
4483 vr0 = vr1;
4484 vr1 = tmp;
4485 }
4486
4487 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
4488
4489 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
4490 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
4491 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4492
4493 return NULL_TREE;
4494 }
4495
4496 if (!usable_range_p (vr0, strict_overflow_p)
4497 || !usable_range_p (vr1, strict_overflow_p))
4498 return NULL_TREE;
4499
4500 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4501 operands around and change the comparison code. */
4502 if (comp == GT_EXPR || comp == GE_EXPR)
4503 {
4504 value_range_t *tmp;
4505 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
4506 tmp = vr0;
4507 vr0 = vr1;
4508 vr1 = tmp;
4509 }
4510
4511 if (comp == EQ_EXPR)
4512 {
4513 /* Equality may only be computed if both ranges represent
4514 exactly one value. */
4515 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
4516 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
4517 {
4518 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
4519 strict_overflow_p);
4520 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
4521 strict_overflow_p);
4522 if (cmp_min == 0 && cmp_max == 0)
4523 return boolean_true_node;
4524 else if (cmp_min != -2 && cmp_max != -2)
4525 return boolean_false_node;
4526 }
4527 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
4528 else if (compare_values_warnv (vr0->min, vr1->max,
4529 strict_overflow_p) == 1
4530 || compare_values_warnv (vr1->min, vr0->max,
4531 strict_overflow_p) == 1)
4532 return boolean_false_node;
4533
4534 return NULL_TREE;
4535 }
4536 else if (comp == NE_EXPR)
4537 {
4538 int cmp1, cmp2;
4539
4540 /* If VR0 is completely to the left or completely to the right
4541 of VR1, they are always different. Notice that we need to
4542 make sure that both comparisons yield similar results to
4543 avoid comparing values that cannot be compared at
4544 compile-time. */
4545 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4546 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4547 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
4548 return boolean_true_node;
4549
4550 /* If VR0 and VR1 represent a single value and are identical,
4551 return false. */
4552 else if (compare_values_warnv (vr0->min, vr0->max,
4553 strict_overflow_p) == 0
4554 && compare_values_warnv (vr1->min, vr1->max,
4555 strict_overflow_p) == 0
4556 && compare_values_warnv (vr0->min, vr1->min,
4557 strict_overflow_p) == 0
4558 && compare_values_warnv (vr0->max, vr1->max,
4559 strict_overflow_p) == 0)
4560 return boolean_false_node;
4561
4562 /* Otherwise, they may or may not be different. */
4563 else
4564 return NULL_TREE;
4565 }
4566 else if (comp == LT_EXPR || comp == LE_EXPR)
4567 {
4568 int tst;
4569
4570 /* If VR0 is to the left of VR1, return true. */
4571 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4572 if ((comp == LT_EXPR && tst == -1)
4573 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4574 {
4575 if (overflow_infinity_range_p (vr0)
4576 || overflow_infinity_range_p (vr1))
4577 *strict_overflow_p = true;
4578 return boolean_true_node;
4579 }
4580
4581 /* If VR0 is to the right of VR1, return false. */
4582 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4583 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4584 || (comp == LE_EXPR && tst == 1))
4585 {
4586 if (overflow_infinity_range_p (vr0)
4587 || overflow_infinity_range_p (vr1))
4588 *strict_overflow_p = true;
4589 return boolean_false_node;
4590 }
4591
4592 /* Otherwise, we don't know. */
4593 return NULL_TREE;
4594 }
4595
4596 gcc_unreachable ();
4597 }
4598
4599
4600 /* Given a value range VR, a value VAL and a comparison code COMP, return
4601 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4602 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4603 always returns false. Return NULL_TREE if it is not always
4604 possible to determine the value of the comparison. Also set
4605 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
4606 infinity was used in the test. */
4607
4608 static tree
4609 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
4610 bool *strict_overflow_p)
4611 {
4612 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4613 return NULL_TREE;
4614
4615 /* Anti-ranges need to be handled separately. */
4616 if (vr->type == VR_ANTI_RANGE)
4617 {
4618 /* For anti-ranges, the only predicates that we can compute at
4619 compile time are equality and inequality. */
4620 if (comp == GT_EXPR
4621 || comp == GE_EXPR
4622 || comp == LT_EXPR
4623 || comp == LE_EXPR)
4624 return NULL_TREE;
4625
4626 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4627 if (value_inside_range (val, vr->min, vr->max) == 1)
4628 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4629
4630 return NULL_TREE;
4631 }
4632
4633 if (!usable_range_p (vr, strict_overflow_p))
4634 return NULL_TREE;
4635
4636 if (comp == EQ_EXPR)
4637 {
4638 /* EQ_EXPR may only be computed if VR represents exactly
4639 one value. */
4640 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
4641 {
4642 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
4643 if (cmp == 0)
4644 return boolean_true_node;
4645 else if (cmp == -1 || cmp == 1 || cmp == 2)
4646 return boolean_false_node;
4647 }
4648 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
4649 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
4650 return boolean_false_node;
4651
4652 return NULL_TREE;
4653 }
4654 else if (comp == NE_EXPR)
4655 {
4656 /* If VAL is not inside VR, then they are always different. */
4657 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
4658 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
4659 return boolean_true_node;
4660
4661 /* If VR represents exactly one value equal to VAL, then return
4662 false. */
4663 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
4664 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
4665 return boolean_false_node;
4666
4667 /* Otherwise, they may or may not be different. */
4668 return NULL_TREE;
4669 }
4670 else if (comp == LT_EXPR || comp == LE_EXPR)
4671 {
4672 int tst;
4673
4674 /* If VR is to the left of VAL, return true. */
4675 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4676 if ((comp == LT_EXPR && tst == -1)
4677 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4678 {
4679 if (overflow_infinity_range_p (vr))
4680 *strict_overflow_p = true;
4681 return boolean_true_node;
4682 }
4683
4684 /* If VR is to the right of VAL, return false. */
4685 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4686 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4687 || (comp == LE_EXPR && tst == 1))
4688 {
4689 if (overflow_infinity_range_p (vr))
4690 *strict_overflow_p = true;
4691 return boolean_false_node;
4692 }
4693
4694 /* Otherwise, we don't know. */
4695 return NULL_TREE;
4696 }
4697 else if (comp == GT_EXPR || comp == GE_EXPR)
4698 {
4699 int tst;
4700
4701 /* If VR is to the right of VAL, return true. */
4702 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4703 if ((comp == GT_EXPR && tst == 1)
4704 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
4705 {
4706 if (overflow_infinity_range_p (vr))
4707 *strict_overflow_p = true;
4708 return boolean_true_node;
4709 }
4710
4711 /* If VR is to the left of VAL, return false. */
4712 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4713 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
4714 || (comp == GE_EXPR && tst == -1))
4715 {
4716 if (overflow_infinity_range_p (vr))
4717 *strict_overflow_p = true;
4718 return boolean_false_node;
4719 }
4720
4721 /* Otherwise, we don't know. */
4722 return NULL_TREE;
4723 }
4724
4725 gcc_unreachable ();
4726 }
4727
4728
4729 /* Debugging dumps. */
4730
4731 void dump_value_range (FILE *, value_range_t *);
4732 void debug_value_range (value_range_t *);
4733 void dump_all_value_ranges (FILE *);
4734 void debug_all_value_ranges (void);
4735 void dump_vr_equiv (FILE *, bitmap);
4736 void debug_vr_equiv (bitmap);
4737
4738
4739 /* Dump value range VR to FILE. */
4740
4741 void
4742 dump_value_range (FILE *file, value_range_t *vr)
4743 {
4744 if (vr == NULL)
4745 fprintf (file, "[]");
4746 else if (vr->type == VR_UNDEFINED)
4747 fprintf (file, "UNDEFINED");
4748 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4749 {
4750 tree type = TREE_TYPE (vr->min);
4751
4752 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
4753
4754 if (is_negative_overflow_infinity (vr->min))
4755 fprintf (file, "-INF(OVF)");
4756 else if (INTEGRAL_TYPE_P (type)
4757 && !TYPE_UNSIGNED (type)
4758 && vrp_val_is_min (vr->min))
4759 fprintf (file, "-INF");
4760 else
4761 print_generic_expr (file, vr->min, 0);
4762
4763 fprintf (file, ", ");
4764
4765 if (is_positive_overflow_infinity (vr->max))
4766 fprintf (file, "+INF(OVF)");
4767 else if (INTEGRAL_TYPE_P (type)
4768 && vrp_val_is_max (vr->max))
4769 fprintf (file, "+INF");
4770 else
4771 print_generic_expr (file, vr->max, 0);
4772
4773 fprintf (file, "]");
4774
4775 if (vr->equiv)
4776 {
4777 bitmap_iterator bi;
4778 unsigned i, c = 0;
4779
4780 fprintf (file, " EQUIVALENCES: { ");
4781
4782 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
4783 {
4784 print_generic_expr (file, ssa_name (i), 0);
4785 fprintf (file, " ");
4786 c++;
4787 }
4788
4789 fprintf (file, "} (%u elements)", c);
4790 }
4791 }
4792 else if (vr->type == VR_VARYING)
4793 fprintf (file, "VARYING");
4794 else
4795 fprintf (file, "INVALID RANGE");
4796 }
4797
4798
4799 /* Dump value range VR to stderr. */
4800
4801 DEBUG_FUNCTION void
4802 debug_value_range (value_range_t *vr)
4803 {
4804 dump_value_range (stderr, vr);
4805 fprintf (stderr, "\n");
4806 }
4807
4808
4809 /* Dump value ranges of all SSA_NAMEs to FILE. */
4810
4811 void
4812 dump_all_value_ranges (FILE *file)
4813 {
4814 size_t i;
4815
4816 for (i = 0; i < num_vr_values; i++)
4817 {
4818 if (vr_value[i])
4819 {
4820 print_generic_expr (file, ssa_name (i), 0);
4821 fprintf (file, ": ");
4822 dump_value_range (file, vr_value[i]);
4823 fprintf (file, "\n");
4824 }
4825 }
4826
4827 fprintf (file, "\n");
4828 }
4829
4830
4831 /* Dump all value ranges to stderr. */
4832
4833 DEBUG_FUNCTION void
4834 debug_all_value_ranges (void)
4835 {
4836 dump_all_value_ranges (stderr);
4837 }
4838
4839
4840 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4841 create a new SSA name N and return the assertion assignment
4842 'N = ASSERT_EXPR <V, V OP W>'. */
4843
4844 static gimple
4845 build_assert_expr_for (tree cond, tree v)
4846 {
4847 tree a;
4848 gassign *assertion;
4849
4850 gcc_assert (TREE_CODE (v) == SSA_NAME
4851 && COMPARISON_CLASS_P (cond));
4852
4853 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
4854 assertion = gimple_build_assign (NULL_TREE, a);
4855
4856 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4857 operand of the ASSERT_EXPR. Create it so the new name and the old one
4858 are registered in the replacement table so that we can fix the SSA web
4859 after adding all the ASSERT_EXPRs. */
4860 create_new_def_for (v, assertion, NULL);
4861
4862 return assertion;
4863 }
4864
4865
4866 /* Return false if EXPR is a predicate expression involving floating
4867 point values. */
4868
4869 static inline bool
4870 fp_predicate (gimple stmt)
4871 {
4872 GIMPLE_CHECK (stmt, GIMPLE_COND);
4873
4874 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4875 }
4876
4877 /* If the range of values taken by OP can be inferred after STMT executes,
4878 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4879 describes the inferred range. Return true if a range could be
4880 inferred. */
4881
4882 static bool
4883 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
4884 {
4885 *val_p = NULL_TREE;
4886 *comp_code_p = ERROR_MARK;
4887
4888 /* Do not attempt to infer anything in names that flow through
4889 abnormal edges. */
4890 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4891 return false;
4892
4893 /* Similarly, don't infer anything from statements that may throw
4894 exceptions. ??? Relax this requirement? */
4895 if (stmt_could_throw_p (stmt))
4896 return false;
4897
4898 /* If STMT is the last statement of a basic block with no normal
4899 successors, there is no point inferring anything about any of its
4900 operands. We would not be able to find a proper insertion point
4901 for the assertion, anyway. */
4902 if (stmt_ends_bb_p (stmt))
4903 {
4904 edge_iterator ei;
4905 edge e;
4906
4907 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
4908 if (!(e->flags & EDGE_ABNORMAL))
4909 break;
4910 if (e == NULL)
4911 return false;
4912 }
4913
4914 if (infer_nonnull_range (stmt, op, true, true))
4915 {
4916 *val_p = build_int_cst (TREE_TYPE (op), 0);
4917 *comp_code_p = NE_EXPR;
4918 return true;
4919 }
4920
4921 return false;
4922 }
4923
4924
4925 void dump_asserts_for (FILE *, tree);
4926 void debug_asserts_for (tree);
4927 void dump_all_asserts (FILE *);
4928 void debug_all_asserts (void);
4929
4930 /* Dump all the registered assertions for NAME to FILE. */
4931
4932 void
4933 dump_asserts_for (FILE *file, tree name)
4934 {
4935 assert_locus_t loc;
4936
4937 fprintf (file, "Assertions to be inserted for ");
4938 print_generic_expr (file, name, 0);
4939 fprintf (file, "\n");
4940
4941 loc = asserts_for[SSA_NAME_VERSION (name)];
4942 while (loc)
4943 {
4944 fprintf (file, "\t");
4945 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4946 fprintf (file, "\n\tBB #%d", loc->bb->index);
4947 if (loc->e)
4948 {
4949 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4950 loc->e->dest->index);
4951 dump_edge_info (file, loc->e, dump_flags, 0);
4952 }
4953 fprintf (file, "\n\tPREDICATE: ");
4954 print_generic_expr (file, name, 0);
4955 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
4956 print_generic_expr (file, loc->val, 0);
4957 fprintf (file, "\n\n");
4958 loc = loc->next;
4959 }
4960
4961 fprintf (file, "\n");
4962 }
4963
4964
4965 /* Dump all the registered assertions for NAME to stderr. */
4966
4967 DEBUG_FUNCTION void
4968 debug_asserts_for (tree name)
4969 {
4970 dump_asserts_for (stderr, name);
4971 }
4972
4973
4974 /* Dump all the registered assertions for all the names to FILE. */
4975
4976 void
4977 dump_all_asserts (FILE *file)
4978 {
4979 unsigned i;
4980 bitmap_iterator bi;
4981
4982 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4983 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4984 dump_asserts_for (file, ssa_name (i));
4985 fprintf (file, "\n");
4986 }
4987
4988
4989 /* Dump all the registered assertions for all the names to stderr. */
4990
4991 DEBUG_FUNCTION void
4992 debug_all_asserts (void)
4993 {
4994 dump_all_asserts (stderr);
4995 }
4996
4997
4998 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4999 'EXPR COMP_CODE VAL' at a location that dominates block BB or
5000 E->DEST, then register this location as a possible insertion point
5001 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
5002
5003 BB, E and SI provide the exact insertion point for the new
5004 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
5005 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
5006 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
5007 must not be NULL. */
5008
5009 static void
5010 register_new_assert_for (tree name, tree expr,
5011 enum tree_code comp_code,
5012 tree val,
5013 basic_block bb,
5014 edge e,
5015 gimple_stmt_iterator si)
5016 {
5017 assert_locus_t n, loc, last_loc;
5018 basic_block dest_bb;
5019
5020 gcc_checking_assert (bb == NULL || e == NULL);
5021
5022 if (e == NULL)
5023 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
5024 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
5025
5026 /* Never build an assert comparing against an integer constant with
5027 TREE_OVERFLOW set. This confuses our undefined overflow warning
5028 machinery. */
5029 if (TREE_OVERFLOW_P (val))
5030 val = drop_tree_overflow (val);
5031
5032 /* The new assertion A will be inserted at BB or E. We need to
5033 determine if the new location is dominated by a previously
5034 registered location for A. If we are doing an edge insertion,
5035 assume that A will be inserted at E->DEST. Note that this is not
5036 necessarily true.
5037
5038 If E is a critical edge, it will be split. But even if E is
5039 split, the new block will dominate the same set of blocks that
5040 E->DEST dominates.
5041
5042 The reverse, however, is not true, blocks dominated by E->DEST
5043 will not be dominated by the new block created to split E. So,
5044 if the insertion location is on a critical edge, we will not use
5045 the new location to move another assertion previously registered
5046 at a block dominated by E->DEST. */
5047 dest_bb = (bb) ? bb : e->dest;
5048
5049 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
5050 VAL at a block dominating DEST_BB, then we don't need to insert a new
5051 one. Similarly, if the same assertion already exists at a block
5052 dominated by DEST_BB and the new location is not on a critical
5053 edge, then update the existing location for the assertion (i.e.,
5054 move the assertion up in the dominance tree).
5055
5056 Note, this is implemented as a simple linked list because there
5057 should not be more than a handful of assertions registered per
5058 name. If this becomes a performance problem, a table hashed by
5059 COMP_CODE and VAL could be implemented. */
5060 loc = asserts_for[SSA_NAME_VERSION (name)];
5061 last_loc = loc;
5062 while (loc)
5063 {
5064 if (loc->comp_code == comp_code
5065 && (loc->val == val
5066 || operand_equal_p (loc->val, val, 0))
5067 && (loc->expr == expr
5068 || operand_equal_p (loc->expr, expr, 0)))
5069 {
5070 /* If E is not a critical edge and DEST_BB
5071 dominates the existing location for the assertion, move
5072 the assertion up in the dominance tree by updating its
5073 location information. */
5074 if ((e == NULL || !EDGE_CRITICAL_P (e))
5075 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
5076 {
5077 loc->bb = dest_bb;
5078 loc->e = e;
5079 loc->si = si;
5080 return;
5081 }
5082 }
5083
5084 /* Update the last node of the list and move to the next one. */
5085 last_loc = loc;
5086 loc = loc->next;
5087 }
5088
5089 /* If we didn't find an assertion already registered for
5090 NAME COMP_CODE VAL, add a new one at the end of the list of
5091 assertions associated with NAME. */
5092 n = XNEW (struct assert_locus_d);
5093 n->bb = dest_bb;
5094 n->e = e;
5095 n->si = si;
5096 n->comp_code = comp_code;
5097 n->val = val;
5098 n->expr = expr;
5099 n->next = NULL;
5100
5101 if (last_loc)
5102 last_loc->next = n;
5103 else
5104 asserts_for[SSA_NAME_VERSION (name)] = n;
5105
5106 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
5107 }
5108
5109 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
5110 Extract a suitable test code and value and store them into *CODE_P and
5111 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
5112
5113 If no extraction was possible, return FALSE, otherwise return TRUE.
5114
5115 If INVERT is true, then we invert the result stored into *CODE_P. */
5116
5117 static bool
5118 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
5119 tree cond_op0, tree cond_op1,
5120 bool invert, enum tree_code *code_p,
5121 tree *val_p)
5122 {
5123 enum tree_code comp_code;
5124 tree val;
5125
5126 /* Otherwise, we have a comparison of the form NAME COMP VAL
5127 or VAL COMP NAME. */
5128 if (name == cond_op1)
5129 {
5130 /* If the predicate is of the form VAL COMP NAME, flip
5131 COMP around because we need to register NAME as the
5132 first operand in the predicate. */
5133 comp_code = swap_tree_comparison (cond_code);
5134 val = cond_op0;
5135 }
5136 else
5137 {
5138 /* The comparison is of the form NAME COMP VAL, so the
5139 comparison code remains unchanged. */
5140 comp_code = cond_code;
5141 val = cond_op1;
5142 }
5143
5144 /* Invert the comparison code as necessary. */
5145 if (invert)
5146 comp_code = invert_tree_comparison (comp_code, 0);
5147
5148 /* VRP does not handle float types. */
5149 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
5150 return false;
5151
5152 /* Do not register always-false predicates.
5153 FIXME: this works around a limitation in fold() when dealing with
5154 enumerations. Given 'enum { N1, N2 } x;', fold will not
5155 fold 'if (x > N2)' to 'if (0)'. */
5156 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
5157 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
5158 {
5159 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
5160 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
5161
5162 if (comp_code == GT_EXPR
5163 && (!max
5164 || compare_values (val, max) == 0))
5165 return false;
5166
5167 if (comp_code == LT_EXPR
5168 && (!min
5169 || compare_values (val, min) == 0))
5170 return false;
5171 }
5172 *code_p = comp_code;
5173 *val_p = val;
5174 return true;
5175 }
5176
5177 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
5178 (otherwise return VAL). VAL and MASK must be zero-extended for
5179 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
5180 (to transform signed values into unsigned) and at the end xor
5181 SGNBIT back. */
5182
5183 static wide_int
5184 masked_increment (const wide_int &val_in, const wide_int &mask,
5185 const wide_int &sgnbit, unsigned int prec)
5186 {
5187 wide_int bit = wi::one (prec), res;
5188 unsigned int i;
5189
5190 wide_int val = val_in ^ sgnbit;
5191 for (i = 0; i < prec; i++, bit += bit)
5192 {
5193 res = mask;
5194 if ((res & bit) == 0)
5195 continue;
5196 res = bit - 1;
5197 res = (val + bit).and_not (res);
5198 res &= mask;
5199 if (wi::gtu_p (res, val))
5200 return res ^ sgnbit;
5201 }
5202 return val ^ sgnbit;
5203 }
5204
5205 /* Try to register an edge assertion for SSA name NAME on edge E for
5206 the condition COND contributing to the conditional jump pointed to by BSI.
