re PR bootstrap/87640 (internal compiler error: in check, at tree-vrp.c:155)
[gcc.git] / gcc / tree-vrp.c
1 /* Support routines for Value Range Propagation (VRP).
2 Copyright (C) 2005-2018 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "insn-codes.h"
26 #include "rtl.h"
27 #include "tree.h"
28 #include "gimple.h"
29 #include "cfghooks.h"
30 #include "tree-pass.h"
31 #include "ssa.h"
32 #include "optabs-tree.h"
33 #include "gimple-pretty-print.h"
34 #include "diagnostic-core.h"
35 #include "flags.h"
36 #include "fold-const.h"
37 #include "stor-layout.h"
38 #include "calls.h"
39 #include "cfganal.h"
40 #include "gimple-fold.h"
41 #include "tree-eh.h"
42 #include "gimple-iterator.h"
43 #include "gimple-walk.h"
44 #include "tree-cfg.h"
45 #include "tree-dfa.h"
46 #include "tree-ssa-loop-manip.h"
47 #include "tree-ssa-loop-niter.h"
48 #include "tree-ssa-loop.h"
49 #include "tree-into-ssa.h"
50 #include "tree-ssa.h"
51 #include "intl.h"
52 #include "cfgloop.h"
53 #include "tree-scalar-evolution.h"
54 #include "tree-ssa-propagate.h"
55 #include "tree-chrec.h"
56 #include "tree-ssa-threadupdate.h"
57 #include "tree-ssa-scopedtables.h"
58 #include "tree-ssa-threadedge.h"
59 #include "omp-general.h"
60 #include "target.h"
61 #include "case-cfn-macros.h"
62 #include "params.h"
63 #include "alloc-pool.h"
64 #include "domwalk.h"
65 #include "tree-cfgcleanup.h"
66 #include "stringpool.h"
67 #include "attribs.h"
68 #include "vr-values.h"
69 #include "builtins.h"
70 #include "wide-int-range.h"
71
72 /* Set of SSA names found live during the RPO traversal of the function
73 for still active basic-blocks. */
74 static sbitmap *live;
75
76 /* Initialize value_range. */
77
78 void
79 value_range::set (enum value_range_kind kind, tree min, tree max,
80 bitmap equiv)
81 {
82 m_kind = kind;
83 m_min = min;
84 m_max = max;
85
86 /* Since updating the equivalence set involves deep copying the
87 bitmaps, only do it if absolutely necessary.
88
89 All equivalence bitmaps are allocated from the same obstack. So
90 we can use the obstack associated with EQUIV to allocate vr->equiv. */
91 if (m_equiv == NULL
92 && equiv != NULL)
93 m_equiv = BITMAP_ALLOC (equiv->obstack);
94
95 if (equiv != m_equiv)
96 {
97 if (equiv && !bitmap_empty_p (equiv))
98 bitmap_copy (m_equiv, equiv);
99 else
100 bitmap_clear (m_equiv);
101 }
102 if (flag_checking)
103 check ();
104 }
105
106 value_range::value_range (value_range_kind kind, tree min, tree max,
107 bitmap equiv)
108 {
109 m_equiv = NULL;
110 set (kind, min, max, equiv);
111 }
112
113 /* Like above, but keep the equivalences intact. */
114
115 void
116 value_range::update (value_range_kind kind, tree min, tree max)
117 {
118 set (kind, min, max, m_equiv);
119 }
120
121 /* Copy value_range in FROM into THIS while avoiding bitmap sharing.
122
123 Note: The code that avoids the bitmap sharing looks at the existing
124 this->m_equiv, so this function cannot be used to initalize an
125 object. Use the constructors for initialization. */
126
127 void
128 value_range::deep_copy (const value_range *from)
129 {
130 set (from->m_kind, from->min (), from->max (), from->m_equiv);
131 }
132
133 /* Check the validity of the range. */
134
135 void
136 value_range::check ()
137 {
138 switch (m_kind)
139 {
140 case VR_RANGE:
141 case VR_ANTI_RANGE:
142 {
143 int cmp;
144
145 gcc_assert (m_min && m_max);
146
147 gcc_assert (!TREE_OVERFLOW_P (m_min) && !TREE_OVERFLOW_P (m_max));
148
149 /* Creating ~[-MIN, +MAX] is stupid because that would be
150 the empty set. */
151 if (INTEGRAL_TYPE_P (TREE_TYPE (m_min)) && m_kind == VR_ANTI_RANGE)
152 gcc_assert (!vrp_val_is_min (m_min) || !vrp_val_is_max (m_max));
153
154 cmp = compare_values (m_min, m_max);
155 gcc_assert (cmp == 0 || cmp == -1 || cmp == -2);
156 break;
157 }
158 case VR_UNDEFINED:
159 case VR_VARYING:
160 gcc_assert (!m_min && !m_max);
161 gcc_assert (!m_equiv || bitmap_empty_p (m_equiv));
162 break;
163 default:
164 gcc_unreachable ();
165 }
166 }
167
168 /* Returns TRUE if THIS == OTHER. Ignores the equivalence bitmap if
169 IGNORE_EQUIVS is TRUE. */
170
171 bool
172 value_range::equal_p (const value_range &other, bool ignore_equivs) const
173 {
174 return (m_kind == other.m_kind
175 && vrp_operand_equal_p (m_min, other.m_min)
176 && vrp_operand_equal_p (m_max, other.m_max)
177 && (ignore_equivs
178 || vrp_bitmap_equal_p (m_equiv, other.m_equiv)));
179 }
180
181 /* Return equality while ignoring equivalence bitmap. */
182
183 bool
184 value_range::ignore_equivs_equal_p (const value_range &other) const
185 {
186 return equal_p (other, /*ignore_equivs=*/true);
187 }
188
189 bool
190 value_range::operator== (const value_range &other) const
191 {
192 return equal_p (other, /*ignore_equivs=*/false);
193 }
194
195 bool
196 value_range::operator!= (const value_range &other) const
197 {
198 return !(*this == other);
199 }
200
201 /* Return TRUE if this is a symbolic range. */
202
203 bool
204 value_range::symbolic_p () const
205 {
206 return (!varying_p ()
207 && !undefined_p ()
208 && (!is_gimple_min_invariant (m_min)
209 || !is_gimple_min_invariant (m_max)));
210 }
211
212 /* NOTE: This is not the inverse of symbolic_p because the range
213 could also be varying or undefined. Ideally they should be inverse
214 of each other, with varying only applying to symbolics. Varying of
215 constants would be represented as [-MIN, +MAX]. */
216
217 bool
218 value_range::constant_p () const
219 {
220 return (!varying_p ()
221 && !undefined_p ()
222 && TREE_CODE (m_min) == INTEGER_CST
223 && TREE_CODE (m_max) == INTEGER_CST);
224 }
225
226 void
227 value_range::set_undefined ()
228 {
229 equiv_clear ();
230 *this = value_range (VR_UNDEFINED, NULL, NULL, NULL);
231 }
232
233 void
234 value_range::set_varying ()
235 {
236 equiv_clear ();
237 *this = value_range (VR_VARYING, NULL, NULL, NULL);
238 }
239
240 /* Return TRUE if it is possible that range contains VAL. */
241
242 bool
243 value_range::may_contain_p (tree val) const
244 {
245 if (varying_p ())
246 return true;
247
248 if (undefined_p ())
249 return true;
250
251 if (m_kind == VR_ANTI_RANGE)
252 {
253 int res = value_inside_range (val, m_min, m_max);
254 return res == 0 || res == -2;
255 }
256 return value_inside_range (val, m_min, m_max) != 0;
257 }
258
259 void
260 value_range::equiv_clear ()
261 {
262 if (m_equiv)
263 bitmap_clear (m_equiv);
264 }
265
266 /* Add VAR and VAR's equivalence set (VAR_VR) to the equivalence
267 bitmap. If no equivalence table has been created, OBSTACK is the
268 obstack to use (NULL for the default obstack).
269
270 This is the central point where equivalence processing can be
271 turned on/off. */
272
273 void
274 value_range::equiv_add (const_tree var,
275 const value_range *var_vr,
276 bitmap_obstack *obstack)
277 {
278 if (!m_equiv)
279 m_equiv = BITMAP_ALLOC (obstack);
280 unsigned ver = SSA_NAME_VERSION (var);
281 bitmap_set_bit (m_equiv, ver);
282 if (var_vr && var_vr->m_equiv)
283 bitmap_ior_into (m_equiv, var_vr->m_equiv);
284 }
285
286 /* If range is a singleton, place it in RESULT and return TRUE.
287 Note: A singleton can be any gimple invariant, not just constants.
288 So, [&x, &x] counts as a singleton. */
289
290 bool
291 value_range::singleton_p (tree *result) const
292 {
293 if (m_kind == VR_RANGE
294 && vrp_operand_equal_p (m_min, m_max)
295 && is_gimple_min_invariant (m_min))
296 {
297 if (result)
298 *result = m_min;
299 return true;
300 }
301 return false;
302 }
303
304 tree
305 value_range::type () const
306 {
307 /* Types are only valid for VR_RANGE and VR_ANTI_RANGE, which are
308 known to have non-zero min/max. */
309 gcc_assert (m_min);
310 return TREE_TYPE (m_min);
311 }
312
313 /* Dump value range to FILE. */
314
315 void
316 value_range::dump (FILE *file) const
317 {
318 if (undefined_p ())
319 fprintf (file, "UNDEFINED");
320 else if (m_kind == VR_RANGE || m_kind == VR_ANTI_RANGE)
321 {
322 tree type = TREE_TYPE (min ());
323
324 fprintf (file, "%s[", (m_kind == VR_ANTI_RANGE) ? "~" : "");
325
326 if (INTEGRAL_TYPE_P (type)
327 && !TYPE_UNSIGNED (type)
328 && vrp_val_is_min (min ()))
329 fprintf (file, "-INF");
330 else
331 print_generic_expr (file, min ());
332
333 fprintf (file, ", ");
334
335 if (INTEGRAL_TYPE_P (type)
336 && vrp_val_is_max (max ()))
337 fprintf (file, "+INF");
338 else
339 print_generic_expr (file, max ());
340
341 fprintf (file, "]");
342
343 if (m_equiv)
344 {
345 bitmap_iterator bi;
346 unsigned i, c = 0;
347
348 fprintf (file, " EQUIVALENCES: { ");
349
350 EXECUTE_IF_SET_IN_BITMAP (m_equiv, 0, i, bi)
351 {
352 print_generic_expr (file, ssa_name (i));
353 fprintf (file, " ");
354 c++;
355 }
356
357 fprintf (file, "} (%u elements)", c);
358 }
359 }
360 else if (varying_p ())
361 fprintf (file, "VARYING");
362 else
363 fprintf (file, "INVALID RANGE");
364 }
365
366 void
367 value_range::dump () const
368 {
369 dump_value_range (stderr, this);
370 fprintf (stderr, "\n");
371 }
372
373 /* Return true if the SSA name NAME is live on the edge E. */
374
375 static bool
376 live_on_edge (edge e, tree name)
377 {
378 return (live[e->dest->index]
379 && bitmap_bit_p (live[e->dest->index], SSA_NAME_VERSION (name)));
380 }
381
382 /* Location information for ASSERT_EXPRs. Each instance of this
383 structure describes an ASSERT_EXPR for an SSA name. Since a single
384 SSA name may have more than one assertion associated with it, these
385 locations are kept in a linked list attached to the corresponding
386 SSA name. */
387 struct assert_locus
388 {
389 /* Basic block where the assertion would be inserted. */
390 basic_block bb;
391
392 /* Some assertions need to be inserted on an edge (e.g., assertions
393 generated by COND_EXPRs). In those cases, BB will be NULL. */
394 edge e;
395
396 /* Pointer to the statement that generated this assertion. */
397 gimple_stmt_iterator si;
398
399 /* Predicate code for the ASSERT_EXPR. Must be COMPARISON_CLASS_P. */
400 enum tree_code comp_code;
401
402 /* Value being compared against. */
403 tree val;
404
405 /* Expression to compare. */
406 tree expr;
407
408 /* Next node in the linked list. */
409 assert_locus *next;
410 };
411
412 /* If bit I is present, it means that SSA name N_i has a list of
413 assertions that should be inserted in the IL. */
414 static bitmap need_assert_for;
415
416 /* Array of locations lists where to insert assertions. ASSERTS_FOR[I]
417 holds a list of ASSERT_LOCUS_T nodes that describe where
418 ASSERT_EXPRs for SSA name N_I should be inserted. */
419 static assert_locus **asserts_for;
420
421 /* Return the maximum value for TYPE. */
422
423 tree
424 vrp_val_max (const_tree type)
425 {
426 if (!INTEGRAL_TYPE_P (type))
427 return NULL_TREE;
428
429 return TYPE_MAX_VALUE (type);
430 }
431
432 /* Return the minimum value for TYPE. */
433
434 tree
435 vrp_val_min (const_tree type)
436 {
437 if (!INTEGRAL_TYPE_P (type))
438 return NULL_TREE;
439
440 return TYPE_MIN_VALUE (type);
441 }
442
443 /* Return whether VAL is equal to the maximum value of its type.
444 We can't do a simple equality comparison with TYPE_MAX_VALUE because
445 C typedefs and Ada subtypes can produce types whose TYPE_MAX_VALUE
446 is not == to the integer constant with the same value in the type. */
447
448 bool
449 vrp_val_is_max (const_tree val)
450 {
451 tree type_max = vrp_val_max (TREE_TYPE (val));
452 return (val == type_max
453 || (type_max != NULL_TREE
454 && operand_equal_p (val, type_max, 0)));
455 }
456
457 /* Return whether VAL is equal to the minimum value of its type. */
458
459 bool
460 vrp_val_is_min (const_tree val)
461 {
462 tree type_min = vrp_val_min (TREE_TYPE (val));
463 return (val == type_min
464 || (type_min != NULL_TREE
465 && operand_equal_p (val, type_min, 0)));
466 }
467
468 /* VR_TYPE describes a range with mininum value *MIN and maximum
469 value *MAX. Restrict the range to the set of values that have
470 no bits set outside NONZERO_BITS. Update *MIN and *MAX and
471 return the new range type.
472
473 SGN gives the sign of the values described by the range. */
474
475 enum value_range_kind
476 intersect_range_with_nonzero_bits (enum value_range_kind vr_type,
477 wide_int *min, wide_int *max,
478 const wide_int &nonzero_bits,
479 signop sgn)
480 {
481 if (vr_type == VR_ANTI_RANGE)
482 {
483 /* The VR_ANTI_RANGE is equivalent to the union of the ranges
484 A: [-INF, *MIN) and B: (*MAX, +INF]. First use NONZERO_BITS
485 to create an inclusive upper bound for A and an inclusive lower
486 bound for B. */
487 wide_int a_max = wi::round_down_for_mask (*min - 1, nonzero_bits);
488 wide_int b_min = wi::round_up_for_mask (*max + 1, nonzero_bits);
489
490 /* If the calculation of A_MAX wrapped, A is effectively empty
491 and A_MAX is the highest value that satisfies NONZERO_BITS.
492 Likewise if the calculation of B_MIN wrapped, B is effectively
493 empty and B_MIN is the lowest value that satisfies NONZERO_BITS. */
494 bool a_empty = wi::ge_p (a_max, *min, sgn);
495 bool b_empty = wi::le_p (b_min, *max, sgn);
496
497 /* If both A and B are empty, there are no valid values. */
498 if (a_empty && b_empty)
499 return VR_UNDEFINED;
500
501 /* If exactly one of A or B is empty, return a VR_RANGE for the
502 other one. */
503 if (a_empty || b_empty)
504 {
505 *min = b_min;
506 *max = a_max;
507 gcc_checking_assert (wi::le_p (*min, *max, sgn));
508 return VR_RANGE;
509 }
510
511 /* Update the VR_ANTI_RANGE bounds. */
512 *min = a_max + 1;
513 *max = b_min - 1;
514 gcc_checking_assert (wi::le_p (*min, *max, sgn));
515
516 /* Now check whether the excluded range includes any values that
517 satisfy NONZERO_BITS. If not, switch to a full VR_RANGE. */
518 if (wi::round_up_for_mask (*min, nonzero_bits) == b_min)
519 {
520 unsigned int precision = min->get_precision ();
521 *min = wi::min_value (precision, sgn);
522 *max = wi::max_value (precision, sgn);
523 vr_type = VR_RANGE;
524 }
525 }
526 if (vr_type == VR_RANGE)
527 {
528 *max = wi::round_down_for_mask (*max, nonzero_bits);
529
530 /* Check that the range contains at least one valid value. */
531 if (wi::gt_p (*min, *max, sgn))
532 return VR_UNDEFINED;
533
534 *min = wi::round_up_for_mask (*min, nonzero_bits);
535 gcc_checking_assert (wi::le_p (*min, *max, sgn));
536 }
537 return vr_type;
538 }
539
540 /* Set value range VR to VR_UNDEFINED. */
541
542 static inline void
543 set_value_range_to_undefined (value_range *vr)
544 {
545 vr->set_undefined ();
546 }
547
548 /* Set value range VR to VR_VARYING. */
549
550 void
551 set_value_range_to_varying (value_range *vr)
552 {
553 vr->set_varying ();
554 }
555
556 /* Set value range VR to {T, MIN, MAX, EQUIV}. */
557
558 void
559 set_value_range (value_range *vr, enum value_range_kind kind,
560 tree min, tree max, bitmap equiv)
561 {
562 *vr = value_range (kind, min, max, equiv);
563 }
564
565
566 /* Set value range to the canonical form of {VRTYPE, MIN, MAX, EQUIV}.
567 This means adjusting VRTYPE, MIN and MAX representing the case of a
568 wrapping range with MAX < MIN covering [MIN, type_max] U [type_min, MAX]
569 as anti-rage ~[MAX+1, MIN-1]. Likewise for wrapping anti-ranges.
570 In corner cases where MAX+1 or MIN-1 wraps this will fall back
571 to varying.
572 This routine exists to ease canonicalization in the case where we
573 extract ranges from var + CST op limit. */
574
575 void
576 value_range::set_and_canonicalize (enum value_range_kind kind,
577 tree min, tree max, bitmap equiv)
578 {
579 /* Use the canonical setters for VR_UNDEFINED and VR_VARYING. */
580 if (kind == VR_UNDEFINED)
581 {
582 set_undefined ();
583 return;
584 }
585 else if (kind == VR_VARYING)
586 {
587 set_varying ();
588 return;
589 }
590
591 /* Nothing to canonicalize for symbolic ranges. */
592 if (TREE_CODE (min) != INTEGER_CST
593 || TREE_CODE (max) != INTEGER_CST)
594 {
595 set_value_range (this, kind, min, max, equiv);
596 return;
597 }
598
599 /* Wrong order for min and max, to swap them and the VR type we need
600 to adjust them. */
601 if (tree_int_cst_lt (max, min))
602 {
603 tree one, tmp;
604
605 /* For one bit precision if max < min, then the swapped
606 range covers all values, so for VR_RANGE it is varying and
607 for VR_ANTI_RANGE empty range, so drop to varying as well. */
608 if (TYPE_PRECISION (TREE_TYPE (min)) == 1)
609 {
610 set_varying ();
611 return;
612 }
613
614 one = build_int_cst (TREE_TYPE (min), 1);
615 tmp = int_const_binop (PLUS_EXPR, max, one);
616 max = int_const_binop (MINUS_EXPR, min, one);
617 min = tmp;
618
619 /* There's one corner case, if we had [C+1, C] before we now have
620 that again. But this represents an empty value range, so drop
621 to varying in this case. */
622 if (tree_int_cst_lt (max, min))
623 {
624 set_varying ();
625 return;
626 }
627
628 kind = kind == VR_RANGE ? VR_ANTI_RANGE : VR_RANGE;
629 }
630
631 /* Anti-ranges that can be represented as ranges should be so. */
632 if (kind == VR_ANTI_RANGE)
633 {
634 /* For -fstrict-enums we may receive out-of-range ranges so consider
635 values < -INF and values > INF as -INF/INF as well. */
636 tree type = TREE_TYPE (min);
637 bool is_min = (INTEGRAL_TYPE_P (type)
638 && tree_int_cst_compare (min, TYPE_MIN_VALUE (type)) <= 0);
639 bool is_max = (INTEGRAL_TYPE_P (type)
640 && tree_int_cst_compare (max, TYPE_MAX_VALUE (type)) >= 0);
641
642 if (is_min && is_max)
643 {
644 /* We cannot deal with empty ranges, drop to varying.
