re PR tree-optimization/58978 (ICE: Segmentation fault)
[gcc.git] / gcc / tree-vrp.c
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "flags.h"
27 #include "tree.h"
28 #include "basic-block.h"
29 #include "gimple.h"
30 #include "gimple-ssa.h"
31 #include "tree-cfg.h"
32 #include "tree-phinodes.h"
33 #include "ssa-iterators.h"
34 #include "tree-ssanames.h"
35 #include "tree-ssa-loop-manip.h"
36 #include "tree-ssa-loop-niter.h"
37 #include "tree-ssa-loop.h"
38 #include "tree-into-ssa.h"
39 #include "tree-ssa.h"
40 #include "tree-pass.h"
41 #include "tree-dump.h"
42 #include "gimple-pretty-print.h"
43 #include "diagnostic-core.h"
44 #include "intl.h"
45 #include "cfgloop.h"
46 #include "tree-scalar-evolution.h"
47 #include "tree-ssa-propagate.h"
48 #include "tree-chrec.h"
49 #include "tree-ssa-threadupdate.h"
50 #include "expr.h"
51 #include "optabs.h"
52 #include "tree-ssa-threadedge.h"
53
54
55
56 /* Range of values that can be associated with an SSA_NAME after VRP
57 has executed. */
58 struct value_range_d
59 {
60 /* Lattice value represented by this range. */
61 enum value_range_type type;
62
63 /* Minimum and maximum values represented by this range. These
64 values should be interpreted as follows:
65
66 - If TYPE is VR_UNDEFINED or VR_VARYING then MIN and MAX must
67 be NULL.
68
69 - If TYPE == VR_RANGE then MIN holds the minimum value and
70 MAX holds the maximum value of the range [MIN, MAX].
71
72 - If TYPE == ANTI_RANGE the variable is known to NOT
73 take any values in the range [MIN, MAX]. */
74 tree min;
75 tree max;
76
77 /* Set of SSA names whose value ranges are equivalent to this one.
78 This set is only valid when TYPE is VR_RANGE or VR_ANTI_RANGE. */
79 bitmap equiv;
80 };
81
82 typedef struct value_range_d value_range_t;
83
84 #define VR_INITIALIZER { VR_UNDEFINED, NULL_TREE, NULL_TREE, NULL }
85
86 /* Set of SSA names found live during the RPO traversal of the function
87 for still active basic-blocks. */
88 static sbitmap *live;
89
90 /* Return true if the SSA name NAME is live on the edge E. */
91
92 static bool
93 live_on_edge (edge e, tree name)
94 {
95 return (live[e->dest->index]
96 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
97 }
98
99 /* Local functions. */
100 static int compare_values (tree val1, tree val2);
101 static int compare_values_warnv (tree val1, tree val2, bool *);
102 static void vrp_meet (value_range_t *, value_range_t *);
103 static void vrp_intersect_ranges (value_range_t *, value_range_t *);
104 static tree vrp_evaluate_conditional_warnv_with_ops (enum tree_code,
105 tree, tree, bool, bool *,
106 bool *);
107
108 /* Location information for ASSERT_EXPRs. Each instance of this
109 structure describes an ASSERT_EXPR for an SSA name. Since a single
110 SSA name may have more than one assertion associated with it, these
111 locations are kept in a linked list attached to the corresponding
112 SSA name. */
113 struct assert_locus_d
114 {
115 /* Basic block where the assertion would be inserted. */
116 basic_block bb;
117
118 /* Some assertions need to be inserted on an edge (e.g., assertions
119 generated by COND_EXPRs). In those cases, BB will be NULL. */
120 edge e;
121
122 /* Pointer to the statement that generated this assertion. */
123 gimple_stmt_iterator si;
124
125 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
126 enum tree_code comp_code;
127
128 /* Value being compared against. */
129 tree val;
130
131 /* Expression to compare. */
132 tree expr;
133
134 /* Next node in the linked list. */
135 struct assert_locus_d *next;
136 };
137
138 typedef struct assert_locus_d *assert_locus_t;
139
140 /* If bit I is present, it means that SSA name N_i has a list of
141 assertions that should be inserted in the IL. */
142 static bitmap need_assert_for;
143
144 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
145 holds a list of ASSERT_LOCUS_T nodes that describe where
146 ASSERT_EXPRs for SSA name N_I should be inserted. */
147 static assert_locus_t *asserts_for;
148
149 /* Value range array. After propagation, VR_VALUE[I] holds the range
150 of values that SSA name N_I may take. */
151 static unsigned num_vr_values;
152 static value_range_t **vr_value;
153 static bool values_propagated;
154
155 /* For a PHI node which sets SSA name N_I, VR_COUNTS[I] holds the
156 number of executable edges we saw the last time we visited the
157 node. */
158 static int *vr_phi_edge_counts;
159
160 typedef struct {
161 gimple stmt;
162 tree vec;
163 } switch_update;
164
165 static vec<edge> to_remove_edges;
166 static vec<switch_update> to_update_switch_stmts;
167
168
169 /* Return the maximum value for TYPE. */
170
171 static inline tree
172 vrp_val_max (const_tree type)
173 {
174 if (!INTEGRAL_TYPE_P (type))
175 return NULL_TREE;
176
177 return TYPE_MAX_VALUE (type);
178 }
179
180 /* Return the minimum value for TYPE. */
181
182 static inline tree
183 vrp_val_min (const_tree type)
184 {
185 if (!INTEGRAL_TYPE_P (type))
186 return NULL_TREE;
187
188 return TYPE_MIN_VALUE (type);
189 }
190
191 /* Return whether VAL is equal to the maximum value of its type. This
192 will be true for a positive overflow infinity. We can't do a
193 simple equality comparison with TYPE_MAX_VALUE because C typedefs
194 and Ada subtypes can produce types whose TYPE_MAX_VALUE is not ==
195 to the integer constant with the same value in the type. */
196
197 static inline bool
198 vrp_val_is_max (const_tree val)
199 {
200 tree type_max = vrp_val_max (TREE_TYPE (val));
201 return (val == type_max
202 || (type_max != NULL_TREE
203 && operand_equal_p (val, type_max, 0)));
204 }
205
206 /* Return whether VAL is equal to the minimum value of its type. This
207 will be true for a negative overflow infinity. */
208
209 static inline bool
210 vrp_val_is_min (const_tree val)
211 {
212 tree type_min = vrp_val_min (TREE_TYPE (val));
213 return (val == type_min
214 || (type_min != NULL_TREE
215 && operand_equal_p (val, type_min, 0)));
216 }
217
218
219 /* Return whether TYPE should use an overflow infinity distinct from
220 TYPE_{MIN,MAX}_VALUE. We use an overflow infinity value to
221 represent a signed overflow during VRP computations. An infinity
222 is distinct from a half-range, which will go from some number to
223 TYPE_{MIN,MAX}_VALUE. */
224
225 static inline bool
226 needs_overflow_infinity (const_tree type)
227 {
228 return INTEGRAL_TYPE_P (type) && !TYPE_OVERFLOW_WRAPS (type);
229 }
230
231 /* Return whether TYPE can support our overflow infinity
232 representation: we use the TREE_OVERFLOW flag, which only exists
233 for constants. If TYPE doesn't support this, we don't optimize
234 cases which would require signed overflow--we drop them to
235 VARYING. */
236
237 static inline bool
238 supports_overflow_infinity (const_tree type)
239 {
240 tree min = vrp_val_min (type), max = vrp_val_max (type);
241 #ifdef ENABLE_CHECKING
242 gcc_assert (needs_overflow_infinity (type));
243 #endif
244 return (min != NULL_TREE
245 && CONSTANT_CLASS_P (min)
246 && max != NULL_TREE
247 && CONSTANT_CLASS_P (max));
248 }
249
250 /* VAL is the maximum or minimum value of a type. Return a
251 corresponding overflow infinity. */
252
253 static inline tree
254 make_overflow_infinity (tree val)
255 {
256 gcc_checking_assert (val != NULL_TREE && CONSTANT_CLASS_P (val));
257 val = copy_node (val);
258 TREE_OVERFLOW (val) = 1;
259 return val;
260 }
261
262 /* Return a negative overflow infinity for TYPE. */
263
264 static inline tree
265 negative_overflow_infinity (tree type)
266 {
267 gcc_checking_assert (supports_overflow_infinity (type));
268 return make_overflow_infinity (vrp_val_min (type));
269 }
270
271 /* Return a positive overflow infinity for TYPE. */
272
273 static inline tree
274 positive_overflow_infinity (tree type)
275 {
276 gcc_checking_assert (supports_overflow_infinity (type));
277 return make_overflow_infinity (vrp_val_max (type));
278 }
279
280 /* Return whether VAL is a negative overflow infinity. */
281
282 static inline bool
283 is_negative_overflow_infinity (const_tree val)
284 {
285 return (needs_overflow_infinity (TREE_TYPE (val))
286 && CONSTANT_CLASS_P (val)
287 && TREE_OVERFLOW (val)
288 && vrp_val_is_min (val));
289 }
290
291 /* Return whether VAL is a positive overflow infinity. */
292
293 static inline bool
294 is_positive_overflow_infinity (const_tree val)
295 {
296 return (needs_overflow_infinity (TREE_TYPE (val))
297 && CONSTANT_CLASS_P (val)
298 && TREE_OVERFLOW (val)
299 && vrp_val_is_max (val));
300 }
301
302 /* Return whether VAL is a positive or negative overflow infinity. */
303
304 static inline bool
305 is_overflow_infinity (const_tree val)
306 {
307 return (needs_overflow_infinity (TREE_TYPE (val))
308 && CONSTANT_CLASS_P (val)
309 && TREE_OVERFLOW (val)
310 && (vrp_val_is_min (val) || vrp_val_is_max (val)));
311 }
312
313 /* Return whether STMT has a constant rhs that is_overflow_infinity. */
314
315 static inline bool
316 stmt_overflow_infinity (gimple stmt)
317 {
318 if (is_gimple_assign (stmt)
319 && get_gimple_rhs_class (gimple_assign_rhs_code (stmt)) ==
320 GIMPLE_SINGLE_RHS)
321 return is_overflow_infinity (gimple_assign_rhs1 (stmt));
322 return false;
323 }
324
325 /* If VAL is now an overflow infinity, return VAL. Otherwise, return
326 the same value with TREE_OVERFLOW clear. This can be used to avoid
327 confusing a regular value with an overflow value. */
328
329 static inline tree
330 avoid_overflow_infinity (tree val)
331 {
332 if (!is_overflow_infinity (val))
333 return val;
334
335 if (vrp_val_is_max (val))
336 return vrp_val_max (TREE_TYPE (val));
337 else
338 {
339 gcc_checking_assert (vrp_val_is_min (val));
340 return vrp_val_min (TREE_TYPE (val));
341 }
342 }
343
344
345 /* Return true if ARG is marked with the nonnull attribute in the
346 current function signature. */
347
348 static bool
349 nonnull_arg_p (const_tree arg)
350 {
351 tree t, attrs, fntype;
352 unsigned HOST_WIDE_INT arg_num;
353
354 gcc_assert (TREE_CODE (arg) == PARM_DECL && POINTER_TYPE_P (TREE_TYPE (arg)));
355
356 /* The static chain decl is always non null. */
357 if (arg == cfun->static_chain_decl)
358 return true;
359
360 fntype = TREE_TYPE (current_function_decl);
361 for (attrs = TYPE_ATTRIBUTES (fntype); attrs; attrs = TREE_CHAIN (attrs))
362 {
363 attrs = lookup_attribute ("nonnull", attrs);
364
365 /* If "nonnull" wasn't specified, we know nothing about the argument. */
366 if (attrs == NULL_TREE)
367 return false;
368
369 /* If "nonnull" applies to all the arguments, then ARG is non-null. */
370 if (TREE_VALUE (attrs) == NULL_TREE)
371 return true;
372
373 /* Get the position number for ARG in the function signature. */
374 for (arg_num = 1, t = DECL_ARGUMENTS (current_function_decl);
375 t;
376 t = DECL_CHAIN (t), arg_num++)
377 {
378 if (t == arg)
379 break;
380 }
381
382 gcc_assert (t == arg);
383
384 /* Now see if ARG_NUM is mentioned in the nonnull list. */
385 for (t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
386 {
387 if (compare_tree_int (TREE_VALUE (t), arg_num) == 0)
388 return true;
389 }
390 }
391
392 return false;
393 }
394
395
396 /* Set value range VR to VR_UNDEFINED. */
397
398 static inline void
399 set_value_range_to_undefined (value_range_t *vr)
400 {
401 vr->type = VR_UNDEFINED;
402 vr->min = vr->max = NULL_TREE;
403 if (vr->equiv)
404 bitmap_clear (vr->equiv);
405 }
406
407
408 /* Set value range VR to VR_VARYING. */
409
410 static inline void
411 set_value_range_to_varying (value_range_t *vr)
412 {
413 vr->type = VR_VARYING;
414 vr->min = vr->max = NULL_TREE;
415 if (vr->equiv)
416 bitmap_clear (vr->equiv);
417 }
418
419
420 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
421
422 static void
423 set_value_range (value_range_t *vr, enum value_range_type t, tree min,
424 tree max, bitmap equiv)
425 {
426 #if defined ENABLE_CHECKING
427 /* Check the validity of the range. */
428 if (t == VR_RANGE || t == VR_ANTI_RANGE)
429 {
430 int cmp;
431
432 gcc_assert (min && max);
433
434 if (INTEGRAL_TYPE_P (TREE_TYPE (min)) && t == VR_ANTI_RANGE)
435 gcc_assert (!vrp_val_is_min (min) || !vrp_val_is_max (max));
436
437 cmp = compare_values (min, max);
438 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
439
440 if (needs_overflow_infinity (TREE_TYPE (min)))
441 gcc_assert (!is_overflow_infinity (min)
442 || !is_overflow_infinity (max));
443 }
444
445 if (t == VR_UNDEFINED || t == VR_VARYING)
446 gcc_assert (min == NULL_TREE && max == NULL_TREE);
447
448 if (t == VR_UNDEFINED || t == VR_VARYING)
449 gcc_assert (equiv == NULL || bitmap_empty_p (equiv));
450 #endif
451
452 vr->type = t;
453 vr->min = min;
454 vr->max = max;
455
456 /* Since updating the equivalence set involves deep copying the
457 bitmaps, only do it if absolutely necessary. */
458 if (vr->equiv == NULL
459 && equiv != NULL)
460 vr->equiv = BITMAP_ALLOC (NULL);
461
462 if (equiv != vr->equiv)
463 {
464 if (equiv && !bitmap_empty_p (equiv))
465 bitmap_copy (vr->equiv, equiv);
466 else
467 bitmap_clear (vr->equiv);
468 }
469 }
470
471
472 /* Set value range VR to the canonical form of {T, MIN, MAX, EQUIV}.
473 This means adjusting T, MIN and MAX representing the case of a
474 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
475 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
476 In corner cases where MAX+1 or MIN-1 wraps this will fall back
477 to varying.
478 This routine exists to ease canonicalization in the case where we
479 extract ranges from var + CST op limit. */
480
481 static void
482 set_and_canonicalize_value_range (value_range_t *vr, enum value_range_type t,
483 tree min, tree max, bitmap equiv)
484 {
485 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
486 if (t == VR_UNDEFINED)
487 {
488 set_value_range_to_undefined (vr);
489 return;
490 }
491 else if (t == VR_VARYING)
492 {
493 set_value_range_to_varying (vr);
494 return;
495 }
496
497 /* Nothing to canonicalize for symbolic ranges. */
498 if (TREE_CODE (min) != INTEGER_CST
499 || TREE_CODE (max) != INTEGER_CST)
500 {
501 set_value_range (vr, t, min, max, equiv);
502 return;
503 }
504
505 /* Wrong order for min and max, to swap them and the VR type we need
506 to adjust them. */
507 if (tree_int_cst_lt (max, min))
508 {
509 tree one, tmp;
510
511 /* For one bit precision if max < min, then the swapped
512 range covers all values, so for VR_RANGE it is varying and
513 for VR_ANTI_RANGE empty range, so drop to varying as well. */
514 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
515 {
516 set_value_range_to_varying (vr);
517 return;
518 }
519
520 one = build_int_cst (TREE_TYPE (min), 1);
521 tmp = int_const_binop (PLUS_EXPR, max, one);
522 max = int_const_binop (MINUS_EXPR, min, one);
523 min = tmp;
524
525 /* There's one corner case, if we had [C+1, C] before we now have
526 that again. But this represents an empty value range, so drop
527 to varying in this case. */
528 if (tree_int_cst_lt (max, min))
529 {
530 set_value_range_to_varying (vr);
531 return;
532 }
533
534 t = t == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
535 }
536
537 /* Anti-ranges that can be represented as ranges should be so. */
538 if (t == VR_ANTI_RANGE)
539 {
540 bool is_min = vrp_val_is_min (min);
541 bool is_max = vrp_val_is_max (max);
542
543 if (is_min && is_max)
544 {
545 /* We cannot deal with empty ranges, drop to varying.
546 ??? This could be VR_UNDEFINED instead. */
547 set_value_range_to_varying (vr);
548 return;
549 }
550 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
551 && (is_min || is_max))
552 {
553 /* Non-empty boolean ranges can always be represented
554 as a singleton range. */
555 if (is_min)
556 min = max = vrp_val_max (TREE_TYPE (min));
557 else
558 min = max = vrp_val_min (TREE_TYPE (min));
559 t = VR_RANGE;
560 }
561 else if (is_min
562 /* As a special exception preserve non-null ranges. */
563 && !(TYPE_UNSIGNED (TREE_TYPE (min))
564 && integer_zerop (max)))
565 {
566 tree one = build_int_cst (TREE_TYPE (max), 1);
567 min = int_const_binop (PLUS_EXPR, max, one);
568 max = vrp_val_max (TREE_TYPE (max));
569 t = VR_RANGE;
570 }
571 else if (is_max)
572 {
573 tree one = build_int_cst (TREE_TYPE (min), 1);
574 max = int_const_binop (MINUS_EXPR, min, one);
575 min = vrp_val_min (TREE_TYPE (min));
576 t = VR_RANGE;
577 }
578 }
579
580 /* Drop [-INF(OVF), +INF(OVF)] to varying. */
581 if (needs_overflow_infinity (TREE_TYPE (min))
582 && is_overflow_infinity (min)
583 && is_overflow_infinity (max))
584 {
585 set_value_range_to_varying (vr);
586 return;
587 }
588
589 set_value_range (vr, t, min, max, equiv);
590 }
591
592 /* Copy value range FROM into value range TO. */
593
594 static inline void
595 copy_value_range (value_range_t *to, value_range_t *from)
596 {
597 set_value_range (to, from->type, from->min, from->max, from->equiv);
598 }
599
600 /* Set value range VR to a single value. This function is only called
601 with values we get from statements, and exists to clear the
602 TREE_OVERFLOW flag so that we don't think we have an overflow
603 infinity when we shouldn't. */
604
605 static inline void
606 set_value_range_to_value (value_range_t *vr, tree val, bitmap equiv)
607 {
608 gcc_assert (is_gimple_min_invariant (val));
609 val = avoid_overflow_infinity (val);
610 set_value_range (vr, VR_RANGE, val, val, equiv);
611 }
612
613 /* Set value range VR to a non-negative range of type TYPE.
614 OVERFLOW_INFINITY indicates whether to use an overflow infinity
615 rather than TYPE_MAX_VALUE; this should be true if we determine
616 that the range is nonnegative based on the assumption that signed
617 overflow does not occur. */
618
619 static inline void
620 set_value_range_to_nonnegative (value_range_t *vr, tree type,
621 bool overflow_infinity)
622 {
623 tree zero;
624
625 if (overflow_infinity && !supports_overflow_infinity (type))
626 {
627 set_value_range_to_varying (vr);
628 return;
629 }
630
631 zero = build_int_cst (type, 0);
632 set_value_range (vr, VR_RANGE, zero,
633 (overflow_infinity
634 ? positive_overflow_infinity (type)
635 : TYPE_MAX_VALUE (type)),
636 vr->equiv);
637 }
638
639 /* Set value range VR to a non-NULL range of type TYPE. */
640
641 static inline void
642 set_value_range_to_nonnull (value_range_t *vr, tree type)
643 {
644 tree zero = build_int_cst (type, 0);
645 set_value_range (vr, VR_ANTI_RANGE, zero, zero, vr->equiv);
646 }
647
648
649 /* Set value range VR to a NULL range of type TYPE. */
650
651 static inline void
652 set_value_range_to_null (value_range_t *vr, tree type)
653 {
654 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv);
655 }
656
657
658 /* Set value range VR to a range of a truthvalue of type TYPE. */
659
660 static inline void
661 set_value_range_to_truthvalue (value_range_t *vr, tree type)
662 {
663 if (TYPE_PRECISION (type) == 1)
664 set_value_range_to_varying (vr);
665 else
666 set_value_range (vr, VR_RANGE,
667 build_int_cst (type, 0), build_int_cst (type, 1),
668 vr->equiv);
669 }
670
671
672 /* If abs (min) < abs (max), set VR to [-max, max], if
673 abs (min) >= abs (max), set VR to [-min, min]. */
674
675 static void
676 abs_extent_range (value_range_t *vr, tree min, tree max)
677 {
678 int cmp;
679
680 gcc_assert (TREE_CODE (min) == INTEGER_CST);
681 gcc_assert (TREE_CODE (max) == INTEGER_CST);
682 gcc_assert (INTEGRAL_TYPE_P (TREE_TYPE (min)));
683 gcc_assert (!TYPE_UNSIGNED (TREE_TYPE (min)));
684 min = fold_unary (ABS_EXPR, TREE_TYPE (min), min);
685 max = fold_unary (ABS_EXPR, TREE_TYPE (max), max);
686 if (TREE_OVERFLOW (min) || TREE_OVERFLOW (max))
687 {
688 set_value_range_to_varying (vr);
689 return;
690 }
691 cmp = compare_values (min, max);
692 if (cmp == -1)
693 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), max);
694 else if (cmp == 0 || cmp == 1)
695 {
696 max = min;
697 min = fold_unary (NEGATE_EXPR, TREE_TYPE (min), min);
698 }
699 else
700 {
701 set_value_range_to_varying (vr);
702 return;
703 }
704 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
705 }
706
707
708 /* Return value range information for VAR.
709
710 If we have no values ranges recorded (ie, VRP is not running), then
711 return NULL. Otherwise create an empty range if none existed for VAR. */
712
713 static value_range_t *
714 get_value_range (const_tree var)
715 {
716 static const struct value_range_d vr_const_varying
717 = { VR_VARYING, NULL_TREE, NULL_TREE, NULL };
718 value_range_t *vr;
719 tree sym;
720 unsigned ver = SSA_NAME_VERSION (var);
721
722 /* If we have no recorded ranges, then return NULL. */
723 if (! vr_value)
724 return NULL;
725
726 /* If we query the range for a new SSA name return an unmodifiable VARYING.
727 We should get here at most from the substitute-and-fold stage which
728 will never try to change values. */
729 if (ver >= num_vr_values)
730 return CONST_CAST (value_range_t *, &vr_const_varying);
731
732 vr = vr_value[ver];
733 if (vr)
734 return vr;
735
736 /* After propagation finished do not allocate new value-ranges. */
737 if (values_propagated)
738 return CONST_CAST (value_range_t *, &vr_const_varying);
739
740 /* Create a default value range. */
741 vr_value[ver] = vr = XCNEW (value_range_t);
742
743 /* Defer allocating the equivalence set. */
744 vr->equiv = NULL;
745
746 /* If VAR is a default definition of a parameter, the variable can
747 take any value in VAR's type. */
748 if (SSA_NAME_IS_DEFAULT_DEF (var))
749 {
750 sym = SSA_NAME_VAR (var);
751 if (TREE_CODE (sym) == PARM_DECL)
752 {
753 /* Try to use the "nonnull" attribute to create ~[0, 0]
754 anti-ranges for pointers. Note that this is only valid with
755 default definitions of PARM_DECLs. */
756 if (POINTER_TYPE_P (TREE_TYPE (sym))
757 && nonnull_arg_p (sym))
758 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
759 else
760 set_value_range_to_varying (vr);
761 }
762 else if (TREE_CODE (sym) == RESULT_DECL
763 && DECL_BY_REFERENCE (sym))
764 set_value_range_to_nonnull (vr, TREE_TYPE (sym));
765 }
766
767 return vr;
768 }
769
770 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
771
772 static inline bool
773 vrp_operand_equal_p (const_tree val1, const_tree val2)
774 {
775 if (val1 == val2)
776 return true;
777 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
778 return false;
779 if (is_overflow_infinity (val1))
780 return is_overflow_infinity (val2);
781 return true;
782 }
783
784 /* Return true, if the bitmaps B1 and B2 are equal. */
785
786 static inline bool
787 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
788 {
789 return (b1 == b2
790 || ((!b1 || bitmap_empty_p (b1))
791 && (!b2 || bitmap_empty_p (b2)))
792 || (b1 && b2
793 && bitmap_equal_p (b1, b2)));
794 }
795
796 /* Update the value range and equivalence set for variable VAR to
797 NEW_VR. Return true if NEW_VR is different from VAR's previous
798 value.
799
800 NOTE: This function assumes that NEW_VR is a temporary value range
801 object created for the sole purpose of updating VAR's range. The
802 storage used by the equivalence set from NEW_VR will be freed by
803 this function. Do not call update_value_range when NEW_VR
804 is the range object associated with another SSA name. */
805
806 static inline bool
807 update_value_range (const_tree var, value_range_t *new_vr)
808 {
809 value_range_t *old_vr;
810 bool is_new;
811
812 /* Update the value range, if necessary. */
813 old_vr = get_value_range (var);
814 is_new = old_vr->type != new_vr->type
815 || !vrp_operand_equal_p (old_vr->min, new_vr->min)
816 || !vrp_operand_equal_p (old_vr->max, new_vr->max)
817 || !vrp_bitmap_equal_p (old_vr->equiv, new_vr->equiv);
818
819 if (is_new)
820 {
821 /* Do not allow transitions up the lattice. The following
822 is slightly more awkward than just new_vr->type < old_vr->type
823 because VR_RANGE and VR_ANTI_RANGE need to be considered
824 the same. We may not have is_new when transitioning to
825 UNDEFINED or from VARYING. */
826 if (new_vr->type == VR_UNDEFINED
827 || old_vr->type == VR_VARYING)
828 set_value_range_to_varying (old_vr);
829 else
830 set_value_range (old_vr, new_vr->type, new_vr->min, new_vr->max,
831 new_vr->equiv);
832 }
833
834 BITMAP_FREE (new_vr->equiv);
835
836 return is_new;
837 }
838
839
840 /* Add VAR and VAR's equivalence set to EQUIV. This is the central
841 point where equivalence processing can be turned on/off. */
842
843 static void
844 add_equivalence (bitmap *equiv, const_tree var)
845 {
846 unsigned ver = SSA_NAME_VERSION (var);
847 value_range_t *vr = vr_value[ver];
848
849 if (*equiv == NULL)
850 *equiv = BITMAP_ALLOC (NULL);
851 bitmap_set_bit (*equiv, ver);
852 if (vr && vr->equiv)
853 bitmap_ior_into (*equiv, vr->equiv);
854 }
855
856
857 /* Return true if VR is ~[0, 0]. */
858
859 static inline bool
860 range_is_nonnull (value_range_t *vr)
861 {
862 return vr->type == VR_ANTI_RANGE
863 && integer_zerop (vr->min)
864 && integer_zerop (vr->max);
865 }
866
867
868 /* Return true if VR is [0, 0]. */
869
870 static inline bool
871 range_is_null (value_range_t *vr)
872 {
873 return vr->type == VR_RANGE
874 && integer_zerop (vr->min)
875 && integer_zerop (vr->max);
876 }
877
878 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
879 a singleton. */
880
881 static inline bool
882 range_int_cst_p (value_range_t *vr)
883 {
884 return (vr->type == VR_RANGE
885 && TREE_CODE (vr->max) == INTEGER_CST
886 && TREE_CODE (vr->min) == INTEGER_CST);
887 }
888
889 /* Return true if VR is a INTEGER_CST singleton. */
890
891 static inline bool
892 range_int_cst_singleton_p (value_range_t *vr)
893 {
894 return (range_int_cst_p (vr)
895 && !TREE_OVERFLOW (vr->min)
896 && !TREE_OVERFLOW (vr->max)
897 && tree_int_cst_equal (vr->min, vr->max));
898 }
899
900 /* Return true if value range VR involves at least one symbol. */
901
902 static inline bool
903 symbolic_range_p (value_range_t *vr)
904 {
905 return (!is_gimple_min_invariant (vr->min)
906 || !is_gimple_min_invariant (vr->max));
907 }
908
909 /* Return true if value range VR uses an overflow infinity. */
910
911 static inline bool
912 overflow_infinity_range_p (value_range_t *vr)
913 {
914 return (vr->type == VR_RANGE
915 && (is_overflow_infinity (vr->min)
916 || is_overflow_infinity (vr->max)));
917 }
918
919 /* Return false if we can not make a valid comparison based on VR;
920 this will be the case if it uses an overflow infinity and overflow
921 is not undefined (i.e., -fno-strict-overflow is in effect).
922 Otherwise return true, and set *STRICT_OVERFLOW_P to true if VR
923 uses an overflow infinity. */
924
925 static bool
926 usable_range_p (value_range_t *vr, bool *strict_overflow_p)
927 {
928 gcc_assert (vr->type == VR_RANGE);
929 if (is_overflow_infinity (vr->min))
930 {
931 *strict_overflow_p = true;
932 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->min)))
933 return false;
934 }
935 if (is_overflow_infinity (vr->max))
936 {
937 *strict_overflow_p = true;
938 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (vr->max)))
939 return false;
940 }
941 return true;
942 }
943
944
945 /* Return true if the result of assignment STMT is know to be non-negative.
946 If the return value is based on the assumption that signed overflow is
947 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
948 *STRICT_OVERFLOW_P.*/
949
950 static bool
951 gimple_assign_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
952 {
953 enum tree_code code = gimple_assign_rhs_code (stmt);
954 switch (get_gimple_rhs_class (code))
955 {
956 case GIMPLE_UNARY_RHS:
957 return tree_unary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
958 gimple_expr_type (stmt),
959 gimple_assign_rhs1 (stmt),
960 strict_overflow_p);
961 case GIMPLE_BINARY_RHS:
962 return tree_binary_nonnegative_warnv_p (gimple_assign_rhs_code (stmt),
963 gimple_expr_type (stmt),
964 gimple_assign_rhs1 (stmt),
965 gimple_assign_rhs2 (stmt),
966 strict_overflow_p);
967 case GIMPLE_TERNARY_RHS:
968 return false;
969 case GIMPLE_SINGLE_RHS:
970 return tree_single_nonnegative_warnv_p (gimple_assign_rhs1 (stmt),
971 strict_overflow_p);
972 case GIMPLE_INVALID_RHS:
973 gcc_unreachable ();
974 default:
975 gcc_unreachable ();
976 }
977 }
978
979 /* Return true if return value of call STMT is know to be non-negative.
980 If the return value is based on the assumption that signed overflow is
981 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
982 *STRICT_OVERFLOW_P.*/
983
984 static bool
985 gimple_call_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
986 {
987 tree arg0 = gimple_call_num_args (stmt) > 0 ?
988 gimple_call_arg (stmt, 0) : NULL_TREE;
989 tree arg1 = gimple_call_num_args (stmt) > 1 ?
990 gimple_call_arg (stmt, 1) : NULL_TREE;
991
992 return tree_call_nonnegative_warnv_p (gimple_expr_type (stmt),
993 gimple_call_fndecl (stmt),
994 arg0,
995 arg1,
996 strict_overflow_p);
997 }
998
999 /* Return true if STMT is know to to compute a non-negative value.
1000 If the return value is based on the assumption that signed overflow is
1001 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1002 *STRICT_OVERFLOW_P.*/
1003
1004 static bool
1005 gimple_stmt_nonnegative_warnv_p (gimple stmt, bool *strict_overflow_p)
1006 {
1007 switch (gimple_code (stmt))
1008 {
1009 case GIMPLE_ASSIGN:
1010 return gimple_assign_nonnegative_warnv_p (stmt, strict_overflow_p);
1011 case GIMPLE_CALL:
1012 return gimple_call_nonnegative_warnv_p (stmt, strict_overflow_p);
1013 default:
1014 gcc_unreachable ();
1015 }
1016 }
1017
1018 /* Return true if the result of assignment STMT is know to be non-zero.
1019 If the return value is based on the assumption that signed overflow is
1020 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1021 *STRICT_OVERFLOW_P.*/
1022
1023 static bool
1024 gimple_assign_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1025 {
1026 enum tree_code code = gimple_assign_rhs_code (stmt);
1027 switch (get_gimple_rhs_class (code))
1028 {
1029 case GIMPLE_UNARY_RHS:
1030 return tree_unary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1031 gimple_expr_type (stmt),
1032 gimple_assign_rhs1 (stmt),
1033 strict_overflow_p);
1034 case GIMPLE_BINARY_RHS:
1035 return tree_binary_nonzero_warnv_p (gimple_assign_rhs_code (stmt),
1036 gimple_expr_type (stmt),
1037 gimple_assign_rhs1 (stmt),
1038 gimple_assign_rhs2 (stmt),
1039 strict_overflow_p);
1040 case GIMPLE_TERNARY_RHS:
1041 return false;
1042 case GIMPLE_SINGLE_RHS:
1043 return tree_single_nonzero_warnv_p (gimple_assign_rhs1 (stmt),
1044 strict_overflow_p);
1045 case GIMPLE_INVALID_RHS:
1046 gcc_unreachable ();
1047 default:
1048 gcc_unreachable ();
1049 }
1050 }
1051
1052 /* Return true if STMT is known to compute a non-zero value.
1053 If the return value is based on the assumption that signed overflow is
1054 undefined, set *STRICT_OVERFLOW_P to true; otherwise, don't change
1055 *STRICT_OVERFLOW_P.*/
1056
1057 static bool
1058 gimple_stmt_nonzero_warnv_p (gimple stmt, bool *strict_overflow_p)
1059 {
1060 switch (gimple_code (stmt))
1061 {
1062 case GIMPLE_ASSIGN:
1063 return gimple_assign_nonzero_warnv_p (stmt, strict_overflow_p);
1064 case GIMPLE_CALL:
1065 {
1066 tree fndecl = gimple_call_fndecl (stmt);
1067 if (!fndecl) return false;
1068 if (flag_delete_null_pointer_checks && !flag_check_new
1069 && DECL_IS_OPERATOR_NEW (fndecl)
1070 && !TREE_NOTHROW (fndecl))
1071 return true;
1072 if (flag_delete_null_pointer_checks &&
1073 lookup_attribute ("returns_nonnull",
1074 TYPE_ATTRIBUTES (gimple_call_fntype (stmt))))
1075 return true;
1076 return gimple_alloca_call_p (stmt);
1077 }
1078 default:
1079 gcc_unreachable ();
1080 }
1081 }
1082
1083 /* Like tree_expr_nonzero_warnv_p, but this function uses value ranges
1084 obtained so far. */
1085
1086 static bool
1087 vrp_stmt_computes_nonzero (gimple stmt, bool *strict_overflow_p)
1088 {
1089 if (gimple_stmt_nonzero_warnv_p (stmt, strict_overflow_p))
1090 return true;
1091
1092 /* If we have an expression of the form &X->a, then the expression
1093 is nonnull if X is nonnull. */
1094 if (is_gimple_assign (stmt)
1095 && gimple_assign_rhs_code (stmt) == ADDR_EXPR)
1096 {
1097 tree expr = gimple_assign_rhs1 (stmt);
1098 tree base = get_base_address (TREE_OPERAND (expr, 0));
1099
1100 if (base != NULL_TREE
1101 && TREE_CODE (base) == MEM_REF
1102 && TREE_CODE (TREE_OPERAND (base, 0)) == SSA_NAME)
1103 {
1104 value_range_t *vr = get_value_range (TREE_OPERAND (base, 0));
1105 if (range_is_nonnull (vr))
1106 return true;
1107 }
1108 }
1109
1110 return false;
1111 }
1112
1113 /* Returns true if EXPR is a valid value (as expected by compare_values) --
1114 a gimple invariant, or SSA_NAME +- CST. */
1115
1116 static bool
1117 valid_value_p (tree expr)
1118 {
1119 if (TREE_CODE (expr) == SSA_NAME)
1120 return true;
1121
1122 if (TREE_CODE (expr) == PLUS_EXPR
1123 || TREE_CODE (expr) == MINUS_EXPR)
1124 return (TREE_CODE (TREE_OPERAND (expr, 0)) == SSA_NAME
1125 && TREE_CODE (TREE_OPERAND (expr, 1)) == INTEGER_CST);
1126
1127 return is_gimple_min_invariant (expr);
1128 }
1129
1130 /* Return
1131 1 if VAL < VAL2
1132 0 if !(VAL < VAL2)
1133 -2 if those are incomparable. */
1134 static inline int
1135 operand_less_p (tree val, tree val2)
1136 {
1137 /* LT is folded faster than GE and others. Inline the common case. */
1138 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
1139 {
1140 if (TYPE_UNSIGNED (TREE_TYPE (val)))
1141 return INT_CST_LT_UNSIGNED (val, val2);
1142 else
1143 {
1144 if (INT_CST_LT (val, val2))
1145 return 1;
1146 }
1147 }
1148 else
1149 {
1150 tree tcmp;
1151
1152 fold_defer_overflow_warnings ();
1153
1154 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
1155
1156 fold_undefer_and_ignore_overflow_warnings ();
1157
1158 if (!tcmp
1159 || TREE_CODE (tcmp) != INTEGER_CST)
1160 return -2;
1161
1162 if (!integer_zerop (tcmp))
1163 return 1;
1164 }
1165
1166 /* val >= val2, not considering overflow infinity. */
1167 if (is_negative_overflow_infinity (val))
1168 return is_negative_overflow_infinity (val2) ? 0 : 1;
1169 else if (is_positive_overflow_infinity (val2))
1170 return is_positive_overflow_infinity (val) ? 0 : 1;
1171
1172 return 0;
1173 }
1174
1175 /* Compare two values VAL1 and VAL2. Return
1176
1177 -2 if VAL1 and VAL2 cannot be compared at compile-time,
1178 -1 if VAL1 < VAL2,
1179 0 if VAL1 == VAL2,
1180 +1 if VAL1 > VAL2, and
1181 +2 if VAL1 != VAL2
1182
1183 This is similar to tree_int_cst_compare but supports pointer values
1184 and values that cannot be compared at compile time.
1185
1186 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
1187 true if the return value is only valid if we assume that signed
1188 overflow is undefined. */
1189
1190 static int
1191 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
1192 {
1193 if (val1 == val2)
1194 return 0;
1195
1196 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
1197 both integers. */
1198 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
1199 == POINTER_TYPE_P (TREE_TYPE (val2)));
1200 /* Convert the two values into the same type. This is needed because
1201 sizetype causes sign extension even for unsigned types. */
1202 val2 = fold_convert (TREE_TYPE (val1), val2);
1203 STRIP_USELESS_TYPE_CONVERSION (val2);
1204
1205 if ((TREE_CODE (val1) == SSA_NAME
1206 || TREE_CODE (val1) == PLUS_EXPR
1207 || TREE_CODE (val1) == MINUS_EXPR)
1208 && (TREE_CODE (val2) == SSA_NAME
1209 || TREE_CODE (val2) == PLUS_EXPR
1210 || TREE_CODE (val2) == MINUS_EXPR))
1211 {
1212 tree n1, c1, n2, c2;
1213 enum tree_code code1, code2;
1214
1215 /* If VAL1 and VAL2 are of the form 'NAME [+-] CST' or 'NAME',
1216 return -1 or +1 accordingly. If VAL1 and VAL2 don't use the
1217 same name, return -2. */
1218 if (TREE_CODE (val1) == SSA_NAME)
1219 {
1220 code1 = SSA_NAME;
1221 n1 = val1;
1222 c1 = NULL_TREE;
1223 }
1224 else
1225 {
1226 code1 = TREE_CODE (val1);
1227 n1 = TREE_OPERAND (val1, 0);
1228 c1 = TREE_OPERAND (val1, 1);
1229 if (tree_int_cst_sgn (c1) == -1)
1230 {
1231 if (is_negative_overflow_infinity (c1))
1232 return -2;
1233 c1 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c1), c1);
1234 if (!c1)
1235 return -2;
1236 code1 = code1 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1237 }
1238 }
1239
1240 if (TREE_CODE (val2) == SSA_NAME)
1241 {
1242 code2 = SSA_NAME;
1243 n2 = val2;
1244 c2 = NULL_TREE;
1245 }
1246 else
1247 {
1248 code2 = TREE_CODE (val2);
1249 n2 = TREE_OPERAND (val2, 0);
1250 c2 = TREE_OPERAND (val2, 1);
1251 if (tree_int_cst_sgn (c2) == -1)
1252 {
1253 if (is_negative_overflow_infinity (c2))
1254 return -2;
1255 c2 = fold_unary_to_constant (NEGATE_EXPR, TREE_TYPE (c2), c2);
1256 if (!c2)
1257 return -2;
1258 code2 = code2 == MINUS_EXPR ? PLUS_EXPR : MINUS_EXPR;
1259 }
1260 }
1261
1262 /* Both values must use the same name. */
1263 if (n1 != n2)
1264 return -2;
1265
1266 if (code1 == SSA_NAME
1267 && code2 == SSA_NAME)
1268 /* NAME == NAME */
1269 return 0;
1270
1271 /* If overflow is defined we cannot simplify more. */
1272 if (!TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1)))
1273 return -2;
1274
1275 if (strict_overflow_p != NULL
1276 && (code1 == SSA_NAME || !TREE_NO_WARNING (val1))
1277 && (code2 == SSA_NAME || !TREE_NO_WARNING (val2)))
1278 *strict_overflow_p = true;
1279
1280 if (code1 == SSA_NAME)
1281 {
1282 if (code2 == PLUS_EXPR)
1283 /* NAME < NAME + CST */
1284 return -1;
1285 else if (code2 == MINUS_EXPR)
1286 /* NAME > NAME - CST */
1287 return 1;
1288 }
1289 else if (code1 == PLUS_EXPR)
1290 {
1291 if (code2 == SSA_NAME)
1292 /* NAME + CST > NAME */
1293 return 1;
1294 else if (code2 == PLUS_EXPR)
1295 /* NAME + CST1 > NAME + CST2, if CST1 > CST2 */
1296 return compare_values_warnv (c1, c2, strict_overflow_p);
1297 else if (code2 == MINUS_EXPR)
1298 /* NAME + CST1 > NAME - CST2 */
1299 return 1;
1300 }
1301 else if (code1 == MINUS_EXPR)
1302 {
1303 if (code2 == SSA_NAME)
1304 /* NAME - CST < NAME */
1305 return -1;
1306 else if (code2 == PLUS_EXPR)
1307 /* NAME - CST1 < NAME + CST2 */
1308 return -1;
1309 else if (code2 == MINUS_EXPR)
1310 /* NAME - CST1 > NAME - CST2, if CST1 < CST2. Notice that
1311 C1 and C2 are swapped in the call to compare_values. */
1312 return compare_values_warnv (c2, c1, strict_overflow_p);
1313 }
1314
1315 gcc_unreachable ();
1316 }
1317
1318 /* We cannot compare non-constants. */
1319 if (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2))
1320 return -2;
1321
1322 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
1323 {
1324 /* We cannot compare overflowed values, except for overflow
1325 infinities. */
1326 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
1327 {
1328 if (strict_overflow_p != NULL)
1329 *strict_overflow_p = true;
1330 if (is_negative_overflow_infinity (val1))
1331 return is_negative_overflow_infinity (val2) ? 0 : -1;
1332 else if (is_negative_overflow_infinity (val2))
1333 return 1;
1334 else if (is_positive_overflow_infinity (val1))
1335 return is_positive_overflow_infinity (val2) ? 0 : 1;
1336 else if (is_positive_overflow_infinity (val2))
1337 return -1;
1338 return -2;
1339 }
1340
1341 return tree_int_cst_compare (val1, val2);
1342 }
1343 else
1344 {
1345 tree t;
1346
1347 /* First see if VAL1 and VAL2 are not the same. */
1348 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1349 return 0;
1350
1351 /* If VAL1 is a lower address than VAL2, return -1. */
1352 if (operand_less_p (val1, val2) == 1)
1353 return -1;
1354
1355 /* If VAL1 is a higher address than VAL2, return +1. */
1356 if (operand_less_p (val2, val1) == 1)
1357 return 1;
1358
1359 /* If VAL1 is different than VAL2, return +2.