5207 Invert the condition COND if INVERT is true. */
5208
5209 static void
5210 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
5211 enum tree_code cond_code,
5212 tree cond_op0, tree cond_op1, bool invert)
5213 {
5214 tree val;
5215 enum tree_code comp_code;
5216
5217 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5218 cond_op0,
5219 cond_op1,
5220 invert, &comp_code, &val))
5221 return;
5222
5223 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
5224 reachable from E. */
5225 if (live_on_edge (e, name)
5226 && !has_single_use (name))
5227 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
5228
5229 /* In the case of NAME <= CST and NAME being defined as
5230 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
5231 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
5232 This catches range and anti-range tests. */
5233 if ((comp_code == LE_EXPR
5234 || comp_code == GT_EXPR)
5235 && TREE_CODE (val) == INTEGER_CST
5236 && TYPE_UNSIGNED (TREE_TYPE (val)))
5237 {
5238 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5239 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
5240
5241 /* Extract CST2 from the (optional) addition. */
5242 if (is_gimple_assign (def_stmt)
5243 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
5244 {
5245 name2 = gimple_assign_rhs1 (def_stmt);
5246 cst2 = gimple_assign_rhs2 (def_stmt);
5247 if (TREE_CODE (name2) == SSA_NAME
5248 && TREE_CODE (cst2) == INTEGER_CST)
5249 def_stmt = SSA_NAME_DEF_STMT (name2);
5250 }
5251
5252 /* Extract NAME2 from the (optional) sign-changing cast. */
5253 if (gimple_assign_cast_p (def_stmt))
5254 {
5255 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
5256 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5257 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
5258 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
5259 name3 = gimple_assign_rhs1 (def_stmt);
5260 }
5261
5262 /* If name3 is used later, create an ASSERT_EXPR for it. */
5263 if (name3 != NULL_TREE
5264 && TREE_CODE (name3) == SSA_NAME
5265 && (cst2 == NULL_TREE
5266 || TREE_CODE (cst2) == INTEGER_CST)
5267 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
5268 && live_on_edge (e, name3)
5269 && !has_single_use (name3))
5270 {
5271 tree tmp;
5272
5273 /* Build an expression for the range test. */
5274 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
5275 if (cst2 != NULL_TREE)
5276 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5277
5278 if (dump_file)
5279 {
5280 fprintf (dump_file, "Adding assert for ");
5281 print_generic_expr (dump_file, name3, 0);
5282 fprintf (dump_file, " from ");
5283 print_generic_expr (dump_file, tmp, 0);
5284 fprintf (dump_file, "\n");
5285 }
5286
5287 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
5288 }
5289
5290 /* If name2 is used later, create an ASSERT_EXPR for it. */
5291 if (name2 != NULL_TREE
5292 && TREE_CODE (name2) == SSA_NAME
5293 && TREE_CODE (cst2) == INTEGER_CST
5294 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5295 && live_on_edge (e, name2)
5296 && !has_single_use (name2))
5297 {
5298 tree tmp;
5299
5300 /* Build an expression for the range test. */
5301 tmp = name2;
5302 if (TREE_TYPE (name) != TREE_TYPE (name2))
5303 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
5304 if (cst2 != NULL_TREE)
5305 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
5306
5307 if (dump_file)
5308 {
5309 fprintf (dump_file, "Adding assert for ");
5310 print_generic_expr (dump_file, name2, 0);
5311 fprintf (dump_file, " from ");
5312 print_generic_expr (dump_file, tmp, 0);
5313 fprintf (dump_file, "\n");
5314 }
5315
5316 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
5317 }
5318 }
5319
5320 /* In the case of post-in/decrement tests like if (i++) ... and uses
5321 of the in/decremented value on the edge the extra name we want to
5322 assert for is not on the def chain of the name compared. Instead
5323 it is in the set of use stmts. */
5324 if ((comp_code == NE_EXPR
5325 || comp_code == EQ_EXPR)
5326 && TREE_CODE (val) == INTEGER_CST)
5327 {
5328 imm_use_iterator ui;
5329 gimple use_stmt;
5330 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
5331 {
5332 /* Cut off to use-stmts that are in the predecessor. */
5333 if (gimple_bb (use_stmt) != e->src)
5334 continue;
5335
5336 if (!is_gimple_assign (use_stmt))
5337 continue;
5338
5339 enum tree_code code = gimple_assign_rhs_code (use_stmt);
5340 if (code != PLUS_EXPR
5341 && code != MINUS_EXPR)
5342 continue;
5343
5344 tree cst = gimple_assign_rhs2 (use_stmt);
5345 if (TREE_CODE (cst) != INTEGER_CST)
5346 continue;
5347
5348 tree name2 = gimple_assign_lhs (use_stmt);
5349 if (live_on_edge (e, name2))
5350 {
5351 cst = int_const_binop (code, val, cst);
5352 register_new_assert_for (name2, name2, comp_code, cst,
5353 NULL, e, bsi);
5354 }
5355 }
5356 }
5357
5358 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
5359 && TREE_CODE (val) == INTEGER_CST)
5360 {
5361 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5362 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
5363 tree val2 = NULL_TREE;
5364 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
5365 wide_int mask = wi::zero (prec);
5366 unsigned int nprec = prec;
5367 enum tree_code rhs_code = ERROR_MARK;
5368
5369 if (is_gimple_assign (def_stmt))
5370 rhs_code = gimple_assign_rhs_code (def_stmt);
5371
5372 /* Add asserts for NAME cmp CST and NAME being defined
5373 as NAME = (int) NAME2. */
5374 if (!TYPE_UNSIGNED (TREE_TYPE (val))
5375 && (comp_code == LE_EXPR || comp_code == LT_EXPR
5376 || comp_code == GT_EXPR || comp_code == GE_EXPR)
5377 && gimple_assign_cast_p (def_stmt))
5378 {
5379 name2 = gimple_assign_rhs1 (def_stmt);
5380 if (CONVERT_EXPR_CODE_P (rhs_code)
5381 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5382 && TYPE_UNSIGNED (TREE_TYPE (name2))
5383 && prec == TYPE_PRECISION (TREE_TYPE (name2))
5384 && (comp_code == LE_EXPR || comp_code == GT_EXPR
5385 || !tree_int_cst_equal (val,
5386 TYPE_MIN_VALUE (TREE_TYPE (val))))
5387 && live_on_edge (e, name2)
5388 && !has_single_use (name2))
5389 {
5390 tree tmp, cst;
5391 enum tree_code new_comp_code = comp_code;
5392
5393 cst = fold_convert (TREE_TYPE (name2),
5394 TYPE_MIN_VALUE (TREE_TYPE (val)));
5395 /* Build an expression for the range test. */
5396 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
5397 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
5398 fold_convert (TREE_TYPE (name2), val));
5399 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5400 {
5401 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
5402 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
5403 build_int_cst (TREE_TYPE (name2), 1));
5404 }
5405
5406 if (dump_file)
5407 {
5408 fprintf (dump_file, "Adding assert for ");
5409 print_generic_expr (dump_file, name2, 0);
5410 fprintf (dump_file, " from ");
5411 print_generic_expr (dump_file, tmp, 0);
5412 fprintf (dump_file, "\n");
5413 }
5414
5415 register_new_assert_for (name2, tmp, new_comp_code, cst, NULL,
5416 e, bsi);
5417 }
5418 }
5419
5420 /* Add asserts for NAME cmp CST and NAME being defined as
5421 NAME = NAME2 >> CST2.
5422
5423 Extract CST2 from the right shift. */
5424 if (rhs_code == RSHIFT_EXPR)
5425 {
5426 name2 = gimple_assign_rhs1 (def_stmt);
5427 cst2 = gimple_assign_rhs2 (def_stmt);
5428 if (TREE_CODE (name2) == SSA_NAME
5429 && tree_fits_uhwi_p (cst2)
5430 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5431 && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
5432 && prec == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val)))
5433 && live_on_edge (e, name2)
5434 && !has_single_use (name2))
5435 {
5436 mask = wi::mask (tree_to_uhwi (cst2), false, prec);
5437 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
5438 }
5439 }
5440 if (val2 != NULL_TREE
5441 && TREE_CODE (val2) == INTEGER_CST
5442 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
5443 TREE_TYPE (val),
5444 val2, cst2), val))
5445 {
5446 enum tree_code new_comp_code = comp_code;
5447 tree tmp, new_val;
5448
5449 tmp = name2;
5450 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
5451 {
5452 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5453 {
5454 tree type = build_nonstandard_integer_type (prec, 1);
5455 tmp = build1 (NOP_EXPR, type, name2);
5456 val2 = fold_convert (type, val2);
5457 }
5458 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
5459 new_val = wide_int_to_tree (TREE_TYPE (tmp), mask);
5460 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
5461 }
5462 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5463 {
5464 wide_int minval
5465 = wi::min_value (prec, TYPE_SIGN (TREE_TYPE (val)));
5466 new_val = val2;
5467 if (minval == new_val)
5468 new_val = NULL_TREE;
5469 }
5470 else
5471 {
5472 wide_int maxval
5473 = wi::max_value (prec, TYPE_SIGN (TREE_TYPE (val)));
5474 mask |= val2;
5475 if (mask == maxval)
5476 new_val = NULL_TREE;
5477 else
5478 new_val = wide_int_to_tree (TREE_TYPE (val2), mask);
5479 }
5480
5481 if (new_val)
5482 {
5483 if (dump_file)
5484 {
5485 fprintf (dump_file, "Adding assert for ");
5486 print_generic_expr (dump_file, name2, 0);
5487 fprintf (dump_file, " from ");
5488 print_generic_expr (dump_file, tmp, 0);
5489 fprintf (dump_file, "\n");
5490 }
5491
5492 register_new_assert_for (name2, tmp, new_comp_code, new_val,
5493 NULL, e, bsi);
5494 }
5495 }
5496
5497 /* Add asserts for NAME cmp CST and NAME being defined as
5498 NAME = NAME2 & CST2.
5499
5500 Extract CST2 from the and.
5501
5502 Also handle
5503 NAME = (unsigned) NAME2;
5504 casts where NAME's type is unsigned and has smaller precision
5505 than NAME2's type as if it was NAME = NAME2 & MASK. */
5506 names[0] = NULL_TREE;
5507 names[1] = NULL_TREE;
5508 cst2 = NULL_TREE;
5509 if (rhs_code == BIT_AND_EXPR
5510 || (CONVERT_EXPR_CODE_P (rhs_code)
5511 && TREE_CODE (TREE_TYPE (val)) == INTEGER_TYPE
5512 && TYPE_UNSIGNED (TREE_TYPE (val))
5513 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5514 > prec))
5515 {
5516 name2 = gimple_assign_rhs1 (def_stmt);
5517 if (rhs_code == BIT_AND_EXPR)
5518 cst2 = gimple_assign_rhs2 (def_stmt);
5519 else
5520 {
5521 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
5522 nprec = TYPE_PRECISION (TREE_TYPE (name2));
5523 }
5524 if (TREE_CODE (name2) == SSA_NAME
5525 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5526 && TREE_CODE (cst2) == INTEGER_CST
5527 && !integer_zerop (cst2)
5528 && (nprec > 1
5529 || TYPE_UNSIGNED (TREE_TYPE (val))))
5530 {
5531 gimple def_stmt2 = SSA_NAME_DEF_STMT (name2);
5532 if (gimple_assign_cast_p (def_stmt2))
5533 {
5534 names[1] = gimple_assign_rhs1 (def_stmt2);
5535 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
5536 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
5537 || (TYPE_PRECISION (TREE_TYPE (name2))
5538 != TYPE_PRECISION (TREE_TYPE (names[1])))
5539 || !live_on_edge (e, names[1])
5540 || has_single_use (names[1]))
5541 names[1] = NULL_TREE;
5542 }
5543 if (live_on_edge (e, name2)
5544 && !has_single_use (name2))
5545 names[0] = name2;
5546 }
5547 }
5548 if (names[0] || names[1])
5549 {
5550 wide_int minv, maxv, valv, cst2v;
5551 wide_int tem, sgnbit;
5552 bool valid_p = false, valn, cst2n;
5553 enum tree_code ccode = comp_code;
5554
5555 valv = wide_int::from (val, nprec, UNSIGNED);
5556 cst2v = wide_int::from (cst2, nprec, UNSIGNED);
5557 valn = wi::neg_p (valv, TYPE_SIGN (TREE_TYPE (val)));
5558 cst2n = wi::neg_p (cst2v, TYPE_SIGN (TREE_TYPE (val)));
5559 /* If CST2 doesn't have most significant bit set,
5560 but VAL is negative, we have comparison like
5561 if ((x & 0x123) > -4) (always true). Just give up. */
5562 if (!cst2n && valn)
5563 ccode = ERROR_MARK;
5564 if (cst2n)
5565 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5566 else
5567 sgnbit = wi::zero (nprec);
5568 minv = valv & cst2v;
5569 switch (ccode)
5570 {
5571 case EQ_EXPR:
5572 /* Minimum unsigned value for equality is VAL & CST2
5573 (should be equal to VAL, otherwise we probably should
5574 have folded the comparison into false) and
5575 maximum unsigned value is VAL | ~CST2. */
5576 maxv = valv | ~cst2v;
5577 valid_p = true;
5578 break;
5579
5580 case NE_EXPR:
5581 tem = valv | ~cst2v;
5582 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5583 if (valv == 0)
5584 {
5585 cst2n = false;
5586 sgnbit = wi::zero (nprec);
5587 goto gt_expr;
5588 }
5589 /* If (VAL | ~CST2) is all ones, handle it as
5590 (X & CST2) < VAL. */
5591 if (tem == -1)
5592 {
5593 cst2n = false;
5594 valn = false;
5595 sgnbit = wi::zero (nprec);
5596 goto lt_expr;
5597 }
5598 if (!cst2n && wi::neg_p (cst2v))
5599 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
5600 if (sgnbit != 0)
5601 {
5602 if (valv == sgnbit)
5603 {
5604 cst2n = true;
5605 valn = true;
5606 goto gt_expr;
5607 }
5608 if (tem == wi::mask (nprec - 1, false, nprec))
5609 {
5610 cst2n = true;
5611 goto lt_expr;
5612 }
5613 if (!cst2n)
5614 sgnbit = wi::zero (nprec);
5615 }
5616 break;
5617
5618 case GE_EXPR:
5619 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5620 is VAL and maximum unsigned value is ~0. For signed
5621 comparison, if CST2 doesn't have most significant bit
5622 set, handle it similarly. If CST2 has MSB set,
5623 the minimum is the same, and maximum is ~0U/2. */
5624 if (minv != valv)
5625 {
5626 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5627 VAL. */
5628 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5629 if (minv == valv)
5630 break;
5631 }
5632 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5633 valid_p = true;
5634 break;
5635
5636 case GT_EXPR:
5637 gt_expr:
5638 /* Find out smallest MINV where MINV > VAL
5639 && (MINV & CST2) == MINV, if any. If VAL is signed and
5640 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5641 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5642 if (minv == valv)
5643 break;
5644 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
5645 valid_p = true;
5646 break;
5647
5648 case LE_EXPR:
5649 /* Minimum unsigned value for <= is 0 and maximum
5650 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5651 Otherwise, find smallest VAL2 where VAL2 > VAL
5652 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5653 as maximum.
5654 For signed comparison, if CST2 doesn't have most
5655 significant bit set, handle it similarly. If CST2 has
5656 MSB set, the maximum is the same and minimum is INT_MIN. */
5657 if (minv == valv)
5658 maxv = valv;
5659 else
5660 {
5661 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5662 if (maxv == valv)
5663 break;
5664 maxv -= 1;
5665 }
5666 maxv |= ~cst2v;
5667 minv = sgnbit;
5668 valid_p = true;
5669 break;
5670
5671 case LT_EXPR:
5672 lt_expr:
5673 /* Minimum unsigned value for < is 0 and maximum
5674 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5675 Otherwise, find smallest VAL2 where VAL2 > VAL
5676 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5677 as maximum.
5678 For signed comparison, if CST2 doesn't have most
5679 significant bit set, handle it similarly. If CST2 has
5680 MSB set, the maximum is the same and minimum is INT_MIN. */
5681 if (minv == valv)
5682 {
5683 if (valv == sgnbit)
5684 break;
5685 maxv = valv;
5686 }
5687 else
5688 {
5689 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5690 if (maxv == valv)
5691 break;
5692 }
5693 maxv -= 1;
5694 maxv |= ~cst2v;
5695 minv = sgnbit;
5696 valid_p = true;
5697 break;
5698
5699 default:
5700 break;
5701 }
5702 if (valid_p
5703 && (maxv - minv) != -1)
5704 {
5705 tree tmp, new_val, type;
5706 int i;
5707
5708 for (i = 0; i < 2; i++)
5709 if (names[i])
5710 {
5711 wide_int maxv2 = maxv;
5712 tmp = names[i];
5713 type = TREE_TYPE (names[i]);
5714 if (!TYPE_UNSIGNED (type))
5715 {
5716 type = build_nonstandard_integer_type (nprec, 1);
5717 tmp = build1 (NOP_EXPR, type, names[i]);
5718 }
5719 if (minv != 0)
5720 {
5721 tmp = build2 (PLUS_EXPR, type, tmp,
5722 wide_int_to_tree (type, -minv));
5723 maxv2 = maxv - minv;
5724 }
5725 new_val = wide_int_to_tree (type, maxv2);
5726
5727 if (dump_file)
5728 {
5729 fprintf (dump_file, "Adding assert for ");
5730 print_generic_expr (dump_file, names[i], 0);
5731 fprintf (dump_file, " from ");
5732 print_generic_expr (dump_file, tmp, 0);
5733 fprintf (dump_file, "\n");
5734 }
5735
5736 register_new_assert_for (names[i], tmp, LE_EXPR,
5737 new_val, NULL, e, bsi);
5738 }
5739 }
5740 }
5741 }
5742 }
5743
5744 /* OP is an operand of a truth value expression which is known to have
5745 a particular value. Register any asserts for OP and for any
5746 operands in OP's defining statement.
5747
5748 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5749 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5750
5751 static void
5752 register_edge_assert_for_1 (tree op, enum tree_code code,
5753 edge e, gimple_stmt_iterator bsi)
5754 {
5755 gimple op_def;
5756 tree val;
5757 enum tree_code rhs_code;
5758
5759 /* We only care about SSA_NAMEs. */
5760 if (TREE_CODE (op) != SSA_NAME)
5761 return;
5762
5763 /* We know that OP will have a zero or nonzero value. If OP is used
5764 more than once go ahead and register an assert for OP. */
5765 if (live_on_edge (e, op)
5766 && !has_single_use (op))
5767 {
5768 val = build_int_cst (TREE_TYPE (op), 0);
5769 register_new_assert_for (op, op, code, val, NULL, e, bsi);
5770 }
5771
5772 /* Now look at how OP is set. If it's set from a comparison,
5773 a truth operation or some bit operations, then we may be able
5774 to register information about the operands of that assignment. */
5775 op_def = SSA_NAME_DEF_STMT (op);
5776 if (gimple_code (op_def) != GIMPLE_ASSIGN)
5777 return;
5778
5779 rhs_code = gimple_assign_rhs_code (op_def);
5780
5781 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
5782 {
5783 bool invert = (code == EQ_EXPR ? true : false);
5784 tree op0 = gimple_assign_rhs1 (op_def);
5785 tree op1 = gimple_assign_rhs2 (op_def);
5786
5787 if (TREE_CODE (op0) == SSA_NAME)
5788 register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1, invert);
5789 if (TREE_CODE (op1) == SSA_NAME)
5790 register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1, invert);
5791 }
5792 else if ((code == NE_EXPR
5793 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
5794 || (code == EQ_EXPR
5795 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
5796 {
5797 /* Recurse on each operand. */
5798 tree op0 = gimple_assign_rhs1 (op_def);
5799 tree op1 = gimple_assign_rhs2 (op_def);
5800 if (TREE_CODE (op0) == SSA_NAME
5801 && has_single_use (op0))
5802 register_edge_assert_for_1 (op0, code, e, bsi);
5803 if (TREE_CODE (op1) == SSA_NAME
5804 && has_single_use (op1))
5805 register_edge_assert_for_1 (op1, code, e, bsi);
5806 }
5807 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
5808 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
5809 {
5810 /* Recurse, flipping CODE. */
5811 code = invert_tree_comparison (code, false);
5812 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, bsi);
5813 }
5814 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
5815 {
5816 /* Recurse through the copy. */
5817 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, bsi);
5818 }
5819 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
5820 {
5821 /* Recurse through the type conversion, unless it is a narrowing
5822 conversion or conversion from non-integral type. */
5823 tree rhs = gimple_assign_rhs1 (op_def);
5824 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
5825 && (TYPE_PRECISION (TREE_TYPE (rhs))
5826 <= TYPE_PRECISION (TREE_TYPE (op))))
5827 register_edge_assert_for_1 (rhs, code, e, bsi);
5828 }
5829 }
5830
5831 /* Try to register an edge assertion for SSA name NAME on edge E for
5832 the condition COND contributing to the conditional jump pointed to by
5833 SI. */
5834
5835 static void
5836 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
5837 enum tree_code cond_code, tree cond_op0,
5838 tree cond_op1)
5839 {
5840 tree val;
5841 enum tree_code comp_code;
5842 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
5843
5844 /* Do not attempt to infer anything in names that flow through
5845 abnormal edges. */
5846 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
5847 return;
5848
5849 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5850 cond_op0, cond_op1,
5851 is_else_edge,
5852 &comp_code, &val))
5853 return;
5854
5855 /* Register ASSERT_EXPRs for name. */
5856 register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
5857 cond_op1, is_else_edge);
5858
5859
5860 /* If COND is effectively an equality test of an SSA_NAME against
5861 the value zero or one, then we may be able to assert values
5862 for SSA_NAMEs which flow into COND. */
5863
5864 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5865 statement of NAME we can assert both operands of the BIT_AND_EXPR
5866 have nonzero value. */
5867 if (((comp_code == EQ_EXPR && integer_onep (val))
5868 || (comp_code == NE_EXPR && integer_zerop (val))))
5869 {
5870 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5871
5872 if (is_gimple_assign (def_stmt)
5873 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
5874 {
5875 tree op0 = gimple_assign_rhs1 (def_stmt);
5876 tree op1 = gimple_assign_rhs2 (def_stmt);
5877 register_edge_assert_for_1 (op0, NE_EXPR, e, si);
5878 register_edge_assert_for_1 (op1, NE_EXPR, e, si);
5879 }
5880 }
5881
5882 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5883 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5884 have zero value. */
5885 if (((comp_code == EQ_EXPR && integer_zerop (val))
5886 || (comp_code == NE_EXPR && integer_onep (val))))
5887 {
5888 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5889
5890 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5891 necessarily zero value, or if type-precision is one. */
5892 if (is_gimple_assign (def_stmt)
5893 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
5894 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
5895 || comp_code == EQ_EXPR)))
5896 {
5897 tree op0 = gimple_assign_rhs1 (def_stmt);
5898 tree op1 = gimple_assign_rhs2 (def_stmt);
5899 register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
5900 register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
5901 }
5902 }
5903 }
5904
5905
5906 /* Determine whether the outgoing edges of BB should receive an
5907 ASSERT_EXPR for each of the operands of BB's LAST statement.
5908 The last statement of BB must be a COND_EXPR.
5909
5910 If any of the sub-graphs rooted at BB have an interesting use of
5911 the predicate operands, an assert location node is added to the
5912 list of assertions for the corresponding operands. */
5913
5914 static void
5915 find_conditional_asserts (basic_block bb, gcond *last)
5916 {
5917 gimple_stmt_iterator bsi;
5918 tree op;
5919 edge_iterator ei;
5920 edge e;
5921 ssa_op_iter iter;
5922
5923 bsi = gsi_for_stmt (last);
5924
5925 /* Look for uses of the operands in each of the sub-graphs
5926 rooted at BB. We need to check each of the outgoing edges
5927 separately, so that we know what kind of ASSERT_EXPR to
5928 insert. */
5929 FOR_EACH_EDGE (e, ei, bb->succs)
5930 {
5931 if (e->dest == bb)
5932 continue;
5933
5934 /* Register the necessary assertions for each operand in the
5935 conditional predicate. */
5936 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
5937 register_edge_assert_for (op, e, bsi,
5938 gimple_cond_code (last),
5939 gimple_cond_lhs (last),
5940 gimple_cond_rhs (last));
5941 }
5942 }
5943
5944 struct case_info
5945 {
5946 tree expr;
5947 basic_block bb;
5948 };
5949
5950 /* Compare two case labels sorting first by the destination bb index
5951 and then by the case value. */
5952
5953 static int
5954 compare_case_labels (const void *p1, const void *p2)
5955 {
5956 const struct case_info *ci1 = (const struct case_info *) p1;
5957 const struct case_info *ci2 = (const struct case_info *) p2;
5958 int idx1 = ci1->bb->index;
5959 int idx2 = ci2->bb->index;
5960
5961 if (idx1 < idx2)
5962 return -1;
5963 else if (idx1 == idx2)
5964 {
5965 /* Make sure the default label is first in a group. */
5966 if (!CASE_LOW (ci1->expr))
5967 return -1;
5968 else if (!CASE_LOW (ci2->expr))
5969 return 1;
5970 else
5971 return tree_int_cst_compare (CASE_LOW (ci1->expr),
5972 CASE_LOW (ci2->expr));
5973 }
5974 else
5975 return 1;
5976 }
5977
5978 /* Determine whether the outgoing edges of BB should receive an
5979 ASSERT_EXPR for each of the operands of BB's LAST statement.
5980 The last statement of BB must be a SWITCH_EXPR.
5981
5982 If any of the sub-graphs rooted at BB have an interesting use of
5983 the predicate operands, an assert location node is added to the
5984 list of assertions for the corresponding operands. */
5985
5986 static void
5987 find_switch_asserts (basic_block bb, gswitch *last)
5988 {
5989 gimple_stmt_iterator bsi;
5990 tree op;
5991 edge e;
5992 struct case_info *ci;
5993 size_t n = gimple_switch_num_labels (last);
5994 #if GCC_VERSION >= 4000
5995 unsigned int idx;
5996 #else
5997 /* Work around GCC 3.4 bug (PR 37086). */
5998 volatile unsigned int idx;
5999 #endif
6000
6001 bsi = gsi_for_stmt (last);
6002 op = gimple_switch_index (last);
6003 if (TREE_CODE (op) != SSA_NAME)
6004 return;
6005
6006 /* Build a vector of case labels sorted by destination label. */
6007 ci = XNEWVEC (struct case_info, n);
6008 for (idx = 0; idx < n; ++idx)
6009 {
6010 ci[idx].expr = gimple_switch_label (last, idx);
6011 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
6012 }
6013 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
6014
6015 for (idx = 0; idx < n; ++idx)
6016 {
6017 tree min, max;
6018 tree cl = ci[idx].expr;
6019 basic_block cbb = ci[idx].bb;
6020
6021 min = CASE_LOW (cl);
6022 max = CASE_HIGH (cl);
6023
6024 /* If there are multiple case labels with the same destination
6025 we need to combine them to a single value range for the edge. */
6026 if (idx + 1 < n && cbb == ci[idx + 1].bb)
6027 {
6028 /* Skip labels until the last of the group. */
6029 do {
6030 ++idx;
6031 } while (idx < n && cbb == ci[idx].bb);
6032 --idx;
6033
6034 /* Pick up the maximum of the case label range. */
6035 if (CASE_HIGH (ci[idx].expr))
6036 max = CASE_HIGH (ci[idx].expr);
6037 else
6038 max = CASE_LOW (ci[idx].expr);
6039 }
6040
6041 /* Nothing to do if the range includes the default label until we
6042 can register anti-ranges. */
6043 if (min == NULL_TREE)
6044 continue;
6045
6046 /* Find the edge to register the assert expr on. */
6047 e = find_edge (bb, cbb);
6048
6049 /* Register the necessary assertions for the operand in the
6050 SWITCH_EXPR. */
6051 register_edge_assert_for (op, e, bsi,
6052 max ? GE_EXPR : EQ_EXPR,
6053 op, fold_convert (TREE_TYPE (op), min));
6054 if (max)
6055 register_edge_assert_for (op, e, bsi, LE_EXPR, op,
6056 fold_convert (TREE_TYPE (op), max));
6057 }
6058
6059 XDELETEVEC (ci);
6060 }
6061
6062
6063 /* Traverse all the statements in block BB looking for statements that
6064 may generate useful assertions for the SSA names in their operand.