645 ??? This could be VR_UNDEFINED instead. */
646 set_varying ();
647 return;
648 }
649 else if (TYPE_PRECISION (TREE_TYPE (min)) == 1
650 && (is_min || is_max))
651 {
652 /* Non-empty boolean ranges can always be represented
653 as a singleton range. */
654 if (is_min)
655 min = max = vrp_val_max (TREE_TYPE (min));
656 else
657 min = max = vrp_val_min (TREE_TYPE (min));
658 kind = VR_RANGE;
659 }
660 else if (is_min
661 /* As a special exception preserve non-null ranges. */
662 && !(TYPE_UNSIGNED (TREE_TYPE (min))
663 && integer_zerop (max)))
664 {
665 tree one = build_int_cst (TREE_TYPE (max), 1);
666 min = int_const_binop (PLUS_EXPR, max, one);
667 max = vrp_val_max (TREE_TYPE (max));
668 kind = VR_RANGE;
669 }
670 else if (is_max)
671 {
672 tree one = build_int_cst (TREE_TYPE (min), 1);
673 max = int_const_binop (MINUS_EXPR, min, one);
674 min = vrp_val_min (TREE_TYPE (min));
675 kind = VR_RANGE;
676 }
677 }
678
679 /* Do not drop [-INF(OVF), +INF(OVF)] to varying. (OVF) has to be sticky
680 to make sure VRP iteration terminates, otherwise we can get into
681 oscillations. */
682
683 set_value_range (this, kind, min, max, equiv);
684 }
685
686 /* Set value range VR to a single value. This function is only called
687 with values we get from statements, and exists to clear the
688 TREE_OVERFLOW flag. */
689
690 void
691 set_value_range_to_value (value_range *vr, tree val, bitmap equiv)
692 {
693 gcc_assert (is_gimple_min_invariant (val));
694 if (TREE_OVERFLOW_P (val))
695 val = drop_tree_overflow (val);
696 set_value_range (vr, VR_RANGE, val, val, equiv);
697 }
698
699 /* Set value range VR to a non-NULL range of type TYPE. */
700
701 void
702 set_value_range_to_nonnull (value_range *vr, tree type)
703 {
704 tree zero = build_int_cst (type, 0);
705 vr->update (VR_ANTI_RANGE, zero, zero);
706 }
707
708
709 /* Set value range VR to a NULL range of type TYPE. */
710
711 void
712 set_value_range_to_null (value_range *vr, tree type)
713 {
714 set_value_range_to_value (vr, build_int_cst (type, 0), vr->equiv ());
715 }
716
717 /* Return true, if VAL1 and VAL2 are equal values for VRP purposes. */
718
719 bool
720 vrp_operand_equal_p (const_tree val1, const_tree val2)
721 {
722 if (val1 == val2)
723 return true;
724 if (!val1 || !val2 || !operand_equal_p (val1, val2, 0))
725 return false;
726 return true;
727 }
728
729 /* Return true, if the bitmaps B1 and B2 are equal. */
730
731 bool
732 vrp_bitmap_equal_p (const_bitmap b1, const_bitmap b2)
733 {
734 return (b1 == b2
735 || ((!b1 || bitmap_empty_p (b1))
736 && (!b2 || bitmap_empty_p (b2)))
737 || (b1 && b2
738 && bitmap_equal_p (b1, b2)));
739 }
740
741 /* Return true if VR is [0, 0]. */
742
743 static inline bool
744 range_is_null (const value_range *vr)
745 {
746 return vr->null_p ();
747 }
748
749 static inline bool
750 range_is_nonnull (const value_range *vr)
751 {
752 return (vr->kind () == VR_ANTI_RANGE
753 && vr->min () == vr->max ()
754 && integer_zerop (vr->min ()));
755 }
756
757 /* Return true if max and min of VR are INTEGER_CST. It's not necessary
758 a singleton. */
759
760 bool
761 range_int_cst_p (const value_range *vr)
762 {
763 return (vr->kind () == VR_RANGE
764 && TREE_CODE (vr->min ()) == INTEGER_CST
765 && TREE_CODE (vr->max ()) == INTEGER_CST);
766 }
767
768 /* Return true if VR is a INTEGER_CST singleton. */
769
770 bool
771 range_int_cst_singleton_p (const value_range *vr)
772 {
773 return (range_int_cst_p (vr)
774 && tree_int_cst_equal (vr->min (), vr->max ()));
775 }
776
777 /* Return the single symbol (an SSA_NAME) contained in T if any, or NULL_TREE
778 otherwise. We only handle additive operations and set NEG to true if the
779 symbol is negated and INV to the invariant part, if any. */
780
781 tree
782 get_single_symbol (tree t, bool *neg, tree *inv)
783 {
784 bool neg_;
785 tree inv_;
786
787 *inv = NULL_TREE;
788 *neg = false;
789
790 if (TREE_CODE (t) == PLUS_EXPR
791 || TREE_CODE (t) == POINTER_PLUS_EXPR
792 || TREE_CODE (t) == MINUS_EXPR)
793 {
794 if (is_gimple_min_invariant (TREE_OPERAND (t, 0)))
795 {
796 neg_ = (TREE_CODE (t) == MINUS_EXPR);
797 inv_ = TREE_OPERAND (t, 0);
798 t = TREE_OPERAND (t, 1);
799 }
800 else if (is_gimple_min_invariant (TREE_OPERAND (t, 1)))
801 {
802 neg_ = false;
803 inv_ = TREE_OPERAND (t, 1);
804 t = TREE_OPERAND (t, 0);
805 }
806 else
807 return NULL_TREE;
808 }
809 else
810 {
811 neg_ = false;
812 inv_ = NULL_TREE;
813 }
814
815 if (TREE_CODE (t) == NEGATE_EXPR)
816 {
817 t = TREE_OPERAND (t, 0);
818 neg_ = !neg_;
819 }
820
821 if (TREE_CODE (t) != SSA_NAME)
822 return NULL_TREE;
823
824 if (inv_ && TREE_OVERFLOW_P (inv_))
825 inv_ = drop_tree_overflow (inv_);
826
827 *neg = neg_;
828 *inv = inv_;
829 return t;
830 }
831
832 /* The reverse operation: build a symbolic expression with TYPE
833 from symbol SYM, negated according to NEG, and invariant INV. */
834
835 static tree
836 build_symbolic_expr (tree type, tree sym, bool neg, tree inv)
837 {
838 const bool pointer_p = POINTER_TYPE_P (type);
839 tree t = sym;
840
841 if (neg)
842 t = build1 (NEGATE_EXPR, type, t);
843
844 if (integer_zerop (inv))
845 return t;
846
847 return build2 (pointer_p ? POINTER_PLUS_EXPR : PLUS_EXPR, type, t, inv);
848 }
849
850 /* Return
851 1 if VAL < VAL2
852 0 if !(VAL < VAL2)
853 -2 if those are incomparable. */
854 int
855 operand_less_p (tree val, tree val2)
856 {
857 /* LT is folded faster than GE and others. Inline the common case. */
858 if (TREE_CODE (val) == INTEGER_CST && TREE_CODE (val2) == INTEGER_CST)
859 return tree_int_cst_lt (val, val2);
860 else
861 {
862 tree tcmp;
863
864 fold_defer_overflow_warnings ();
865
866 tcmp = fold_binary_to_constant (LT_EXPR, boolean_type_node, val, val2);
867
868 fold_undefer_and_ignore_overflow_warnings ();
869
870 if (!tcmp
871 || TREE_CODE (tcmp) != INTEGER_CST)
872 return -2;
873
874 if (!integer_zerop (tcmp))
875 return 1;
876 }
877
878 return 0;
879 }
880
881 /* Compare two values VAL1 and VAL2. Return
882
883 -2 if VAL1 and VAL2 cannot be compared at compile-time,
884 -1 if VAL1 < VAL2,
885 0 if VAL1 == VAL2,
886 +1 if VAL1 > VAL2, and
887 +2 if VAL1 != VAL2
888
889 This is similar to tree_int_cst_compare but supports pointer values
890 and values that cannot be compared at compile time.
891
892 If STRICT_OVERFLOW_P is not NULL, then set *STRICT_OVERFLOW_P to
893 true if the return value is only valid if we assume that signed
894 overflow is undefined. */
895
896 int
897 compare_values_warnv (tree val1, tree val2, bool *strict_overflow_p)
898 {
899 if (val1 == val2)
900 return 0;
901
902 /* Below we rely on the fact that VAL1 and VAL2 are both pointers or
903 both integers. */
904 gcc_assert (POINTER_TYPE_P (TREE_TYPE (val1))
905 == POINTER_TYPE_P (TREE_TYPE (val2)));
906
907 /* Convert the two values into the same type. This is needed because
908 sizetype causes sign extension even for unsigned types. */
909 val2 = fold_convert (TREE_TYPE (val1), val2);
910 STRIP_USELESS_TYPE_CONVERSION (val2);
911
912 const bool overflow_undefined
913 = INTEGRAL_TYPE_P (TREE_TYPE (val1))
914 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (val1));
915 tree inv1, inv2;
916 bool neg1, neg2;
917 tree sym1 = get_single_symbol (val1, &neg1, &inv1);
918 tree sym2 = get_single_symbol (val2, &neg2, &inv2);
919
920 /* If VAL1 and VAL2 are of the form '[-]NAME [+ CST]', return -1 or +1
921 accordingly. If VAL1 and VAL2 don't use the same name, return -2. */
922 if (sym1 && sym2)
923 {
924 /* Both values must use the same name with the same sign. */
925 if (sym1 != sym2 || neg1 != neg2)
926 return -2;
927
928 /* [-]NAME + CST == [-]NAME + CST. */
929 if (inv1 == inv2)
930 return 0;
931
932 /* If overflow is defined we cannot simplify more. */
933 if (!overflow_undefined)
934 return -2;
935
936 if (strict_overflow_p != NULL
937 /* Symbolic range building sets TREE_NO_WARNING to declare
938 that overflow doesn't happen. */
939 && (!inv1 || !TREE_NO_WARNING (val1))
940 && (!inv2 || !TREE_NO_WARNING (val2)))
941 *strict_overflow_p = true;
942
943 if (!inv1)
944 inv1 = build_int_cst (TREE_TYPE (val1), 0);
945 if (!inv2)
946 inv2 = build_int_cst (TREE_TYPE (val2), 0);
947
948 return wi::cmp (wi::to_wide (inv1), wi::to_wide (inv2),
949 TYPE_SIGN (TREE_TYPE (val1)));
950 }
951
952 const bool cst1 = is_gimple_min_invariant (val1);
953 const bool cst2 = is_gimple_min_invariant (val2);
954
955 /* If one is of the form '[-]NAME + CST' and the other is constant, then
956 it might be possible to say something depending on the constants. */
957 if ((sym1 && inv1 && cst2) || (sym2 && inv2 && cst1))
958 {
959 if (!overflow_undefined)
960 return -2;
961
962 if (strict_overflow_p != NULL
963 /* Symbolic range building sets TREE_NO_WARNING to declare
964 that overflow doesn't happen. */
965 && (!sym1 || !TREE_NO_WARNING (val1))
966 && (!sym2 || !TREE_NO_WARNING (val2)))
967 *strict_overflow_p = true;
968
969 const signop sgn = TYPE_SIGN (TREE_TYPE (val1));
970 tree cst = cst1 ? val1 : val2;
971 tree inv = cst1 ? inv2 : inv1;
972
973 /* Compute the difference between the constants. If it overflows or
974 underflows, this means that we can trivially compare the NAME with
975 it and, consequently, the two values with each other. */
976 wide_int diff = wi::to_wide (cst) - wi::to_wide (inv);
977 if (wi::cmp (0, wi::to_wide (inv), sgn)
978 != wi::cmp (diff, wi::to_wide (cst), sgn))
979 {
980 const int res = wi::cmp (wi::to_wide (cst), wi::to_wide (inv), sgn);
981 return cst1 ? res : -res;
982 }
983
984 return -2;
985 }
986
987 /* We cannot say anything more for non-constants. */
988 if (!cst1 || !cst2)
989 return -2;
990
991 if (!POINTER_TYPE_P (TREE_TYPE (val1)))
992 {
993 /* We cannot compare overflowed values. */
994 if (TREE_OVERFLOW (val1) || TREE_OVERFLOW (val2))
995 return -2;
996
997 if (TREE_CODE (val1) == INTEGER_CST
998 && TREE_CODE (val2) == INTEGER_CST)
999 return tree_int_cst_compare (val1, val2);
1000
1001 if (poly_int_tree_p (val1) && poly_int_tree_p (val2))
1002 {
1003 if (known_eq (wi::to_poly_widest (val1),
1004 wi::to_poly_widest (val2)))
1005 return 0;
1006 if (known_lt (wi::to_poly_widest (val1),
1007 wi::to_poly_widest (val2)))
1008 return -1;
1009 if (known_gt (wi::to_poly_widest (val1),
1010 wi::to_poly_widest (val2)))
1011 return 1;
1012 }
1013
1014 return -2;
1015 }
1016 else
1017 {
1018 tree t;
1019
1020 /* First see if VAL1 and VAL2 are not the same. */
1021 if (val1 == val2 || operand_equal_p (val1, val2, 0))
1022 return 0;
1023
1024 /* If VAL1 is a lower address than VAL2, return -1. */
1025 if (operand_less_p (val1, val2) == 1)
1026 return -1;
1027
1028 /* If VAL1 is a higher address than VAL2, return +1. */
1029 if (operand_less_p (val2, val1) == 1)
1030 return 1;
1031
1032 /* If VAL1 is different than VAL2, return +2.
1033 For integer constants we either have already returned -1 or 1
1034 or they are equivalent. We still might succeed in proving
1035 something about non-trivial operands. */
1036 if (TREE_CODE (val1) != INTEGER_CST
1037 || TREE_CODE (val2) != INTEGER_CST)
1038 {
1039 t = fold_binary_to_constant (NE_EXPR, boolean_type_node, val1, val2);
1040 if (t && integer_onep (t))
1041 return 2;
1042 }
1043
1044 return -2;
1045 }
1046 }
1047
1048 /* Compare values like compare_values_warnv. */
1049
1050 int
1051 compare_values (tree val1, tree val2)
1052 {
1053 bool sop;
1054 return compare_values_warnv (val1, val2, &sop);
1055 }
1056
1057
1058 /* Return 1 if VAL is inside value range MIN <= VAL <= MAX,
1059 0 if VAL is not inside [MIN, MAX],
1060 -2 if we cannot tell either way.
1061
1062 Benchmark compile/20001226-1.c compilation time after changing this
1063 function. */
1064
1065 int
1066 value_inside_range (tree val, tree min, tree max)
1067 {
1068 int cmp1, cmp2;
1069
1070 cmp1 = operand_less_p (val, min);
1071 if (cmp1 == -2)
1072 return -2;
1073 if (cmp1 == 1)
1074 return 0;
1075
1076 cmp2 = operand_less_p (max, val);
1077 if (cmp2 == -2)
1078 return -2;
1079
1080 return !cmp2;
1081 }
1082
1083
1084 /* Return TRUE if *VR includes the value zero. */
1085
1086 bool
1087 range_includes_zero_p (const value_range *vr)
1088 {
1089 if (vr->varying_p () || vr->undefined_p ())
1090 return true;
1091 tree zero = build_int_cst (vr->type (), 0);
1092 return vr->may_contain_p (zero);
1093 }
1094
1095 /* If *VR has a value range that is a single constant value return that,
1096 otherwise return NULL_TREE.
1097
1098 ?? This actually returns TRUE for [&x, &x], so perhaps "constant"
1099 is not the best name. */
1100
1101 tree
1102 value_range_constant_singleton (const value_range *vr)
1103 {
1104 tree result = NULL;
1105 if (vr->singleton_p (&result))
1106 return result;
1107 return NULL;
1108 }
1109
1110 /* Value range wrapper for wide_int_range_set_zero_nonzero_bits.
1111
1112 Compute MAY_BE_NONZERO and MUST_BE_NONZERO bit masks for range in VR.
1113
1114 Return TRUE if VR was a constant range and we were able to compute
1115 the bit masks. */
1116
1117 bool
1118 vrp_set_zero_nonzero_bits (const tree expr_type,
1119 const value_range *vr,
1120 wide_int *may_be_nonzero,
1121 wide_int *must_be_nonzero)
1122 {
1123 if (!range_int_cst_p (vr))
1124 {
1125 *may_be_nonzero = wi::minus_one (TYPE_PRECISION (expr_type));
1126 *must_be_nonzero = wi::zero (TYPE_PRECISION (expr_type));
1127 return false;
1128 }
1129 wide_int_range_set_zero_nonzero_bits (TYPE_SIGN (expr_type),
1130 wi::to_wide (vr->min ()),
1131 wi::to_wide (vr->max ()),
1132 *may_be_nonzero, *must_be_nonzero);
1133 return true;
1134 }
1135
1136 /* Create two value-ranges in *VR0 and *VR1 from the anti-range *AR
1137 so that *VR0 U *VR1 == *AR. Returns true if that is possible,
1138 false otherwise. If *AR can be represented with a single range
1139 *VR1 will be VR_UNDEFINED. */
1140
1141 static bool
1142 ranges_from_anti_range (const value_range *ar,
1143 value_range *vr0, value_range *vr1)
1144 {
1145 tree type = ar->type ();
1146
1147 vr0->set_undefined ();
1148 vr1->set_undefined ();
1149
1150 /* As a future improvement, we could handle ~[0, A] as: [-INF, -1] U
1151 [A+1, +INF]. Not sure if this helps in practice, though. */
1152
1153 if (ar->kind () != VR_ANTI_RANGE
1154 || TREE_CODE (ar->min ()) != INTEGER_CST
1155 || TREE_CODE (ar->max ()) != INTEGER_CST
1156 || !vrp_val_min (type)
1157 || !vrp_val_max (type))
1158 return false;
1159
1160 if (!vrp_val_is_min (ar->min ()))
1161 *vr0 = value_range (VR_RANGE,
1162 vrp_val_min (type),
1163 wide_int_to_tree (type, wi::to_wide (ar->min ()) - 1));
1164 if (!vrp_val_is_max (ar->max ()))
1165 *vr1 = value_range (VR_RANGE,
1166 wide_int_to_tree (type, wi::to_wide (ar->max ()) + 1),
1167 vrp_val_max (type));
1168 if (vr0->undefined_p ())
1169 {
1170 *vr0 = *vr1;
1171 vr1->set_undefined ();
1172 }
1173
1174 return !vr0->undefined_p ();
1175 }
1176
1177 /* Extract the components of a value range into a pair of wide ints in
1178 [WMIN, WMAX].
1179
1180 If the value range is anything but a VR_*RANGE of constants, the
1181 resulting wide ints are set to [-MIN, +MAX] for the type. */
1182
1183 static void inline
1184 extract_range_into_wide_ints (const value_range *vr,
1185 signop sign, unsigned prec,
1186 wide_int &wmin, wide_int &wmax)
1187 {
1188 gcc_assert (vr->kind () != VR_ANTI_RANGE || vr->symbolic_p ());
1189 if (range_int_cst_p (vr))
1190 {
1191 wmin = wi::to_wide (vr->min ());
1192 wmax = wi::to_wide (vr->max ());
1193 }
1194 else
1195 {
1196 wmin = wi::min_value (prec, sign);
1197 wmax = wi::max_value (prec, sign);
1198 }
1199 }
1200
1201 /* Value range wrapper for wide_int_range_multiplicative_op:
1202
1203 *VR = *VR0 .CODE. *VR1. */
1204
1205 static void
1206 extract_range_from_multiplicative_op (value_range *vr,
1207 enum tree_code code,
1208 const value_range *vr0,
1209 const value_range *vr1)
1210 {
1211 gcc_assert (code == MULT_EXPR
1212 || code == TRUNC_DIV_EXPR
1213 || code == FLOOR_DIV_EXPR
1214 || code == CEIL_DIV_EXPR
1215 || code == EXACT_DIV_EXPR
1216 || code == ROUND_DIV_EXPR
1217 || code == RSHIFT_EXPR
1218 || code == LSHIFT_EXPR);
1219 gcc_assert (vr0->kind () == VR_RANGE
1220 && vr0->kind () == vr1->kind ());
1221
1222 tree type = vr0->type ();
1223 wide_int res_lb, res_ub;
1224 wide_int vr0_lb = wi::to_wide (vr0->min ());
1225 wide_int vr0_ub = wi::to_wide (vr0->max ());
1226 wide_int vr1_lb = wi::to_wide (vr1->min ());
1227 wide_int vr1_ub = wi::to_wide (vr1->max ());
1228 bool overflow_undefined = TYPE_OVERFLOW_UNDEFINED (type);
1229 unsigned prec = TYPE_PRECISION (type);
1230
1231 if (wide_int_range_multiplicative_op (res_lb, res_ub,
1232 code, TYPE_SIGN (type), prec,
1233 vr0_lb, vr0_ub, vr1_lb, vr1_ub,
1234 overflow_undefined))
1235 vr->set_and_canonicalize (VR_RANGE,
1236 wide_int_to_tree (type, res_lb),
1237 wide_int_to_tree (type, res_ub), NULL);
1238 else
1239 set_value_range_to_varying (vr);
1240 }
1241
1242 /* If BOUND will include a symbolic bound, adjust it accordingly,
1243 otherwise leave it as is.
1244
1245 CODE is the original operation that combined the bounds (PLUS_EXPR
1246 or MINUS_EXPR).