1360 For integer constants we either have already returned -1 or 1
1361 or they are equivalent. We still might succeed in proving
1362 something about non-trivial operands. */
1363 if (TREE_CODE (val1) != INTEGER_CST
1364 || TREE_CODE (val2) != INTEGER_CST)
1365 {
1366 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1367 if (t && integer_onep (t))
1368 return 2;
1369 }
1370
1371 return -2;
1372 }
1373 }
1374
1375 /* Compare values like compare_values_warnv, but treat comparisons of
1376 nonconstants which rely on undefined overflow as incomparable. */
1377
1378 static int
1379 compare_values (tree val1, tree val2)
1380 {
1381 bool sop;
1382 int ret;
1383
1384 sop = false;
1385 ret = compare_values_warnv (val1, val2, &sop);
1386 if (sop
1387 && (!is_gimple_min_invariant (val1) || !is_gimple_min_invariant (val2)))
1388 ret = -2;
1389 return ret;
1390 }
1391
1392
1393 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1394 0 if VAL is not inside [MIN, MAX],
1395 -2 if we cannot tell either way.
1396
1397 Benchmark compile/20001226-1.c compilation time after changing this
1398 function. */
1399
1400 static inline int
1401 value_inside_range (tree val, tree min, tree max)
1402 {
1403 int cmp1, cmp2;
1404
1405 cmp1 = operand_less_p (val, min);
1406 if (cmp1 == -2)
1407 return -2;
1408 if (cmp1 == 1)
1409 return 0;
1410
1411 cmp2 = operand_less_p (max, val);
1412 if (cmp2 == -2)
1413 return -2;
1414
1415 return !cmp2;
1416 }
1417
1418
1419 /* Return true if value ranges VR0 and VR1 have a non-empty
1420 intersection.
1421
1422 Benchmark compile/20001226-1.c compilation time after changing this
1423 function.
1424 */
1425
1426 static inline bool
1427 value_ranges_intersect_p (value_range_t *vr0, value_range_t *vr1)
1428 {
1429 /* The value ranges do not intersect if the maximum of the first range is
1430 less than the minimum of the second range or vice versa.
1431 When those relations are unknown, we can't do any better. */
1432 if (operand_less_p (vr0->max, vr1->min) != 0)
1433 return false;
1434 if (operand_less_p (vr1->max, vr0->min) != 0)
1435 return false;
1436 return true;
1437 }
1438
1439
1440 /* Return 1 if [MIN, MAX] includes the value zero, 0 if it does not
1441 include the value zero, -2 if we cannot tell. */
1442
1443 static inline int
1444 range_includes_zero_p (tree min, tree max)
1445 {
1446 tree zero = build_int_cst (TREE_TYPE (min), 0);
1447 return value_inside_range (zero, min, max);
1448 }
1449
1450 /* Return true if *VR is know to only contain nonnegative values. */
1451
1452 static inline bool
1453 value_range_nonnegative_p (value_range_t *vr)
1454 {
1455 /* Testing for VR_ANTI_RANGE is not useful here as any anti-range
1456 which would return a useful value should be encoded as a
1457 VR_RANGE. */
1458 if (vr->type == VR_RANGE)
1459 {
1460 int result = compare_values (vr->min, integer_zero_node);
1461 return (result == 0 || result == 1);
1462 }
1463
1464 return false;
1465 }
1466
1467 /* Return true if T, an SSA_NAME, is known to be nonnegative. Return
1468 false otherwise or if no value range information is available. */
1469
1470 bool
1471 ssa_name_nonnegative_p (const_tree t)
1472 {
1473 value_range_t *vr = get_value_range (t);
1474
1475 if (INTEGRAL_TYPE_P (t)
1476 && TYPE_UNSIGNED (t))
1477 return true;
1478
1479 if (!vr)
1480 return false;
1481
1482 return value_range_nonnegative_p (vr);
1483 }
1484
1485 /* If *VR has a value rante that is a single constant value return that,
1486 otherwise return NULL_TREE. */
1487
1488 static tree
1489 value_range_constant_singleton (value_range_t *vr)
1490 {
1491 if (vr->type == VR_RANGE
1492 && operand_equal_p (vr->min, vr->max, 0)
1493 && is_gimple_min_invariant (vr->min))
1494 return vr->min;
1495
1496 return NULL_TREE;
1497 }
1498
1499 /* If OP has a value range with a single constant value return that,
1500 otherwise return NULL_TREE. This returns OP itself if OP is a
1501 constant. */
1502
1503 static tree
1504 op_with_constant_singleton_value_range (tree op)
1505 {
1506 if (is_gimple_min_invariant (op))
1507 return op;
1508
1509 if (TREE_CODE (op) != SSA_NAME)
1510 return NULL_TREE;
1511
1512 return value_range_constant_singleton (get_value_range (op));
1513 }
1514
1515 /* Return true if op is in a boolean [0, 1] value-range. */
1516
1517 static bool
1518 op_with_boolean_value_range_p (tree op)
1519 {
1520 value_range_t *vr;
1521
1522 if (TYPE_PRECISION (TREE_TYPE (op)) == 1)
1523 return true;
1524
1525 if (integer_zerop (op)
1526 || integer_onep (op))
1527 return true;
1528
1529 if (TREE_CODE (op) != SSA_NAME)
1530 return false;
1531
1532 vr = get_value_range (op);
1533 return (vr->type == VR_RANGE
1534 && integer_zerop (vr->min)
1535 && integer_onep (vr->max));
1536 }
1537
1538 /* Extract value range information from an ASSERT_EXPR EXPR and store
1539 it in *VR_P. */
1540
1541 static void
1542 extract_range_from_assert (value_range_t *vr_p, tree expr)
1543 {
1544 tree var, cond, limit, min, max, type;
1545 value_range_t *limit_vr;
1546 enum tree_code cond_code;
1547
1548 var = ASSERT_EXPR_VAR (expr);
1549 cond = ASSERT_EXPR_COND (expr);
1550
1551 gcc_assert (COMPARISON_CLASS_P (cond));
1552
1553 /* Find VAR in the ASSERT_EXPR conditional. */
1554 if (var == TREE_OPERAND (cond, 0)
1555 || TREE_CODE (TREE_OPERAND (cond, 0)) == PLUS_EXPR
1556 || TREE_CODE (TREE_OPERAND (cond, 0)) == NOP_EXPR)
1557 {
1558 /* If the predicate is of the form VAR COMP LIMIT, then we just
1559 take LIMIT from the RHS and use the same comparison code. */
1560 cond_code = TREE_CODE (cond);
1561 limit = TREE_OPERAND (cond, 1);
1562 cond = TREE_OPERAND (cond, 0);
1563 }
1564 else
1565 {
1566 /* If the predicate is of the form LIMIT COMP VAR, then we need
1567 to flip around the comparison code to create the proper range
1568 for VAR. */
1569 cond_code = swap_tree_comparison (TREE_CODE (cond));
1570 limit = TREE_OPERAND (cond, 0);
1571 cond = TREE_OPERAND (cond, 1);
1572 }
1573
1574 limit = avoid_overflow_infinity (limit);
1575
1576 type = TREE_TYPE (var);
1577 gcc_assert (limit != var);
1578
1579 /* For pointer arithmetic, we only keep track of pointer equality
1580 and inequality. */
1581 if (POINTER_TYPE_P (type) && cond_code != NE_EXPR && cond_code != EQ_EXPR)
1582 {
1583 set_value_range_to_varying (vr_p);
1584 return;
1585 }
1586
1587 /* If LIMIT is another SSA name and LIMIT has a range of its own,
1588 try to use LIMIT's range to avoid creating symbolic ranges
1589 unnecessarily. */
1590 limit_vr = (TREE_CODE (limit) == SSA_NAME) ? get_value_range (limit) : NULL;
1591
1592 /* LIMIT's range is only interesting if it has any useful information. */
1593 if (limit_vr
1594 && (limit_vr->type == VR_UNDEFINED
1595 || limit_vr->type == VR_VARYING
1596 || symbolic_range_p (limit_vr)))
1597 limit_vr = NULL;
1598
1599 /* Initially, the new range has the same set of equivalences of
1600 VAR's range. This will be revised before returning the final
1601 value. Since assertions may be chained via mutually exclusive
1602 predicates, we will need to trim the set of equivalences before
1603 we are done. */
1604 gcc_assert (vr_p->equiv == NULL);
1605 add_equivalence (&vr_p->equiv, var);
1606
1607 /* Extract a new range based on the asserted comparison for VAR and
1608 LIMIT's value range. Notice that if LIMIT has an anti-range, we
1609 will only use it for equality comparisons (EQ_EXPR). For any
1610 other kind of assertion, we cannot derive a range from LIMIT's
1611 anti-range that can be used to describe the new range. For
1612 instance, ASSERT_EXPR <x_2, x_2 <= b_4>. If b_4 is ~[2, 10],
1613 then b_4 takes on the ranges [-INF, 1] and [11, +INF]. There is
1614 no single range for x_2 that could describe LE_EXPR, so we might
1615 as well build the range [b_4, +INF] for it.
1616 One special case we handle is extracting a range from a
1617 range test encoded as (unsigned)var + CST <= limit. */
1618 if (TREE_CODE (cond) == NOP_EXPR
1619 || TREE_CODE (cond) == PLUS_EXPR)
1620 {
1621 if (TREE_CODE (cond) == PLUS_EXPR)
1622 {
1623 min = fold_build1 (NEGATE_EXPR, TREE_TYPE (TREE_OPERAND (cond, 1)),
1624 TREE_OPERAND (cond, 1));
1625 max = int_const_binop (PLUS_EXPR, limit, min);
1626 cond = TREE_OPERAND (cond, 0);
1627 }
1628 else
1629 {
1630 min = build_int_cst (TREE_TYPE (var), 0);
1631 max = limit;
1632 }
1633
1634 /* Make sure to not set TREE_OVERFLOW on the final type
1635 conversion. We are willingly interpreting large positive
1636 unsigned values as negative singed values here. */
1637 min = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (min),
1638 0, false);
1639 max = force_fit_type_double (TREE_TYPE (var), tree_to_double_int (max),
1640 0, false);
1641
1642 /* We can transform a max, min range to an anti-range or
1643 vice-versa. Use set_and_canonicalize_value_range which does
1644 this for us. */
1645 if (cond_code == LE_EXPR)
1646 set_and_canonicalize_value_range (vr_p, VR_RANGE,
1647 min, max, vr_p->equiv);
1648 else if (cond_code == GT_EXPR)
1649 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1650 min, max, vr_p->equiv);
1651 else
1652 gcc_unreachable ();
1653 }
1654 else if (cond_code == EQ_EXPR)
1655 {
1656 enum value_range_type range_type;
1657
1658 if (limit_vr)
1659 {
1660 range_type = limit_vr->type;
1661 min = limit_vr->min;
1662 max = limit_vr->max;
1663 }
1664 else
1665 {
1666 range_type = VR_RANGE;
1667 min = limit;
1668 max = limit;
1669 }
1670
1671 set_value_range (vr_p, range_type, min, max, vr_p->equiv);
1672
1673 /* When asserting the equality VAR == LIMIT and LIMIT is another
1674 SSA name, the new range will also inherit the equivalence set
1675 from LIMIT. */
1676 if (TREE_CODE (limit) == SSA_NAME)
1677 add_equivalence (&vr_p->equiv, limit);
1678 }
1679 else if (cond_code == NE_EXPR)
1680 {
1681 /* As described above, when LIMIT's range is an anti-range and
1682 this assertion is an inequality (NE_EXPR), then we cannot
1683 derive anything from the anti-range. For instance, if
1684 LIMIT's range was ~[0, 0], the assertion 'VAR != LIMIT' does
1685 not imply that VAR's range is [0, 0]. So, in the case of
1686 anti-ranges, we just assert the inequality using LIMIT and
1687 not its anti-range.
1688
1689 If LIMIT_VR is a range, we can only use it to build a new
1690 anti-range if LIMIT_VR is a single-valued range. For
1691 instance, if LIMIT_VR is [0, 1], the predicate
1692 VAR != [0, 1] does not mean that VAR's range is ~[0, 1].
1693 Rather, it means that for value 0 VAR should be ~[0, 0]
1694 and for value 1, VAR should be ~[1, 1]. We cannot
1695 represent these ranges.
1696
1697 The only situation in which we can build a valid
1698 anti-range is when LIMIT_VR is a single-valued range
1699 (i.e., LIMIT_VR->MIN == LIMIT_VR->MAX). In that case,
1700 build the anti-range ~[LIMIT_VR->MIN, LIMIT_VR->MAX]. */
1701 if (limit_vr
1702 && limit_vr->type == VR_RANGE
1703 && compare_values (limit_vr->min, limit_vr->max) == 0)
1704 {
1705 min = limit_vr->min;
1706 max = limit_vr->max;
1707 }
1708 else
1709 {
1710 /* In any other case, we cannot use LIMIT's range to build a
1711 valid anti-range. */
1712 min = max = limit;
1713 }
1714
1715 /* If MIN and MAX cover the whole range for their type, then
1716 just use the original LIMIT. */
1717 if (INTEGRAL_TYPE_P (type)
1718 && vrp_val_is_min (min)
1719 && vrp_val_is_max (max))
1720 min = max = limit;
1721
1722 set_and_canonicalize_value_range (vr_p, VR_ANTI_RANGE,
1723 min, max, vr_p->equiv);
1724 }
1725 else if (cond_code == LE_EXPR || cond_code == LT_EXPR)
1726 {
1727 min = TYPE_MIN_VALUE (type);
1728
1729 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1730 max = limit;
1731 else
1732 {
1733 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1734 range [MIN, N2] for LE_EXPR and [MIN, N2 - 1] for
1735 LT_EXPR. */
1736 max = limit_vr->max;
1737 }
1738
1739 /* If the maximum value forces us to be out of bounds, simply punt.
1740 It would be pointless to try and do anything more since this
1741 all should be optimized away above us. */
1742 if ((cond_code == LT_EXPR
1743 && compare_values (max, min) == 0)
1744 || (CONSTANT_CLASS_P (max) && TREE_OVERFLOW (max)))
1745 set_value_range_to_varying (vr_p);
1746 else
1747 {
1748 /* For LT_EXPR, we create the range [MIN, MAX - 1]. */
1749 if (cond_code == LT_EXPR)
1750 {
1751 if (TYPE_PRECISION (TREE_TYPE (max)) == 1
1752 && !TYPE_UNSIGNED (TREE_TYPE (max)))
1753 max = fold_build2 (PLUS_EXPR, TREE_TYPE (max), max,
1754 build_int_cst (TREE_TYPE (max), -1));
1755 else
1756 max = fold_build2 (MINUS_EXPR, TREE_TYPE (max), max,
1757 build_int_cst (TREE_TYPE (max), 1));
1758 if (EXPR_P (max))
1759 TREE_NO_WARNING (max) = 1;
1760 }
1761
1762 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1763 }
1764 }
1765 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
1766 {
1767 max = TYPE_MAX_VALUE (type);
1768
1769 if (limit_vr == NULL || limit_vr->type == VR_ANTI_RANGE)
1770 min = limit;
1771 else
1772 {
1773 /* If LIMIT_VR is of the form [N1, N2], we need to build the
1774 range [N1, MAX] for GE_EXPR and [N1 + 1, MAX] for
1775 GT_EXPR. */
1776 min = limit_vr->min;
1777 }
1778
1779 /* If the minimum value forces us to be out of bounds, simply punt.
1780 It would be pointless to try and do anything more since this
1781 all should be optimized away above us. */
1782 if ((cond_code == GT_EXPR
1783 && compare_values (min, max) == 0)
1784 || (CONSTANT_CLASS_P (min) && TREE_OVERFLOW (min)))
1785 set_value_range_to_varying (vr_p);
1786 else
1787 {
1788 /* For GT_EXPR, we create the range [MIN + 1, MAX]. */
1789 if (cond_code == GT_EXPR)
1790 {
1791 if (TYPE_PRECISION (TREE_TYPE (min)) == 1
1792 && !TYPE_UNSIGNED (TREE_TYPE (min)))
1793 min = fold_build2 (MINUS_EXPR, TREE_TYPE (min), min,
1794 build_int_cst (TREE_TYPE (min), -1));
1795 else
1796 min = fold_build2 (PLUS_EXPR, TREE_TYPE (min), min,
1797 build_int_cst (TREE_TYPE (min), 1));
1798 if (EXPR_P (min))
1799 TREE_NO_WARNING (min) = 1;
1800 }
1801
1802 set_value_range (vr_p, VR_RANGE, min, max, vr_p->equiv);
1803 }
1804 }
1805 else
1806 gcc_unreachable ();
1807
1808 /* Finally intersect the new range with what we already know about var. */
1809 vrp_intersect_ranges (vr_p, get_value_range (var));
1810 }
1811
1812
1813 /* Extract range information from SSA name VAR and store it in VR. If
1814 VAR has an interesting range, use it. Otherwise, create the
1815 range [VAR, VAR] and return it. This is useful in situations where
1816 we may have conditionals testing values of VARYING names. For
1817 instance,
1818
1819 x_3 = y_5;
1820 if (x_3 > y_5)
1821 ...
1822
1823 Even if y_5 is deemed VARYING, we can determine that x_3 > y_5 is
1824 always false. */
1825
1826 static void
1827 extract_range_from_ssa_name (value_range_t *vr, tree var)
1828 {
1829 value_range_t *var_vr = get_value_range (var);
1830
1831 if (var_vr->type != VR_UNDEFINED && var_vr->type != VR_VARYING)
1832 copy_value_range (vr, var_vr);
1833 else
1834 set_value_range (vr, VR_RANGE, var, var, NULL);
1835
1836 add_equivalence (&vr->equiv, var);
1837 }
1838
1839
1840 /* Wrapper around int_const_binop. If the operation overflows and we
1841 are not using wrapping arithmetic, then adjust the result to be
1842 -INF or +INF depending on CODE, VAL1 and VAL2. This can return
1843 NULL_TREE if we need to use an overflow infinity representation but
1844 the type does not support it. */
1845
1846 static tree
1847 vrp_int_const_binop (enum tree_code code, tree val1, tree val2)
1848 {
1849 tree res;
1850
1851 res = int_const_binop (code, val1, val2);
1852
1853 /* If we are using unsigned arithmetic, operate symbolically
1854 on -INF and +INF as int_const_binop only handles signed overflow. */
1855 if (TYPE_UNSIGNED (TREE_TYPE (val1)))
1856 {
1857 int checkz = compare_values (res, val1);
1858 bool overflow = false;
1859
1860 /* Ensure that res = val1 [+*] val2 >= val1
1861 or that res = val1 - val2 <= val1. */
1862 if ((code == PLUS_EXPR
1863 && !(checkz == 1 || checkz == 0))
1864 || (code == MINUS_EXPR
1865 && !(checkz == 0 || checkz == -1)))
1866 {
1867 overflow = true;
1868 }
1869 /* Checking for multiplication overflow is done by dividing the
1870 output of the multiplication by the first input of the
1871 multiplication. If the result of that division operation is
1872 not equal to the second input of the multiplication, then the
1873 multiplication overflowed. */
1874 else if (code == MULT_EXPR && !integer_zerop (val1))
1875 {
1876 tree tmp = int_const_binop (TRUNC_DIV_EXPR,
1877 res,
1878 val1);
1879 int check = compare_values (tmp, val2);
1880
1881 if (check != 0)
1882 overflow = true;
1883 }
1884
1885 if (overflow)
1886 {
1887 res = copy_node (res);
1888 TREE_OVERFLOW (res) = 1;
1889 }
1890
1891 }
1892 else if (TYPE_OVERFLOW_WRAPS (TREE_TYPE (val1)))
1893 /* If the singed operation wraps then int_const_binop has done
1894 everything we want. */
1895 ;
1896 else if ((TREE_OVERFLOW (res)
1897 && !TREE_OVERFLOW (val1)
1898 && !TREE_OVERFLOW (val2))
1899 || is_overflow_infinity (val1)
1900 || is_overflow_infinity (val2))
1901 {
1902 /* If the operation overflowed but neither VAL1 nor VAL2 are
1903 overflown, return -INF or +INF depending on the operation
1904 and the combination of signs of the operands. */
1905 int sgn1 = tree_int_cst_sgn (val1);
1906 int sgn2 = tree_int_cst_sgn (val2);
1907
1908 if (needs_overflow_infinity (TREE_TYPE (res))
1909 && !supports_overflow_infinity (TREE_TYPE (res)))
1910 return NULL_TREE;
1911
1912 /* We have to punt on adding infinities of different signs,
1913 since we can't tell what the sign of the result should be.
1914 Likewise for subtracting infinities of the same sign. */
1915 if (((code == PLUS_EXPR && sgn1 != sgn2)
1916 || (code == MINUS_EXPR && sgn1 == sgn2))
1917 && is_overflow_infinity (val1)
1918 && is_overflow_infinity (val2))
1919 return NULL_TREE;
1920
1921 /* Don't try to handle division or shifting of infinities. */
1922 if ((code == TRUNC_DIV_EXPR
1923 || code == FLOOR_DIV_EXPR
1924 || code == CEIL_DIV_EXPR
1925 || code == EXACT_DIV_EXPR
1926 || code == ROUND_DIV_EXPR
1927 || code == RSHIFT_EXPR)
1928 && (is_overflow_infinity (val1)
1929 || is_overflow_infinity (val2)))
1930 return NULL_TREE;
1931
1932 /* Notice that we only need to handle the restricted set of
1933 operations handled by extract_range_from_binary_expr.
1934 Among them, only multiplication, addition and subtraction
1935 can yield overflow without overflown operands because we
1936 are working with integral types only... except in the
1937 case VAL1 = -INF and VAL2 = -1 which overflows to +INF
1938 for division too. */
1939
1940 /* For multiplication, the sign of the overflow is given
1941 by the comparison of the signs of the operands. */
1942 if ((code == MULT_EXPR && sgn1 == sgn2)
1943 /* For addition, the operands must be of the same sign
1944 to yield an overflow. Its sign is therefore that
1945 of one of the operands, for example the first. For
1946 infinite operands X + -INF is negative, not positive. */
1947 || (code == PLUS_EXPR
1948 && (sgn1 >= 0
1949 ? !is_negative_overflow_infinity (val2)
1950 : is_positive_overflow_infinity (val2)))
1951 /* For subtraction, non-infinite operands must be of
1952 different signs to yield an overflow. Its sign is
1953 therefore that of the first operand or the opposite of
1954 that of the second operand. A first operand of 0 counts
1955 as positive here, for the corner case 0 - (-INF), which
1956 overflows, but must yield +INF. For infinite operands 0
1957 - INF is negative, not positive. */
1958 || (code == MINUS_EXPR
1959 && (sgn1 >= 0
1960 ? !is_positive_overflow_infinity (val2)
1961 : is_negative_overflow_infinity (val2)))
1962 /* We only get in here with positive shift count, so the
1963 overflow direction is the same as the sign of val1.
1964 Actually rshift does not overflow at all, but we only
1965 handle the case of shifting overflowed -INF and +INF. */
1966 || (code == RSHIFT_EXPR
1967 && sgn1 >= 0)
1968 /* For division, the only case is -INF / -1 = +INF. */
1969 || code == TRUNC_DIV_EXPR
1970 || code == FLOOR_DIV_EXPR
1971 || code == CEIL_DIV_EXPR
1972 || code == EXACT_DIV_EXPR
1973 || code == ROUND_DIV_EXPR)
1974 return (needs_overflow_infinity (TREE_TYPE (res))
1975 ? positive_overflow_infinity (TREE_TYPE (res))
1976 : TYPE_MAX_VALUE (TREE_TYPE (res)));
1977 else
1978 return (needs_overflow_infinity (TREE_TYPE (res))
1979 ? negative_overflow_infinity (TREE_TYPE (res))
1980 : TYPE_MIN_VALUE (TREE_TYPE (res)));
1981 }
1982
1983 return res;
1984 }
1985
1986
1987 /* For range VR compute two double_int bitmasks. In *MAY_BE_NONZERO
1988 bitmask if some bit is unset, it means for all numbers in the range
1989 the bit is 0, otherwise it might be 0 or 1. In *MUST_BE_NONZERO
1990 bitmask if some bit is set, it means for all numbers in the range
1991 the bit is 1, otherwise it might be 0 or 1. */
1992
1993 static bool
1994 zero_nonzero_bits_from_vr (value_range_t *vr,
1995 double_int *may_be_nonzero,
1996 double_int *must_be_nonzero)
1997 {
1998 *may_be_nonzero = double_int_minus_one;
1999 *must_be_nonzero = double_int_zero;
2000 if (!range_int_cst_p (vr)
2001 || TREE_OVERFLOW (vr->min)
2002 || TREE_OVERFLOW (vr->max))
2003 return false;
2004
2005 if (range_int_cst_singleton_p (vr))
2006 {
2007 *may_be_nonzero = tree_to_double_int (vr->min);
2008 *must_be_nonzero = *may_be_nonzero;
2009 }
2010 else if (tree_int_cst_sgn (vr->min) >= 0
2011 || tree_int_cst_sgn (vr->max) < 0)
2012 {
2013 double_int dmin = tree_to_double_int (vr->min);
2014 double_int dmax = tree_to_double_int (vr->max);
2015 double_int xor_mask = dmin ^ dmax;
2016 *may_be_nonzero = dmin | dmax;
2017 *must_be_nonzero = dmin & dmax;
2018 if (xor_mask.high != 0)
2019 {
2020 unsigned HOST_WIDE_INT mask
2021 = ((unsigned HOST_WIDE_INT) 1
2022 << floor_log2 (xor_mask.high)) - 1;
2023 may_be_nonzero->low = ALL_ONES;
2024 may_be_nonzero->high |= mask;
2025 must_be_nonzero->low = 0;
2026 must_be_nonzero->high &= ~mask;
2027 }
2028 else if (xor_mask.low != 0)
2029 {
2030 unsigned HOST_WIDE_INT mask
2031 = ((unsigned HOST_WIDE_INT) 1
2032 << floor_log2 (xor_mask.low)) - 1;
2033 may_be_nonzero->low |= mask;
2034 must_be_nonzero->low &= ~mask;
2035 }
2036 }
2037
2038 return true;
2039 }
2040
2041 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
2042 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
2043 false otherwise. If *AR can be represented with a single range
2044 *VR1 will be VR_UNDEFINED. */
2045
2046 static bool
2047 ranges_from_anti_range (value_range_t *ar,
2048 value_range_t *vr0, value_range_t *vr1)
2049 {
2050 tree type = TREE_TYPE (ar->min);
2051
2052 vr0->type = VR_UNDEFINED;
2053 vr1->type = VR_UNDEFINED;
2054
2055 if (ar->type != VR_ANTI_RANGE
2056 || TREE_CODE (ar->min) != INTEGER_CST
2057 || TREE_CODE (ar->max) != INTEGER_CST
2058 || !vrp_val_min (type)
2059 || !vrp_val_max (type))
2060 return false;
2061
2062 if (!vrp_val_is_min (ar->min))
2063 {
2064 vr0->type = VR_RANGE;
2065 vr0->min = vrp_val_min (type);
2066 vr0->max
2067 = double_int_to_tree (type,
2068 tree_to_double_int (ar->min) - double_int_one);
2069 }
2070 if (!vrp_val_is_max (ar->max))
2071 {
2072 vr1->type = VR_RANGE;
2073 vr1->min
2074 = double_int_to_tree (type,
2075 tree_to_double_int (ar->max) + double_int_one);
2076 vr1->max = vrp_val_max (type);
2077 }
2078 if (vr0->type == VR_UNDEFINED)
2079 {
2080 *vr0 = *vr1;
2081 vr1->type = VR_UNDEFINED;
2082 }
2083
2084 return vr0->type != VR_UNDEFINED;
2085 }
2086
2087 /* Helper to extract a value-range *VR for a multiplicative operation
2088 *VR0 CODE *VR1. */
2089
2090 static void
2091 extract_range_from_multiplicative_op_1 (value_range_t *vr,
2092 enum tree_code code,
2093 value_range_t *vr0, value_range_t *vr1)
2094 {
2095 enum value_range_type type;
2096 tree val[4];
2097 size_t i;
2098 tree min, max;
2099 bool sop;
2100 int cmp;
2101
2102 /* Multiplications, divisions and shifts are a bit tricky to handle,
2103 depending on the mix of signs we have in the two ranges, we
2104 need to operate on different values to get the minimum and
2105 maximum values for the new range. One approach is to figure
2106 out all the variations of range combinations and do the
2107 operations.
2108
2109 However, this involves several calls to compare_values and it
2110 is pretty convoluted. It's simpler to do the 4 operations
2111 (MIN0 OP MIN1, MIN0 OP MAX1, MAX0 OP MIN1 and MAX0 OP MAX0 OP
2112 MAX1) and then figure the smallest and largest values to form
2113 the new range. */
2114 gcc_assert (code == MULT_EXPR
2115 || code == TRUNC_DIV_EXPR
2116 || code == FLOOR_DIV_EXPR
2117 || code == CEIL_DIV_EXPR
2118 || code == EXACT_DIV_EXPR
2119 || code == ROUND_DIV_EXPR
2120 || code == RSHIFT_EXPR
2121 || code == LSHIFT_EXPR);
2122 gcc_assert ((vr0->type == VR_RANGE
2123 || (code == MULT_EXPR && vr0->type == VR_ANTI_RANGE))
2124 && vr0->type == vr1->type);
2125
2126 type = vr0->type;
2127
2128 /* Compute the 4 cross operations. */
2129 sop = false;
2130 val[0] = vrp_int_const_binop (code, vr0->min, vr1->min);
2131 if (val[0] == NULL_TREE)
2132 sop = true;
2133
2134 if (vr1->max == vr1->min)
2135 val[1] = NULL_TREE;
2136 else
2137 {
2138 val[1] = vrp_int_const_binop (code, vr0->min, vr1->max);
2139 if (val[1] == NULL_TREE)
2140 sop = true;
2141 }
2142
2143 if (vr0->max == vr0->min)
2144 val[2] = NULL_TREE;
2145 else
2146 {
2147 val[2] = vrp_int_const_binop (code, vr0->max, vr1->min);
2148 if (val[2] == NULL_TREE)
2149 sop = true;
2150 }
2151
2152 if (vr0->min == vr0->max || vr1->min == vr1->max)
2153 val[3] = NULL_TREE;
2154 else
2155 {
2156 val[3] = vrp_int_const_binop (code, vr0->max, vr1->max);
2157 if (val[3] == NULL_TREE)
2158 sop = true;
2159 }
2160
2161 if (sop)
2162 {
2163 set_value_range_to_varying (vr);
2164 return;
2165 }
2166
2167 /* Set MIN to the minimum of VAL[i] and MAX to the maximum
2168 of VAL[i]. */
2169 min = val[0];
2170 max = val[0];
2171 for (i = 1; i < 4; i++)
2172 {
2173 if (!is_gimple_min_invariant (min)
2174 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2175 || !is_gimple_min_invariant (max)
2176 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2177 break;
2178
2179 if (val[i])
2180 {
2181 if (!is_gimple_min_invariant (val[i])
2182 || (TREE_OVERFLOW (val[i])
2183 && !is_overflow_infinity (val[i])))
2184 {
2185 /* If we found an overflowed value, set MIN and MAX
2186 to it so that we set the resulting range to
2187 VARYING. */
2188 min = max = val[i];
2189 break;
2190 }
2191
2192 if (compare_values (val[i], min) == -1)
2193 min = val[i];
2194
2195 if (compare_values (val[i], max) == 1)
2196 max = val[i];
2197 }
2198 }
2199
2200 /* If either MIN or MAX overflowed, then set the resulting range to
2201 VARYING. But we do accept an overflow infinity
2202 representation. */
2203 if (min == NULL_TREE
2204 || !is_gimple_min_invariant (min)
2205 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
2206 || max == NULL_TREE
2207 || !is_gimple_min_invariant (max)
2208 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
2209 {
2210 set_value_range_to_varying (vr);
2211 return;
2212 }
2213
2214 /* We punt if:
2215 1) [-INF, +INF]
2216 2) [-INF, +-INF(OVF)]
2217 3) [+-INF(OVF), +INF]
2218 4) [+-INF(OVF), +-INF(OVF)]
2219 We learn nothing when we have INF and INF(OVF) on both sides.
2220 Note that we do accept [-INF, -INF] and [+INF, +INF] without
2221 overflow. */
2222 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
2223 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
2224 {
2225 set_value_range_to_varying (vr);
2226 return;
2227 }
2228
2229 cmp = compare_values (min, max);
2230 if (cmp == -2 || cmp == 1)
2231 {
2232 /* If the new range has its limits swapped around (MIN > MAX),
2233 then the operation caused one of them to wrap around, mark
2234 the new range VARYING. */
2235 set_value_range_to_varying (vr);
2236 }
2237 else
2238 set_value_range (vr, type, min, max, NULL);
2239 }
2240
2241 /* Some quadruple precision helpers. */
2242 static int
2243 quad_int_cmp (double_int l0, double_int h0,
2244 double_int l1, double_int h1, bool uns)
2245 {
2246 int c = h0.cmp (h1, uns);
2247 if (c != 0) return c;
2248 return l0.ucmp (l1);
2249 }
2250
2251 static void
2252 quad_int_pair_sort (double_int *l0, double_int *h0,
2253 double_int *l1, double_int *h1, bool uns)
2254 {
2255 if (quad_int_cmp (*l0, *h0, *l1, *h1, uns) > 0)
2256 {
2257 double_int tmp;
2258 tmp = *l0; *l0 = *l1; *l1 = tmp;
2259 tmp = *h0; *h0 = *h1; *h1 = tmp;
2260 }
2261 }
2262
2263 /* Extract range information from a binary operation CODE based on
2264 the ranges of each of its operands, *VR0 and *VR1 with resulting
2265 type EXPR_TYPE. The resulting range is stored in *VR. */
2266
2267 static void
2268 extract_range_from_binary_expr_1 (value_range_t *vr,
2269 enum tree_code code, tree expr_type,
2270 value_range_t *vr0_, value_range_t *vr1_)
2271 {
2272 value_range_t vr0 = *vr0_, vr1 = *vr1_;
2273 value_range_t vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
2274 enum value_range_type type;
2275 tree min = NULL_TREE, max = NULL_TREE;
2276 int cmp;
2277
2278 if (!INTEGRAL_TYPE_P (expr_type)
2279 && !POINTER_TYPE_P (expr_type))
2280 {
2281 set_value_range_to_varying (vr);
2282 return;
2283 }
2284
2285 /* Not all binary expressions can be applied to ranges in a
2286 meaningful way. Handle only arithmetic operations. */
2287 if (code != PLUS_EXPR
2288 && code != MINUS_EXPR
2289 && code != POINTER_PLUS_EXPR
2290 && code != MULT_EXPR
2291 && code != TRUNC_DIV_EXPR
2292 && code != FLOOR_DIV_EXPR
2293 && code != CEIL_DIV_EXPR
2294 && code != EXACT_DIV_EXPR
2295 && code != ROUND_DIV_EXPR
2296 && code != TRUNC_MOD_EXPR
2297 && code != RSHIFT_EXPR
2298 && code != LSHIFT_EXPR
2299 && code != MIN_EXPR
2300 && code != MAX_EXPR
2301 && code != BIT_AND_EXPR
2302 && code != BIT_IOR_EXPR
2303 && code != BIT_XOR_EXPR)
2304 {
2305 set_value_range_to_varying (vr);
2306 return;
2307 }
2308
2309 /* If both ranges are UNDEFINED, so is the result. */
2310 if (vr0.type == VR_UNDEFINED && vr1.type == VR_UNDEFINED)
2311 {
2312 set_value_range_to_undefined (vr);
2313 return;
2314 }
2315 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
2316 code. At some point we may want to special-case operations that
2317 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
2318 operand. */
2319 else if (vr0.type == VR_UNDEFINED)
2320 set_value_range_to_varying (&vr0);
2321 else if (vr1.type == VR_UNDEFINED)
2322 set_value_range_to_varying (&vr1);
2323
2324 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2325 and express ~[] op X as ([]' op X) U ([]'' op X). */
2326 if (vr0.type == VR_ANTI_RANGE
2327 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2328 {
2329 extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
2330 if (vrtem1.type != VR_UNDEFINED)
2331 {
2332 value_range_t vrres = VR_INITIALIZER;
2333 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2334 &vrtem1, vr1_);
2335 vrp_meet (vr, &vrres);
2336 }
2337 return;
2338 }
2339 /* Likewise for X op ~[]. */
2340 if (vr1.type == VR_ANTI_RANGE
2341 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
2342 {
2343 extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
2344 if (vrtem1.type != VR_UNDEFINED)
2345 {
2346 value_range_t vrres = VR_INITIALIZER;
2347 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
2348 vr0_, &vrtem1);
2349 vrp_meet (vr, &vrres);
2350 }
2351 return;
2352 }
2353
2354 /* The type of the resulting value range defaults to VR0.TYPE. */
2355 type = vr0.type;
2356
2357 /* Refuse to operate on VARYING ranges, ranges of different kinds
2358 and symbolic ranges. As an exception, we allow BIT_AND_EXPR
2359 because we may be able to derive a useful range even if one of
2360 the operands is VR_VARYING or symbolic range. Similarly for
2361 divisions. TODO, we may be able to derive anti-ranges in
2362 some cases. */
2363 if (code != BIT_AND_EXPR
2364 && code != BIT_IOR_EXPR
2365 && code != TRUNC_DIV_EXPR
2366 && code != FLOOR_DIV_EXPR
2367 && code != CEIL_DIV_EXPR
2368 && code != EXACT_DIV_EXPR
2369 && code != ROUND_DIV_EXPR
2370 && code != TRUNC_MOD_EXPR
2371 && code != MIN_EXPR
2372 && code != MAX_EXPR
2373 && (vr0.type == VR_VARYING
2374 || vr1.type == VR_VARYING
2375 || vr0.type != vr1.type
2376 || symbolic_range_p (&vr0)
2377 || symbolic_range_p (&vr1)))
2378 {
2379 set_value_range_to_varying (vr);
2380 return;
2381 }
2382
2383 /* Now evaluate the expression to determine the new range. */
2384 if (POINTER_TYPE_P (expr_type))
2385 {
2386 if (code == MIN_EXPR || code == MAX_EXPR)
2387 {
2388 /* For MIN/MAX expressions with pointers, we only care about
2389 nullness, if both are non null, then the result is nonnull.
2390 If both are null, then the result is null. Otherwise they
2391 are varying. */
2392 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2393 set_value_range_to_nonnull (vr, expr_type);
2394 else if (range_is_null (&vr0) && range_is_null (&vr1))
2395 set_value_range_to_null (vr, expr_type);
2396 else
2397 set_value_range_to_varying (vr);
2398 }
2399 else if (code == POINTER_PLUS_EXPR)
2400 {
2401 /* For pointer types, we are really only interested in asserting
2402 whether the expression evaluates to non-NULL. */
2403 if (range_is_nonnull (&vr0) || range_is_nonnull (&vr1))
2404 set_value_range_to_nonnull (vr, expr_type);
2405 else if (range_is_null (&vr0) && range_is_null (&vr1))
2406 set_value_range_to_null (vr, expr_type);
2407 else
2408 set_value_range_to_varying (vr);
2409 }
2410 else if (code == BIT_AND_EXPR)
2411 {
2412 /* For pointer types, we are really only interested in asserting
2413 whether the expression evaluates to non-NULL. */
2414 if (range_is_nonnull (&vr0) && range_is_nonnull (&vr1))
2415 set_value_range_to_nonnull (vr, expr_type);
2416 else if (range_is_null (&vr0) || range_is_null (&vr1))
2417 set_value_range_to_null (vr, expr_type);
2418 else
2419 set_value_range_to_varying (vr);
2420 }
2421 else
2422 set_value_range_to_varying (vr);
2423
2424 return;
2425 }
2426
2427 /* For integer ranges, apply the operation to each end of the
2428 range and see what we end up with. */
2429 if (code == PLUS_EXPR || code == MINUS_EXPR)
2430 {
2431 /* If we have a PLUS_EXPR with two VR_RANGE integer constant
2432 ranges compute the precise range for such case if possible. */
2433 if (range_int_cst_p (&vr0)
2434 && range_int_cst_p (&vr1)
2435 /* We need as many bits as the possibly unsigned inputs. */
2436 && TYPE_PRECISION (expr_type) <= HOST_BITS_PER_DOUBLE_INT)
2437 {
2438 double_int min0 = tree_to_double_int (vr0.min);
2439 double_int max0 = tree_to_double_int (vr0.max);
2440 double_int min1 = tree_to_double_int (vr1.min);
2441 double_int max1 = tree_to_double_int (vr1.max);
2442 bool uns = TYPE_UNSIGNED (expr_type);
2443 double_int type_min
2444 = double_int::min_value (TYPE_PRECISION (expr_type), uns);
2445 double_int type_max
2446 = double_int::max_value (TYPE_PRECISION (expr_type), uns);
2447 double_int dmin, dmax;
2448 int min_ovf = 0;
2449 int max_ovf = 0;
2450
2451 if (code == PLUS_EXPR)
2452 {
2453 dmin = min0 + min1;
2454 dmax = max0 + max1;
2455
2456 /* Check for overflow in double_int. */
2457 if (min1.cmp (double_int_zero, uns) != dmin.cmp (min0, uns))
2458 min_ovf = min0.cmp (dmin, uns);
2459 if (max1.cmp (double_int_zero, uns) != dmax.cmp (max0, uns))
2460 max_ovf = max0.cmp (dmax, uns);
2461 }
2462 else /* if (code == MINUS_EXPR) */
2463 {
2464 dmin = min0 - max1;
2465 dmax = max0 - min1;
2466
2467 if (double_int_zero.cmp (max1, uns) != dmin.cmp (min0, uns))
2468 min_ovf = min0.cmp (max1, uns);
2469 if (double_int_zero.cmp (min1, uns) != dmax.cmp (max0, uns))
2470 max_ovf = max0.cmp (min1, uns);
2471 }
2472
2473 /* For non-wrapping arithmetic look at possibly smaller
2474 value-ranges of the type. */
2475 if (!TYPE_OVERFLOW_WRAPS (expr_type))
2476 {
2477 if (vrp_val_min (expr_type))
2478 type_min = tree_to_double_int (vrp_val_min (expr_type));
2479 if (vrp_val_max (expr_type))
2480 type_max = tree_to_double_int (vrp_val_max (expr_type));
2481 }
2482
2483 /* Check for type overflow. */
2484 if (min_ovf == 0)
2485 {
2486 if (dmin.cmp (type_min, uns) == -1)
2487 min_ovf = -1;
2488 else if (dmin.cmp (type_max, uns) == 1)
2489 min_ovf = 1;
2490 }
2491 if (max_ovf == 0)
2492 {
2493 if (dmax.cmp (type_min, uns) == -1)
2494 max_ovf = -1;
2495 else if (dmax.cmp (type_max, uns) == 1)
2496 max_ovf = 1;
2497 }
2498
2499 if (TYPE_OVERFLOW_WRAPS (expr_type))
2500 {
2501 /* If overflow wraps, truncate the values and adjust the
2502 range kind and bounds appropriately. */
2503 double_int tmin
2504 = dmin.ext (TYPE_PRECISION (expr_type), uns);
2505 double_int tmax
2506 = dmax.ext (TYPE_PRECISION (expr_type), uns);
2507 if (min_ovf == max_ovf)
2508 {
2509 /* No overflow or both overflow or underflow. The
2510 range kind stays VR_RANGE. */
2511 min = double_int_to_tree (expr_type, tmin);
2512 max = double_int_to_tree (expr_type, tmax);
2513 }
2514 else if (min_ovf == -1
2515 && max_ovf == 1)
2516 {
2517 /* Underflow and overflow, drop to VR_VARYING. */
2518 set_value_range_to_varying (vr);
2519 return;
2520 }
2521 else
2522 {
2523 /* Min underflow or max overflow. The range kind
2524 changes to VR_ANTI_RANGE. */
2525 bool covers = false;
2526 double_int tem = tmin;
2527 gcc_assert ((min_ovf == -1 && max_ovf == 0)
2528 || (max_ovf == 1 && min_ovf == 0));
2529 type = VR_ANTI_RANGE;
2530 tmin = tmax + double_int_one;
2531 if (tmin.cmp (tmax, uns) < 0)
2532 covers = true;
2533 tmax = tem + double_int_minus_one;
2534 if (tmax.cmp (tem, uns) > 0)
2535 covers = true;
2536 /* If the anti-range would cover nothing, drop to varying.