6065 If a statement produces a useful assertion A for name N_i, then the
6066 list of assertions already generated for N_i is scanned to
6067 determine if A is actually needed.
6068
6069 If N_i already had the assertion A at a location dominating the
6070 current location, then nothing needs to be done. Otherwise, the
6071 new location for A is recorded instead.
6072
6073 1- For every statement S in BB, all the variables used by S are
6074 added to bitmap FOUND_IN_SUBGRAPH.
6075
6076 2- If statement S uses an operand N in a way that exposes a known
6077 value range for N, then if N was not already generated by an
6078 ASSERT_EXPR, create a new assert location for N. For instance,
6079 if N is a pointer and the statement dereferences it, we can
6080 assume that N is not NULL.
6081
6082 3- COND_EXPRs are a special case of #2. We can derive range
6083 information from the predicate but need to insert different
6084 ASSERT_EXPRs for each of the sub-graphs rooted at the
6085 conditional block. If the last statement of BB is a conditional
6086 expression of the form 'X op Y', then
6087
6088 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
6089
6090 b) If the conditional is the only entry point to the sub-graph
6091 corresponding to the THEN_CLAUSE, recurse into it. On
6092 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
6093 an ASSERT_EXPR is added for the corresponding variable.
6094
6095 c) Repeat step (b) on the ELSE_CLAUSE.
6096
6097 d) Mark X and Y in FOUND_IN_SUBGRAPH.
6098
6099 For instance,
6100
6101 if (a == 9)
6102 b = a;
6103 else
6104 b = c + 1;
6105
6106 In this case, an assertion on the THEN clause is useful to
6107 determine that 'a' is always 9 on that edge. However, an assertion
6108 on the ELSE clause would be unnecessary.
6109
6110 4- If BB does not end in a conditional expression, then we recurse
6111 into BB's dominator children.
6112
6113 At the end of the recursive traversal, every SSA name will have a
6114 list of locations where ASSERT_EXPRs should be added. When a new
6115 location for name N is found, it is registered by calling
6116 register_new_assert_for. That function keeps track of all the
6117 registered assertions to prevent adding unnecessary assertions.
6118 For instance, if a pointer P_4 is dereferenced more than once in a
6119 dominator tree, only the location dominating all the dereference of
6120 P_4 will receive an ASSERT_EXPR. */
6121
6122 static void
6123 find_assert_locations_1 (basic_block bb, sbitmap live)
6124 {
6125 gimple last;
6126
6127 last = last_stmt (bb);
6128
6129 /* If BB's last statement is a conditional statement involving integer
6130 operands, determine if we need to add ASSERT_EXPRs. */
6131 if (last
6132 && gimple_code (last) == GIMPLE_COND
6133 && !fp_predicate (last)
6134 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
6135 find_conditional_asserts (bb, as_a <gcond *> (last));
6136
6137 /* If BB's last statement is a switch statement involving integer
6138 operands, determine if we need to add ASSERT_EXPRs. */
6139 if (last
6140 && gimple_code (last) == GIMPLE_SWITCH
6141 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
6142 find_switch_asserts (bb, as_a <gswitch *> (last));
6143
6144 /* Traverse all the statements in BB marking used names and looking
6145 for statements that may infer assertions for their used operands. */
6146 for (gimple_stmt_iterator si = gsi_last_bb (bb); !gsi_end_p (si);
6147 gsi_prev (&si))
6148 {
6149 gimple stmt;
6150 tree op;
6151 ssa_op_iter i;
6152
6153 stmt = gsi_stmt (si);
6154
6155 if (is_gimple_debug (stmt))
6156 continue;
6157
6158 /* See if we can derive an assertion for any of STMT's operands. */
6159 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6160 {
6161 tree value;
6162 enum tree_code comp_code;
6163
6164 /* If op is not live beyond this stmt, do not bother to insert
6165 asserts for it. */
6166 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
6167 continue;
6168
6169 /* If OP is used in such a way that we can infer a value
6170 range for it, and we don't find a previous assertion for
6171 it, create a new assertion location node for OP. */
6172 if (infer_value_range (stmt, op, &comp_code, &value))
6173 {
6174 /* If we are able to infer a nonzero value range for OP,
6175 then walk backwards through the use-def chain to see if OP
6176 was set via a typecast.
6177
6178 If so, then we can also infer a nonzero value range
6179 for the operand of the NOP_EXPR. */
6180 if (comp_code == NE_EXPR && integer_zerop (value))
6181 {
6182 tree t = op;
6183 gimple def_stmt = SSA_NAME_DEF_STMT (t);
6184
6185 while (is_gimple_assign (def_stmt)
6186 && CONVERT_EXPR_CODE_P
6187 (gimple_assign_rhs_code (def_stmt))
6188 && TREE_CODE
6189 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
6190 && POINTER_TYPE_P
6191 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
6192 {
6193 t = gimple_assign_rhs1 (def_stmt);
6194 def_stmt = SSA_NAME_DEF_STMT (t);
6195
6196 /* Note we want to register the assert for the
6197 operand of the NOP_EXPR after SI, not after the
6198 conversion. */
6199 if (! has_single_use (t))
6200 register_new_assert_for (t, t, comp_code, value,
6201 bb, NULL, si);
6202 }
6203 }
6204
6205 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
6206 }
6207 }
6208
6209 /* Update live. */
6210 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6211 bitmap_set_bit (live, SSA_NAME_VERSION (op));
6212 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
6213 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
6214 }
6215
6216 /* Traverse all PHI nodes in BB, updating live. */
6217 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
6218 gsi_next (&si))
6219 {
6220 use_operand_p arg_p;
6221 ssa_op_iter i;
6222 gphi *phi = si.phi ();
6223 tree res = gimple_phi_result (phi);
6224
6225 if (virtual_operand_p (res))
6226 continue;
6227
6228 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
6229 {
6230 tree arg = USE_FROM_PTR (arg_p);
6231 if (TREE_CODE (arg) == SSA_NAME)
6232 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
6233 }
6234
6235 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
6236 }
6237 }
6238
6239 /* Do an RPO walk over the function computing SSA name liveness
6240 on-the-fly and deciding on assert expressions to insert. */
6241
6242 static void
6243 find_assert_locations (void)
6244 {
6245 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6246 int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
6247 int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun));
6248 int rpo_cnt, i;
6249
6250 live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun));
6251 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
6252 for (i = 0; i < rpo_cnt; ++i)
6253 bb_rpo[rpo[i]] = i;
6254
6255 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
6256 the order we compute liveness and insert asserts we otherwise
6257 fail to insert asserts into the loop latch. */
6258 loop_p loop;
6259 FOR_EACH_LOOP (loop, 0)
6260 {
6261 i = loop->latch->index;
6262 unsigned int j = single_succ_edge (loop->latch)->dest_idx;
6263 for (gphi_iterator gsi = gsi_start_phis (loop->header);
6264 !gsi_end_p (gsi); gsi_next (&gsi))
6265 {
6266 gphi *phi = gsi.phi ();
6267 if (virtual_operand_p (gimple_phi_result (phi)))
6268 continue;
6269 tree arg = gimple_phi_arg_def (phi, j);
6270 if (TREE_CODE (arg) == SSA_NAME)
6271 {
6272 if (live[i] == NULL)
6273 {
6274 live[i] = sbitmap_alloc (num_ssa_names);
6275 bitmap_clear (live[i]);
6276 }
6277 bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
6278 }
6279 }
6280 }
6281
6282 for (i = rpo_cnt - 1; i >= 0; --i)
6283 {
6284 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
6285 edge e;
6286 edge_iterator ei;
6287
6288 if (!live[rpo[i]])
6289 {
6290 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
6291 bitmap_clear (live[rpo[i]]);
6292 }
6293
6294 /* Process BB and update the live information with uses in
6295 this block. */
6296 find_assert_locations_1 (bb, live[rpo[i]]);
6297
6298 /* Merge liveness into the predecessor blocks and free it. */
6299 if (!bitmap_empty_p (live[rpo[i]]))
6300 {
6301 int pred_rpo = i;
6302 FOR_EACH_EDGE (e, ei, bb->preds)
6303 {
6304 int pred = e->src->index;
6305 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
6306 continue;
6307
6308 if (!live[pred])
6309 {
6310 live[pred] = sbitmap_alloc (num_ssa_names);
6311 bitmap_clear (live[pred]);
6312 }
6313 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
6314
6315 if (bb_rpo[pred] < pred_rpo)
6316 pred_rpo = bb_rpo[pred];
6317 }
6318
6319 /* Record the RPO number of the last visited block that needs
6320 live information from this block. */
6321 last_rpo[rpo[i]] = pred_rpo;
6322 }
6323 else
6324 {
6325 sbitmap_free (live[rpo[i]]);
6326 live[rpo[i]] = NULL;
6327 }
6328
6329 /* We can free all successors live bitmaps if all their
6330 predecessors have been visited already. */
6331 FOR_EACH_EDGE (e, ei, bb->succs)
6332 if (last_rpo[e->dest->index] == i
6333 && live[e->dest->index])
6334 {
6335 sbitmap_free (live[e->dest->index]);
6336 live[e->dest->index] = NULL;
6337 }
6338 }
6339
6340 XDELETEVEC (rpo);
6341 XDELETEVEC (bb_rpo);
6342 XDELETEVEC (last_rpo);
6343 for (i = 0; i < last_basic_block_for_fn (cfun); ++i)
6344 if (live[i])
6345 sbitmap_free (live[i]);
6346 XDELETEVEC (live);
6347 }
6348
6349 /* Create an ASSERT_EXPR for NAME and insert it in the location
6350 indicated by LOC. Return true if we made any edge insertions. */
6351
6352 static bool
6353 process_assert_insertions_for (tree name, assert_locus_t loc)
6354 {
6355 /* Build the comparison expression NAME_i COMP_CODE VAL. */
6356 gimple stmt;
6357 tree cond;
6358 gimple assert_stmt;
6359 edge_iterator ei;
6360 edge e;
6361
6362 /* If we have X <=> X do not insert an assert expr for that. */
6363 if (loc->expr == loc->val)
6364 return false;
6365
6366 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
6367 assert_stmt = build_assert_expr_for (cond, name);
6368 if (loc->e)
6369 {
6370 /* We have been asked to insert the assertion on an edge. This
6371 is used only by COND_EXPR and SWITCH_EXPR assertions. */
6372 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
6373 || (gimple_code (gsi_stmt (loc->si))
6374 == GIMPLE_SWITCH));
6375
6376 gsi_insert_on_edge (loc->e, assert_stmt);
6377 return true;
6378 }
6379
6380 /* Otherwise, we can insert right after LOC->SI iff the
6381 statement must not be the last statement in the block. */
6382 stmt = gsi_stmt (loc->si);
6383 if (!stmt_ends_bb_p (stmt))
6384 {
6385 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
6386 return false;
6387 }
6388
6389 /* If STMT must be the last statement in BB, we can only insert new
6390 assertions on the non-abnormal edge out of BB. Note that since
6391 STMT is not control flow, there may only be one non-abnormal edge
6392 out of BB. */
6393 FOR_EACH_EDGE (e, ei, loc->bb->succs)
6394 if (!(e->flags & EDGE_ABNORMAL))
6395 {
6396 gsi_insert_on_edge (e, assert_stmt);
6397 return true;
6398 }
6399
6400 gcc_unreachable ();
6401 }
6402
6403
6404 /* Process all the insertions registered for every name N_i registered
6405 in NEED_ASSERT_FOR. The list of assertions to be inserted are
6406 found in ASSERTS_FOR[i]. */
6407
6408 static void
6409 process_assert_insertions (void)
6410 {
6411 unsigned i;
6412 bitmap_iterator bi;
6413 bool update_edges_p = false;
6414 int num_asserts = 0;
6415
6416 if (dump_file && (dump_flags & TDF_DETAILS))
6417 dump_all_asserts (dump_file);
6418
6419 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
6420 {
6421 assert_locus_t loc = asserts_for[i];
6422 gcc_assert (loc);
6423
6424 while (loc)
6425 {
6426 assert_locus_t next = loc->next;
6427 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
6428 free (loc);
6429 loc = next;
6430 num_asserts++;
6431 }
6432 }
6433
6434 if (update_edges_p)
6435 gsi_commit_edge_inserts ();
6436
6437 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
6438 num_asserts);
6439 }
6440
6441
6442 /* Traverse the flowgraph looking for conditional jumps to insert range
6443 expressions. These range expressions are meant to provide information
6444 to optimizations that need to reason in terms of value ranges. They
6445 will not be expanded into RTL. For instance, given:
6446
6447 x = ...
6448 y = ...
6449 if (x < y)
6450 y = x - 2;
6451 else
6452 x = y + 3;
6453
6454 this pass will transform the code into:
6455
6456 x = ...
6457 y = ...
6458 if (x < y)
6459 {
6460 x = ASSERT_EXPR <x, x < y>
6461 y = x - 2
6462 }
6463 else
6464 {
6465 y = ASSERT_EXPR <y, x >= y>
6466 x = y + 3
6467 }
6468
6469 The idea is that once copy and constant propagation have run, other
6470 optimizations will be able to determine what ranges of values can 'x'
6471 take in different paths of the code, simply by checking the reaching
6472 definition of 'x'. */
6473
6474 static void
6475 insert_range_assertions (void)
6476 {
6477 need_assert_for = BITMAP_ALLOC (NULL);
6478 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
6479
6480 calculate_dominance_info (CDI_DOMINATORS);
6481
6482 find_assert_locations ();
6483 if (!bitmap_empty_p (need_assert_for))
6484 {
6485 process_assert_insertions ();
6486 update_ssa (TODO_update_ssa_no_phi);
6487 }
6488
6489 if (dump_file && (dump_flags & TDF_DETAILS))
6490 {
6491 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
6492 dump_function_to_file (current_function_decl, dump_file, dump_flags);
6493 }
6494
6495 free (asserts_for);
6496 BITMAP_FREE (need_assert_for);
6497 }
6498
6499 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6500 and "struct" hacks. If VRP can determine that the
6501 array subscript is a constant, check if it is outside valid
6502 range. If the array subscript is a RANGE, warn if it is
6503 non-overlapping with valid range.
6504 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6505
6506 static void
6507 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
6508 {
6509 value_range_t* vr = NULL;
6510 tree low_sub, up_sub;
6511 tree low_bound, up_bound, up_bound_p1;
6512 tree base;
6513
6514 if (TREE_NO_WARNING (ref))
6515 return;
6516
6517 low_sub = up_sub = TREE_OPERAND (ref, 1);
6518 up_bound = array_ref_up_bound (ref);
6519
6520 /* Can not check flexible arrays. */
6521 if (!up_bound
6522 || TREE_CODE (up_bound) != INTEGER_CST)
6523 return;
6524
6525 /* Accesses to trailing arrays via pointers may access storage
6526 beyond the types array bounds. */
6527 base = get_base_address (ref);
6528 if ((warn_array_bounds < 2)
6529 && base && TREE_CODE (base) == MEM_REF)
6530 {
6531 tree cref, next = NULL_TREE;
6532
6533 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
6534 return;
6535
6536 cref = TREE_OPERAND (ref, 0);
6537 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
6538 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
6539 next && TREE_CODE (next) != FIELD_DECL;
6540 next = DECL_CHAIN (next))
6541 ;
6542
6543 /* If this is the last field in a struct type or a field in a
6544 union type do not warn. */
6545 if (!next)
6546 return;
6547 }
6548
6549 low_bound = array_ref_low_bound (ref);
6550 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound,
6551 build_int_cst (TREE_TYPE (up_bound), 1));
6552
6553 if (TREE_CODE (low_sub) == SSA_NAME)
6554 {
6555 vr = get_value_range (low_sub);
6556 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
6557 {
6558 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
6559 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
6560 }
6561 }
6562
6563 if (vr && vr->type == VR_ANTI_RANGE)
6564 {
6565 if (TREE_CODE (up_sub) == INTEGER_CST
6566 && tree_int_cst_lt (up_bound, up_sub)
6567 && TREE_CODE (low_sub) == INTEGER_CST
6568 && tree_int_cst_lt (low_sub, low_bound))
6569 {
6570 warning_at (location, OPT_Warray_bounds,
6571 "array subscript is outside array bounds");
6572 TREE_NO_WARNING (ref) = 1;
6573 }
6574 }
6575 else if (TREE_CODE (up_sub) == INTEGER_CST
6576 && (ignore_off_by_one
6577 ? (tree_int_cst_lt (up_bound, up_sub)
6578 && !tree_int_cst_equal (up_bound_p1, up_sub))
6579 : (tree_int_cst_lt (up_bound, up_sub)
6580 || tree_int_cst_equal (up_bound_p1, up_sub))))
6581 {
6582 if (dump_file && (dump_flags & TDF_DETAILS))
6583 {
6584 fprintf (dump_file, "Array bound warning for ");
6585 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6586 fprintf (dump_file, "\n");
6587 }
6588 warning_at (location, OPT_Warray_bounds,
6589 "array subscript is above array bounds");
6590 TREE_NO_WARNING (ref) = 1;
6591 }
6592 else if (TREE_CODE (low_sub) == INTEGER_CST
6593 && tree_int_cst_lt (low_sub, low_bound))
6594 {
6595 if (dump_file && (dump_flags & TDF_DETAILS))
6596 {
6597 fprintf (dump_file, "Array bound warning for ");
6598 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6599 fprintf (dump_file, "\n");
6600 }
6601 warning_at (location, OPT_Warray_bounds,
6602 "array subscript is below array bounds");
6603 TREE_NO_WARNING (ref) = 1;
6604 }
6605 }
6606
6607 /* Searches if the expr T, located at LOCATION computes
6608 address of an ARRAY_REF, and call check_array_ref on it. */
6609
6610 static void
6611 search_for_addr_array (tree t, location_t location)
6612 {
6613 while (TREE_CODE (t) == SSA_NAME)
6614 {
6615 gimple g = SSA_NAME_DEF_STMT (t);
6616
6617 if (gimple_code (g) != GIMPLE_ASSIGN)
6618 return;
6619
6620 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
6621 != GIMPLE_SINGLE_RHS)
6622 return;
6623
6624 t = gimple_assign_rhs1 (g);
6625 }
6626
6627
6628 /* We are only interested in addresses of ARRAY_REF's. */
6629 if (TREE_CODE (t) != ADDR_EXPR)
6630 return;
6631
6632 /* Check each ARRAY_REFs in the reference chain. */
6633 do
6634 {
6635 if (TREE_CODE (t) == ARRAY_REF)
6636 check_array_ref (location, t, true /*ignore_off_by_one*/);
6637
6638 t = TREE_OPERAND (t, 0);
6639 }
6640 while (handled_component_p (t));
6641
6642 if (TREE_CODE (t) == MEM_REF
6643 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
6644 && !TREE_NO_WARNING (t))
6645 {
6646 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
6647 tree low_bound, up_bound, el_sz;
6648 offset_int idx;
6649 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
6650 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
6651 || !TYPE_DOMAIN (TREE_TYPE (tem)))
6652 return;
6653
6654 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6655 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6656 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
6657 if (!low_bound
6658 || TREE_CODE (low_bound) != INTEGER_CST
6659 || !up_bound
6660 || TREE_CODE (up_bound) != INTEGER_CST
6661 || !el_sz
6662 || TREE_CODE (el_sz) != INTEGER_CST)
6663 return;
6664
6665 idx = mem_ref_offset (t);
6666 idx = wi::sdiv_trunc (idx, wi::to_offset (el_sz));
6667 if (wi::lts_p (idx, 0))
6668 {
6669 if (dump_file && (dump_flags & TDF_DETAILS))
6670 {
6671 fprintf (dump_file, "Array bound warning for ");
6672 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6673 fprintf (dump_file, "\n");
6674 }
6675 warning_at (location, OPT_Warray_bounds,
6676 "array subscript is below array bounds");
6677 TREE_NO_WARNING (t) = 1;
6678 }
6679 else if (wi::gts_p (idx, (wi::to_offset (up_bound)
6680 - wi::to_offset (low_bound) + 1)))
6681 {
6682 if (dump_file && (dump_flags & TDF_DETAILS))
6683 {
6684 fprintf (dump_file, "Array bound warning for ");
6685 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6686 fprintf (dump_file, "\n");
6687 }
6688 warning_at (location, OPT_Warray_bounds,
6689 "array subscript is above array bounds");
6690 TREE_NO_WARNING (t) = 1;
6691 }
6692 }
6693 }
6694
6695 /* walk_tree() callback that checks if *TP is
6696 an ARRAY_REF inside an ADDR_EXPR (in which an array
6697 subscript one outside the valid range is allowed). Call
6698 check_array_ref for each ARRAY_REF found. The location is
6699 passed in DATA. */
6700
6701 static tree
6702 check_array_bounds (tree *tp, int *walk_subtree, void *data)
6703 {
6704 tree t = *tp;
6705 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6706 location_t location;
6707
6708 if (EXPR_HAS_LOCATION (t))
6709 location = EXPR_LOCATION (t);
6710 else
6711 {
6712 location_t *locp = (location_t *) wi->info;
6713 location = *locp;
6714 }
6715
6716 *walk_subtree = TRUE;
6717
6718 if (TREE_CODE (t) == ARRAY_REF)
6719 check_array_ref (location, t, false /*ignore_off_by_one*/);
6720
6721 if (TREE_CODE (t) == MEM_REF
6722 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
6723 search_for_addr_array (TREE_OPERAND (t, 0), location);
6724
6725 if (TREE_CODE (t) == ADDR_EXPR)
6726 *walk_subtree = FALSE;
6727
6728 return NULL_TREE;
6729 }
6730
6731 /* Walk over all statements of all reachable BBs and call check_array_bounds
6732 on them. */
6733
6734 static void
6735 check_all_array_refs (void)
6736 {
6737 basic_block bb;
6738 gimple_stmt_iterator si;
6739
6740 FOR_EACH_BB_FN (bb, cfun)
6741 {
6742 edge_iterator ei;
6743 edge e;
6744 bool executable = false;
6745
6746 /* Skip blocks that were found to be unreachable. */
6747 FOR_EACH_EDGE (e, ei, bb->preds)
6748 executable |= !!(e->flags & EDGE_EXECUTABLE);
6749 if (!executable)
6750 continue;
6751
6752 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6753 {
6754 gimple stmt = gsi_stmt (si);
6755 struct walk_stmt_info wi;
6756 if (!gimple_has_location (stmt))
6757 continue;
6758
6759 if (is_gimple_call (stmt))
6760 {
6761 size_t i;
6762 size_t n = gimple_call_num_args (stmt);
6763 for (i = 0; i < n; i++)
6764 {
6765 tree arg = gimple_call_arg (stmt, i);
6766 search_for_addr_array (arg, gimple_location (stmt));
6767 }
6768 }
6769 else
6770 {
6771 memset (&wi, 0, sizeof (wi));
6772 wi.info = CONST_CAST (void *, (const void *)
6773 gimple_location_ptr (stmt));
6774
6775 walk_gimple_op (gsi_stmt (si),
6776 check_array_bounds,
6777 &wi);
6778 }
6779 }
6780 }
6781 }
6782
6783 /* Return true if all imm uses of VAR are either in STMT, or
6784 feed (optionally through a chain of single imm uses) GIMPLE_COND
6785 in basic block COND_BB. */
6786
6787 static bool
6788 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple stmt, basic_block cond_bb)
6789 {
6790 use_operand_p use_p, use2_p;
6791 imm_use_iterator iter;
6792
6793 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
6794 if (USE_STMT (use_p) != stmt)
6795 {
6796 gimple use_stmt = USE_STMT (use_p), use_stmt2;
6797 if (is_gimple_debug (use_stmt))
6798 continue;
6799 while (is_gimple_assign (use_stmt)
6800 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
6801 && single_imm_use (gimple_assign_lhs (use_stmt),
6802 &use2_p, &use_stmt2))
6803 use_stmt = use_stmt2;
6804 if (gimple_code (use_stmt) != GIMPLE_COND
6805 || gimple_bb (use_stmt) != cond_bb)
6806 return false;
6807 }
6808 return true;
6809 }
6810
6811 /* Handle
6812 _4 = x_3 & 31;
6813 if (_4 != 0)
6814 goto <bb 6>;
6815 else
6816 goto <bb 7>;
6817 <bb 6>:
6818 __builtin_unreachable ();
6819 <bb 7>:
6820 x_5 = ASSERT_EXPR <x_3, ...>;
6821 If x_3 has no other immediate uses (checked by caller),
6822 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
6823 from the non-zero bitmask. */
6824
6825 static void
6826 maybe_set_nonzero_bits (basic_block bb, tree var)
6827 {
6828 edge e = single_pred_edge (bb);
6829 basic_block cond_bb = e->src;
6830 gimple stmt = last_stmt (cond_bb);
6831 tree cst;
6832
6833 if (stmt == NULL
6834 || gimple_code (stmt) != GIMPLE_COND
6835 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
6836 ? EQ_EXPR : NE_EXPR)
6837 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
6838 || !integer_zerop (gimple_cond_rhs (stmt)))
6839 return;
6840
6841 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
6842 if (!is_gimple_assign (stmt)
6843 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
6844 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
6845 return;
6846 if (gimple_assign_rhs1 (stmt) != var)
6847 {
6848 gimple stmt2;
6849
6850 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
6851 return;
6852 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
6853 if (!gimple_assign_cast_p (stmt2)
6854 || gimple_assign_rhs1 (stmt2) != var
6855 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
6856 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6857 != TYPE_PRECISION (TREE_TYPE (var))))
6858 return;
6859 }
6860 cst = gimple_assign_rhs2 (stmt);
6861 set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var), cst));
6862 }
6863
6864 /* Convert range assertion expressions into the implied copies and
6865 copy propagate away the copies. Doing the trivial copy propagation
6866 here avoids the need to run the full copy propagation pass after
6867 VRP.
6868
6869 FIXME, this will eventually lead to copy propagation removing the
6870 names that had useful range information attached to them. For
6871 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6872 then N_i will have the range [3, +INF].