1247
1248 TYPE is the type of the original operation.
1249
1250 SYM_OPn is the symbolic for OPn if it has a symbolic.
1251
1252 NEG_OPn is TRUE if the OPn was negated. */
1253
1254 static void
1255 adjust_symbolic_bound (tree &bound, enum tree_code code, tree type,
1256 tree sym_op0, tree sym_op1,
1257 bool neg_op0, bool neg_op1)
1258 {
1259 bool minus_p = (code == MINUS_EXPR);
1260 /* If the result bound is constant, we're done; otherwise, build the
1261 symbolic lower bound. */
1262 if (sym_op0 == sym_op1)
1263 ;
1264 else if (sym_op0)
1265 bound = build_symbolic_expr (type, sym_op0,
1266 neg_op0, bound);
1267 else if (sym_op1)
1268 {
1269 /* We may not negate if that might introduce
1270 undefined overflow. */
1271 if (!minus_p
1272 || neg_op1
1273 || TYPE_OVERFLOW_WRAPS (type))
1274 bound = build_symbolic_expr (type, sym_op1,
1275 neg_op1 ^ minus_p, bound);
1276 else
1277 bound = NULL_TREE;
1278 }
1279 }
1280
1281 /* Combine OP1 and OP1, which are two parts of a bound, into one wide
1282 int bound according to CODE. CODE is the operation combining the
1283 bound (either a PLUS_EXPR or a MINUS_EXPR).
1284
1285 TYPE is the type of the combine operation.
1286
1287 WI is the wide int to store the result.
1288
1289 OVF is -1 if an underflow occurred, +1 if an overflow occurred or 0
1290 if over/underflow occurred. */
1291
1292 static void
1293 combine_bound (enum tree_code code, wide_int &wi, wi::overflow_type &ovf,
1294 tree type, tree op0, tree op1)
1295 {
1296 bool minus_p = (code == MINUS_EXPR);
1297 const signop sgn = TYPE_SIGN (type);
1298 const unsigned int prec = TYPE_PRECISION (type);
1299
1300 /* Combine the bounds, if any. */
1301 if (op0 && op1)
1302 {
1303 if (minus_p)
1304 wi = wi::sub (wi::to_wide (op0), wi::to_wide (op1), sgn, &ovf);
1305 else
1306 wi = wi::add (wi::to_wide (op0), wi::to_wide (op1), sgn, &ovf);
1307 }
1308 else if (op0)
1309 wi = wi::to_wide (op0);
1310 else if (op1)
1311 {
1312 if (minus_p)
1313 wi = wi::neg (wi::to_wide (op1), &ovf);
1314 else
1315 wi = wi::to_wide (op1);
1316 }
1317 else
1318 wi = wi::shwi (0, prec);
1319 }
1320
1321 /* Given a range in [WMIN, WMAX], adjust it for possible overflow and
1322 put the result in VR.
1323
1324 TYPE is the type of the range.
1325
1326 MIN_OVF and MAX_OVF indicate what type of overflow, if any,
1327 occurred while originally calculating WMIN or WMAX. -1 indicates
1328 underflow. +1 indicates overflow. 0 indicates neither. */
1329
1330 static void
1331 set_value_range_with_overflow (value_range_kind &kind, tree &min, tree &max,
1332 tree type,
1333 const wide_int &wmin, const wide_int &wmax,
1334 wi::overflow_type min_ovf,
1335 wi::overflow_type max_ovf)
1336 {
1337 const signop sgn = TYPE_SIGN (type);
1338 const unsigned int prec = TYPE_PRECISION (type);
1339
1340 /* For one bit precision if max < min, then the swapped
1341 range covers all values. */
1342 if (prec == 1 && wi::lt_p (wmax, wmin, sgn))
1343 {
1344 kind = VR_VARYING;
1345 return;
1346 }
1347
1348 if (TYPE_OVERFLOW_WRAPS (type))
1349 {
1350 /* If overflow wraps, truncate the values and adjust the
1351 range kind and bounds appropriately. */
1352 wide_int tmin = wide_int::from (wmin, prec, sgn);
1353 wide_int tmax = wide_int::from (wmax, prec, sgn);
1354 if ((min_ovf != wi::OVF_NONE) == (max_ovf != wi::OVF_NONE))
1355 {
1356 /* If the limits are swapped, we wrapped around and cover
1357 the entire range. We have a similar check at the end of
1358 extract_range_from_binary_expr_1. */
1359 if (wi::gt_p (tmin, tmax, sgn))
1360 kind = VR_VARYING;
1361 else
1362 {
1363 kind = VR_RANGE;
1364 /* No overflow or both overflow or underflow. The
1365 range kind stays VR_RANGE. */
1366 min = wide_int_to_tree (type, tmin);
1367 max = wide_int_to_tree (type, tmax);
1368 }
1369 return;
1370 }
1371 else if ((min_ovf == wi::OVF_UNDERFLOW && max_ovf == wi::OVF_NONE)
1372 || (max_ovf == wi::OVF_OVERFLOW && min_ovf == wi::OVF_NONE))
1373 {
1374 /* Min underflow or max overflow. The range kind
1375 changes to VR_ANTI_RANGE. */
1376 bool covers = false;
1377 wide_int tem = tmin;
1378 tmin = tmax + 1;
1379 if (wi::cmp (tmin, tmax, sgn) < 0)
1380 covers = true;
1381 tmax = tem - 1;
1382 if (wi::cmp (tmax, tem, sgn) > 0)
1383 covers = true;
1384 /* If the anti-range would cover nothing, drop to varying.
1385 Likewise if the anti-range bounds are outside of the
1386 types values. */
1387 if (covers || wi::cmp (tmin, tmax, sgn) > 0)
1388 {
1389 kind = VR_VARYING;
1390 return;
1391 }
1392 kind = VR_ANTI_RANGE;
1393 min = wide_int_to_tree (type, tmin);
1394 max = wide_int_to_tree (type, tmax);
1395 return;
1396 }
1397 else
1398 {
1399 /* Other underflow and/or overflow, drop to VR_VARYING. */
1400 kind = VR_VARYING;
1401 return;
1402 }
1403 }
1404 else
1405 {
1406 /* If overflow does not wrap, saturate to the types min/max
1407 value. */
1408 wide_int type_min = wi::min_value (prec, sgn);
1409 wide_int type_max = wi::max_value (prec, sgn);
1410 kind = VR_RANGE;
1411 if (min_ovf == wi::OVF_UNDERFLOW)
1412 min = wide_int_to_tree (type, type_min);
1413 else if (min_ovf == wi::OVF_OVERFLOW)
1414 min = wide_int_to_tree (type, type_max);
1415 else
1416 min = wide_int_to_tree (type, wmin);
1417
1418 if (max_ovf == wi::OVF_UNDERFLOW)
1419 max = wide_int_to_tree (type, type_min);
1420 else if (max_ovf == wi::OVF_OVERFLOW)
1421 max = wide_int_to_tree (type, type_max);
1422 else
1423 max = wide_int_to_tree (type, wmax);
1424 }
1425 }
1426
1427 /* Extract range information from a binary operation CODE based on
1428 the ranges of each of its operands *VR0 and *VR1 with resulting
1429 type EXPR_TYPE. The resulting range is stored in *VR. */
1430
1431 void
1432 extract_range_from_binary_expr_1 (value_range *vr,
1433 enum tree_code code, tree expr_type,
1434 const value_range *vr0_,
1435 const value_range *vr1_)
1436 {
1437 signop sign = TYPE_SIGN (expr_type);
1438 unsigned int prec = TYPE_PRECISION (expr_type);
1439 value_range vr0 = *vr0_, vr1 = *vr1_;
1440 value_range vrtem0, vrtem1;
1441 enum value_range_kind type;
1442 tree min = NULL_TREE, max = NULL_TREE;
1443 int cmp;
1444
1445 if (!INTEGRAL_TYPE_P (expr_type)
1446 && !POINTER_TYPE_P (expr_type))
1447 {
1448 set_value_range_to_varying (vr);
1449 return;
1450 }
1451
1452 /* Not all binary expressions can be applied to ranges in a
1453 meaningful way. Handle only arithmetic operations. */
1454 if (code != PLUS_EXPR
1455 && code != MINUS_EXPR
1456 && code != POINTER_PLUS_EXPR
1457 && code != MULT_EXPR
1458 && code != TRUNC_DIV_EXPR
1459 && code != FLOOR_DIV_EXPR
1460 && code != CEIL_DIV_EXPR
1461 && code != EXACT_DIV_EXPR
1462 && code != ROUND_DIV_EXPR
1463 && code != TRUNC_MOD_EXPR
1464 && code != RSHIFT_EXPR
1465 && code != LSHIFT_EXPR
1466 && code != MIN_EXPR
1467 && code != MAX_EXPR
1468 && code != BIT_AND_EXPR
1469 && code != BIT_IOR_EXPR
1470 && code != BIT_XOR_EXPR)
1471 {
1472 set_value_range_to_varying (vr);
1473 return;
1474 }
1475
1476 /* If both ranges are UNDEFINED, so is the result. */
1477 if (vr0.undefined_p () && vr1.undefined_p ())
1478 {
1479 set_value_range_to_undefined (vr);
1480 return;
1481 }
1482 /* If one of the ranges is UNDEFINED drop it to VARYING for the following
1483 code. At some point we may want to special-case operations that
1484 have UNDEFINED result for all or some value-ranges of the not UNDEFINED
1485 operand. */
1486 else if (vr0.undefined_p ())
1487 set_value_range_to_varying (&vr0);
1488 else if (vr1.undefined_p ())
1489 set_value_range_to_varying (&vr1);
1490
1491 /* We get imprecise results from ranges_from_anti_range when
1492 code is EXACT_DIV_EXPR. We could mask out bits in the resulting
1493 range, but then we also need to hack up vrp_union. It's just
1494 easier to special case when vr0 is ~[0,0] for EXACT_DIV_EXPR. */
1495 if (code == EXACT_DIV_EXPR && range_is_nonnull (&vr0))
1496 {
1497 set_value_range_to_nonnull (vr, expr_type);
1498 return;
1499 }
1500
1501 /* Now canonicalize anti-ranges to ranges when they are not symbolic
1502 and express ~[] op X as ([]' op X) U ([]'' op X). */
1503 if (vr0.kind () == VR_ANTI_RANGE
1504 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
1505 {
1506 extract_range_from_binary_expr_1 (vr, code, expr_type, &vrtem0, vr1_);
1507 if (!vrtem1.undefined_p ())
1508 {
1509 value_range vrres;
1510 extract_range_from_binary_expr_1 (&vrres, code, expr_type, &vrtem1, vr1_);
1511 vr->union_ (&vrres);
1512 }
1513 return;
1514 }
1515 /* Likewise for X op ~[]. */
1516 if (vr1.kind () == VR_ANTI_RANGE
1517 && ranges_from_anti_range (&vr1, &vrtem0, &vrtem1))
1518 {
1519 extract_range_from_binary_expr_1 (vr, code, expr_type, vr0_, &vrtem0);
1520 if (!vrtem1.undefined_p ())
1521 {
1522 value_range vrres;
1523 extract_range_from_binary_expr_1 (&vrres, code, expr_type,
1524 vr0_, &vrtem1);
1525 vr->union_ (&vrres);
1526 }
1527 return;
1528 }
1529
1530 /* The type of the resulting value range defaults to VR0.TYPE. */
1531 type = vr0.kind ();
1532
1533 /* Refuse to operate on VARYING ranges, ranges of different kinds
1534 and symbolic ranges. As an exception, we allow BIT_{AND,IOR}
1535 because we may be able to derive a useful range even if one of
1536 the operands is VR_VARYING or symbolic range. Similarly for
1537 divisions, MIN/MAX and PLUS/MINUS.
1538
1539 TODO, we may be able to derive anti-ranges in some cases. */
1540 if (code != BIT_AND_EXPR
1541 && code != BIT_IOR_EXPR
1542 && code != TRUNC_DIV_EXPR
1543 && code != FLOOR_DIV_EXPR
1544 && code != CEIL_DIV_EXPR
1545 && code != EXACT_DIV_EXPR
1546 && code != ROUND_DIV_EXPR
1547 && code != TRUNC_MOD_EXPR
1548 && code != MIN_EXPR
1549 && code != MAX_EXPR
1550 && code != PLUS_EXPR
1551 && code != MINUS_EXPR
1552 && code != RSHIFT_EXPR
1553 && code != POINTER_PLUS_EXPR
1554 && (vr0.varying_p ()
1555 || vr1.varying_p ()
1556 || vr0.kind () != vr1.kind ()
1557 || vr0.symbolic_p ()
1558 || vr1.symbolic_p ()))
1559 {
1560 set_value_range_to_varying (vr);
1561 return;
1562 }
1563
1564 /* Now evaluate the expression to determine the new range. */
1565 if (POINTER_TYPE_P (expr_type))
1566 {
1567 if (code == MIN_EXPR || code == MAX_EXPR)
1568 {
1569 /* For MIN/MAX expressions with pointers, we only care about
1570 nullness, if both are non null, then the result is nonnull.
1571 If both are null, then the result is null. Otherwise they
1572 are varying. */
1573 if (!range_includes_zero_p (&vr0) && !range_includes_zero_p (&vr1))
1574 set_value_range_to_nonnull (vr, expr_type);
1575 else if (range_is_null (&vr0) && range_is_null (&vr1))
1576 set_value_range_to_null (vr, expr_type);
1577 else
1578 set_value_range_to_varying (vr);
1579 }
1580 else if (code == POINTER_PLUS_EXPR)
1581 {
1582 /* For pointer types, we are really only interested in asserting
1583 whether the expression evaluates to non-NULL. */
1584 if (!range_includes_zero_p (&vr0)
1585 || !range_includes_zero_p (&vr1))
1586 set_value_range_to_nonnull (vr, expr_type);
1587 else if (range_is_null (&vr0) && range_is_null (&vr1))
1588 set_value_range_to_null (vr, expr_type);
1589 else
1590 set_value_range_to_varying (vr);
1591 }
1592 else if (code == BIT_AND_EXPR)
1593 {
1594 /* For pointer types, we are really only interested in asserting
1595 whether the expression evaluates to non-NULL. */
1596 if (!range_includes_zero_p (&vr0) && !range_includes_zero_p (&vr1))
1597 set_value_range_to_nonnull (vr, expr_type);
1598 else if (range_is_null (&vr0) || range_is_null (&vr1))
1599 set_value_range_to_null (vr, expr_type);
1600 else
1601 set_value_range_to_varying (vr);
1602 }
1603 else
1604 set_value_range_to_varying (vr);
1605
1606 return;
1607 }
1608
1609 /* For integer ranges, apply the operation to each end of the
1610 range and see what we end up with. */
1611 if (code == PLUS_EXPR || code == MINUS_EXPR)
1612 {
1613 /* This will normalize things such that calculating
1614 [0,0] - VR_VARYING is not dropped to varying, but is
1615 calculated as [MIN+1, MAX]. */
1616 if (vr0.varying_p ())
1617 vr0.update (VR_RANGE,
1618 vrp_val_min (expr_type),
1619 vrp_val_max (expr_type));
1620 if (vr1.varying_p ())
1621 vr1.update (VR_RANGE,
1622 vrp_val_min (expr_type),
1623 vrp_val_max (expr_type));
1624
1625 const bool minus_p = (code == MINUS_EXPR);
1626 tree min_op0 = vr0.min ();
1627 tree min_op1 = minus_p ? vr1.max () : vr1.min ();
1628 tree max_op0 = vr0.max ();
1629 tree max_op1 = minus_p ? vr1.min () : vr1.max ();
1630 tree sym_min_op0 = NULL_TREE;
1631 tree sym_min_op1 = NULL_TREE;
1632 tree sym_max_op0 = NULL_TREE;
1633 tree sym_max_op1 = NULL_TREE;
1634 bool neg_min_op0, neg_min_op1, neg_max_op0, neg_max_op1;
1635
1636 neg_min_op0 = neg_min_op1 = neg_max_op0 = neg_max_op1 = false;
1637
1638 /* If we have a PLUS or MINUS with two VR_RANGEs, either constant or
1639 single-symbolic ranges, try to compute the precise resulting range,
1640 but only if we know that this resulting range will also be constant
1641 or single-symbolic. */
1642 if (vr0.kind () == VR_RANGE && vr1.kind () == VR_RANGE
1643 && (TREE_CODE (min_op0) == INTEGER_CST
1644 || (sym_min_op0
1645 = get_single_symbol (min_op0, &neg_min_op0, &min_op0)))
1646 && (TREE_CODE (min_op1) == INTEGER_CST
1647 || (sym_min_op1
1648 = get_single_symbol (min_op1, &neg_min_op1, &min_op1)))
1649 && (!(sym_min_op0 && sym_min_op1)
1650 || (sym_min_op0 == sym_min_op1
1651 && neg_min_op0 == (minus_p ? neg_min_op1 : !neg_min_op1)))
1652 && (TREE_CODE (max_op0) == INTEGER_CST
1653 || (sym_max_op0
1654 = get_single_symbol (max_op0, &neg_max_op0, &max_op0)))
1655 && (TREE_CODE (max_op1) == INTEGER_CST
1656 || (sym_max_op1
1657 = get_single_symbol (max_op1, &neg_max_op1, &max_op1)))
1658 && (!(sym_max_op0 && sym_max_op1)
1659 || (sym_max_op0 == sym_max_op1
1660 && neg_max_op0 == (minus_p ? neg_max_op1 : !neg_max_op1))))
1661 {
1662 wide_int wmin, wmax;
1663 wi::overflow_type min_ovf = wi::OVF_NONE;
1664 wi::overflow_type max_ovf = wi::OVF_NONE;
1665
1666 /* Build the bounds. */
1667 combine_bound (code, wmin, min_ovf, expr_type, min_op0, min_op1);
1668 combine_bound (code, wmax, max_ovf, expr_type, max_op0, max_op1);
1669
1670 /* If we have overflow for the constant part and the resulting
1671 range will be symbolic, drop to VR_VARYING. */
1672 if (((bool)min_ovf && sym_min_op0 != sym_min_op1)
1673 || ((bool)max_ovf && sym_max_op0 != sym_max_op1))
1674 {
1675 set_value_range_to_varying (vr);
1676 return;
1677 }
1678
1679 /* Adjust the range for possible overflow. */
1680 min = NULL_TREE;
1681 max = NULL_TREE;
1682 set_value_range_with_overflow (type, min, max, expr_type,
1683 wmin, wmax, min_ovf, max_ovf);
1684 if (type == VR_VARYING)
1685 {
1686 set_value_range_to_varying (vr);
1687 return;
1688 }
1689
1690 /* Build the symbolic bounds if needed. */
1691 adjust_symbolic_bound (min, code, expr_type,
1692 sym_min_op0, sym_min_op1,
1693 neg_min_op0, neg_min_op1);
1694 adjust_symbolic_bound (max, code, expr_type,
1695 sym_max_op0, sym_max_op1,
1696 neg_max_op0, neg_max_op1);
1697 }
1698 else
1699 {
1700 /* For other cases, for example if we have a PLUS_EXPR with two
1701 VR_ANTI_RANGEs, drop to VR_VARYING. It would take more effort
1702 to compute a precise range for such a case.
1703 ??? General even mixed range kind operations can be expressed
1704 by for example transforming ~[3, 5] + [1, 2] to range-only
1705 operations and a union primitive:
1706 [-INF, 2] + [1, 2] U [5, +INF] + [1, 2]
1707 [-INF+1, 4] U [6, +INF(OVF)]
1708 though usually the union is not exactly representable with
1709 a single range or anti-range as the above is
1710 [-INF+1, +INF(OVF)] intersected with ~[5, 5]
1711 but one could use a scheme similar to equivalences for this. */
1712 set_value_range_to_varying (vr);
1713 return;
1714 }
1715 }
1716 else if (code == MIN_EXPR
1717 || code == MAX_EXPR)
1718 {
1719 wide_int wmin, wmax;
1720 wide_int vr0_min, vr0_max;
1721 wide_int vr1_min, vr1_max;
1722 extract_range_into_wide_ints (&vr0, sign, prec, vr0_min, vr0_max);
1723 extract_range_into_wide_ints (&vr1, sign, prec, vr1_min, vr1_max);
1724 if (wide_int_range_min_max (wmin, wmax, code, sign, prec,
1725 vr0_min, vr0_max, vr1_min, vr1_max))
1726 vr->update (VR_RANGE, wide_int_to_tree (expr_type, wmin),
1727 wide_int_to_tree (expr_type, wmax));
1728 else
1729 set_value_range_to_varying (vr);
1730 return;
1731 }
1732 else if (code == MULT_EXPR)
1733 {
1734 if (!range_int_cst_p (&vr0)
1735 || !range_int_cst_p (&vr1))
1736 {
1737 set_value_range_to_varying (vr);
1738 return;
1739 }
1740 extract_range_from_multiplicative_op (vr, code, &vr0, &vr1);
1741 return;
1742 }
1743 else if (code == RSHIFT_EXPR
1744 || code == LSHIFT_EXPR)
1745 {
1746 if (range_int_cst_p (&vr1)
1747 && !wide_int_range_shift_undefined_p
1748 (TYPE_SIGN (TREE_TYPE (vr1.min ())),
1749 prec,
1750 wi::to_wide (vr1.min ()),
1751 wi::to_wide (vr1.max ())))
1752 {
1753 if (code == RSHIFT_EXPR)
1754 {
1755 /* Even if vr0 is VARYING or otherwise not usable, we can derive
1756 useful ranges just from the shift count. E.g.