2537 Likewise if the anti-range bounds are outside of the
2538 types values. */
2539 if (covers || tmin.cmp (tmax, uns) > 0)
2540 {
2541 set_value_range_to_varying (vr);
2542 return;
2543 }
2544 min = double_int_to_tree (expr_type, tmin);
2545 max = double_int_to_tree (expr_type, tmax);
2546 }
2547 }
2548 else
2549 {
2550 /* If overflow does not wrap, saturate to the types min/max
2551 value. */
2552 if (min_ovf == -1)
2553 {
2554 if (needs_overflow_infinity (expr_type)
2555 && supports_overflow_infinity (expr_type))
2556 min = negative_overflow_infinity (expr_type);
2557 else
2558 min = double_int_to_tree (expr_type, type_min);
2559 }
2560 else if (min_ovf == 1)
2561 {
2562 if (needs_overflow_infinity (expr_type)
2563 && supports_overflow_infinity (expr_type))
2564 min = positive_overflow_infinity (expr_type);
2565 else
2566 min = double_int_to_tree (expr_type, type_max);
2567 }
2568 else
2569 min = double_int_to_tree (expr_type, dmin);
2570
2571 if (max_ovf == -1)
2572 {
2573 if (needs_overflow_infinity (expr_type)
2574 && supports_overflow_infinity (expr_type))
2575 max = negative_overflow_infinity (expr_type);
2576 else
2577 max = double_int_to_tree (expr_type, type_min);
2578 }
2579 else if (max_ovf == 1)
2580 {
2581 if (needs_overflow_infinity (expr_type)
2582 && supports_overflow_infinity (expr_type))
2583 max = positive_overflow_infinity (expr_type);
2584 else
2585 max = double_int_to_tree (expr_type, type_max);
2586 }
2587 else
2588 max = double_int_to_tree (expr_type, dmax);
2589 }
2590 if (needs_overflow_infinity (expr_type)
2591 && supports_overflow_infinity (expr_type))
2592 {
2593 if (is_negative_overflow_infinity (vr0.min)
2594 || (code == PLUS_EXPR
2595 ? is_negative_overflow_infinity (vr1.min)
2596 : is_positive_overflow_infinity (vr1.max)))
2597 min = negative_overflow_infinity (expr_type);
2598 if (is_positive_overflow_infinity (vr0.max)
2599 || (code == PLUS_EXPR
2600 ? is_positive_overflow_infinity (vr1.max)
2601 : is_negative_overflow_infinity (vr1.min)))
2602 max = positive_overflow_infinity (expr_type);
2603 }
2604 }
2605 else
2606 {
2607 /* For other cases, for example if we have a PLUS_EXPR with two
2608 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
2609 to compute a precise range for such a case.
2610 ??? General even mixed range kind operations can be expressed
2611 by for example transforming ~[3, 5] + [1, 2] to range-only
2612 operations and a union primitive:
2613 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
2614 [-INF+1, 4] U [6, +INF(OVF)]
2615 though usually the union is not exactly representable with
2616 a single range or anti-range as the above is
2617 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
2618 but one could use a scheme similar to equivalences for this. */
2619 set_value_range_to_varying (vr);
2620 return;
2621 }
2622 }
2623 else if (code == MIN_EXPR
2624 || code == MAX_EXPR)
2625 {
2626 if (vr0.type == VR_RANGE
2627 && !symbolic_range_p (&vr0))
2628 {
2629 type = VR_RANGE;
2630 if (vr1.type == VR_RANGE
2631 && !symbolic_range_p (&vr1))
2632 {
2633 /* For operations that make the resulting range directly
2634 proportional to the original ranges, apply the operation to
2635 the same end of each range. */
2636 min = vrp_int_const_binop (code, vr0.min, vr1.min);
2637 max = vrp_int_const_binop (code, vr0.max, vr1.max);
2638 }
2639 else if (code == MIN_EXPR)
2640 {
2641 min = vrp_val_min (expr_type);
2642 max = vr0.max;
2643 }
2644 else if (code == MAX_EXPR)
2645 {
2646 min = vr0.min;
2647 max = vrp_val_max (expr_type);
2648 }
2649 }
2650 else if (vr1.type == VR_RANGE
2651 && !symbolic_range_p (&vr1))
2652 {
2653 type = VR_RANGE;
2654 if (code == MIN_EXPR)
2655 {
2656 min = vrp_val_min (expr_type);
2657 max = vr1.max;
2658 }
2659 else if (code == MAX_EXPR)
2660 {
2661 min = vr1.min;
2662 max = vrp_val_max (expr_type);
2663 }
2664 }
2665 else
2666 {
2667 set_value_range_to_varying (vr);
2668 return;
2669 }
2670 }
2671 else if (code == MULT_EXPR)
2672 {
2673 /* Fancy code so that with unsigned, [-3,-1]*[-3,-1] does not
2674 drop to varying. */
2675 if (range_int_cst_p (&vr0)
2676 && range_int_cst_p (&vr1)
2677 && TYPE_OVERFLOW_WRAPS (expr_type))
2678 {
2679 double_int min0, max0, min1, max1, sizem1, size;
2680 double_int prod0l, prod0h, prod1l, prod1h,
2681 prod2l, prod2h, prod3l, prod3h;
2682 bool uns0, uns1, uns;
2683
2684 sizem1 = double_int::max_value (TYPE_PRECISION (expr_type), true);
2685 size = sizem1 + double_int_one;
2686
2687 min0 = tree_to_double_int (vr0.min);
2688 max0 = tree_to_double_int (vr0.max);
2689 min1 = tree_to_double_int (vr1.min);
2690 max1 = tree_to_double_int (vr1.max);
2691
2692 uns0 = TYPE_UNSIGNED (expr_type);
2693 uns1 = uns0;
2694
2695 /* Canonicalize the intervals. */
2696 if (TYPE_UNSIGNED (expr_type))
2697 {
2698 double_int min2 = size - min0;
2699 if (!min2.is_zero () && min2.cmp (max0, true) < 0)
2700 {
2701 min0 = -min2;
2702 max0 -= size;
2703 uns0 = false;
2704 }
2705
2706 min2 = size - min1;
2707 if (!min2.is_zero () && min2.cmp (max1, true) < 0)
2708 {
2709 min1 = -min2;
2710 max1 -= size;
2711 uns1 = false;
2712 }
2713 }
2714 uns = uns0 & uns1;
2715
2716 bool overflow;
2717 prod0l = min0.wide_mul_with_sign (min1, true, &prod0h, &overflow);
2718 if (!uns0 && min0.is_negative ())
2719 prod0h -= min1;
2720 if (!uns1 && min1.is_negative ())
2721 prod0h -= min0;
2722
2723 prod1l = min0.wide_mul_with_sign (max1, true, &prod1h, &overflow);
2724 if (!uns0 && min0.is_negative ())
2725 prod1h -= max1;
2726 if (!uns1 && max1.is_negative ())
2727 prod1h -= min0;
2728
2729 prod2l = max0.wide_mul_with_sign (min1, true, &prod2h, &overflow);
2730 if (!uns0 && max0.is_negative ())
2731 prod2h -= min1;
2732 if (!uns1 && min1.is_negative ())
2733 prod2h -= max0;
2734
2735 prod3l = max0.wide_mul_with_sign (max1, true, &prod3h, &overflow);
2736 if (!uns0 && max0.is_negative ())
2737 prod3h -= max1;
2738 if (!uns1 && max1.is_negative ())
2739 prod3h -= max0;
2740
2741 /* Sort the 4 products. */
2742 quad_int_pair_sort (&prod0l, &prod0h, &prod3l, &prod3h, uns);
2743 quad_int_pair_sort (&prod1l, &prod1h, &prod2l, &prod2h, uns);
2744 quad_int_pair_sort (&prod0l, &prod0h, &prod1l, &prod1h, uns);
2745 quad_int_pair_sort (&prod2l, &prod2h, &prod3l, &prod3h, uns);
2746
2747 /* Max - min. */
2748 if (prod0l.is_zero ())
2749 {
2750 prod1l = double_int_zero;
2751 prod1h = -prod0h;
2752 }
2753 else
2754 {
2755 prod1l = -prod0l;
2756 prod1h = ~prod0h;
2757 }
2758 prod2l = prod3l + prod1l;
2759 prod2h = prod3h + prod1h;
2760 if (prod2l.ult (prod3l))
2761 prod2h += double_int_one; /* carry */
2762
2763 if (!prod2h.is_zero ()
2764 || prod2l.cmp (sizem1, true) >= 0)
2765 {
2766 /* the range covers all values. */
2767 set_value_range_to_varying (vr);
2768 return;
2769 }
2770
2771 /* The following should handle the wrapping and selecting
2772 VR_ANTI_RANGE for us. */
2773 min = double_int_to_tree (expr_type, prod0l);
2774 max = double_int_to_tree (expr_type, prod3l);
2775 set_and_canonicalize_value_range (vr, VR_RANGE, min, max, NULL);
2776 return;
2777 }
2778
2779 /* If we have an unsigned MULT_EXPR with two VR_ANTI_RANGEs,
2780 drop to VR_VARYING. It would take more effort to compute a
2781 precise range for such a case. For example, if we have
2782 op0 == 65536 and op1 == 65536 with their ranges both being
2783 ~[0,0] on a 32-bit machine, we would have op0 * op1 == 0, so
2784 we cannot claim that the product is in ~[0,0]. Note that we
2785 are guaranteed to have vr0.type == vr1.type at this
2786 point. */
2787 if (vr0.type == VR_ANTI_RANGE
2788 && !TYPE_OVERFLOW_UNDEFINED (expr_type))
2789 {
2790 set_value_range_to_varying (vr);
2791 return;
2792 }
2793
2794 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2795 return;
2796 }
2797 else if (code == RSHIFT_EXPR
2798 || code == LSHIFT_EXPR)
2799 {
2800 /* If we have a RSHIFT_EXPR with any shift values outside [0..prec-1],
2801 then drop to VR_VARYING. Outside of this range we get undefined
2802 behavior from the shift operation. We cannot even trust
2803 SHIFT_COUNT_TRUNCATED at this stage, because that applies to rtl
2804 shifts, and the operation at the tree level may be widened. */
2805 if (range_int_cst_p (&vr1)
2806 && compare_tree_int (vr1.min, 0) >= 0
2807 && compare_tree_int (vr1.max, TYPE_PRECISION (expr_type)) == -1)
2808 {
2809 if (code == RSHIFT_EXPR)
2810 {
2811 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2812 return;
2813 }
2814 /* We can map lshifts by constants to MULT_EXPR handling. */
2815 else if (code == LSHIFT_EXPR
2816 && range_int_cst_singleton_p (&vr1))
2817 {
2818 bool saved_flag_wrapv;
2819 value_range_t vr1p = VR_INITIALIZER;
2820 vr1p.type = VR_RANGE;
2821 vr1p.min
2822 = double_int_to_tree (expr_type,
2823 double_int_one
2824 .llshift (TREE_INT_CST_LOW (vr1.min),
2825 TYPE_PRECISION (expr_type)));
2826 vr1p.max = vr1p.min;
2827 /* We have to use a wrapping multiply though as signed overflow
2828 on lshifts is implementation defined in C89. */
2829 saved_flag_wrapv = flag_wrapv;
2830 flag_wrapv = 1;
2831 extract_range_from_binary_expr_1 (vr, MULT_EXPR, expr_type,
2832 &vr0, &vr1p);
2833 flag_wrapv = saved_flag_wrapv;
2834 return;
2835 }
2836 else if (code == LSHIFT_EXPR
2837 && range_int_cst_p (&vr0))
2838 {
2839 int prec = TYPE_PRECISION (expr_type);
2840 int overflow_pos = prec;
2841 int bound_shift;
2842 double_int bound, complement, low_bound, high_bound;
2843 bool uns = TYPE_UNSIGNED (expr_type);
2844 bool in_bounds = false;
2845
2846 if (!uns)
2847 overflow_pos -= 1;
2848
2849 bound_shift = overflow_pos - TREE_INT_CST_LOW (vr1.max);
2850 /* If bound_shift == HOST_BITS_PER_DOUBLE_INT, the llshift can
2851 overflow. However, for that to happen, vr1.max needs to be
2852 zero, which means vr1 is a singleton range of zero, which
2853 means it should be handled by the previous LSHIFT_EXPR
2854 if-clause. */
2855 bound = double_int_one.llshift (bound_shift, prec);
2856 complement = ~(bound - double_int_one);
2857
2858 if (uns)
2859 {
2860 low_bound = bound.zext (prec);
2861 high_bound = complement.zext (prec);
2862 if (tree_to_double_int (vr0.max).ult (low_bound))
2863 {
2864 /* [5, 6] << [1, 2] == [10, 24]. */
2865 /* We're shifting out only zeroes, the value increases
2866 monotonically. */
2867 in_bounds = true;
2868 }
2869 else if (high_bound.ult (tree_to_double_int (vr0.min)))
2870 {
2871 /* [0xffffff00, 0xffffffff] << [1, 2]
2872 == [0xfffffc00, 0xfffffffe]. */
2873 /* We're shifting out only ones, the value decreases
2874 monotonically. */
2875 in_bounds = true;
2876 }
2877 }
2878 else
2879 {
2880 /* [-1, 1] << [1, 2] == [-4, 4]. */
2881 low_bound = complement.sext (prec);
2882 high_bound = bound;
2883 if (tree_to_double_int (vr0.max).slt (high_bound)
2884 && low_bound.slt (tree_to_double_int (vr0.min)))
2885 {
2886 /* For non-negative numbers, we're shifting out only
2887 zeroes, the value increases monotonically.
2888 For negative numbers, we're shifting out only ones, the
2889 value decreases monotomically. */
2890 in_bounds = true;
2891 }
2892 }
2893
2894 if (in_bounds)
2895 {
2896 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2897 return;
2898 }
2899 }
2900 }
2901 set_value_range_to_varying (vr);
2902 return;
2903 }
2904 else if (code == TRUNC_DIV_EXPR
2905 || code == FLOOR_DIV_EXPR
2906 || code == CEIL_DIV_EXPR
2907 || code == EXACT_DIV_EXPR
2908 || code == ROUND_DIV_EXPR)
2909 {
2910 if (vr0.type != VR_RANGE || symbolic_range_p (&vr0))
2911 {
2912 /* For division, if op1 has VR_RANGE but op0 does not, something
2913 can be deduced just from that range. Say [min, max] / [4, max]
2914 gives [min / 4, max / 4] range. */
2915 if (vr1.type == VR_RANGE
2916 && !symbolic_range_p (&vr1)
2917 && range_includes_zero_p (vr1.min, vr1.max) == 0)
2918 {
2919 vr0.type = type = VR_RANGE;
2920 vr0.min = vrp_val_min (expr_type);
2921 vr0.max = vrp_val_max (expr_type);
2922 }
2923 else
2924 {
2925 set_value_range_to_varying (vr);
2926 return;
2927 }
2928 }
2929
2930 /* For divisions, if flag_non_call_exceptions is true, we must
2931 not eliminate a division by zero. */
2932 if (cfun->can_throw_non_call_exceptions
2933 && (vr1.type != VR_RANGE
2934 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2935 {
2936 set_value_range_to_varying (vr);
2937 return;
2938 }
2939
2940 /* For divisions, if op0 is VR_RANGE, we can deduce a range
2941 even if op1 is VR_VARYING, VR_ANTI_RANGE, symbolic or can
2942 include 0. */
2943 if (vr0.type == VR_RANGE
2944 && (vr1.type != VR_RANGE
2945 || range_includes_zero_p (vr1.min, vr1.max) != 0))
2946 {
2947 tree zero = build_int_cst (TREE_TYPE (vr0.min), 0);
2948 int cmp;
2949
2950 min = NULL_TREE;
2951 max = NULL_TREE;
2952 if (TYPE_UNSIGNED (expr_type)
2953 || value_range_nonnegative_p (&vr1))
2954 {
2955 /* For unsigned division or when divisor is known
2956 to be non-negative, the range has to cover
2957 all numbers from 0 to max for positive max
2958 and all numbers from min to 0 for negative min. */
2959 cmp = compare_values (vr0.max, zero);
2960 if (cmp == -1)
2961 max = zero;
2962 else if (cmp == 0 || cmp == 1)
2963 max = vr0.max;
2964 else
2965 type = VR_VARYING;
2966 cmp = compare_values (vr0.min, zero);
2967 if (cmp == 1)
2968 min = zero;
2969 else if (cmp == 0 || cmp == -1)
2970 min = vr0.min;
2971 else
2972 type = VR_VARYING;
2973 }
2974 else
2975 {
2976 /* Otherwise the range is -max .. max or min .. -min
2977 depending on which bound is bigger in absolute value,
2978 as the division can change the sign. */
2979 abs_extent_range (vr, vr0.min, vr0.max);
2980 return;
2981 }
2982 if (type == VR_VARYING)
2983 {
2984 set_value_range_to_varying (vr);
2985 return;
2986 }
2987 }
2988 else
2989 {
2990 extract_range_from_multiplicative_op_1 (vr, code, &vr0, &vr1);
2991 return;
2992 }
2993 }
2994 else if (code == TRUNC_MOD_EXPR)
2995 {
2996 if (vr1.type != VR_RANGE
2997 || range_includes_zero_p (vr1.min, vr1.max) != 0
2998 || vrp_val_is_min (vr1.min))
2999 {
3000 set_value_range_to_varying (vr);
3001 return;
3002 }
3003 type = VR_RANGE;
3004 /* Compute MAX <|vr1.min|, |vr1.max|> - 1. */
3005 max = fold_unary_to_constant (ABS_EXPR, expr_type, vr1.min);
3006 if (tree_int_cst_lt (max, vr1.max))
3007 max = vr1.max;
3008 max = int_const_binop (MINUS_EXPR, max, integer_one_node);
3009 /* If the dividend is non-negative the modulus will be
3010 non-negative as well. */
3011 if (TYPE_UNSIGNED (expr_type)
3012 || value_range_nonnegative_p (&vr0))
3013 min = build_int_cst (TREE_TYPE (max), 0);
3014 else
3015 min = fold_unary_to_constant (NEGATE_EXPR, expr_type, max);
3016 }
3017 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
3018 {
3019 bool int_cst_range0, int_cst_range1;
3020 double_int may_be_nonzero0, may_be_nonzero1;
3021 double_int must_be_nonzero0, must_be_nonzero1;
3022
3023 int_cst_range0 = zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0,
3024 &must_be_nonzero0);
3025 int_cst_range1 = zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1,
3026 &must_be_nonzero1);
3027
3028 type = VR_RANGE;
3029 if (code == BIT_AND_EXPR)
3030 {
3031 double_int dmax;
3032 min = double_int_to_tree (expr_type,
3033 must_be_nonzero0 & must_be_nonzero1);
3034 dmax = may_be_nonzero0 & may_be_nonzero1;
3035 /* If both input ranges contain only negative values we can
3036 truncate the result range maximum to the minimum of the
3037 input range maxima. */
3038 if (int_cst_range0 && int_cst_range1
3039 && tree_int_cst_sgn (vr0.max) < 0
3040 && tree_int_cst_sgn (vr1.max) < 0)
3041 {
3042 dmax = dmax.min (tree_to_double_int (vr0.max),
3043 TYPE_UNSIGNED (expr_type));
3044 dmax = dmax.min (tree_to_double_int (vr1.max),
3045 TYPE_UNSIGNED (expr_type));
3046 }
3047 /* If either input range contains only non-negative values
3048 we can truncate the result range maximum to the respective
3049 maximum of the input range. */
3050 if (int_cst_range0 && tree_int_cst_sgn (vr0.min) >= 0)
3051 dmax = dmax.min (tree_to_double_int (vr0.max),
3052 TYPE_UNSIGNED (expr_type));
3053 if (int_cst_range1 && tree_int_cst_sgn (vr1.min) >= 0)
3054 dmax = dmax.min (tree_to_double_int (vr1.max),
3055 TYPE_UNSIGNED (expr_type));
3056 max = double_int_to_tree (expr_type, dmax);
3057 }
3058 else if (code == BIT_IOR_EXPR)
3059 {
3060 double_int dmin;
3061 max = double_int_to_tree (expr_type,
3062 may_be_nonzero0 | may_be_nonzero1);
3063 dmin = must_be_nonzero0 | must_be_nonzero1;
3064 /* If the input ranges contain only positive values we can
3065 truncate the minimum of the result range to the maximum
3066 of the input range minima. */
3067 if (int_cst_range0 && int_cst_range1
3068 && tree_int_cst_sgn (vr0.min) >= 0
3069 && tree_int_cst_sgn (vr1.min) >= 0)
3070 {
3071 dmin = dmin.max (tree_to_double_int (vr0.min),
3072 TYPE_UNSIGNED (expr_type));
3073 dmin = dmin.max (tree_to_double_int (vr1.min),
3074 TYPE_UNSIGNED (expr_type));
3075 }
3076 /* If either input range contains only negative values
3077 we can truncate the minimum of the result range to the
3078 respective minimum range. */
3079 if (int_cst_range0 && tree_int_cst_sgn (vr0.max) < 0)
3080 dmin = dmin.max (tree_to_double_int (vr0.min),
3081 TYPE_UNSIGNED (expr_type));
3082 if (int_cst_range1 && tree_int_cst_sgn (vr1.max) < 0)
3083 dmin = dmin.max (tree_to_double_int (vr1.min),
3084 TYPE_UNSIGNED (expr_type));
3085 min = double_int_to_tree (expr_type, dmin);
3086 }
3087 else if (code == BIT_XOR_EXPR)
3088 {
3089 double_int result_zero_bits, result_one_bits;
3090 result_zero_bits = (must_be_nonzero0 & must_be_nonzero1)
3091 | ~(may_be_nonzero0 | may_be_nonzero1);
3092 result_one_bits = must_be_nonzero0.and_not (may_be_nonzero1)
3093 | must_be_nonzero1.and_not (may_be_nonzero0);
3094 max = double_int_to_tree (expr_type, ~result_zero_bits);
3095 min = double_int_to_tree (expr_type, result_one_bits);
3096 /* If the range has all positive or all negative values the
3097 result is better than VARYING. */
3098 if (tree_int_cst_sgn (min) < 0
3099 || tree_int_cst_sgn (max) >= 0)
3100 ;
3101 else
3102 max = min = NULL_TREE;
3103 }
3104 }
3105 else
3106 gcc_unreachable ();
3107
3108 /* If either MIN or MAX overflowed, then set the resulting range to
3109 VARYING. But we do accept an overflow infinity
3110 representation. */
3111 if (min == NULL_TREE
3112 || !is_gimple_min_invariant (min)
3113 || (TREE_OVERFLOW (min) && !is_overflow_infinity (min))
3114 || max == NULL_TREE
3115 || !is_gimple_min_invariant (max)
3116 || (TREE_OVERFLOW (max) && !is_overflow_infinity (max)))
3117 {
3118 set_value_range_to_varying (vr);
3119 return;
3120 }
3121
3122 /* We punt if:
3123 1) [-INF, +INF]
3124 2) [-INF, +-INF(OVF)]
3125 3) [+-INF(OVF), +INF]
3126 4) [+-INF(OVF), +-INF(OVF)]
3127 We learn nothing when we have INF and INF(OVF) on both sides.
3128 Note that we do accept [-INF, -INF] and [+INF, +INF] without
3129 overflow. */
3130 if ((vrp_val_is_min (min) || is_overflow_infinity (min))
3131 && (vrp_val_is_max (max) || is_overflow_infinity (max)))
3132 {
3133 set_value_range_to_varying (vr);
3134 return;
3135 }
3136
3137 cmp = compare_values (min, max);
3138 if (cmp == -2 || cmp == 1)
3139 {
3140 /* If the new range has its limits swapped around (MIN > MAX),
3141 then the operation caused one of them to wrap around, mark
3142 the new range VARYING. */
3143 set_value_range_to_varying (vr);
3144 }
3145 else
3146 set_value_range (vr, type, min, max, NULL);
3147 }
3148
3149 /* Extract range information from a binary expression OP0 CODE OP1 based on
3150 the ranges of each of its operands with resulting type EXPR_TYPE.
3151 The resulting range is stored in *VR. */
3152
3153 static void
3154 extract_range_from_binary_expr (value_range_t *vr,
3155 enum tree_code code,
3156 tree expr_type, tree op0, tree op1)
3157 {
3158 value_range_t vr0 = VR_INITIALIZER;
3159 value_range_t vr1 = VR_INITIALIZER;
3160
3161 /* Get value ranges for each operand. For constant operands, create
3162 a new value range with the operand to simplify processing. */
3163 if (TREE_CODE (op0) == SSA_NAME)
3164 vr0 = *(get_value_range (op0));
3165 else if (is_gimple_min_invariant (op0))
3166 set_value_range_to_value (&vr0, op0, NULL);
3167 else
3168 set_value_range_to_varying (&vr0);
3169
3170 if (TREE_CODE (op1) == SSA_NAME)
3171 vr1 = *(get_value_range (op1));
3172 else if (is_gimple_min_invariant (op1))
3173 set_value_range_to_value (&vr1, op1, NULL);
3174 else
3175 set_value_range_to_varying (&vr1);
3176
3177 extract_range_from_binary_expr_1 (vr, code, expr_type, &vr0, &vr1);
3178 }
3179
3180 /* Extract range information from a unary operation CODE based on
3181 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
3182 The The resulting range is stored in *VR. */
3183
3184 static void
3185 extract_range_from_unary_expr_1 (value_range_t *vr,
3186 enum tree_code code, tree type,
3187 value_range_t *vr0_, tree op0_type)
3188 {
3189 value_range_t vr0 = *vr0_, vrtem0 = VR_INITIALIZER, vrtem1 = VR_INITIALIZER;
3190
3191 /* VRP only operates on integral and pointer types. */
3192 if (!(INTEGRAL_TYPE_P (op0_type)
3193 || POINTER_TYPE_P (op0_type))
3194 || !(INTEGRAL_TYPE_P (type)
3195 || POINTER_TYPE_P (type)))
3196 {
3197 set_value_range_to_varying (vr);
3198 return;
3199 }
3200
3201 /* If VR0 is UNDEFINED, so is the result. */
3202 if (vr0.type == VR_UNDEFINED)
3203 {
3204 set_value_range_to_undefined (vr);
3205 return;
3206 }
3207
3208 /* Handle operations that we express in terms of others. */
3209 if (code == PAREN_EXPR)
3210 {
3211 /* PAREN_EXPR is a simple copy. */
3212 copy_value_range (vr, &vr0);
3213 return;
3214 }
3215 else if (code == NEGATE_EXPR)
3216 {
3217 /* -X is simply 0 - X, so re-use existing code that also handles
3218 anti-ranges fine. */
3219 value_range_t zero = VR_INITIALIZER;
3220 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
3221 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
3222 return;
3223 }
3224 else if (code == BIT_NOT_EXPR)
3225 {
3226 /* ~X is simply -1 - X, so re-use existing code that also handles
3227 anti-ranges fine. */
3228 value_range_t minusone = VR_INITIALIZER;
3229 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
3230 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
3231 type, &minusone, &vr0);
3232 return;
3233 }
3234
3235 /* Now canonicalize anti-ranges to ranges when they are not symbolic
3236 and express op ~[] as (op []') U (op []''). */
3237 if (vr0.type == VR_ANTI_RANGE
3238 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
3239 {
3240 extract_range_from_unary_expr_1 (vr, code, type, &vrtem0, op0_type);
3241 if (vrtem1.type != VR_UNDEFINED)
3242 {
3243 value_range_t vrres = VR_INITIALIZER;
3244 extract_range_from_unary_expr_1 (&vrres, code, type,
3245 &vrtem1, op0_type);
3246 vrp_meet (vr, &vrres);
3247 }
3248 return;
3249 }
3250
3251 if (CONVERT_EXPR_CODE_P (code))
3252 {
3253 tree inner_type = op0_type;
3254 tree outer_type = type;
3255
3256 /* If the expression evaluates to a pointer, we are only interested in
3257 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]). */
3258 if (POINTER_TYPE_P (type))
3259 {
3260 if (range_is_nonnull (&vr0))
3261 set_value_range_to_nonnull (vr, type);
3262 else if (range_is_null (&vr0))
3263 set_value_range_to_null (vr, type);
3264 else
3265 set_value_range_to_varying (vr);
3266 return;
3267 }
3268
3269 /* If VR0 is varying and we increase the type precision, assume
3270 a full range for the following transformation. */
3271 if (vr0.type == VR_VARYING
3272 && INTEGRAL_TYPE_P (inner_type)
3273 && TYPE_PRECISION (inner_type) < TYPE_PRECISION (outer_type))
3274 {
3275 vr0.type = VR_RANGE;
3276 vr0.min = TYPE_MIN_VALUE (inner_type);
3277 vr0.max = TYPE_MAX_VALUE (inner_type);
3278 }
3279
3280 /* If VR0 is a constant range or anti-range and the conversion is
3281 not truncating we can convert the min and max values and
3282 canonicalize the resulting range. Otherwise we can do the
3283 conversion if the size of the range is less than what the
3284 precision of the target type can represent and the range is
3285 not an anti-range. */
3286 if ((vr0.type == VR_RANGE
3287 || vr0.type == VR_ANTI_RANGE)
3288 && TREE_CODE (vr0.min) == INTEGER_CST
3289 && TREE_CODE (vr0.max) == INTEGER_CST
3290 && (!is_overflow_infinity (vr0.min)
3291 || (vr0.type == VR_RANGE
3292 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3293 && needs_overflow_infinity (outer_type)
3294 && supports_overflow_infinity (outer_type)))
3295 && (!is_overflow_infinity (vr0.max)
3296 || (vr0.type == VR_RANGE
3297 && TYPE_PRECISION (outer_type) > TYPE_PRECISION (inner_type)
3298 && needs_overflow_infinity (outer_type)
3299 && supports_overflow_infinity (outer_type)))
3300 && (TYPE_PRECISION (outer_type) >= TYPE_PRECISION (inner_type)
3301 || (vr0.type == VR_RANGE
3302 && integer_zerop (int_const_binop (RSHIFT_EXPR,
3303 int_const_binop (MINUS_EXPR, vr0.max, vr0.min),
3304 size_int (TYPE_PRECISION (outer_type)))))))
3305 {
3306 tree new_min, new_max;
3307 if (is_overflow_infinity (vr0.min))
3308 new_min = negative_overflow_infinity (outer_type);
3309 else
3310 new_min = force_fit_type_double (outer_type,
3311 tree_to_double_int (vr0.min),
3312 0, false);
3313 if (is_overflow_infinity (vr0.max))
3314 new_max = positive_overflow_infinity (outer_type);
3315 else
3316 new_max = force_fit_type_double (outer_type,
3317 tree_to_double_int (vr0.max),
3318 0, false);
3319 set_and_canonicalize_value_range (vr, vr0.type,
3320 new_min, new_max, NULL);
3321 return;
3322 }
3323
3324 set_value_range_to_varying (vr);
3325 return;
3326 }
3327 else if (code == ABS_EXPR)
3328 {
3329 tree min, max;
3330 int cmp;
3331
3332 /* Pass through vr0 in the easy cases. */
3333 if (TYPE_UNSIGNED (type)
3334 || value_range_nonnegative_p (&vr0))
3335 {
3336 copy_value_range (vr, &vr0);
3337 return;
3338 }
3339
3340 /* For the remaining varying or symbolic ranges we can't do anything
3341 useful. */
3342 if (vr0.type == VR_VARYING
3343 || symbolic_range_p (&vr0))
3344 {
3345 set_value_range_to_varying (vr);
3346 return;
3347 }
3348
3349 /* -TYPE_MIN_VALUE = TYPE_MIN_VALUE with flag_wrapv so we can't get a
3350 useful range. */
3351 if (!TYPE_OVERFLOW_UNDEFINED (type)
3352 && ((vr0.type == VR_RANGE
3353 && vrp_val_is_min (vr0.min))
3354 || (vr0.type == VR_ANTI_RANGE
3355 && !vrp_val_is_min (vr0.min))))
3356 {
3357 set_value_range_to_varying (vr);
3358 return;
3359 }
3360
3361 /* ABS_EXPR may flip the range around, if the original range
3362 included negative values. */
3363 if (is_overflow_infinity (vr0.min))
3364 min = positive_overflow_infinity (type);
3365 else if (!vrp_val_is_min (vr0.min))
3366 min = fold_unary_to_constant (code, type, vr0.min);
3367 else if (!needs_overflow_infinity (type))
3368 min = TYPE_MAX_VALUE (type);
3369 else if (supports_overflow_infinity (type))
3370 min = positive_overflow_infinity (type);
3371 else
3372 {
3373 set_value_range_to_varying (vr);
3374 return;
3375 }
3376
3377 if (is_overflow_infinity (vr0.max))
3378 max = positive_overflow_infinity (type);
3379 else if (!vrp_val_is_min (vr0.max))
3380 max = fold_unary_to_constant (code, type, vr0.max);
3381 else if (!needs_overflow_infinity (type))
3382 max = TYPE_MAX_VALUE (type);
3383 else if (supports_overflow_infinity (type)
3384 /* We shouldn't generate [+INF, +INF] as set_value_range
3385 doesn't like this and ICEs. */
3386 && !is_positive_overflow_infinity (min))
3387 max = positive_overflow_infinity (type);
3388 else
3389 {
3390 set_value_range_to_varying (vr);
3391 return;
3392 }
3393
3394 cmp = compare_values (min, max);
3395
3396 /* If a VR_ANTI_RANGEs contains zero, then we have
3397 ~[-INF, min(MIN, MAX)]. */
3398 if (vr0.type == VR_ANTI_RANGE)
3399 {
3400 if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3401 {
3402 /* Take the lower of the two values. */
3403 if (cmp != 1)
3404 max = min;
3405
3406 /* Create ~[-INF, min (abs(MIN), abs(MAX))]
3407 or ~[-INF + 1, min (abs(MIN), abs(MAX))] when
3408 flag_wrapv is set and the original anti-range doesn't include
3409 TYPE_MIN_VALUE, remember -TYPE_MIN_VALUE = TYPE_MIN_VALUE. */
3410 if (TYPE_OVERFLOW_WRAPS (type))
3411 {
3412 tree type_min_value = TYPE_MIN_VALUE (type);
3413
3414 min = (vr0.min != type_min_value
3415 ? int_const_binop (PLUS_EXPR, type_min_value,
3416 integer_one_node)
3417 : type_min_value);
3418 }
3419 else
3420 {
3421 if (overflow_infinity_range_p (&vr0))
3422 min = negative_overflow_infinity (type);
3423 else
3424 min = TYPE_MIN_VALUE (type);
3425 }
3426 }
3427 else
3428 {
3429 /* All else has failed, so create the range [0, INF], even for
3430 flag_wrapv since TYPE_MIN_VALUE is in the original
3431 anti-range. */
3432 vr0.type = VR_RANGE;
3433 min = build_int_cst (type, 0);
3434 if (needs_overflow_infinity (type))
3435 {
3436 if (supports_overflow_infinity (type))
3437 max = positive_overflow_infinity (type);
3438 else
3439 {
3440 set_value_range_to_varying (vr);
3441 return;
3442 }
3443 }
3444 else
3445 max = TYPE_MAX_VALUE (type);
3446 }
3447 }
3448
3449 /* If the range contains zero then we know that the minimum value in the
3450 range will be zero. */
3451 else if (range_includes_zero_p (vr0.min, vr0.max) == 1)
3452 {
3453 if (cmp == 1)
3454 max = min;
3455 min = build_int_cst (type, 0);
3456 }
3457 else
3458 {
3459 /* If the range was reversed, swap MIN and MAX. */
3460 if (cmp == 1)
3461 {
3462 tree t = min;
3463 min = max;
3464 max = t;
3465 }
3466 }
3467
3468 cmp = compare_values (min, max);
3469 if (cmp == -2 || cmp == 1)
3470 {
3471 /* If the new range has its limits swapped around (MIN > MAX),
3472 then the operation caused one of them to wrap around, mark
3473 the new range VARYING. */
3474 set_value_range_to_varying (vr);
3475 }
3476 else
3477 set_value_range (vr, vr0.type, min, max, NULL);
3478 return;
3479 }
3480
3481 /* For unhandled operations fall back to varying. */
3482 set_value_range_to_varying (vr);
3483 return;
3484 }
3485
3486
3487 /* Extract range information from a unary expression CODE OP0 based on
3488 the range of its operand with resulting type TYPE.
3489 The resulting range is stored in *VR. */
3490
3491 static void
3492 extract_range_from_unary_expr (value_range_t *vr, enum tree_code code,
3493 tree type, tree op0)
3494 {
3495 value_range_t vr0 = VR_INITIALIZER;
3496
3497 /* Get value ranges for the operand. For constant operands, create
3498 a new value range with the operand to simplify processing. */
3499 if (TREE_CODE (op0) == SSA_NAME)
3500 vr0 = *(get_value_range (op0));
3501 else if (is_gimple_min_invariant (op0))
3502 set_value_range_to_value (&vr0, op0, NULL);
3503 else
3504 set_value_range_to_varying (&vr0);
3505
3506 extract_range_from_unary_expr_1 (vr, code, type, &vr0, TREE_TYPE (op0));
3507 }
3508
3509
3510 /* Extract range information from a conditional expression STMT based on
3511 the ranges of each of its operands and the expression code. */
3512
3513 static void
3514 extract_range_from_cond_expr (value_range_t *vr, gimple stmt)
3515 {
3516 tree op0, op1;
3517 value_range_t vr0 = VR_INITIALIZER;
3518 value_range_t vr1 = VR_INITIALIZER;
3519
3520 /* Get value ranges for each operand. For constant operands, create
3521 a new value range with the operand to simplify processing. */
3522 op0 = gimple_assign_rhs2 (stmt);
3523 if (TREE_CODE (op0) == SSA_NAME)
3524 vr0 = *(get_value_range (op0));
3525 else if (is_gimple_min_invariant (op0))
3526 set_value_range_to_value (&vr0, op0, NULL);
3527 else
3528 set_value_range_to_varying (&vr0);
3529
3530 op1 = gimple_assign_rhs3 (stmt);
3531 if (TREE_CODE (op1) == SSA_NAME)
3532 vr1 = *(get_value_range (op1));
3533 else if (is_gimple_min_invariant (op1))
3534 set_value_range_to_value (&vr1, op1, NULL);
3535 else
3536 set_value_range_to_varying (&vr1);
3537
3538 /* The resulting value range is the union of the operand ranges */
3539 copy_value_range (vr, &vr0);
3540 vrp_meet (vr, &vr1);
3541 }
3542
3543
3544 /* Extract range information from a comparison expression EXPR based
3545 on the range of its operand and the expression code. */
3546
3547 static void
3548 extract_range_from_comparison (value_range_t *vr, enum tree_code code,
3549 tree type, tree op0, tree op1)
3550 {
3551 bool sop = false;
3552 tree val;
3553
3554 val = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, false, &sop,
3555 NULL);
3556
3557 /* A disadvantage of using a special infinity as an overflow
3558 representation is that we lose the ability to record overflow
3559 when we don't have an infinity. So we have to ignore a result
3560 which relies on overflow. */
3561
3562 if (val && !is_overflow_infinity (val) && !sop)
3563 {
3564 /* Since this expression was found on the RHS of an assignment,
3565 its type may be different from _Bool. Convert VAL to EXPR's
3566 type. */
3567 val = fold_convert (type, val);
3568 if (is_gimple_min_invariant (val))
3569 set_value_range_to_value (vr, val, vr->equiv);
3570 else
3571 set_value_range (vr, VR_RANGE, val, val, vr->equiv);
3572 }
3573 else
3574 /* The result of a comparison is always true or false. */
3575 set_value_range_to_truthvalue (vr, type);
3576 }
3577
3578 /* Try to derive a nonnegative or nonzero range out of STMT relying
3579 primarily on generic routines in fold in conjunction with range data.
3580 Store the result in *VR */
3581
3582 static void
3583 extract_range_basic (value_range_t *vr, gimple stmt)
3584 {
3585 bool sop = false;
3586 tree type = gimple_expr_type (stmt);
3587
3588 if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
3589 {
3590 tree fndecl = gimple_call_fndecl (stmt), arg;
3591 int mini, maxi, zerov = 0, prec;
3592
3593 switch (DECL_FUNCTION_CODE (fndecl))
3594 {
3595 case BUILT_IN_CONSTANT_P:
3596 /* If the call is __builtin_constant_p and the argument is a
3597 function parameter resolve it to false. This avoids bogus
3598 array bound warnings.
3599 ??? We could do this as early as inlining is finished. */
3600 arg = gimple_call_arg (stmt, 0);
3601 if (TREE_CODE (arg) == SSA_NAME
3602 && SSA_NAME_IS_DEFAULT_DEF (arg)
3603 && TREE_CODE (SSA_NAME_VAR (arg)) == PARM_DECL)
3604 {
3605 set_value_range_to_null (vr, type);
3606 return;
3607 }
3608 break;
3609 /* Both __builtin_ffs* and __builtin_popcount return
3610 [0, prec]. */
3611 CASE_INT_FN (BUILT_IN_FFS):
3612 CASE_INT_FN (BUILT_IN_POPCOUNT):
3613 arg = gimple_call_arg (stmt, 0);
3614 prec = TYPE_PRECISION (TREE_TYPE (arg));
3615 mini = 0;
3616 maxi = prec;
3617 if (TREE_CODE (arg) == SSA_NAME)
3618 {
3619 value_range_t *vr0 = get_value_range (arg);
3620 /* If arg is non-zero, then ffs or popcount
3621 are non-zero. */
3622 if (((vr0->type == VR_RANGE
3623 && integer_nonzerop (vr0->min))
3624 || (vr0->type == VR_ANTI_RANGE
3625 && integer_zerop (vr0->min)))
3626 && !TREE_OVERFLOW (vr0->min))
3627 mini = 1;
3628 /* If some high bits are known to be zero,
3629 we can decrease the maximum. */
3630 if (vr0->type == VR_RANGE
3631 && TREE_CODE (vr0->max) == INTEGER_CST
3632 && !TREE_OVERFLOW (vr0->max))
3633 maxi = tree_floor_log2 (vr0->max) + 1;
3634 }
3635 goto bitop_builtin;
3636 /* __builtin_parity* returns [0, 1]. */
3637 CASE_INT_FN (BUILT_IN_PARITY):
3638 mini = 0;
3639 maxi = 1;
3640 goto bitop_builtin;
3641 /* __builtin_c[lt]z* return [0, prec-1], except for
3642 when the argument is 0, but that is undefined behavior.