6873
6874 However, by converting the assertion into the implied copy
6875 operation N_i = N_j, we will then copy-propagate N_j into the uses
6876 of N_i and lose the range information. We may want to hold on to
6877 ASSERT_EXPRs a little while longer as the ranges could be used in
6878 things like jump threading.
6879
6880 The problem with keeping ASSERT_EXPRs around is that passes after
6881 VRP need to handle them appropriately.
6882
6883 Another approach would be to make the range information a first
6884 class property of the SSA_NAME so that it can be queried from
6885 any pass. This is made somewhat more complex by the need for
6886 multiple ranges to be associated with one SSA_NAME. */
6887
6888 static void
6889 remove_range_assertions (void)
6890 {
6891 basic_block bb;
6892 gimple_stmt_iterator si;
6893 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
6894 a basic block preceeded by GIMPLE_COND branching to it and
6895 __builtin_trap, -1 if not yet checked, 0 otherwise. */
6896 int is_unreachable;
6897
6898 /* Note that the BSI iterator bump happens at the bottom of the
6899 loop and no bump is necessary if we're removing the statement
6900 referenced by the current BSI. */
6901 FOR_EACH_BB_FN (bb, cfun)
6902 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
6903 {
6904 gimple stmt = gsi_stmt (si);
6905 gimple use_stmt;
6906
6907 if (is_gimple_assign (stmt)
6908 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
6909 {
6910 tree lhs = gimple_assign_lhs (stmt);
6911 tree rhs = gimple_assign_rhs1 (stmt);
6912 tree var;
6913 tree cond = fold (ASSERT_EXPR_COND (rhs));
6914 use_operand_p use_p;
6915 imm_use_iterator iter;
6916
6917 gcc_assert (cond != boolean_false_node);
6918
6919 var = ASSERT_EXPR_VAR (rhs);
6920 gcc_assert (TREE_CODE (var) == SSA_NAME);
6921
6922 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
6923 && SSA_NAME_RANGE_INFO (lhs))
6924 {
6925 if (is_unreachable == -1)
6926 {
6927 is_unreachable = 0;
6928 if (single_pred_p (bb)
6929 && assert_unreachable_fallthru_edge_p
6930 (single_pred_edge (bb)))
6931 is_unreachable = 1;
6932 }
6933 /* Handle
6934 if (x_7 >= 10 && x_7 < 20)
6935 __builtin_unreachable ();
6936 x_8 = ASSERT_EXPR <x_7, ...>;
6937 if the only uses of x_7 are in the ASSERT_EXPR and
6938 in the condition. In that case, we can copy the
6939 range info from x_8 computed in this pass also
6940 for x_7. */
6941 if (is_unreachable
6942 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
6943 single_pred (bb)))
6944 {
6945 set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
6946 SSA_NAME_RANGE_INFO (lhs)->get_min (),
6947 SSA_NAME_RANGE_INFO (lhs)->get_max ());
6948 maybe_set_nonzero_bits (bb, var);
6949 }
6950 }
6951
6952 /* Propagate the RHS into every use of the LHS. */
6953 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
6954 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
6955 SET_USE (use_p, var);
6956
6957 /* And finally, remove the copy, it is not needed. */
6958 gsi_remove (&si, true);
6959 release_defs (stmt);
6960 }
6961 else
6962 {
6963 if (!is_gimple_debug (gsi_stmt (si)))
6964 is_unreachable = 0;
6965 gsi_next (&si);
6966 }
6967 }
6968 }
6969
6970
6971 /* Return true if STMT is interesting for VRP. */
6972
6973 static bool
6974 stmt_interesting_for_vrp (gimple stmt)
6975 {
6976 if (gimple_code (stmt) == GIMPLE_PHI)
6977 {
6978 tree res = gimple_phi_result (stmt);
6979 return (!virtual_operand_p (res)
6980 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
6981 || POINTER_TYPE_P (TREE_TYPE (res))));
6982 }
6983 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6984 {
6985 tree lhs = gimple_get_lhs (stmt);
6986
6987 /* In general, assignments with virtual operands are not useful
6988 for deriving ranges, with the obvious exception of calls to
6989 builtin functions. */
6990 if (lhs && TREE_CODE (lhs) == SSA_NAME
6991 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6992 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6993 && (is_gimple_call (stmt)
6994 || !gimple_vuse (stmt)))
6995 return true;
6996 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
6997 switch (gimple_call_internal_fn (stmt))
6998 {
6999 case IFN_ADD_OVERFLOW:
7000 case IFN_SUB_OVERFLOW:
7001 case IFN_MUL_OVERFLOW:
7002 /* These internal calls return _Complex integer type,
7003 but are interesting to VRP nevertheless. */
7004 if (lhs && TREE_CODE (lhs) == SSA_NAME)
7005 return true;
7006 break;
7007 default:
7008 break;
7009 }
7010 }
7011 else if (gimple_code (stmt) == GIMPLE_COND
7012 || gimple_code (stmt) == GIMPLE_SWITCH)
7013 return true;
7014
7015 return false;
7016 }
7017
7018
7019 /* Initialize local data structures for VRP. */
7020
7021 static void
7022 vrp_initialize (void)
7023 {
7024 basic_block bb;
7025
7026 values_propagated = false;
7027 num_vr_values = num_ssa_names;
7028 vr_value = XCNEWVEC (value_range_t *, num_vr_values);
7029 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
7030
7031 FOR_EACH_BB_FN (bb, cfun)
7032 {
7033 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
7034 gsi_next (&si))
7035 {
7036 gphi *phi = si.phi ();
7037 if (!stmt_interesting_for_vrp (phi))
7038 {
7039 tree lhs = PHI_RESULT (phi);
7040 set_value_range_to_varying (get_value_range (lhs));
7041 prop_set_simulate_again (phi, false);
7042 }
7043 else
7044 prop_set_simulate_again (phi, true);
7045 }
7046
7047 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
7048 gsi_next (&si))
7049 {
7050 gimple stmt = gsi_stmt (si);
7051
7052 /* If the statement is a control insn, then we do not
7053 want to avoid simulating the statement once. Failure
7054 to do so means that those edges will never get added. */
7055 if (stmt_ends_bb_p (stmt))
7056 prop_set_simulate_again (stmt, true);
7057 else if (!stmt_interesting_for_vrp (stmt))
7058 {
7059 ssa_op_iter i;
7060 tree def;
7061 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
7062 set_value_range_to_varying (get_value_range (def));
7063 prop_set_simulate_again (stmt, false);
7064 }
7065 else
7066 prop_set_simulate_again (stmt, true);
7067 }
7068 }
7069 }
7070
7071 /* Return the singleton value-range for NAME or NAME. */
7072
7073 static inline tree
7074 vrp_valueize (tree name)
7075 {
7076 if (TREE_CODE (name) == SSA_NAME)
7077 {
7078 value_range_t *vr = get_value_range (name);
7079 if (vr->type == VR_RANGE
7080 && (vr->min == vr->max
7081 || operand_equal_p (vr->min, vr->max, 0)))
7082 return vr->min;
7083 }
7084 return name;
7085 }
7086
7087 /* Return the singleton value-range for NAME if that is a constant
7088 but signal to not follow SSA edges. */
7089
7090 static inline tree
7091 vrp_valueize_1 (tree name)
7092 {
7093 if (TREE_CODE (name) == SSA_NAME)
7094 {
7095 value_range_t *vr = get_value_range (name);
7096 if (range_int_cst_singleton_p (vr))
7097 return vr->min;
7098 /* If the definition may be simulated again we cannot follow
7099 this SSA edge as the SSA propagator does not necessarily
7100 re-visit the use. */
7101 gimple def_stmt = SSA_NAME_DEF_STMT (name);
7102 if (prop_simulate_again_p (def_stmt))
7103 return NULL_TREE;
7104 }
7105 return name;
7106 }
7107
7108 /* Visit assignment STMT. If it produces an interesting range, record
7109 the SSA name in *OUTPUT_P. */
7110
7111 static enum ssa_prop_result
7112 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
7113 {
7114 tree def, lhs;
7115 ssa_op_iter iter;
7116 enum gimple_code code = gimple_code (stmt);
7117 lhs = gimple_get_lhs (stmt);
7118
7119 /* We only keep track of ranges in integral and pointer types. */
7120 if (TREE_CODE (lhs) == SSA_NAME
7121 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
7122 /* It is valid to have NULL MIN/MAX values on a type. See
7123 build_range_type. */
7124 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
7125 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
7126 || POINTER_TYPE_P (TREE_TYPE (lhs))))
7127 {
7128 value_range_t new_vr = VR_INITIALIZER;
7129
7130 /* Try folding the statement to a constant first. */
7131 tree tem = gimple_fold_stmt_to_constant_1 (stmt, vrp_valueize,
7132 vrp_valueize_1);
7133 if (tem && is_gimple_min_invariant (tem))
7134 set_value_range_to_value (&new_vr, tem, NULL);
7135 /* Then dispatch to value-range extracting functions. */
7136 else if (code == GIMPLE_CALL)
7137 extract_range_basic (&new_vr, stmt);
7138 else
7139 extract_range_from_assignment (&new_vr, as_a <gassign *> (stmt));
7140
7141 if (update_value_range (lhs, &new_vr))
7142 {
7143 *output_p = lhs;
7144
7145 if (dump_file && (dump_flags & TDF_DETAILS))
7146 {
7147 fprintf (dump_file, "Found new range for ");
7148 print_generic_expr (dump_file, lhs, 0);
7149 fprintf (dump_file, ": ");
7150 dump_value_range (dump_file, &new_vr);
7151 fprintf (dump_file, "\n");
7152 }
7153
7154 if (new_vr.type == VR_VARYING)
7155 return SSA_PROP_VARYING;
7156
7157 return SSA_PROP_INTERESTING;
7158 }
7159
7160 return SSA_PROP_NOT_INTERESTING;
7161 }
7162 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
7163 switch (gimple_call_internal_fn (stmt))
7164 {
7165 case IFN_ADD_OVERFLOW:
7166 case IFN_SUB_OVERFLOW:
7167 case IFN_MUL_OVERFLOW:
7168 /* These internal calls return _Complex integer type,
7169 which VRP does not track, but the immediate uses
7170 thereof might be interesting. */
7171 if (lhs && TREE_CODE (lhs) == SSA_NAME)
7172 {
7173 imm_use_iterator iter;
7174 use_operand_p use_p;
7175 enum ssa_prop_result res = SSA_PROP_VARYING;
7176
7177 set_value_range_to_varying (get_value_range (lhs));
7178
7179 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
7180 {
7181 gimple use_stmt = USE_STMT (use_p);
7182 if (!is_gimple_assign (use_stmt))
7183 continue;
7184 enum tree_code rhs_code = gimple_assign_rhs_code (use_stmt);
7185 if (rhs_code != REALPART_EXPR && rhs_code != IMAGPART_EXPR)
7186 continue;
7187 tree rhs1 = gimple_assign_rhs1 (use_stmt);
7188 tree use_lhs = gimple_assign_lhs (use_stmt);
7189 if (TREE_CODE (rhs1) != rhs_code
7190 || TREE_OPERAND (rhs1, 0) != lhs
7191 || TREE_CODE (use_lhs) != SSA_NAME
7192 || !stmt_interesting_for_vrp (use_stmt)
7193 || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs))
7194 || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs))
7195 || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs))))
7196 continue;
7197
7198 /* If there is a change in the value range for any of the
7199 REALPART_EXPR/IMAGPART_EXPR immediate uses, return
7200 SSA_PROP_INTERESTING. If there are any REALPART_EXPR
7201 or IMAGPART_EXPR immediate uses, but none of them have
7202 a change in their value ranges, return
7203 SSA_PROP_NOT_INTERESTING. If there are no
7204 {REAL,IMAG}PART_EXPR uses at all,
7205 return SSA_PROP_VARYING. */
7206 value_range_t new_vr = VR_INITIALIZER;
7207 extract_range_basic (&new_vr, use_stmt);
7208 value_range_t *old_vr = get_value_range (use_lhs);
7209 if (old_vr->type != new_vr.type
7210 || !vrp_operand_equal_p (old_vr->min, new_vr.min)
7211 || !vrp_operand_equal_p (old_vr->max, new_vr.max)
7212 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr.equiv))
7213 res = SSA_PROP_INTERESTING;
7214 else
7215 res = SSA_PROP_NOT_INTERESTING;
7216 BITMAP_FREE (new_vr.equiv);
7217 if (res == SSA_PROP_INTERESTING)
7218 {
7219 *output_p = lhs;
7220 return res;
7221 }
7222 }
7223
7224 return res;
7225 }
7226 break;
7227 default:
7228 break;
7229 }
7230
7231 /* Every other statement produces no useful ranges. */
7232 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
7233 set_value_range_to_varying (get_value_range (def));
7234
7235 return SSA_PROP_VARYING;
7236 }
7237
7238 /* Helper that gets the value range of the SSA_NAME with version I
7239 or a symbolic range containing the SSA_NAME only if the value range
7240 is varying or undefined. */
7241
7242 static inline value_range_t
7243 get_vr_for_comparison (int i)
7244 {
7245 value_range_t vr = *get_value_range (ssa_name (i));
7246
7247 /* If name N_i does not have a valid range, use N_i as its own
7248 range. This allows us to compare against names that may
7249 have N_i in their ranges. */
7250 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
7251 {
7252 vr.type = VR_RANGE;
7253 vr.min = ssa_name (i);
7254 vr.max = ssa_name (i);
7255 }
7256
7257 return vr;
7258 }
7259
7260 /* Compare all the value ranges for names equivalent to VAR with VAL
7261 using comparison code COMP. Return the same value returned by
7262 compare_range_with_value, including the setting of
7263 *STRICT_OVERFLOW_P. */
7264
7265 static tree
7266 compare_name_with_value (enum tree_code comp, tree var, tree val,
7267 bool *strict_overflow_p)
7268 {
7269 bitmap_iterator bi;
7270 unsigned i;
7271 bitmap e;
7272 tree retval, t;
7273 int used_strict_overflow;
7274 bool sop;
7275 value_range_t equiv_vr;
7276
7277 /* Get the set of equivalences for VAR. */
7278 e = get_value_range (var)->equiv;
7279
7280 /* Start at -1. Set it to 0 if we do a comparison without relying
7281 on overflow, or 1 if all comparisons rely on overflow. */
7282 used_strict_overflow = -1;
7283
7284 /* Compare vars' value range with val. */
7285 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
7286 sop = false;
7287 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
7288 if (retval)
7289 used_strict_overflow = sop ? 1 : 0;
7290
7291 /* If the equiv set is empty we have done all work we need to do. */
7292 if (e == NULL)
7293 {
7294 if (retval
7295 && used_strict_overflow > 0)
7296 *strict_overflow_p = true;
7297 return retval;
7298 }
7299
7300 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
7301 {
7302 equiv_vr = get_vr_for_comparison (i);
7303 sop = false;
7304 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
7305 if (t)
7306 {
7307 /* If we get different answers from different members
7308 of the equivalence set this check must be in a dead
7309 code region. Folding it to a trap representation
7310 would be correct here. For now just return don't-know. */
7311 if (retval != NULL
7312 && t != retval)
7313 {
7314 retval = NULL_TREE;
7315 break;
7316 }
7317 retval = t;
7318
7319 if (!sop)
7320 used_strict_overflow = 0;
7321 else if (used_strict_overflow < 0)
7322 used_strict_overflow = 1;
7323 }
7324 }
7325
7326 if (retval
7327 && used_strict_overflow > 0)
7328 *strict_overflow_p = true;
7329
7330 return retval;
7331 }
7332
7333
7334 /* Given a comparison code COMP and names N1 and N2, compare all the
7335 ranges equivalent to N1 against all the ranges equivalent to N2
7336 to determine the value of N1 COMP N2. Return the same value
7337 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
7338 whether we relied on an overflow infinity in the comparison. */
7339
7340
7341 static tree
7342 compare_names (enum tree_code comp, tree n1, tree n2,
7343 bool *strict_overflow_p)
7344 {
7345 tree t, retval;
7346 bitmap e1, e2;
7347 bitmap_iterator bi1, bi2;
7348 unsigned i1, i2;
7349 int used_strict_overflow;
7350 static bitmap_obstack *s_obstack = NULL;
7351 static bitmap s_e1 = NULL, s_e2 = NULL;
7352
7353 /* Compare the ranges of every name equivalent to N1 against the
7354 ranges of every name equivalent to N2. */
7355 e1 = get_value_range (n1)->equiv;
7356 e2 = get_value_range (n2)->equiv;
7357
7358 /* Use the fake bitmaps if e1 or e2 are not available. */
7359 if (s_obstack == NULL)
7360 {
7361 s_obstack = XNEW (bitmap_obstack);
7362 bitmap_obstack_initialize (s_obstack);
7363 s_e1 = BITMAP_ALLOC (s_obstack);
7364 s_e2 = BITMAP_ALLOC (s_obstack);
7365 }
7366 if (e1 == NULL)
7367 e1 = s_e1;
7368 if (e2 == NULL)
7369 e2 = s_e2;
7370
7371 /* Add N1 and N2 to their own set of equivalences to avoid
7372 duplicating the body of the loop just to check N1 and N2
7373 ranges. */
7374 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
7375 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
7376
7377 /* If the equivalence sets have a common intersection, then the two
7378 names can be compared without checking their ranges. */
7379 if (bitmap_intersect_p (e1, e2))
7380 {
7381 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7382 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7383
7384 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
7385 ? boolean_true_node
7386 : boolean_false_node;
7387 }
7388
7389 /* Start at -1. Set it to 0 if we do a comparison without relying
7390 on overflow, or 1 if all comparisons rely on overflow. */
7391 used_strict_overflow = -1;
7392
7393 /* Otherwise, compare all the equivalent ranges. First, add N1 and
7394 N2 to their own set of equivalences to avoid duplicating the body
7395 of the loop just to check N1 and N2 ranges. */
7396 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
7397 {
7398 value_range_t vr1 = get_vr_for_comparison (i1);
7399
7400 t = retval = NULL_TREE;
7401 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
7402 {
7403 bool sop = false;
7404
7405 value_range_t vr2 = get_vr_for_comparison (i2);
7406
7407 t = compare_ranges (comp, &vr1, &vr2, &sop);
7408 if (t)
7409 {
7410 /* If we get different answers from different members
7411 of the equivalence set this check must be in a dead
7412 code region. Folding it to a trap representation
7413 would be correct here. For now just return don't-know. */
7414 if (retval != NULL
7415 && t != retval)
7416 {
7417 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7418 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7419 return NULL_TREE;
7420 }
7421 retval = t;
7422
7423 if (!sop)
7424 used_strict_overflow = 0;
7425 else if (used_strict_overflow < 0)
7426 used_strict_overflow = 1;
7427 }
7428 }
7429
7430 if (retval)
7431 {
7432 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7433 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7434 if (used_strict_overflow > 0)
7435 *strict_overflow_p = true;
7436 return retval;
7437 }
7438 }
7439
7440 /* None of the equivalent ranges are useful in computing this
7441 comparison. */
7442 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7443 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7444 return NULL_TREE;
7445 }
7446
7447 /* Helper function for vrp_evaluate_conditional_warnv. */
7448
7449 static tree
7450 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
7451 tree op0, tree op1,
7452 bool * strict_overflow_p)
7453 {
7454 value_range_t *vr0, *vr1;
7455
7456 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
7457 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
7458
7459 tree res = NULL_TREE;
7460 if (vr0 && vr1)
7461 res = compare_ranges (code, vr0, vr1, strict_overflow_p);
7462 if (!res && vr0)
7463 res = compare_range_with_value (code, vr0, op1, strict_overflow_p);
7464 if (!res && vr1)
7465 res = (compare_range_with_value
7466 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
7467 return res;
7468 }
7469
7470 /* Helper function for vrp_evaluate_conditional_warnv. */
7471
7472 static tree
7473 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
7474 tree op1, bool use_equiv_p,
7475 bool *strict_overflow_p, bool *only_ranges)
7476 {
7477 tree ret;
7478 if (only_ranges)
7479 *only_ranges = true;
7480
7481 /* We only deal with integral and pointer types. */
7482 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
7483 && !POINTER_TYPE_P (TREE_TYPE (op0)))
7484 return NULL_TREE;
7485
7486 if (use_equiv_p)
7487 {
7488 if (only_ranges
7489 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
7490 (code, op0, op1, strict_overflow_p)))
7491 return ret;
7492 *only_ranges = false;
7493 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
7494 return compare_names (code, op0, op1, strict_overflow_p);
7495 else if (TREE_CODE (op0) == SSA_NAME)
7496 return compare_name_with_value (code, op0, op1, strict_overflow_p);
7497 else if (TREE_CODE (op1) == SSA_NAME)
7498 return (compare_name_with_value
7499 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
7500 }
7501 else
7502 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
7503 strict_overflow_p);
7504 return NULL_TREE;
7505 }
7506
7507 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
7508 information. Return NULL if the conditional can not be evaluated.