1757 x >> 63 for signed 64-bit x is always [-1, 0]. */
1758 if (vr0.kind () != VR_RANGE || vr0.symbolic_p ())
1759 vr0.update (VR_RANGE,
1760 vrp_val_min (expr_type),
1761 vrp_val_max (expr_type));
1762 extract_range_from_multiplicative_op (vr, code, &vr0, &vr1);
1763 return;
1764 }
1765 else if (code == LSHIFT_EXPR
1766 && range_int_cst_p (&vr0))
1767 {
1768 wide_int res_lb, res_ub;
1769 if (wide_int_range_lshift (res_lb, res_ub, sign, prec,
1770 wi::to_wide (vr0.min ()),
1771 wi::to_wide (vr0.max ()),
1772 wi::to_wide (vr1.min ()),
1773 wi::to_wide (vr1.max ()),
1774 TYPE_OVERFLOW_UNDEFINED (expr_type)))
1775 {
1776 min = wide_int_to_tree (expr_type, res_lb);
1777 max = wide_int_to_tree (expr_type, res_ub);
1778 vr->set_and_canonicalize (VR_RANGE, min, max, NULL);
1779 return;
1780 }
1781 }
1782 }
1783 set_value_range_to_varying (vr);
1784 return;
1785 }
1786 else if (code == TRUNC_DIV_EXPR
1787 || code == FLOOR_DIV_EXPR
1788 || code == CEIL_DIV_EXPR
1789 || code == EXACT_DIV_EXPR
1790 || code == ROUND_DIV_EXPR)
1791 {
1792 wide_int dividend_min, dividend_max, divisor_min, divisor_max;
1793 wide_int wmin, wmax, extra_min, extra_max;
1794 bool extra_range_p;
1795
1796 /* Special case explicit division by zero as undefined. */
1797 if (range_is_null (&vr1))
1798 {
1799 set_value_range_to_undefined (vr);
1800 return;
1801 }
1802
1803 /* First, normalize ranges into constants we can handle. Note
1804 that VR_ANTI_RANGE's of constants were already normalized
1805 before arriving here.
1806
1807 NOTE: As a future improvement, we may be able to do better
1808 with mixed symbolic (anti-)ranges like [0, A]. See note in
1809 ranges_from_anti_range. */
1810 extract_range_into_wide_ints (&vr0, sign, prec,
1811 dividend_min, dividend_max);
1812 extract_range_into_wide_ints (&vr1, sign, prec,
1813 divisor_min, divisor_max);
1814 if (!wide_int_range_div (wmin, wmax, code, sign, prec,
1815 dividend_min, dividend_max,
1816 divisor_min, divisor_max,
1817 TYPE_OVERFLOW_UNDEFINED (expr_type),
1818 extra_range_p, extra_min, extra_max))
1819 {
1820 set_value_range_to_varying (vr);
1821 return;
1822 }
1823 set_value_range (vr, VR_RANGE,
1824 wide_int_to_tree (expr_type, wmin),
1825 wide_int_to_tree (expr_type, wmax), NULL);
1826 if (extra_range_p)
1827 {
1828 value_range extra_range;
1829 set_value_range (&extra_range, VR_RANGE,
1830 wide_int_to_tree (expr_type, extra_min),
1831 wide_int_to_tree (expr_type, extra_max), NULL);
1832 vr->union_ (&extra_range);
1833 }
1834 return;
1835 }
1836 else if (code == TRUNC_MOD_EXPR)
1837 {
1838 if (range_is_null (&vr1))
1839 {
1840 set_value_range_to_undefined (vr);
1841 return;
1842 }
1843 wide_int wmin, wmax, tmp;
1844 wide_int vr0_min, vr0_max, vr1_min, vr1_max;
1845 extract_range_into_wide_ints (&vr0, sign, prec, vr0_min, vr0_max);
1846 extract_range_into_wide_ints (&vr1, sign, prec, vr1_min, vr1_max);
1847 wide_int_range_trunc_mod (wmin, wmax, sign, prec,
1848 vr0_min, vr0_max, vr1_min, vr1_max);
1849 min = wide_int_to_tree (expr_type, wmin);
1850 max = wide_int_to_tree (expr_type, wmax);
1851 set_value_range (vr, VR_RANGE, min, max, NULL);
1852 return;
1853 }
1854 else if (code == BIT_AND_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR)
1855 {
1856 wide_int may_be_nonzero0, may_be_nonzero1;
1857 wide_int must_be_nonzero0, must_be_nonzero1;
1858 wide_int wmin, wmax;
1859 wide_int vr0_min, vr0_max, vr1_min, vr1_max;
1860 vrp_set_zero_nonzero_bits (expr_type, &vr0,
1861 &may_be_nonzero0, &must_be_nonzero0);
1862 vrp_set_zero_nonzero_bits (expr_type, &vr1,
1863 &may_be_nonzero1, &must_be_nonzero1);
1864 extract_range_into_wide_ints (&vr0, sign, prec, vr0_min, vr0_max);
1865 extract_range_into_wide_ints (&vr1, sign, prec, vr1_min, vr1_max);
1866 if (code == BIT_AND_EXPR)
1867 {
1868 if (wide_int_range_bit_and (wmin, wmax, sign, prec,
1869 vr0_min, vr0_max,
1870 vr1_min, vr1_max,
1871 must_be_nonzero0,
1872 may_be_nonzero0,
1873 must_be_nonzero1,
1874 may_be_nonzero1))
1875 {
1876 min = wide_int_to_tree (expr_type, wmin);
1877 max = wide_int_to_tree (expr_type, wmax);
1878 set_value_range (vr, VR_RANGE, min, max, NULL);
1879 }
1880 else
1881 set_value_range_to_varying (vr);
1882 return;
1883 }
1884 else if (code == BIT_IOR_EXPR)
1885 {
1886 if (wide_int_range_bit_ior (wmin, wmax, sign,
1887 vr0_min, vr0_max,
1888 vr1_min, vr1_max,
1889 must_be_nonzero0,
1890 may_be_nonzero0,
1891 must_be_nonzero1,
1892 may_be_nonzero1))
1893 {
1894 min = wide_int_to_tree (expr_type, wmin);
1895 max = wide_int_to_tree (expr_type, wmax);
1896 set_value_range (vr, VR_RANGE, min, max, NULL);
1897 }
1898 else
1899 set_value_range_to_varying (vr);
1900 return;
1901 }
1902 else if (code == BIT_XOR_EXPR)
1903 {
1904 if (wide_int_range_bit_xor (wmin, wmax, sign, prec,
1905 must_be_nonzero0,
1906 may_be_nonzero0,
1907 must_be_nonzero1,
1908 may_be_nonzero1))
1909 {
1910 min = wide_int_to_tree (expr_type, wmin);
1911 max = wide_int_to_tree (expr_type, wmax);
1912 set_value_range (vr, VR_RANGE, min, max, NULL);
1913 }
1914 else
1915 set_value_range_to_varying (vr);
1916 return;
1917 }
1918 }
1919 else
1920 gcc_unreachable ();
1921
1922 /* If either MIN or MAX overflowed, then set the resulting range to
1923 VARYING. */
1924 if (min == NULL_TREE
1925 || TREE_OVERFLOW_P (min)
1926 || max == NULL_TREE
1927 || TREE_OVERFLOW_P (max))
1928 {
1929 set_value_range_to_varying (vr);
1930 return;
1931 }
1932
1933 /* We punt for [-INF, +INF].
1934 We learn nothing when we have INF on both sides.
1935 Note that we do accept [-INF, -INF] and [+INF, +INF]. */
1936 if (vrp_val_is_min (min) && vrp_val_is_max (max))
1937 {
1938 set_value_range_to_varying (vr);
1939 return;
1940 }
1941
1942 cmp = compare_values (min, max);
1943 if (cmp == -2 || cmp == 1)
1944 {
1945 /* If the new range has its limits swapped around (MIN > MAX),
1946 then the operation caused one of them to wrap around, mark
1947 the new range VARYING. */
1948 set_value_range_to_varying (vr);
1949 }
1950 else
1951 set_value_range (vr, type, min, max, NULL);
1952 }
1953
1954 /* Extract range information from a unary operation CODE based on
1955 the range of its operand *VR0 with type OP0_TYPE with resulting type TYPE.
1956 The resulting range is stored in *VR. */
1957
1958 void
1959 extract_range_from_unary_expr (value_range *vr,
1960 enum tree_code code, tree type,
1961 const value_range *vr0_, tree op0_type)
1962 {
1963 signop sign = TYPE_SIGN (type);
1964 unsigned int prec = TYPE_PRECISION (type);
1965 value_range vr0 = *vr0_;
1966 value_range vrtem0, vrtem1;
1967
1968 /* VRP only operates on integral and pointer types. */
1969 if (!(INTEGRAL_TYPE_P (op0_type)
1970 || POINTER_TYPE_P (op0_type))
1971 || !(INTEGRAL_TYPE_P (type)
1972 || POINTER_TYPE_P (type)))
1973 {
1974 set_value_range_to_varying (vr);
1975 return;
1976 }
1977
1978 /* If VR0 is UNDEFINED, so is the result. */
1979 if (vr0.undefined_p ())
1980 {
1981 set_value_range_to_undefined (vr);
1982 return;
1983 }
1984
1985 /* Handle operations that we express in terms of others. */
1986 if (code == PAREN_EXPR || code == OBJ_TYPE_REF)
1987 {
1988 /* PAREN_EXPR and OBJ_TYPE_REF are simple copies. */
1989 vr->deep_copy (&vr0);
1990 return;
1991 }
1992 else if (code == NEGATE_EXPR)
1993 {
1994 /* -X is simply 0 - X, so re-use existing code that also handles
1995 anti-ranges fine. */
1996 value_range zero;
1997 set_value_range_to_value (&zero, build_int_cst (type, 0), NULL);
1998 extract_range_from_binary_expr_1 (vr, MINUS_EXPR, type, &zero, &vr0);
1999 return;
2000 }
2001 else if (code == BIT_NOT_EXPR)
2002 {
2003 /* ~X is simply -1 - X, so re-use existing code that also handles
2004 anti-ranges fine. */
2005 value_range minusone;
2006 set_value_range_to_value (&minusone, build_int_cst (type, -1), NULL);
2007 extract_range_from_binary_expr_1 (vr, MINUS_EXPR,
2008 type, &minusone, &vr0);
2009 return;
2010 }
2011
2012 /* Now canonicalize anti-ranges to ranges when they are not symbolic
2013 and express op ~[] as (op []') U (op []''). */
2014 if (vr0.kind () == VR_ANTI_RANGE
2015 && ranges_from_anti_range (&vr0, &vrtem0, &vrtem1))
2016 {
2017 extract_range_from_unary_expr (vr, code, type, &vrtem0, op0_type);
2018 if (!vrtem1.undefined_p ())
2019 {
2020 value_range vrres;
2021 extract_range_from_unary_expr (&vrres, code, type,
2022 &vrtem1, op0_type);
2023 vr->union_ (&vrres);
2024 }
2025 return;
2026 }
2027
2028 if (CONVERT_EXPR_CODE_P (code))
2029 {
2030 tree inner_type = op0_type;
2031 tree outer_type = type;
2032
2033 /* If the expression involves a pointer, we are only interested in
2034 determining if it evaluates to NULL [0, 0] or non-NULL (~[0, 0]).
2035
2036 This may lose precision when converting (char *)~[0,2] to
2037 int, because we'll forget that the pointer can also not be 1
2038 or 2. In practice we don't care, as this is some idiot
2039 storing a magic constant to a pointer. */
2040 if (POINTER_TYPE_P (type) || POINTER_TYPE_P (op0_type))
2041 {
2042 if (!range_includes_zero_p (&vr0))
2043 set_value_range_to_nonnull (vr, type);
2044 else if (range_is_null (&vr0))
2045 set_value_range_to_null (vr, type);
2046 else
2047 set_value_range_to_varying (vr);
2048 return;
2049 }
2050
2051 /* The POINTER_TYPE_P code above will have dealt with all
2052 pointer anti-ranges. Any remaining anti-ranges at this point
2053 will be integer conversions from SSA names that will be
2054 normalized into VARYING. For instance: ~[x_55, x_55]. */
2055 gcc_assert (vr0.kind () != VR_ANTI_RANGE
2056 || TREE_CODE (vr0.min ()) != INTEGER_CST);
2057
2058 /* NOTES: Previously we were returning VARYING for all symbolics, but
2059 we can do better by treating them as [-MIN, +MAX]. For
2060 example, converting [SYM, SYM] from INT to LONG UNSIGNED,
2061 we can return: ~[0x8000000, 0xffffffff7fffffff].
2062
2063 We were also failing to convert ~[0,0] from char* to unsigned,
2064 instead choosing to return VR_VARYING. Now we return ~[0,0]. */
2065 wide_int vr0_min, vr0_max, wmin, wmax;
2066 signop inner_sign = TYPE_SIGN (inner_type);
2067 signop outer_sign = TYPE_SIGN (outer_type);
2068 unsigned inner_prec = TYPE_PRECISION (inner_type);
2069 unsigned outer_prec = TYPE_PRECISION (outer_type);
2070 extract_range_into_wide_ints (&vr0, inner_sign, inner_prec,
2071 vr0_min, vr0_max);
2072 if (wide_int_range_convert (wmin, wmax,
2073 inner_sign, inner_prec,
2074 outer_sign, outer_prec,
2075 vr0_min, vr0_max))
2076 {
2077 tree min = wide_int_to_tree (outer_type, wmin);
2078 tree max = wide_int_to_tree (outer_type, wmax);
2079 vr->set_and_canonicalize (VR_RANGE, min, max, NULL);
2080 }
2081 else
2082 set_value_range_to_varying (vr);
2083 return;
2084 }
2085 else if (code == ABS_EXPR)
2086 {
2087 wide_int wmin, wmax;
2088 wide_int vr0_min, vr0_max;
2089 extract_range_into_wide_ints (&vr0, sign, prec, vr0_min, vr0_max);
2090 if (wide_int_range_abs (wmin, wmax, sign, prec, vr0_min, vr0_max,
2091 TYPE_OVERFLOW_UNDEFINED (type)))
2092 set_value_range (vr, VR_RANGE,
2093 wide_int_to_tree (type, wmin),
2094 wide_int_to_tree (type, wmax), NULL);
2095 else
2096 set_value_range_to_varying (vr);
2097 return;
2098 }
2099
2100 /* For unhandled operations fall back to varying. */
2101 set_value_range_to_varying (vr);
2102 return;
2103 }
2104
2105 /* Debugging dumps. */
2106
2107 void dump_value_range (FILE *, const value_range *);
2108 void debug_value_range (const value_range *);
2109 void dump_all_value_ranges (FILE *);
2110 void dump_vr_equiv (FILE *, bitmap);
2111 void debug_vr_equiv (bitmap);
2112
2113 void
2114 dump_value_range (FILE *file, const value_range *vr)
2115 {
2116 if (!vr)
2117 fprintf (file, "[]");
2118 else
2119 vr->dump (file);
2120 }
2121
2122 /* Dump value range VR to stderr. */
2123
2124 DEBUG_FUNCTION void
2125 debug_value_range (const value_range *vr)
2126 {
2127 vr->dump ();
2128 }
2129
2130
2131 /* Given a COND_EXPR COND of the form 'V OP W', and an SSA name V,
2132 create a new SSA name N and return the assertion assignment
2133 'N = ASSERT_EXPR <V, V OP W>'. */
2134
2135 static gimple *
2136 build_assert_expr_for (tree cond, tree v)
2137 {
2138 tree a;
2139 gassign *assertion;
2140
2141 gcc_assert (TREE_CODE (v) == SSA_NAME
2142 && COMPARISON_CLASS_P (cond));
2143
2144 a = build2 (ASSERT_EXPR, TREE_TYPE (v), v, cond);
2145 assertion = gimple_build_assign (NULL_TREE, a);
2146
2147 /* The new ASSERT_EXPR, creates a new SSA name that replaces the
2148 operand of the ASSERT_EXPR. Create it so the new name and the old one
2149 are registered in the replacement table so that we can fix the SSA web
2150 after adding all the ASSERT_EXPRs. */
2151 tree new_def = create_new_def_for (v, assertion, NULL);
2152 /* Make sure we preserve abnormalness throughout an ASSERT_EXPR chain
2153 given we have to be able to fully propagate those out to re-create
2154 valid SSA when removing the asserts. */
2155 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (v))
2156 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_def) = 1;
2157
2158 return assertion;
2159 }
2160
2161
2162 /* Return false if EXPR is a predicate expression involving floating
2163 point values. */
2164
2165 static inline bool
2166 fp_predicate (gimple *stmt)
2167 {
2168 GIMPLE_CHECK (stmt, GIMPLE_COND);
2169
2170 return FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (stmt)));
2171 }
2172
2173 /* If the range of values taken by OP can be inferred after STMT executes,
2174 return the comparison code (COMP_CODE_P) and value (VAL_P) that
2175 describes the inferred range. Return true if a range could be
2176 inferred. */
2177
2178 bool
2179 infer_value_range (gimple *stmt, tree op, tree_code *comp_code_p, tree *val_p)
2180 {
2181 *val_p = NULL_TREE;
2182 *comp_code_p = ERROR_MARK;
2183
2184 /* Do not attempt to infer anything in names that flow through
2185 abnormal edges. */
2186 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
2187 return false;
2188
2189 /* If STMT is the last statement of a basic block with no normal
2190 successors, there is no point inferring anything about any of its
2191 operands. We would not be able to find a proper insertion point
2192 for the assertion, anyway. */
2193 if (stmt_ends_bb_p (stmt))
2194 {
2195 edge_iterator ei;
2196 edge e;
2197
2198 FOR_EACH_EDGE (e, ei, gimple_bb (stmt)->succs)
2199 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
2200 break;
2201 if (e == NULL)
2202 return false;
2203 }
2204
2205 if (infer_nonnull_range (stmt, op))
2206 {
2207 *val_p = build_int_cst (TREE_TYPE (op), 0);
2208 *comp_code_p = NE_EXPR;
2209 return true;
2210 }
2211
2212 return false;
2213 }
2214
2215
2216 void dump_asserts_for (FILE *, tree);
2217 void debug_asserts_for (tree);
2218 void dump_all_asserts (FILE *);
2219 void debug_all_asserts (void);
2220
2221 /* Dump all the registered assertions for NAME to FILE. */
2222
2223 void
2224 dump_asserts_for (FILE *file, tree name)
2225 {
2226 assert_locus *loc;
2227
2228 fprintf (file, "Assertions to be inserted for ");
2229 print_generic_expr (file, name);
2230 fprintf (file, "\n");
2231
2232 loc = asserts_for[SSA_NAME_VERSION (name)];
2233 while (loc)
2234 {
2235 fprintf (file, "\t");
2236 print_gimple_stmt (file, gsi_stmt (loc->si), 0);
2237 fprintf (file, "\n\tBB #%d", loc->bb->index);
2238 if (loc->e)
2239 {
2240 fprintf (file, "\n\tEDGE %d->%d", loc->e->src->index,
2241 loc->e->dest->index);
2242 dump_edge_info (file, loc->e, dump_flags, 0);
2243 }
2244 fprintf (file, "\n\tPREDICATE: ");
2245 print_generic_expr (file, loc->expr);
2246 fprintf (file, " %s ", get_tree_code_name (loc->comp_code));
2247 print_generic_expr (file, loc->val);
2248 fprintf (file, "\n\n");
2249 loc = loc->next;
2250 }
2251
2252 fprintf (file, "\n");
2253 }
2254
2255
2256 /* Dump all the registered assertions for NAME to stderr. */
2257
2258 DEBUG_FUNCTION void
2259 debug_asserts_for (tree name)
2260 {
2261 dump_asserts_for (stderr, name);
2262 }
2263
2264
2265 /* Dump all the registered assertions for all the names to FILE. */
2266
2267 void
2268 dump_all_asserts (FILE *file)
2269 {
2270 unsigned i;
2271 bitmap_iterator bi;
2272
2273 fprintf (file, "\nASSERT_EXPRs to be inserted\n\n");
2274 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
2275 dump_asserts_for (file, ssa_name (i));
2276 fprintf (file, "\n");
2277 }
2278
2279
2280 /* Dump all the registered assertions for all the names to stderr. */
2281
2282 DEBUG_FUNCTION void
2283 debug_all_asserts (void)
2284 {
2285 dump_all_asserts (stderr);
2286 }
2287
2288 /* Push the assert info for NAME, EXPR, COMP_CODE and VAL to ASSERTS. */
2289
2290 static void
2291 add_assert_info (vec<assert_info> &asserts,
2292 tree name, tree expr, enum tree_code comp_code, tree val)
2293 {
2294 assert_info info;
2295 info.comp_code = comp_code;
2296 info.name = name;
2297 if (TREE_OVERFLOW_P (val))
2298 val = drop_tree_overflow (val);
2299 info.val = val;
2300 info.expr = expr;
2301 asserts.safe_push (info);
2302 }
2303
2304 /* If NAME doesn't have an ASSERT_EXPR registered for asserting
2305 'EXPR COMP_CODE VAL' at a location that dominates block BB or
2306 E->DEST, then register this location as a possible insertion point
2307 for ASSERT_EXPR <NAME, EXPR COMP_CODE VAL>.