3643 On many targets where the CLZ RTL or optab value is defined
3644 for 0 the value is prec, so include that in the range
3645 by default. */
3646 CASE_INT_FN (BUILT_IN_CLZ):
3647 arg = gimple_call_arg (stmt, 0);
3648 prec = TYPE_PRECISION (TREE_TYPE (arg));
3649 mini = 0;
3650 maxi = prec;
3651 if (optab_handler (clz_optab, TYPE_MODE (TREE_TYPE (arg)))
3652 != CODE_FOR_nothing
3653 && CLZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3654 zerov)
3655 /* Handle only the single common value. */
3656 && zerov != prec)
3657 /* Magic value to give up, unless vr0 proves
3658 arg is non-zero. */
3659 mini = -2;
3660 if (TREE_CODE (arg) == SSA_NAME)
3661 {
3662 value_range_t *vr0 = get_value_range (arg);
3663 /* From clz of VR_RANGE minimum we can compute
3664 result maximum. */
3665 if (vr0->type == VR_RANGE
3666 && TREE_CODE (vr0->min) == INTEGER_CST
3667 && !TREE_OVERFLOW (vr0->min))
3668 {
3669 maxi = prec - 1 - tree_floor_log2 (vr0->min);
3670 if (maxi != prec)
3671 mini = 0;
3672 }
3673 else if (vr0->type == VR_ANTI_RANGE
3674 && integer_zerop (vr0->min)
3675 && !TREE_OVERFLOW (vr0->min))
3676 {
3677 maxi = prec - 1;
3678 mini = 0;
3679 }
3680 if (mini == -2)
3681 break;
3682 /* From clz of VR_RANGE maximum we can compute
3683 result minimum. */
3684 if (vr0->type == VR_RANGE
3685 && TREE_CODE (vr0->max) == INTEGER_CST
3686 && !TREE_OVERFLOW (vr0->max))
3687 {
3688 mini = prec - 1 - tree_floor_log2 (vr0->max);
3689 if (mini == prec)
3690 break;
3691 }
3692 }
3693 if (mini == -2)
3694 break;
3695 goto bitop_builtin;
3696 /* __builtin_ctz* return [0, prec-1], except for
3697 when the argument is 0, but that is undefined behavior.
3698 If there is a ctz optab for this mode and
3699 CTZ_DEFINED_VALUE_AT_ZERO, include that in the range,
3700 otherwise just assume 0 won't be seen. */
3701 CASE_INT_FN (BUILT_IN_CTZ):
3702 arg = gimple_call_arg (stmt, 0);
3703 prec = TYPE_PRECISION (TREE_TYPE (arg));
3704 mini = 0;
3705 maxi = prec - 1;
3706 if (optab_handler (ctz_optab, TYPE_MODE (TREE_TYPE (arg)))
3707 != CODE_FOR_nothing
3708 && CTZ_DEFINED_VALUE_AT_ZERO (TYPE_MODE (TREE_TYPE (arg)),
3709 zerov))
3710 {
3711 /* Handle only the two common values. */
3712 if (zerov == -1)
3713 mini = -1;
3714 else if (zerov == prec)
3715 maxi = prec;
3716 else
3717 /* Magic value to give up, unless vr0 proves
3718 arg is non-zero. */
3719 mini = -2;
3720 }
3721 if (TREE_CODE (arg) == SSA_NAME)
3722 {
3723 value_range_t *vr0 = get_value_range (arg);
3724 /* If arg is non-zero, then use [0, prec - 1]. */
3725 if (((vr0->type == VR_RANGE
3726 && integer_nonzerop (vr0->min))
3727 || (vr0->type == VR_ANTI_RANGE
3728 && integer_zerop (vr0->min)))
3729 && !TREE_OVERFLOW (vr0->min))
3730 {
3731 mini = 0;
3732 maxi = prec - 1;
3733 }
3734 /* If some high bits are known to be zero,
3735 we can decrease the result maximum. */
3736 if (vr0->type == VR_RANGE
3737 && TREE_CODE (vr0->max) == INTEGER_CST
3738 && !TREE_OVERFLOW (vr0->max))
3739 {
3740 maxi = tree_floor_log2 (vr0->max);
3741 /* For vr0 [0, 0] give up. */
3742 if (maxi == -1)
3743 break;
3744 }
3745 }
3746 if (mini == -2)
3747 break;
3748 goto bitop_builtin;
3749 /* __builtin_clrsb* returns [0, prec-1]. */
3750 CASE_INT_FN (BUILT_IN_CLRSB):
3751 arg = gimple_call_arg (stmt, 0);
3752 prec = TYPE_PRECISION (TREE_TYPE (arg));
3753 mini = 0;
3754 maxi = prec - 1;
3755 goto bitop_builtin;
3756 bitop_builtin:
3757 set_value_range (vr, VR_RANGE, build_int_cst (type, mini),
3758 build_int_cst (type, maxi), NULL);
3759 return;
3760 default:
3761 break;
3762 }
3763 }
3764 if (INTEGRAL_TYPE_P (type)
3765 && gimple_stmt_nonnegative_warnv_p (stmt, &sop))
3766 set_value_range_to_nonnegative (vr, type,
3767 sop || stmt_overflow_infinity (stmt));
3768 else if (vrp_stmt_computes_nonzero (stmt, &sop)
3769 && !sop)
3770 set_value_range_to_nonnull (vr, type);
3771 else
3772 set_value_range_to_varying (vr);
3773 }
3774
3775
3776 /* Try to compute a useful range out of assignment STMT and store it
3777 in *VR. */
3778
3779 static void
3780 extract_range_from_assignment (value_range_t *vr, gimple stmt)
3781 {
3782 enum tree_code code = gimple_assign_rhs_code (stmt);
3783
3784 if (code == ASSERT_EXPR)
3785 extract_range_from_assert (vr, gimple_assign_rhs1 (stmt));
3786 else if (code == SSA_NAME)
3787 extract_range_from_ssa_name (vr, gimple_assign_rhs1 (stmt));
3788 else if (TREE_CODE_CLASS (code) == tcc_binary)
3789 extract_range_from_binary_expr (vr, gimple_assign_rhs_code (stmt),
3790 gimple_expr_type (stmt),
3791 gimple_assign_rhs1 (stmt),
3792 gimple_assign_rhs2 (stmt));
3793 else if (TREE_CODE_CLASS (code) == tcc_unary)
3794 extract_range_from_unary_expr (vr, gimple_assign_rhs_code (stmt),
3795 gimple_expr_type (stmt),
3796 gimple_assign_rhs1 (stmt));
3797 else if (code == COND_EXPR)
3798 extract_range_from_cond_expr (vr, stmt);
3799 else if (TREE_CODE_CLASS (code) == tcc_comparison)
3800 extract_range_from_comparison (vr, gimple_assign_rhs_code (stmt),
3801 gimple_expr_type (stmt),
3802 gimple_assign_rhs1 (stmt),
3803 gimple_assign_rhs2 (stmt));
3804 else if (get_gimple_rhs_class (code) == GIMPLE_SINGLE_RHS
3805 && is_gimple_min_invariant (gimple_assign_rhs1 (stmt)))
3806 set_value_range_to_value (vr, gimple_assign_rhs1 (stmt), NULL);
3807 else
3808 set_value_range_to_varying (vr);
3809
3810 if (vr->type == VR_VARYING)
3811 extract_range_basic (vr, stmt);
3812 }
3813
3814 /* Given a range VR, a LOOP and a variable VAR, determine whether it
3815 would be profitable to adjust VR using scalar evolution information
3816 for VAR. If so, update VR with the new limits. */
3817
3818 static void
3819 adjust_range_with_scev (value_range_t *vr, struct loop *loop,
3820 gimple stmt, tree var)
3821 {
3822 tree init, step, chrec, tmin, tmax, min, max, type, tem;
3823 enum ev_direction dir;
3824
3825 /* TODO. Don't adjust anti-ranges. An anti-range may provide
3826 better opportunities than a regular range, but I'm not sure. */
3827 if (vr->type == VR_ANTI_RANGE)
3828 return;
3829
3830 chrec = instantiate_parameters (loop, analyze_scalar_evolution (loop, var));
3831
3832 /* Like in PR19590, scev can return a constant function. */
3833 if (is_gimple_min_invariant (chrec))
3834 {
3835 set_value_range_to_value (vr, chrec, vr->equiv);
3836 return;
3837 }
3838
3839 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
3840 return;
3841
3842 init = initial_condition_in_loop_num (chrec, loop->num);
3843 tem = op_with_constant_singleton_value_range (init);
3844 if (tem)
3845 init = tem;
3846 step = evolution_part_in_loop_num (chrec, loop->num);
3847 tem = op_with_constant_singleton_value_range (step);
3848 if (tem)
3849 step = tem;
3850
3851 /* If STEP is symbolic, we can't know whether INIT will be the
3852 minimum or maximum value in the range. Also, unless INIT is
3853 a simple expression, compare_values and possibly other functions
3854 in tree-vrp won't be able to handle it. */
3855 if (step == NULL_TREE
3856 || !is_gimple_min_invariant (step)
3857 || !valid_value_p (init))
3858 return;
3859
3860 dir = scev_direction (chrec);
3861 if (/* Do not adjust ranges if we do not know whether the iv increases
3862 or decreases, ... */
3863 dir == EV_DIR_UNKNOWN
3864 /* ... or if it may wrap. */
3865 || scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
3866 true))
3867 return;
3868
3869 /* We use TYPE_MIN_VALUE and TYPE_MAX_VALUE here instead of
3870 negative_overflow_infinity and positive_overflow_infinity,
3871 because we have concluded that the loop probably does not
3872 wrap. */
3873
3874 type = TREE_TYPE (var);
3875 if (POINTER_TYPE_P (type) || !TYPE_MIN_VALUE (type))
3876 tmin = lower_bound_in_type (type, type);
3877 else
3878 tmin = TYPE_MIN_VALUE (type);
3879 if (POINTER_TYPE_P (type) || !TYPE_MAX_VALUE (type))
3880 tmax = upper_bound_in_type (type, type);
3881 else
3882 tmax = TYPE_MAX_VALUE (type);
3883
3884 /* Try to use estimated number of iterations for the loop to constrain the
3885 final value in the evolution. */
3886 if (TREE_CODE (step) == INTEGER_CST
3887 && is_gimple_val (init)
3888 && (TREE_CODE (init) != SSA_NAME
3889 || get_value_range (init)->type == VR_RANGE))
3890 {
3891 double_int nit;
3892
3893 /* We are only entering here for loop header PHI nodes, so using
3894 the number of latch executions is the correct thing to use. */
3895 if (max_loop_iterations (loop, &nit))
3896 {
3897 value_range_t maxvr = VR_INITIALIZER;
3898 double_int dtmp;
3899 bool unsigned_p = TYPE_UNSIGNED (TREE_TYPE (step));
3900 bool overflow = false;
3901
3902 dtmp = tree_to_double_int (step)
3903 .mul_with_sign (nit, unsigned_p, &overflow);
3904 /* If the multiplication overflowed we can't do a meaningful
3905 adjustment. Likewise if the result doesn't fit in the type
3906 of the induction variable. For a signed type we have to
3907 check whether the result has the expected signedness which
3908 is that of the step as number of iterations is unsigned. */
3909 if (!overflow
3910 && double_int_fits_to_tree_p (TREE_TYPE (init), dtmp)
3911 && (unsigned_p
3912 || ((dtmp.high ^ TREE_INT_CST_HIGH (step)) >= 0)))
3913 {
3914 tem = double_int_to_tree (TREE_TYPE (init), dtmp);
3915 extract_range_from_binary_expr (&maxvr, PLUS_EXPR,
3916 TREE_TYPE (init), init, tem);
3917 /* Likewise if the addition did. */
3918 if (maxvr.type == VR_RANGE)
3919 {
3920 tmin = maxvr.min;
3921 tmax = maxvr.max;
3922 }
3923 }
3924 }
3925 }
3926
3927 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
3928 {
3929 min = tmin;
3930 max = tmax;
3931
3932 /* For VARYING or UNDEFINED ranges, just about anything we get
3933 from scalar evolutions should be better. */
3934
3935 if (dir == EV_DIR_DECREASES)
3936 max = init;
3937 else
3938 min = init;
3939
3940 /* If we would create an invalid range, then just assume we
3941 know absolutely nothing. This may be over-conservative,
3942 but it's clearly safe, and should happen only in unreachable
3943 parts of code, or for invalid programs. */
3944 if (compare_values (min, max) == 1)
3945 return;
3946
3947 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3948 }
3949 else if (vr->type == VR_RANGE)
3950 {
3951 min = vr->min;
3952 max = vr->max;
3953
3954 if (dir == EV_DIR_DECREASES)
3955 {
3956 /* INIT is the maximum value. If INIT is lower than VR->MAX
3957 but no smaller than VR->MIN, set VR->MAX to INIT. */
3958 if (compare_values (init, max) == -1)
3959 max = init;
3960
3961 /* According to the loop information, the variable does not
3962 overflow. If we think it does, probably because of an
3963 overflow due to arithmetic on a different INF value,
3964 reset now. */
3965 if (is_negative_overflow_infinity (min)
3966 || compare_values (min, tmin) == -1)
3967 min = tmin;
3968
3969 }
3970 else
3971 {
3972 /* If INIT is bigger than VR->MIN, set VR->MIN to INIT. */
3973 if (compare_values (init, min) == 1)
3974 min = init;
3975
3976 if (is_positive_overflow_infinity (max)
3977 || compare_values (tmax, max) == -1)
3978 max = tmax;
3979 }
3980
3981 /* If we just created an invalid range with the minimum
3982 greater than the maximum, we fail conservatively.
3983 This should happen only in unreachable
3984 parts of code, or for invalid programs. */
3985 if (compare_values (min, max) == 1)
3986 return;
3987
3988 set_value_range (vr, VR_RANGE, min, max, vr->equiv);
3989 }
3990 }
3991
3992 /* Return true if VAR may overflow at STMT. This checks any available
3993 loop information to see if we can determine that VAR does not
3994 overflow. */
3995
3996 static bool
3997 vrp_var_may_overflow (tree var, gimple stmt)
3998 {
3999 struct loop *l;
4000 tree chrec, init, step;
4001
4002 if (current_loops == NULL)
4003 return true;
4004
4005 l = loop_containing_stmt (stmt);
4006 if (l == NULL
4007 || !loop_outer (l))
4008 return true;
4009
4010 chrec = instantiate_parameters (l, analyze_scalar_evolution (l, var));
4011 if (TREE_CODE (chrec) != POLYNOMIAL_CHREC)
4012 return true;
4013
4014 init = initial_condition_in_loop_num (chrec, l->num);
4015 step = evolution_part_in_loop_num (chrec, l->num);
4016
4017 if (step == NULL_TREE
4018 || !is_gimple_min_invariant (step)
4019 || !valid_value_p (init))
4020 return true;
4021
4022 /* If we get here, we know something useful about VAR based on the
4023 loop information. If it wraps, it may overflow. */
4024
4025 if (scev_probably_wraps_p (init, step, stmt, get_chrec_loop (chrec),
4026 true))
4027 return true;
4028
4029 if (dump_file && (dump_flags & TDF_DETAILS) != 0)
4030 {
4031 print_generic_expr (dump_file, var, 0);
4032 fprintf (dump_file, ": loop information indicates does not overflow\n");
4033 }
4034
4035 return false;
4036 }
4037
4038
4039 /* Given two numeric value ranges VR0, VR1 and a comparison code COMP:
4040
4041 - Return BOOLEAN_TRUE_NODE if VR0 COMP VR1 always returns true for
4042 all the values in the ranges.
4043
4044 - Return BOOLEAN_FALSE_NODE if the comparison always returns false.
4045
4046 - Return NULL_TREE if it is not always possible to determine the
4047 value of the comparison.
4048
4049 Also set *STRICT_OVERFLOW_P to indicate whether a range with an
4050 overflow infinity was used in the test. */
4051
4052
4053 static tree
4054 compare_ranges (enum tree_code comp, value_range_t *vr0, value_range_t *vr1,
4055 bool *strict_overflow_p)
4056 {
4057 /* VARYING or UNDEFINED ranges cannot be compared. */
4058 if (vr0->type == VR_VARYING
4059 || vr0->type == VR_UNDEFINED
4060 || vr1->type == VR_VARYING
4061 || vr1->type == VR_UNDEFINED)
4062 return NULL_TREE;
4063
4064 /* Anti-ranges need to be handled separately. */
4065 if (vr0->type == VR_ANTI_RANGE || vr1->type == VR_ANTI_RANGE)
4066 {
4067 /* If both are anti-ranges, then we cannot compute any
4068 comparison. */
4069 if (vr0->type == VR_ANTI_RANGE && vr1->type == VR_ANTI_RANGE)
4070 return NULL_TREE;
4071
4072 /* These comparisons are never statically computable. */
4073 if (comp == GT_EXPR
4074 || comp == GE_EXPR
4075 || comp == LT_EXPR
4076 || comp == LE_EXPR)
4077 return NULL_TREE;
4078
4079 /* Equality can be computed only between a range and an
4080 anti-range. ~[VAL1, VAL2] == [VAL1, VAL2] is always false. */
4081 if (vr0->type == VR_RANGE)
4082 {
4083 /* To simplify processing, make VR0 the anti-range. */
4084 value_range_t *tmp = vr0;
4085 vr0 = vr1;
4086 vr1 = tmp;
4087 }
4088
4089 gcc_assert (comp == NE_EXPR || comp == EQ_EXPR);
4090
4091 if (compare_values_warnv (vr0->min, vr1->min, strict_overflow_p) == 0
4092 && compare_values_warnv (vr0->max, vr1->max, strict_overflow_p) == 0)
4093 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4094
4095 return NULL_TREE;
4096 }
4097
4098 if (!usable_range_p (vr0, strict_overflow_p)
4099 || !usable_range_p (vr1, strict_overflow_p))
4100 return NULL_TREE;
4101
4102 /* Simplify processing. If COMP is GT_EXPR or GE_EXPR, switch the
4103 operands around and change the comparison code. */
4104 if (comp == GT_EXPR || comp == GE_EXPR)
4105 {
4106 value_range_t *tmp;
4107 comp = (comp == GT_EXPR) ? LT_EXPR : LE_EXPR;
4108 tmp = vr0;
4109 vr0 = vr1;
4110 vr1 = tmp;
4111 }
4112
4113 if (comp == EQ_EXPR)
4114 {
4115 /* Equality may only be computed if both ranges represent
4116 exactly one value. */
4117 if (compare_values_warnv (vr0->min, vr0->max, strict_overflow_p) == 0
4118 && compare_values_warnv (vr1->min, vr1->max, strict_overflow_p) == 0)
4119 {
4120 int cmp_min = compare_values_warnv (vr0->min, vr1->min,
4121 strict_overflow_p);
4122 int cmp_max = compare_values_warnv (vr0->max, vr1->max,
4123 strict_overflow_p);
4124 if (cmp_min == 0 && cmp_max == 0)
4125 return boolean_true_node;
4126 else if (cmp_min != -2 && cmp_max != -2)
4127 return boolean_false_node;
4128 }
4129 /* If [V0_MIN, V1_MAX] < [V1_MIN, V1_MAX] then V0 != V1. */
4130 else if (compare_values_warnv (vr0->min, vr1->max,
4131 strict_overflow_p) == 1
4132 || compare_values_warnv (vr1->min, vr0->max,
4133 strict_overflow_p) == 1)
4134 return boolean_false_node;
4135
4136 return NULL_TREE;
4137 }
4138 else if (comp == NE_EXPR)
4139 {
4140 int cmp1, cmp2;
4141
4142 /* If VR0 is completely to the left or completely to the right
4143 of VR1, they are always different. Notice that we need to
4144 make sure that both comparisons yield similar results to
4145 avoid comparing values that cannot be compared at
4146 compile-time. */
4147 cmp1 = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4148 cmp2 = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4149 if ((cmp1 == -1 && cmp2 == -1) || (cmp1 == 1 && cmp2 == 1))
4150 return boolean_true_node;
4151
4152 /* If VR0 and VR1 represent a single value and are identical,
4153 return false. */
4154 else if (compare_values_warnv (vr0->min, vr0->max,
4155 strict_overflow_p) == 0
4156 && compare_values_warnv (vr1->min, vr1->max,
4157 strict_overflow_p) == 0
4158 && compare_values_warnv (vr0->min, vr1->min,
4159 strict_overflow_p) == 0
4160 && compare_values_warnv (vr0->max, vr1->max,
4161 strict_overflow_p) == 0)
4162 return boolean_false_node;
4163
4164 /* Otherwise, they may or may not be different. */
4165 else
4166 return NULL_TREE;
4167 }
4168 else if (comp == LT_EXPR || comp == LE_EXPR)
4169 {
4170 int tst;
4171
4172 /* If VR0 is to the left of VR1, return true. */
4173 tst = compare_values_warnv (vr0->max, vr1->min, strict_overflow_p);
4174 if ((comp == LT_EXPR && tst == -1)
4175 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4176 {
4177 if (overflow_infinity_range_p (vr0)
4178 || overflow_infinity_range_p (vr1))
4179 *strict_overflow_p = true;
4180 return boolean_true_node;
4181 }
4182
4183 /* If VR0 is to the right of VR1, return false. */
4184 tst = compare_values_warnv (vr0->min, vr1->max, strict_overflow_p);
4185 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4186 || (comp == LE_EXPR && tst == 1))
4187 {
4188 if (overflow_infinity_range_p (vr0)
4189 || overflow_infinity_range_p (vr1))
4190 *strict_overflow_p = true;
4191 return boolean_false_node;
4192 }
4193
4194 /* Otherwise, we don't know. */
4195 return NULL_TREE;
4196 }
4197
4198 gcc_unreachable ();
4199 }
4200
4201
4202 /* Given a value range VR, a value VAL and a comparison code COMP, return
4203 BOOLEAN_TRUE_NODE if VR COMP VAL always returns true for all the
4204 values in VR. Return BOOLEAN_FALSE_NODE if the comparison
4205 always returns false. Return NULL_TREE if it is not always
4206 possible to determine the value of the comparison. Also set
4207 *STRICT_OVERFLOW_P to indicate whether a range with an overflow
4208 infinity was used in the test. */
4209
4210 static tree
4211 compare_range_with_value (enum tree_code comp, value_range_t *vr, tree val,
4212 bool *strict_overflow_p)
4213 {
4214 if (vr->type == VR_VARYING || vr->type == VR_UNDEFINED)
4215 return NULL_TREE;
4216
4217 /* Anti-ranges need to be handled separately. */
4218 if (vr->type == VR_ANTI_RANGE)
4219 {
4220 /* For anti-ranges, the only predicates that we can compute at
4221 compile time are equality and inequality. */
4222 if (comp == GT_EXPR
4223 || comp == GE_EXPR
4224 || comp == LT_EXPR
4225 || comp == LE_EXPR)
4226 return NULL_TREE;
4227
4228 /* ~[VAL_1, VAL_2] OP VAL is known if VAL_1 <= VAL <= VAL_2. */
4229 if (value_inside_range (val, vr->min, vr->max) == 1)
4230 return (comp == NE_EXPR) ? boolean_true_node : boolean_false_node;
4231
4232 return NULL_TREE;
4233 }
4234
4235 if (!usable_range_p (vr, strict_overflow_p))
4236 return NULL_TREE;
4237
4238 if (comp == EQ_EXPR)
4239 {
4240 /* EQ_EXPR may only be computed if VR represents exactly
4241 one value. */
4242 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0)
4243 {
4244 int cmp = compare_values_warnv (vr->min, val, strict_overflow_p);
4245 if (cmp == 0)
4246 return boolean_true_node;
4247 else if (cmp == -1 || cmp == 1 || cmp == 2)
4248 return boolean_false_node;
4249 }
4250 else if (compare_values_warnv (val, vr->min, strict_overflow_p) == -1
4251 || compare_values_warnv (vr->max, val, strict_overflow_p) == -1)
4252 return boolean_false_node;
4253
4254 return NULL_TREE;
4255 }
4256 else if (comp == NE_EXPR)
4257 {
4258 /* If VAL is not inside VR, then they are always different. */
4259 if (compare_values_warnv (vr->max, val, strict_overflow_p) == -1
4260 || compare_values_warnv (vr->min, val, strict_overflow_p) == 1)
4261 return boolean_true_node;
4262
4263 /* If VR represents exactly one value equal to VAL, then return
4264 false. */
4265 if (compare_values_warnv (vr->min, vr->max, strict_overflow_p) == 0
4266 && compare_values_warnv (vr->min, val, strict_overflow_p) == 0)
4267 return boolean_false_node;
4268
4269 /* Otherwise, they may or may not be different. */
4270 return NULL_TREE;
4271 }
4272 else if (comp == LT_EXPR || comp == LE_EXPR)
4273 {
4274 int tst;
4275
4276 /* If VR is to the left of VAL, return true. */
4277 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4278 if ((comp == LT_EXPR && tst == -1)
4279 || (comp == LE_EXPR && (tst == -1 || tst == 0)))
4280 {
4281 if (overflow_infinity_range_p (vr))
4282 *strict_overflow_p = true;
4283 return boolean_true_node;
4284 }
4285
4286 /* If VR is to the right of VAL, return false. */
4287 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4288 if ((comp == LT_EXPR && (tst == 0 || tst == 1))
4289 || (comp == LE_EXPR && tst == 1))
4290 {
4291 if (overflow_infinity_range_p (vr))
4292 *strict_overflow_p = true;
4293 return boolean_false_node;
4294 }
4295
4296 /* Otherwise, we don't know. */
4297 return NULL_TREE;
4298 }
4299 else if (comp == GT_EXPR || comp == GE_EXPR)
4300 {
4301 int tst;
4302
4303 /* If VR is to the right of VAL, return true. */
4304 tst = compare_values_warnv (vr->min, val, strict_overflow_p);
4305 if ((comp == GT_EXPR && tst == 1)
4306 || (comp == GE_EXPR && (tst == 0 || tst == 1)))
4307 {
4308 if (overflow_infinity_range_p (vr))
4309 *strict_overflow_p = true;
4310 return boolean_true_node;
4311 }
4312
4313 /* If VR is to the left of VAL, return false. */
4314 tst = compare_values_warnv (vr->max, val, strict_overflow_p);
4315 if ((comp == GT_EXPR && (tst == -1 || tst == 0))
4316 || (comp == GE_EXPR && tst == -1))
4317 {
4318 if (overflow_infinity_range_p (vr))
4319 *strict_overflow_p = true;
4320 return boolean_false_node;
4321 }
4322
4323 /* Otherwise, we don't know. */
4324 return NULL_TREE;
4325 }
4326
4327 gcc_unreachable ();
4328 }
4329
4330
4331 /* Debugging dumps. */
4332
4333 void dump_value_range (FILE *, value_range_t *);
4334 void debug_value_range (value_range_t *);
4335 void dump_all_value_ranges (FILE *);
4336 void debug_all_value_ranges (void);
4337 void dump_vr_equiv (FILE *, bitmap);
4338 void debug_vr_equiv (bitmap);
4339
4340
4341 /* Dump value range VR to FILE. */
4342
4343 void
4344 dump_value_range (FILE *file, value_range_t *vr)
4345 {
4346 if (vr == NULL)
4347 fprintf (file, "[]");
4348 else if (vr->type == VR_UNDEFINED)
4349 fprintf (file, "UNDEFINED");
4350 else if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
4351 {
4352 tree type = TREE_TYPE (vr->min);
4353
4354 fprintf (file, "%s[", (vr->type == VR_ANTI_RANGE) ? "~" : "");
4355
4356 if (is_negative_overflow_infinity (vr->min))
4357 fprintf (file, "-INF(OVF)");
4358 else if (INTEGRAL_TYPE_P (type)
4359 && !TYPE_UNSIGNED (type)
4360 && vrp_val_is_min (vr->min))
4361 fprintf (file, "-INF");
4362 else
4363 print_generic_expr (file, vr->min, 0);
4364
4365 fprintf (file, ", ");
4366
4367 if (is_positive_overflow_infinity (vr->max))
4368 fprintf (file, "+INF(OVF)");
4369 else if (INTEGRAL_TYPE_P (type)
4370 && vrp_val_is_max (vr->max))
4371 fprintf (file, "+INF");
4372 else
4373 print_generic_expr (file, vr->max, 0);
4374
4375 fprintf (file, "]");
4376
4377 if (vr->equiv)
4378 {
4379 bitmap_iterator bi;
4380 unsigned i, c = 0;
4381
4382 fprintf (file, " EQUIVALENCES: { ");
4383
4384 EXECUTE_IF_SET_IN_BITMAP (vr->equiv, 0, i, bi)
4385 {
4386 print_generic_expr (file, ssa_name (i), 0);
4387 fprintf (file, " ");
4388 c++;
4389 }
4390
4391 fprintf (file, "} (%u elements)", c);
4392 }
4393 }
4394 else if (vr->type == VR_VARYING)
4395 fprintf (file, "VARYING");
4396 else
4397 fprintf (file, "INVALID RANGE");
4398 }
4399
4400
4401 /* Dump value range VR to stderr. */
4402
4403 DEBUG_FUNCTION void
4404 debug_value_range (value_range_t *vr)
4405 {
4406 dump_value_range (stderr, vr);
4407 fprintf (stderr, "\n");
4408 }
4409
4410
4411 /* Dump value ranges of all SSA_NAMEs to FILE. */
4412
4413 void
4414 dump_all_value_ranges (FILE *file)
4415 {
4416 size_t i;
4417
4418 for (i = 0; i < num_vr_values; i++)
4419 {
4420 if (vr_value[i])
4421 {
4422 print_generic_expr (file, ssa_name (i), 0);
4423 fprintf (file, ": ");
4424 dump_value_range (file, vr_value[i]);
4425 fprintf (file, "\n");
4426 }
4427 }
4428
4429 fprintf (file, "\n");
4430 }
4431
4432
4433 /* Dump all value ranges to stderr. */
4434
4435 DEBUG_FUNCTION void
4436 debug_all_value_ranges (void)
4437 {
4438 dump_all_value_ranges (stderr);
4439 }
4440
4441
4442 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
4443 create a new SSA name N and return the assertion assignment
4444 'V = ASSERT_EXPR <V, V OP W>'. */
4445
4446 static gimple
4447 build_assert_expr_for (tree cond, tree v)
4448 {
4449 tree a;
4450 gimple assertion;
4451
4452 gcc_assert (TREE_CODE (v) == SSA_NAME
4453 && COMPARISON_CLASS_P (cond));
4454
4455 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
4456 assertion = gimple_build_assign (NULL_TREE, a);
4457
4458 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
4459 operand of the ASSERT_EXPR. Create it so the new name and the old one
4460 are registered in the replacement table so that we can fix the SSA web
4461 after adding all the ASSERT_EXPRs. */
4462 create_new_def_for (v, assertion, NULL);
4463
4464 return assertion;
4465 }
4466
4467
4468 /* Return false if EXPR is a predicate expression involving floating
4469 point values. */
4470
4471 static inline bool
4472 fp_predicate (gimple stmt)
4473 {
4474 GIMPLE_CHECK (stmt, GIMPLE_COND);
4475
4476 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
4477 }
4478
4479
4480 /* If OP can be inferred to be non-zero after STMT executes, return true. */
4481
4482 static bool
4483 infer_nonnull_range (gimple stmt, tree op)
4484 {
4485 /* We can only assume that a pointer dereference will yield
4486 non-NULL if -fdelete-null-pointer-checks is enabled. */
4487 if (!flag_delete_null_pointer_checks
4488 || !POINTER_TYPE_P (TREE_TYPE (op))
4489 || gimple_code (stmt) == GIMPLE_ASM)
4490 return false;
4491
4492 unsigned num_uses, num_loads, num_stores;
4493
4494 count_uses_and_derefs (op, stmt, &num_uses, &num_loads, &num_stores);
4495 if (num_loads + num_stores > 0)
4496 return true;
4497
4498 if (is_gimple_call (stmt) && !gimple_call_internal_p (stmt))
4499 {
4500 tree fntype = gimple_call_fntype (stmt);
4501 tree attrs = TYPE_ATTRIBUTES (fntype);
4502 for (; attrs; attrs = TREE_CHAIN (attrs))
4503 {
4504 attrs = lookup_attribute ("nonnull", attrs);
4505
4506 /* If "nonnull" wasn't specified, we know nothing about
4507 the argument. */
4508 if (attrs == NULL_TREE)
4509 return false;
4510
4511 /* If "nonnull" applies to all the arguments, then ARG
4512 is non-null. */
4513 if (TREE_VALUE (attrs) == NULL_TREE)
4514 return true;
4515
4516 /* Now see if op appears in the nonnull list. */
4517 for (tree t = TREE_VALUE (attrs); t; t = TREE_CHAIN (t))
4518 {
4519 int idx = TREE_INT_CST_LOW (TREE_VALUE (t)) - 1;
4520 tree arg = gimple_call_arg (stmt, idx);
4521 if (op == arg)
4522 return true;
4523 }
4524 }
4525 }
4526
4527 return false;
4528 }
4529
4530 /* If the range of values taken by OP can be inferred after STMT executes,
4531 return the comparison code (COMP_CODE_P) and value (VAL_P) that
4532 describes the inferred range. Return true if a range could be
4533 inferred. */
4534
4535 static bool
4536 infer_value_range (gimple stmt, tree op, enum tree_code *comp_code_p, tree *val_p)
4537 {
4538 *val_p = NULL_TREE;
4539 *comp_code_p = ERROR_MARK;
4540
4541 /* Do not attempt to infer anything in names that flow through
4542 abnormal edges. */
4543 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
4544 return false;
4545
4546 /* Similarly, don't infer anything from statements that may throw
4547 exceptions. ??? Relax this requirement? */
4548 if (stmt_could_throw_p (stmt))
4549 return false;
4550
4551 /* If STMT is the last statement of a basic block with no
4552 successors, there is no point inferring anything about any of its
4553 operands. We would not be able to find a proper insertion point
4554 for the assertion, anyway. */
4555 if (stmt_ends_bb_p (stmt) && EDGE_COUNT (gimple_bb (stmt)->succs) == 0)
4556 return false;
4557
4558 if (infer_nonnull_range (stmt, op))
4559 {
4560 *val_p = build_int_cst (TREE_TYPE (op), 0);
4561 *comp_code_p = NE_EXPR;
4562 return true;
4563 }
4564
4565 return false;
4566 }
4567
4568
4569 void dump_asserts_for (FILE *, tree);
4570 void debug_asserts_for (tree);
4571 void dump_all_asserts (FILE *);
4572 void debug_all_asserts (void);
4573
4574 /* Dump all the registered assertions for NAME to FILE. */
4575
4576 void
4577 dump_asserts_for (FILE *file, tree name)
4578 {
4579 assert_locus_t loc;
4580
4581 fprintf (file, "Assertions to be inserted for ");
4582 print_generic_expr (file, name, 0);
4583 fprintf (file, "\n");
4584
4585 loc = asserts_for[SSA_NAME_VERSION (name)];
4586 while (loc)
4587 {
4588 fprintf (file, "\t");
4589 print_gimple_stmt (file, gsi_stmt (loc->si), 0, 0);
4590 fprintf (file, "\n\tBB #%d", loc->bb->index);
4591 if (loc->e)
4592 {
4593 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
4594 loc->e->dest->index);
4595 dump_edge_info (file, loc->e, dump_flags, 0);
4596 }
4597 fprintf (file, "\n\tPREDICATE: ");
4598 print_generic_expr (file, name, 0);
4599 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
4600 print_generic_expr (file, loc->val, 0);
4601 fprintf (file, "\n\n");
4602 loc = loc->next;
4603 }
4604
4605 fprintf (file, "\n");
4606 }
4607
4608
4609 /* Dump all the registered assertions for NAME to stderr. */
4610
4611 DEBUG_FUNCTION void
4612 debug_asserts_for (tree name)
4613 {
4614 dump_asserts_for (stderr, name);
4615 }
4616
4617
4618 /* Dump all the registered assertions for all the names to FILE. */
4619
4620 void
4621 dump_all_asserts (FILE *file)
4622 {
4623 unsigned i;
4624 bitmap_iterator bi;
4625
4626 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
4627 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4628 dump_asserts_for (file, ssa_name (i));
4629 fprintf (file, "\n");
4630 }
4631
4632
4633 /* Dump all the registered assertions for all the names to stderr. */
4634
4635 DEBUG_FUNCTION void
4636 debug_all_asserts (void)
4637 {
4638 dump_all_asserts (stderr);
4639 }
4640
4641
4642 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
4643 'EXPR COMP_CODE VAL' at a location that dominates block BB or
4644 E->DEST, then register this location as a possible insertion point
4645 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
4646
4647 BB, E and SI provide the exact insertion point for the new
4648 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
4649 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
4650 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
4651 must not be NULL. */
4652
4653 static void
4654 register_new_assert_for (tree name, tree expr,
4655 enum tree_code comp_code,
4656 tree val,
4657 basic_block bb,
4658 edge e,
4659 gimple_stmt_iterator si)
4660 {
4661 assert_locus_t n, loc, last_loc;
4662 basic_block dest_bb;
4663
4664 gcc_checking_assert (bb == NULL || e == NULL);
4665
4666 if (e == NULL)
4667 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
4668 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
4669
4670 /* Never build an assert comparing against an integer constant with
4671 TREE_OVERFLOW set. This confuses our undefined overflow warning
4672 machinery. */
4673 if (TREE_CODE (val) == INTEGER_CST
4674 && TREE_OVERFLOW (val))
4675 val = build_int_cst_wide (TREE_TYPE (val),
4676 TREE_INT_CST_LOW (val), TREE_INT_CST_HIGH (val));
4677
4678 /* The new assertion A will be inserted at BB or E. We need to
4679 determine if the new location is dominated by a previously
4680 registered location for A. If we are doing an edge insertion,
4681 assume that A will be inserted at E->DEST. Note that this is not
4682 necessarily true.
4683
4684 If E is a critical edge, it will be split. But even if E is
4685 split, the new block will dominate the same set of blocks that
4686 E->DEST dominates.
4687
4688 The reverse, however, is not true, blocks dominated by E->DEST
4689 will not be dominated by the new block created to split E. So,
4690 if the insertion location is on a critical edge, we will not use
4691 the new location to move another assertion previously registered
4692 at a block dominated by E->DEST. */
4693 dest_bb = (bb) ? bb : e->dest;
4694
4695 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
4696 VAL at a block dominating DEST_BB, then we don't need to insert a new
4697 one. Similarly, if the same assertion already exists at a block
4698 dominated by DEST_BB and the new location is not on a critical
4699 edge, then update the existing location for the assertion (i.e.,
4700 move the assertion up in the dominance tree).
4701
4702 Note, this is implemented as a simple linked list because there
4703 should not be more than a handful of assertions registered per
4704 name. If this becomes a performance problem, a table hashed by
4705 COMP_CODE and VAL could be implemented. */
4706 loc = asserts_for[SSA_NAME_VERSION (name)];
4707 last_loc = loc;
4708 while (loc)
4709 {
4710 if (loc->comp_code == comp_code
4711 && (loc->val == val
4712 || operand_equal_p (loc->val, val, 0))
4713 && (loc->expr == expr
4714 || operand_equal_p (loc->expr, expr, 0)))
4715 {
4716 /* If E is not a critical edge and DEST_BB
4717 dominates the existing location for the assertion, move
4718 the assertion up in the dominance tree by updating its
4719 location information. */
4720 if ((e == NULL || !EDGE_CRITICAL_P (e))
4721 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
4722 {
4723 loc->bb = dest_bb;
4724 loc->e = e;
4725 loc->si = si;
4726 return;
4727 }
4728 }
4729
4730 /* Update the last node of the list and move to the next one. */
4731 last_loc = loc;
4732 loc = loc->next;
4733 }
4734
4735 /* If we didn't find an assertion already registered for
4736 NAME COMP_CODE VAL, add a new one at the end of the list of
4737 assertions associated with NAME. */
4738 n = XNEW (struct assert_locus_d);
4739 n->bb = dest_bb;
4740 n->e = e;
4741 n->si = si;
4742 n->comp_code = comp_code;
4743 n->val = val;
4744 n->expr = expr;
4745 n->next = NULL;
4746
4747 if (last_loc)
4748 last_loc->next = n;
4749 else
4750 asserts_for[SSA_NAME_VERSION (name)] = n;
4751
4752 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
4753 }
4754
4755 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
4756 Extract a suitable test code and value and store them into *CODE_P and
4757 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
4758
4759 If no extraction was possible, return FALSE, otherwise return TRUE.
4760
4761 If INVERT is true, then we invert the result stored into *CODE_P. */
4762
4763 static bool
4764 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
4765 tree cond_op0, tree cond_op1,
4766 bool invert, enum tree_code *code_p,
4767 tree *val_p)
4768 {
4769 enum tree_code comp_code;
4770 tree val;
4771
4772 /* Otherwise, we have a comparison of the form NAME COMP VAL
4773 or VAL COMP NAME. */
4774 if (name == cond_op1)
4775 {
4776 /* If the predicate is of the form VAL COMP NAME, flip
4777 COMP around because we need to register NAME as the
4778 first operand in the predicate. */
4779 comp_code = swap_tree_comparison (cond_code);
4780 val = cond_op0;
4781 }
4782 else
4783 {
4784 /* The comparison is of the form NAME COMP VAL, so the
4785 comparison code remains unchanged. */
4786 comp_code = cond_code;
4787 val = cond_op1;
4788 }
4789
4790 /* Invert the comparison code as necessary. */
4791 if (invert)
4792 comp_code = invert_tree_comparison (comp_code, 0);
4793
4794 /* VRP does not handle float types. */
4795 if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (val)))
4796 return false;
4797
4798 /* Do not register always-false predicates.
4799 FIXME: this works around a limitation in fold() when dealing with
4800 enumerations. Given 'enum { N1, N2 } x;', fold will not
4801 fold 'if (x > N2)' to 'if (0)'. */
4802 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
4803 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
4804 {
4805 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
4806 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
4807
4808 if (comp_code == GT_EXPR
4809 && (!max
4810 || compare_values (val, max) == 0))
4811 return false;
4812
4813 if (comp_code == LT_EXPR
4814 && (!min
4815 || compare_values (val, min) == 0))
4816 return false;
4817 }
4818 *code_p = comp_code;
4819 *val_p = val;
4820 return true;
4821 }
4822
4823 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
4824 (otherwise return VAL). VAL and MASK must be zero-extended for
4825 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
4826 (to transform signed values into unsigned) and at the end xor
4827 SGNBIT back. */
4828
4829 static double_int
4830 masked_increment (double_int val, double_int mask, double_int sgnbit,
4831 unsigned int prec)
4832 {
4833 double_int bit = double_int_one, res;
4834 unsigned int i;
4835
4836 val ^= sgnbit;
4837 for (i = 0; i < prec; i++, bit += bit)
4838 {
4839 res = mask;
4840 if ((res & bit).is_zero ())
4841 continue;
4842 res = bit - double_int_one;
4843 res = (val + bit).and_not (res);
4844 res &= mask;
4845 if (res.ugt (val))
4846 return res ^ sgnbit;
4847 }
4848 return val ^ sgnbit;
4849 }
4850
4851 /* Try to register an edge assertion for SSA name NAME on edge E for
4852 the condition COND contributing to the conditional jump pointed to by BSI.