7509 The ranges of all the names equivalent with the operands in COND
7510 will be used when trying to compute the value. If the result is
7511 based on undefined signed overflow, issue a warning if
7512 appropriate. */
7513
7514 static tree
7515 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
7516 {
7517 bool sop;
7518 tree ret;
7519 bool only_ranges;
7520
7521 /* Some passes and foldings leak constants with overflow flag set
7522 into the IL. Avoid doing wrong things with these and bail out. */
7523 if ((TREE_CODE (op0) == INTEGER_CST
7524 && TREE_OVERFLOW (op0))
7525 || (TREE_CODE (op1) == INTEGER_CST
7526 && TREE_OVERFLOW (op1)))
7527 return NULL_TREE;
7528
7529 sop = false;
7530 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
7531 &only_ranges);
7532
7533 if (ret && sop)
7534 {
7535 enum warn_strict_overflow_code wc;
7536 const char* warnmsg;
7537
7538 if (is_gimple_min_invariant (ret))
7539 {
7540 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
7541 warnmsg = G_("assuming signed overflow does not occur when "
7542 "simplifying conditional to constant");
7543 }
7544 else
7545 {
7546 wc = WARN_STRICT_OVERFLOW_COMPARISON;
7547 warnmsg = G_("assuming signed overflow does not occur when "
7548 "simplifying conditional");
7549 }
7550
7551 if (issue_strict_overflow_warning (wc))
7552 {
7553 location_t location;
7554
7555 if (!gimple_has_location (stmt))
7556 location = input_location;
7557 else
7558 location = gimple_location (stmt);
7559 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
7560 }
7561 }
7562
7563 if (warn_type_limits
7564 && ret && only_ranges
7565 && TREE_CODE_CLASS (code) == tcc_comparison
7566 && TREE_CODE (op0) == SSA_NAME)
7567 {
7568 /* If the comparison is being folded and the operand on the LHS
7569 is being compared against a constant value that is outside of
7570 the natural range of OP0's type, then the predicate will
7571 always fold regardless of the value of OP0. If -Wtype-limits
7572 was specified, emit a warning. */
7573 tree type = TREE_TYPE (op0);
7574 value_range_t *vr0 = get_value_range (op0);
7575
7576 if (vr0->type == VR_RANGE
7577 && INTEGRAL_TYPE_P (type)
7578 && vrp_val_is_min (vr0->min)
7579 && vrp_val_is_max (vr0->max)
7580 && is_gimple_min_invariant (op1))
7581 {
7582 location_t location;
7583
7584 if (!gimple_has_location (stmt))
7585 location = input_location;
7586 else
7587 location = gimple_location (stmt);
7588
7589 warning_at (location, OPT_Wtype_limits,
7590 integer_zerop (ret)
7591 ? G_("comparison always false "
7592 "due to limited range of data type")
7593 : G_("comparison always true "
7594 "due to limited range of data type"));
7595 }
7596 }
7597
7598 return ret;
7599 }
7600
7601
7602 /* Visit conditional statement STMT. If we can determine which edge
7603 will be taken out of STMT's basic block, record it in
7604 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7605 SSA_PROP_VARYING. */
7606
7607 static enum ssa_prop_result
7608 vrp_visit_cond_stmt (gcond *stmt, edge *taken_edge_p)
7609 {
7610 tree val;
7611 bool sop;
7612
7613 *taken_edge_p = NULL;
7614
7615 if (dump_file && (dump_flags & TDF_DETAILS))
7616 {
7617 tree use;
7618 ssa_op_iter i;
7619
7620 fprintf (dump_file, "\nVisiting conditional with predicate: ");
7621 print_gimple_stmt (dump_file, stmt, 0, 0);
7622 fprintf (dump_file, "\nWith known ranges\n");
7623
7624 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
7625 {
7626 fprintf (dump_file, "\t");
7627 print_generic_expr (dump_file, use, 0);
7628 fprintf (dump_file, ": ");
7629 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
7630 }
7631
7632 fprintf (dump_file, "\n");
7633 }
7634
7635 /* Compute the value of the predicate COND by checking the known
7636 ranges of each of its operands.
7637
7638 Note that we cannot evaluate all the equivalent ranges here
7639 because those ranges may not yet be final and with the current
7640 propagation strategy, we cannot determine when the value ranges
7641 of the names in the equivalence set have changed.
7642
7643 For instance, given the following code fragment
7644
7645 i_5 = PHI <8, i_13>
7646 ...
7647 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7648 if (i_14 == 1)
7649 ...
7650
7651 Assume that on the first visit to i_14, i_5 has the temporary
7652 range [8, 8] because the second argument to the PHI function is
7653 not yet executable. We derive the range ~[0, 0] for i_14 and the
7654 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7655 the first time, since i_14 is equivalent to the range [8, 8], we
7656 determine that the predicate is always false.
7657
7658 On the next round of propagation, i_13 is determined to be
7659 VARYING, which causes i_5 to drop down to VARYING. So, another
7660 visit to i_14 is scheduled. In this second visit, we compute the
7661 exact same range and equivalence set for i_14, namely ~[0, 0] and
7662 { i_5 }. But we did not have the previous range for i_5
7663 registered, so vrp_visit_assignment thinks that the range for
7664 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7665 is not visited again, which stops propagation from visiting
7666 statements in the THEN clause of that if().
7667
7668 To properly fix this we would need to keep the previous range
7669 value for the names in the equivalence set. This way we would've
7670 discovered that from one visit to the other i_5 changed from
7671 range [8, 8] to VR_VARYING.
7672
7673 However, fixing this apparent limitation may not be worth the
7674 additional checking. Testing on several code bases (GCC, DLV,
7675 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7676 4 more predicates folded in SPEC. */
7677 sop = false;
7678
7679 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
7680 gimple_cond_lhs (stmt),
7681 gimple_cond_rhs (stmt),
7682 false, &sop, NULL);
7683 if (val)
7684 {
7685 if (!sop)
7686 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
7687 else
7688 {
7689 if (dump_file && (dump_flags & TDF_DETAILS))
7690 fprintf (dump_file,
7691 "\nIgnoring predicate evaluation because "
7692 "it assumes that signed overflow is undefined");
7693 val = NULL_TREE;
7694 }
7695 }
7696
7697 if (dump_file && (dump_flags & TDF_DETAILS))
7698 {
7699 fprintf (dump_file, "\nPredicate evaluates to: ");
7700 if (val == NULL_TREE)
7701 fprintf (dump_file, "DON'T KNOW\n");
7702 else
7703 print_generic_stmt (dump_file, val, 0);
7704 }
7705
7706 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
7707 }
7708
7709 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7710 that includes the value VAL. The search is restricted to the range
7711 [START_IDX, n - 1] where n is the size of VEC.
7712
7713 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
7714 returned.
7715
7716 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
7717 it is placed in IDX and false is returned.
7718
7719 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
7720 returned. */
7721
7722 static bool
7723 find_case_label_index (gswitch *stmt, size_t start_idx, tree val, size_t *idx)
7724 {
7725 size_t n = gimple_switch_num_labels (stmt);
7726 size_t low, high;
7727
7728 /* Find case label for minimum of the value range or the next one.
7729 At each iteration we are searching in [low, high - 1]. */
7730
7731 for (low = start_idx, high = n; high != low; )
7732 {
7733 tree t;
7734 int cmp;
7735 /* Note that i != high, so we never ask for n. */
7736 size_t i = (high + low) / 2;
7737 t = gimple_switch_label (stmt, i);
7738
7739 /* Cache the result of comparing CASE_LOW and val. */
7740 cmp = tree_int_cst_compare (CASE_LOW (t), val);
7741
7742 if (cmp == 0)
7743 {
7744 /* Ranges cannot be empty. */
7745 *idx = i;
7746 return true;
7747 }
7748 else if (cmp > 0)
7749 high = i;
7750 else
7751 {
7752 low = i + 1;
7753 if (CASE_HIGH (t) != NULL
7754 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
7755 {
7756 *idx = i;
7757 return true;
7758 }
7759 }
7760 }
7761
7762 *idx = high;
7763 return false;
7764 }
7765
7766 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
7767 for values between MIN and MAX. The first index is placed in MIN_IDX. The
7768 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
7769 then MAX_IDX < MIN_IDX.
7770 Returns true if the default label is not needed. */
7771
7772 static bool
7773 find_case_label_range (gswitch *stmt, tree min, tree max, size_t *min_idx,
7774 size_t *max_idx)
7775 {
7776 size_t i, j;
7777 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
7778 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
7779
7780 if (i == j
7781 && min_take_default
7782 && max_take_default)
7783 {
7784 /* Only the default case label reached.
7785 Return an empty range. */
7786 *min_idx = 1;
7787 *max_idx = 0;
7788 return false;
7789 }
7790 else
7791 {
7792 bool take_default = min_take_default || max_take_default;
7793 tree low, high;
7794 size_t k;
7795
7796 if (max_take_default)
7797 j--;
7798
7799 /* If the case label range is continuous, we do not need
7800 the default case label. Verify that. */
7801 high = CASE_LOW (gimple_switch_label (stmt, i));
7802 if (CASE_HIGH (gimple_switch_label (stmt, i)))
7803 high = CASE_HIGH (gimple_switch_label (stmt, i));
7804 for (k = i + 1; k <= j; ++k)
7805 {
7806 low = CASE_LOW (gimple_switch_label (stmt, k));
7807 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
7808 {
7809 take_default = true;
7810 break;
7811 }
7812 high = low;
7813 if (CASE_HIGH (gimple_switch_label (stmt, k)))
7814 high = CASE_HIGH (gimple_switch_label (stmt, k));
7815 }
7816
7817 *min_idx = i;
7818 *max_idx = j;
7819 return !take_default;
7820 }
7821 }
7822
7823 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7824 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7825 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7826 Returns true if the default label is not needed. */
7827
7828 static bool
7829 find_case_label_ranges (gswitch *stmt, value_range_t *vr, size_t *min_idx1,
7830 size_t *max_idx1, size_t *min_idx2,
7831 size_t *max_idx2)
7832 {
7833 size_t i, j, k, l;
7834 unsigned int n = gimple_switch_num_labels (stmt);
7835 bool take_default;
7836 tree case_low, case_high;
7837 tree min = vr->min, max = vr->max;
7838
7839 gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE);
7840
7841 take_default = !find_case_label_range (stmt, min, max, &i, &j);
7842
7843 /* Set second range to emtpy. */
7844 *min_idx2 = 1;
7845 *max_idx2 = 0;
7846
7847 if (vr->type == VR_RANGE)
7848 {
7849 *min_idx1 = i;
7850 *max_idx1 = j;
7851 return !take_default;
7852 }
7853
7854 /* Set first range to all case labels. */
7855 *min_idx1 = 1;
7856 *max_idx1 = n - 1;
7857
7858 if (i > j)
7859 return false;
7860
7861 /* Make sure all the values of case labels [i , j] are contained in
7862 range [MIN, MAX]. */
7863 case_low = CASE_LOW (gimple_switch_label (stmt, i));
7864 case_high = CASE_HIGH (gimple_switch_label (stmt, j));
7865 if (tree_int_cst_compare (case_low, min) < 0)
7866 i += 1;
7867 if (case_high != NULL_TREE
7868 && tree_int_cst_compare (max, case_high) < 0)
7869 j -= 1;
7870
7871 if (i > j)
7872 return false;
7873
7874 /* If the range spans case labels [i, j], the corresponding anti-range spans
7875 the labels [1, i - 1] and [j + 1, n - 1]. */
7876 k = j + 1;
7877 l = n - 1;
7878 if (k > l)
7879 {
7880 k = 1;
7881 l = 0;
7882 }
7883
7884 j = i - 1;
7885 i = 1;
7886 if (i > j)
7887 {
7888 i = k;
7889 j = l;
7890 k = 1;
7891 l = 0;
7892 }
7893
7894 *min_idx1 = i;
7895 *max_idx1 = j;
7896 *min_idx2 = k;
7897 *max_idx2 = l;
7898 return false;
7899 }
7900
7901 /* Visit switch statement STMT. If we can determine which edge
7902 will be taken out of STMT's basic block, record it in
7903 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7904 SSA_PROP_VARYING. */
7905
7906 static enum ssa_prop_result
7907 vrp_visit_switch_stmt (gswitch *stmt, edge *taken_edge_p)
7908 {
7909 tree op, val;
7910 value_range_t *vr;
7911 size_t i = 0, j = 0, k, l;
7912 bool take_default;
7913
7914 *taken_edge_p = NULL;
7915 op = gimple_switch_index (stmt);
7916 if (TREE_CODE (op) != SSA_NAME)
7917 return SSA_PROP_VARYING;
7918
7919 vr = get_value_range (op);
7920 if (dump_file && (dump_flags & TDF_DETAILS))
7921 {
7922 fprintf (dump_file, "\nVisiting switch expression with operand ");
7923 print_generic_expr (dump_file, op, 0);
7924 fprintf (dump_file, " with known range ");
7925 dump_value_range (dump_file, vr);
7926 fprintf (dump_file, "\n");
7927 }
7928
7929 if ((vr->type != VR_RANGE
7930 && vr->type != VR_ANTI_RANGE)
7931 || symbolic_range_p (vr))
7932 return SSA_PROP_VARYING;
7933
7934 /* Find the single edge that is taken from the switch expression. */
7935 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
7936
7937 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7938 label */
7939 if (j < i)
7940 {
7941 gcc_assert (take_default);
7942 val = gimple_switch_default_label (stmt);
7943 }
7944 else
7945 {
7946 /* Check if labels with index i to j and maybe the default label
7947 are all reaching the same label. */
7948
7949 val = gimple_switch_label (stmt, i);
7950 if (take_default
7951 && CASE_LABEL (gimple_switch_default_label (stmt))
7952 != CASE_LABEL (val))
7953 {
7954 if (dump_file && (dump_flags & TDF_DETAILS))
7955 fprintf (dump_file, " not a single destination for this "
7956 "range\n");
7957 return SSA_PROP_VARYING;
7958 }
7959 for (++i; i <= j; ++i)
7960 {
7961 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
7962 {
7963 if (dump_file && (dump_flags & TDF_DETAILS))
7964 fprintf (dump_file, " not a single destination for this "
7965 "range\n");
7966 return SSA_PROP_VARYING;
7967 }
7968 }
7969 for (; k <= l; ++k)
7970 {
7971 if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
7972 {
7973 if (dump_file && (dump_flags & TDF_DETAILS))
7974 fprintf (dump_file, " not a single destination for this "
7975 "range\n");
7976 return SSA_PROP_VARYING;
7977 }
7978 }
7979 }
7980
7981 *taken_edge_p = find_edge (gimple_bb (stmt),
7982 label_to_block (CASE_LABEL (val)));
7983
7984 if (dump_file && (dump_flags & TDF_DETAILS))
7985 {
7986 fprintf (dump_file, " will take edge to ");
7987 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
7988 }
7989
7990 return SSA_PROP_INTERESTING;
7991 }
7992
7993
7994 /* Evaluate statement STMT. If the statement produces a useful range,
7995 return SSA_PROP_INTERESTING and record the SSA name with the
7996 interesting range into *OUTPUT_P.
7997
7998 If STMT is a conditional branch and we can determine its truth
7999 value, the taken edge is recorded in *TAKEN_EDGE_P.
8000
8001 If STMT produces a varying value, return SSA_PROP_VARYING. */
8002
8003 static enum ssa_prop_result
8004 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
8005 {
8006 tree def;
8007 ssa_op_iter iter;
8008
8009 if (dump_file && (dump_flags & TDF_DETAILS))
8010 {
8011 fprintf (dump_file, "\nVisiting statement:\n");
8012 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
8013 }
8014
8015 if (!stmt_interesting_for_vrp (stmt))
8016 gcc_assert (stmt_ends_bb_p (stmt));
8017 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
8018 return vrp_visit_assignment_or_call (stmt, output_p);
8019 else if (gimple_code (stmt) == GIMPLE_COND)
8020 return vrp_visit_cond_stmt (as_a <gcond *> (stmt), taken_edge_p);
8021 else if (gimple_code (stmt) == GIMPLE_SWITCH)
8022 return vrp_visit_switch_stmt (as_a <gswitch *> (stmt), taken_edge_p);
8023
8024 /* All other statements produce nothing of interest for VRP, so mark
8025 their outputs varying and prevent further simulation. */
8026 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
8027 set_value_range_to_varying (get_value_range (def));
8028
8029 return SSA_PROP_VARYING;
8030 }
8031
8032 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8033 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8034 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8035 possible such range. The resulting range is not canonicalized. */
8036
8037 static void
8038 union_ranges (enum value_range_type *vr0type,
8039 tree *vr0min, tree *vr0max,
8040 enum value_range_type vr1type,
8041 tree vr1min, tree vr1max)
8042 {
8043 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
8044 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
8045
8046 /* [] is vr0, () is vr1 in the following classification comments. */
8047 if (mineq && maxeq)
8048 {
8049 /* [( )] */
8050 if (*vr0type == vr1type)
8051 /* Nothing to do for equal ranges. */
8052 ;
8053 else if ((*vr0type == VR_RANGE
8054 && vr1type == VR_ANTI_RANGE)
8055 || (*vr0type == VR_ANTI_RANGE
8056 && vr1type == VR_RANGE))
8057 {
8058 /* For anti-range with range union the result is varying. */
8059 goto give_up;
8060 }
8061 else
8062 gcc_unreachable ();
8063 }
8064 else if (operand_less_p (*vr0max, vr1min) == 1
8065 || operand_less_p (vr1max, *vr0min) == 1)
8066 {
8067 /* [ ] ( ) or ( ) [ ]
8068 If the ranges have an empty intersection, result of the union
8069 operation is the anti-range or if both are anti-ranges
8070 it covers all. */
8071 if (*vr0type == VR_ANTI_RANGE
8072 && vr1type == VR_ANTI_RANGE)
8073 goto give_up;
8074 else if (*vr0type == VR_ANTI_RANGE
8075 && vr1type == VR_RANGE)
8076 ;
8077 else if (*vr0type == VR_RANGE
8078 && vr1type == VR_ANTI_RANGE)
8079 {
8080 *vr0type = vr1type;
8081 *vr0min = vr1min;
8082 *vr0max = vr1max;
8083 }
8084 else if (*vr0type == VR_RANGE
8085 && vr1type == VR_RANGE)
8086 {
8087 /* The result is the convex hull of both ranges. */
8088 if (operand_less_p (*vr0max, vr1min) == 1)
8089 {
8090 /* If the result can be an anti-range, create one. */
8091 if (TREE_CODE (*vr0max) == INTEGER_CST
8092 && TREE_CODE (vr1min) == INTEGER_CST
8093 && vrp_val_is_min (*vr0min)
8094 && vrp_val_is_max (vr1max))
8095 {
8096 tree min = int_const_binop (PLUS_EXPR,
8097 *vr0max,
8098 build_int_cst (TREE_TYPE (*vr0max), 1));
8099 tree max = int_const_binop (MINUS_EXPR,
8100 vr1min,
8101 build_int_cst (TREE_TYPE (vr1min), 1));
8102 if (!operand_less_p (max, min))
8103 {
8104 *vr0type = VR_ANTI_RANGE;
8105 *vr0min = min;
8106 *vr0max = max;
8107 }
8108 else
8109 *vr0max = vr1max;
8110 }
8111 else
8112 *vr0max = vr1max;
8113 }
8114 else
8115 {
8116 /* If the result can be an anti-range, create one. */
8117 if (TREE_CODE (vr1max) == INTEGER_CST
8118 && TREE_CODE (*vr0min) == INTEGER_CST
8119 && vrp_val_is_min (vr1min)
8120 && vrp_val_is_max (*vr0max))
8121 {
8122 tree min = int_const_binop (PLUS_EXPR,
8123 vr1max,
8124 build_int_cst (TREE_TYPE (vr1max), 1));
8125 tree max = int_const_binop (MINUS_EXPR,
8126 *vr0min,
8127 build_int_cst (TREE_TYPE (*vr0min), 1));
8128 if (!operand_less_p (max, min))
8129 {
8130 *vr0type = VR_ANTI_RANGE;
8131 *vr0min = min;
8132 *vr0max = max;
8133 }
8134 else
8135 *vr0min = vr1min;
8136 }
8137 else
8138 *vr0min = vr1min;
8139 }
8140 }
8141 else
8142 gcc_unreachable ();
8143 }
8144 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8145 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
8146 {
8147 /* [ ( ) ] or [( ) ] or [ ( )] */
8148 if (*vr0type == VR_RANGE
8149 && vr1type == VR_RANGE)
8150 ;
8151 else if (*vr0type == VR_ANTI_RANGE
8152 && vr1type == VR_ANTI_RANGE)
8153 {
8154 *vr0type = vr1type;
8155 *vr0min = vr1min;
8156 *vr0max = vr1max;
8157 }
8158 else if (*vr0type == VR_ANTI_RANGE
8159 && vr1type == VR_RANGE)
8160 {
8161 /* Arbitrarily choose the right or left gap. */
8162 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
8163 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8164 build_int_cst (TREE_TYPE (vr1min), 1));
8165 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
8166 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8167 build_int_cst (TREE_TYPE (vr1max), 1));
8168 else
8169 goto give_up;
8170 }
8171 else if (*vr0type == VR_RANGE
8172 && vr1type == VR_ANTI_RANGE)
8173 /* The result covers everything. */
8174 goto give_up;
8175 else
8176 gcc_unreachable ();
8177 }
8178 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8179 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8180 {
8181 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8182 if (*vr0type == VR_RANGE
8183 && vr1type == VR_RANGE)
8184 {
8185 *vr0type = vr1type;
8186 *vr0min = vr1min;
8187 *vr0max = vr1max;
8188 }
8189 else if (*vr0type == VR_ANTI_RANGE
8190 && vr1type == VR_ANTI_RANGE)
8191 ;
8192 else if (*vr0type == VR_RANGE
8193 && vr1type == VR_ANTI_RANGE)
8194 {
8195 *vr0type = VR_ANTI_RANGE;
8196 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
8197 {
8198 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8199 build_int_cst (TREE_TYPE (*vr0min), 1));
8200 *vr0min = vr1min;
8201 }
8202 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
8203 {
8204 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8205 build_int_cst (TREE_TYPE (*vr0max), 1));
8206 *vr0max = vr1max;
8207 }
8208 else
8209 goto give_up;
8210 }
8211 else if (*vr0type == VR_ANTI_RANGE
8212 && vr1type == VR_RANGE)
8213 /* The result covers everything. */
8214 goto give_up;
8215 else
8216 gcc_unreachable ();
8217 }
8218 else if ((operand_less_p (vr1min, *vr0max) == 1
8219 || operand_equal_p (vr1min, *vr0max, 0))
8220 && operand_less_p (*vr0min, vr1min) == 1
8221 && operand_less_p (*vr0max, vr1max) == 1)
8222 {
8223 /* [ ( ] ) or [ ]( ) */
8224 if (*vr0type == VR_RANGE
8225 && vr1type == VR_RANGE)
8226 *vr0max = vr1max;
8227 else if (*vr0type == VR_ANTI_RANGE
8228 && vr1type == VR_ANTI_RANGE)
8229 *vr0min = vr1min;
8230 else if (*vr0type == VR_ANTI_RANGE
8231 && vr1type == VR_RANGE)
8232 {
8233 if (TREE_CODE (vr1min) == INTEGER_CST)
8234 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8235 build_int_cst (TREE_TYPE (vr1min), 1));
8236 else
8237 goto give_up;
8238 }
8239 else if (*vr0type == VR_RANGE
8240 && vr1type == VR_ANTI_RANGE)
8241 {
8242 if (TREE_CODE (*vr0max) == INTEGER_CST)
8243 {
8244 *vr0type = vr1type;
8245 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8246 build_int_cst (TREE_TYPE (*vr0max), 1));
8247 *vr0max = vr1max;
8248 }
8249 else
8250 goto give_up;
8251 }
8252 else
8253 gcc_unreachable ();
8254 }
8255 else if ((operand_less_p (*vr0min, vr1max) == 1
8256 || operand_equal_p (*vr0min, vr1max, 0))
8257 && operand_less_p (vr1min, *vr0min) == 1
8258 && operand_less_p (vr1max, *vr0max) == 1)
8259 {
8260 /* ( [ ) ] or ( )[ ] */
8261 if (*vr0type == VR_RANGE
8262 && vr1type == VR_RANGE)
8263 *vr0min = vr1min;
8264 else if (*vr0type == VR_ANTI_RANGE
8265 && vr1type == VR_ANTI_RANGE)
8266 *vr0max = vr1max;
8267 else if (*vr0type == VR_ANTI_RANGE
8268 && vr1type == VR_RANGE)
8269 {
8270 if (TREE_CODE (vr1max) == INTEGER_CST)
8271 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8272 build_int_cst (TREE_TYPE (vr1max), 1));
8273 else
8274 goto give_up;
8275 }