2308
2309 BB, E and SI provide the exact insertion point for the new
2310 ASSERT_EXPR. If BB is NULL, then the ASSERT_EXPR is to be inserted
2311 on edge E. Otherwise, if E is NULL, the ASSERT_EXPR is inserted on
2312 BB. If SI points to a COND_EXPR or a SWITCH_EXPR statement, then E
2313 must not be NULL. */
2314
2315 static void
2316 register_new_assert_for (tree name, tree expr,
2317 enum tree_code comp_code,
2318 tree val,
2319 basic_block bb,
2320 edge e,
2321 gimple_stmt_iterator si)
2322 {
2323 assert_locus *n, *loc, *last_loc;
2324 basic_block dest_bb;
2325
2326 gcc_checking_assert (bb == NULL || e == NULL);
2327
2328 if (e == NULL)
2329 gcc_checking_assert (gimple_code (gsi_stmt (si)) != GIMPLE_COND
2330 && gimple_code (gsi_stmt (si)) != GIMPLE_SWITCH);
2331
2332 /* Never build an assert comparing against an integer constant with
2333 TREE_OVERFLOW set. This confuses our undefined overflow warning
2334 machinery. */
2335 if (TREE_OVERFLOW_P (val))
2336 val = drop_tree_overflow (val);
2337
2338 /* The new assertion A will be inserted at BB or E. We need to
2339 determine if the new location is dominated by a previously
2340 registered location for A. If we are doing an edge insertion,
2341 assume that A will be inserted at E->DEST. Note that this is not
2342 necessarily true.
2343
2344 If E is a critical edge, it will be split. But even if E is
2345 split, the new block will dominate the same set of blocks that
2346 E->DEST dominates.
2347
2348 The reverse, however, is not true, blocks dominated by E->DEST
2349 will not be dominated by the new block created to split E. So,
2350 if the insertion location is on a critical edge, we will not use
2351 the new location to move another assertion previously registered
2352 at a block dominated by E->DEST. */
2353 dest_bb = (bb) ? bb : e->dest;
2354
2355 /* If NAME already has an ASSERT_EXPR registered for COMP_CODE and
2356 VAL at a block dominating DEST_BB, then we don't need to insert a new
2357 one. Similarly, if the same assertion already exists at a block
2358 dominated by DEST_BB and the new location is not on a critical
2359 edge, then update the existing location for the assertion (i.e.,
2360 move the assertion up in the dominance tree).
2361
2362 Note, this is implemented as a simple linked list because there
2363 should not be more than a handful of assertions registered per
2364 name. If this becomes a performance problem, a table hashed by
2365 COMP_CODE and VAL could be implemented. */
2366 loc = asserts_for[SSA_NAME_VERSION (name)];
2367 last_loc = loc;
2368 while (loc)
2369 {
2370 if (loc->comp_code == comp_code
2371 && (loc->val == val
2372 || operand_equal_p (loc->val, val, 0))
2373 && (loc->expr == expr
2374 || operand_equal_p (loc->expr, expr, 0)))
2375 {
2376 /* If E is not a critical edge and DEST_BB
2377 dominates the existing location for the assertion, move
2378 the assertion up in the dominance tree by updating its
2379 location information. */
2380 if ((e == NULL || !EDGE_CRITICAL_P (e))
2381 && dominated_by_p (CDI_DOMINATORS, loc->bb, dest_bb))
2382 {
2383 loc->bb = dest_bb;
2384 loc->e = e;
2385 loc->si = si;
2386 return;
2387 }
2388 }
2389
2390 /* Update the last node of the list and move to the next one. */
2391 last_loc = loc;
2392 loc = loc->next;
2393 }
2394
2395 /* If we didn't find an assertion already registered for
2396 NAME COMP_CODE VAL, add a new one at the end of the list of
2397 assertions associated with NAME. */
2398 n = XNEW (struct assert_locus);
2399 n->bb = dest_bb;
2400 n->e = e;
2401 n->si = si;
2402 n->comp_code = comp_code;
2403 n->val = val;
2404 n->expr = expr;
2405 n->next = NULL;
2406
2407 if (last_loc)
2408 last_loc->next = n;
2409 else
2410 asserts_for[SSA_NAME_VERSION (name)] = n;
2411
2412 bitmap_set_bit (need_assert_for, SSA_NAME_VERSION (name));
2413 }
2414
2415 /* (COND_OP0 COND_CODE COND_OP1) is a predicate which uses NAME.
2416 Extract a suitable test code and value and store them into *CODE_P and
2417 *VAL_P so the predicate is normalized to NAME *CODE_P *VAL_P.
2418
2419 If no extraction was possible, return FALSE, otherwise return TRUE.
2420
2421 If INVERT is true, then we invert the result stored into *CODE_P. */
2422
2423 static bool
2424 extract_code_and_val_from_cond_with_ops (tree name, enum tree_code cond_code,
2425 tree cond_op0, tree cond_op1,
2426 bool invert, enum tree_code *code_p,
2427 tree *val_p)
2428 {
2429 enum tree_code comp_code;
2430 tree val;
2431
2432 /* Otherwise, we have a comparison of the form NAME COMP VAL
2433 or VAL COMP NAME. */
2434 if (name == cond_op1)
2435 {
2436 /* If the predicate is of the form VAL COMP NAME, flip
2437 COMP around because we need to register NAME as the
2438 first operand in the predicate. */
2439 comp_code = swap_tree_comparison (cond_code);
2440 val = cond_op0;
2441 }
2442 else if (name == cond_op0)
2443 {
2444 /* The comparison is of the form NAME COMP VAL, so the
2445 comparison code remains unchanged. */
2446 comp_code = cond_code;
2447 val = cond_op1;
2448 }
2449 else
2450 gcc_unreachable ();
2451
2452 /* Invert the comparison code as necessary. */
2453 if (invert)
2454 comp_code = invert_tree_comparison (comp_code, 0);
2455
2456 /* VRP only handles integral and pointer types. */
2457 if (! INTEGRAL_TYPE_P (TREE_TYPE (val))
2458 && ! POINTER_TYPE_P (TREE_TYPE (val)))
2459 return false;
2460
2461 /* Do not register always-false predicates.
2462 FIXME: this works around a limitation in fold() when dealing with
2463 enumerations. Given 'enum { N1, N2 } x;', fold will not
2464 fold 'if (x > N2)' to 'if (0)'. */
2465 if ((comp_code == GT_EXPR || comp_code == LT_EXPR)
2466 && INTEGRAL_TYPE_P (TREE_TYPE (val)))
2467 {
2468 tree min = TYPE_MIN_VALUE (TREE_TYPE (val));
2469 tree max = TYPE_MAX_VALUE (TREE_TYPE (val));
2470
2471 if (comp_code == GT_EXPR
2472 && (!max
2473 || compare_values (val, max) == 0))
2474 return false;
2475
2476 if (comp_code == LT_EXPR
2477 && (!min
2478 || compare_values (val, min) == 0))
2479 return false;
2480 }
2481 *code_p = comp_code;
2482 *val_p = val;
2483 return true;
2484 }
2485
2486 /* Find out smallest RES where RES > VAL && (RES & MASK) == RES, if any
2487 (otherwise return VAL). VAL and MASK must be zero-extended for
2488 precision PREC. If SGNBIT is non-zero, first xor VAL with SGNBIT
2489 (to transform signed values into unsigned) and at the end xor
2490 SGNBIT back. */
2491
2492 static wide_int
2493 masked_increment (const wide_int &val_in, const wide_int &mask,
2494 const wide_int &sgnbit, unsigned int prec)
2495 {
2496 wide_int bit = wi::one (prec), res;
2497 unsigned int i;
2498
2499 wide_int val = val_in ^ sgnbit;
2500 for (i = 0; i < prec; i++, bit += bit)
2501 {
2502 res = mask;
2503 if ((res & bit) == 0)
2504 continue;
2505 res = bit - 1;
2506 res = wi::bit_and_not (val + bit, res);
2507 res &= mask;
2508 if (wi::gtu_p (res, val))
2509 return res ^ sgnbit;
2510 }
2511 return val ^ sgnbit;
2512 }
2513
2514 /* Helper for overflow_comparison_p
2515
2516 OP0 CODE OP1 is a comparison. Examine the comparison and potentially
2517 OP1's defining statement to see if it ultimately has the form
2518 OP0 CODE (OP0 PLUS INTEGER_CST)
2519
2520 If so, return TRUE indicating this is an overflow test and store into
2521 *NEW_CST an updated constant that can be used in a narrowed range test.
2522
2523 REVERSED indicates if the comparison was originally:
2524
2525 OP1 CODE' OP0.
2526
2527 This affects how we build the updated constant. */
2528
2529 static bool
2530 overflow_comparison_p_1 (enum tree_code code, tree op0, tree op1,
2531 bool follow_assert_exprs, bool reversed, tree *new_cst)
2532 {
2533 /* See if this is a relational operation between two SSA_NAMES with
2534 unsigned, overflow wrapping values. If so, check it more deeply. */
2535 if ((code == LT_EXPR || code == LE_EXPR
2536 || code == GE_EXPR || code == GT_EXPR)
2537 && TREE_CODE (op0) == SSA_NAME
2538 && TREE_CODE (op1) == SSA_NAME
2539 && INTEGRAL_TYPE_P (TREE_TYPE (op0))
2540 && TYPE_UNSIGNED (TREE_TYPE (op0))
2541 && TYPE_OVERFLOW_WRAPS (TREE_TYPE (op0)))
2542 {
2543 gimple *op1_def = SSA_NAME_DEF_STMT (op1);
2544
2545 /* If requested, follow any ASSERT_EXPRs backwards for OP1. */
2546 if (follow_assert_exprs)
2547 {
2548 while (gimple_assign_single_p (op1_def)
2549 && TREE_CODE (gimple_assign_rhs1 (op1_def)) == ASSERT_EXPR)
2550 {
2551 op1 = TREE_OPERAND (gimple_assign_rhs1 (op1_def), 0);
2552 if (TREE_CODE (op1) != SSA_NAME)
2553 break;
2554 op1_def = SSA_NAME_DEF_STMT (op1);
2555 }
2556 }
2557
2558 /* Now look at the defining statement of OP1 to see if it adds
2559 or subtracts a nonzero constant from another operand. */
2560 if (op1_def
2561 && is_gimple_assign (op1_def)
2562 && gimple_assign_rhs_code (op1_def) == PLUS_EXPR
2563 && TREE_CODE (gimple_assign_rhs2 (op1_def)) == INTEGER_CST
2564 && !integer_zerop (gimple_assign_rhs2 (op1_def)))
2565 {
2566 tree target = gimple_assign_rhs1 (op1_def);
2567
2568 /* If requested, follow ASSERT_EXPRs backwards for op0 looking
2569 for one where TARGET appears on the RHS. */
2570 if (follow_assert_exprs)
2571 {
2572 /* Now see if that "other operand" is op0, following the chain
2573 of ASSERT_EXPRs if necessary. */
2574 gimple *op0_def = SSA_NAME_DEF_STMT (op0);
2575 while (op0 != target
2576 && gimple_assign_single_p (op0_def)
2577 && TREE_CODE (gimple_assign_rhs1 (op0_def)) == ASSERT_EXPR)
2578 {
2579 op0 = TREE_OPERAND (gimple_assign_rhs1 (op0_def), 0);
2580 if (TREE_CODE (op0) != SSA_NAME)
2581 break;
2582 op0_def = SSA_NAME_DEF_STMT (op0);
2583 }
2584 }
2585
2586 /* If we did not find our target SSA_NAME, then this is not
2587 an overflow test. */
2588 if (op0 != target)
2589 return false;
2590
2591 tree type = TREE_TYPE (op0);
2592 wide_int max = wi::max_value (TYPE_PRECISION (type), UNSIGNED);
2593 tree inc = gimple_assign_rhs2 (op1_def);
2594 if (reversed)
2595 *new_cst = wide_int_to_tree (type, max + wi::to_wide (inc));
2596 else
2597 *new_cst = wide_int_to_tree (type, max - wi::to_wide (inc));
2598 return true;
2599 }
2600 }
2601 return false;
2602 }
2603
2604 /* OP0 CODE OP1 is a comparison. Examine the comparison and potentially
2605 OP1's defining statement to see if it ultimately has the form
2606 OP0 CODE (OP0 PLUS INTEGER_CST)
2607
2608 If so, return TRUE indicating this is an overflow test and store into
2609 *NEW_CST an updated constant that can be used in a narrowed range test.
2610
2611 These statements are left as-is in the IL to facilitate discovery of
2612 {ADD,SUB}_OVERFLOW sequences later in the optimizer pipeline. But
2613 the alternate range representation is often useful within VRP. */
2614
2615 bool
2616 overflow_comparison_p (tree_code code, tree name, tree val,
2617 bool use_equiv_p, tree *new_cst)
2618 {
2619 if (overflow_comparison_p_1 (code, name, val, use_equiv_p, false, new_cst))
2620 return true;
2621 return overflow_comparison_p_1 (swap_tree_comparison (code), val, name,
2622 use_equiv_p, true, new_cst);
2623 }
2624
2625
2626 /* Try to register an edge assertion for SSA name NAME on edge E for
2627 the condition COND contributing to the conditional jump pointed to by BSI.
2628 Invert the condition COND if INVERT is true. */
2629
2630 static void
2631 register_edge_assert_for_2 (tree name, edge e,
2632 enum tree_code cond_code,
2633 tree cond_op0, tree cond_op1, bool invert,
2634 vec<assert_info> &asserts)
2635 {
2636 tree val;
2637 enum tree_code comp_code;
2638
2639 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
2640 cond_op0,
2641 cond_op1,
2642 invert, &comp_code, &val))
2643 return;
2644
2645 /* Queue the assert. */
2646 tree x;
2647 if (overflow_comparison_p (comp_code, name, val, false, &x))
2648 {
2649 enum tree_code new_code = ((comp_code == GT_EXPR || comp_code == GE_EXPR)
2650 ? GT_EXPR : LE_EXPR);
2651 add_assert_info (asserts, name, name, new_code, x);
2652 }
2653 add_assert_info (asserts, name, name, comp_code, val);
2654
2655 /* In the case of NAME <= CST and NAME being defined as
2656 NAME = (unsigned) NAME2 + CST2 we can assert NAME2 >= -CST2
2657 and NAME2 <= CST - CST2. We can do the same for NAME > CST.
2658 This catches range and anti-range tests. */
2659 if ((comp_code == LE_EXPR
2660 || comp_code == GT_EXPR)
2661 && TREE_CODE (val) == INTEGER_CST
2662 && TYPE_UNSIGNED (TREE_TYPE (val)))
2663 {
2664 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
2665 tree cst2 = NULL_TREE, name2 = NULL_TREE, name3 = NULL_TREE;
2666
2667 /* Extract CST2 from the (optional) addition. */
2668 if (is_gimple_assign (def_stmt)
2669 && gimple_assign_rhs_code (def_stmt) == PLUS_EXPR)
2670 {
2671 name2 = gimple_assign_rhs1 (def_stmt);
2672 cst2 = gimple_assign_rhs2 (def_stmt);
2673 if (TREE_CODE (name2) == SSA_NAME
2674 && TREE_CODE (cst2) == INTEGER_CST)
2675 def_stmt = SSA_NAME_DEF_STMT (name2);
2676 }
2677
2678 /* Extract NAME2 from the (optional) sign-changing cast. */
2679 if (gimple_assign_cast_p (def_stmt))
2680 {
2681 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt))
2682 && ! TYPE_UNSIGNED (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
2683 && (TYPE_PRECISION (gimple_expr_type (def_stmt))
2684 == TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))))
2685 name3 = gimple_assign_rhs1 (def_stmt);
2686 }
2687
2688 /* If name3 is used later, create an ASSERT_EXPR for it. */
2689 if (name3 != NULL_TREE
2690 && TREE_CODE (name3) == SSA_NAME
2691 && (cst2 == NULL_TREE
2692 || TREE_CODE (cst2) == INTEGER_CST)
2693 && INTEGRAL_TYPE_P (TREE_TYPE (name3)))
2694 {
2695 tree tmp;
2696
2697 /* Build an expression for the range test. */
2698 tmp = build1 (NOP_EXPR, TREE_TYPE (name), name3);
2699 if (cst2 != NULL_TREE)
2700 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
2701
2702 if (dump_file)
2703 {
2704 fprintf (dump_file, "Adding assert for ");
2705 print_generic_expr (dump_file, name3);
2706 fprintf (dump_file, " from ");
2707 print_generic_expr (dump_file, tmp);
2708 fprintf (dump_file, "\n");
2709 }
2710
2711 add_assert_info (asserts, name3, tmp, comp_code, val);
2712 }
2713
2714 /* If name2 is used later, create an ASSERT_EXPR for it. */
2715 if (name2 != NULL_TREE
2716 && TREE_CODE (name2) == SSA_NAME
2717 && TREE_CODE (cst2) == INTEGER_CST
2718 && INTEGRAL_TYPE_P (TREE_TYPE (name2)))
2719 {
2720 tree tmp;
2721
2722 /* Build an expression for the range test. */
2723 tmp = name2;
2724 if (TREE_TYPE (name) != TREE_TYPE (name2))
2725 tmp = build1 (NOP_EXPR, TREE_TYPE (name), tmp);
2726 if (cst2 != NULL_TREE)
2727 tmp = build2 (PLUS_EXPR, TREE_TYPE (name), tmp, cst2);
2728
2729 if (dump_file)
2730 {
2731 fprintf (dump_file, "Adding assert for ");
2732 print_generic_expr (dump_file, name2);
2733 fprintf (dump_file, " from ");
2734 print_generic_expr (dump_file, tmp);
2735 fprintf (dump_file, "\n");
2736 }
2737
2738 add_assert_info (asserts, name2, tmp, comp_code, val);
2739 }
2740 }
2741
2742 /* In the case of post-in/decrement tests like if (i++) ... and uses
2743 of the in/decremented value on the edge the extra name we want to
2744 assert for is not on the def chain of the name compared. Instead
2745 it is in the set of use stmts.
2746 Similar cases happen for conversions that were simplified through
2747 fold_{sign_changed,widened}_comparison. */
2748 if ((comp_code == NE_EXPR
2749 || comp_code == EQ_EXPR)
2750 && TREE_CODE (val) == INTEGER_CST)
2751 {
2752 imm_use_iterator ui;
2753 gimple *use_stmt;
2754 FOR_EACH_IMM_USE_STMT (use_stmt, ui, name)
2755 {
2756 if (!is_gimple_assign (use_stmt))
2757 continue;
2758
2759 /* Cut off to use-stmts that are dominating the predecessor. */
2760 if (!dominated_by_p (CDI_DOMINATORS, e->src, gimple_bb (use_stmt)))
2761 continue;
2762
2763 tree name2 = gimple_assign_lhs (use_stmt);
2764 if (TREE_CODE (name2) != SSA_NAME)
2765 continue;
2766
2767 enum tree_code code = gimple_assign_rhs_code (use_stmt);
2768 tree cst;
2769 if (code == PLUS_EXPR
2770 || code == MINUS_EXPR)
2771 {
2772 cst = gimple_assign_rhs2 (use_stmt);
2773 if (TREE_CODE (cst) != INTEGER_CST)
2774 continue;
2775 cst = int_const_binop (code, val, cst);
2776 }
2777 else if (CONVERT_EXPR_CODE_P (code))
2778 {
2779 /* For truncating conversions we cannot record
2780 an inequality. */
2781 if (comp_code == NE_EXPR
2782 && (TYPE_PRECISION (TREE_TYPE (name2))
2783 < TYPE_PRECISION (TREE_TYPE (name))))
2784 continue;
2785 cst = fold_convert (TREE_TYPE (name2), val);
2786 }
2787 else
2788 continue;
2789
2790 if (TREE_OVERFLOW_P (cst))
2791 cst = drop_tree_overflow (cst);
2792 add_assert_info (asserts, name2, name2, comp_code, cst);
2793 }
2794 }
2795
2796 if (TREE_CODE_CLASS (comp_code) == tcc_comparison
2797 && TREE_CODE (val) == INTEGER_CST)
2798 {
2799 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
2800 tree name2 = NULL_TREE, names[2], cst2 = NULL_TREE;
2801 tree val2 = NULL_TREE;
2802 unsigned int prec = TYPE_PRECISION (TREE_TYPE (val));
2803 wide_int mask = wi::zero (prec);
2804 unsigned int nprec = prec;
2805 enum tree_code rhs_code = ERROR_MARK;
2806
2807 if (is_gimple_assign (def_stmt))
2808 rhs_code = gimple_assign_rhs_code (def_stmt);
2809
2810 /* In the case of NAME != CST1 where NAME = A +- CST2 we can
2811 assert that A != CST1 -+ CST2. */
2812 if ((comp_code == EQ_EXPR || comp_code == NE_EXPR)
2813 && (rhs_code == PLUS_EXPR || rhs_code == MINUS_EXPR))
2814 {
2815 tree op0 = gimple_assign_rhs1 (def_stmt);
2816 tree op1 = gimple_assign_rhs2 (def_stmt);
2817 if (TREE_CODE (op0) == SSA_NAME
2818 && TREE_CODE (op1) == INTEGER_CST)
2819 {
2820 enum tree_code reverse_op = (rhs_code == PLUS_EXPR
2821 ? MINUS_EXPR : PLUS_EXPR);
2822 op1 = int_const_binop (reverse_op, val, op1);
2823 if (TREE_OVERFLOW (op1))
2824 op1 = drop_tree_overflow (op1);
2825 add_assert_info (asserts, op0, op0, comp_code, op1);
2826 }
2827 }
2828
2829 /* Add asserts for NAME cmp CST and NAME being defined
2830 as NAME = (int) NAME2. */
2831 if (!TYPE_UNSIGNED (TREE_TYPE (val))
2832 && (comp_code == LE_EXPR || comp_code == LT_EXPR
2833 || comp_code == GT_EXPR || comp_code == GE_EXPR)
2834 && gimple_assign_cast_p (def_stmt))
2835 {
2836 name2 = gimple_assign_rhs1 (def_stmt);
2837 if (CONVERT_EXPR_CODE_P (rhs_code)
2838 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
2839 && TYPE_UNSIGNED (TREE_TYPE (name2))
2840 && prec == TYPE_PRECISION (TREE_TYPE (name2))
2841 && (comp_code == LE_EXPR || comp_code == GT_EXPR
2842 || !tree_int_cst_equal (val,
2843 TYPE_MIN_VALUE (TREE_TYPE (val)))))
2844 {
2845 tree tmp, cst;
2846 enum tree_code new_comp_code = comp_code;
2847
2848 cst = fold_convert (TREE_TYPE (name2),
2849 TYPE_MIN_VALUE (TREE_TYPE (val)));
2850 /* Build an expression for the range test. */
2851 tmp = build2 (PLUS_EXPR, TREE_TYPE (name2), name2, cst);
2852 cst = fold_build2 (PLUS_EXPR, TREE_TYPE (name2), cst,
2853 fold_convert (TREE_TYPE (name2), val));
2854 if (comp_code == LT_EXPR || comp_code == GE_EXPR)
2855 {
2856 new_comp_code = comp_code == LT_EXPR ? LE_EXPR : GT_EXPR;
2857 cst = fold_build2 (MINUS_EXPR, TREE_TYPE (name2), cst,
2858 build_int_cst (TREE_TYPE (name2), 1));
2859 }
2860
2861 if (dump_file)
2862 {
2863 fprintf (dump_file, "Adding assert for ");
2864 print_generic_expr (dump_file, name2);
2865 fprintf (dump_file, " from ");
2866 print_generic_expr (dump_file, tmp);
2867 fprintf (dump_file, "\n");
2868 }
2869
2870 add_assert_info (asserts, name2, tmp, new_comp_code, cst);