4853 Invert the condition COND if INVERT is true.
4854 Return true if an assertion for NAME could be registered. */
4855
4856 static bool
4857 register_edge_assert_for_2 (tree name, edge e, gimple_stmt_iterator bsi,
4858 enum tree_code cond_code,
4859 tree cond_op0, tree cond_op1, bool invert)
4860 {
4861 tree val;
4862 enum tree_code comp_code;
4863 bool retval = false;
4864
4865 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
4866 cond_op0,
4867 cond_op1,
4868 invert, &comp_code, &val))
4869 return false;
4870
4871 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
4872 reachable from E. */
4873 if (live_on_edge (e, name)
4874 && !has_single_use (name))
4875 {
4876 register_new_assert_for (name, name, comp_code, val, NULL, e, bsi);
4877 retval = true;
4878 }
4879
4880 /* In the case of NAME <= CST and NAME being defined as
4881 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
4882 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
4883 This catches range and anti-range tests. */
4884 if ((comp_code == LE_EXPR
4885 || comp_code == GT_EXPR)
4886 && TREE_CODE (val) == INTEGER_CST
4887 && TYPE_UNSIGNED (TREE_TYPE (val)))
4888 {
4889 gimple def_stmt = SSA_NAME_DEF_STMT (name);
4890 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
4891
4892 /* Extract CST2 from the (optional) addition. */
4893 if (is_gimple_assign (def_stmt)
4894 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
4895 {
4896 name2 = gimple_assign_rhs1 (def_stmt);
4897 cst2 = gimple_assign_rhs2 (def_stmt);
4898 if (TREE_CODE (name2) == SSA_NAME
4899 && TREE_CODE (cst2) == INTEGER_CST)
4900 def_stmt = SSA_NAME_DEF_STMT (name2);
4901 }
4902
4903 /* Extract NAME2 from the (optional) sign-changing cast. */
4904 if (gimple_assign_cast_p (def_stmt))
4905 {
4906 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
4907 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
4908 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
4909 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
4910 name3 = gimple_assign_rhs1 (def_stmt);
4911 }
4912
4913 /* If name3 is used later, create an ASSERT_EXPR for it. */
4914 if (name3 != NULL_TREE
4915 && TREE_CODE (name3) == SSA_NAME
4916 && (cst2 == NULL_TREE
4917 || TREE_CODE (cst2) == INTEGER_CST)
4918 && INTEGRAL_TYPE_P (TREE_TYPE (name3))
4919 && live_on_edge (e, name3)
4920 && !has_single_use (name3))
4921 {
4922 tree tmp;
4923
4924 /* Build an expression for the range test. */
4925 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
4926 if (cst2 != NULL_TREE)
4927 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4928
4929 if (dump_file)
4930 {
4931 fprintf (dump_file, "Adding assert for ");
4932 print_generic_expr (dump_file, name3, 0);
4933 fprintf (dump_file, " from ");
4934 print_generic_expr (dump_file, tmp, 0);
4935 fprintf (dump_file, "\n");
4936 }
4937
4938 register_new_assert_for (name3, tmp, comp_code, val, NULL, e, bsi);
4939
4940 retval = true;
4941 }
4942
4943 /* If name2 is used later, create an ASSERT_EXPR for it. */
4944 if (name2 != NULL_TREE
4945 && TREE_CODE (name2) == SSA_NAME
4946 && TREE_CODE (cst2) == INTEGER_CST
4947 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
4948 && live_on_edge (e, name2)
4949 && !has_single_use (name2))
4950 {
4951 tree tmp;
4952
4953 /* Build an expression for the range test. */
4954 tmp = name2;
4955 if (TREE_TYPE (name) != TREE_TYPE (name2))
4956 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
4957 if (cst2 != NULL_TREE)
4958 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
4959
4960 if (dump_file)
4961 {
4962 fprintf (dump_file, "Adding assert for ");
4963 print_generic_expr (dump_file, name2, 0);
4964 fprintf (dump_file, " from ");
4965 print_generic_expr (dump_file, tmp, 0);
4966 fprintf (dump_file, "\n");
4967 }
4968
4969 register_new_assert_for (name2, tmp, comp_code, val, NULL, e, bsi);
4970
4971 retval = true;
4972 }
4973 }
4974
4975 /* In the case of post-in/decrement tests like if (i++) ... and uses
4976 of the in/decremented value on the edge the extra name we want to
4977 assert for is not on the def chain of the name compared. Instead
4978 it is in the set of use stmts. */
4979 if ((comp_code == NE_EXPR
4980 || comp_code == EQ_EXPR)
4981 && TREE_CODE (val) == INTEGER_CST)
4982 {
4983 imm_use_iterator ui;
4984 gimple use_stmt;
4985 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
4986 {
4987 /* Cut off to use-stmts that are in the predecessor. */
4988 if (gimple_bb (use_stmt) != e->src)
4989 continue;
4990
4991 if (!is_gimple_assign (use_stmt))
4992 continue;
4993
4994 enum tree_code code = gimple_assign_rhs_code (use_stmt);
4995 if (code != PLUS_EXPR
4996 && code != MINUS_EXPR)
4997 continue;
4998
4999 tree cst = gimple_assign_rhs2 (use_stmt);
5000 if (TREE_CODE (cst) != INTEGER_CST)
5001 continue;
5002
5003 tree name2 = gimple_assign_lhs (use_stmt);
5004 if (live_on_edge (e, name2))
5005 {
5006 cst = int_const_binop (code, val, cst);
5007 register_new_assert_for (name2, name2, comp_code, cst,
5008 NULL, e, bsi);
5009 retval = true;
5010 }
5011 }
5012 }
5013
5014 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
5015 && TREE_CODE (val) == INTEGER_CST)
5016 {
5017 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5018 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
5019 tree val2 = NULL_TREE;
5020 double_int mask = double_int_zero;
5021 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
5022 unsigned int nprec = prec;
5023 enum tree_code rhs_code = ERROR_MARK;
5024
5025 if (is_gimple_assign (def_stmt))
5026 rhs_code = gimple_assign_rhs_code (def_stmt);
5027
5028 /* Add asserts for NAME cmp CST and NAME being defined
5029 as NAME = (int) NAME2. */
5030 if (!TYPE_UNSIGNED (TREE_TYPE (val))
5031 && (comp_code == LE_EXPR || comp_code == LT_EXPR
5032 || comp_code == GT_EXPR || comp_code == GE_EXPR)
5033 && gimple_assign_cast_p (def_stmt))
5034 {
5035 name2 = gimple_assign_rhs1 (def_stmt);
5036 if (CONVERT_EXPR_CODE_P (rhs_code)
5037 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5038 && TYPE_UNSIGNED (TREE_TYPE (name2))
5039 && prec == TYPE_PRECISION (TREE_TYPE (name2))
5040 && (comp_code == LE_EXPR || comp_code == GT_EXPR
5041 || !tree_int_cst_equal (val,
5042 TYPE_MIN_VALUE (TREE_TYPE (val))))
5043 && live_on_edge (e, name2)
5044 && !has_single_use (name2))
5045 {
5046 tree tmp, cst;
5047 enum tree_code new_comp_code = comp_code;
5048
5049 cst = fold_convert (TREE_TYPE (name2),
5050 TYPE_MIN_VALUE (TREE_TYPE (val)));
5051 /* Build an expression for the range test. */
5052 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
5053 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
5054 fold_convert (TREE_TYPE (name2), val));
5055 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5056 {
5057 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
5058 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
5059 build_int_cst (TREE_TYPE (name2), 1));
5060 }
5061
5062 if (dump_file)
5063 {
5064 fprintf (dump_file, "Adding assert for ");
5065 print_generic_expr (dump_file, name2, 0);
5066 fprintf (dump_file, " from ");
5067 print_generic_expr (dump_file, tmp, 0);
5068 fprintf (dump_file, "\n");
5069 }
5070
5071 register_new_assert_for (name2, tmp, new_comp_code, cst, NULL,
5072 e, bsi);
5073
5074 retval = true;
5075 }
5076 }
5077
5078 /* Add asserts for NAME cmp CST and NAME being defined as
5079 NAME = NAME2 >> CST2.
5080
5081 Extract CST2 from the right shift. */
5082 if (rhs_code == RSHIFT_EXPR)
5083 {
5084 name2 = gimple_assign_rhs1 (def_stmt);
5085 cst2 = gimple_assign_rhs2 (def_stmt);
5086 if (TREE_CODE (name2) == SSA_NAME
5087 && host_integerp (cst2, 1)
5088 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5089 && IN_RANGE (tree_low_cst (cst2, 1), 1, prec - 1)
5090 && prec <= HOST_BITS_PER_DOUBLE_INT
5091 && prec == GET_MODE_PRECISION (TYPE_MODE (TREE_TYPE (val)))
5092 && live_on_edge (e, name2)
5093 && !has_single_use (name2))
5094 {
5095 mask = double_int::mask (tree_low_cst (cst2, 1));
5096 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
5097 }
5098 }
5099 if (val2 != NULL_TREE
5100 && TREE_CODE (val2) == INTEGER_CST
5101 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
5102 TREE_TYPE (val),
5103 val2, cst2), val))
5104 {
5105 enum tree_code new_comp_code = comp_code;
5106 tree tmp, new_val;
5107
5108 tmp = name2;
5109 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
5110 {
5111 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5112 {
5113 tree type = build_nonstandard_integer_type (prec, 1);
5114 tmp = build1 (NOP_EXPR, type, name2);
5115 val2 = fold_convert (type, val2);
5116 }
5117 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
5118 new_val = double_int_to_tree (TREE_TYPE (tmp), mask);
5119 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
5120 }
5121 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
5122 {
5123 double_int minval
5124 = double_int::min_value (prec, TYPE_UNSIGNED (TREE_TYPE (val)));
5125 new_val = val2;
5126 if (minval == tree_to_double_int (new_val))
5127 new_val = NULL_TREE;
5128 }
5129 else
5130 {
5131 double_int maxval
5132 = double_int::max_value (prec, TYPE_UNSIGNED (TREE_TYPE (val)));
5133 mask |= tree_to_double_int (val2);
5134 if (mask == maxval)
5135 new_val = NULL_TREE;
5136 else
5137 new_val = double_int_to_tree (TREE_TYPE (val2), mask);
5138 }
5139
5140 if (new_val)
5141 {
5142 if (dump_file)
5143 {
5144 fprintf (dump_file, "Adding assert for ");
5145 print_generic_expr (dump_file, name2, 0);
5146 fprintf (dump_file, " from ");
5147 print_generic_expr (dump_file, tmp, 0);
5148 fprintf (dump_file, "\n");
5149 }
5150
5151 register_new_assert_for (name2, tmp, new_comp_code, new_val,
5152 NULL, e, bsi);
5153 retval = true;
5154 }
5155 }
5156
5157 /* Add asserts for NAME cmp CST and NAME being defined as
5158 NAME = NAME2 & CST2.
5159
5160 Extract CST2 from the and.
5161
5162 Also handle
5163 NAME = (unsigned) NAME2;
5164 casts where NAME's type is unsigned and has smaller precision
5165 than NAME2's type as if it was NAME = NAME2 & MASK. */
5166 names[0] = NULL_TREE;
5167 names[1] = NULL_TREE;
5168 cst2 = NULL_TREE;
5169 if (rhs_code == BIT_AND_EXPR
5170 || (CONVERT_EXPR_CODE_P (rhs_code)
5171 && TREE_CODE (TREE_TYPE (val)) == INTEGER_TYPE
5172 && TYPE_UNSIGNED (TREE_TYPE (val))
5173 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
5174 > prec
5175 && !retval))
5176 {
5177 name2 = gimple_assign_rhs1 (def_stmt);
5178 if (rhs_code == BIT_AND_EXPR)
5179 cst2 = gimple_assign_rhs2 (def_stmt);
5180 else
5181 {
5182 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
5183 nprec = TYPE_PRECISION (TREE_TYPE (name2));
5184 }
5185 if (TREE_CODE (name2) == SSA_NAME
5186 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
5187 && TREE_CODE (cst2) == INTEGER_CST
5188 && !integer_zerop (cst2)
5189 && nprec <= HOST_BITS_PER_DOUBLE_INT
5190 && (nprec > 1
5191 || TYPE_UNSIGNED (TREE_TYPE (val))))
5192 {
5193 gimple def_stmt2 = SSA_NAME_DEF_STMT (name2);
5194 if (gimple_assign_cast_p (def_stmt2))
5195 {
5196 names[1] = gimple_assign_rhs1 (def_stmt2);
5197 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
5198 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
5199 || (TYPE_PRECISION (TREE_TYPE (name2))
5200 != TYPE_PRECISION (TREE_TYPE (names[1])))
5201 || !live_on_edge (e, names[1])
5202 || has_single_use (names[1]))
5203 names[1] = NULL_TREE;
5204 }
5205 if (live_on_edge (e, name2)
5206 && !has_single_use (name2))
5207 names[0] = name2;
5208 }
5209 }
5210 if (names[0] || names[1])
5211 {
5212 double_int minv, maxv = double_int_zero, valv, cst2v;
5213 double_int tem, sgnbit;
5214 bool valid_p = false, valn = false, cst2n = false;
5215 enum tree_code ccode = comp_code;
5216
5217 valv = tree_to_double_int (val).zext (nprec);
5218 cst2v = tree_to_double_int (cst2).zext (nprec);
5219 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
5220 {
5221 valn = valv.sext (nprec).is_negative ();
5222 cst2n = cst2v.sext (nprec).is_negative ();
5223 }
5224 /* If CST2 doesn't have most significant bit set,
5225 but VAL is negative, we have comparison like
5226 if ((x & 0x123) > -4) (always true). Just give up. */
5227 if (!cst2n && valn)
5228 ccode = ERROR_MARK;
5229 if (cst2n)
5230 sgnbit = double_int_one.llshift (nprec - 1, nprec).zext (nprec);
5231 else
5232 sgnbit = double_int_zero;
5233 minv = valv & cst2v;
5234 switch (ccode)
5235 {
5236 case EQ_EXPR:
5237 /* Minimum unsigned value for equality is VAL & CST2
5238 (should be equal to VAL, otherwise we probably should
5239 have folded the comparison into false) and
5240 maximum unsigned value is VAL | ~CST2. */
5241 maxv = valv | ~cst2v;
5242 maxv = maxv.zext (nprec);
5243 valid_p = true;
5244 break;
5245 case NE_EXPR:
5246 tem = valv | ~cst2v;
5247 tem = tem.zext (nprec);
5248 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
5249 if (valv.is_zero ())
5250 {
5251 cst2n = false;
5252 sgnbit = double_int_zero;
5253 goto gt_expr;
5254 }
5255 /* If (VAL | ~CST2) is all ones, handle it as
5256 (X & CST2) < VAL. */
5257 if (tem == double_int::mask (nprec))
5258 {
5259 cst2n = false;
5260 valn = false;
5261 sgnbit = double_int_zero;
5262 goto lt_expr;
5263 }
5264 if (!cst2n
5265 && cst2v.sext (nprec).is_negative ())
5266 sgnbit
5267 = double_int_one.llshift (nprec - 1, nprec).zext (nprec);
5268 if (!sgnbit.is_zero ())
5269 {
5270 if (valv == sgnbit)
5271 {
5272 cst2n = true;
5273 valn = true;
5274 goto gt_expr;
5275 }
5276 if (tem == double_int::mask (nprec - 1))
5277 {
5278 cst2n = true;
5279 goto lt_expr;
5280 }
5281 if (!cst2n)
5282 sgnbit = double_int_zero;
5283 }
5284 break;
5285 case GE_EXPR:
5286 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
5287 is VAL and maximum unsigned value is ~0. For signed
5288 comparison, if CST2 doesn't have most significant bit
5289 set, handle it similarly. If CST2 has MSB set,
5290 the minimum is the same, and maximum is ~0U/2. */
5291 if (minv != valv)
5292 {
5293 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
5294 VAL. */
5295 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5296 if (minv == valv)
5297 break;
5298 }
5299 maxv = double_int::mask (nprec - (cst2n ? 1 : 0));
5300 valid_p = true;
5301 break;
5302 case GT_EXPR:
5303 gt_expr:
5304 /* Find out smallest MINV where MINV > VAL
5305 && (MINV & CST2) == MINV, if any. If VAL is signed and
5306 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
5307 minv = masked_increment (valv, cst2v, sgnbit, nprec);
5308 if (minv == valv)
5309 break;
5310 maxv = double_int::mask (nprec - (cst2n ? 1 : 0));
5311 valid_p = true;
5312 break;
5313 case LE_EXPR:
5314 /* Minimum unsigned value for <= is 0 and maximum
5315 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
5316 Otherwise, find smallest VAL2 where VAL2 > VAL
5317 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5318 as maximum.
5319 For signed comparison, if CST2 doesn't have most
5320 significant bit set, handle it similarly. If CST2 has
5321 MSB set, the maximum is the same and minimum is INT_MIN. */
5322 if (minv == valv)
5323 maxv = valv;
5324 else
5325 {
5326 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5327 if (maxv == valv)
5328 break;
5329 maxv -= double_int_one;
5330 }
5331 maxv |= ~cst2v;
5332 maxv = maxv.zext (nprec);
5333 minv = sgnbit;
5334 valid_p = true;
5335 break;
5336 case LT_EXPR:
5337 lt_expr:
5338 /* Minimum unsigned value for < is 0 and maximum
5339 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
5340 Otherwise, find smallest VAL2 where VAL2 > VAL
5341 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
5342 as maximum.
5343 For signed comparison, if CST2 doesn't have most
5344 significant bit set, handle it similarly. If CST2 has
5345 MSB set, the maximum is the same and minimum is INT_MIN. */
5346 if (minv == valv)
5347 {
5348 if (valv == sgnbit)
5349 break;
5350 maxv = valv;
5351 }
5352 else
5353 {
5354 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
5355 if (maxv == valv)
5356 break;
5357 }
5358 maxv -= double_int_one;
5359 maxv |= ~cst2v;
5360 maxv = maxv.zext (nprec);
5361 minv = sgnbit;
5362 valid_p = true;
5363 break;
5364 default:
5365 break;
5366 }
5367 if (valid_p
5368 && (maxv - minv).zext (nprec) != double_int::mask (nprec))
5369 {
5370 tree tmp, new_val, type;
5371 int i;
5372
5373 for (i = 0; i < 2; i++)
5374 if (names[i])
5375 {
5376 double_int maxv2 = maxv;
5377 tmp = names[i];
5378 type = TREE_TYPE (names[i]);
5379 if (!TYPE_UNSIGNED (type))
5380 {
5381 type = build_nonstandard_integer_type (nprec, 1);
5382 tmp = build1 (NOP_EXPR, type, names[i]);
5383 }
5384 if (!minv.is_zero ())
5385 {
5386 tmp = build2 (PLUS_EXPR, type, tmp,
5387 double_int_to_tree (type, -minv));
5388 maxv2 = maxv - minv;
5389 }
5390 new_val = double_int_to_tree (type, maxv2);
5391
5392 if (dump_file)
5393 {
5394 fprintf (dump_file, "Adding assert for ");
5395 print_generic_expr (dump_file, names[i], 0);
5396 fprintf (dump_file, " from ");
5397 print_generic_expr (dump_file, tmp, 0);
5398 fprintf (dump_file, "\n");
5399 }
5400
5401 register_new_assert_for (names[i], tmp, LE_EXPR,
5402 new_val, NULL, e, bsi);
5403 retval = true;
5404 }
5405 }
5406 }
5407 }
5408
5409 return retval;
5410 }
5411
5412 /* OP is an operand of a truth value expression which is known to have
5413 a particular value. Register any asserts for OP and for any
5414 operands in OP's defining statement.
5415
5416 If CODE is EQ_EXPR, then we want to register OP is zero (false),
5417 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
5418
5419 static bool
5420 register_edge_assert_for_1 (tree op, enum tree_code code,
5421 edge e, gimple_stmt_iterator bsi)
5422 {
5423 bool retval = false;
5424 gimple op_def;
5425 tree val;
5426 enum tree_code rhs_code;
5427
5428 /* We only care about SSA_NAMEs. */
5429 if (TREE_CODE (op) != SSA_NAME)
5430 return false;
5431
5432 /* We know that OP will have a zero or nonzero value. If OP is used
5433 more than once go ahead and register an assert for OP.
5434
5435 The FOUND_IN_SUBGRAPH support is not helpful in this situation as
5436 it will always be set for OP (because OP is used in a COND_EXPR in
5437 the subgraph). */
5438 if (!has_single_use (op))
5439 {
5440 val = build_int_cst (TREE_TYPE (op), 0);
5441 register_new_assert_for (op, op, code, val, NULL, e, bsi);
5442 retval = true;
5443 }
5444
5445 /* Now look at how OP is set. If it's set from a comparison,
5446 a truth operation or some bit operations, then we may be able
5447 to register information about the operands of that assignment. */
5448 op_def = SSA_NAME_DEF_STMT (op);
5449 if (gimple_code (op_def) != GIMPLE_ASSIGN)
5450 return retval;
5451
5452 rhs_code = gimple_assign_rhs_code (op_def);
5453
5454 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
5455 {
5456 bool invert = (code == EQ_EXPR ? true : false);
5457 tree op0 = gimple_assign_rhs1 (op_def);
5458 tree op1 = gimple_assign_rhs2 (op_def);
5459
5460 if (TREE_CODE (op0) == SSA_NAME)
5461 retval |= register_edge_assert_for_2 (op0, e, bsi, rhs_code, op0, op1,
5462 invert);
5463 if (TREE_CODE (op1) == SSA_NAME)
5464 retval |= register_edge_assert_for_2 (op1, e, bsi, rhs_code, op0, op1,
5465 invert);
5466 }
5467 else if ((code == NE_EXPR
5468 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
5469 || (code == EQ_EXPR
5470 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
5471 {
5472 /* Recurse on each operand. */
5473 tree op0 = gimple_assign_rhs1 (op_def);
5474 tree op1 = gimple_assign_rhs2 (op_def);
5475 if (TREE_CODE (op0) == SSA_NAME
5476 && has_single_use (op0))
5477 retval |= register_edge_assert_for_1 (op0, code, e, bsi);
5478 if (TREE_CODE (op1) == SSA_NAME
5479 && has_single_use (op1))
5480 retval |= register_edge_assert_for_1 (op1, code, e, bsi);
5481 }
5482 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
5483 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
5484 {
5485 /* Recurse, flipping CODE. */
5486 code = invert_tree_comparison (code, false);
5487 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5488 code, e, bsi);
5489 }
5490 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
5491 {
5492 /* Recurse through the copy. */
5493 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5494 code, e, bsi);
5495 }
5496 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
5497 {
5498 /* Recurse through the type conversion. */
5499 retval |= register_edge_assert_for_1 (gimple_assign_rhs1 (op_def),
5500 code, e, bsi);
5501 }
5502
5503 return retval;
5504 }
5505
5506 /* Try to register an edge assertion for SSA name NAME on edge E for
5507 the condition COND contributing to the conditional jump pointed to by SI.
5508 Return true if an assertion for NAME could be registered. */
5509
5510 static bool
5511 register_edge_assert_for (tree name, edge e, gimple_stmt_iterator si,
5512 enum tree_code cond_code, tree cond_op0,
5513 tree cond_op1)
5514 {
5515 tree val;
5516 enum tree_code comp_code;
5517 bool retval = false;
5518 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
5519
5520 /* Do not attempt to infer anything in names that flow through
5521 abnormal edges. */
5522 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
5523 return false;
5524
5525 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
5526 cond_op0, cond_op1,
5527 is_else_edge,
5528 &comp_code, &val))
5529 return false;
5530
5531 /* Register ASSERT_EXPRs for name. */
5532 retval |= register_edge_assert_for_2 (name, e, si, cond_code, cond_op0,
5533 cond_op1, is_else_edge);
5534
5535
5536 /* If COND is effectively an equality test of an SSA_NAME against
5537 the value zero or one, then we may be able to assert values
5538 for SSA_NAMEs which flow into COND. */
5539
5540 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
5541 statement of NAME we can assert both operands of the BIT_AND_EXPR
5542 have nonzero value. */
5543 if (((comp_code == EQ_EXPR && integer_onep (val))
5544 || (comp_code == NE_EXPR && integer_zerop (val))))
5545 {
5546 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5547
5548 if (is_gimple_assign (def_stmt)
5549 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
5550 {
5551 tree op0 = gimple_assign_rhs1 (def_stmt);
5552 tree op1 = gimple_assign_rhs2 (def_stmt);
5553 retval |= register_edge_assert_for_1 (op0, NE_EXPR, e, si);
5554 retval |= register_edge_assert_for_1 (op1, NE_EXPR, e, si);
5555 }
5556 }
5557
5558 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
5559 statement of NAME we can assert both operands of the BIT_IOR_EXPR
5560 have zero value. */
5561 if (((comp_code == EQ_EXPR && integer_zerop (val))
5562 || (comp_code == NE_EXPR && integer_onep (val))))
5563 {
5564 gimple def_stmt = SSA_NAME_DEF_STMT (name);
5565
5566 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
5567 necessarily zero value, or if type-precision is one. */
5568 if (is_gimple_assign (def_stmt)
5569 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
5570 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
5571 || comp_code == EQ_EXPR)))
5572 {
5573 tree op0 = gimple_assign_rhs1 (def_stmt);
5574 tree op1 = gimple_assign_rhs2 (def_stmt);
5575 retval |= register_edge_assert_for_1 (op0, EQ_EXPR, e, si);
5576 retval |= register_edge_assert_for_1 (op1, EQ_EXPR, e, si);
5577 }
5578 }
5579
5580 return retval;
5581 }
5582
5583
5584 /* Determine whether the outgoing edges of BB should receive an
5585 ASSERT_EXPR for each of the operands of BB's LAST statement.
5586 The last statement of BB must be a COND_EXPR.
5587
5588 If any of the sub-graphs rooted at BB have an interesting use of
5589 the predicate operands, an assert location node is added to the
5590 list of assertions for the corresponding operands. */
5591
5592 static bool
5593 find_conditional_asserts (basic_block bb, gimple last)
5594 {
5595 bool need_assert;
5596 gimple_stmt_iterator bsi;
5597 tree op;
5598 edge_iterator ei;
5599 edge e;
5600 ssa_op_iter iter;
5601
5602 need_assert = false;
5603 bsi = gsi_for_stmt (last);
5604
5605 /* Look for uses of the operands in each of the sub-graphs
5606 rooted at BB. We need to check each of the outgoing edges
5607 separately, so that we know what kind of ASSERT_EXPR to
5608 insert. */
5609 FOR_EACH_EDGE (e, ei, bb->succs)
5610 {
5611 if (e->dest == bb)
5612 continue;
5613
5614 /* Register the necessary assertions for each operand in the
5615 conditional predicate. */
5616 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
5617 {
5618 need_assert |= register_edge_assert_for (op, e, bsi,
5619 gimple_cond_code (last),
5620 gimple_cond_lhs (last),
5621 gimple_cond_rhs (last));
5622 }
5623 }
5624
5625 return need_assert;
5626 }
5627
5628 struct case_info
5629 {
5630 tree expr;
5631 basic_block bb;
5632 };
5633
5634 /* Compare two case labels sorting first by the destination bb index
5635 and then by the case value. */
5636
5637 static int
5638 compare_case_labels (const void *p1, const void *p2)
5639 {
5640 const struct case_info *ci1 = (const struct case_info *) p1;
5641 const struct case_info *ci2 = (const struct case_info *) p2;
5642 int idx1 = ci1->bb->index;
5643 int idx2 = ci2->bb->index;
5644
5645 if (idx1 < idx2)
5646 return -1;
5647 else if (idx1 == idx2)
5648 {
5649 /* Make sure the default label is first in a group. */
5650 if (!CASE_LOW (ci1->expr))
5651 return -1;
5652 else if (!CASE_LOW (ci2->expr))
5653 return 1;
5654 else
5655 return tree_int_cst_compare (CASE_LOW (ci1->expr),
5656 CASE_LOW (ci2->expr));
5657 }
5658 else
5659 return 1;
5660 }
5661
5662 /* Determine whether the outgoing edges of BB should receive an
5663 ASSERT_EXPR for each of the operands of BB's LAST statement.
5664 The last statement of BB must be a SWITCH_EXPR.
5665
5666 If any of the sub-graphs rooted at BB have an interesting use of
5667 the predicate operands, an assert location node is added to the
5668 list of assertions for the corresponding operands. */
5669
5670 static bool
5671 find_switch_asserts (basic_block bb, gimple last)
5672 {
5673 bool need_assert;
5674 gimple_stmt_iterator bsi;
5675 tree op;
5676 edge e;
5677 struct case_info *ci;
5678 size_t n = gimple_switch_num_labels (last);
5679 #if GCC_VERSION >= 4000
5680 unsigned int idx;
5681 #else
5682 /* Work around GCC 3.4 bug (PR 37086). */
5683 volatile unsigned int idx;
5684 #endif
5685
5686 need_assert = false;
5687 bsi = gsi_for_stmt (last);
5688 op = gimple_switch_index (last);
5689 if (TREE_CODE (op) != SSA_NAME)
5690 return false;
5691
5692 /* Build a vector of case labels sorted by destination label. */
5693 ci = XNEWVEC (struct case_info, n);
5694 for (idx = 0; idx < n; ++idx)
5695 {
5696 ci[idx].expr = gimple_switch_label (last, idx);
5697 ci[idx].bb = label_to_block (CASE_LABEL (ci[idx].expr));
5698 }
5699 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
5700
5701 for (idx = 0; idx < n; ++idx)
5702 {
5703 tree min, max;
5704 tree cl = ci[idx].expr;
5705 basic_block cbb = ci[idx].bb;
5706
5707 min = CASE_LOW (cl);
5708 max = CASE_HIGH (cl);
5709
5710 /* If there are multiple case labels with the same destination
5711 we need to combine them to a single value range for the edge. */
5712 if (idx + 1 < n && cbb == ci[idx + 1].bb)
5713 {
5714 /* Skip labels until the last of the group. */
5715 do {
5716 ++idx;
5717 } while (idx < n && cbb == ci[idx].bb);
5718 --idx;
5719
5720 /* Pick up the maximum of the case label range. */
5721 if (CASE_HIGH (ci[idx].expr))
5722 max = CASE_HIGH (ci[idx].expr);
5723 else
5724 max = CASE_LOW (ci[idx].expr);
5725 }
5726
5727 /* Nothing to do if the range includes the default label until we
5728 can register anti-ranges. */
5729 if (min == NULL_TREE)
5730 continue;
5731
5732 /* Find the edge to register the assert expr on. */
5733 e = find_edge (bb, cbb);
5734
5735 /* Register the necessary assertions for the operand in the
5736 SWITCH_EXPR. */
5737 need_assert |= register_edge_assert_for (op, e, bsi,
5738 max ? GE_EXPR : EQ_EXPR,
5739 op,
5740 fold_convert (TREE_TYPE (op),
5741 min));
5742 if (max)
5743 {
5744 need_assert |= register_edge_assert_for (op, e, bsi, LE_EXPR,
5745 op,
5746 fold_convert (TREE_TYPE (op),
5747 max));
5748 }
5749 }
5750
5751 XDELETEVEC (ci);
5752 return need_assert;
5753 }
5754
5755
5756 /* Traverse all the statements in block BB looking for statements that
5757 may generate useful assertions for the SSA names in their operand.
5758 If a statement produces a useful assertion A for name N_i, then the
5759 list of assertions already generated for N_i is scanned to
5760 determine if A is actually needed.
5761
5762 If N_i already had the assertion A at a location dominating the
5763 current location, then nothing needs to be done. Otherwise, the
5764 new location for A is recorded instead.
5765
5766 1- For every statement S in BB, all the variables used by S are
5767 added to bitmap FOUND_IN_SUBGRAPH.
5768
5769 2- If statement S uses an operand N in a way that exposes a known
5770 value range for N, then if N was not already generated by an
5771 ASSERT_EXPR, create a new assert location for N. For instance,
5772 if N is a pointer and the statement dereferences it, we can
5773 assume that N is not NULL.
5774
5775 3- COND_EXPRs are a special case of #2. We can derive range
5776 information from the predicate but need to insert different
5777 ASSERT_EXPRs for each of the sub-graphs rooted at the
5778 conditional block. If the last statement of BB is a conditional
5779 expression of the form 'X op Y', then
5780
5781 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
5782
5783 b) If the conditional is the only entry point to the sub-graph
5784 corresponding to the THEN_CLAUSE, recurse into it. On
5785 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
5786 an ASSERT_EXPR is added for the corresponding variable.
5787
5788 c) Repeat step (b) on the ELSE_CLAUSE.
5789
5790 d) Mark X and Y in FOUND_IN_SUBGRAPH.
5791
5792 For instance,
5793
5794 if (a == 9)
5795 b = a;
5796 else
5797 b = c + 1;
5798
5799 In this case, an assertion on the THEN clause is useful to
5800 determine that 'a' is always 9 on that edge. However, an assertion
5801 on the ELSE clause would be unnecessary.
5802
5803 4- If BB does not end in a conditional expression, then we recurse
5804 into BB's dominator children.
5805
5806 At the end of the recursive traversal, every SSA name will have a
5807 list of locations where ASSERT_EXPRs should be added. When a new
5808 location for name N is found, it is registered by calling
5809 register_new_assert_for. That function keeps track of all the
5810 registered assertions to prevent adding unnecessary assertions.
5811 For instance, if a pointer P_4 is dereferenced more than once in a
5812 dominator tree, only the location dominating all the dereference of
5813 P_4 will receive an ASSERT_EXPR.
5814
5815 If this function returns true, then it means that there are names
5816 for which we need to generate ASSERT_EXPRs. Those assertions are
5817 inserted by process_assert_insertions. */
5818
5819 static bool
5820 find_assert_locations_1 (basic_block bb, sbitmap live)
5821 {
5822 gimple_stmt_iterator si;
5823 gimple last;
5824 bool need_assert;
5825
5826 need_assert = false;
5827 last = last_stmt (bb);
5828
5829 /* If BB's last statement is a conditional statement involving integer
5830 operands, determine if we need to add ASSERT_EXPRs. */
5831 if (last
5832 && gimple_code (last) == GIMPLE_COND
5833 && !fp_predicate (last)
5834 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
5835 need_assert |= find_conditional_asserts (bb, last);
5836
5837 /* If BB's last statement is a switch statement involving integer
5838 operands, determine if we need to add ASSERT_EXPRs. */
5839 if (last
5840 && gimple_code (last) == GIMPLE_SWITCH
5841 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
5842 need_assert |= find_switch_asserts (bb, last);
5843
5844 /* Traverse all the statements in BB marking used names and looking
5845 for statements that may infer assertions for their used operands. */
5846 for (si = gsi_last_bb (bb); !gsi_end_p (si); gsi_prev (&si))
5847 {
5848 gimple stmt;
5849 tree op;
5850 ssa_op_iter i;
5851
5852 stmt = gsi_stmt (si);
5853
5854 if (is_gimple_debug (stmt))
5855 continue;
5856
5857 /* See if we can derive an assertion for any of STMT's operands. */
5858 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
5859 {
5860 tree value;
5861 enum tree_code comp_code;
5862
5863 /* If op is not live beyond this stmt, do not bother to insert
5864 asserts for it. */
5865 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
5866 continue;
5867
5868 /* If OP is used in such a way that we can infer a value
5869 range for it, and we don't find a previous assertion for
5870 it, create a new assertion location node for OP. */
5871 if (infer_value_range (stmt, op, &comp_code, &value))
5872 {
5873 /* If we are able to infer a nonzero value range for OP,
5874 then walk backwards through the use-def chain to see if OP
5875 was set via a typecast.
5876
5877 If so, then we can also infer a nonzero value range
5878 for the operand of the NOP_EXPR. */
5879 if (comp_code == NE_EXPR && integer_zerop (value))
5880 {
5881 tree t = op;
5882 gimple def_stmt = SSA_NAME_DEF_STMT (t);
5883
5884 while (is_gimple_assign (def_stmt)
5885 && gimple_assign_rhs_code (def_stmt) == NOP_EXPR
5886 && TREE_CODE
5887 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
5888 && POINTER_TYPE_P
5889 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
5890 {
5891 t = gimple_assign_rhs1 (def_stmt);
5892 def_stmt = SSA_NAME_DEF_STMT (t);
5893
5894 /* Note we want to register the assert for the
5895 operand of the NOP_EXPR after SI, not after the
5896 conversion. */
5897 if (! has_single_use (t))
5898 {
5899 register_new_assert_for (t, t, comp_code, value,
5900 bb, NULL, si);
5901 need_assert = true;
5902 }
5903 }
5904 }
5905
5906 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
5907 need_assert = true;
5908 }
5909 }
5910
5911 /* Update live. */
5912 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
5913 bitmap_set_bit (live, SSA_NAME_VERSION (op));
5914 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
5915 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
5916 }
5917
5918 /* Traverse all PHI nodes in BB, updating live. */
5919 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
5920 {
5921 use_operand_p arg_p;
5922 ssa_op_iter i;
5923 gimple phi = gsi_stmt (si);
5924 tree res = gimple_phi_result (phi);
5925
5926 if (virtual_operand_p (res))
5927 continue;
5928
5929 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
5930 {
5931 tree arg = USE_FROM_PTR (arg_p);
5932 if (TREE_CODE (arg) == SSA_NAME)
5933 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
5934 }
5935
5936 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
5937 }
5938
5939 return need_assert;
5940 }
5941
5942 /* Do an RPO walk over the function computing SSA name liveness
5943 on-the-fly and deciding on assert expressions to insert.
5944 Returns true if there are assert expressions to be inserted. */
5945
5946 static bool
5947 find_assert_locations (void)
5948 {
5949 int *rpo = XNEWVEC (int, last_basic_block);
5950 int *bb_rpo = XNEWVEC (int, last_basic_block);
5951 int *last_rpo = XCNEWVEC (int, last_basic_block);
5952 int rpo_cnt, i;
5953 bool need_asserts;
5954
5955 live = XCNEWVEC (sbitmap, last_basic_block);
5956 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
5957 for (i = 0; i < rpo_cnt; ++i)
5958 bb_rpo[rpo[i]] = i;
5959
5960 need_asserts = false;
5961 for (i = rpo_cnt - 1; i >= 0; --i)
5962 {
5963 basic_block bb = BASIC_BLOCK (rpo[i]);
5964 edge e;
5965 edge_iterator ei;
5966
5967 if (!live[rpo[i]])
5968 {
5969 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
5970 bitmap_clear (live[rpo[i]]);
5971 }
5972
5973 /* Process BB and update the live information with uses in
5974 this block. */
5975 need_asserts |= find_assert_locations_1 (bb, live[rpo[i]]);
5976
5977 /* Merge liveness into the predecessor blocks and free it. */
5978 if (!bitmap_empty_p (live[rpo[i]]))
5979 {
5980 int pred_rpo = i;
5981 FOR_EACH_EDGE (e, ei, bb->preds)
5982 {
5983 int pred = e->src->index;
5984 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
5985 continue;
5986
5987 if (!live[pred])
5988 {
5989 live[pred] = sbitmap_alloc (num_ssa_names);
5990 bitmap_clear (live[pred]);
5991 }
5992 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
5993
5994 if (bb_rpo[pred] < pred_rpo)
5995 pred_rpo = bb_rpo[pred];
5996 }
5997
5998 /* Record the RPO number of the last visited block that needs
5999 live information from this block. */
6000 last_rpo[rpo[i]] = pred_rpo;
6001 }
6002 else
6003 {
6004 sbitmap_free (live[rpo[i]]);
6005 live[rpo[i]] = NULL;
6006 }
6007
6008 /* We can free all successors live bitmaps if all their
6009 predecessors have been visited already. */
6010 FOR_EACH_EDGE (e, ei, bb->succs)
6011 if (last_rpo[e->dest->index] == i
6012 && live[e->dest->index])
6013 {
6014 sbitmap_free (live[e->dest->index]);
6015 live[e->dest->index] = NULL;
6016 }
6017 }
6018
6019 XDELETEVEC (rpo);
6020 XDELETEVEC (bb_rpo);
6021 XDELETEVEC (last_rpo);
6022 for (i = 0; i < last_basic_block; ++i)
6023 if (live[i])
6024 sbitmap_free (live[i]);
6025 XDELETEVEC (live);
6026
6027 return need_asserts;
6028 }
6029
6030 /* Create an ASSERT_EXPR for NAME and insert it in the location
6031 indicated by LOC. Return true if we made any edge insertions. */
6032
6033 static bool
6034 process_assert_insertions_for (tree name, assert_locus_t loc)
6035 {
6036 /* Build the comparison expression NAME_i COMP_CODE VAL. */
6037 gimple stmt;
6038 tree cond;
6039 gimple assert_stmt;
6040 edge_iterator ei;
6041 edge e;
6042
6043 /* If we have X <=> X do not insert an assert expr for that. */
6044 if (loc->expr == loc->val)
6045 return false;
6046
6047 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
6048 assert_stmt = build_assert_expr_for (cond, name);
6049 if (loc->e)
6050 {
6051 /* We have been asked to insert the assertion on an edge. This
6052 is used only by COND_EXPR and SWITCH_EXPR assertions. */
6053 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
6054 || (gimple_code (gsi_stmt (loc->si))
6055 == GIMPLE_SWITCH));
6056
6057 gsi_insert_on_edge (loc->e, assert_stmt);
6058 return true;
6059 }
6060
6061 /* Otherwise, we can insert right after LOC->SI iff the
6062 statement must not be the last statement in the block. */
6063 stmt = gsi_stmt (loc->si);
6064 if (!stmt_ends_bb_p (stmt))
6065 {
6066 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
6067 return false;
6068 }
6069
6070 /* If STMT must be the last statement in BB, we can only insert new
6071 assertions on the non-abnormal edge out of BB. Note that since
6072 STMT is not control flow, there may only be one non-abnormal edge
6073 out of BB. */
6074 FOR_EACH_EDGE (e, ei, loc->bb->succs)
6075 if (!(e->flags & EDGE_ABNORMAL))
6076 {
6077 gsi_insert_on_edge (e, assert_stmt);
6078 return true;
6079 }
6080
6081 gcc_unreachable ();
6082 }
6083
6084
6085 /* Process all the insertions registered for every name N_i registered
6086 in NEED_ASSERT_FOR. The list of assertions to be inserted are
6087 found in ASSERTS_FOR[i]. */
6088
6089 static void
6090 process_assert_insertions (void)
6091 {
6092 unsigned i;
6093 bitmap_iterator bi;
6094 bool update_edges_p = false;
6095 int num_asserts = 0;
6096
6097 if (dump_file && (dump_flags & TDF_DETAILS))
6098 dump_all_asserts (dump_file);
6099
6100 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
6101 {
6102 assert_locus_t loc = asserts_for[i];
6103 gcc_assert (loc);
6104
6105 while (loc)
6106 {
6107 assert_locus_t next = loc->next;
6108 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
6109 free (loc);
6110 loc = next;
6111 num_asserts++;
6112 }
6113 }
6114
6115 if (update_edges_p)
6116 gsi_commit_edge_inserts ();
6117
6118 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
6119 num_asserts);
6120 }
6121
6122
6123 /* Traverse the flowgraph looking for conditional jumps to insert range
6124 expressions. These range expressions are meant to provide information
6125 to optimizations that need to reason in terms of value ranges. They
6126 will not be expanded into RTL. For instance, given:
6127
6128 x = ...
6129 y = ...
6130 if (x < y)
6131 y = x - 2;
6132 else
6133 x = y + 3;
6134
6135 this pass will transform the code into:
6136
6137 x = ...
6138 y = ...
6139 if (x < y)
6140 {
6141 x = ASSERT_EXPR <x, x < y>
6142 y = x - 2
6143 }
6144 else
6145 {
6146 y = ASSERT_EXPR <y, x <= y>
6147 x = y + 3
6148 }
6149
6150 The idea is that once copy and constant propagation have run, other
6151 optimizations will be able to determine what ranges of values can 'x'
6152 take in different paths of the code, simply by checking the reaching
6153 definition of 'x'. */
6154
6155 static void
6156 insert_range_assertions (void)
6157 {
6158 need_assert_for = BITMAP_ALLOC (NULL);
6159 asserts_for = XCNEWVEC (assert_locus_t, num_ssa_names);
6160
6161 calculate_dominance_info (CDI_DOMINATORS);
6162
6163 if (find_assert_locations ())
6164 {
6165 process_assert_insertions ();
6166 update_ssa (TODO_update_ssa_no_phi);
6167 }
6168
6169 if (dump_file && (dump_flags & TDF_DETAILS))
6170 {
6171 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
6172 dump_function_to_file (current_function_decl, dump_file, dump_flags);
6173 }
6174
6175 free (asserts_for);
6176 BITMAP_FREE (need_assert_for);
6177 }
6178
6179 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
6180 and "struct" hacks. If VRP can determine that the
6181 array subscript is a constant, check if it is outside valid
6182 range. If the array subscript is a RANGE, warn if it is
6183 non-overlapping with valid range.