8276 else if (*vr0type == VR_RANGE
8277 && vr1type == VR_ANTI_RANGE)
8278 {
8279 if (TREE_CODE (*vr0min) == INTEGER_CST)
8280 {
8281 *vr0type = vr1type;
8282 *vr0min = vr1min;
8283 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8284 build_int_cst (TREE_TYPE (*vr0min), 1));
8285 }
8286 else
8287 goto give_up;
8288 }
8289 else
8290 gcc_unreachable ();
8291 }
8292 else
8293 goto give_up;
8294
8295 return;
8296
8297 give_up:
8298 *vr0type = VR_VARYING;
8299 *vr0min = NULL_TREE;
8300 *vr0max = NULL_TREE;
8301 }
8302
8303 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
8304 { VR1TYPE, VR0MIN, VR0MAX } and store the result
8305 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
8306 possible such range. The resulting range is not canonicalized. */
8307
8308 static void
8309 intersect_ranges (enum value_range_type *vr0type,
8310 tree *vr0min, tree *vr0max,
8311 enum value_range_type vr1type,
8312 tree vr1min, tree vr1max)
8313 {
8314 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
8315 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
8316
8317 /* [] is vr0, () is vr1 in the following classification comments. */
8318 if (mineq && maxeq)
8319 {
8320 /* [( )] */
8321 if (*vr0type == vr1type)
8322 /* Nothing to do for equal ranges. */
8323 ;
8324 else if ((*vr0type == VR_RANGE
8325 && vr1type == VR_ANTI_RANGE)
8326 || (*vr0type == VR_ANTI_RANGE
8327 && vr1type == VR_RANGE))
8328 {
8329 /* For anti-range with range intersection the result is empty. */
8330 *vr0type = VR_UNDEFINED;
8331 *vr0min = NULL_TREE;
8332 *vr0max = NULL_TREE;
8333 }
8334 else
8335 gcc_unreachable ();
8336 }
8337 else if (operand_less_p (*vr0max, vr1min) == 1
8338 || operand_less_p (vr1max, *vr0min) == 1)
8339 {
8340 /* [ ] ( ) or ( ) [ ]
8341 If the ranges have an empty intersection, the result of the
8342 intersect operation is the range for intersecting an
8343 anti-range with a range or empty when intersecting two ranges. */
8344 if (*vr0type == VR_RANGE
8345 && vr1type == VR_ANTI_RANGE)
8346 ;
8347 else if (*vr0type == VR_ANTI_RANGE
8348 && vr1type == VR_RANGE)
8349 {
8350 *vr0type = vr1type;
8351 *vr0min = vr1min;
8352 *vr0max = vr1max;
8353 }
8354 else if (*vr0type == VR_RANGE
8355 && vr1type == VR_RANGE)
8356 {
8357 *vr0type = VR_UNDEFINED;
8358 *vr0min = NULL_TREE;
8359 *vr0max = NULL_TREE;
8360 }
8361 else if (*vr0type == VR_ANTI_RANGE
8362 && vr1type == VR_ANTI_RANGE)
8363 {
8364 /* If the anti-ranges are adjacent to each other merge them. */
8365 if (TREE_CODE (*vr0max) == INTEGER_CST
8366 && TREE_CODE (vr1min) == INTEGER_CST
8367 && operand_less_p (*vr0max, vr1min) == 1
8368 && integer_onep (int_const_binop (MINUS_EXPR,
8369 vr1min, *vr0max)))
8370 *vr0max = vr1max;
8371 else if (TREE_CODE (vr1max) == INTEGER_CST
8372 && TREE_CODE (*vr0min) == INTEGER_CST
8373 && operand_less_p (vr1max, *vr0min) == 1
8374 && integer_onep (int_const_binop (MINUS_EXPR,
8375 *vr0min, vr1max)))
8376 *vr0min = vr1min;
8377 /* Else arbitrarily take VR0. */
8378 }
8379 }
8380 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
8381 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
8382 {
8383 /* [ ( ) ] or [( ) ] or [ ( )] */
8384 if (*vr0type == VR_RANGE
8385 && vr1type == VR_RANGE)
8386 {
8387 /* If both are ranges the result is the inner one. */
8388 *vr0type = vr1type;
8389 *vr0min = vr1min;
8390 *vr0max = vr1max;
8391 }
8392 else if (*vr0type == VR_RANGE
8393 && vr1type == VR_ANTI_RANGE)
8394 {
8395 /* Choose the right gap if the left one is empty. */
8396 if (mineq)
8397 {
8398 if (TREE_CODE (vr1max) == INTEGER_CST)
8399 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8400 build_int_cst (TREE_TYPE (vr1max), 1));
8401 else
8402 *vr0min = vr1max;
8403 }
8404 /* Choose the left gap if the right one is empty. */
8405 else if (maxeq)
8406 {
8407 if (TREE_CODE (vr1min) == INTEGER_CST)
8408 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8409 build_int_cst (TREE_TYPE (vr1min), 1));
8410 else
8411 *vr0max = vr1min;
8412 }
8413 /* Choose the anti-range if the range is effectively varying. */
8414 else if (vrp_val_is_min (*vr0min)
8415 && vrp_val_is_max (*vr0max))
8416 {
8417 *vr0type = vr1type;
8418 *vr0min = vr1min;
8419 *vr0max = vr1max;
8420 }
8421 /* Else choose the range. */
8422 }
8423 else if (*vr0type == VR_ANTI_RANGE
8424 && vr1type == VR_ANTI_RANGE)
8425 /* If both are anti-ranges the result is the outer one. */
8426 ;
8427 else if (*vr0type == VR_ANTI_RANGE
8428 && vr1type == VR_RANGE)
8429 {
8430 /* The intersection is empty. */
8431 *vr0type = VR_UNDEFINED;
8432 *vr0min = NULL_TREE;
8433 *vr0max = NULL_TREE;
8434 }
8435 else
8436 gcc_unreachable ();
8437 }
8438 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
8439 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
8440 {
8441 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8442 if (*vr0type == VR_RANGE
8443 && vr1type == VR_RANGE)
8444 /* Choose the inner range. */
8445 ;
8446 else if (*vr0type == VR_ANTI_RANGE
8447 && vr1type == VR_RANGE)
8448 {
8449 /* Choose the right gap if the left is empty. */
8450 if (mineq)
8451 {
8452 *vr0type = VR_RANGE;
8453 if (TREE_CODE (*vr0max) == INTEGER_CST)
8454 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8455 build_int_cst (TREE_TYPE (*vr0max), 1));
8456 else
8457 *vr0min = *vr0max;
8458 *vr0max = vr1max;
8459 }
8460 /* Choose the left gap if the right is empty. */
8461 else if (maxeq)
8462 {
8463 *vr0type = VR_RANGE;
8464 if (TREE_CODE (*vr0min) == INTEGER_CST)
8465 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8466 build_int_cst (TREE_TYPE (*vr0min), 1));
8467 else
8468 *vr0max = *vr0min;
8469 *vr0min = vr1min;
8470 }
8471 /* Choose the anti-range if the range is effectively varying. */
8472 else if (vrp_val_is_min (vr1min)
8473 && vrp_val_is_max (vr1max))
8474 ;
8475 /* Else choose the range. */
8476 else
8477 {
8478 *vr0type = vr1type;
8479 *vr0min = vr1min;
8480 *vr0max = vr1max;
8481 }
8482 }
8483 else if (*vr0type == VR_ANTI_RANGE
8484 && vr1type == VR_ANTI_RANGE)
8485 {
8486 /* If both are anti-ranges the result is the outer one. */
8487 *vr0type = vr1type;
8488 *vr0min = vr1min;
8489 *vr0max = vr1max;
8490 }
8491 else if (vr1type == VR_ANTI_RANGE
8492 && *vr0type == VR_RANGE)
8493 {
8494 /* The intersection is empty. */
8495 *vr0type = VR_UNDEFINED;
8496 *vr0min = NULL_TREE;
8497 *vr0max = NULL_TREE;
8498 }
8499 else
8500 gcc_unreachable ();
8501 }
8502 else if ((operand_less_p (vr1min, *vr0max) == 1
8503 || operand_equal_p (vr1min, *vr0max, 0))
8504 && operand_less_p (*vr0min, vr1min) == 1)
8505 {
8506 /* [ ( ] ) or [ ]( ) */
8507 if (*vr0type == VR_ANTI_RANGE
8508 && vr1type == VR_ANTI_RANGE)
8509 *vr0max = vr1max;
8510 else if (*vr0type == VR_RANGE
8511 && vr1type == VR_RANGE)
8512 *vr0min = vr1min;
8513 else if (*vr0type == VR_RANGE
8514 && vr1type == VR_ANTI_RANGE)
8515 {
8516 if (TREE_CODE (vr1min) == INTEGER_CST)
8517 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8518 build_int_cst (TREE_TYPE (vr1min), 1));
8519 else
8520 *vr0max = vr1min;
8521 }
8522 else if (*vr0type == VR_ANTI_RANGE
8523 && vr1type == VR_RANGE)
8524 {
8525 *vr0type = VR_RANGE;
8526 if (TREE_CODE (*vr0max) == INTEGER_CST)
8527 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8528 build_int_cst (TREE_TYPE (*vr0max), 1));
8529 else
8530 *vr0min = *vr0max;
8531 *vr0max = vr1max;
8532 }
8533 else
8534 gcc_unreachable ();
8535 }
8536 else if ((operand_less_p (*vr0min, vr1max) == 1
8537 || operand_equal_p (*vr0min, vr1max, 0))
8538 && operand_less_p (vr1min, *vr0min) == 1)
8539 {
8540 /* ( [ ) ] or ( )[ ] */
8541 if (*vr0type == VR_ANTI_RANGE
8542 && vr1type == VR_ANTI_RANGE)
8543 *vr0min = vr1min;
8544 else if (*vr0type == VR_RANGE
8545 && vr1type == VR_RANGE)
8546 *vr0max = vr1max;
8547 else if (*vr0type == VR_RANGE
8548 && vr1type == VR_ANTI_RANGE)
8549 {
8550 if (TREE_CODE (vr1max) == INTEGER_CST)
8551 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8552 build_int_cst (TREE_TYPE (vr1max), 1));
8553 else
8554 *vr0min = vr1max;
8555 }
8556 else if (*vr0type == VR_ANTI_RANGE
8557 && vr1type == VR_RANGE)
8558 {
8559 *vr0type = VR_RANGE;
8560 if (TREE_CODE (*vr0min) == INTEGER_CST)
8561 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8562 build_int_cst (TREE_TYPE (*vr0min), 1));
8563 else
8564 *vr0max = *vr0min;
8565 *vr0min = vr1min;
8566 }
8567 else
8568 gcc_unreachable ();
8569 }
8570
8571 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
8572 result for the intersection. That's always a conservative
8573 correct estimate. */
8574
8575 return;
8576 }
8577
8578
8579 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
8580 in *VR0. This may not be the smallest possible such range. */
8581
8582 static void
8583 vrp_intersect_ranges_1 (value_range_t *vr0, value_range_t *vr1)
8584 {
8585 value_range_t saved;
8586
8587 /* If either range is VR_VARYING the other one wins. */
8588 if (vr1->type == VR_VARYING)
8589 return;
8590 if (vr0->type == VR_VARYING)
8591 {
8592 copy_value_range (vr0, vr1);
8593 return;
8594 }
8595
8596 /* When either range is VR_UNDEFINED the resulting range is
8597 VR_UNDEFINED, too. */
8598 if (vr0->type == VR_UNDEFINED)
8599 return;
8600 if (vr1->type == VR_UNDEFINED)
8601 {
8602 set_value_range_to_undefined (vr0);
8603 return;
8604 }
8605
8606 /* Save the original vr0 so we can return it as conservative intersection
8607 result when our worker turns things to varying. */
8608 saved = *vr0;
8609 intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
8610 vr1->type, vr1->min, vr1->max);
8611 /* Make sure to canonicalize the result though as the inversion of a
8612 VR_RANGE can still be a VR_RANGE. */
8613 set_and_canonicalize_value_range (vr0, vr0->type,
8614 vr0->min, vr0->max, vr0->equiv);
8615 /* If that failed, use the saved original VR0. */
8616 if (vr0->type == VR_VARYING)
8617 {
8618 *vr0 = saved;
8619 return;
8620 }
8621 /* If the result is VR_UNDEFINED there is no need to mess with
8622 the equivalencies. */
8623 if (vr0->type == VR_UNDEFINED)
8624 return;
8625
8626 /* The resulting set of equivalences for range intersection is the union of
8627 the two sets. */
8628 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8629 bitmap_ior_into (vr0->equiv, vr1->equiv);
8630 else if (vr1->equiv && !vr0->equiv)
8631 bitmap_copy (vr0->equiv, vr1->equiv);
8632 }
8633
8634 static void
8635 vrp_intersect_ranges (value_range_t *vr0, value_range_t *vr1)
8636 {
8637 if (dump_file && (dump_flags & TDF_DETAILS))
8638 {
8639 fprintf (dump_file, "Intersecting\n ");
8640 dump_value_range (dump_file, vr0);
8641 fprintf (dump_file, "\nand\n ");
8642 dump_value_range (dump_file, vr1);
8643 fprintf (dump_file, "\n");
8644 }
8645 vrp_intersect_ranges_1 (vr0, vr1);
8646 if (dump_file && (dump_flags & TDF_DETAILS))
8647 {
8648 fprintf (dump_file, "to\n ");
8649 dump_value_range (dump_file, vr0);
8650 fprintf (dump_file, "\n");
8651 }
8652 }
8653
8654 /* Meet operation for value ranges. Given two value ranges VR0 and
8655 VR1, store in VR0 a range that contains both VR0 and VR1. This
8656 may not be the smallest possible such range. */
8657
8658 static void
8659 vrp_meet_1 (value_range_t *vr0, value_range_t *vr1)
8660 {
8661 value_range_t saved;
8662
8663 if (vr0->type == VR_UNDEFINED)
8664 {
8665 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr1->equiv);
8666 return;
8667 }
8668
8669 if (vr1->type == VR_UNDEFINED)
8670 {
8671 /* VR0 already has the resulting range. */
8672 return;
8673 }
8674
8675 if (vr0->type == VR_VARYING)
8676 {
8677 /* Nothing to do. VR0 already has the resulting range. */
8678 return;
8679 }
8680
8681 if (vr1->type == VR_VARYING)
8682 {
8683 set_value_range_to_varying (vr0);
8684 return;
8685 }
8686
8687 saved = *vr0;
8688 union_ranges (&vr0->type, &vr0->min, &vr0->max,
8689 vr1->type, vr1->min, vr1->max);
8690 if (vr0->type == VR_VARYING)
8691 {
8692 /* Failed to find an efficient meet. Before giving up and setting
8693 the result to VARYING, see if we can at least derive a useful
8694 anti-range. FIXME, all this nonsense about distinguishing
8695 anti-ranges from ranges is necessary because of the odd
8696 semantics of range_includes_zero_p and friends. */
8697 if (((saved.type == VR_RANGE
8698 && range_includes_zero_p (saved.min, saved.max) == 0)
8699 || (saved.type == VR_ANTI_RANGE
8700 && range_includes_zero_p (saved.min, saved.max) == 1))
8701 && ((vr1->type == VR_RANGE
8702 && range_includes_zero_p (vr1->min, vr1->max) == 0)
8703 || (vr1->type == VR_ANTI_RANGE
8704 && range_includes_zero_p (vr1->min, vr1->max) == 1)))
8705 {
8706 set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min));
8707
8708 /* Since this meet operation did not result from the meeting of
8709 two equivalent names, VR0 cannot have any equivalences. */
8710 if (vr0->equiv)
8711 bitmap_clear (vr0->equiv);
8712 return;
8713 }
8714
8715 set_value_range_to_varying (vr0);
8716 return;
8717 }
8718 set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max,
8719 vr0->equiv);
8720 if (vr0->type == VR_VARYING)
8721 return;
8722
8723 /* The resulting set of equivalences is always the intersection of
8724 the two sets. */
8725 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8726 bitmap_and_into (vr0->equiv, vr1->equiv);
8727 else if (vr0->equiv && !vr1->equiv)
8728 bitmap_clear (vr0->equiv);
8729 }
8730
8731 static void
8732 vrp_meet (value_range_t *vr0, value_range_t *vr1)
8733 {
8734 if (dump_file && (dump_flags & TDF_DETAILS))
8735 {
8736 fprintf (dump_file, "Meeting\n ");
8737 dump_value_range (dump_file, vr0);
8738 fprintf (dump_file, "\nand\n ");
8739 dump_value_range (dump_file, vr1);
8740 fprintf (dump_file, "\n");
8741 }
8742 vrp_meet_1 (vr0, vr1);
8743 if (dump_file && (dump_flags & TDF_DETAILS))
8744 {
8745 fprintf (dump_file, "to\n ");
8746 dump_value_range (dump_file, vr0);
8747 fprintf (dump_file, "\n");
8748 }
8749 }
8750
8751
8752 /* Visit all arguments for PHI node PHI that flow through executable
8753 edges. If a valid value range can be derived from all the incoming
8754 value ranges, set a new range for the LHS of PHI. */
8755
8756 static enum ssa_prop_result
8757 vrp_visit_phi_node (gphi *phi)
8758 {
8759 size_t i;
8760 tree lhs = PHI_RESULT (phi);
8761 value_range_t *lhs_vr = get_value_range (lhs);
8762 value_range_t vr_result = VR_INITIALIZER;
8763 bool first = true;
8764 int edges, old_edges;
8765 struct loop *l;
8766
8767 if (dump_file && (dump_flags & TDF_DETAILS))
8768 {
8769 fprintf (dump_file, "\nVisiting PHI node: ");
8770 print_gimple_stmt (dump_file, phi, 0, dump_flags);
8771 }
8772
8773 edges = 0;
8774 for (i = 0; i < gimple_phi_num_args (phi); i++)
8775 {
8776 edge e = gimple_phi_arg_edge (phi, i);
8777
8778 if (dump_file && (dump_flags & TDF_DETAILS))
8779 {
8780 fprintf (dump_file,
8781 " Argument #%d (%d -> %d %sexecutable)\n",
8782 (int) i, e->src->index, e->dest->index,
8783 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
8784 }
8785
8786 if (e->flags & EDGE_EXECUTABLE)
8787 {
8788 tree arg = PHI_ARG_DEF (phi, i);
8789 value_range_t vr_arg;
8790
8791 ++edges;
8792
8793 if (TREE_CODE (arg) == SSA_NAME)
8794 {
8795 vr_arg = *(get_value_range (arg));
8796 /* Do not allow equivalences or symbolic ranges to leak in from
8797 backedges. That creates invalid equivalencies.
8798 See PR53465 and PR54767. */
8799 if (e->flags & EDGE_DFS_BACK)
8800 {
8801 if (vr_arg.type == VR_RANGE
8802 || vr_arg.type == VR_ANTI_RANGE)
8803 {
8804 vr_arg.equiv = NULL;
8805 if (symbolic_range_p (&vr_arg))
8806 {
8807 vr_arg.type = VR_VARYING;
8808 vr_arg.min = NULL_TREE;
8809 vr_arg.max = NULL_TREE;
8810 }
8811 }
8812 }
8813 else
8814 {
8815 /* If the non-backedge arguments range is VR_VARYING then
8816 we can still try recording a simple equivalence. */
8817 if (vr_arg.type == VR_VARYING)
8818 {
8819 vr_arg.type = VR_RANGE;
8820 vr_arg.min = arg;
8821 vr_arg.max = arg;
8822 vr_arg.equiv = NULL;
8823 }
8824 }
8825 }
8826 else
8827 {
8828 if (TREE_OVERFLOW_P (arg))
8829 arg = drop_tree_overflow (arg);
8830
8831 vr_arg.type = VR_RANGE;
8832 vr_arg.min = arg;
8833 vr_arg.max = arg;
8834 vr_arg.equiv = NULL;
8835 }
8836
8837 if (dump_file && (dump_flags & TDF_DETAILS))
8838 {
8839 fprintf (dump_file, "\t");
8840 print_generic_expr (dump_file, arg, dump_flags);
8841 fprintf (dump_file, ": ");
8842 dump_value_range (dump_file, &vr_arg);
8843 fprintf (dump_file, "\n");
8844 }
8845
8846 if (first)
8847 copy_value_range (&vr_result, &vr_arg);
8848 else
8849 vrp_meet (&vr_result, &vr_arg);
8850 first = false;
8851
8852 if (vr_result.type == VR_VARYING)
8853 break;
8854 }
8855 }
8856
8857 if (vr_result.type == VR_VARYING)
8858 goto varying;
8859 else if (vr_result.type == VR_UNDEFINED)
8860 goto update_range;
8861
8862 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
8863 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
8864
8865 /* To prevent infinite iterations in the algorithm, derive ranges
8866 when the new value is slightly bigger or smaller than the
8867 previous one. We don't do this if we have seen a new executable
8868 edge; this helps us avoid an overflow infinity for conditionals
8869 which are not in a loop. If the old value-range was VR_UNDEFINED
8870 use the updated range and iterate one more time. */
8871 if (edges > 0
8872 && gimple_phi_num_args (phi) > 1
8873 && edges == old_edges
8874 && lhs_vr->type != VR_UNDEFINED)
8875 {
8876 /* Compare old and new ranges, fall back to varying if the
8877 values are not comparable. */
8878 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
8879 if (cmp_min == -2)
8880 goto varying;
8881 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
8882 if (cmp_max == -2)
8883 goto varying;
8884
8885 /* For non VR_RANGE or for pointers fall back to varying if
8886 the range changed. */
8887 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
8888 || POINTER_TYPE_P (TREE_TYPE (lhs)))
8889 && (cmp_min != 0 || cmp_max != 0))
8890 goto varying;
8891
8892 /* If the new minimum is larger than than the previous one
8893 retain the old value. If the new minimum value is smaller
8894 than the previous one and not -INF go all the way to -INF + 1.
8895 In the first case, to avoid infinite bouncing between different
8896 minimums, and in the other case to avoid iterating millions of
8897 times to reach -INF. Going to -INF + 1 also lets the following
8898 iteration compute whether there will be any overflow, at the
8899 expense of one additional iteration. */
8900 if (cmp_min < 0)
8901 vr_result.min = lhs_vr->min;
8902 else if (cmp_min > 0
8903 && !vrp_val_is_min (vr_result.min))
8904 vr_result.min
8905 = int_const_binop (PLUS_EXPR,
8906 vrp_val_min (TREE_TYPE (vr_result.min)),
8907 build_int_cst (TREE_TYPE (vr_result.min), 1));
8908
8909 /* Similarly for the maximum value. */
8910 if (cmp_max > 0)
8911 vr_result.max = lhs_vr->max;
8912 else if (cmp_max < 0
8913 && !vrp_val_is_max (vr_result.max))
8914 vr_result.max
8915 = int_const_binop (MINUS_EXPR,
8916 vrp_val_max (TREE_TYPE (vr_result.min)),
8917 build_int_cst (TREE_TYPE (vr_result.min), 1));
8918
8919 /* If we dropped either bound to +-INF then if this is a loop
8920 PHI node SCEV may known more about its value-range. */
8921 if ((cmp_min > 0 || cmp_min < 0
8922 || cmp_max < 0 || cmp_max > 0)
8923 && (l = loop_containing_stmt (phi))
8924 && l->header == gimple_bb (phi))
8925 adjust_range_with_scev (&vr_result, l, phi, lhs);
8926
8927 /* If we will end up with a (-INF, +INF) range, set it to
8928 VARYING. Same if the previous max value was invalid for
8929 the type and we end up with vr_result.min > vr_result.max. */
8930 if ((vrp_val_is_max (vr_result.max)
8931 && vrp_val_is_min (vr_result.min))
8932 || compare_values (vr_result.min,
8933 vr_result.max) > 0)
8934 goto varying;
8935 }
8936
8937 /* If the new range is different than the previous value, keep
8938 iterating. */
8939 update_range:
8940 if (update_value_range (lhs, &vr_result))
8941 {
8942 if (dump_file && (dump_flags & TDF_DETAILS))
8943 {
8944 fprintf (dump_file, "Found new range for ");
8945 print_generic_expr (dump_file, lhs, 0);
8946 fprintf (dump_file, ": ");
8947 dump_value_range (dump_file, &vr_result);
8948 fprintf (dump_file, "\n");
8949 }
8950
8951 return SSA_PROP_INTERESTING;
8952 }
8953
8954 /* Nothing changed, don't add outgoing edges. */
8955 return SSA_PROP_NOT_INTERESTING;
8956
8957 /* No match found. Set the LHS to VARYING. */
8958 varying:
8959 set_value_range_to_varying (lhs_vr);
8960 return SSA_PROP_VARYING;
8961 }
8962
8963 /* Simplify boolean operations if the source is known
8964 to be already a boolean. */
8965 static bool
8966 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
8967 {
8968 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8969 tree lhs, op0, op1;
8970 bool need_conversion;
8971
8972 /* We handle only !=/== case here. */
8973 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
8974
8975 op0 = gimple_assign_rhs1 (stmt);
8976 if (!op_with_boolean_value_range_p (op0))
8977 return false;
8978
8979 op1 = gimple_assign_rhs2 (stmt);
8980 if (!op_with_boolean_value_range_p (op1))
8981 return false;
8982
8983 /* Reduce number of cases to handle to NE_EXPR. As there is no
8984 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
8985 if (rhs_code == EQ_EXPR)
8986 {
8987 if (TREE_CODE (op1) == INTEGER_CST)
8988 op1 = int_const_binop (BIT_XOR_EXPR, op1,
8989 build_int_cst (TREE_TYPE (op1), 1));
8990 else
8991 return false;
8992 }
8993
8994 lhs = gimple_assign_lhs (stmt);
8995 need_conversion
8996 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
8997
8998 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
8999 if (need_conversion
9000 && !TYPE_UNSIGNED (TREE_TYPE (op0))
9001 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
9002 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
9003 return false;
9004
9005 /* For A != 0 we can substitute A itself. */
9006 if (integer_zerop (op1))
9007 gimple_assign_set_rhs_with_ops (gsi,
9008 need_conversion
9009 ? NOP_EXPR : TREE_CODE (op0), op0);
9010 /* For A != B we substitute A ^ B. Either with conversion. */
9011 else if (need_conversion)
9012 {
9013 tree tem = make_ssa_name (TREE_TYPE (op0));
9014 gassign *newop
9015 = gimple_build_assign (tem, BIT_XOR_EXPR, op0, op1);
9016 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
9017 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem);
9018 }
9019 /* Or without. */
9020 else
9021 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
9022 update_stmt (gsi_stmt (*gsi));
9023
9024 return true;
9025 }
9026
9027 /* Simplify a division or modulo operator to a right shift or
9028 bitwise and if the first operand is unsigned or is greater
9029 than zero and the second operand is an exact power of two.