2871 }
2872 }
2873
2874 /* Add asserts for NAME cmp CST and NAME being defined as
2875 NAME = NAME2 >> CST2.
2876
2877 Extract CST2 from the right shift. */
2878 if (rhs_code == RSHIFT_EXPR)
2879 {
2880 name2 = gimple_assign_rhs1 (def_stmt);
2881 cst2 = gimple_assign_rhs2 (def_stmt);
2882 if (TREE_CODE (name2) == SSA_NAME
2883 && tree_fits_uhwi_p (cst2)
2884 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
2885 && IN_RANGE (tree_to_uhwi (cst2), 1, prec - 1)
2886 && type_has_mode_precision_p (TREE_TYPE (val)))
2887 {
2888 mask = wi::mask (tree_to_uhwi (cst2), false, prec);
2889 val2 = fold_binary (LSHIFT_EXPR, TREE_TYPE (val), val, cst2);
2890 }
2891 }
2892 if (val2 != NULL_TREE
2893 && TREE_CODE (val2) == INTEGER_CST
2894 && simple_cst_equal (fold_build2 (RSHIFT_EXPR,
2895 TREE_TYPE (val),
2896 val2, cst2), val))
2897 {
2898 enum tree_code new_comp_code = comp_code;
2899 tree tmp, new_val;
2900
2901 tmp = name2;
2902 if (comp_code == EQ_EXPR || comp_code == NE_EXPR)
2903 {
2904 if (!TYPE_UNSIGNED (TREE_TYPE (val)))
2905 {
2906 tree type = build_nonstandard_integer_type (prec, 1);
2907 tmp = build1 (NOP_EXPR, type, name2);
2908 val2 = fold_convert (type, val2);
2909 }
2910 tmp = fold_build2 (MINUS_EXPR, TREE_TYPE (tmp), tmp, val2);
2911 new_val = wide_int_to_tree (TREE_TYPE (tmp), mask);
2912 new_comp_code = comp_code == EQ_EXPR ? LE_EXPR : GT_EXPR;
2913 }
2914 else if (comp_code == LT_EXPR || comp_code == GE_EXPR)
2915 {
2916 wide_int minval
2917 = wi::min_value (prec, TYPE_SIGN (TREE_TYPE (val)));
2918 new_val = val2;
2919 if (minval == wi::to_wide (new_val))
2920 new_val = NULL_TREE;
2921 }
2922 else
2923 {
2924 wide_int maxval
2925 = wi::max_value (prec, TYPE_SIGN (TREE_TYPE (val)));
2926 mask |= wi::to_wide (val2);
2927 if (wi::eq_p (mask, maxval))
2928 new_val = NULL_TREE;
2929 else
2930 new_val = wide_int_to_tree (TREE_TYPE (val2), mask);
2931 }
2932
2933 if (new_val)
2934 {
2935 if (dump_file)
2936 {
2937 fprintf (dump_file, "Adding assert for ");
2938 print_generic_expr (dump_file, name2);
2939 fprintf (dump_file, " from ");
2940 print_generic_expr (dump_file, tmp);
2941 fprintf (dump_file, "\n");
2942 }
2943
2944 add_assert_info (asserts, name2, tmp, new_comp_code, new_val);
2945 }
2946 }
2947
2948 /* Add asserts for NAME cmp CST and NAME being defined as
2949 NAME = NAME2 & CST2.
2950
2951 Extract CST2 from the and.
2952
2953 Also handle
2954 NAME = (unsigned) NAME2;
2955 casts where NAME's type is unsigned and has smaller precision
2956 than NAME2's type as if it was NAME = NAME2 & MASK. */
2957 names[0] = NULL_TREE;
2958 names[1] = NULL_TREE;
2959 cst2 = NULL_TREE;
2960 if (rhs_code == BIT_AND_EXPR
2961 || (CONVERT_EXPR_CODE_P (rhs_code)
2962 && INTEGRAL_TYPE_P (TREE_TYPE (val))
2963 && TYPE_UNSIGNED (TREE_TYPE (val))
2964 && TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt)))
2965 > prec))
2966 {
2967 name2 = gimple_assign_rhs1 (def_stmt);
2968 if (rhs_code == BIT_AND_EXPR)
2969 cst2 = gimple_assign_rhs2 (def_stmt);
2970 else
2971 {
2972 cst2 = TYPE_MAX_VALUE (TREE_TYPE (val));
2973 nprec = TYPE_PRECISION (TREE_TYPE (name2));
2974 }
2975 if (TREE_CODE (name2) == SSA_NAME
2976 && INTEGRAL_TYPE_P (TREE_TYPE (name2))
2977 && TREE_CODE (cst2) == INTEGER_CST
2978 && !integer_zerop (cst2)
2979 && (nprec > 1
2980 || TYPE_UNSIGNED (TREE_TYPE (val))))
2981 {
2982 gimple *def_stmt2 = SSA_NAME_DEF_STMT (name2);
2983 if (gimple_assign_cast_p (def_stmt2))
2984 {
2985 names[1] = gimple_assign_rhs1 (def_stmt2);
2986 if (!CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt2))
2987 || !INTEGRAL_TYPE_P (TREE_TYPE (names[1]))
2988 || (TYPE_PRECISION (TREE_TYPE (name2))
2989 != TYPE_PRECISION (TREE_TYPE (names[1]))))
2990 names[1] = NULL_TREE;
2991 }
2992 names[0] = name2;
2993 }
2994 }
2995 if (names[0] || names[1])
2996 {
2997 wide_int minv, maxv, valv, cst2v;
2998 wide_int tem, sgnbit;
2999 bool valid_p = false, valn, cst2n;
3000 enum tree_code ccode = comp_code;
3001
3002 valv = wide_int::from (wi::to_wide (val), nprec, UNSIGNED);
3003 cst2v = wide_int::from (wi::to_wide (cst2), nprec, UNSIGNED);
3004 valn = wi::neg_p (valv, TYPE_SIGN (TREE_TYPE (val)));
3005 cst2n = wi::neg_p (cst2v, TYPE_SIGN (TREE_TYPE (val)));
3006 /* If CST2 doesn't have most significant bit set,
3007 but VAL is negative, we have comparison like
3008 if ((x & 0x123) > -4) (always true). Just give up. */
3009 if (!cst2n && valn)
3010 ccode = ERROR_MARK;
3011 if (cst2n)
3012 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
3013 else
3014 sgnbit = wi::zero (nprec);
3015 minv = valv & cst2v;
3016 switch (ccode)
3017 {
3018 case EQ_EXPR:
3019 /* Minimum unsigned value for equality is VAL & CST2
3020 (should be equal to VAL, otherwise we probably should
3021 have folded the comparison into false) and
3022 maximum unsigned value is VAL | ~CST2. */
3023 maxv = valv | ~cst2v;
3024 valid_p = true;
3025 break;
3026
3027 case NE_EXPR:
3028 tem = valv | ~cst2v;
3029 /* If VAL is 0, handle (X & CST2) != 0 as (X & CST2) > 0U. */
3030 if (valv == 0)
3031 {
3032 cst2n = false;
3033 sgnbit = wi::zero (nprec);
3034 goto gt_expr;
3035 }
3036 /* If (VAL | ~CST2) is all ones, handle it as
3037 (X & CST2) < VAL. */
3038 if (tem == -1)
3039 {
3040 cst2n = false;
3041 valn = false;
3042 sgnbit = wi::zero (nprec);
3043 goto lt_expr;
3044 }
3045 if (!cst2n && wi::neg_p (cst2v))
3046 sgnbit = wi::set_bit_in_zero (nprec - 1, nprec);
3047 if (sgnbit != 0)
3048 {
3049 if (valv == sgnbit)
3050 {
3051 cst2n = true;
3052 valn = true;
3053 goto gt_expr;
3054 }
3055 if (tem == wi::mask (nprec - 1, false, nprec))
3056 {
3057 cst2n = true;
3058 goto lt_expr;
3059 }
3060 if (!cst2n)
3061 sgnbit = wi::zero (nprec);
3062 }
3063 break;
3064
3065 case GE_EXPR:
3066 /* Minimum unsigned value for >= if (VAL & CST2) == VAL
3067 is VAL and maximum unsigned value is ~0. For signed
3068 comparison, if CST2 doesn't have most significant bit
3069 set, handle it similarly. If CST2 has MSB set,
3070 the minimum is the same, and maximum is ~0U/2. */
3071 if (minv != valv)
3072 {
3073 /* If (VAL & CST2) != VAL, X & CST2 can't be equal to
3074 VAL. */
3075 minv = masked_increment (valv, cst2v, sgnbit, nprec);
3076 if (minv == valv)
3077 break;
3078 }
3079 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
3080 valid_p = true;
3081 break;
3082
3083 case GT_EXPR:
3084 gt_expr:
3085 /* Find out smallest MINV where MINV > VAL
3086 && (MINV & CST2) == MINV, if any. If VAL is signed and
3087 CST2 has MSB set, compute it biased by 1 << (nprec - 1). */
3088 minv = masked_increment (valv, cst2v, sgnbit, nprec);
3089 if (minv == valv)
3090 break;
3091 maxv = wi::mask (nprec - (cst2n ? 1 : 0), false, nprec);
3092 valid_p = true;
3093 break;
3094
3095 case LE_EXPR:
3096 /* Minimum unsigned value for <= is 0 and maximum
3097 unsigned value is VAL | ~CST2 if (VAL & CST2) == VAL.
3098 Otherwise, find smallest VAL2 where VAL2 > VAL
3099 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
3100 as maximum.
3101 For signed comparison, if CST2 doesn't have most
3102 significant bit set, handle it similarly. If CST2 has
3103 MSB set, the maximum is the same and minimum is INT_MIN. */
3104 if (minv == valv)
3105 maxv = valv;
3106 else
3107 {
3108 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
3109 if (maxv == valv)
3110 break;
3111 maxv -= 1;
3112 }
3113 maxv |= ~cst2v;
3114 minv = sgnbit;
3115 valid_p = true;
3116 break;
3117
3118 case LT_EXPR:
3119 lt_expr:
3120 /* Minimum unsigned value for < is 0 and maximum
3121 unsigned value is (VAL-1) | ~CST2 if (VAL & CST2) == VAL.
3122 Otherwise, find smallest VAL2 where VAL2 > VAL
3123 && (VAL2 & CST2) == VAL2 and use (VAL2 - 1) | ~CST2
3124 as maximum.
3125 For signed comparison, if CST2 doesn't have most
3126 significant bit set, handle it similarly. If CST2 has
3127 MSB set, the maximum is the same and minimum is INT_MIN. */
3128 if (minv == valv)
3129 {
3130 if (valv == sgnbit)
3131 break;
3132 maxv = valv;
3133 }
3134 else
3135 {
3136 maxv = masked_increment (valv, cst2v, sgnbit, nprec);
3137 if (maxv == valv)
3138 break;
3139 }
3140 maxv -= 1;
3141 maxv |= ~cst2v;
3142 minv = sgnbit;
3143 valid_p = true;
3144 break;
3145
3146 default:
3147 break;
3148 }
3149 if (valid_p
3150 && (maxv - minv) != -1)
3151 {
3152 tree tmp, new_val, type;
3153 int i;
3154
3155 for (i = 0; i < 2; i++)
3156 if (names[i])
3157 {
3158 wide_int maxv2 = maxv;
3159 tmp = names[i];
3160 type = TREE_TYPE (names[i]);
3161 if (!TYPE_UNSIGNED (type))
3162 {
3163 type = build_nonstandard_integer_type (nprec, 1);
3164 tmp = build1 (NOP_EXPR, type, names[i]);
3165 }
3166 if (minv != 0)
3167 {
3168 tmp = build2 (PLUS_EXPR, type, tmp,
3169 wide_int_to_tree (type, -minv));
3170 maxv2 = maxv - minv;
3171 }
3172 new_val = wide_int_to_tree (type, maxv2);
3173
3174 if (dump_file)
3175 {
3176 fprintf (dump_file, "Adding assert for ");
3177 print_generic_expr (dump_file, names[i]);
3178 fprintf (dump_file, " from ");
3179 print_generic_expr (dump_file, tmp);
3180 fprintf (dump_file, "\n");
3181 }
3182
3183 add_assert_info (asserts, names[i], tmp, LE_EXPR, new_val);
3184 }
3185 }
3186 }
3187 }
3188 }
3189
3190 /* OP is an operand of a truth value expression which is known to have
3191 a particular value. Register any asserts for OP and for any
3192 operands in OP's defining statement.
3193
3194 If CODE is EQ_EXPR, then we want to register OP is zero (false),
3195 if CODE is NE_EXPR, then we want to register OP is nonzero (true). */
3196
3197 static void
3198 register_edge_assert_for_1 (tree op, enum tree_code code,
3199 edge e, vec<assert_info> &asserts)
3200 {
3201 gimple *op_def;
3202 tree val;
3203 enum tree_code rhs_code;
3204
3205 /* We only care about SSA_NAMEs. */
3206 if (TREE_CODE (op) != SSA_NAME)
3207 return;
3208
3209 /* We know that OP will have a zero or nonzero value. */
3210 val = build_int_cst (TREE_TYPE (op), 0);
3211 add_assert_info (asserts, op, op, code, val);
3212
3213 /* Now look at how OP is set. If it's set from a comparison,
3214 a truth operation or some bit operations, then we may be able
3215 to register information about the operands of that assignment. */
3216 op_def = SSA_NAME_DEF_STMT (op);
3217 if (gimple_code (op_def) != GIMPLE_ASSIGN)
3218 return;
3219
3220 rhs_code = gimple_assign_rhs_code (op_def);
3221
3222 if (TREE_CODE_CLASS (rhs_code) == tcc_comparison)
3223 {
3224 bool invert = (code == EQ_EXPR ? true : false);
3225 tree op0 = gimple_assign_rhs1 (op_def);
3226 tree op1 = gimple_assign_rhs2 (op_def);
3227
3228 if (TREE_CODE (op0) == SSA_NAME)
3229 register_edge_assert_for_2 (op0, e, rhs_code, op0, op1, invert, asserts);
3230 if (TREE_CODE (op1) == SSA_NAME)
3231 register_edge_assert_for_2 (op1, e, rhs_code, op0, op1, invert, asserts);
3232 }
3233 else if ((code == NE_EXPR
3234 && gimple_assign_rhs_code (op_def) == BIT_AND_EXPR)
3235 || (code == EQ_EXPR
3236 && gimple_assign_rhs_code (op_def) == BIT_IOR_EXPR))
3237 {
3238 /* Recurse on each operand. */
3239 tree op0 = gimple_assign_rhs1 (op_def);
3240 tree op1 = gimple_assign_rhs2 (op_def);
3241 if (TREE_CODE (op0) == SSA_NAME
3242 && has_single_use (op0))
3243 register_edge_assert_for_1 (op0, code, e, asserts);
3244 if (TREE_CODE (op1) == SSA_NAME
3245 && has_single_use (op1))
3246 register_edge_assert_for_1 (op1, code, e, asserts);
3247 }
3248 else if (gimple_assign_rhs_code (op_def) == BIT_NOT_EXPR
3249 && TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (op_def))) == 1)
3250 {
3251 /* Recurse, flipping CODE. */
3252 code = invert_tree_comparison (code, false);
3253 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, asserts);
3254 }
3255 else if (gimple_assign_rhs_code (op_def) == SSA_NAME)
3256 {
3257 /* Recurse through the copy. */
3258 register_edge_assert_for_1 (gimple_assign_rhs1 (op_def), code, e, asserts);
3259 }
3260 else if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (op_def)))
3261 {
3262 /* Recurse through the type conversion, unless it is a narrowing
3263 conversion or conversion from non-integral type. */
3264 tree rhs = gimple_assign_rhs1 (op_def);
3265 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs))
3266 && (TYPE_PRECISION (TREE_TYPE (rhs))
3267 <= TYPE_PRECISION (TREE_TYPE (op))))
3268 register_edge_assert_for_1 (rhs, code, e, asserts);
3269 }
3270 }
3271
3272 /* Check if comparison
3273 NAME COND_OP INTEGER_CST
3274 has a form of
3275 (X & 11...100..0) COND_OP XX...X00...0
3276 Such comparison can yield assertions like
3277 X >= XX...X00...0
3278 X <= XX...X11...1
3279 in case of COND_OP being EQ_EXPR or
3280 X < XX...X00...0
3281 X > XX...X11...1
3282 in case of NE_EXPR. */
3283
3284 static bool
3285 is_masked_range_test (tree name, tree valt, enum tree_code cond_code,
3286 tree *new_name, tree *low, enum tree_code *low_code,
3287 tree *high, enum tree_code *high_code)
3288 {
3289 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
3290
3291 if (!is_gimple_assign (def_stmt)
3292 || gimple_assign_rhs_code (def_stmt) != BIT_AND_EXPR)
3293 return false;
3294
3295 tree t = gimple_assign_rhs1 (def_stmt);
3296 tree maskt = gimple_assign_rhs2 (def_stmt);
3297 if (TREE_CODE (t) != SSA_NAME || TREE_CODE (maskt) != INTEGER_CST)
3298 return false;
3299
3300 wi::tree_to_wide_ref mask = wi::to_wide (maskt);
3301 wide_int inv_mask = ~mask;
3302 /* Must have been removed by now so don't bother optimizing. */
3303 if (mask == 0 || inv_mask == 0)
3304 return false;
3305
3306 /* Assume VALT is INTEGER_CST. */
3307 wi::tree_to_wide_ref val = wi::to_wide (valt);
3308
3309 if ((inv_mask & (inv_mask + 1)) != 0
3310 || (val & mask) != val)
3311 return false;
3312
3313 bool is_range = cond_code == EQ_EXPR;
3314
3315 tree type = TREE_TYPE (t);
3316 wide_int min = wi::min_value (type),
3317 max = wi::max_value (type);
3318
3319 if (is_range)
3320 {
3321 *low_code = val == min ? ERROR_MARK : GE_EXPR;
3322 *high_code = val == max ? ERROR_MARK : LE_EXPR;
3323 }
3324 else
3325 {
3326 /* We can still generate assertion if one of alternatives
3327 is known to always be false. */
3328 if (val == min)
3329 {
3330 *low_code = (enum tree_code) 0;
3331 *high_code = GT_EXPR;
3332 }
3333 else if ((val | inv_mask) == max)
3334 {
3335 *low_code = LT_EXPR;
3336 *high_code = (enum tree_code) 0;
3337 }
3338 else
3339 return false;
3340 }
3341
3342 *new_name = t;
3343 *low = wide_int_to_tree (type, val);
3344 *high = wide_int_to_tree (type, val | inv_mask);
3345
3346 return true;
3347 }
3348
3349 /* Try to register an edge assertion for SSA name NAME on edge E for
3350 the condition COND contributing to the conditional jump pointed to by
3351 SI. */
3352
3353 void
3354 register_edge_assert_for (tree name, edge e,
3355 enum tree_code cond_code, tree cond_op0,
3356 tree cond_op1, vec<assert_info> &asserts)
3357 {
3358 tree val;
3359 enum tree_code comp_code;
3360 bool is_else_edge = (e->flags & EDGE_FALSE_VALUE) != 0;
3361
3362 /* Do not attempt to infer anything in names that flow through
3363 abnormal edges. */
3364 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (name))
3365 return;
3366
3367 if (!extract_code_and_val_from_cond_with_ops (name, cond_code,
3368 cond_op0, cond_op1,
3369 is_else_edge,
3370 &comp_code, &val))
3371 return;
3372
3373 /* Register ASSERT_EXPRs for name. */
3374 register_edge_assert_for_2 (name, e, cond_code, cond_op0,
3375 cond_op1, is_else_edge, asserts);
3376
3377
3378 /* If COND is effectively an equality test of an SSA_NAME against
3379 the value zero or one, then we may be able to assert values
3380 for SSA_NAMEs which flow into COND. */
3381
3382 /* In the case of NAME == 1 or NAME != 0, for BIT_AND_EXPR defining
3383 statement of NAME we can assert both operands of the BIT_AND_EXPR
3384 have nonzero value. */
3385 if (((comp_code == EQ_EXPR && integer_onep (val))
3386 || (comp_code == NE_EXPR && integer_zerop (val))))
3387 {
3388 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
3389
3390 if (is_gimple_assign (def_stmt)
3391 && gimple_assign_rhs_code (def_stmt) == BIT_AND_EXPR)
3392 {
3393 tree op0 = gimple_assign_rhs1 (def_stmt);
3394 tree op1 = gimple_assign_rhs2 (def_stmt);
3395 register_edge_assert_for_1 (op0, NE_EXPR, e, asserts);
3396 register_edge_assert_for_1 (op1, NE_EXPR, e, asserts);
3397 }
3398 }
3399
3400 /* In the case of NAME == 0 or NAME != 1, for BIT_IOR_EXPR defining
3401 statement of NAME we can assert both operands of the BIT_IOR_EXPR
3402 have zero value. */
3403 if (((comp_code == EQ_EXPR && integer_zerop (val))
3404 || (comp_code == NE_EXPR && integer_onep (val))))
3405 {
3406 gimple *def_stmt = SSA_NAME_DEF_STMT (name);
3407
3408 /* For BIT_IOR_EXPR only if NAME == 0 both operands have
3409 necessarily zero value, or if type-precision is one. */
3410 if (is_gimple_assign (def_stmt)
3411 && (gimple_assign_rhs_code (def_stmt) == BIT_IOR_EXPR
3412 && (TYPE_PRECISION (TREE_TYPE (name)) == 1
3413 || comp_code == EQ_EXPR)))
3414 {
3415 tree op0 = gimple_assign_rhs1 (def_stmt);
3416 tree op1 = gimple_assign_rhs2 (def_stmt);
3417 register_edge_assert_for_1 (op0, EQ_EXPR, e, asserts);
3418 register_edge_assert_for_1 (op1, EQ_EXPR, e, asserts);
3419 }
3420 }
3421
3422 /* Sometimes we can infer ranges from (NAME & MASK) == VALUE. */
3423 if ((comp_code == EQ_EXPR || comp_code == NE_EXPR)
3424 && TREE_CODE (val) == INTEGER_CST)
3425 {
3426 enum tree_code low_code, high_code;
3427 tree low, high;
3428 if (is_masked_range_test (name, val, comp_code, &name, &low,
3429 &low_code, &high, &high_code))
3430 {
3431 if (low_code != ERROR_MARK)
3432 register_edge_assert_for_2 (name, e, low_code, name,
3433 low, /*invert*/false, asserts);
3434 if (high_code != ERROR_MARK)
3435 register_edge_assert_for_2 (name, e, high_code, name,
3436 high, /*invert*/false, asserts);
3437 }
3438 }
3439 }
3440
3441 /* Finish found ASSERTS for E and register them at GSI. */
3442
3443 static void
3444 finish_register_edge_assert_for (edge e, gimple_stmt_iterator gsi,
3445 vec<assert_info> &asserts)
3446 {
3447 for (unsigned i = 0; i < asserts.length (); ++i)
3448 /* Only register an ASSERT_EXPR if NAME was found in the sub-graph
3449 reachable from E. */
3450 if (live_on_edge (e, asserts[i].name))