6184 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
6185
6186 static void
6187 check_array_ref (location_t location, tree ref, bool ignore_off_by_one)
6188 {
6189 value_range_t* vr = NULL;
6190 tree low_sub, up_sub;
6191 tree low_bound, up_bound, up_bound_p1;
6192 tree base;
6193
6194 if (TREE_NO_WARNING (ref))
6195 return;
6196
6197 low_sub = up_sub = TREE_OPERAND (ref, 1);
6198 up_bound = array_ref_up_bound (ref);
6199
6200 /* Can not check flexible arrays. */
6201 if (!up_bound
6202 || TREE_CODE (up_bound) != INTEGER_CST)
6203 return;
6204
6205 /* Accesses to trailing arrays via pointers may access storage
6206 beyond the types array bounds. */
6207 base = get_base_address (ref);
6208 if (base && TREE_CODE (base) == MEM_REF)
6209 {
6210 tree cref, next = NULL_TREE;
6211
6212 if (TREE_CODE (TREE_OPERAND (ref, 0)) != COMPONENT_REF)
6213 return;
6214
6215 cref = TREE_OPERAND (ref, 0);
6216 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (cref, 0))) == RECORD_TYPE)
6217 for (next = DECL_CHAIN (TREE_OPERAND (cref, 1));
6218 next && TREE_CODE (next) != FIELD_DECL;
6219 next = DECL_CHAIN (next))
6220 ;
6221
6222 /* If this is the last field in a struct type or a field in a
6223 union type do not warn. */
6224 if (!next)
6225 return;
6226 }
6227
6228 low_bound = array_ref_low_bound (ref);
6229 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound, integer_one_node);
6230
6231 if (TREE_CODE (low_sub) == SSA_NAME)
6232 {
6233 vr = get_value_range (low_sub);
6234 if (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE)
6235 {
6236 low_sub = vr->type == VR_RANGE ? vr->max : vr->min;
6237 up_sub = vr->type == VR_RANGE ? vr->min : vr->max;
6238 }
6239 }
6240
6241 if (vr && vr->type == VR_ANTI_RANGE)
6242 {
6243 if (TREE_CODE (up_sub) == INTEGER_CST
6244 && tree_int_cst_lt (up_bound, up_sub)
6245 && TREE_CODE (low_sub) == INTEGER_CST
6246 && tree_int_cst_lt (low_sub, low_bound))
6247 {
6248 warning_at (location, OPT_Warray_bounds,
6249 "array subscript is outside array bounds");
6250 TREE_NO_WARNING (ref) = 1;
6251 }
6252 }
6253 else if (TREE_CODE (up_sub) == INTEGER_CST
6254 && (ignore_off_by_one
6255 ? (tree_int_cst_lt (up_bound, up_sub)
6256 && !tree_int_cst_equal (up_bound_p1, up_sub))
6257 : (tree_int_cst_lt (up_bound, up_sub)
6258 || tree_int_cst_equal (up_bound_p1, up_sub))))
6259 {
6260 if (dump_file && (dump_flags & TDF_DETAILS))
6261 {
6262 fprintf (dump_file, "Array bound warning for ");
6263 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6264 fprintf (dump_file, "\n");
6265 }
6266 warning_at (location, OPT_Warray_bounds,
6267 "array subscript is above array bounds");
6268 TREE_NO_WARNING (ref) = 1;
6269 }
6270 else if (TREE_CODE (low_sub) == INTEGER_CST
6271 && tree_int_cst_lt (low_sub, low_bound))
6272 {
6273 if (dump_file && (dump_flags & TDF_DETAILS))
6274 {
6275 fprintf (dump_file, "Array bound warning for ");
6276 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
6277 fprintf (dump_file, "\n");
6278 }
6279 warning_at (location, OPT_Warray_bounds,
6280 "array subscript is below array bounds");
6281 TREE_NO_WARNING (ref) = 1;
6282 }
6283 }
6284
6285 /* Searches if the expr T, located at LOCATION computes
6286 address of an ARRAY_REF, and call check_array_ref on it. */
6287
6288 static void
6289 search_for_addr_array (tree t, location_t location)
6290 {
6291 while (TREE_CODE (t) == SSA_NAME)
6292 {
6293 gimple g = SSA_NAME_DEF_STMT (t);
6294
6295 if (gimple_code (g) != GIMPLE_ASSIGN)
6296 return;
6297
6298 if (get_gimple_rhs_class (gimple_assign_rhs_code (g))
6299 != GIMPLE_SINGLE_RHS)
6300 return;
6301
6302 t = gimple_assign_rhs1 (g);
6303 }
6304
6305
6306 /* We are only interested in addresses of ARRAY_REF's. */
6307 if (TREE_CODE (t) != ADDR_EXPR)
6308 return;
6309
6310 /* Check each ARRAY_REFs in the reference chain. */
6311 do
6312 {
6313 if (TREE_CODE (t) == ARRAY_REF)
6314 check_array_ref (location, t, true /*ignore_off_by_one*/);
6315
6316 t = TREE_OPERAND (t, 0);
6317 }
6318 while (handled_component_p (t));
6319
6320 if (TREE_CODE (t) == MEM_REF
6321 && TREE_CODE (TREE_OPERAND (t, 0)) == ADDR_EXPR
6322 && !TREE_NO_WARNING (t))
6323 {
6324 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
6325 tree low_bound, up_bound, el_sz;
6326 double_int idx;
6327 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
6328 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
6329 || !TYPE_DOMAIN (TREE_TYPE (tem)))
6330 return;
6331
6332 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6333 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
6334 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
6335 if (!low_bound
6336 || TREE_CODE (low_bound) != INTEGER_CST
6337 || !up_bound
6338 || TREE_CODE (up_bound) != INTEGER_CST
6339 || !el_sz
6340 || TREE_CODE (el_sz) != INTEGER_CST)
6341 return;
6342
6343 idx = mem_ref_offset (t);
6344 idx = idx.sdiv (tree_to_double_int (el_sz), TRUNC_DIV_EXPR);
6345 if (idx.slt (double_int_zero))
6346 {
6347 if (dump_file && (dump_flags & TDF_DETAILS))
6348 {
6349 fprintf (dump_file, "Array bound warning for ");
6350 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6351 fprintf (dump_file, "\n");
6352 }
6353 warning_at (location, OPT_Warray_bounds,
6354 "array subscript is below array bounds");
6355 TREE_NO_WARNING (t) = 1;
6356 }
6357 else if (idx.sgt (tree_to_double_int (up_bound)
6358 - tree_to_double_int (low_bound)
6359 + double_int_one))
6360 {
6361 if (dump_file && (dump_flags & TDF_DETAILS))
6362 {
6363 fprintf (dump_file, "Array bound warning for ");
6364 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
6365 fprintf (dump_file, "\n");
6366 }
6367 warning_at (location, OPT_Warray_bounds,
6368 "array subscript is above array bounds");
6369 TREE_NO_WARNING (t) = 1;
6370 }
6371 }
6372 }
6373
6374 /* walk_tree() callback that checks if *TP is
6375 an ARRAY_REF inside an ADDR_EXPR (in which an array
6376 subscript one outside the valid range is allowed). Call
6377 check_array_ref for each ARRAY_REF found. The location is
6378 passed in DATA. */
6379
6380 static tree
6381 check_array_bounds (tree *tp, int *walk_subtree, void *data)
6382 {
6383 tree t = *tp;
6384 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
6385 location_t location;
6386
6387 if (EXPR_HAS_LOCATION (t))
6388 location = EXPR_LOCATION (t);
6389 else
6390 {
6391 location_t *locp = (location_t *) wi->info;
6392 location = *locp;
6393 }
6394
6395 *walk_subtree = TRUE;
6396
6397 if (TREE_CODE (t) == ARRAY_REF)
6398 check_array_ref (location, t, false /*ignore_off_by_one*/);
6399
6400 if (TREE_CODE (t) == MEM_REF
6401 || (TREE_CODE (t) == RETURN_EXPR && TREE_OPERAND (t, 0)))
6402 search_for_addr_array (TREE_OPERAND (t, 0), location);
6403
6404 if (TREE_CODE (t) == ADDR_EXPR)
6405 *walk_subtree = FALSE;
6406
6407 return NULL_TREE;
6408 }
6409
6410 /* Walk over all statements of all reachable BBs and call check_array_bounds
6411 on them. */
6412
6413 static void
6414 check_all_array_refs (void)
6415 {
6416 basic_block bb;
6417 gimple_stmt_iterator si;
6418
6419 FOR_EACH_BB (bb)
6420 {
6421 edge_iterator ei;
6422 edge e;
6423 bool executable = false;
6424
6425 /* Skip blocks that were found to be unreachable. */
6426 FOR_EACH_EDGE (e, ei, bb->preds)
6427 executable |= !!(e->flags & EDGE_EXECUTABLE);
6428 if (!executable)
6429 continue;
6430
6431 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6432 {
6433 gimple stmt = gsi_stmt (si);
6434 struct walk_stmt_info wi;
6435 if (!gimple_has_location (stmt))
6436 continue;
6437
6438 if (is_gimple_call (stmt))
6439 {
6440 size_t i;
6441 size_t n = gimple_call_num_args (stmt);
6442 for (i = 0; i < n; i++)
6443 {
6444 tree arg = gimple_call_arg (stmt, i);
6445 search_for_addr_array (arg, gimple_location (stmt));
6446 }
6447 }
6448 else
6449 {
6450 memset (&wi, 0, sizeof (wi));
6451 wi.info = CONST_CAST (void *, (const void *)
6452 gimple_location_ptr (stmt));
6453
6454 walk_gimple_op (gsi_stmt (si),
6455 check_array_bounds,
6456 &wi);
6457 }
6458 }
6459 }
6460 }
6461
6462 /* Return true if all imm uses of VAR are either in STMT, or
6463 feed (optionally through a chain of single imm uses) GIMPLE_COND
6464 in basic block COND_BB. */
6465
6466 static bool
6467 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple stmt, basic_block cond_bb)
6468 {
6469 use_operand_p use_p, use2_p;
6470 imm_use_iterator iter;
6471
6472 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
6473 if (USE_STMT (use_p) != stmt)
6474 {
6475 gimple use_stmt = USE_STMT (use_p), use_stmt2;
6476 if (is_gimple_debug (use_stmt))
6477 continue;
6478 while (is_gimple_assign (use_stmt)
6479 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
6480 && single_imm_use (gimple_assign_lhs (use_stmt),
6481 &use2_p, &use_stmt2))
6482 use_stmt = use_stmt2;
6483 if (gimple_code (use_stmt) != GIMPLE_COND
6484 || gimple_bb (use_stmt) != cond_bb)
6485 return false;
6486 }
6487 return true;
6488 }
6489
6490 /* Handle
6491 _4 = x_3 & 31;
6492 if (_4 != 0)
6493 goto <bb 6>;
6494 else
6495 goto <bb 7>;
6496 <bb 6>:
6497 __builtin_unreachable ();
6498 <bb 7>:
6499 x_5 = ASSERT_EXPR <x_3, ...>;
6500 If x_3 has no other immediate uses (checked by caller),
6501 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
6502 from the non-zero bitmask. */
6503
6504 static void
6505 maybe_set_nonzero_bits (basic_block bb, tree var)
6506 {
6507 edge e = single_pred_edge (bb);
6508 basic_block cond_bb = e->src;
6509 gimple stmt = last_stmt (cond_bb);
6510 tree cst;
6511
6512 if (stmt == NULL
6513 || gimple_code (stmt) != GIMPLE_COND
6514 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
6515 ? EQ_EXPR : NE_EXPR)
6516 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
6517 || !integer_zerop (gimple_cond_rhs (stmt)))
6518 return;
6519
6520 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
6521 if (!is_gimple_assign (stmt)
6522 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
6523 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
6524 return;
6525 if (gimple_assign_rhs1 (stmt) != var)
6526 {
6527 gimple stmt2;
6528
6529 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
6530 return;
6531 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
6532 if (!gimple_assign_cast_p (stmt2)
6533 || gimple_assign_rhs1 (stmt2) != var
6534 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
6535 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
6536 != TYPE_PRECISION (TREE_TYPE (var))))
6537 return;
6538 }
6539 cst = gimple_assign_rhs2 (stmt);
6540 set_nonzero_bits (var, (get_nonzero_bits (var)
6541 & ~tree_to_double_int (cst)));
6542 }
6543
6544 /* Convert range assertion expressions into the implied copies and
6545 copy propagate away the copies. Doing the trivial copy propagation
6546 here avoids the need to run the full copy propagation pass after
6547 VRP.
6548
6549 FIXME, this will eventually lead to copy propagation removing the
6550 names that had useful range information attached to them. For
6551 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
6552 then N_i will have the range [3, +INF].
6553
6554 However, by converting the assertion into the implied copy
6555 operation N_i = N_j, we will then copy-propagate N_j into the uses
6556 of N_i and lose the range information. We may want to hold on to
6557 ASSERT_EXPRs a little while longer as the ranges could be used in
6558 things like jump threading.
6559
6560 The problem with keeping ASSERT_EXPRs around is that passes after
6561 VRP need to handle them appropriately.
6562
6563 Another approach would be to make the range information a first
6564 class property of the SSA_NAME so that it can be queried from
6565 any pass. This is made somewhat more complex by the need for
6566 multiple ranges to be associated with one SSA_NAME. */
6567
6568 static void
6569 remove_range_assertions (void)
6570 {
6571 basic_block bb;
6572 gimple_stmt_iterator si;
6573 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
6574 a basic block preceeded by GIMPLE_COND branching to it and
6575 __builtin_trap, -1 if not yet checked, 0 otherwise. */
6576 int is_unreachable;
6577
6578 /* Note that the BSI iterator bump happens at the bottom of the
6579 loop and no bump is necessary if we're removing the statement
6580 referenced by the current BSI. */
6581 FOR_EACH_BB (bb)
6582 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
6583 {
6584 gimple stmt = gsi_stmt (si);
6585 gimple use_stmt;
6586
6587 if (is_gimple_assign (stmt)
6588 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
6589 {
6590 tree lhs = gimple_assign_lhs (stmt);
6591 tree rhs = gimple_assign_rhs1 (stmt);
6592 tree var;
6593 tree cond = fold (ASSERT_EXPR_COND (rhs));
6594 use_operand_p use_p;
6595 imm_use_iterator iter;
6596
6597 gcc_assert (cond != boolean_false_node);
6598
6599 var = ASSERT_EXPR_VAR (rhs);
6600 gcc_assert (TREE_CODE (var) == SSA_NAME);
6601
6602 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
6603 && SSA_NAME_RANGE_INFO (lhs))
6604 {
6605 if (is_unreachable == -1)
6606 {
6607 is_unreachable = 0;
6608 if (single_pred_p (bb)
6609 && assert_unreachable_fallthru_edge_p
6610 (single_pred_edge (bb)))
6611 is_unreachable = 1;
6612 }
6613 /* Handle
6614 if (x_7 >= 10 && x_7 < 20)
6615 __builtin_unreachable ();
6616 x_8 = ASSERT_EXPR <x_7, ...>;
6617 if the only uses of x_7 are in the ASSERT_EXPR and
6618 in the condition. In that case, we can copy the
6619 range info from x_8 computed in this pass also
6620 for x_7. */
6621 if (is_unreachable
6622 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
6623 single_pred (bb)))
6624 {
6625 set_range_info (var, SSA_NAME_RANGE_INFO (lhs)->min,
6626 SSA_NAME_RANGE_INFO (lhs)->max);
6627 maybe_set_nonzero_bits (bb, var);
6628 }
6629 }
6630
6631 /* Propagate the RHS into every use of the LHS. */
6632 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
6633 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
6634 SET_USE (use_p, var);
6635
6636 /* And finally, remove the copy, it is not needed. */
6637 gsi_remove (&si, true);
6638 release_defs (stmt);
6639 }
6640 else
6641 {
6642 gsi_next (&si);
6643 is_unreachable = 0;
6644 }
6645 }
6646 }
6647
6648
6649 /* Return true if STMT is interesting for VRP. */
6650
6651 static bool
6652 stmt_interesting_for_vrp (gimple stmt)
6653 {
6654 if (gimple_code (stmt) == GIMPLE_PHI)
6655 {
6656 tree res = gimple_phi_result (stmt);
6657 return (!virtual_operand_p (res)
6658 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
6659 || POINTER_TYPE_P (TREE_TYPE (res))));
6660 }
6661 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
6662 {
6663 tree lhs = gimple_get_lhs (stmt);
6664
6665 /* In general, assignments with virtual operands are not useful
6666 for deriving ranges, with the obvious exception of calls to
6667 builtin functions. */
6668 if (lhs && TREE_CODE (lhs) == SSA_NAME
6669 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6670 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6671 && (is_gimple_call (stmt)
6672 || !gimple_vuse (stmt)))
6673 return true;
6674 }
6675 else if (gimple_code (stmt) == GIMPLE_COND
6676 || gimple_code (stmt) == GIMPLE_SWITCH)
6677 return true;
6678
6679 return false;
6680 }
6681
6682
6683 /* Initialize local data structures for VRP. */
6684
6685 static void
6686 vrp_initialize (void)
6687 {
6688 basic_block bb;
6689
6690 values_propagated = false;
6691 num_vr_values = num_ssa_names;
6692 vr_value = XCNEWVEC (value_range_t *, num_vr_values);
6693 vr_phi_edge_counts = XCNEWVEC (int, num_ssa_names);
6694
6695 FOR_EACH_BB (bb)
6696 {
6697 gimple_stmt_iterator si;
6698
6699 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
6700 {
6701 gimple phi = gsi_stmt (si);
6702 if (!stmt_interesting_for_vrp (phi))
6703 {
6704 tree lhs = PHI_RESULT (phi);
6705 set_value_range_to_varying (get_value_range (lhs));
6706 prop_set_simulate_again (phi, false);
6707 }
6708 else
6709 prop_set_simulate_again (phi, true);
6710 }
6711
6712 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
6713 {
6714 gimple stmt = gsi_stmt (si);
6715
6716 /* If the statement is a control insn, then we do not
6717 want to avoid simulating the statement once. Failure
6718 to do so means that those edges will never get added. */
6719 if (stmt_ends_bb_p (stmt))
6720 prop_set_simulate_again (stmt, true);
6721 else if (!stmt_interesting_for_vrp (stmt))
6722 {
6723 ssa_op_iter i;
6724 tree def;
6725 FOR_EACH_SSA_TREE_OPERAND (def, stmt, i, SSA_OP_DEF)
6726 set_value_range_to_varying (get_value_range (def));
6727 prop_set_simulate_again (stmt, false);
6728 }
6729 else
6730 prop_set_simulate_again (stmt, true);
6731 }
6732 }
6733 }
6734
6735 /* Return the singleton value-range for NAME or NAME. */
6736
6737 static inline tree
6738 vrp_valueize (tree name)
6739 {
6740 if (TREE_CODE (name) == SSA_NAME)
6741 {
6742 value_range_t *vr = get_value_range (name);
6743 if (vr->type == VR_RANGE
6744 && (vr->min == vr->max
6745 || operand_equal_p (vr->min, vr->max, 0)))
6746 return vr->min;
6747 }
6748 return name;
6749 }
6750
6751 /* Visit assignment STMT. If it produces an interesting range, record
6752 the SSA name in *OUTPUT_P. */
6753
6754 static enum ssa_prop_result
6755 vrp_visit_assignment_or_call (gimple stmt, tree *output_p)
6756 {
6757 tree def, lhs;
6758 ssa_op_iter iter;
6759 enum gimple_code code = gimple_code (stmt);
6760 lhs = gimple_get_lhs (stmt);
6761
6762 /* We only keep track of ranges in integral and pointer types. */
6763 if (TREE_CODE (lhs) == SSA_NAME
6764 && ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6765 /* It is valid to have NULL MIN/MAX values on a type. See
6766 build_range_type. */
6767 && TYPE_MIN_VALUE (TREE_TYPE (lhs))
6768 && TYPE_MAX_VALUE (TREE_TYPE (lhs)))
6769 || POINTER_TYPE_P (TREE_TYPE (lhs))))
6770 {
6771 value_range_t new_vr = VR_INITIALIZER;
6772
6773 /* Try folding the statement to a constant first. */
6774 tree tem = gimple_fold_stmt_to_constant (stmt, vrp_valueize);
6775 if (tem && !is_overflow_infinity (tem))
6776 set_value_range (&new_vr, VR_RANGE, tem, tem, NULL);
6777 /* Then dispatch to value-range extracting functions. */
6778 else if (code == GIMPLE_CALL)
6779 extract_range_basic (&new_vr, stmt);
6780 else
6781 extract_range_from_assignment (&new_vr, stmt);
6782
6783 if (update_value_range (lhs, &new_vr))
6784 {
6785 *output_p = lhs;
6786
6787 if (dump_file && (dump_flags & TDF_DETAILS))
6788 {
6789 fprintf (dump_file, "Found new range for ");
6790 print_generic_expr (dump_file, lhs, 0);
6791 fprintf (dump_file, ": ");
6792 dump_value_range (dump_file, &new_vr);
6793 fprintf (dump_file, "\n\n");
6794 }
6795
6796 if (new_vr.type == VR_VARYING)
6797 return SSA_PROP_VARYING;
6798
6799 return SSA_PROP_INTERESTING;
6800 }
6801
6802 return SSA_PROP_NOT_INTERESTING;
6803 }
6804
6805 /* Every other statement produces no useful ranges. */
6806 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
6807 set_value_range_to_varying (get_value_range (def));
6808
6809 return SSA_PROP_VARYING;
6810 }
6811
6812 /* Helper that gets the value range of the SSA_NAME with version I
6813 or a symbolic range containing the SSA_NAME only if the value range
6814 is varying or undefined. */
6815
6816 static inline value_range_t
6817 get_vr_for_comparison (int i)
6818 {
6819 value_range_t vr = *get_value_range (ssa_name (i));
6820
6821 /* If name N_i does not have a valid range, use N_i as its own
6822 range. This allows us to compare against names that may
6823 have N_i in their ranges. */
6824 if (vr.type == VR_VARYING || vr.type == VR_UNDEFINED)
6825 {
6826 vr.type = VR_RANGE;
6827 vr.min = ssa_name (i);
6828 vr.max = ssa_name (i);
6829 }
6830
6831 return vr;
6832 }
6833
6834 /* Compare all the value ranges for names equivalent to VAR with VAL
6835 using comparison code COMP. Return the same value returned by
6836 compare_range_with_value, including the setting of
6837 *STRICT_OVERFLOW_P. */
6838
6839 static tree
6840 compare_name_with_value (enum tree_code comp, tree var, tree val,
6841 bool *strict_overflow_p)
6842 {
6843 bitmap_iterator bi;
6844 unsigned i;
6845 bitmap e;
6846 tree retval, t;
6847 int used_strict_overflow;
6848 bool sop;
6849 value_range_t equiv_vr;
6850
6851 /* Get the set of equivalences for VAR. */
6852 e = get_value_range (var)->equiv;
6853
6854 /* Start at -1. Set it to 0 if we do a comparison without relying
6855 on overflow, or 1 if all comparisons rely on overflow. */
6856 used_strict_overflow = -1;
6857
6858 /* Compare vars' value range with val. */
6859 equiv_vr = get_vr_for_comparison (SSA_NAME_VERSION (var));
6860 sop = false;
6861 retval = compare_range_with_value (comp, &equiv_vr, val, &sop);
6862 if (retval)
6863 used_strict_overflow = sop ? 1 : 0;
6864
6865 /* If the equiv set is empty we have done all work we need to do. */
6866 if (e == NULL)
6867 {
6868 if (retval
6869 && used_strict_overflow > 0)
6870 *strict_overflow_p = true;
6871 return retval;
6872 }
6873
6874 EXECUTE_IF_SET_IN_BITMAP (e, 0, i, bi)
6875 {
6876 equiv_vr = get_vr_for_comparison (i);
6877 sop = false;
6878 t = compare_range_with_value (comp, &equiv_vr, val, &sop);
6879 if (t)
6880 {
6881 /* If we get different answers from different members
6882 of the equivalence set this check must be in a dead
6883 code region. Folding it to a trap representation
6884 would be correct here. For now just return don't-know. */
6885 if (retval != NULL
6886 && t != retval)
6887 {
6888 retval = NULL_TREE;
6889 break;
6890 }
6891 retval = t;
6892
6893 if (!sop)
6894 used_strict_overflow = 0;
6895 else if (used_strict_overflow < 0)
6896 used_strict_overflow = 1;
6897 }
6898 }
6899
6900 if (retval
6901 && used_strict_overflow > 0)
6902 *strict_overflow_p = true;
6903
6904 return retval;
6905 }
6906
6907
6908 /* Given a comparison code COMP and names N1 and N2, compare all the
6909 ranges equivalent to N1 against all the ranges equivalent to N2
6910 to determine the value of N1 COMP N2. Return the same value
6911 returned by compare_ranges. Set *STRICT_OVERFLOW_P to indicate
6912 whether we relied on an overflow infinity in the comparison. */
6913
6914
6915 static tree
6916 compare_names (enum tree_code comp, tree n1, tree n2,
6917 bool *strict_overflow_p)
6918 {
6919 tree t, retval;
6920 bitmap e1, e2;
6921 bitmap_iterator bi1, bi2;
6922 unsigned i1, i2;
6923 int used_strict_overflow;
6924 static bitmap_obstack *s_obstack = NULL;
6925 static bitmap s_e1 = NULL, s_e2 = NULL;
6926
6927 /* Compare the ranges of every name equivalent to N1 against the
6928 ranges of every name equivalent to N2. */
6929 e1 = get_value_range (n1)->equiv;
6930 e2 = get_value_range (n2)->equiv;
6931
6932 /* Use the fake bitmaps if e1 or e2 are not available. */
6933 if (s_obstack == NULL)
6934 {
6935 s_obstack = XNEW (bitmap_obstack);
6936 bitmap_obstack_initialize (s_obstack);
6937 s_e1 = BITMAP_ALLOC (s_obstack);
6938 s_e2 = BITMAP_ALLOC (s_obstack);
6939 }
6940 if (e1 == NULL)
6941 e1 = s_e1;
6942 if (e2 == NULL)
6943 e2 = s_e2;
6944
6945 /* Add N1 and N2 to their own set of equivalences to avoid
6946 duplicating the body of the loop just to check N1 and N2
6947 ranges. */
6948 bitmap_set_bit (e1, SSA_NAME_VERSION (n1));
6949 bitmap_set_bit (e2, SSA_NAME_VERSION (n2));
6950
6951 /* If the equivalence sets have a common intersection, then the two
6952 names can be compared without checking their ranges. */
6953 if (bitmap_intersect_p (e1, e2))
6954 {
6955 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6956 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6957
6958 return (comp == EQ_EXPR || comp == GE_EXPR || comp == LE_EXPR)
6959 ? boolean_true_node
6960 : boolean_false_node;
6961 }
6962
6963 /* Start at -1. Set it to 0 if we do a comparison without relying
6964 on overflow, or 1 if all comparisons rely on overflow. */
6965 used_strict_overflow = -1;
6966
6967 /* Otherwise, compare all the equivalent ranges. First, add N1 and
6968 N2 to their own set of equivalences to avoid duplicating the body
6969 of the loop just to check N1 and N2 ranges. */
6970 EXECUTE_IF_SET_IN_BITMAP (e1, 0, i1, bi1)
6971 {
6972 value_range_t vr1 = get_vr_for_comparison (i1);
6973
6974 t = retval = NULL_TREE;
6975 EXECUTE_IF_SET_IN_BITMAP (e2, 0, i2, bi2)
6976 {
6977 bool sop = false;
6978
6979 value_range_t vr2 = get_vr_for_comparison (i2);
6980
6981 t = compare_ranges (comp, &vr1, &vr2, &sop);
6982 if (t)
6983 {
6984 /* If we get different answers from different members
6985 of the equivalence set this check must be in a dead
6986 code region. Folding it to a trap representation
6987 would be correct here. For now just return don't-know. */
6988 if (retval != NULL
6989 && t != retval)
6990 {
6991 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
6992 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
6993 return NULL_TREE;
6994 }
6995 retval = t;
6996
6997 if (!sop)
6998 used_strict_overflow = 0;
6999 else if (used_strict_overflow < 0)
7000 used_strict_overflow = 1;
7001 }
7002 }
7003
7004 if (retval)
7005 {
7006 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7007 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7008 if (used_strict_overflow > 0)
7009 *strict_overflow_p = true;
7010 return retval;
7011 }
7012 }
7013
7014 /* None of the equivalent ranges are useful in computing this
7015 comparison. */
7016 bitmap_clear_bit (e1, SSA_NAME_VERSION (n1));
7017 bitmap_clear_bit (e2, SSA_NAME_VERSION (n2));
7018 return NULL_TREE;
7019 }
7020
7021 /* Helper function for vrp_evaluate_conditional_warnv. */
7022
7023 static tree
7024 vrp_evaluate_conditional_warnv_with_ops_using_ranges (enum tree_code code,
7025 tree op0, tree op1,
7026 bool * strict_overflow_p)
7027 {
7028 value_range_t *vr0, *vr1;
7029
7030 vr0 = (TREE_CODE (op0) == SSA_NAME) ? get_value_range (op0) : NULL;
7031 vr1 = (TREE_CODE (op1) == SSA_NAME) ? get_value_range (op1) : NULL;
7032
7033 if (vr0 && vr1)
7034 return compare_ranges (code, vr0, vr1, strict_overflow_p);
7035 else if (vr0 && vr1 == NULL)
7036 return compare_range_with_value (code, vr0, op1, strict_overflow_p);
7037 else if (vr0 == NULL && vr1)
7038 return (compare_range_with_value
7039 (swap_tree_comparison (code), vr1, op0, strict_overflow_p));
7040 return NULL;
7041 }
7042
7043 /* Helper function for vrp_evaluate_conditional_warnv. */
7044
7045 static tree
7046 vrp_evaluate_conditional_warnv_with_ops (enum tree_code code, tree op0,
7047 tree op1, bool use_equiv_p,
7048 bool *strict_overflow_p, bool *only_ranges)
7049 {
7050 tree ret;
7051 if (only_ranges)
7052 *only_ranges = true;
7053
7054 /* We only deal with integral and pointer types. */
7055 if (!INTEGRAL_TYPE_P (TREE_TYPE (op0))
7056 && !POINTER_TYPE_P (TREE_TYPE (op0)))
7057 return NULL_TREE;
7058
7059 if (use_equiv_p)
7060 {
7061 if (only_ranges
7062 && (ret = vrp_evaluate_conditional_warnv_with_ops_using_ranges
7063 (code, op0, op1, strict_overflow_p)))
7064 return ret;
7065 *only_ranges = false;
7066 if (TREE_CODE (op0) == SSA_NAME && TREE_CODE (op1) == SSA_NAME)
7067 return compare_names (code, op0, op1, strict_overflow_p);
7068 else if (TREE_CODE (op0) == SSA_NAME)
7069 return compare_name_with_value (code, op0, op1, strict_overflow_p);
7070 else if (TREE_CODE (op1) == SSA_NAME)
7071 return (compare_name_with_value
7072 (swap_tree_comparison (code), op1, op0, strict_overflow_p));
7073 }
7074 else
7075 return vrp_evaluate_conditional_warnv_with_ops_using_ranges (code, op0, op1,
7076 strict_overflow_p);
7077 return NULL_TREE;
7078 }
7079
7080 /* Given (CODE OP0 OP1) within STMT, try to simplify it based on value range
7081 information. Return NULL if the conditional can not be evaluated.
7082 The ranges of all the names equivalent with the operands in COND
7083 will be used when trying to compute the value. If the result is
7084 based on undefined signed overflow, issue a warning if
7085 appropriate. */
7086
7087 static tree
7088 vrp_evaluate_conditional (enum tree_code code, tree op0, tree op1, gimple stmt)
7089 {
7090 bool sop;
7091 tree ret;
7092 bool only_ranges;
7093
7094 /* Some passes and foldings leak constants with overflow flag set
7095 into the IL. Avoid doing wrong things with these and bail out. */
7096 if ((TREE_CODE (op0) == INTEGER_CST
7097 && TREE_OVERFLOW (op0))
7098 || (TREE_CODE (op1) == INTEGER_CST
7099 && TREE_OVERFLOW (op1)))
7100 return NULL_TREE;
7101
7102 sop = false;
7103 ret = vrp_evaluate_conditional_warnv_with_ops (code, op0, op1, true, &sop,
7104 &only_ranges);
7105
7106 if (ret && sop)
7107 {
7108 enum warn_strict_overflow_code wc;
7109 const char* warnmsg;
7110
7111 if (is_gimple_min_invariant (ret))
7112 {
7113 wc = WARN_STRICT_OVERFLOW_CONDITIONAL;
7114 warnmsg = G_("assuming signed overflow does not occur when "
7115 "simplifying conditional to constant");
7116 }
7117 else
7118 {
7119 wc = WARN_STRICT_OVERFLOW_COMPARISON;
7120 warnmsg = G_("assuming signed overflow does not occur when "
7121 "simplifying conditional");
7122 }
7123
7124 if (issue_strict_overflow_warning (wc))
7125 {
7126 location_t location;
7127
7128 if (!gimple_has_location (stmt))
7129 location = input_location;
7130 else
7131 location = gimple_location (stmt);
7132 warning_at (location, OPT_Wstrict_overflow, "%s", warnmsg);
7133 }
7134 }
7135
7136 if (warn_type_limits
7137 && ret && only_ranges
7138 && TREE_CODE_CLASS (code) == tcc_comparison
7139 && TREE_CODE (op0) == SSA_NAME)
7140 {
7141 /* If the comparison is being folded and the operand on the LHS
7142 is being compared against a constant value that is outside of
7143 the natural range of OP0's type, then the predicate will
7144 always fold regardless of the value of OP0. If -Wtype-limits
7145 was specified, emit a warning. */
7146 tree type = TREE_TYPE (op0);
7147 value_range_t *vr0 = get_value_range (op0);
7148
7149 if (vr0->type != VR_VARYING
7150 && INTEGRAL_TYPE_P (type)
7151 && vrp_val_is_min (vr0->min)
7152 && vrp_val_is_max (vr0->max)
7153 && is_gimple_min_invariant (op1))
7154 {
7155 location_t location;
7156
7157 if (!gimple_has_location (stmt))
7158 location = input_location;
7159 else
7160 location = gimple_location (stmt);
7161
7162 warning_at (location, OPT_Wtype_limits,
7163 integer_zerop (ret)
7164 ? G_("comparison always false "
7165 "due to limited range of data type")
7166 : G_("comparison always true "
7167 "due to limited range of data type"));
7168 }
7169 }
7170
7171 return ret;
7172 }
7173
7174
7175 /* Visit conditional statement STMT. If we can determine which edge
7176 will be taken out of STMT's basic block, record it in
7177 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7178 SSA_PROP_VARYING. */
7179
7180 static enum ssa_prop_result
7181 vrp_visit_cond_stmt (gimple stmt, edge *taken_edge_p)
7182 {
7183 tree val;
7184 bool sop;
7185
7186 *taken_edge_p = NULL;
7187
7188 if (dump_file && (dump_flags & TDF_DETAILS))
7189 {
7190 tree use;
7191 ssa_op_iter i;
7192
7193 fprintf (dump_file, "\nVisiting conditional with predicate: ");
7194 print_gimple_stmt (dump_file, stmt, 0, 0);
7195 fprintf (dump_file, "\nWith known ranges\n");
7196
7197 FOR_EACH_SSA_TREE_OPERAND (use, stmt, i, SSA_OP_USE)
7198 {
7199 fprintf (dump_file, "\t");
7200 print_generic_expr (dump_file, use, 0);
7201 fprintf (dump_file, ": ");
7202 dump_value_range (dump_file, vr_value[SSA_NAME_VERSION (use)]);
7203 }
7204
7205 fprintf (dump_file, "\n");
7206 }
7207
7208 /* Compute the value of the predicate COND by checking the known
7209 ranges of each of its operands.
7210
7211 Note that we cannot evaluate all the equivalent ranges here
7212 because those ranges may not yet be final and with the current
7213 propagation strategy, we cannot determine when the value ranges
7214 of the names in the equivalence set have changed.
7215
7216 For instance, given the following code fragment
7217
7218 i_5 = PHI <8, i_13>
7219 ...
7220 i_14 = ASSERT_EXPR <i_5, i_5 != 0>
7221 if (i_14 == 1)
7222 ...
7223
7224 Assume that on the first visit to i_14, i_5 has the temporary
7225 range [8, 8] because the second argument to the PHI function is
7226 not yet executable. We derive the range ~[0, 0] for i_14 and the
7227 equivalence set { i_5 }. So, when we visit 'if (i_14 == 1)' for
7228 the first time, since i_14 is equivalent to the range [8, 8], we
7229 determine that the predicate is always false.
7230
7231 On the next round of propagation, i_13 is determined to be
7232 VARYING, which causes i_5 to drop down to VARYING. So, another
7233 visit to i_14 is scheduled. In this second visit, we compute the
7234 exact same range and equivalence set for i_14, namely ~[0, 0] and
7235 { i_5 }. But we did not have the previous range for i_5
7236 registered, so vrp_visit_assignment thinks that the range for
7237 i_14 has not changed. Therefore, the predicate 'if (i_14 == 1)'
7238 is not visited again, which stops propagation from visiting
7239 statements in the THEN clause of that if().
7240
7241 To properly fix this we would need to keep the previous range
7242 value for the names in the equivalence set. This way we would've
7243 discovered that from one visit to the other i_5 changed from
7244 range [8, 8] to VR_VARYING.
7245
7246 However, fixing this apparent limitation may not be worth the
7247 additional checking. Testing on several code bases (GCC, DLV,
7248 MICO, TRAMP3D and SPEC2000) showed that doing this results in
7249 4 more predicates folded in SPEC. */
7250 sop = false;
7251
7252 val = vrp_evaluate_conditional_warnv_with_ops (gimple_cond_code (stmt),
7253 gimple_cond_lhs (stmt),
7254 gimple_cond_rhs (stmt),
7255 false, &sop, NULL);
7256 if (val)
7257 {
7258 if (!sop)
7259 *taken_edge_p = find_taken_edge (gimple_bb (stmt), val);
7260 else
7261 {
7262 if (dump_file && (dump_flags & TDF_DETAILS))
7263 fprintf (dump_file,
7264 "\nIgnoring predicate evaluation because "
7265 "it assumes that signed overflow is undefined");
7266 val = NULL_TREE;
7267 }
7268 }
7269
7270 if (dump_file && (dump_flags & TDF_DETAILS))
7271 {
7272 fprintf (dump_file, "\nPredicate evaluates to: ");
7273 if (val == NULL_TREE)
7274 fprintf (dump_file, "DON'T KNOW\n");
7275 else
7276 print_generic_stmt (dump_file, val, 0);
7277 }
7278
7279 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
7280 }
7281
7282 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
7283 that includes the value VAL. The search is restricted to the range
7284 [START_IDX, n - 1] where n is the size of VEC.
7285
7286 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
7287 returned.
7288
7289 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
7290 it is placed in IDX and false is returned.
7291
7292 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
7293 returned. */
7294
7295 static bool
7296 find_case_label_index (gimple stmt, size_t start_idx, tree val, size_t *idx)
7297 {
7298 size_t n = gimple_switch_num_labels (stmt);
7299 size_t low, high;
7300
7301 /* Find case label for minimum of the value range or the next one.
7302 At each iteration we are searching in [low, high - 1]. */
7303
7304 for (low = start_idx, high = n; high != low; )
7305 {
7306 tree t;
7307 int cmp;
7308 /* Note that i != high, so we never ask for n. */
7309 size_t i = (high + low) / 2;
7310 t = gimple_switch_label (stmt, i);
7311
7312 /* Cache the result of comparing CASE_LOW and val. */
7313 cmp = tree_int_cst_compare (CASE_LOW (t), val);
7314
7315 if (cmp == 0)
7316 {
7317 /* Ranges cannot be empty. */
7318 *idx = i;
7319 return true;
7320 }
7321 else if (cmp > 0)
7322 high = i;
7323 else
7324 {
7325 low = i + 1;
7326 if (CASE_HIGH (t) != NULL
7327 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
7328 {
7329 *idx = i;
7330 return true;
7331 }
7332 }
7333 }
7334
7335 *idx = high;
7336 return false;
7337 }
7338
7339 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
7340 for values between MIN and MAX. The first index is placed in MIN_IDX. The
7341 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
7342 then MAX_IDX < MIN_IDX.
7343 Returns true if the default label is not needed. */
7344
7345 static bool
7346 find_case_label_range (gimple stmt, tree min, tree max, size_t *min_idx,
7347 size_t *max_idx)
7348 {
7349 size_t i, j;
7350 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
7351 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
7352
7353 if (i == j
7354 && min_take_default
7355 && max_take_default)
7356 {
7357 /* Only the default case label reached.