9030 For TRUNC_MOD_EXPR op0 % op1 with constant op1, optimize it
9031 into just op0 if op0's range is known to be a subset of
9032 [-op1 + 1, op1 - 1] for signed and [0, op1 - 1] for unsigned
9033 modulo. */
9034
9035 static bool
9036 simplify_div_or_mod_using_ranges (gimple stmt)
9037 {
9038 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9039 tree val = NULL;
9040 tree op0 = gimple_assign_rhs1 (stmt);
9041 tree op1 = gimple_assign_rhs2 (stmt);
9042 value_range_t *vr = get_value_range (op0);
9043
9044 if (rhs_code == TRUNC_MOD_EXPR
9045 && TREE_CODE (op1) == INTEGER_CST
9046 && tree_int_cst_sgn (op1) == 1
9047 && range_int_cst_p (vr)
9048 && tree_int_cst_lt (vr->max, op1))
9049 {
9050 if (TYPE_UNSIGNED (TREE_TYPE (op0))
9051 || tree_int_cst_sgn (vr->min) >= 0
9052 || tree_int_cst_lt (fold_unary (NEGATE_EXPR, TREE_TYPE (op1), op1),
9053 vr->min))
9054 {
9055 /* If op0 already has the range op0 % op1 has,
9056 then TRUNC_MOD_EXPR won't change anything. */
9057 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
9058 gimple_assign_set_rhs_from_tree (&gsi, op0);
9059 update_stmt (stmt);
9060 return true;
9061 }
9062 }
9063
9064 if (!integer_pow2p (op1))
9065 return false;
9066
9067 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
9068 {
9069 val = integer_one_node;
9070 }
9071 else
9072 {
9073 bool sop = false;
9074
9075 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
9076
9077 if (val
9078 && sop
9079 && integer_onep (val)
9080 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9081 {
9082 location_t location;
9083
9084 if (!gimple_has_location (stmt))
9085 location = input_location;
9086 else
9087 location = gimple_location (stmt);
9088 warning_at (location, OPT_Wstrict_overflow,
9089 "assuming signed overflow does not occur when "
9090 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
9091 }
9092 }
9093
9094 if (val && integer_onep (val))
9095 {
9096 tree t;
9097
9098 if (rhs_code == TRUNC_DIV_EXPR)
9099 {
9100 t = build_int_cst (integer_type_node, tree_log2 (op1));
9101 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
9102 gimple_assign_set_rhs1 (stmt, op0);
9103 gimple_assign_set_rhs2 (stmt, t);
9104 }
9105 else
9106 {
9107 t = build_int_cst (TREE_TYPE (op1), 1);
9108 t = int_const_binop (MINUS_EXPR, op1, t);
9109 t = fold_convert (TREE_TYPE (op0), t);
9110
9111 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
9112 gimple_assign_set_rhs1 (stmt, op0);
9113 gimple_assign_set_rhs2 (stmt, t);
9114 }
9115
9116 update_stmt (stmt);
9117 return true;
9118 }
9119
9120 return false;
9121 }
9122
9123 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
9124 ABS_EXPR. If the operand is <= 0, then simplify the
9125 ABS_EXPR into a NEGATE_EXPR. */
9126
9127 static bool
9128 simplify_abs_using_ranges (gimple stmt)
9129 {
9130 tree val = NULL;
9131 tree op = gimple_assign_rhs1 (stmt);
9132 tree type = TREE_TYPE (op);
9133 value_range_t *vr = get_value_range (op);
9134
9135 if (TYPE_UNSIGNED (type))
9136 {
9137 val = integer_zero_node;
9138 }
9139 else if (vr)
9140 {
9141 bool sop = false;
9142
9143 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
9144 if (!val)
9145 {
9146 sop = false;
9147 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
9148 &sop);
9149
9150 if (val)
9151 {
9152 if (integer_zerop (val))
9153 val = integer_one_node;
9154 else if (integer_onep (val))
9155 val = integer_zero_node;
9156 }
9157 }
9158
9159 if (val
9160 && (integer_onep (val) || integer_zerop (val)))
9161 {
9162 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
9163 {
9164 location_t location;
9165
9166 if (!gimple_has_location (stmt))
9167 location = input_location;
9168 else
9169 location = gimple_location (stmt);
9170 warning_at (location, OPT_Wstrict_overflow,
9171 "assuming signed overflow does not occur when "
9172 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
9173 }
9174
9175 gimple_assign_set_rhs1 (stmt, op);
9176 if (integer_onep (val))
9177 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
9178 else
9179 gimple_assign_set_rhs_code (stmt, SSA_NAME);
9180 update_stmt (stmt);
9181 return true;
9182 }
9183 }
9184
9185 return false;
9186 }
9187
9188 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
9189 If all the bits that are being cleared by & are already
9190 known to be zero from VR, or all the bits that are being
9191 set by | are already known to be one from VR, the bit
9192 operation is redundant. */
9193
9194 static bool
9195 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
9196 {
9197 tree op0 = gimple_assign_rhs1 (stmt);
9198 tree op1 = gimple_assign_rhs2 (stmt);
9199 tree op = NULL_TREE;
9200 value_range_t vr0 = VR_INITIALIZER;
9201 value_range_t vr1 = VR_INITIALIZER;
9202 wide_int may_be_nonzero0, may_be_nonzero1;
9203 wide_int must_be_nonzero0, must_be_nonzero1;
9204 wide_int mask;
9205
9206 if (TREE_CODE (op0) == SSA_NAME)
9207 vr0 = *(get_value_range (op0));
9208 else if (is_gimple_min_invariant (op0))
9209 set_value_range_to_value (&vr0, op0, NULL);
9210 else
9211 return false;
9212
9213 if (TREE_CODE (op1) == SSA_NAME)
9214 vr1 = *(get_value_range (op1));
9215 else if (is_gimple_min_invariant (op1))
9216 set_value_range_to_value (&vr1, op1, NULL);
9217 else
9218 return false;
9219
9220 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op0), &vr0, &may_be_nonzero0,
9221 &must_be_nonzero0))
9222 return false;
9223 if (!zero_nonzero_bits_from_vr (TREE_TYPE (op1), &vr1, &may_be_nonzero1,
9224 &must_be_nonzero1))
9225 return false;
9226
9227 switch (gimple_assign_rhs_code (stmt))
9228 {
9229 case BIT_AND_EXPR:
9230 mask = may_be_nonzero0.and_not (must_be_nonzero1);
9231 if (mask == 0)
9232 {
9233 op = op0;
9234 break;
9235 }
9236 mask = may_be_nonzero1.and_not (must_be_nonzero0);
9237 if (mask == 0)
9238 {
9239 op = op1;
9240 break;
9241 }
9242 break;
9243 case BIT_IOR_EXPR:
9244 mask = may_be_nonzero0.and_not (must_be_nonzero1);
9245 if (mask == 0)
9246 {
9247 op = op1;
9248 break;
9249 }
9250 mask = may_be_nonzero1.and_not (must_be_nonzero0);
9251 if (mask == 0)
9252 {
9253 op = op0;
9254 break;
9255 }
9256 break;
9257 default:
9258 gcc_unreachable ();
9259 }
9260
9261 if (op == NULL_TREE)
9262 return false;
9263
9264 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op);
9265 update_stmt (gsi_stmt (*gsi));
9266 return true;
9267 }
9268
9269 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
9270 a known value range VR.
9271
9272 If there is one and only one value which will satisfy the
9273 conditional, then return that value. Else return NULL.
9274
9275 If signed overflow must be undefined for the value to satisfy
9276 the conditional, then set *STRICT_OVERFLOW_P to true. */
9277
9278 static tree
9279 test_for_singularity (enum tree_code cond_code, tree op0,
9280 tree op1, value_range_t *vr,
9281 bool *strict_overflow_p)
9282 {
9283 tree min = NULL;
9284 tree max = NULL;
9285
9286 /* Extract minimum/maximum values which satisfy the
9287 the conditional as it was written. */
9288 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
9289 {
9290 /* This should not be negative infinity; there is no overflow
9291 here. */
9292 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
9293
9294 max = op1;
9295 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
9296 {
9297 tree one = build_int_cst (TREE_TYPE (op0), 1);
9298 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
9299 if (EXPR_P (max))
9300 TREE_NO_WARNING (max) = 1;
9301 }
9302 }
9303 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
9304 {
9305 /* This should not be positive infinity; there is no overflow
9306 here. */
9307 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
9308
9309 min = op1;
9310 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
9311 {
9312 tree one = build_int_cst (TREE_TYPE (op0), 1);
9313 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
9314 if (EXPR_P (min))
9315 TREE_NO_WARNING (min) = 1;
9316 }
9317 }
9318
9319 /* Now refine the minimum and maximum values using any
9320 value range information we have for op0. */
9321 if (min && max)
9322 {
9323 if (compare_values (vr->min, min) == 1)
9324 min = vr->min;
9325 if (compare_values (vr->max, max) == -1)
9326 max = vr->max;
9327
9328 /* If the new min/max values have converged to a single value,
9329 then there is only one value which can satisfy the condition,
9330 return that value. */
9331 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
9332 {
9333 if ((cond_code == LE_EXPR || cond_code == LT_EXPR)
9334 && is_overflow_infinity (vr->max))
9335 *strict_overflow_p = true;
9336 if ((cond_code == GE_EXPR || cond_code == GT_EXPR)
9337 && is_overflow_infinity (vr->min))
9338 *strict_overflow_p = true;
9339
9340 return min;
9341 }
9342 }
9343 return NULL;
9344 }
9345
9346 /* Return whether the value range *VR fits in an integer type specified
9347 by PRECISION and UNSIGNED_P. */
9348
9349 static bool
9350 range_fits_type_p (value_range_t *vr, unsigned dest_precision, signop dest_sgn)
9351 {
9352 tree src_type;
9353 unsigned src_precision;
9354 widest_int tem;
9355 signop src_sgn;
9356
9357 /* We can only handle integral and pointer types. */
9358 src_type = TREE_TYPE (vr->min);
9359 if (!INTEGRAL_TYPE_P (src_type)
9360 && !POINTER_TYPE_P (src_type))
9361 return false;
9362
9363 /* An extension is fine unless VR is SIGNED and dest_sgn is UNSIGNED,
9364 and so is an identity transform. */
9365 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
9366 src_sgn = TYPE_SIGN (src_type);
9367 if ((src_precision < dest_precision
9368 && !(dest_sgn == UNSIGNED && src_sgn == SIGNED))
9369 || (src_precision == dest_precision && src_sgn == dest_sgn))
9370 return true;
9371
9372 /* Now we can only handle ranges with constant bounds. */
9373 if (vr->type != VR_RANGE
9374 || TREE_CODE (vr->min) != INTEGER_CST
9375 || TREE_CODE (vr->max) != INTEGER_CST)
9376 return false;
9377
9378 /* For sign changes, the MSB of the wide_int has to be clear.
9379 An unsigned value with its MSB set cannot be represented by
9380 a signed wide_int, while a negative value cannot be represented
9381 by an unsigned wide_int. */
9382 if (src_sgn != dest_sgn
9383 && (wi::lts_p (vr->min, 0) || wi::lts_p (vr->max, 0)))
9384 return false;
9385
9386 /* Then we can perform the conversion on both ends and compare
9387 the result for equality. */
9388 tem = wi::ext (wi::to_widest (vr->min), dest_precision, dest_sgn);
9389 if (tem != wi::to_widest (vr->min))
9390 return false;
9391 tem = wi::ext (wi::to_widest (vr->max), dest_precision, dest_sgn);
9392 if (tem != wi::to_widest (vr->max))
9393 return false;
9394
9395 return true;
9396 }
9397
9398 /* Simplify a conditional using a relational operator to an equality
9399 test if the range information indicates only one value can satisfy
9400 the original conditional. */
9401
9402 static bool
9403 simplify_cond_using_ranges (gcond *stmt)
9404 {
9405 tree op0 = gimple_cond_lhs (stmt);
9406 tree op1 = gimple_cond_rhs (stmt);
9407 enum tree_code cond_code = gimple_cond_code (stmt);
9408
9409 if (cond_code != NE_EXPR
9410 && cond_code != EQ_EXPR
9411 && TREE_CODE (op0) == SSA_NAME
9412 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
9413 && is_gimple_min_invariant (op1))
9414 {
9415 value_range_t *vr = get_value_range (op0);
9416
9417 /* If we have range information for OP0, then we might be
9418 able to simplify this conditional. */
9419 if (vr->type == VR_RANGE)
9420 {
9421 enum warn_strict_overflow_code wc = WARN_STRICT_OVERFLOW_COMPARISON;
9422 bool sop = false;
9423 tree new_tree = test_for_singularity (cond_code, op0, op1, vr, &sop);
9424
9425 if (new_tree
9426 && (!sop || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))))
9427 {
9428 if (dump_file)
9429 {
9430 fprintf (dump_file, "Simplified relational ");
9431 print_gimple_stmt (dump_file, stmt, 0, 0);
9432 fprintf (dump_file, " into ");
9433 }
9434
9435 gimple_cond_set_code (stmt, EQ_EXPR);
9436 gimple_cond_set_lhs (stmt, op0);
9437 gimple_cond_set_rhs (stmt, new_tree);
9438
9439 update_stmt (stmt);
9440
9441 if (dump_file)
9442 {
9443 print_gimple_stmt (dump_file, stmt, 0, 0);
9444 fprintf (dump_file, "\n");
9445 }
9446
9447 if (sop && issue_strict_overflow_warning (wc))
9448 {
9449 location_t location = input_location;
9450 if (gimple_has_location (stmt))
9451 location = gimple_location (stmt);
9452
9453 warning_at (location, OPT_Wstrict_overflow,
9454 "assuming signed overflow does not occur when "
9455 "simplifying conditional");
9456 }
9457
9458 return true;
9459 }
9460
9461 /* Try again after inverting the condition. We only deal
9462 with integral types here, so no need to worry about
9463 issues with inverting FP comparisons. */
9464 sop = false;
9465 new_tree = test_for_singularity
9466 (invert_tree_comparison (cond_code, false),
9467 op0, op1, vr, &sop);
9468
9469 if (new_tree
9470 && (!sop || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (op0))))
9471 {
9472 if (dump_file)
9473 {
9474 fprintf (dump_file, "Simplified relational ");
9475 print_gimple_stmt (dump_file, stmt, 0, 0);
9476 fprintf (dump_file, " into ");
9477 }
9478
9479 gimple_cond_set_code (stmt, NE_EXPR);
9480 gimple_cond_set_lhs (stmt, op0);
9481 gimple_cond_set_rhs (stmt, new_tree);
9482
9483 update_stmt (stmt);
9484
9485 if (dump_file)
9486 {
9487 print_gimple_stmt (dump_file, stmt, 0, 0);
9488 fprintf (dump_file, "\n");
9489 }
9490
9491 if (sop && issue_strict_overflow_warning (wc))
9492 {
9493 location_t location = input_location;
9494 if (gimple_has_location (stmt))
9495 location = gimple_location (stmt);
9496
9497 warning_at (location, OPT_Wstrict_overflow,
9498 "assuming signed overflow does not occur when "
9499 "simplifying conditional");
9500 }
9501
9502 return true;
9503 }
9504 }
9505 }
9506
9507 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
9508 see if OP0 was set by a type conversion where the source of
9509 the conversion is another SSA_NAME with a range that fits
9510 into the range of OP0's type.
9511
9512 If so, the conversion is redundant as the earlier SSA_NAME can be
9513 used for the comparison directly if we just massage the constant in the
9514 comparison. */
9515 if (TREE_CODE (op0) == SSA_NAME
9516 && TREE_CODE (op1) == INTEGER_CST)
9517 {
9518 gimple def_stmt = SSA_NAME_DEF_STMT (op0);
9519 tree innerop;
9520
9521 if (!is_gimple_assign (def_stmt)
9522 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9523 return false;
9524
9525 innerop = gimple_assign_rhs1 (def_stmt);
9526
9527 if (TREE_CODE (innerop) == SSA_NAME
9528 && !POINTER_TYPE_P (TREE_TYPE (innerop)))
9529 {
9530 value_range_t *vr = get_value_range (innerop);
9531
9532 if (range_int_cst_p (vr)
9533 && range_fits_type_p (vr,
9534 TYPE_PRECISION (TREE_TYPE (op0)),
9535 TYPE_SIGN (TREE_TYPE (op0)))
9536 && int_fits_type_p (op1, TREE_TYPE (innerop))
9537 /* The range must not have overflowed, or if it did overflow
9538 we must not be wrapping/trapping overflow and optimizing
9539 with strict overflow semantics. */
9540 && ((!is_negative_overflow_infinity (vr->min)
9541 && !is_positive_overflow_infinity (vr->max))
9542 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (innerop))))
9543 {
9544 /* If the range overflowed and the user has asked for warnings
9545 when strict overflow semantics were used to optimize code,
9546 issue an appropriate warning. */
9547 if (cond_code != EQ_EXPR && cond_code != NE_EXPR
9548 && (is_negative_overflow_infinity (vr->min)
9549 || is_positive_overflow_infinity (vr->max))
9550 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_CONDITIONAL))
9551 {
9552 location_t location;
9553
9554 if (!gimple_has_location (stmt))
9555 location = input_location;
9556 else
9557 location = gimple_location (stmt);
9558 warning_at (location, OPT_Wstrict_overflow,
9559 "assuming signed overflow does not occur when "
9560 "simplifying conditional");
9561 }
9562
9563 tree newconst = fold_convert (TREE_TYPE (innerop), op1);
9564 gimple_cond_set_lhs (stmt, innerop);
9565 gimple_cond_set_rhs (stmt, newconst);
9566 return true;
9567 }
9568 }
9569 }
9570
9571 return false;
9572 }
9573
9574 /* Simplify a switch statement using the value range of the switch
9575 argument. */
9576
9577 static bool
9578 simplify_switch_using_ranges (gswitch *stmt)
9579 {
9580 tree op = gimple_switch_index (stmt);
9581 value_range_t *vr;
9582 bool take_default;
9583 edge e;
9584 edge_iterator ei;
9585 size_t i = 0, j = 0, n, n2;
9586 tree vec2;
9587 switch_update su;
9588 size_t k = 1, l = 0;
9589
9590 if (TREE_CODE (op) == SSA_NAME)
9591 {
9592 vr = get_value_range (op);
9593
9594 /* We can only handle integer ranges. */
9595 if ((vr->type != VR_RANGE
9596 && vr->type != VR_ANTI_RANGE)
9597 || symbolic_range_p (vr))
9598 return false;
9599
9600 /* Find case label for min/max of the value range. */
9601 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
9602 }
9603 else if (TREE_CODE (op) == INTEGER_CST)
9604 {
9605 take_default = !find_case_label_index (stmt, 1, op, &i);
9606 if (take_default)
9607 {
9608 i = 1;
9609 j = 0;
9610 }
9611 else
9612 {
9613 j = i;
9614 }
9615 }
9616 else
9617 return false;
9618
9619 n = gimple_switch_num_labels (stmt);
9620
9621 /* Bail out if this is just all edges taken. */
9622 if (i == 1
9623 && j == n - 1
9624 && take_default)
9625 return false;
9626
9627 /* Build a new vector of taken case labels. */
9628 vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
9629 n2 = 0;
9630
9631 /* Add the default edge, if necessary. */
9632 if (take_default)
9633 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
9634
9635 for (; i <= j; ++i, ++n2)
9636 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
9637
9638 for (; k <= l; ++k, ++n2)
9639 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
9640
9641 /* Mark needed edges. */
9642 for (i = 0; i < n2; ++i)
9643 {
9644 e = find_edge (gimple_bb (stmt),
9645 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
9646 e->aux = (void *)-1;
9647 }
9648
9649 /* Queue not needed edges for later removal. */
9650 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
9651 {
9652 if (e->aux == (void *)-1)
9653 {
9654 e->aux = NULL;
9655 continue;
9656 }
9657
9658 if (dump_file && (dump_flags & TDF_DETAILS))
9659 {
9660 fprintf (dump_file, "removing unreachable case label\n");
9661 }
9662 to_remove_edges.safe_push (e);
9663 e->flags &= ~EDGE_EXECUTABLE;
9664 }
9665
9666 /* And queue an update for the stmt. */
9667 su.stmt = stmt;
9668 su.vec = vec2;
9669 to_update_switch_stmts.safe_push (su);
9670 return false;
9671 }
9672
9673 /* Simplify an integral conversion from an SSA name in STMT. */
9674
9675 static bool
9676 simplify_conversion_using_ranges (gimple stmt)
9677 {
9678 tree innerop, middleop, finaltype;
9679 gimple def_stmt;
9680 value_range_t *innervr;
9681 signop inner_sgn, middle_sgn, final_sgn;
9682 unsigned inner_prec, middle_prec, final_prec;
9683 widest_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
9684
9685 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
9686 if (!INTEGRAL_TYPE_P (finaltype))
9687 return false;
9688 middleop = gimple_assign_rhs1 (stmt);
9689 def_stmt = SSA_NAME_DEF_STMT (middleop);
9690 if (!is_gimple_assign (def_stmt)
9691 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9692 return false;
9693 innerop = gimple_assign_rhs1 (def_stmt);
9694 if (TREE_CODE (innerop) != SSA_NAME
9695 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
9696 return false;
9697
9698 /* Get the value-range of the inner operand. */
9699 innervr = get_value_range (innerop);
9700 if (innervr->type != VR_RANGE
9701 || TREE_CODE (innervr->min) != INTEGER_CST
9702 || TREE_CODE (innervr->max) != INTEGER_CST)
9703 return false;
9704
9705 /* Simulate the conversion chain to check if the result is equal if
9706 the middle conversion is removed. */
9707 innermin = wi::to_widest (innervr->min);
9708 innermax = wi::to_widest (innervr->max);
9709
9710 inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
9711 middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
9712 final_prec = TYPE_PRECISION (finaltype);
9713
9714 /* If the first conversion is not injective, the second must not
9715 be widening. */
9716 if (wi::gtu_p (innermax - innermin,
9717 wi::mask <widest_int> (middle_prec, false))
9718 && middle_prec < final_prec)
9719 return false;
9720 /* We also want a medium value so that we can track the effect that
9721 narrowing conversions with sign change have. */
9722 inner_sgn = TYPE_SIGN (TREE_TYPE (innerop));
9723 if (inner_sgn == UNSIGNED)
9724 innermed = wi::shifted_mask <widest_int> (1, inner_prec - 1, false);
9725 else
9726 innermed = 0;
9727 if (wi::cmp (innermin, innermed, inner_sgn) >= 0
9728 || wi::cmp (innermed, innermax, inner_sgn) >= 0)
9729 innermed = innermin;
9730
9731 middle_sgn = TYPE_SIGN (TREE_TYPE (middleop));
9732 middlemin = wi::ext (innermin, middle_prec, middle_sgn);
9733 middlemed = wi::ext (innermed, middle_prec, middle_sgn);
9734 middlemax = wi::ext (innermax, middle_prec, middle_sgn);
9735
9736 /* Require that the final conversion applied to both the original
9737 and the intermediate range produces the same result. */
9738 final_sgn = TYPE_SIGN (finaltype);
9739 if (wi::ext (middlemin, final_prec, final_sgn)
9740 != wi::ext (innermin, final_prec, final_sgn)
9741 || wi::ext (middlemed, final_prec, final_sgn)
9742 != wi::ext (innermed, final_prec, final_sgn)
9743 || wi::ext (middlemax, final_prec, final_sgn)
9744 != wi::ext (innermax, final_prec, final_sgn))
9745 return false;
9746
9747 gimple_assign_set_rhs1 (stmt, innerop);
9748 update_stmt (stmt);
9749 return true;
9750 }
9751
9752 /* Simplify a conversion from integral SSA name to float in STMT. */
9753
9754 static bool
9755 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
9756 {
9757 tree rhs1 = gimple_assign_rhs1 (stmt);
9758 value_range_t *vr = get_value_range (rhs1);
9759 machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
9760 machine_mode mode;
9761 tree tem;
9762 gassign *conv;
9763
9764 /* We can only handle constant ranges. */
9765 if (vr->type != VR_RANGE
9766 || TREE_CODE (vr->min) != INTEGER_CST
9767 || TREE_CODE (vr->max) != INTEGER_CST)
9768 return false;
9769
9770 /* First check if we can use a signed type in place of an unsigned. */
9771 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
9772 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
9773 != CODE_FOR_nothing)
9774 && range_fits_type_p (vr, TYPE_PRECISION (TREE_TYPE (rhs1)), SIGNED))
9775 mode = TYPE_MODE (TREE_TYPE (rhs1));
9776 /* If we can do the conversion in the current input mode do nothing. */
9777 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
9778 TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
9779 return false;
9780 /* Otherwise search for a mode we can use, starting from the narrowest
9781 integer mode available. */
9782 else
9783 {
9784 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
9785 do
9786 {
9787 /* If we cannot do a signed conversion to float from mode
9788 or if the value-range does not fit in the signed type
9789 try with a wider mode. */
9790 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
9791 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), SIGNED))
9792 break;
9793
9794 mode = GET_MODE_WIDER_MODE (mode);
9795 /* But do not widen the input. Instead leave that to the
9796 optabs expansion code. */
9797 if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
9798 return false;
9799 }
9800 while (mode != VOIDmode);
9801 if (mode == VOIDmode)
9802 return false;
9803 }
9804
9805 /* It works, insert a truncation or sign-change before the
9806 float conversion. */
9807 tem = make_ssa_name (build_nonstandard_integer_type
9808 (GET_MODE_PRECISION (mode), 0));
9809 conv = gimple_build_assign (tem, NOP_EXPR, rhs1);
9810 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
9811 gimple_assign_set_rhs1 (stmt, tem);
9812 update_stmt (stmt);
9813
9814 return true;
9815 }
9816
9817 /* Simplify an internal fn call using ranges if possible. */
9818
9819 static bool
9820 simplify_internal_call_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
9821 {
9822 enum tree_code subcode;
9823 bool is_ubsan = false;
9824 bool ovf = false;
9825 switch (gimple_call_internal_fn (stmt))
9826 {
9827 case IFN_UBSAN_CHECK_ADD:
9828 subcode = PLUS_EXPR;
9829 is_ubsan = true;
9830 break;
9831 case IFN_UBSAN_CHECK_SUB:
9832 subcode = MINUS_EXPR;
9833 is_ubsan = true;
9834 break;
9835 case IFN_UBSAN_CHECK_MUL:
9836 subcode = MULT_EXPR;
9837 is_ubsan = true;
9838 break;
9839 case IFN_ADD_OVERFLOW:
9840 subcode = PLUS_EXPR;
9841 break;
9842 case IFN_SUB_OVERFLOW:
9843 subcode = MINUS_EXPR;
9844 break;
9845 case IFN_MUL_OVERFLOW:
9846 subcode = MULT_EXPR;
9847 break;
9848 default:
9849 return false;
9850 }
9851
9852 tree op0 = gimple_call_arg (stmt, 0);
9853 tree op1 = gimple_call_arg (stmt, 1);
9854 tree type;
9855 if (is_ubsan)
9856 type = TREE_TYPE (op0);
9857 else if (gimple_call_lhs (stmt) == NULL_TREE)
9858 return false;
9859 else
9860 type = TREE_TYPE (TREE_TYPE (gimple_call_lhs (stmt)));
9861 if (!check_for_binary_op_overflow (subcode, type, op0, op1, &ovf)
9862 || (is_ubsan && ovf))
9863 return false;
9864
9865 gimple g;
9866 location_t loc = gimple_location (stmt);
9867 if (is_ubsan)
9868 g = gimple_build_assign (gimple_call_lhs (stmt), subcode, op0, op1);
9869 else
9870 {
9871 int prec = TYPE_PRECISION (type);
9872 tree utype = type;
9873 if (ovf
9874 || !useless_type_conversion_p (type, TREE_TYPE (op0))
9875 || !useless_type_conversion_p (type, TREE_TYPE (op1)))
9876 utype = build_nonstandard_integer_type (prec, 1);
9877 if (TREE_CODE (op0) == INTEGER_CST)
9878 op0 = fold_convert (utype, op0);
9879 else if (!useless_type_conversion_p (utype, TREE_TYPE (op0)))
9880 {
9881 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op0);
9882 gimple_set_location (g, loc);
9883 gsi_insert_before (gsi, g, GSI_SAME_STMT);
9884 op0 = gimple_assign_lhs (g);
9885 }
9886 if (TREE_CODE (op1) == INTEGER_CST)
9887 op1 = fold_convert (utype, op1);
9888 else if (!useless_type_conversion_p (utype, TREE_TYPE (op1)))
9889 {
9890 g = gimple_build_assign (make_ssa_name (utype), NOP_EXPR, op1);
9891 gimple_set_location (g, loc);
9892 gsi_insert_before (gsi, g, GSI_SAME_STMT);
9893 op1 = gimple_assign_lhs (g);
9894 }
9895 g = gimple_build_assign (make_ssa_name (utype), subcode, op0, op1);
9896 gimple_set_location (g, loc);
9897 gsi_insert_before (gsi, g, GSI_SAME_STMT);
9898 if (utype != type)
9899 {
9900 g = gimple_build_assign (make_ssa_name (type), NOP_EXPR,
9901 gimple_assign_lhs (g));
9902 gimple_set_location (g, loc);
9903 gsi_insert_before (gsi, g, GSI_SAME_STMT);
9904 }
9905 g = gimple_build_assign (gimple_call_lhs (stmt), COMPLEX_EXPR,
9906 gimple_assign_lhs (g),
9907 build_int_cst (type, ovf));
9908 }
9909 gimple_set_location (g, loc);
9910 gsi_replace (gsi, g, false);
9911 return true;
9912 }
9913
9914 /* Simplify STMT using ranges if possible. */
9915
9916 static bool
9917 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
9918 {
9919 gimple stmt = gsi_stmt (*gsi);
9920 if (is_gimple_assign (stmt))
9921 {
9922 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9923 tree rhs1 = gimple_assign_rhs1 (stmt);
9924
9925 switch (rhs_code)
9926 {
9927 case EQ_EXPR:
9928 case NE_EXPR:
9929 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
9930 if the RHS is zero or one, and the LHS are known to be boolean
9931 values. */
9932 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9933 return simplify_truth_ops_using_ranges (gsi, stmt);
9934 break;
9935
9936 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
9937 and BIT_AND_EXPR respectively if the first operand is greater
9938 than zero and the second operand is an exact power of two.