3451 register_new_assert_for (asserts[i].name, asserts[i].expr,
3452 asserts[i].comp_code, asserts[i].val,
3453 NULL, e, gsi);
3454 }
3455
3456
3457
3458 /* Determine whether the outgoing edges of BB should receive an
3459 ASSERT_EXPR for each of the operands of BB's LAST statement.
3460 The last statement of BB must be a COND_EXPR.
3461
3462 If any of the sub-graphs rooted at BB have an interesting use of
3463 the predicate operands, an assert location node is added to the
3464 list of assertions for the corresponding operands. */
3465
3466 static void
3467 find_conditional_asserts (basic_block bb, gcond *last)
3468 {
3469 gimple_stmt_iterator bsi;
3470 tree op;
3471 edge_iterator ei;
3472 edge e;
3473 ssa_op_iter iter;
3474
3475 bsi = gsi_for_stmt (last);
3476
3477 /* Look for uses of the operands in each of the sub-graphs
3478 rooted at BB. We need to check each of the outgoing edges
3479 separately, so that we know what kind of ASSERT_EXPR to
3480 insert. */
3481 FOR_EACH_EDGE (e, ei, bb->succs)
3482 {
3483 if (e->dest == bb)
3484 continue;
3485
3486 /* Register the necessary assertions for each operand in the
3487 conditional predicate. */
3488 auto_vec<assert_info, 8> asserts;
3489 FOR_EACH_SSA_TREE_OPERAND (op, last, iter, SSA_OP_USE)
3490 register_edge_assert_for (op, e,
3491 gimple_cond_code (last),
3492 gimple_cond_lhs (last),
3493 gimple_cond_rhs (last), asserts);
3494 finish_register_edge_assert_for (e, bsi, asserts);
3495 }
3496 }
3497
3498 struct case_info
3499 {
3500 tree expr;
3501 basic_block bb;
3502 };
3503
3504 /* Compare two case labels sorting first by the destination bb index
3505 and then by the case value. */
3506
3507 static int
3508 compare_case_labels (const void *p1, const void *p2)
3509 {
3510 const struct case_info *ci1 = (const struct case_info *) p1;
3511 const struct case_info *ci2 = (const struct case_info *) p2;
3512 int idx1 = ci1->bb->index;
3513 int idx2 = ci2->bb->index;
3514
3515 if (idx1 < idx2)
3516 return -1;
3517 else if (idx1 == idx2)
3518 {
3519 /* Make sure the default label is first in a group. */
3520 if (!CASE_LOW (ci1->expr))
3521 return -1;
3522 else if (!CASE_LOW (ci2->expr))
3523 return 1;
3524 else
3525 return tree_int_cst_compare (CASE_LOW (ci1->expr),
3526 CASE_LOW (ci2->expr));
3527 }
3528 else
3529 return 1;
3530 }
3531
3532 /* Determine whether the outgoing edges of BB should receive an
3533 ASSERT_EXPR for each of the operands of BB's LAST statement.
3534 The last statement of BB must be a SWITCH_EXPR.
3535
3536 If any of the sub-graphs rooted at BB have an interesting use of
3537 the predicate operands, an assert location node is added to the
3538 list of assertions for the corresponding operands. */
3539
3540 static void
3541 find_switch_asserts (basic_block bb, gswitch *last)
3542 {
3543 gimple_stmt_iterator bsi;
3544 tree op;
3545 edge e;
3546 struct case_info *ci;
3547 size_t n = gimple_switch_num_labels (last);
3548 #if GCC_VERSION >= 4000
3549 unsigned int idx;
3550 #else
3551 /* Work around GCC 3.4 bug (PR 37086). */
3552 volatile unsigned int idx;
3553 #endif
3554
3555 bsi = gsi_for_stmt (last);
3556 op = gimple_switch_index (last);
3557 if (TREE_CODE (op) != SSA_NAME)
3558 return;
3559
3560 /* Build a vector of case labels sorted by destination label. */
3561 ci = XNEWVEC (struct case_info, n);
3562 for (idx = 0; idx < n; ++idx)
3563 {
3564 ci[idx].expr = gimple_switch_label (last, idx);
3565 ci[idx].bb = label_to_block (cfun, CASE_LABEL (ci[idx].expr));
3566 }
3567 edge default_edge = find_edge (bb, ci[0].bb);
3568 qsort (ci, n, sizeof (struct case_info), compare_case_labels);
3569
3570 for (idx = 0; idx < n; ++idx)
3571 {
3572 tree min, max;
3573 tree cl = ci[idx].expr;
3574 basic_block cbb = ci[idx].bb;
3575
3576 min = CASE_LOW (cl);
3577 max = CASE_HIGH (cl);
3578
3579 /* If there are multiple case labels with the same destination
3580 we need to combine them to a single value range for the edge. */
3581 if (idx + 1 < n && cbb == ci[idx + 1].bb)
3582 {
3583 /* Skip labels until the last of the group. */
3584 do {
3585 ++idx;
3586 } while (idx < n && cbb == ci[idx].bb);
3587 --idx;
3588
3589 /* Pick up the maximum of the case label range. */
3590 if (CASE_HIGH (ci[idx].expr))
3591 max = CASE_HIGH (ci[idx].expr);
3592 else
3593 max = CASE_LOW (ci[idx].expr);
3594 }
3595
3596 /* Can't extract a useful assertion out of a range that includes the
3597 default label. */
3598 if (min == NULL_TREE)
3599 continue;
3600
3601 /* Find the edge to register the assert expr on. */
3602 e = find_edge (bb, cbb);
3603
3604 /* Register the necessary assertions for the operand in the
3605 SWITCH_EXPR. */
3606 auto_vec<assert_info, 8> asserts;
3607 register_edge_assert_for (op, e,
3608 max ? GE_EXPR : EQ_EXPR,
3609 op, fold_convert (TREE_TYPE (op), min),
3610 asserts);
3611 if (max)
3612 register_edge_assert_for (op, e, LE_EXPR, op,
3613 fold_convert (TREE_TYPE (op), max),
3614 asserts);
3615 finish_register_edge_assert_for (e, bsi, asserts);
3616 }
3617
3618 XDELETEVEC (ci);
3619
3620 if (!live_on_edge (default_edge, op))
3621 return;
3622
3623 /* Now register along the default label assertions that correspond to the
3624 anti-range of each label. */
3625 int insertion_limit = PARAM_VALUE (PARAM_MAX_VRP_SWITCH_ASSERTIONS);
3626 if (insertion_limit == 0)
3627 return;
3628
3629 /* We can't do this if the default case shares a label with another case. */
3630 tree default_cl = gimple_switch_default_label (last);
3631 for (idx = 1; idx < n; idx++)
3632 {
3633 tree min, max;
3634 tree cl = gimple_switch_label (last, idx);
3635 if (CASE_LABEL (cl) == CASE_LABEL (default_cl))
3636 continue;
3637
3638 min = CASE_LOW (cl);
3639 max = CASE_HIGH (cl);
3640
3641 /* Combine contiguous case ranges to reduce the number of assertions
3642 to insert. */
3643 for (idx = idx + 1; idx < n; idx++)
3644 {
3645 tree next_min, next_max;
3646 tree next_cl = gimple_switch_label (last, idx);
3647 if (CASE_LABEL (next_cl) == CASE_LABEL (default_cl))
3648 break;
3649
3650 next_min = CASE_LOW (next_cl);
3651 next_max = CASE_HIGH (next_cl);
3652
3653 wide_int difference = (wi::to_wide (next_min)
3654 - wi::to_wide (max ? max : min));
3655 if (wi::eq_p (difference, 1))
3656 max = next_max ? next_max : next_min;
3657 else
3658 break;
3659 }
3660 idx--;
3661
3662 if (max == NULL_TREE)
3663 {
3664 /* Register the assertion OP != MIN. */
3665 auto_vec<assert_info, 8> asserts;
3666 min = fold_convert (TREE_TYPE (op), min);
3667 register_edge_assert_for (op, default_edge, NE_EXPR, op, min,
3668 asserts);
3669 finish_register_edge_assert_for (default_edge, bsi, asserts);
3670 }
3671 else
3672 {
3673 /* Register the assertion (unsigned)OP - MIN > (MAX - MIN),
3674 which will give OP the anti-range ~[MIN,MAX]. */
3675 tree uop = fold_convert (unsigned_type_for (TREE_TYPE (op)), op);
3676 min = fold_convert (TREE_TYPE (uop), min);
3677 max = fold_convert (TREE_TYPE (uop), max);
3678
3679 tree lhs = fold_build2 (MINUS_EXPR, TREE_TYPE (uop), uop, min);
3680 tree rhs = int_const_binop (MINUS_EXPR, max, min);
3681 register_new_assert_for (op, lhs, GT_EXPR, rhs,
3682 NULL, default_edge, bsi);
3683 }
3684
3685 if (--insertion_limit == 0)
3686 break;
3687 }
3688 }
3689
3690
3691 /* Traverse all the statements in block BB looking for statements that
3692 may generate useful assertions for the SSA names in their operand.
3693 If a statement produces a useful assertion A for name N_i, then the
3694 list of assertions already generated for N_i is scanned to
3695 determine if A is actually needed.
3696
3697 If N_i already had the assertion A at a location dominating the
3698 current location, then nothing needs to be done. Otherwise, the
3699 new location for A is recorded instead.
3700
3701 1- For every statement S in BB, all the variables used by S are
3702 added to bitmap FOUND_IN_SUBGRAPH.
3703
3704 2- If statement S uses an operand N in a way that exposes a known
3705 value range for N, then if N was not already generated by an
3706 ASSERT_EXPR, create a new assert location for N. For instance,
3707 if N is a pointer and the statement dereferences it, we can
3708 assume that N is not NULL.
3709
3710 3- COND_EXPRs are a special case of #2. We can derive range
3711 information from the predicate but need to insert different
3712 ASSERT_EXPRs for each of the sub-graphs rooted at the
3713 conditional block. If the last statement of BB is a conditional
3714 expression of the form 'X op Y', then
3715
3716 a) Remove X and Y from the set FOUND_IN_SUBGRAPH.
3717
3718 b) If the conditional is the only entry point to the sub-graph
3719 corresponding to the THEN_CLAUSE, recurse into it. On
3720 return, if X and/or Y are marked in FOUND_IN_SUBGRAPH, then
3721 an ASSERT_EXPR is added for the corresponding variable.
3722
3723 c) Repeat step (b) on the ELSE_CLAUSE.
3724
3725 d) Mark X and Y in FOUND_IN_SUBGRAPH.
3726
3727 For instance,
3728
3729 if (a == 9)
3730 b = a;
3731 else
3732 b = c + 1;
3733
3734 In this case, an assertion on the THEN clause is useful to
3735 determine that 'a' is always 9 on that edge. However, an assertion
3736 on the ELSE clause would be unnecessary.
3737
3738 4- If BB does not end in a conditional expression, then we recurse
3739 into BB's dominator children.
3740
3741 At the end of the recursive traversal, every SSA name will have a
3742 list of locations where ASSERT_EXPRs should be added. When a new
3743 location for name N is found, it is registered by calling
3744 register_new_assert_for. That function keeps track of all the
3745 registered assertions to prevent adding unnecessary assertions.
3746 For instance, if a pointer P_4 is dereferenced more than once in a
3747 dominator tree, only the location dominating all the dereference of
3748 P_4 will receive an ASSERT_EXPR. */
3749
3750 static void
3751 find_assert_locations_1 (basic_block bb, sbitmap live)
3752 {
3753 gimple *last;
3754
3755 last = last_stmt (bb);
3756
3757 /* If BB's last statement is a conditional statement involving integer
3758 operands, determine if we need to add ASSERT_EXPRs. */
3759 if (last
3760 && gimple_code (last) == GIMPLE_COND
3761 && !fp_predicate (last)
3762 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3763 find_conditional_asserts (bb, as_a <gcond *> (last));
3764
3765 /* If BB's last statement is a switch statement involving integer
3766 operands, determine if we need to add ASSERT_EXPRs. */
3767 if (last
3768 && gimple_code (last) == GIMPLE_SWITCH
3769 && !ZERO_SSA_OPERANDS (last, SSA_OP_USE))
3770 find_switch_asserts (bb, as_a <gswitch *> (last));
3771
3772 /* Traverse all the statements in BB marking used names and looking
3773 for statements that may infer assertions for their used operands. */
3774 for (gimple_stmt_iterator si = gsi_last_bb (bb); !gsi_end_p (si);
3775 gsi_prev (&si))
3776 {
3777 gimple *stmt;
3778 tree op;
3779 ssa_op_iter i;
3780
3781 stmt = gsi_stmt (si);
3782
3783 if (is_gimple_debug (stmt))
3784 continue;
3785
3786 /* See if we can derive an assertion for any of STMT's operands. */
3787 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3788 {
3789 tree value;
3790 enum tree_code comp_code;
3791
3792 /* If op is not live beyond this stmt, do not bother to insert
3793 asserts for it. */
3794 if (!bitmap_bit_p (live, SSA_NAME_VERSION (op)))
3795 continue;
3796
3797 /* If OP is used in such a way that we can infer a value
3798 range for it, and we don't find a previous assertion for
3799 it, create a new assertion location node for OP. */
3800 if (infer_value_range (stmt, op, &comp_code, &value))
3801 {
3802 /* If we are able to infer a nonzero value range for OP,
3803 then walk backwards through the use-def chain to see if OP
3804 was set via a typecast.