7358 Return an empty range. */
7359 *min_idx = 1;
7360 *max_idx = 0;
7361 return false;
7362 }
7363 else
7364 {
7365 bool take_default = min_take_default || max_take_default;
7366 tree low, high;
7367 size_t k;
7368
7369 if (max_take_default)
7370 j--;
7371
7372 /* If the case label range is continuous, we do not need
7373 the default case label. Verify that. */
7374 high = CASE_LOW (gimple_switch_label (stmt, i));
7375 if (CASE_HIGH (gimple_switch_label (stmt, i)))
7376 high = CASE_HIGH (gimple_switch_label (stmt, i));
7377 for (k = i + 1; k <= j; ++k)
7378 {
7379 low = CASE_LOW (gimple_switch_label (stmt, k));
7380 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
7381 {
7382 take_default = true;
7383 break;
7384 }
7385 high = low;
7386 if (CASE_HIGH (gimple_switch_label (stmt, k)))
7387 high = CASE_HIGH (gimple_switch_label (stmt, k));
7388 }
7389
7390 *min_idx = i;
7391 *max_idx = j;
7392 return !take_default;
7393 }
7394 }
7395
7396 /* Searches the case label vector VEC for the ranges of CASE_LABELs that are
7397 used in range VR. The indices are placed in MIN_IDX1, MAX_IDX, MIN_IDX2 and
7398 MAX_IDX2. If the ranges of CASE_LABELs are empty then MAX_IDX1 < MIN_IDX1.
7399 Returns true if the default label is not needed. */
7400
7401 static bool
7402 find_case_label_ranges (gimple stmt, value_range_t *vr, size_t *min_idx1,
7403 size_t *max_idx1, size_t *min_idx2,
7404 size_t *max_idx2)
7405 {
7406 size_t i, j, k, l;
7407 unsigned int n = gimple_switch_num_labels (stmt);
7408 bool take_default;
7409 tree case_low, case_high;
7410 tree min = vr->min, max = vr->max;
7411
7412 gcc_checking_assert (vr->type == VR_RANGE || vr->type == VR_ANTI_RANGE);
7413
7414 take_default = !find_case_label_range (stmt, min, max, &i, &j);
7415
7416 /* Set second range to emtpy. */
7417 *min_idx2 = 1;
7418 *max_idx2 = 0;
7419
7420 if (vr->type == VR_RANGE)
7421 {
7422 *min_idx1 = i;
7423 *max_idx1 = j;
7424 return !take_default;
7425 }
7426
7427 /* Set first range to all case labels. */
7428 *min_idx1 = 1;
7429 *max_idx1 = n - 1;
7430
7431 if (i > j)
7432 return false;
7433
7434 /* Make sure all the values of case labels [i , j] are contained in
7435 range [MIN, MAX]. */
7436 case_low = CASE_LOW (gimple_switch_label (stmt, i));
7437 case_high = CASE_HIGH (gimple_switch_label (stmt, j));
7438 if (tree_int_cst_compare (case_low, min) < 0)
7439 i += 1;
7440 if (case_high != NULL_TREE
7441 && tree_int_cst_compare (max, case_high) < 0)
7442 j -= 1;
7443
7444 if (i > j)
7445 return false;
7446
7447 /* If the range spans case labels [i, j], the corresponding anti-range spans
7448 the labels [1, i - 1] and [j + 1, n - 1]. */
7449 k = j + 1;
7450 l = n - 1;
7451 if (k > l)
7452 {
7453 k = 1;
7454 l = 0;
7455 }
7456
7457 j = i - 1;
7458 i = 1;
7459 if (i > j)
7460 {
7461 i = k;
7462 j = l;
7463 k = 1;
7464 l = 0;
7465 }
7466
7467 *min_idx1 = i;
7468 *max_idx1 = j;
7469 *min_idx2 = k;
7470 *max_idx2 = l;
7471 return false;
7472 }
7473
7474 /* Visit switch statement STMT. If we can determine which edge
7475 will be taken out of STMT's basic block, record it in
7476 *TAKEN_EDGE_P and return SSA_PROP_INTERESTING. Otherwise, return
7477 SSA_PROP_VARYING. */
7478
7479 static enum ssa_prop_result
7480 vrp_visit_switch_stmt (gimple stmt, edge *taken_edge_p)
7481 {
7482 tree op, val;
7483 value_range_t *vr;
7484 size_t i = 0, j = 0, k, l;
7485 bool take_default;
7486
7487 *taken_edge_p = NULL;
7488 op = gimple_switch_index (stmt);
7489 if (TREE_CODE (op) != SSA_NAME)
7490 return SSA_PROP_VARYING;
7491
7492 vr = get_value_range (op);
7493 if (dump_file && (dump_flags & TDF_DETAILS))
7494 {
7495 fprintf (dump_file, "\nVisiting switch expression with operand ");
7496 print_generic_expr (dump_file, op, 0);
7497 fprintf (dump_file, " with known range ");
7498 dump_value_range (dump_file, vr);
7499 fprintf (dump_file, "\n");
7500 }
7501
7502 if ((vr->type != VR_RANGE
7503 && vr->type != VR_ANTI_RANGE)
7504 || symbolic_range_p (vr))
7505 return SSA_PROP_VARYING;
7506
7507 /* Find the single edge that is taken from the switch expression. */
7508 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
7509
7510 /* Check if the range spans no CASE_LABEL. If so, we only reach the default
7511 label */
7512 if (j < i)
7513 {
7514 gcc_assert (take_default);
7515 val = gimple_switch_default_label (stmt);
7516 }
7517 else
7518 {
7519 /* Check if labels with index i to j and maybe the default label
7520 are all reaching the same label. */
7521
7522 val = gimple_switch_label (stmt, i);
7523 if (take_default
7524 && CASE_LABEL (gimple_switch_default_label (stmt))
7525 != CASE_LABEL (val))
7526 {
7527 if (dump_file && (dump_flags & TDF_DETAILS))
7528 fprintf (dump_file, " not a single destination for this "
7529 "range\n");
7530 return SSA_PROP_VARYING;
7531 }
7532 for (++i; i <= j; ++i)
7533 {
7534 if (CASE_LABEL (gimple_switch_label (stmt, i)) != CASE_LABEL (val))
7535 {
7536 if (dump_file && (dump_flags & TDF_DETAILS))
7537 fprintf (dump_file, " not a single destination for this "
7538 "range\n");
7539 return SSA_PROP_VARYING;
7540 }
7541 }
7542 for (; k <= l; ++k)
7543 {
7544 if (CASE_LABEL (gimple_switch_label (stmt, k)) != CASE_LABEL (val))
7545 {
7546 if (dump_file && (dump_flags & TDF_DETAILS))
7547 fprintf (dump_file, " not a single destination for this "
7548 "range\n");
7549 return SSA_PROP_VARYING;
7550 }
7551 }
7552 }
7553
7554 *taken_edge_p = find_edge (gimple_bb (stmt),
7555 label_to_block (CASE_LABEL (val)));
7556
7557 if (dump_file && (dump_flags & TDF_DETAILS))
7558 {
7559 fprintf (dump_file, " will take edge to ");
7560 print_generic_stmt (dump_file, CASE_LABEL (val), 0);
7561 }
7562
7563 return SSA_PROP_INTERESTING;
7564 }
7565
7566
7567 /* Evaluate statement STMT. If the statement produces a useful range,
7568 return SSA_PROP_INTERESTING and record the SSA name with the
7569 interesting range into *OUTPUT_P.
7570
7571 If STMT is a conditional branch and we can determine its truth
7572 value, the taken edge is recorded in *TAKEN_EDGE_P.
7573
7574 If STMT produces a varying value, return SSA_PROP_VARYING. */
7575
7576 static enum ssa_prop_result
7577 vrp_visit_stmt (gimple stmt, edge *taken_edge_p, tree *output_p)
7578 {
7579 tree def;
7580 ssa_op_iter iter;
7581
7582 if (dump_file && (dump_flags & TDF_DETAILS))
7583 {
7584 fprintf (dump_file, "\nVisiting statement:\n");
7585 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
7586 fprintf (dump_file, "\n");
7587 }
7588
7589 if (!stmt_interesting_for_vrp (stmt))
7590 gcc_assert (stmt_ends_bb_p (stmt));
7591 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
7592 return vrp_visit_assignment_or_call (stmt, output_p);
7593 else if (gimple_code (stmt) == GIMPLE_COND)
7594 return vrp_visit_cond_stmt (stmt, taken_edge_p);
7595 else if (gimple_code (stmt) == GIMPLE_SWITCH)
7596 return vrp_visit_switch_stmt (stmt, taken_edge_p);
7597
7598 /* All other statements produce nothing of interest for VRP, so mark
7599 their outputs varying and prevent further simulation. */
7600 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_DEF)
7601 set_value_range_to_varying (get_value_range (def));
7602
7603 return SSA_PROP_VARYING;
7604 }
7605
7606 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7607 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7608 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7609 possible such range. The resulting range is not canonicalized. */
7610
7611 static void
7612 union_ranges (enum value_range_type *vr0type,
7613 tree *vr0min, tree *vr0max,
7614 enum value_range_type vr1type,
7615 tree vr1min, tree vr1max)
7616 {
7617 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
7618 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
7619
7620 /* [] is vr0, () is vr1 in the following classification comments. */
7621 if (mineq && maxeq)
7622 {
7623 /* [( )] */
7624 if (*vr0type == vr1type)
7625 /* Nothing to do for equal ranges. */
7626 ;
7627 else if ((*vr0type == VR_RANGE
7628 && vr1type == VR_ANTI_RANGE)
7629 || (*vr0type == VR_ANTI_RANGE
7630 && vr1type == VR_RANGE))
7631 {
7632 /* For anti-range with range union the result is varying. */
7633 goto give_up;
7634 }
7635 else
7636 gcc_unreachable ();
7637 }
7638 else if (operand_less_p (*vr0max, vr1min) == 1
7639 || operand_less_p (vr1max, *vr0min) == 1)
7640 {
7641 /* [ ] ( ) or ( ) [ ]
7642 If the ranges have an empty intersection, result of the union
7643 operation is the anti-range or if both are anti-ranges
7644 it covers all. */
7645 if (*vr0type == VR_ANTI_RANGE
7646 && vr1type == VR_ANTI_RANGE)
7647 goto give_up;
7648 else if (*vr0type == VR_ANTI_RANGE
7649 && vr1type == VR_RANGE)
7650 ;
7651 else if (*vr0type == VR_RANGE
7652 && vr1type == VR_ANTI_RANGE)
7653 {
7654 *vr0type = vr1type;
7655 *vr0min = vr1min;
7656 *vr0max = vr1max;
7657 }
7658 else if (*vr0type == VR_RANGE
7659 && vr1type == VR_RANGE)
7660 {
7661 /* The result is the convex hull of both ranges. */
7662 if (operand_less_p (*vr0max, vr1min) == 1)
7663 {
7664 /* If the result can be an anti-range, create one. */
7665 if (TREE_CODE (*vr0max) == INTEGER_CST
7666 && TREE_CODE (vr1min) == INTEGER_CST
7667 && vrp_val_is_min (*vr0min)
7668 && vrp_val_is_max (vr1max))
7669 {
7670 tree min = int_const_binop (PLUS_EXPR,
7671 *vr0max, integer_one_node);
7672 tree max = int_const_binop (MINUS_EXPR,
7673 vr1min, integer_one_node);
7674 if (!operand_less_p (max, min))
7675 {
7676 *vr0type = VR_ANTI_RANGE;
7677 *vr0min = min;
7678 *vr0max = max;
7679 }
7680 else
7681 *vr0max = vr1max;
7682 }
7683 else
7684 *vr0max = vr1max;
7685 }
7686 else
7687 {
7688 /* If the result can be an anti-range, create one. */
7689 if (TREE_CODE (vr1max) == INTEGER_CST
7690 && TREE_CODE (*vr0min) == INTEGER_CST
7691 && vrp_val_is_min (vr1min)
7692 && vrp_val_is_max (*vr0max))
7693 {
7694 tree min = int_const_binop (PLUS_EXPR,
7695 vr1max, integer_one_node);
7696 tree max = int_const_binop (MINUS_EXPR,
7697 *vr0min, integer_one_node);
7698 if (!operand_less_p (max, min))
7699 {
7700 *vr0type = VR_ANTI_RANGE;
7701 *vr0min = min;
7702 *vr0max = max;
7703 }
7704 else
7705 *vr0min = vr1min;
7706 }
7707 else
7708 *vr0min = vr1min;
7709 }
7710 }
7711 else
7712 gcc_unreachable ();
7713 }
7714 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
7715 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
7716 {
7717 /* [ ( ) ] or [( ) ] or [ ( )] */
7718 if (*vr0type == VR_RANGE
7719 && vr1type == VR_RANGE)
7720 ;
7721 else if (*vr0type == VR_ANTI_RANGE
7722 && vr1type == VR_ANTI_RANGE)
7723 {
7724 *vr0type = vr1type;
7725 *vr0min = vr1min;
7726 *vr0max = vr1max;
7727 }
7728 else if (*vr0type == VR_ANTI_RANGE
7729 && vr1type == VR_RANGE)
7730 {
7731 /* Arbitrarily choose the right or left gap. */
7732 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
7733 *vr0max = int_const_binop (MINUS_EXPR, vr1min, integer_one_node);
7734 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
7735 *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
7736 else
7737 goto give_up;
7738 }
7739 else if (*vr0type == VR_RANGE
7740 && vr1type == VR_ANTI_RANGE)
7741 /* The result covers everything. */
7742 goto give_up;
7743 else
7744 gcc_unreachable ();
7745 }
7746 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
7747 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
7748 {
7749 /* ( [ ] ) or ([ ] ) or ( [ ]) */
7750 if (*vr0type == VR_RANGE
7751 && vr1type == VR_RANGE)
7752 {
7753 *vr0type = vr1type;
7754 *vr0min = vr1min;
7755 *vr0max = vr1max;
7756 }
7757 else if (*vr0type == VR_ANTI_RANGE
7758 && vr1type == VR_ANTI_RANGE)
7759 ;
7760 else if (*vr0type == VR_RANGE
7761 && vr1type == VR_ANTI_RANGE)
7762 {
7763 *vr0type = VR_ANTI_RANGE;
7764 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
7765 {
7766 *vr0max = int_const_binop (MINUS_EXPR, *vr0min, integer_one_node);
7767 *vr0min = vr1min;
7768 }
7769 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
7770 {
7771 *vr0min = int_const_binop (PLUS_EXPR, *vr0max, integer_one_node);
7772 *vr0max = vr1max;
7773 }
7774 else
7775 goto give_up;
7776 }
7777 else if (*vr0type == VR_ANTI_RANGE
7778 && vr1type == VR_RANGE)
7779 /* The result covers everything. */
7780 goto give_up;
7781 else
7782 gcc_unreachable ();
7783 }
7784 else if ((operand_less_p (vr1min, *vr0max) == 1
7785 || operand_equal_p (vr1min, *vr0max, 0))
7786 && operand_less_p (*vr0min, vr1min) == 1)
7787 {
7788 /* [ ( ] ) or [ ]( ) */
7789 if (*vr0type == VR_RANGE
7790 && vr1type == VR_RANGE)
7791 *vr0max = vr1max;
7792 else if (*vr0type == VR_ANTI_RANGE
7793 && vr1type == VR_ANTI_RANGE)
7794 *vr0min = vr1min;
7795 else if (*vr0type == VR_ANTI_RANGE
7796 && vr1type == VR_RANGE)
7797 {
7798 if (TREE_CODE (vr1min) == INTEGER_CST)
7799 *vr0max = int_const_binop (MINUS_EXPR, vr1min, integer_one_node);
7800 else
7801 goto give_up;
7802 }
7803 else if (*vr0type == VR_RANGE
7804 && vr1type == VR_ANTI_RANGE)
7805 {
7806 if (TREE_CODE (*vr0max) == INTEGER_CST)
7807 {
7808 *vr0type = vr1type;
7809 *vr0min = int_const_binop (PLUS_EXPR, *vr0max, integer_one_node);
7810 *vr0max = vr1max;
7811 }
7812 else
7813 goto give_up;
7814 }
7815 else
7816 gcc_unreachable ();
7817 }
7818 else if ((operand_less_p (*vr0min, vr1max) == 1
7819 || operand_equal_p (*vr0min, vr1max, 0))
7820 && operand_less_p (vr1min, *vr0min) == 1)
7821 {
7822 /* ( [ ) ] or ( )[ ] */
7823 if (*vr0type == VR_RANGE
7824 && vr1type == VR_RANGE)
7825 *vr0min = vr1min;
7826 else if (*vr0type == VR_ANTI_RANGE
7827 && vr1type == VR_ANTI_RANGE)
7828 *vr0max = vr1max;
7829 else if (*vr0type == VR_ANTI_RANGE
7830 && vr1type == VR_RANGE)
7831 {
7832 if (TREE_CODE (vr1max) == INTEGER_CST)
7833 *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
7834 else
7835 goto give_up;
7836 }
7837 else if (*vr0type == VR_RANGE
7838 && vr1type == VR_ANTI_RANGE)
7839 {
7840 if (TREE_CODE (*vr0min) == INTEGER_CST)
7841 {
7842 *vr0type = vr1type;
7843 *vr0min = vr1min;
7844 *vr0max = int_const_binop (MINUS_EXPR, *vr0min, integer_one_node);
7845 }
7846 else
7847 goto give_up;
7848 }
7849 else
7850 gcc_unreachable ();
7851 }
7852 else
7853 goto give_up;
7854
7855 return;
7856
7857 give_up:
7858 *vr0type = VR_VARYING;
7859 *vr0min = NULL_TREE;
7860 *vr0max = NULL_TREE;
7861 }
7862
7863 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
7864 { VR1TYPE, VR0MIN, VR0MAX } and store the result
7865 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
7866 possible such range. The resulting range is not canonicalized. */
7867
7868 static void
7869 intersect_ranges (enum value_range_type *vr0type,
7870 tree *vr0min, tree *vr0max,
7871 enum value_range_type vr1type,
7872 tree vr1min, tree vr1max)
7873 {
7874 bool mineq = operand_equal_p (*vr0min, vr1min, 0);
7875 bool maxeq = operand_equal_p (*vr0max, vr1max, 0);
7876
7877 /* [] is vr0, () is vr1 in the following classification comments. */
7878 if (mineq && maxeq)
7879 {
7880 /* [( )] */
7881 if (*vr0type == vr1type)
7882 /* Nothing to do for equal ranges. */
7883 ;
7884 else if ((*vr0type == VR_RANGE
7885 && vr1type == VR_ANTI_RANGE)
7886 || (*vr0type == VR_ANTI_RANGE
7887 && vr1type == VR_RANGE))
7888 {
7889 /* For anti-range with range intersection the result is empty. */
7890 *vr0type = VR_UNDEFINED;
7891 *vr0min = NULL_TREE;
7892 *vr0max = NULL_TREE;
7893 }
7894 else
7895 gcc_unreachable ();
7896 }
7897 else if (operand_less_p (*vr0max, vr1min) == 1
7898 || operand_less_p (vr1max, *vr0min) == 1)
7899 {
7900 /* [ ] ( ) or ( ) [ ]
7901 If the ranges have an empty intersection, the result of the
7902 intersect operation is the range for intersecting an
7903 anti-range with a range or empty when intersecting two ranges. */
7904 if (*vr0type == VR_RANGE
7905 && vr1type == VR_ANTI_RANGE)
7906 ;
7907 else if (*vr0type == VR_ANTI_RANGE
7908 && vr1type == VR_RANGE)
7909 {
7910 *vr0type = vr1type;
7911 *vr0min = vr1min;
7912 *vr0max = vr1max;
7913 }
7914 else if (*vr0type == VR_RANGE
7915 && vr1type == VR_RANGE)
7916 {
7917 *vr0type = VR_UNDEFINED;
7918 *vr0min = NULL_TREE;
7919 *vr0max = NULL_TREE;
7920 }
7921 else if (*vr0type == VR_ANTI_RANGE
7922 && vr1type == VR_ANTI_RANGE)
7923 {
7924 /* If the anti-ranges are adjacent to each other merge them. */
7925 if (TREE_CODE (*vr0max) == INTEGER_CST
7926 && TREE_CODE (vr1min) == INTEGER_CST
7927 && operand_less_p (*vr0max, vr1min) == 1
7928 && integer_onep (int_const_binop (MINUS_EXPR,
7929 vr1min, *vr0max)))
7930 *vr0max = vr1max;
7931 else if (TREE_CODE (vr1max) == INTEGER_CST
7932 && TREE_CODE (*vr0min) == INTEGER_CST
7933 && operand_less_p (vr1max, *vr0min) == 1
7934 && integer_onep (int_const_binop (MINUS_EXPR,
7935 *vr0min, vr1max)))
7936 *vr0min = vr1min;
7937 /* Else arbitrarily take VR0. */
7938 }
7939 }
7940 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
7941 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
7942 {
7943 /* [ ( ) ] or [( ) ] or [ ( )] */
7944 if (*vr0type == VR_RANGE
7945 && vr1type == VR_RANGE)
7946 {
7947 /* If both are ranges the result is the inner one. */
7948 *vr0type = vr1type;
7949 *vr0min = vr1min;
7950 *vr0max = vr1max;
7951 }
7952 else if (*vr0type == VR_RANGE
7953 && vr1type == VR_ANTI_RANGE)
7954 {
7955 /* Choose the right gap if the left one is empty. */
7956 if (mineq)
7957 {
7958 if (TREE_CODE (vr1max) == INTEGER_CST)
7959 *vr0min = int_const_binop (PLUS_EXPR, vr1max, integer_one_node);
7960 else
7961 *vr0min = vr1max;
7962 }
7963 /* Choose the left gap if the right one is empty. */
7964 else if (maxeq)
7965 {
7966 if (TREE_CODE (vr1min) == INTEGER_CST)
7967 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
7968 integer_one_node);
7969 else
7970 *vr0max = vr1min;
7971 }
7972 /* Choose the anti-range if the range is effectively varying. */
7973 else if (vrp_val_is_min (*vr0min)
7974 && vrp_val_is_max (*vr0max))
7975 {
7976 *vr0type = vr1type;
7977 *vr0min = vr1min;
7978 *vr0max = vr1max;
7979 }
7980 /* Else choose the range. */
7981 }
7982 else if (*vr0type == VR_ANTI_RANGE
7983 && vr1type == VR_ANTI_RANGE)
7984 /* If both are anti-ranges the result is the outer one. */
7985 ;
7986 else if (*vr0type == VR_ANTI_RANGE
7987 && vr1type == VR_RANGE)
7988 {
7989 /* The intersection is empty. */
7990 *vr0type = VR_UNDEFINED;
7991 *vr0min = NULL_TREE;
7992 *vr0max = NULL_TREE;
7993 }
7994 else
7995 gcc_unreachable ();
7996 }
7997 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
7998 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
7999 {
8000 /* ( [ ] ) or ([ ] ) or ( [ ]) */
8001 if (*vr0type == VR_RANGE
8002 && vr1type == VR_RANGE)
8003 /* Choose the inner range. */
8004 ;
8005 else if (*vr0type == VR_ANTI_RANGE
8006 && vr1type == VR_RANGE)
8007 {
8008 /* Choose the right gap if the left is empty. */
8009 if (mineq)
8010 {
8011 *vr0type = VR_RANGE;
8012 if (TREE_CODE (*vr0max) == INTEGER_CST)
8013 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8014 integer_one_node);
8015 else
8016 *vr0min = *vr0max;
8017 *vr0max = vr1max;
8018 }
8019 /* Choose the left gap if the right is empty. */
8020 else if (maxeq)
8021 {
8022 *vr0type = VR_RANGE;
8023 if (TREE_CODE (*vr0min) == INTEGER_CST)
8024 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8025 integer_one_node);
8026 else
8027 *vr0max = *vr0min;
8028 *vr0min = vr1min;
8029 }
8030 /* Choose the anti-range if the range is effectively varying. */
8031 else if (vrp_val_is_min (vr1min)
8032 && vrp_val_is_max (vr1max))
8033 ;
8034 /* Else choose the range. */
8035 else
8036 {
8037 *vr0type = vr1type;
8038 *vr0min = vr1min;
8039 *vr0max = vr1max;
8040 }
8041 }
8042 else if (*vr0type == VR_ANTI_RANGE
8043 && vr1type == VR_ANTI_RANGE)
8044 {
8045 /* If both are anti-ranges the result is the outer one. */
8046 *vr0type = vr1type;
8047 *vr0min = vr1min;
8048 *vr0max = vr1max;
8049 }
8050 else if (vr1type == VR_ANTI_RANGE
8051 && *vr0type == VR_RANGE)
8052 {
8053 /* The intersection is empty. */
8054 *vr0type = VR_UNDEFINED;
8055 *vr0min = NULL_TREE;
8056 *vr0max = NULL_TREE;
8057 }
8058 else
8059 gcc_unreachable ();
8060 }
8061 else if ((operand_less_p (vr1min, *vr0max) == 1
8062 || operand_equal_p (vr1min, *vr0max, 0))
8063 && operand_less_p (*vr0min, vr1min) == 1)
8064 {
8065 /* [ ( ] ) or [ ]( ) */
8066 if (*vr0type == VR_ANTI_RANGE
8067 && vr1type == VR_ANTI_RANGE)
8068 *vr0max = vr1max;
8069 else if (*vr0type == VR_RANGE
8070 && vr1type == VR_RANGE)
8071 *vr0min = vr1min;
8072 else if (*vr0type == VR_RANGE
8073 && vr1type == VR_ANTI_RANGE)
8074 {
8075 if (TREE_CODE (vr1min) == INTEGER_CST)
8076 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
8077 integer_one_node);
8078 else
8079 *vr0max = vr1min;
8080 }
8081 else if (*vr0type == VR_ANTI_RANGE
8082 && vr1type == VR_RANGE)
8083 {
8084 *vr0type = VR_RANGE;
8085 if (TREE_CODE (*vr0max) == INTEGER_CST)
8086 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
8087 integer_one_node);
8088 else
8089 *vr0min = *vr0max;
8090 *vr0max = vr1max;
8091 }
8092 else
8093 gcc_unreachable ();
8094 }
8095 else if ((operand_less_p (*vr0min, vr1max) == 1
8096 || operand_equal_p (*vr0min, vr1max, 0))
8097 && operand_less_p (vr1min, *vr0min) == 1)
8098 {
8099 /* ( [ ) ] or ( )[ ] */
8100 if (*vr0type == VR_ANTI_RANGE
8101 && vr1type == VR_ANTI_RANGE)
8102 *vr0min = vr1min;
8103 else if (*vr0type == VR_RANGE
8104 && vr1type == VR_RANGE)
8105 *vr0max = vr1max;
8106 else if (*vr0type == VR_RANGE
8107 && vr1type == VR_ANTI_RANGE)
8108 {
8109 if (TREE_CODE (vr1max) == INTEGER_CST)
8110 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
8111 integer_one_node);
8112 else
8113 *vr0min = vr1max;
8114 }
8115 else if (*vr0type == VR_ANTI_RANGE
8116 && vr1type == VR_RANGE)
8117 {
8118 *vr0type = VR_RANGE;
8119 if (TREE_CODE (*vr0min) == INTEGER_CST)
8120 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
8121 integer_one_node);
8122 else
8123 *vr0max = *vr0min;
8124 *vr0min = vr1min;
8125 }
8126 else
8127 gcc_unreachable ();
8128 }
8129
8130 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
8131 result for the intersection. That's always a conservative
8132 correct estimate. */
8133
8134 return;
8135 }
8136
8137
8138 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
8139 in *VR0. This may not be the smallest possible such range. */
8140
8141 static void
8142 vrp_intersect_ranges_1 (value_range_t *vr0, value_range_t *vr1)
8143 {
8144 value_range_t saved;
8145
8146 /* If either range is VR_VARYING the other one wins. */
8147 if (vr1->type == VR_VARYING)
8148 return;
8149 if (vr0->type == VR_VARYING)
8150 {
8151 copy_value_range (vr0, vr1);
8152 return;
8153 }
8154
8155 /* When either range is VR_UNDEFINED the resulting range is
8156 VR_UNDEFINED, too. */
8157 if (vr0->type == VR_UNDEFINED)
8158 return;
8159 if (vr1->type == VR_UNDEFINED)
8160 {
8161 set_value_range_to_undefined (vr0);
8162 return;
8163 }
8164
8165 /* Save the original vr0 so we can return it as conservative intersection
8166 result when our worker turns things to varying. */
8167 saved = *vr0;
8168 intersect_ranges (&vr0->type, &vr0->min, &vr0->max,
8169 vr1->type, vr1->min, vr1->max);
8170 /* Make sure to canonicalize the result though as the inversion of a
8171 VR_RANGE can still be a VR_RANGE. */
8172 set_and_canonicalize_value_range (vr0, vr0->type,
8173 vr0->min, vr0->max, vr0->equiv);
8174 /* If that failed, use the saved original VR0. */
8175 if (vr0->type == VR_VARYING)
8176 {
8177 *vr0 = saved;
8178 return;
8179 }
8180 /* If the result is VR_UNDEFINED there is no need to mess with
8181 the equivalencies. */
8182 if (vr0->type == VR_UNDEFINED)
8183 return;
8184
8185 /* The resulting set of equivalences for range intersection is the union of
8186 the two sets. */
8187 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8188 bitmap_ior_into (vr0->equiv, vr1->equiv);
8189 else if (vr1->equiv && !vr0->equiv)
8190 bitmap_copy (vr0->equiv, vr1->equiv);
8191 }
8192
8193 static void
8194 vrp_intersect_ranges (value_range_t *vr0, value_range_t *vr1)
8195 {
8196 if (dump_file && (dump_flags & TDF_DETAILS))
8197 {
8198 fprintf (dump_file, "Intersecting\n ");
8199 dump_value_range (dump_file, vr0);
8200 fprintf (dump_file, "\nand\n ");
8201 dump_value_range (dump_file, vr1);
8202 fprintf (dump_file, "\n");
8203 }
8204 vrp_intersect_ranges_1 (vr0, vr1);
8205 if (dump_file && (dump_flags & TDF_DETAILS))
8206 {
8207 fprintf (dump_file, "to\n ");
8208 dump_value_range (dump_file, vr0);
8209 fprintf (dump_file, "\n");
8210 }
8211 }
8212
8213 /* Meet operation for value ranges. Given two value ranges VR0 and
8214 VR1, store in VR0 a range that contains both VR0 and VR1. This
8215 may not be the smallest possible such range. */
8216
8217 static void
8218 vrp_meet_1 (value_range_t *vr0, value_range_t *vr1)
8219 {
8220 value_range_t saved;
8221
8222 if (vr0->type == VR_UNDEFINED)
8223 {
8224 set_value_range (vr0, vr1->type, vr1->min, vr1->max, vr1->equiv);
8225 return;
8226 }
8227
8228 if (vr1->type == VR_UNDEFINED)
8229 {
8230 /* VR0 already has the resulting range. */
8231 return;
8232 }
8233
8234 if (vr0->type == VR_VARYING)
8235 {
8236 /* Nothing to do. VR0 already has the resulting range. */
8237 return;
8238 }
8239
8240 if (vr1->type == VR_VARYING)
8241 {
8242 set_value_range_to_varying (vr0);
8243 return;
8244 }
8245
8246 saved = *vr0;
8247 union_ranges (&vr0->type, &vr0->min, &vr0->max,
8248 vr1->type, vr1->min, vr1->max);
8249 if (vr0->type == VR_VARYING)
8250 {
8251 /* Failed to find an efficient meet. Before giving up and setting
8252 the result to VARYING, see if we can at least derive a useful
8253 anti-range. FIXME, all this nonsense about distinguishing
8254 anti-ranges from ranges is necessary because of the odd
8255 semantics of range_includes_zero_p and friends. */
8256 if (((saved.type == VR_RANGE
8257 && range_includes_zero_p (saved.min, saved.max) == 0)
8258 || (saved.type == VR_ANTI_RANGE
8259 && range_includes_zero_p (saved.min, saved.max) == 1))
8260 && ((vr1->type == VR_RANGE
8261 && range_includes_zero_p (vr1->min, vr1->max) == 0)
8262 || (vr1->type == VR_ANTI_RANGE
8263 && range_includes_zero_p (vr1->min, vr1->max) == 1)))
8264 {
8265 set_value_range_to_nonnull (vr0, TREE_TYPE (saved.min));
8266
8267 /* Since this meet operation did not result from the meeting of
8268 two equivalent names, VR0 cannot have any equivalences. */
8269 if (vr0->equiv)
8270 bitmap_clear (vr0->equiv);
8271 return;
8272 }
8273
8274 set_value_range_to_varying (vr0);
8275 return;
8276 }
8277 set_and_canonicalize_value_range (vr0, vr0->type, vr0->min, vr0->max,
8278 vr0->equiv);
8279 if (vr0->type == VR_VARYING)
8280 return;
8281
8282 /* The resulting set of equivalences is always the intersection of
8283 the two sets. */
8284 if (vr0->equiv && vr1->equiv && vr0->equiv != vr1->equiv)
8285 bitmap_and_into (vr0->equiv, vr1->equiv);
8286 else if (vr0->equiv && !vr1->equiv)
8287 bitmap_clear (vr0->equiv);
8288 }
8289
8290 static void
8291 vrp_meet (value_range_t *vr0, value_range_t *vr1)
8292 {
8293 if (dump_file && (dump_flags & TDF_DETAILS))
8294 {
8295 fprintf (dump_file, "Meeting\n ");
8296 dump_value_range (dump_file, vr0);
8297 fprintf (dump_file, "\nand\n ");
8298 dump_value_range (dump_file, vr1);
8299 fprintf (dump_file, "\n");
8300 }
8301 vrp_meet_1 (vr0, vr1);
8302 if (dump_file && (dump_flags & TDF_DETAILS))
8303 {
8304 fprintf (dump_file, "to\n ");
8305 dump_value_range (dump_file, vr0);
8306 fprintf (dump_file, "\n");
8307 }
8308 }
8309
8310
8311 /* Visit all arguments for PHI node PHI that flow through executable
8312 edges. If a valid value range can be derived from all the incoming
8313 value ranges, set a new range for the LHS of PHI. */
8314
8315 static enum ssa_prop_result
8316 vrp_visit_phi_node (gimple phi)
8317 {
8318 size_t i;
8319 tree lhs = PHI_RESULT (phi);
8320 value_range_t *lhs_vr = get_value_range (lhs);
8321 value_range_t vr_result = VR_INITIALIZER;
8322 bool first = true;
8323 int edges, old_edges;
8324 struct loop *l;
8325
8326 if (dump_file && (dump_flags & TDF_DETAILS))
8327 {
8328 fprintf (dump_file, "\nVisiting PHI node: ");
8329 print_gimple_stmt (dump_file, phi, 0, dump_flags);
8330 }
8331
8332 edges = 0;
8333 for (i = 0; i < gimple_phi_num_args (phi); i++)
8334 {
8335 edge e = gimple_phi_arg_edge (phi, i);
8336
8337 if (dump_file && (dump_flags & TDF_DETAILS))
8338 {
8339 fprintf (dump_file,
8340 "\n Argument #%d (%d -> %d %sexecutable)\n",
8341 (int) i, e->src->index, e->dest->index,
8342 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
8343 }
8344
8345 if (e->flags & EDGE_EXECUTABLE)
8346 {
8347 tree arg = PHI_ARG_DEF (phi, i);
8348 value_range_t vr_arg;
8349
8350 ++edges;
8351
8352 if (TREE_CODE (arg) == SSA_NAME)
8353 {
8354 vr_arg = *(get_value_range (arg));
8355 /* Do not allow equivalences or symbolic ranges to leak in from
8356 backedges. That creates invalid equivalencies.
8357 See PR53465 and PR54767. */
8358 if (e->flags & EDGE_DFS_BACK
8359 && (vr_arg.type == VR_RANGE
8360 || vr_arg.type == VR_ANTI_RANGE))
8361 {
8362 vr_arg.equiv = NULL;
8363 if (symbolic_range_p (&vr_arg))
8364 {
8365 vr_arg.type = VR_VARYING;
8366 vr_arg.min = NULL_TREE;
8367 vr_arg.max = NULL_TREE;
8368 }
8369 }
8370 }
8371 else
8372 {
8373 if (is_overflow_infinity (arg))
8374 {
8375 arg = copy_node (arg);
8376 TREE_OVERFLOW (arg) = 0;
8377 }
8378
8379 vr_arg.type = VR_RANGE;
8380 vr_arg.min = arg;
8381 vr_arg.max = arg;
8382 vr_arg.equiv = NULL;
8383 }
8384
8385 if (dump_file && (dump_flags & TDF_DETAILS))
8386 {
8387 fprintf (dump_file, "\t");
8388 print_generic_expr (dump_file, arg, dump_flags);
8389 fprintf (dump_file, "\n\tValue: ");
8390 dump_value_range (dump_file, &vr_arg);
8391 fprintf (dump_file, "\n");
8392 }
8393
8394 if (first)
8395 copy_value_range (&vr_result, &vr_arg);
8396 else
8397 vrp_meet (&vr_result, &vr_arg);
8398 first = false;
8399
8400 if (vr_result.type == VR_VARYING)
8401 break;
8402 }
8403 }
8404
8405 if (vr_result.type == VR_VARYING)
8406 goto varying;
8407 else if (vr_result.type == VR_UNDEFINED)
8408 goto update_range;
8409
8410 old_edges = vr_phi_edge_counts[SSA_NAME_VERSION (lhs)];
8411 vr_phi_edge_counts[SSA_NAME_VERSION (lhs)] = edges;
8412
8413 /* To prevent infinite iterations in the algorithm, derive ranges
8414 when the new value is slightly bigger or smaller than the
8415 previous one. We don't do this if we have seen a new executable
8416 edge; this helps us avoid an overflow infinity for conditionals
8417 which are not in a loop. If the old value-range was VR_UNDEFINED
8418 use the updated range and iterate one more time. */
8419 if (edges > 0
8420 && gimple_phi_num_args (phi) > 1
8421 && edges == old_edges
8422 && lhs_vr->type != VR_UNDEFINED)
8423 {
8424 int cmp_min = compare_values (lhs_vr->min, vr_result.min);
8425 int cmp_max = compare_values (lhs_vr->max, vr_result.max);
8426
8427 /* For non VR_RANGE or for pointers fall back to varying if
8428 the range changed. */
8429 if ((lhs_vr->type != VR_RANGE || vr_result.type != VR_RANGE
8430 || POINTER_TYPE_P (TREE_TYPE (lhs)))
8431 && (cmp_min != 0 || cmp_max != 0))
8432 goto varying;
8433
8434 /* If the new minimum is smaller or larger than the previous
8435 one, go all the way to -INF. In the first case, to avoid
8436 iterating millions of times to reach -INF, and in the
8437 other case to avoid infinite bouncing between different
8438 minimums. */
8439 if (cmp_min > 0 || cmp_min < 0)
8440 {
8441 if (!needs_overflow_infinity (TREE_TYPE (vr_result.min))
8442 || !vrp_var_may_overflow (lhs, phi))
8443 vr_result.min = TYPE_MIN_VALUE (TREE_TYPE (vr_result.min));
8444 else if (supports_overflow_infinity (TREE_TYPE (vr_result.min)))
8445 vr_result.min =
8446 negative_overflow_infinity (TREE_TYPE (vr_result.min));
8447 }
8448
8449 /* Similarly, if the new maximum is smaller or larger than
8450 the previous one, go all the way to +INF. */
8451 if (cmp_max < 0 || cmp_max > 0)
8452 {
8453 if (!needs_overflow_infinity (TREE_TYPE (vr_result.max))
8454 || !vrp_var_may_overflow (lhs, phi))
8455 vr_result.max = TYPE_MAX_VALUE (TREE_TYPE (vr_result.max));
8456 else if (supports_overflow_infinity (TREE_TYPE (vr_result.max)))
8457 vr_result.max =
8458 positive_overflow_infinity (TREE_TYPE (vr_result.max));
8459 }
8460
8461 /* If we dropped either bound to +-INF then if this is a loop
8462 PHI node SCEV may known more about its value-range. */
8463 if ((cmp_min > 0 || cmp_min < 0
8464 || cmp_max < 0 || cmp_max > 0)
8465 && current_loops
8466 && (l = loop_containing_stmt (phi))
8467 && l->header == gimple_bb (phi))
8468 adjust_range_with_scev (&vr_result, l, phi, lhs);
8469
8470 /* If we will end up with a (-INF, +INF) range, set it to
8471 VARYING. Same if the previous max value was invalid for
8472 the type and we end up with vr_result.min > vr_result.max. */
8473 if ((vrp_val_is_max (vr_result.max)
8474 && vrp_val_is_min (vr_result.min))
8475 || compare_values (vr_result.min,
8476 vr_result.max) > 0)
8477 goto varying;
8478 }
8479
8480 /* If the new range is different than the previous value, keep
8481 iterating. */
8482 update_range:
8483 if (update_value_range (lhs, &vr_result))
8484 {
8485 if (dump_file && (dump_flags & TDF_DETAILS))
8486 {
8487 fprintf (dump_file, "Found new range for ");
8488 print_generic_expr (dump_file, lhs, 0);
8489 fprintf (dump_file, ": ");
8490 dump_value_range (dump_file, &vr_result);
8491 fprintf (dump_file, "\n\n");
8492 }
8493
8494 return SSA_PROP_INTERESTING;
8495 }
8496
8497 /* Nothing changed, don't add outgoing edges. */
8498 return SSA_PROP_NOT_INTERESTING;
8499
8500 /* No match found. Set the LHS to VARYING. */
8501 varying:
8502 set_value_range_to_varying (lhs_vr);
8503 return SSA_PROP_VARYING;
8504 }
8505
8506 /* Simplify boolean operations if the source is known
8507 to be already a boolean. */
8508 static bool
8509 simplify_truth_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
8510 {
8511 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8512 tree lhs, op0, op1;
8513 bool need_conversion;
8514
8515 /* We handle only !=/== case here. */
8516 gcc_assert (rhs_code == EQ_EXPR || rhs_code == NE_EXPR);
8517
8518 op0 = gimple_assign_rhs1 (stmt);
8519 if (!op_with_boolean_value_range_p (op0))
8520 return false;
8521
8522 op1 = gimple_assign_rhs2 (stmt);
8523 if (!op_with_boolean_value_range_p (op1))
8524 return false;
8525
8526 /* Reduce number of cases to handle to NE_EXPR. As there is no
8527 BIT_XNOR_EXPR we cannot replace A == B with a single statement. */
8528 if (rhs_code == EQ_EXPR)
8529 {
8530 if (TREE_CODE (op1) == INTEGER_CST)
8531 op1 = int_const_binop (BIT_XOR_EXPR, op1, integer_one_node);
8532 else
8533 return false;
8534 }
8535
8536 lhs = gimple_assign_lhs (stmt);
8537 need_conversion
8538 = !useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (op0));
8539
8540 /* Make sure to not sign-extend a 1-bit 1 when converting the result. */
8541 if (need_conversion
8542 && !TYPE_UNSIGNED (TREE_TYPE (op0))
8543 && TYPE_PRECISION (TREE_TYPE (op0)) == 1
8544 && TYPE_PRECISION (TREE_TYPE (lhs)) > 1)
8545 return false;
8546
8547 /* For A != 0 we can substitute A itself. */
8548 if (integer_zerop (op1))
8549 gimple_assign_set_rhs_with_ops (gsi,
8550 need_conversion
8551 ? NOP_EXPR : TREE_CODE (op0),
8552 op0, NULL_TREE);
8553 /* For A != B we substitute A ^ B. Either with conversion. */
8554 else if (need_conversion)
8555 {
8556 tree tem = make_ssa_name (TREE_TYPE (op0), NULL);
8557 gimple newop = gimple_build_assign_with_ops (BIT_XOR_EXPR, tem, op0, op1);
8558 gsi_insert_before (gsi, newop, GSI_SAME_STMT);
8559 gimple_assign_set_rhs_with_ops (gsi, NOP_EXPR, tem, NULL_TREE);
8560 }
8561 /* Or without. */
8562 else
8563 gimple_assign_set_rhs_with_ops (gsi, BIT_XOR_EXPR, op0, op1);
8564 update_stmt (gsi_stmt (*gsi));
8565
8566 return true;
8567 }
8568
8569 /* Simplify a division or modulo operator to a right shift or
8570 bitwise and if the first operand is unsigned or is greater
8571 than zero and the second operand is an exact power of two. */
8572
8573 static bool
8574 simplify_div_or_mod_using_ranges (gimple stmt)
8575 {
8576 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
8577 tree val = NULL;
8578 tree op0 = gimple_assign_rhs1 (stmt);
8579 tree op1 = gimple_assign_rhs2 (stmt);
8580 value_range_t *vr = get_value_range (gimple_assign_rhs1 (stmt));
8581
8582 if (TYPE_UNSIGNED (TREE_TYPE (op0)))
8583 {
8584 val = integer_one_node;
8585 }
8586 else
8587 {
8588 bool sop = false;
8589
8590 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node, &sop);
8591
8592 if (val
8593 && sop
8594 && integer_onep (val)
8595 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
8596 {
8597 location_t location;
8598
8599 if (!gimple_has_location (stmt))
8600 location = input_location;
8601 else
8602 location = gimple_location (stmt);
8603 warning_at (location, OPT_Wstrict_overflow,
8604 "assuming signed overflow does not occur when "
8605 "simplifying %</%> or %<%%%> to %<>>%> or %<&%>");
8606 }
8607 }
8608
8609 if (val && integer_onep (val))
8610 {
8611 tree t;
8612
8613 if (rhs_code == TRUNC_DIV_EXPR)
8614 {
8615 t = build_int_cst (integer_type_node, tree_log2 (op1));
8616 gimple_assign_set_rhs_code (stmt, RSHIFT_EXPR);
8617 gimple_assign_set_rhs1 (stmt, op0);
8618 gimple_assign_set_rhs2 (stmt, t);
8619 }
8620 else
8621 {
8622 t = build_int_cst (TREE_TYPE (op1), 1);
8623 t = int_const_binop (MINUS_EXPR, op1, t);
8624 t = fold_convert (TREE_TYPE (op0), t);
8625
8626 gimple_assign_set_rhs_code (stmt, BIT_AND_EXPR);
8627 gimple_assign_set_rhs1 (stmt, op0);
8628 gimple_assign_set_rhs2 (stmt, t);
8629 }
8630
8631 update_stmt (stmt);
8632 return true;
8633 }
8634
8635 return false;
8636 }
8637
8638 /* If the operand to an ABS_EXPR is >= 0, then eliminate the
8639 ABS_EXPR. If the operand is <= 0, then simplify the
8640 ABS_EXPR into a NEGATE_EXPR. */
8641
8642 static bool
8643 simplify_abs_using_ranges (gimple stmt)
8644 {
8645 tree val = NULL;
8646 tree op = gimple_assign_rhs1 (stmt);
8647 tree type = TREE_TYPE (op);
8648 value_range_t *vr = get_value_range (op);
8649
8650 if (TYPE_UNSIGNED (type))
8651 {
8652 val = integer_zero_node;
8653 }
8654 else if (vr)
8655 {
8656 bool sop = false;
8657
8658 val = compare_range_with_value (LE_EXPR, vr, integer_zero_node, &sop);
8659 if (!val)
8660 {
8661 sop = false;
8662 val = compare_range_with_value (GE_EXPR, vr, integer_zero_node,
8663 &sop);
8664
8665 if (val)
8666 {
8667 if (integer_zerop (val))
8668 val = integer_one_node;
8669 else if (integer_onep (val))
8670 val = integer_zero_node;
8671 }
8672 }
8673
8674 if (val
8675 && (integer_onep (val) || integer_zerop (val)))
8676 {
8677 if (sop && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_MISC))
8678 {
8679 location_t location;
8680
8681 if (!gimple_has_location (stmt))
8682 location = input_location;
8683 else
8684 location = gimple_location (stmt);
8685 warning_at (location, OPT_Wstrict_overflow,
8686 "assuming signed overflow does not occur when "
8687 "simplifying %<abs (X)%> to %<X%> or %<-X%>");
8688 }
8689
8690 gimple_assign_set_rhs1 (stmt, op);
8691 if (integer_onep (val))
8692 gimple_assign_set_rhs_code (stmt, NEGATE_EXPR);
8693 else
8694 gimple_assign_set_rhs_code (stmt, SSA_NAME);
8695 update_stmt (stmt);
8696 return true;
8697 }
8698 }
8699
8700 return false;
8701 }
8702
8703 /* Optimize away redundant BIT_AND_EXPR and BIT_IOR_EXPR.