9939 Also optimize TRUNC_MOD_EXPR away if the second operand is
9940 constant and the first operand already has the right value
9941 range. */
9942 case TRUNC_DIV_EXPR:
9943 case TRUNC_MOD_EXPR:
9944 if (TREE_CODE (rhs1) == SSA_NAME
9945 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9946 return simplify_div_or_mod_using_ranges (stmt);
9947 break;
9948
9949 /* Transform ABS (X) into X or -X as appropriate. */
9950 case ABS_EXPR:
9951 if (TREE_CODE (rhs1) == SSA_NAME
9952 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9953 return simplify_abs_using_ranges (stmt);
9954 break;
9955
9956 case BIT_AND_EXPR:
9957 case BIT_IOR_EXPR:
9958 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
9959 if all the bits being cleared are already cleared or
9960 all the bits being set are already set. */
9961 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9962 return simplify_bit_ops_using_ranges (gsi, stmt);
9963 break;
9964
9965 CASE_CONVERT:
9966 if (TREE_CODE (rhs1) == SSA_NAME
9967 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9968 return simplify_conversion_using_ranges (stmt);
9969 break;
9970
9971 case FLOAT_EXPR:
9972 if (TREE_CODE (rhs1) == SSA_NAME
9973 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9974 return simplify_float_conversion_using_ranges (gsi, stmt);
9975 break;
9976
9977 default:
9978 break;
9979 }
9980 }
9981 else if (gimple_code (stmt) == GIMPLE_COND)
9982 return simplify_cond_using_ranges (as_a <gcond *> (stmt));
9983 else if (gimple_code (stmt) == GIMPLE_SWITCH)
9984 return simplify_switch_using_ranges (as_a <gswitch *> (stmt));
9985 else if (is_gimple_call (stmt)
9986 && gimple_call_internal_p (stmt))
9987 return simplify_internal_call_using_ranges (gsi, stmt);
9988
9989 return false;
9990 }
9991
9992 /* If the statement pointed by SI has a predicate whose value can be
9993 computed using the value range information computed by VRP, compute
9994 its value and return true. Otherwise, return false. */
9995
9996 static bool
9997 fold_predicate_in (gimple_stmt_iterator *si)
9998 {
9999 bool assignment_p = false;
10000 tree val;
10001 gimple stmt = gsi_stmt (*si);
10002
10003 if (is_gimple_assign (stmt)
10004 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
10005 {
10006 assignment_p = true;
10007 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
10008 gimple_assign_rhs1 (stmt),
10009 gimple_assign_rhs2 (stmt),
10010 stmt);
10011 }
10012 else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
10013 val = vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
10014 gimple_cond_lhs (cond_stmt),
10015 gimple_cond_rhs (cond_stmt),
10016 stmt);
10017 else
10018 return false;
10019
10020 if (val)
10021 {
10022 if (assignment_p)
10023 val = fold_convert (gimple_expr_type (stmt), val);
10024
10025 if (dump_file)
10026 {
10027 fprintf (dump_file, "Folding predicate ");
10028 print_gimple_expr (dump_file, stmt, 0, 0);
10029 fprintf (dump_file, " to ");
10030 print_generic_expr (dump_file, val, 0);
10031 fprintf (dump_file, "\n");
10032 }
10033
10034 if (is_gimple_assign (stmt))
10035 gimple_assign_set_rhs_from_tree (si, val);
10036 else
10037 {
10038 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
10039 gcond *cond_stmt = as_a <gcond *> (stmt);
10040 if (integer_zerop (val))
10041 gimple_cond_make_false (cond_stmt);
10042 else if (integer_onep (val))
10043 gimple_cond_make_true (cond_stmt);
10044 else
10045 gcc_unreachable ();
10046 }
10047
10048 return true;
10049 }
10050
10051 return false;
10052 }
10053
10054 /* Callback for substitute_and_fold folding the stmt at *SI. */
10055
10056 static bool
10057 vrp_fold_stmt (gimple_stmt_iterator *si)
10058 {
10059 if (fold_predicate_in (si))
10060 return true;
10061
10062 return simplify_stmt_using_ranges (si);
10063 }
10064
10065 /* Stack of dest,src equivalency pairs that need to be restored after
10066 each attempt to thread a block's incoming edge to an outgoing edge.
10067
10068 A NULL entry is used to mark the end of pairs which need to be
10069 restored. */
10070 static vec<tree> equiv_stack;
10071
10072 /* A trivial wrapper so that we can present the generic jump threading
10073 code with a simple API for simplifying statements. STMT is the
10074 statement we want to simplify, WITHIN_STMT provides the location
10075 for any overflow warnings. */
10076
10077 static tree
10078 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
10079 {
10080 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
10081 return vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
10082 gimple_cond_lhs (cond_stmt),
10083 gimple_cond_rhs (cond_stmt),
10084 within_stmt);
10085
10086 if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
10087 {
10088 value_range_t new_vr = VR_INITIALIZER;
10089 tree lhs = gimple_assign_lhs (assign_stmt);
10090
10091 if (TREE_CODE (lhs) == SSA_NAME
10092 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
10093 || POINTER_TYPE_P (TREE_TYPE (lhs))))
10094 {
10095 extract_range_from_assignment (&new_vr, assign_stmt);
10096 if (range_int_cst_singleton_p (&new_vr))
10097 return new_vr.min;
10098 }
10099 }
10100
10101 return NULL_TREE;
10102 }
10103
10104 /* Blocks which have more than one predecessor and more than
10105 one successor present jump threading opportunities, i.e.,
10106 when the block is reached from a specific predecessor, we
10107 may be able to determine which of the outgoing edges will
10108 be traversed. When this optimization applies, we are able
10109 to avoid conditionals at runtime and we may expose secondary
10110 optimization opportunities.
10111
10112 This routine is effectively a driver for the generic jump
10113 threading code. It basically just presents the generic code
10114 with edges that may be suitable for jump threading.
10115
10116 Unlike DOM, we do not iterate VRP if jump threading was successful.
10117 While iterating may expose new opportunities for VRP, it is expected
10118 those opportunities would be very limited and the compile time cost
10119 to expose those opportunities would be significant.
10120
10121 As jump threading opportunities are discovered, they are registered
10122 for later realization. */
10123
10124 static void
10125 identify_jump_threads (void)
10126 {
10127 basic_block bb;
10128 gcond *dummy;
10129 int i;
10130 edge e;
10131
10132 /* Ugh. When substituting values earlier in this pass we can
10133 wipe the dominance information. So rebuild the dominator
10134 information as we need it within the jump threading code. */
10135 calculate_dominance_info (CDI_DOMINATORS);
10136
10137 /* We do not allow VRP information to be used for jump threading
10138 across a back edge in the CFG. Otherwise it becomes too
10139 difficult to avoid eliminating loop exit tests. Of course
10140 EDGE_DFS_BACK is not accurate at this time so we have to
10141 recompute it. */
10142 mark_dfs_back_edges ();
10143
10144 /* Do not thread across edges we are about to remove. Just marking
10145 them as EDGE_DFS_BACK will do. */
10146 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
10147 e->flags |= EDGE_DFS_BACK;
10148
10149 /* Allocate our unwinder stack to unwind any temporary equivalences
10150 that might be recorded. */
10151 equiv_stack.create (20);
10152
10153 /* To avoid lots of silly node creation, we create a single
10154 conditional and just modify it in-place when attempting to
10155 thread jumps. */
10156 dummy = gimple_build_cond (EQ_EXPR,
10157 integer_zero_node, integer_zero_node,
10158 NULL, NULL);
10159
10160 /* Walk through all the blocks finding those which present a
10161 potential jump threading opportunity. We could set this up
10162 as a dominator walker and record data during the walk, but
10163 I doubt it's worth the effort for the classes of jump
10164 threading opportunities we are trying to identify at this
10165 point in compilation. */
10166 FOR_EACH_BB_FN (bb, cfun)
10167 {
10168 gimple last;
10169
10170 /* If the generic jump threading code does not find this block
10171 interesting, then there is nothing to do. */
10172 if (! potentially_threadable_block (bb))
10173 continue;
10174
10175 /* We only care about blocks ending in a COND_EXPR. While there
10176 may be some value in handling SWITCH_EXPR here, I doubt it's
10177 terribly important. */
10178 last = gsi_stmt (gsi_last_bb (bb));
10179
10180 /* We're basically looking for a switch or any kind of conditional with
10181 integral or pointer type arguments. Note the type of the second
10182 argument will be the same as the first argument, so no need to
10183 check it explicitly. */
10184 if (gimple_code (last) == GIMPLE_SWITCH
10185 || (gimple_code (last) == GIMPLE_COND
10186 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
10187 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
10188 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
10189 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
10190 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
10191 {
10192 edge_iterator ei;
10193
10194 /* We've got a block with multiple predecessors and multiple
10195 successors which also ends in a suitable conditional or
10196 switch statement. For each predecessor, see if we can thread
10197 it to a specific successor. */
10198 FOR_EACH_EDGE (e, ei, bb->preds)
10199 {
10200 /* Do not thread across back edges or abnormal edges
10201 in the CFG. */
10202 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
10203 continue;
10204
10205 thread_across_edge (dummy, e, true, &equiv_stack,
10206 simplify_stmt_for_jump_threading);
10207 }
10208 }
10209 }
10210
10211 /* We do not actually update the CFG or SSA graphs at this point as
10212 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
10213 handle ASSERT_EXPRs gracefully. */
10214 }
10215
10216 /* We identified all the jump threading opportunities earlier, but could
10217 not transform the CFG at that time. This routine transforms the
10218 CFG and arranges for the dominator tree to be rebuilt if necessary.
10219
10220 Note the SSA graph update will occur during the normal TODO
10221 processing by the pass manager. */
10222 static void
10223 finalize_jump_threads (void)
10224 {
10225 thread_through_all_blocks (false);
10226 equiv_stack.release ();
10227 }
10228
10229
10230 /* Traverse all the blocks folding conditionals with known ranges. */
10231
10232 static void
10233 vrp_finalize (void)
10234 {
10235 size_t i;
10236
10237 values_propagated = true;
10238
10239 if (dump_file)
10240 {
10241 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
10242 dump_all_value_ranges (dump_file);
10243 fprintf (dump_file, "\n");
10244 }
10245
10246 substitute_and_fold (op_with_constant_singleton_value_range,
10247 vrp_fold_stmt, false);
10248
10249 if (warn_array_bounds && first_pass_instance)
10250 check_all_array_refs ();
10251
10252 /* We must identify jump threading opportunities before we release
10253 the datastructures built by VRP. */
10254 identify_jump_threads ();
10255
10256 /* Set value range to non pointer SSA_NAMEs. */
10257 for (i = 0; i < num_vr_values; i++)
10258 if (vr_value[i])
10259 {
10260 tree name = ssa_name (i);
10261
10262 if (!name
10263 || POINTER_TYPE_P (TREE_TYPE (name))
10264 || (vr_value[i]->type == VR_VARYING)
10265 || (vr_value[i]->type == VR_UNDEFINED))
10266 continue;
10267
10268 if ((TREE_CODE (vr_value[i]->min) == INTEGER_CST)
10269 && (TREE_CODE (vr_value[i]->max) == INTEGER_CST)
10270 && (vr_value[i]->type == VR_RANGE
10271 || vr_value[i]->type == VR_ANTI_RANGE))
10272 set_range_info (name, vr_value[i]->type, vr_value[i]->min,
10273 vr_value[i]->max);
10274 }
10275
10276 /* Free allocated memory. */
10277 for (i = 0; i < num_vr_values; i++)
10278 if (vr_value[i])
10279 {
10280 BITMAP_FREE (vr_value[i]->equiv);
10281 free (vr_value[i]);
10282 }
10283
10284 free (vr_value);
10285 free (vr_phi_edge_counts);
10286
10287 /* So that we can distinguish between VRP data being available
10288 and not available. */
10289 vr_value = NULL;
10290 vr_phi_edge_counts = NULL;
10291 }
10292
10293
10294 /* Main entry point to VRP (Value Range Propagation). This pass is
10295 loosely based on J. R. C. Patterson, ``Accurate Static Branch
10296 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
10297 Programming Language Design and Implementation, pp. 67-78, 1995.
10298 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
10299
10300 This is essentially an SSA-CCP pass modified to deal with ranges
10301 instead of constants.
10302
10303 While propagating ranges, we may find that two or more SSA name
10304 have equivalent, though distinct ranges. For instance,
10305
10306 1 x_9 = p_3->a;
10307 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
10308 3 if (p_4 == q_2)
10309 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
10310 5 endif
10311 6 if (q_2)
10312
10313 In the code above, pointer p_5 has range [q_2, q_2], but from the
10314 code we can also determine that p_5 cannot be NULL and, if q_2 had
10315 a non-varying range, p_5's range should also be compatible with it.
10316
10317 These equivalences are created by two expressions: ASSERT_EXPR and
10318 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
10319 result of another assertion, then we can use the fact that p_5 and
10320 p_4 are equivalent when evaluating p_5's range.
10321
10322 Together with value ranges, we also propagate these equivalences
10323 between names so that we can take advantage of information from
10324 multiple ranges when doing final replacement. Note that this
10325 equivalency relation is transitive but not symmetric.
10326
10327 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
10328 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
10329 in contexts where that assertion does not hold (e.g., in line 6).
10330
10331 TODO, the main difference between this pass and Patterson's is that
10332 we do not propagate edge probabilities. We only compute whether
10333 edges can be taken or not. That is, instead of having a spectrum
10334 of jump probabilities between 0 and 1, we only deal with 0, 1 and
10335 DON'T KNOW. In the future, it may be worthwhile to propagate
10336 probabilities to aid branch prediction. */
10337
10338 static unsigned int
10339 execute_vrp (void)
10340 {
10341 int i;
10342 edge e;
10343 switch_update *su;
10344
10345 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
10346 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
10347 scev_initialize ();
10348
10349 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
10350 Inserting assertions may split edges which will invalidate
10351 EDGE_DFS_BACK. */
10352 insert_range_assertions ();
10353
10354 to_remove_edges.create (10);
10355 to_update_switch_stmts.create (5);
10356 threadedge_initialize_values ();
10357
10358 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
10359 mark_dfs_back_edges ();
10360
10361 vrp_initialize ();
10362 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
10363 vrp_finalize ();
10364
10365 free_numbers_of_iterations_estimates ();
10366
10367 /* ASSERT_EXPRs must be removed before finalizing jump threads
10368 as finalizing jump threads calls the CFG cleanup code which
10369 does not properly handle ASSERT_EXPRs. */
10370 remove_range_assertions ();
10371
10372 /* If we exposed any new variables, go ahead and put them into
10373 SSA form now, before we handle jump threading. This simplifies
10374 interactions between rewriting of _DECL nodes into SSA form
10375 and rewriting SSA_NAME nodes into SSA form after block
10376 duplication and CFG manipulation. */
10377 update_ssa (TODO_update_ssa);
10378
10379 finalize_jump_threads ();
10380
10381 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
10382 CFG in a broken state and requires a cfg_cleanup run. */
10383 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
10384 remove_edge (e);
10385 /* Update SWITCH_EXPR case label vector. */
10386 FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
10387 {
10388 size_t j;
10389 size_t n = TREE_VEC_LENGTH (su->vec);
10390 tree label;
10391 gimple_switch_set_num_labels (su->stmt, n);
10392 for (j = 0; j < n; j++)
10393 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
10394 /* As we may have replaced the default label with a regular one
10395 make sure to make it a real default label again. This ensures
10396 optimal expansion. */
10397 label = gimple_switch_label (su->stmt, 0);
10398 CASE_LOW (label) = NULL_TREE;
10399 CASE_HIGH (label) = NULL_TREE;
10400 }
10401
10402 if (to_remove_edges.length () > 0)
10403 {
10404 free_dominance_info (CDI_DOMINATORS);
10405 loops_state_set (LOOPS_NEED_FIXUP);
10406 }
10407
10408 to_remove_edges.release ();
10409 to_update_switch_stmts.release ();
10410 threadedge_finalize_values ();
10411
10412 scev_finalize ();
10413 loop_optimizer_finalize ();
10414 return 0;
10415 }
10416
10417 namespace {
10418
10419 const pass_data pass_data_vrp =
10420 {
10421 GIMPLE_PASS, /* type */
10422 "vrp", /* name */
10423 OPTGROUP_NONE, /* optinfo_flags */
10424 TV_TREE_VRP, /* tv_id */
10425 PROP_ssa, /* properties_required */
10426 0, /* properties_provided */
10427 0, /* properties_destroyed */
10428 0, /* todo_flags_start */
10429 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
10430 };
10431
10432 class pass_vrp : public gimple_opt_pass
10433 {
10434 public:
10435 pass_vrp (gcc::context *ctxt)
10436 : gimple_opt_pass (pass_data_vrp, ctxt)
10437 {}
10438
10439 /* opt_pass methods: */
10440 opt_pass * clone () { return new pass_vrp (m_ctxt); }
10441 virtual bool gate (function *) { return flag_tree_vrp != 0; }
10442 virtual unsigned int execute (function *) { return execute_vrp (); }
10443
10444 }; // class pass_vrp
10445
10446 } // anon namespace
10447
10448 gimple_opt_pass *
10449 make_pass_vrp (gcc::context *ctxt)
10450 {
10451 return new pass_vrp (ctxt);
10452 }