8704 If all the bits that are being cleared by & are already
8705 known to be zero from VR, or all the bits that are being
8706 set by | are already known to be one from VR, the bit
8707 operation is redundant. */
8708
8709 static bool
8710 simplify_bit_ops_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
8711 {
8712 tree op0 = gimple_assign_rhs1 (stmt);
8713 tree op1 = gimple_assign_rhs2 (stmt);
8714 tree op = NULL_TREE;
8715 value_range_t vr0 = VR_INITIALIZER;
8716 value_range_t vr1 = VR_INITIALIZER;
8717 double_int may_be_nonzero0, may_be_nonzero1;
8718 double_int must_be_nonzero0, must_be_nonzero1;
8719 double_int mask;
8720
8721 if (TREE_CODE (op0) == SSA_NAME)
8722 vr0 = *(get_value_range (op0));
8723 else if (is_gimple_min_invariant (op0))
8724 set_value_range_to_value (&vr0, op0, NULL);
8725 else
8726 return false;
8727
8728 if (TREE_CODE (op1) == SSA_NAME)
8729 vr1 = *(get_value_range (op1));
8730 else if (is_gimple_min_invariant (op1))
8731 set_value_range_to_value (&vr1, op1, NULL);
8732 else
8733 return false;
8734
8735 if (!zero_nonzero_bits_from_vr (&vr0, &may_be_nonzero0, &must_be_nonzero0))
8736 return false;
8737 if (!zero_nonzero_bits_from_vr (&vr1, &may_be_nonzero1, &must_be_nonzero1))
8738 return false;
8739
8740 switch (gimple_assign_rhs_code (stmt))
8741 {
8742 case BIT_AND_EXPR:
8743 mask = may_be_nonzero0.and_not (must_be_nonzero1);
8744 if (mask.is_zero ())
8745 {
8746 op = op0;
8747 break;
8748 }
8749 mask = may_be_nonzero1.and_not (must_be_nonzero0);
8750 if (mask.is_zero ())
8751 {
8752 op = op1;
8753 break;
8754 }
8755 break;
8756 case BIT_IOR_EXPR:
8757 mask = may_be_nonzero0.and_not (must_be_nonzero1);
8758 if (mask.is_zero ())
8759 {
8760 op = op1;
8761 break;
8762 }
8763 mask = may_be_nonzero1.and_not (must_be_nonzero0);
8764 if (mask.is_zero ())
8765 {
8766 op = op0;
8767 break;
8768 }
8769 break;
8770 default:
8771 gcc_unreachable ();
8772 }
8773
8774 if (op == NULL_TREE)
8775 return false;
8776
8777 gimple_assign_set_rhs_with_ops (gsi, TREE_CODE (op), op, NULL);
8778 update_stmt (gsi_stmt (*gsi));
8779 return true;
8780 }
8781
8782 /* We are comparing trees OP0 and OP1 using COND_CODE. OP0 has
8783 a known value range VR.
8784
8785 If there is one and only one value which will satisfy the
8786 conditional, then return that value. Else return NULL. */
8787
8788 static tree
8789 test_for_singularity (enum tree_code cond_code, tree op0,
8790 tree op1, value_range_t *vr)
8791 {
8792 tree min = NULL;
8793 tree max = NULL;
8794
8795 /* Extract minimum/maximum values which satisfy the
8796 the conditional as it was written. */
8797 if (cond_code == LE_EXPR || cond_code == LT_EXPR)
8798 {
8799 /* This should not be negative infinity; there is no overflow
8800 here. */
8801 min = TYPE_MIN_VALUE (TREE_TYPE (op0));
8802
8803 max = op1;
8804 if (cond_code == LT_EXPR && !is_overflow_infinity (max))
8805 {
8806 tree one = build_int_cst (TREE_TYPE (op0), 1);
8807 max = fold_build2 (MINUS_EXPR, TREE_TYPE (op0), max, one);
8808 if (EXPR_P (max))
8809 TREE_NO_WARNING (max) = 1;
8810 }
8811 }
8812 else if (cond_code == GE_EXPR || cond_code == GT_EXPR)
8813 {
8814 /* This should not be positive infinity; there is no overflow
8815 here. */
8816 max = TYPE_MAX_VALUE (TREE_TYPE (op0));
8817
8818 min = op1;
8819 if (cond_code == GT_EXPR && !is_overflow_infinity (min))
8820 {
8821 tree one = build_int_cst (TREE_TYPE (op0), 1);
8822 min = fold_build2 (PLUS_EXPR, TREE_TYPE (op0), min, one);
8823 if (EXPR_P (min))
8824 TREE_NO_WARNING (min) = 1;
8825 }
8826 }
8827
8828 /* Now refine the minimum and maximum values using any
8829 value range information we have for op0. */
8830 if (min && max)
8831 {
8832 if (compare_values (vr->min, min) == 1)
8833 min = vr->min;
8834 if (compare_values (vr->max, max) == -1)
8835 max = vr->max;
8836
8837 /* If the new min/max values have converged to a single value,
8838 then there is only one value which can satisfy the condition,
8839 return that value. */
8840 if (operand_equal_p (min, max, 0) && is_gimple_min_invariant (min))
8841 return min;
8842 }
8843 return NULL;
8844 }
8845
8846 /* Return whether the value range *VR fits in an integer type specified
8847 by PRECISION and UNSIGNED_P. */
8848
8849 static bool
8850 range_fits_type_p (value_range_t *vr, unsigned precision, bool unsigned_p)
8851 {
8852 tree src_type;
8853 unsigned src_precision;
8854 double_int tem;
8855
8856 /* We can only handle integral and pointer types. */
8857 src_type = TREE_TYPE (vr->min);
8858 if (!INTEGRAL_TYPE_P (src_type)
8859 && !POINTER_TYPE_P (src_type))
8860 return false;
8861
8862 /* An extension is fine unless VR is signed and unsigned_p,
8863 and so is an identity transform. */
8864 src_precision = TYPE_PRECISION (TREE_TYPE (vr->min));
8865 if ((src_precision < precision
8866 && !(unsigned_p && !TYPE_UNSIGNED (src_type)))
8867 || (src_precision == precision
8868 && TYPE_UNSIGNED (src_type) == unsigned_p))
8869 return true;
8870
8871 /* Now we can only handle ranges with constant bounds. */
8872 if (vr->type != VR_RANGE
8873 || TREE_CODE (vr->min) != INTEGER_CST
8874 || TREE_CODE (vr->max) != INTEGER_CST)
8875 return false;
8876
8877 /* For sign changes, the MSB of the double_int has to be clear.
8878 An unsigned value with its MSB set cannot be represented by
8879 a signed double_int, while a negative value cannot be represented
8880 by an unsigned double_int. */
8881 if (TYPE_UNSIGNED (src_type) != unsigned_p
8882 && (TREE_INT_CST_HIGH (vr->min) | TREE_INT_CST_HIGH (vr->max)) < 0)
8883 return false;
8884
8885 /* Then we can perform the conversion on both ends and compare
8886 the result for equality. */
8887 tem = tree_to_double_int (vr->min).ext (precision, unsigned_p);
8888 if (tree_to_double_int (vr->min) != tem)
8889 return false;
8890 tem = tree_to_double_int (vr->max).ext (precision, unsigned_p);
8891 if (tree_to_double_int (vr->max) != tem)
8892 return false;
8893
8894 return true;
8895 }
8896
8897 /* Simplify a conditional using a relational operator to an equality
8898 test if the range information indicates only one value can satisfy
8899 the original conditional. */
8900
8901 static bool
8902 simplify_cond_using_ranges (gimple stmt)
8903 {
8904 tree op0 = gimple_cond_lhs (stmt);
8905 tree op1 = gimple_cond_rhs (stmt);
8906 enum tree_code cond_code = gimple_cond_code (stmt);
8907
8908 if (cond_code != NE_EXPR
8909 && cond_code != EQ_EXPR
8910 && TREE_CODE (op0) == SSA_NAME
8911 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
8912 && is_gimple_min_invariant (op1))
8913 {
8914 value_range_t *vr = get_value_range (op0);
8915
8916 /* If we have range information for OP0, then we might be
8917 able to simplify this conditional. */
8918 if (vr->type == VR_RANGE)
8919 {
8920 tree new_tree = test_for_singularity (cond_code, op0, op1, vr);
8921
8922 if (new_tree)
8923 {
8924 if (dump_file)
8925 {
8926 fprintf (dump_file, "Simplified relational ");
8927 print_gimple_stmt (dump_file, stmt, 0, 0);
8928 fprintf (dump_file, " into ");
8929 }
8930
8931 gimple_cond_set_code (stmt, EQ_EXPR);
8932 gimple_cond_set_lhs (stmt, op0);
8933 gimple_cond_set_rhs (stmt, new_tree);
8934
8935 update_stmt (stmt);
8936
8937 if (dump_file)
8938 {
8939 print_gimple_stmt (dump_file, stmt, 0, 0);
8940 fprintf (dump_file, "\n");
8941 }
8942
8943 return true;
8944 }
8945
8946 /* Try again after inverting the condition. We only deal
8947 with integral types here, so no need to worry about
8948 issues with inverting FP comparisons. */
8949 cond_code = invert_tree_comparison (cond_code, false);
8950 new_tree = test_for_singularity (cond_code, op0, op1, vr);
8951
8952 if (new_tree)
8953 {
8954 if (dump_file)
8955 {
8956 fprintf (dump_file, "Simplified relational ");
8957 print_gimple_stmt (dump_file, stmt, 0, 0);
8958 fprintf (dump_file, " into ");
8959 }
8960
8961 gimple_cond_set_code (stmt, NE_EXPR);
8962 gimple_cond_set_lhs (stmt, op0);
8963 gimple_cond_set_rhs (stmt, new_tree);
8964
8965 update_stmt (stmt);
8966
8967 if (dump_file)
8968 {
8969 print_gimple_stmt (dump_file, stmt, 0, 0);
8970 fprintf (dump_file, "\n");
8971 }
8972
8973 return true;
8974 }
8975 }
8976 }
8977
8978 /* If we have a comparison of an SSA_NAME (OP0) against a constant,
8979 see if OP0 was set by a type conversion where the source of
8980 the conversion is another SSA_NAME with a range that fits
8981 into the range of OP0's type.
8982
8983 If so, the conversion is redundant as the earlier SSA_NAME can be
8984 used for the comparison directly if we just massage the constant in the
8985 comparison. */
8986 if (TREE_CODE (op0) == SSA_NAME
8987 && TREE_CODE (op1) == INTEGER_CST)
8988 {
8989 gimple def_stmt = SSA_NAME_DEF_STMT (op0);
8990 tree innerop;
8991
8992 if (!is_gimple_assign (def_stmt)
8993 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
8994 return false;
8995
8996 innerop = gimple_assign_rhs1 (def_stmt);
8997
8998 if (TREE_CODE (innerop) == SSA_NAME
8999 && !POINTER_TYPE_P (TREE_TYPE (innerop)))
9000 {
9001 value_range_t *vr = get_value_range (innerop);
9002
9003 if (range_int_cst_p (vr)
9004 && range_fits_type_p (vr,
9005 TYPE_PRECISION (TREE_TYPE (op0)),
9006 TYPE_UNSIGNED (TREE_TYPE (op0)))
9007 && int_fits_type_p (op1, TREE_TYPE (innerop))
9008 /* The range must not have overflowed, or if it did overflow
9009 we must not be wrapping/trapping overflow and optimizing
9010 with strict overflow semantics. */
9011 && ((!is_negative_overflow_infinity (vr->min)
9012 && !is_positive_overflow_infinity (vr->max))
9013 || TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (innerop))))
9014 {
9015 /* If the range overflowed and the user has asked for warnings
9016 when strict overflow semantics were used to optimize code,
9017 issue an appropriate warning. */
9018 if ((is_negative_overflow_infinity (vr->min)
9019 || is_positive_overflow_infinity (vr->max))
9020 && issue_strict_overflow_warning (WARN_STRICT_OVERFLOW_CONDITIONAL))
9021 {
9022 location_t location;
9023
9024 if (!gimple_has_location (stmt))
9025 location = input_location;
9026 else
9027 location = gimple_location (stmt);
9028 warning_at (location, OPT_Wstrict_overflow,
9029 "assuming signed overflow does not occur when "
9030 "simplifying conditional");
9031 }
9032
9033 tree newconst = fold_convert (TREE_TYPE (innerop), op1);
9034 gimple_cond_set_lhs (stmt, innerop);
9035 gimple_cond_set_rhs (stmt, newconst);
9036 return true;
9037 }
9038 }
9039 }
9040
9041 return false;
9042 }
9043
9044 /* Simplify a switch statement using the value range of the switch
9045 argument. */
9046
9047 static bool
9048 simplify_switch_using_ranges (gimple stmt)
9049 {
9050 tree op = gimple_switch_index (stmt);
9051 value_range_t *vr;
9052 bool take_default;
9053 edge e;
9054 edge_iterator ei;
9055 size_t i = 0, j = 0, n, n2;
9056 tree vec2;
9057 switch_update su;
9058 size_t k = 1, l = 0;
9059
9060 if (TREE_CODE (op) == SSA_NAME)
9061 {
9062 vr = get_value_range (op);
9063
9064 /* We can only handle integer ranges. */
9065 if ((vr->type != VR_RANGE
9066 && vr->type != VR_ANTI_RANGE)
9067 || symbolic_range_p (vr))
9068 return false;
9069
9070 /* Find case label for min/max of the value range. */
9071 take_default = !find_case_label_ranges (stmt, vr, &i, &j, &k, &l);
9072 }
9073 else if (TREE_CODE (op) == INTEGER_CST)
9074 {
9075 take_default = !find_case_label_index (stmt, 1, op, &i);
9076 if (take_default)
9077 {
9078 i = 1;
9079 j = 0;
9080 }
9081 else
9082 {
9083 j = i;
9084 }
9085 }
9086 else
9087 return false;
9088
9089 n = gimple_switch_num_labels (stmt);
9090
9091 /* Bail out if this is just all edges taken. */
9092 if (i == 1
9093 && j == n - 1
9094 && take_default)
9095 return false;
9096
9097 /* Build a new vector of taken case labels. */
9098 vec2 = make_tree_vec (j - i + 1 + l - k + 1 + (int)take_default);
9099 n2 = 0;
9100
9101 /* Add the default edge, if necessary. */
9102 if (take_default)
9103 TREE_VEC_ELT (vec2, n2++) = gimple_switch_default_label (stmt);
9104
9105 for (; i <= j; ++i, ++n2)
9106 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, i);
9107
9108 for (; k <= l; ++k, ++n2)
9109 TREE_VEC_ELT (vec2, n2) = gimple_switch_label (stmt, k);
9110
9111 /* Mark needed edges. */
9112 for (i = 0; i < n2; ++i)
9113 {
9114 e = find_edge (gimple_bb (stmt),
9115 label_to_block (CASE_LABEL (TREE_VEC_ELT (vec2, i))));
9116 e->aux = (void *)-1;
9117 }
9118
9119 /* Queue not needed edges for later removal. */
9120 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
9121 {
9122 if (e->aux == (void *)-1)
9123 {
9124 e->aux = NULL;
9125 continue;
9126 }
9127
9128 if (dump_file && (dump_flags & TDF_DETAILS))
9129 {
9130 fprintf (dump_file, "removing unreachable case label\n");
9131 }
9132 to_remove_edges.safe_push (e);
9133 e->flags &= ~EDGE_EXECUTABLE;
9134 }
9135
9136 /* And queue an update for the stmt. */
9137 su.stmt = stmt;
9138 su.vec = vec2;
9139 to_update_switch_stmts.safe_push (su);
9140 return false;
9141 }
9142
9143 /* Simplify an integral conversion from an SSA name in STMT. */
9144
9145 static bool
9146 simplify_conversion_using_ranges (gimple stmt)
9147 {
9148 tree innerop, middleop, finaltype;
9149 gimple def_stmt;
9150 value_range_t *innervr;
9151 bool inner_unsigned_p, middle_unsigned_p, final_unsigned_p;
9152 unsigned inner_prec, middle_prec, final_prec;
9153 double_int innermin, innermed, innermax, middlemin, middlemed, middlemax;
9154
9155 finaltype = TREE_TYPE (gimple_assign_lhs (stmt));
9156 if (!INTEGRAL_TYPE_P (finaltype))
9157 return false;
9158 middleop = gimple_assign_rhs1 (stmt);
9159 def_stmt = SSA_NAME_DEF_STMT (middleop);
9160 if (!is_gimple_assign (def_stmt)
9161 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
9162 return false;
9163 innerop = gimple_assign_rhs1 (def_stmt);
9164 if (TREE_CODE (innerop) != SSA_NAME
9165 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (innerop))
9166 return false;
9167
9168 /* Get the value-range of the inner operand. */
9169 innervr = get_value_range (innerop);
9170 if (innervr->type != VR_RANGE
9171 || TREE_CODE (innervr->min) != INTEGER_CST
9172 || TREE_CODE (innervr->max) != INTEGER_CST)
9173 return false;
9174
9175 /* Simulate the conversion chain to check if the result is equal if
9176 the middle conversion is removed. */
9177 innermin = tree_to_double_int (innervr->min);
9178 innermax = tree_to_double_int (innervr->max);
9179
9180 inner_prec = TYPE_PRECISION (TREE_TYPE (innerop));
9181 middle_prec = TYPE_PRECISION (TREE_TYPE (middleop));
9182 final_prec = TYPE_PRECISION (finaltype);
9183
9184 /* If the first conversion is not injective, the second must not
9185 be widening. */
9186 if ((innermax - innermin).ugt (double_int::mask (middle_prec))
9187 && middle_prec < final_prec)
9188 return false;
9189 /* We also want a medium value so that we can track the effect that
9190 narrowing conversions with sign change have. */
9191 inner_unsigned_p = TYPE_UNSIGNED (TREE_TYPE (innerop));
9192 if (inner_unsigned_p)
9193 innermed = double_int::mask (inner_prec).lrshift (1, inner_prec);
9194 else
9195 innermed = double_int_zero;
9196 if (innermin.cmp (innermed, inner_unsigned_p) >= 0
9197 || innermed.cmp (innermax, inner_unsigned_p) >= 0)
9198 innermed = innermin;
9199
9200 middle_unsigned_p = TYPE_UNSIGNED (TREE_TYPE (middleop));
9201 middlemin = innermin.ext (middle_prec, middle_unsigned_p);
9202 middlemed = innermed.ext (middle_prec, middle_unsigned_p);
9203 middlemax = innermax.ext (middle_prec, middle_unsigned_p);
9204
9205 /* Require that the final conversion applied to both the original
9206 and the intermediate range produces the same result. */
9207 final_unsigned_p = TYPE_UNSIGNED (finaltype);
9208 if (middlemin.ext (final_prec, final_unsigned_p)
9209 != innermin.ext (final_prec, final_unsigned_p)
9210 || middlemed.ext (final_prec, final_unsigned_p)
9211 != innermed.ext (final_prec, final_unsigned_p)
9212 || middlemax.ext (final_prec, final_unsigned_p)
9213 != innermax.ext (final_prec, final_unsigned_p))
9214 return false;
9215
9216 gimple_assign_set_rhs1 (stmt, innerop);
9217 update_stmt (stmt);
9218 return true;
9219 }
9220
9221 /* Simplify a conversion from integral SSA name to float in STMT. */
9222
9223 static bool
9224 simplify_float_conversion_using_ranges (gimple_stmt_iterator *gsi, gimple stmt)
9225 {
9226 tree rhs1 = gimple_assign_rhs1 (stmt);
9227 value_range_t *vr = get_value_range (rhs1);
9228 enum machine_mode fltmode = TYPE_MODE (TREE_TYPE (gimple_assign_lhs (stmt)));
9229 enum machine_mode mode;
9230 tree tem;
9231 gimple conv;
9232
9233 /* We can only handle constant ranges. */
9234 if (vr->type != VR_RANGE
9235 || TREE_CODE (vr->min) != INTEGER_CST
9236 || TREE_CODE (vr->max) != INTEGER_CST)
9237 return false;
9238
9239 /* First check if we can use a signed type in place of an unsigned. */
9240 if (TYPE_UNSIGNED (TREE_TYPE (rhs1))
9241 && (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)), 0)
9242 != CODE_FOR_nothing)
9243 && range_fits_type_p (vr, GET_MODE_PRECISION
9244 (TYPE_MODE (TREE_TYPE (rhs1))), 0))
9245 mode = TYPE_MODE (TREE_TYPE (rhs1));
9246 /* If we can do the conversion in the current input mode do nothing. */
9247 else if (can_float_p (fltmode, TYPE_MODE (TREE_TYPE (rhs1)),
9248 TYPE_UNSIGNED (TREE_TYPE (rhs1))) != CODE_FOR_nothing)
9249 return false;
9250 /* Otherwise search for a mode we can use, starting from the narrowest
9251 integer mode available. */
9252 else
9253 {
9254 mode = GET_CLASS_NARROWEST_MODE (MODE_INT);
9255 do
9256 {
9257 /* If we cannot do a signed conversion to float from mode
9258 or if the value-range does not fit in the signed type
9259 try with a wider mode. */
9260 if (can_float_p (fltmode, mode, 0) != CODE_FOR_nothing
9261 && range_fits_type_p (vr, GET_MODE_PRECISION (mode), 0))
9262 break;
9263
9264 mode = GET_MODE_WIDER_MODE (mode);
9265 /* But do not widen the input. Instead leave that to the
9266 optabs expansion code. */
9267 if (GET_MODE_PRECISION (mode) > TYPE_PRECISION (TREE_TYPE (rhs1)))
9268 return false;
9269 }
9270 while (mode != VOIDmode);
9271 if (mode == VOIDmode)
9272 return false;
9273 }
9274
9275 /* It works, insert a truncation or sign-change before the
9276 float conversion. */
9277 tem = make_ssa_name (build_nonstandard_integer_type
9278 (GET_MODE_PRECISION (mode), 0), NULL);
9279 conv = gimple_build_assign_with_ops (NOP_EXPR, tem, rhs1, NULL_TREE);
9280 gsi_insert_before (gsi, conv, GSI_SAME_STMT);
9281 gimple_assign_set_rhs1 (stmt, tem);
9282 update_stmt (stmt);
9283
9284 return true;
9285 }
9286
9287 /* Simplify STMT using ranges if possible. */
9288
9289 static bool
9290 simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
9291 {
9292 gimple stmt = gsi_stmt (*gsi);
9293 if (is_gimple_assign (stmt))
9294 {
9295 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
9296 tree rhs1 = gimple_assign_rhs1 (stmt);
9297
9298 switch (rhs_code)
9299 {
9300 case EQ_EXPR:
9301 case NE_EXPR:
9302 /* Transform EQ_EXPR, NE_EXPR into BIT_XOR_EXPR or identity
9303 if the RHS is zero or one, and the LHS are known to be boolean
9304 values. */
9305 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9306 return simplify_truth_ops_using_ranges (gsi, stmt);
9307 break;
9308
9309 /* Transform TRUNC_DIV_EXPR and TRUNC_MOD_EXPR into RSHIFT_EXPR
9310 and BIT_AND_EXPR respectively if the first operand is greater
9311 than zero and the second operand is an exact power of two. */
9312 case TRUNC_DIV_EXPR:
9313 case TRUNC_MOD_EXPR:
9314 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
9315 && integer_pow2p (gimple_assign_rhs2 (stmt)))
9316 return simplify_div_or_mod_using_ranges (stmt);
9317 break;
9318
9319 /* Transform ABS (X) into X or -X as appropriate. */
9320 case ABS_EXPR:
9321 if (TREE_CODE (rhs1) == SSA_NAME
9322 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9323 return simplify_abs_using_ranges (stmt);
9324 break;
9325
9326 case BIT_AND_EXPR:
9327 case BIT_IOR_EXPR:
9328 /* Optimize away BIT_AND_EXPR and BIT_IOR_EXPR
9329 if all the bits being cleared are already cleared or
9330 all the bits being set are already set. */
9331 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9332 return simplify_bit_ops_using_ranges (gsi, stmt);
9333 break;
9334
9335 CASE_CONVERT:
9336 if (TREE_CODE (rhs1) == SSA_NAME
9337 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9338 return simplify_conversion_using_ranges (stmt);
9339 break;
9340
9341 case FLOAT_EXPR:
9342 if (TREE_CODE (rhs1) == SSA_NAME
9343 && INTEGRAL_TYPE_P (TREE_TYPE (rhs1)))
9344 return simplify_float_conversion_using_ranges (gsi, stmt);
9345 break;
9346
9347 default:
9348 break;
9349 }
9350 }
9351 else if (gimple_code (stmt) == GIMPLE_COND)
9352 return simplify_cond_using_ranges (stmt);
9353 else if (gimple_code (stmt) == GIMPLE_SWITCH)
9354 return simplify_switch_using_ranges (stmt);
9355
9356 return false;
9357 }
9358
9359 /* If the statement pointed by SI has a predicate whose value can be
9360 computed using the value range information computed by VRP, compute
9361 its value and return true. Otherwise, return false. */
9362
9363 static bool
9364 fold_predicate_in (gimple_stmt_iterator *si)
9365 {
9366 bool assignment_p = false;
9367 tree val;
9368 gimple stmt = gsi_stmt (*si);
9369
9370 if (is_gimple_assign (stmt)
9371 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
9372 {
9373 assignment_p = true;
9374 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
9375 gimple_assign_rhs1 (stmt),
9376 gimple_assign_rhs2 (stmt),
9377 stmt);
9378 }
9379 else if (gimple_code (stmt) == GIMPLE_COND)
9380 val = vrp_evaluate_conditional (gimple_cond_code (stmt),
9381 gimple_cond_lhs (stmt),
9382 gimple_cond_rhs (stmt),
9383 stmt);
9384 else
9385 return false;
9386
9387 if (val)
9388 {
9389 if (assignment_p)
9390 val = fold_convert (gimple_expr_type (stmt), val);
9391
9392 if (dump_file)
9393 {
9394 fprintf (dump_file, "Folding predicate ");
9395 print_gimple_expr (dump_file, stmt, 0, 0);
9396 fprintf (dump_file, " to ");
9397 print_generic_expr (dump_file, val, 0);
9398 fprintf (dump_file, "\n");
9399 }
9400
9401 if (is_gimple_assign (stmt))
9402 gimple_assign_set_rhs_from_tree (si, val);
9403 else
9404 {
9405 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
9406 if (integer_zerop (val))
9407 gimple_cond_make_false (stmt);
9408 else if (integer_onep (val))
9409 gimple_cond_make_true (stmt);
9410 else
9411 gcc_unreachable ();
9412 }
9413
9414 return true;
9415 }
9416
9417 return false;
9418 }
9419
9420 /* Callback for substitute_and_fold folding the stmt at *SI. */
9421
9422 static bool
9423 vrp_fold_stmt (gimple_stmt_iterator *si)
9424 {
9425 if (fold_predicate_in (si))
9426 return true;
9427
9428 return simplify_stmt_using_ranges (si);
9429 }
9430
9431 /* Stack of dest,src equivalency pairs that need to be restored after
9432 each attempt to thread a block's incoming edge to an outgoing edge.
9433
9434 A NULL entry is used to mark the end of pairs which need to be
9435 restored. */
9436 static vec<tree> equiv_stack;
9437
9438 /* A trivial wrapper so that we can present the generic jump threading
9439 code with a simple API for simplifying statements. STMT is the
9440 statement we want to simplify, WITHIN_STMT provides the location
9441 for any overflow warnings. */
9442
9443 static tree
9444 simplify_stmt_for_jump_threading (gimple stmt, gimple within_stmt)
9445 {
9446 if (gimple_code (stmt) == GIMPLE_COND)
9447 return vrp_evaluate_conditional (gimple_cond_code (stmt),
9448 gimple_cond_lhs (stmt),
9449 gimple_cond_rhs (stmt), within_stmt);
9450
9451 if (gimple_code (stmt) == GIMPLE_ASSIGN)
9452 {
9453 value_range_t new_vr = VR_INITIALIZER;
9454 tree lhs = gimple_assign_lhs (stmt);
9455
9456 if (TREE_CODE (lhs) == SSA_NAME
9457 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
9458 || POINTER_TYPE_P (TREE_TYPE (lhs))))
9459 {
9460 extract_range_from_assignment (&new_vr, stmt);
9461 if (range_int_cst_singleton_p (&new_vr))
9462 return new_vr.min;
9463 }
9464 }
9465
9466 return NULL_TREE;
9467 }
9468
9469 /* Blocks which have more than one predecessor and more than
9470 one successor present jump threading opportunities, i.e.,
9471 when the block is reached from a specific predecessor, we
9472 may be able to determine which of the outgoing edges will
9473 be traversed. When this optimization applies, we are able
9474 to avoid conditionals at runtime and we may expose secondary
9475 optimization opportunities.
9476
9477 This routine is effectively a driver for the generic jump
9478 threading code. It basically just presents the generic code
9479 with edges that may be suitable for jump threading.
9480
9481 Unlike DOM, we do not iterate VRP if jump threading was successful.
9482 While iterating may expose new opportunities for VRP, it is expected
9483 those opportunities would be very limited and the compile time cost
9484 to expose those opportunities would be significant.
9485
9486 As jump threading opportunities are discovered, they are registered
9487 for later realization. */
9488
9489 static void
9490 identify_jump_threads (void)
9491 {
9492 basic_block bb;
9493 gimple dummy;
9494 int i;
9495 edge e;
9496
9497 /* Ugh. When substituting values earlier in this pass we can
9498 wipe the dominance information. So rebuild the dominator
9499 information as we need it within the jump threading code. */
9500 calculate_dominance_info (CDI_DOMINATORS);
9501
9502 /* We do not allow VRP information to be used for jump threading
9503 across a back edge in the CFG. Otherwise it becomes too
9504 difficult to avoid eliminating loop exit tests. Of course
9505 EDGE_DFS_BACK is not accurate at this time so we have to
9506 recompute it. */
9507 mark_dfs_back_edges ();
9508
9509 /* Do not thread across edges we are about to remove. Just marking
9510 them as EDGE_DFS_BACK will do. */
9511 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
9512 e->flags |= EDGE_DFS_BACK;
9513
9514 /* Allocate our unwinder stack to unwind any temporary equivalences
9515 that might be recorded. */
9516 equiv_stack.create (20);
9517
9518 /* To avoid lots of silly node creation, we create a single
9519 conditional and just modify it in-place when attempting to
9520 thread jumps. */
9521 dummy = gimple_build_cond (EQ_EXPR,
9522 integer_zero_node, integer_zero_node,
9523 NULL, NULL);
9524
9525 /* Walk through all the blocks finding those which present a
9526 potential jump threading opportunity. We could set this up
9527 as a dominator walker and record data during the walk, but
9528 I doubt it's worth the effort for the classes of jump
9529 threading opportunities we are trying to identify at this
9530 point in compilation. */
9531 FOR_EACH_BB (bb)
9532 {
9533 gimple last;
9534
9535 /* If the generic jump threading code does not find this block
9536 interesting, then there is nothing to do. */
9537 if (! potentially_threadable_block (bb))
9538 continue;
9539
9540 /* We only care about blocks ending in a COND_EXPR. While there
9541 may be some value in handling SWITCH_EXPR here, I doubt it's
9542 terribly important. */
9543 last = gsi_stmt (gsi_last_bb (bb));
9544
9545 /* We're basically looking for a switch or any kind of conditional with
9546 integral or pointer type arguments. Note the type of the second
9547 argument will be the same as the first argument, so no need to
9548 check it explicitly. */
9549 if (gimple_code (last) == GIMPLE_SWITCH
9550 || (gimple_code (last) == GIMPLE_COND
9551 && TREE_CODE (gimple_cond_lhs (last)) == SSA_NAME
9552 && (INTEGRAL_TYPE_P (TREE_TYPE (gimple_cond_lhs (last)))
9553 || POINTER_TYPE_P (TREE_TYPE (gimple_cond_lhs (last))))
9554 && (TREE_CODE (gimple_cond_rhs (last)) == SSA_NAME
9555 || is_gimple_min_invariant (gimple_cond_rhs (last)))))
9556 {
9557 edge_iterator ei;
9558
9559 /* We've got a block with multiple predecessors and multiple
9560 successors which also ends in a suitable conditional or
9561 switch statement. For each predecessor, see if we can thread
9562 it to a specific successor. */
9563 FOR_EACH_EDGE (e, ei, bb->preds)
9564 {
9565 /* Do not thread across back edges or abnormal edges
9566 in the CFG. */
9567 if (e->flags & (EDGE_DFS_BACK | EDGE_COMPLEX))
9568 continue;
9569
9570 thread_across_edge (dummy, e, true, &equiv_stack,
9571 simplify_stmt_for_jump_threading);
9572 }
9573 }
9574 }
9575
9576 /* We do not actually update the CFG or SSA graphs at this point as
9577 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
9578 handle ASSERT_EXPRs gracefully. */
9579 }
9580
9581 /* We identified all the jump threading opportunities earlier, but could
9582 not transform the CFG at that time. This routine transforms the
9583 CFG and arranges for the dominator tree to be rebuilt if necessary.
9584
9585 Note the SSA graph update will occur during the normal TODO
9586 processing by the pass manager. */
9587 static void
9588 finalize_jump_threads (void)
9589 {
9590 thread_through_all_blocks (false);
9591 equiv_stack.release ();
9592 }
9593
9594
9595 /* Traverse all the blocks folding conditionals with known ranges. */
9596
9597 static void
9598 vrp_finalize (void)
9599 {
9600 size_t i;
9601
9602 values_propagated = true;
9603
9604 if (dump_file)
9605 {
9606 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
9607 dump_all_value_ranges (dump_file);
9608 fprintf (dump_file, "\n");
9609 }
9610
9611 substitute_and_fold (op_with_constant_singleton_value_range,
9612 vrp_fold_stmt, false);
9613
9614 if (warn_array_bounds)
9615 check_all_array_refs ();
9616
9617 /* We must identify jump threading opportunities before we release
9618 the datastructures built by VRP. */
9619 identify_jump_threads ();
9620
9621 /* Set value range to non pointer SSA_NAMEs. */
9622 for (i = 0; i < num_vr_values; i++)
9623 if (vr_value[i])
9624 {
9625 tree name = ssa_name (i);
9626
9627 if (!name
9628 || POINTER_TYPE_P (TREE_TYPE (name))
9629 || (vr_value[i]->type == VR_VARYING)
9630 || (vr_value[i]->type == VR_UNDEFINED))
9631 continue;
9632
9633 if ((TREE_CODE (vr_value[i]->min) == INTEGER_CST)
9634 && (TREE_CODE (vr_value[i]->max) == INTEGER_CST))
9635 {
9636 if (vr_value[i]->type == VR_RANGE)
9637 set_range_info (name,
9638 tree_to_double_int (vr_value[i]->min),
9639 tree_to_double_int (vr_value[i]->max));
9640 else if (vr_value[i]->type == VR_ANTI_RANGE)
9641 {
9642 /* VR_ANTI_RANGE ~[min, max] is encoded compactly as
9643 [max + 1, min - 1] without additional attributes.
9644 When min value > max value, we know that it is
9645 VR_ANTI_RANGE; it is VR_RANGE otherwise. */
9646
9647 /* ~[0,0] anti-range is represented as
9648 range. */
9649 if (TYPE_UNSIGNED (TREE_TYPE (name))
9650 && integer_zerop (vr_value[i]->min)
9651 && integer_zerop (vr_value[i]->max))
9652 set_range_info (name,
9653 double_int_one,
9654 double_int::max_value
9655 (TYPE_PRECISION (TREE_TYPE (name)), true));
9656 else
9657 set_range_info (name,
9658 tree_to_double_int (vr_value[i]->max)
9659 + double_int_one,
9660 tree_to_double_int (vr_value[i]->min)
9661 - double_int_one);
9662 }
9663 }
9664 }
9665
9666 /* Free allocated memory. */
9667 for (i = 0; i < num_vr_values; i++)
9668 if (vr_value[i])
9669 {
9670 BITMAP_FREE (vr_value[i]->equiv);
9671 free (vr_value[i]);
9672 }
9673
9674 free (vr_value);
9675 free (vr_phi_edge_counts);
9676
9677 /* So that we can distinguish between VRP data being available
9678 and not available. */
9679 vr_value = NULL;
9680 vr_phi_edge_counts = NULL;
9681 }
9682
9683
9684 /* Main entry point to VRP (Value Range Propagation). This pass is
9685 loosely based on J. R. C. Patterson, ``Accurate Static Branch
9686 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
9687 Programming Language Design and Implementation, pp. 67-78, 1995.
9688 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
9689
9690 This is essentially an SSA-CCP pass modified to deal with ranges
9691 instead of constants.
9692
9693 While propagating ranges, we may find that two or more SSA name
9694 have equivalent, though distinct ranges. For instance,
9695
9696 1 x_9 = p_3->a;
9697 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
9698 3 if (p_4 == q_2)
9699 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
9700 5 endif
9701 6 if (q_2)
9702
9703 In the code above, pointer p_5 has range [q_2, q_2], but from the
9704 code we can also determine that p_5 cannot be NULL and, if q_2 had
9705 a non-varying range, p_5's range should also be compatible with it.
9706
9707 These equivalences are created by two expressions: ASSERT_EXPR and
9708 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
9709 result of another assertion, then we can use the fact that p_5 and
9710 p_4 are equivalent when evaluating p_5's range.
9711
9712 Together with value ranges, we also propagate these equivalences
9713 between names so that we can take advantage of information from
9714 multiple ranges when doing final replacement. Note that this
9715 equivalency relation is transitive but not symmetric.
9716
9717 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
9718 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
9719 in contexts where that assertion does not hold (e.g., in line 6).
9720
9721 TODO, the main difference between this pass and Patterson's is that
9722 we do not propagate edge probabilities. We only compute whether
9723 edges can be taken or not. That is, instead of having a spectrum
9724 of jump probabilities between 0 and 1, we only deal with 0, 1 and
9725 DON'T KNOW. In the future, it may be worthwhile to propagate
9726 probabilities to aid branch prediction. */
9727
9728 static unsigned int
9729 execute_vrp (void)
9730 {
9731 int i;
9732 edge e;
9733 switch_update *su;
9734
9735 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
9736 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
9737 scev_initialize ();
9738
9739 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
9740 Inserting assertions may split edges which will invalidate
9741 EDGE_DFS_BACK. */
9742 insert_range_assertions ();
9743
9744 to_remove_edges.create (10);
9745 to_update_switch_stmts.create (5);
9746 threadedge_initialize_values ();
9747
9748 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
9749 mark_dfs_back_edges ();
9750
9751 vrp_initialize ();
9752 ssa_propagate (vrp_visit_stmt, vrp_visit_phi_node);
9753 vrp_finalize ();
9754
9755 free_numbers_of_iterations_estimates ();
9756
9757 /* ASSERT_EXPRs must be removed before finalizing jump threads
9758 as finalizing jump threads calls the CFG cleanup code which
9759 does not properly handle ASSERT_EXPRs. */
9760 remove_range_assertions ();
9761
9762 /* If we exposed any new variables, go ahead and put them into
9763 SSA form now, before we handle jump threading. This simplifies
9764 interactions between rewriting of _DECL nodes into SSA form
9765 and rewriting SSA_NAME nodes into SSA form after block
9766 duplication and CFG manipulation. */
9767 update_ssa (TODO_update_ssa);
9768
9769 finalize_jump_threads ();
9770
9771 /* Remove dead edges from SWITCH_EXPR optimization. This leaves the
9772 CFG in a broken state and requires a cfg_cleanup run. */
9773 FOR_EACH_VEC_ELT (to_remove_edges, i, e)
9774 remove_edge (e);
9775 /* Update SWITCH_EXPR case label vector. */
9776 FOR_EACH_VEC_ELT (to_update_switch_stmts, i, su)
9777 {
9778 size_t j;
9779 size_t n = TREE_VEC_LENGTH (su->vec);
9780 tree label;
9781 gimple_switch_set_num_labels (su->stmt, n);
9782 for (j = 0; j < n; j++)
9783 gimple_switch_set_label (su->stmt, j, TREE_VEC_ELT (su->vec, j));
9784 /* As we may have replaced the default label with a regular one
9785 make sure to make it a real default label again. This ensures
9786 optimal expansion. */
9787 label = gimple_switch_label (su->stmt, 0);
9788 CASE_LOW (label) = NULL_TREE;
9789 CASE_HIGH (label) = NULL_TREE;
9790 }
9791
9792 if (to_remove_edges.length () > 0)
9793 {
9794 free_dominance_info (CDI_DOMINATORS);
9795 if (current_loops)
9796 loops_state_set (LOOPS_NEED_FIXUP);
9797 }
9798
9799 to_remove_edges.release ();
9800 to_update_switch_stmts.release ();
9801 threadedge_finalize_values ();
9802
9803 scev_finalize ();
9804 loop_optimizer_finalize ();
9805 return 0;
9806 }
9807
9808 static bool
9809 gate_vrp (void)
9810 {
9811 return flag_tree_vrp != 0;
9812 }
9813
9814 namespace {
9815
9816 const pass_data pass_data_vrp =
9817 {
9818 GIMPLE_PASS, /* type */
9819 "vrp", /* name */
9820 OPTGROUP_NONE, /* optinfo_flags */
9821 true, /* has_gate */
9822 true, /* has_execute */
9823 TV_TREE_VRP, /* tv_id */
9824 PROP_ssa, /* properties_required */
9825 0, /* properties_provided */
9826 0, /* properties_destroyed */
9827 0, /* todo_flags_start */
9828 ( TODO_cleanup_cfg | TODO_update_ssa
9829 | TODO_verify_ssa
9830 | TODO_verify_flow ), /* todo_flags_finish */
9831 };
9832
9833 class pass_vrp : public gimple_opt_pass
9834 {
9835 public:
9836 pass_vrp (gcc::context *ctxt)
9837 : gimple_opt_pass (pass_data_vrp, ctxt)
9838 {}
9839
9840 /* opt_pass methods: */
9841 opt_pass * clone () { return new pass_vrp (m_ctxt); }
9842 bool gate () { return gate_vrp (); }
9843 unsigned int execute () { return execute_vrp (); }
9844
9845 }; // class pass_vrp
9846
9847 } // anon namespace
9848
9849 gimple_opt_pass *
9850 make_pass_vrp (gcc::context *ctxt)
9851 {
9852 return new pass_vrp (ctxt);
9853 }