3805
3806 If so, then we can also infer a nonzero value range
3807 for the operand of the NOP_EXPR. */
3808 if (comp_code == NE_EXPR && integer_zerop (value))
3809 {
3810 tree t = op;
3811 gimple *def_stmt = SSA_NAME_DEF_STMT (t);
3812
3813 while (is_gimple_assign (def_stmt)
3814 && CONVERT_EXPR_CODE_P
3815 (gimple_assign_rhs_code (def_stmt))
3816 && TREE_CODE
3817 (gimple_assign_rhs1 (def_stmt)) == SSA_NAME
3818 && POINTER_TYPE_P
3819 (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
3820 {
3821 t = gimple_assign_rhs1 (def_stmt);
3822 def_stmt = SSA_NAME_DEF_STMT (t);
3823
3824 /* Note we want to register the assert for the
3825 operand of the NOP_EXPR after SI, not after the
3826 conversion. */
3827 if (bitmap_bit_p (live, SSA_NAME_VERSION (t)))
3828 register_new_assert_for (t, t, comp_code, value,
3829 bb, NULL, si);
3830 }
3831 }
3832
3833 register_new_assert_for (op, op, comp_code, value, bb, NULL, si);
3834 }
3835 }
3836
3837 /* Update live. */
3838 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
3839 bitmap_set_bit (live, SSA_NAME_VERSION (op));
3840 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_DEF)
3841 bitmap_clear_bit (live, SSA_NAME_VERSION (op));
3842 }
3843
3844 /* Traverse all PHI nodes in BB, updating live. */
3845 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
3846 gsi_next (&si))
3847 {
3848 use_operand_p arg_p;
3849 ssa_op_iter i;
3850 gphi *phi = si.phi ();
3851 tree res = gimple_phi_result (phi);
3852
3853 if (virtual_operand_p (res))
3854 continue;
3855
3856 FOR_EACH_PHI_ARG (arg_p, phi, i, SSA_OP_USE)
3857 {
3858 tree arg = USE_FROM_PTR (arg_p);
3859 if (TREE_CODE (arg) == SSA_NAME)
3860 bitmap_set_bit (live, SSA_NAME_VERSION (arg));
3861 }
3862
3863 bitmap_clear_bit (live, SSA_NAME_VERSION (res));
3864 }
3865 }
3866
3867 /* Do an RPO walk over the function computing SSA name liveness
3868 on-the-fly and deciding on assert expressions to insert. */
3869
3870 static void
3871 find_assert_locations (void)
3872 {
3873 int *rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
3874 int *bb_rpo = XNEWVEC (int, last_basic_block_for_fn (cfun));
3875 int *last_rpo = XCNEWVEC (int, last_basic_block_for_fn (cfun));
3876 int rpo_cnt, i;
3877
3878 live = XCNEWVEC (sbitmap, last_basic_block_for_fn (cfun));
3879 rpo_cnt = pre_and_rev_post_order_compute (NULL, rpo, false);
3880 for (i = 0; i < rpo_cnt; ++i)
3881 bb_rpo[rpo[i]] = i;
3882
3883 /* Pre-seed loop latch liveness from loop header PHI nodes. Due to
3884 the order we compute liveness and insert asserts we otherwise
3885 fail to insert asserts into the loop latch. */
3886 loop_p loop;
3887 FOR_EACH_LOOP (loop, 0)
3888 {
3889 i = loop->latch->index;
3890 unsigned int j = single_succ_edge (loop->latch)->dest_idx;
3891 for (gphi_iterator gsi = gsi_start_phis (loop->header);
3892 !gsi_end_p (gsi); gsi_next (&gsi))
3893 {
3894 gphi *phi = gsi.phi ();
3895 if (virtual_operand_p (gimple_phi_result (phi)))
3896 continue;
3897 tree arg = gimple_phi_arg_def (phi, j);
3898 if (TREE_CODE (arg) == SSA_NAME)
3899 {
3900 if (live[i] == NULL)
3901 {
3902 live[i] = sbitmap_alloc (num_ssa_names);
3903 bitmap_clear (live[i]);
3904 }
3905 bitmap_set_bit (live[i], SSA_NAME_VERSION (arg));
3906 }
3907 }
3908 }
3909
3910 for (i = rpo_cnt - 1; i >= 0; --i)
3911 {
3912 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, rpo[i]);
3913 edge e;
3914 edge_iterator ei;
3915
3916 if (!live[rpo[i]])
3917 {
3918 live[rpo[i]] = sbitmap_alloc (num_ssa_names);
3919 bitmap_clear (live[rpo[i]]);
3920 }
3921
3922 /* Process BB and update the live information with uses in
3923 this block. */
3924 find_assert_locations_1 (bb, live[rpo[i]]);
3925
3926 /* Merge liveness into the predecessor blocks and free it. */
3927 if (!bitmap_empty_p (live[rpo[i]]))
3928 {
3929 int pred_rpo = i;
3930 FOR_EACH_EDGE (e, ei, bb->preds)
3931 {
3932 int pred = e->src->index;
3933 if ((e->flags & EDGE_DFS_BACK) || pred == ENTRY_BLOCK)
3934 continue;
3935
3936 if (!live[pred])
3937 {
3938 live[pred] = sbitmap_alloc (num_ssa_names);
3939 bitmap_clear (live[pred]);
3940 }
3941 bitmap_ior (live[pred], live[pred], live[rpo[i]]);
3942
3943 if (bb_rpo[pred] < pred_rpo)
3944 pred_rpo = bb_rpo[pred];
3945 }
3946
3947 /* Record the RPO number of the last visited block that needs
3948 live information from this block. */
3949 last_rpo[rpo[i]] = pred_rpo;
3950 }
3951 else
3952 {
3953 sbitmap_free (live[rpo[i]]);
3954 live[rpo[i]] = NULL;
3955 }
3956
3957 /* We can free all successors live bitmaps if all their
3958 predecessors have been visited already. */
3959 FOR_EACH_EDGE (e, ei, bb->succs)
3960 if (last_rpo[e->dest->index] == i
3961 && live[e->dest->index])
3962 {
3963 sbitmap_free (live[e->dest->index]);
3964 live[e->dest->index] = NULL;
3965 }
3966 }
3967
3968 XDELETEVEC (rpo);
3969 XDELETEVEC (bb_rpo);
3970 XDELETEVEC (last_rpo);
3971 for (i = 0; i < last_basic_block_for_fn (cfun); ++i)
3972 if (live[i])
3973 sbitmap_free (live[i]);
3974 XDELETEVEC (live);
3975 }
3976
3977 /* Create an ASSERT_EXPR for NAME and insert it in the location
3978 indicated by LOC. Return true if we made any edge insertions. */
3979
3980 static bool
3981 process_assert_insertions_for (tree name, assert_locus *loc)
3982 {
3983 /* Build the comparison expression NAME_i COMP_CODE VAL. */
3984 gimple *stmt;
3985 tree cond;
3986 gimple *assert_stmt;
3987 edge_iterator ei;
3988 edge e;
3989
3990 /* If we have X <=> X do not insert an assert expr for that. */
3991 if (loc->expr == loc->val)
3992 return false;
3993
3994 cond = build2 (loc->comp_code, boolean_type_node, loc->expr, loc->val);
3995 assert_stmt = build_assert_expr_for (cond, name);
3996 if (loc->e)
3997 {
3998 /* We have been asked to insert the assertion on an edge. This
3999 is used only by COND_EXPR and SWITCH_EXPR assertions. */
4000 gcc_checking_assert (gimple_code (gsi_stmt (loc->si)) == GIMPLE_COND
4001 || (gimple_code (gsi_stmt (loc->si))
4002 == GIMPLE_SWITCH));
4003
4004 gsi_insert_on_edge (loc->e, assert_stmt);
4005 return true;
4006 }
4007
4008 /* If the stmt iterator points at the end then this is an insertion
4009 at the beginning of a block. */
4010 if (gsi_end_p (loc->si))
4011 {
4012 gimple_stmt_iterator si = gsi_after_labels (loc->bb);
4013 gsi_insert_before (&si, assert_stmt, GSI_SAME_STMT);
4014 return false;
4015
4016 }
4017 /* Otherwise, we can insert right after LOC->SI iff the
4018 statement must not be the last statement in the block. */
4019 stmt = gsi_stmt (loc->si);
4020 if (!stmt_ends_bb_p (stmt))
4021 {
4022 gsi_insert_after (&loc->si, assert_stmt, GSI_SAME_STMT);
4023 return false;
4024 }
4025
4026 /* If STMT must be the last statement in BB, we can only insert new
4027 assertions on the non-abnormal edge out of BB. Note that since
4028 STMT is not control flow, there may only be one non-abnormal/eh edge
4029 out of BB. */
4030 FOR_EACH_EDGE (e, ei, loc->bb->succs)
4031 if (!(e->flags & (EDGE_ABNORMAL|EDGE_EH)))
4032 {
4033 gsi_insert_on_edge (e, assert_stmt);
4034 return true;
4035 }
4036
4037 gcc_unreachable ();
4038 }
4039
4040 /* Qsort helper for sorting assert locations. If stable is true, don't
4041 use iterative_hash_expr because it can be unstable for -fcompare-debug,
4042 on the other side some pointers might be NULL. */
4043
4044 template <bool stable>
4045 static int
4046 compare_assert_loc (const void *pa, const void *pb)
4047 {
4048 assert_locus * const a = *(assert_locus * const *)pa;
4049 assert_locus * const b = *(assert_locus * const *)pb;
4050
4051 /* If stable, some asserts might be optimized away already, sort
4052 them last. */
4053 if (stable)
4054 {
4055 if (a == NULL)
4056 return b != NULL;
4057 else if (b == NULL)
4058 return -1;
4059 }
4060
4061 if (a->e == NULL && b->e != NULL)
4062 return 1;
4063 else if (a->e != NULL && b->e == NULL)
4064 return -1;
4065
4066 /* After the above checks, we know that (a->e == NULL) == (b->e == NULL),
4067 no need to test both a->e and b->e. */
4068
4069 /* Sort after destination index. */
4070 if (a->e == NULL)
4071 ;
4072 else if (a->e->dest->index > b->e->dest->index)
4073 return 1;
4074 else if (a->e->dest->index < b->e->dest->index)
4075 return -1;
4076
4077 /* Sort after comp_code. */
4078 if (a->comp_code > b->comp_code)
4079 return 1;
4080 else if (a->comp_code < b->comp_code)
4081 return -1;
4082
4083 hashval_t ha, hb;
4084
4085 /* E.g. if a->val is ADDR_EXPR of a VAR_DECL, iterative_hash_expr
4086 uses DECL_UID of the VAR_DECL, so sorting might differ between
4087 -g and -g0. When doing the removal of redundant assert exprs
4088 and commonization to successors, this does not matter, but for
4089 the final sort needs to be stable. */
4090 if (stable)
4091 {
4092 ha = 0;
4093 hb = 0;
4094 }
4095 else
4096 {
4097 ha = iterative_hash_expr (a->expr, iterative_hash_expr (a->val, 0));
4098 hb = iterative_hash_expr (b->expr, iterative_hash_expr (b->val, 0));
4099 }
4100
4101 /* Break the tie using hashing and source/bb index. */
4102 if (ha == hb)
4103 return (a->e != NULL
4104 ? a->e->src->index - b->e->src->index
4105 : a->bb->index - b->bb->index);
4106 return ha > hb ? 1 : -1;
4107 }
4108
4109 /* Process all the insertions registered for every name N_i registered
4110 in NEED_ASSERT_FOR. The list of assertions to be inserted are
4111 found in ASSERTS_FOR[i]. */
4112
4113 static void
4114 process_assert_insertions (void)
4115 {
4116 unsigned i;
4117 bitmap_iterator bi;
4118 bool update_edges_p = false;
4119 int num_asserts = 0;
4120
4121 if (dump_file && (dump_flags & TDF_DETAILS))
4122 dump_all_asserts (dump_file);
4123
4124 EXECUTE_IF_SET_IN_BITMAP (need_assert_for, 0, i, bi)
4125 {
4126 assert_locus *loc = asserts_for[i];
4127 gcc_assert (loc);
4128
4129 auto_vec<assert_locus *, 16> asserts;
4130 for (; loc; loc = loc->next)
4131 asserts.safe_push (loc);
4132 asserts.qsort (compare_assert_loc<false>);
4133
4134 /* Push down common asserts to successors and remove redundant ones. */
4135 unsigned ecnt = 0;
4136 assert_locus *common = NULL;
4137 unsigned commonj = 0;
4138 for (unsigned j = 0; j < asserts.length (); ++j)
4139 {
4140 loc = asserts[j];
4141 if (! loc->e)
4142 common = NULL;
4143 else if (! common
4144 || loc->e->dest != common->e->dest
4145 || loc->comp_code != common->comp_code
4146 || ! operand_equal_p (loc->val, common->val, 0)
4147 || ! operand_equal_p (loc->expr, common->expr, 0))
4148 {
4149 commonj = j;
4150 common = loc;
4151 ecnt = 1;
4152 }
4153 else if (loc->e == asserts[j-1]->e)
4154 {
4155 /* Remove duplicate asserts. */
4156 if (commonj == j - 1)
4157 {
4158 commonj = j;
4159 common = loc;
4160 }
4161 free (asserts[j-1]);
4162 asserts[j-1] = NULL;
4163 }
4164 else
4165 {
4166 ecnt++;
4167 if (EDGE_COUNT (common->e->dest->preds) == ecnt)
4168 {
4169 /* We have the same assertion on all incoming edges of a BB.
4170 Insert it at the beginning of that block. */
4171 loc->bb = loc->e->dest;
4172 loc->e = NULL;
4173 loc->si = gsi_none ();
4174 common = NULL;
4175 /* Clear asserts commoned. */
4176 for (; commonj != j; ++commonj)
4177 if (asserts[commonj])
4178 {
4179 free (asserts[commonj]);
4180 asserts[commonj] = NULL;
4181 }
4182 }
4183 }
4184 }
4185
4186 /* The asserts vector sorting above might be unstable for
4187 -fcompare-debug, sort again to ensure a stable sort. */
4188 asserts.qsort (compare_assert_loc<true>);
4189 for (unsigned j = 0; j < asserts.length (); ++j)
4190 {
4191 loc = asserts[j];
4192 if (! loc)
4193 break;
4194 update_edges_p |= process_assert_insertions_for (ssa_name (i), loc);
4195 num_asserts++;
4196 free (loc);
4197 }
4198 }
4199
4200 if (update_edges_p)
4201 gsi_commit_edge_inserts ();
4202
4203 statistics_counter_event (cfun, "Number of ASSERT_EXPR expressions inserted",
4204 num_asserts);
4205 }
4206
4207
4208 /* Traverse the flowgraph looking for conditional jumps to insert range
4209 expressions. These range expressions are meant to provide information
4210 to optimizations that need to reason in terms of value ranges. They
4211 will not be expanded into RTL. For instance, given:
4212
4213 x = ...
4214 y = ...
4215 if (x < y)
4216 y = x - 2;
4217 else
4218 x = y + 3;
4219
4220 this pass will transform the code into:
4221
4222 x = ...
4223 y = ...
4224 if (x < y)
4225 {
4226 x = ASSERT_EXPR <x, x < y>
4227 y = x - 2
4228 }
4229 else
4230 {
4231 y = ASSERT_EXPR <y, x >= y>
4232 x = y + 3
4233 }
4234
4235 The idea is that once copy and constant propagation have run, other
4236 optimizations will be able to determine what ranges of values can 'x'
4237 take in different paths of the code, simply by checking the reaching
4238 definition of 'x'. */
4239
4240 static void
4241 insert_range_assertions (void)
4242 {
4243 need_assert_for = BITMAP_ALLOC (NULL);
4244 asserts_for = XCNEWVEC (assert_locus *, num_ssa_names);
4245
4246 calculate_dominance_info (CDI_DOMINATORS);
4247
4248 find_assert_locations ();
4249 if (!bitmap_empty_p (need_assert_for))
4250 {
4251 process_assert_insertions ();
4252 update_ssa (TODO_update_ssa_no_phi);
4253 }
4254
4255 if (dump_file && (dump_flags & TDF_DETAILS))
4256 {
4257 fprintf (dump_file, "\nSSA form after inserting ASSERT_EXPRs\n");
4258 dump_function_to_file (current_function_decl, dump_file, dump_flags);
4259 }
4260
4261 free (asserts_for);
4262 BITMAP_FREE (need_assert_for);
4263 }
4264
4265 class vrp_prop : public ssa_propagation_engine
4266 {
4267 public:
4268 enum ssa_prop_result visit_stmt (gimple *, edge *, tree *) FINAL OVERRIDE;
4269 enum ssa_prop_result visit_phi (gphi *) FINAL OVERRIDE;
4270
4271 void vrp_initialize (void);
4272 void vrp_finalize (bool);
4273 void check_all_array_refs (void);
4274 void check_array_ref (location_t, tree, bool);
4275 void check_mem_ref (location_t, tree, bool);
4276 void search_for_addr_array (tree, location_t);
4277
4278 class vr_values vr_values;
4279 /* Temporary delegator to minimize code churn. */
4280 value_range *get_value_range (const_tree op)
4281 { return vr_values.get_value_range (op); }
4282 void set_defs_to_varying (gimple *stmt)
4283 { return vr_values.set_defs_to_varying (stmt); }
4284 void extract_range_from_stmt (gimple *stmt, edge *taken_edge_p,
4285 tree *output_p, value_range *vr)
4286 { vr_values.extract_range_from_stmt (stmt, taken_edge_p, output_p, vr); }
4287 bool update_value_range (const_tree op, value_range *vr)
4288 { return vr_values.update_value_range (op, vr); }
4289 void extract_range_basic (value_range *vr, gimple *stmt)
4290 { vr_values.extract_range_basic (vr, stmt); }
4291 void extract_range_from_phi_node (gphi *phi, value_range *vr)
4292 { vr_values.extract_range_from_phi_node (phi, vr); }
4293 };
4294 /* Checks one ARRAY_REF in REF, located at LOCUS. Ignores flexible arrays
4295 and "struct" hacks. If VRP can determine that the
4296 array subscript is a constant, check if it is outside valid
4297 range. If the array subscript is a RANGE, warn if it is
4298 non-overlapping with valid range.
4299 IGNORE_OFF_BY_ONE is true if the ARRAY_REF is inside a ADDR_EXPR. */
4300
4301 void
4302 vrp_prop::check_array_ref (location_t location, tree ref,
4303 bool ignore_off_by_one)
4304 {
4305 const value_range *vr = NULL;
4306 tree low_sub, up_sub;
4307 tree low_bound, up_bound, up_bound_p1;
4308
4309 if (TREE_NO_WARNING (ref))
4310 return;
4311
4312 low_sub = up_sub = TREE_OPERAND (ref, 1);
4313 up_bound = array_ref_up_bound (ref);
4314
4315 if (!up_bound
4316 || TREE_CODE (up_bound) != INTEGER_CST
4317 || (warn_array_bounds < 2
4318 && array_at_struct_end_p (ref)))
4319 {
4320 /* Accesses to trailing arrays via pointers may access storage
4321 beyond the types array bounds. For such arrays, or for flexible
4322 array members, as well as for other arrays of an unknown size,
4323 replace the upper bound with a more permissive one that assumes
4324 the size of the largest object is PTRDIFF_MAX. */
4325 tree eltsize = array_ref_element_size (ref);
4326
4327 if (TREE_CODE (eltsize) != INTEGER_CST
4328 || integer_zerop (eltsize))
4329 {
4330 up_bound = NULL_TREE;
4331 up_bound_p1 = NULL_TREE;
4332 }
4333 else
4334 {
4335 tree maxbound = TYPE_MAX_VALUE (ptrdiff_type_node);
4336 tree arg = TREE_OPERAND (ref, 0);
4337 poly_int64 off;
4338
4339 if (get_addr_base_and_unit_offset (arg, &off) && known_gt (off, 0))
4340 maxbound = wide_int_to_tree (sizetype,
4341 wi::sub (wi::to_wide (maxbound),
4342 off));
4343 else
4344 maxbound = fold_convert (sizetype, maxbound);
4345
4346 up_bound_p1 = int_const_binop (TRUNC_DIV_EXPR, maxbound, eltsize);
4347
4348 up_bound = int_const_binop (MINUS_EXPR, up_bound_p1,
4349 build_int_cst (ptrdiff_type_node, 1));
4350 }
4351 }
4352 else
4353 up_bound_p1 = int_const_binop (PLUS_EXPR, up_bound,
4354 build_int_cst (TREE_TYPE (up_bound), 1));
4355
4356 low_bound = array_ref_low_bound (ref);
4357
4358 tree artype = TREE_TYPE (TREE_OPERAND (ref, 0));
4359
4360 bool warned = false;
4361
4362 /* Empty array. */
4363 if (up_bound && tree_int_cst_equal (low_bound, up_bound_p1))
4364 warned = warning_at (location, OPT_Warray_bounds,
4365 "array subscript %E is above array bounds of %qT",
4366 low_bound, artype);
4367
4368 if (TREE_CODE (low_sub) == SSA_NAME)
4369 {
4370 vr = get_value_range (low_sub);
4371 if (!vr->undefined_p () && !vr->varying_p ())
4372 {
4373 low_sub = vr->kind () == VR_RANGE ? vr->max () : vr->min ();
4374 up_sub = vr->kind () == VR_RANGE ? vr->min () : vr->max ();
4375 }
4376 }
4377
4378 if (vr && vr->kind () == VR_ANTI_RANGE)
4379 {
4380 if (up_bound
4381 && TREE_CODE (up_sub) == INTEGER_CST
4382 && (ignore_off_by_one
4383 ? tree_int_cst_lt (up_bound, up_sub)
4384 : tree_int_cst_le (up_bound, up_sub))
4385 && TREE_CODE (low_sub) == INTEGER_CST
4386 && tree_int_cst_le (low_sub, low_bound))
4387 warned = warning_at (location, OPT_Warray_bounds,
4388 "array subscript [%E, %E] is outside "
4389 "array bounds of %qT",
4390 low_sub, up_sub, artype);
4391 }
4392 else if (up_bound
4393 && TREE_CODE (up_sub) == INTEGER_CST
4394 && (ignore_off_by_one
4395 ? !tree_int_cst_le (up_sub, up_bound_p1)
4396 : !tree_int_cst_le (up_sub, up_bound)))
4397 {
4398 if (dump_file && (dump_flags & TDF_DETAILS))
4399 {
4400 fprintf (dump_file, "Array bound warning for ");
4401 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
4402 fprintf (dump_file, "\n");
4403 }
4404 warned = warning_at (location, OPT_Warray_bounds,
4405 "array subscript %E is above array bounds of %qT",
4406 up_sub, artype);
4407 }
4408 else if (TREE_CODE (low_sub) == INTEGER_CST
4409 && tree_int_cst_lt (low_sub, low_bound))
4410 {
4411 if (dump_file && (dump_flags & TDF_DETAILS))
4412 {
4413 fprintf (dump_file, "Array bound warning for ");
4414 dump_generic_expr (MSG_NOTE, TDF_SLIM, ref);
4415 fprintf (dump_file, "\n");
4416 }
4417 warned = warning_at (location, OPT_Warray_bounds,
4418 "array subscript %E is below array bounds of %qT",
4419 low_sub, artype);
4420 }
4421
4422 if (warned)
4423 {
4424 ref = TREE_OPERAND (ref, 0);
4425
4426 if (DECL_P (ref))
4427 inform (DECL_SOURCE_LOCATION (ref), "while referencing %qD", ref);
4428
4429 TREE_NO_WARNING (ref) = 1;
4430 }
4431 }
4432
4433 /* Checks one MEM_REF in REF, located at LOCATION, for out-of-bounds
4434 references to string constants. If VRP can determine that the array
4435 subscript is a constant, check if it is outside valid range.
4436 If the array subscript is a RANGE, warn if it is non-overlapping
4437 with valid range.
4438 IGNORE_OFF_BY_ONE is true if the MEM_REF is inside an ADDR_EXPR
4439 (used to allow one-past-the-end indices for code that takes
4440 the address of the just-past-the-end element of an array). */
4441
4442 void
4443 vrp_prop::check_mem_ref (location_t location, tree ref,
4444 bool ignore_off_by_one)
4445 {
4446 if (TREE_NO_WARNING (ref))
4447 return;
4448
4449 tree arg = TREE_OPERAND (ref, 0);
4450 /* The constant and variable offset of the reference. */
4451 tree cstoff = TREE_OPERAND (ref, 1);
4452 tree varoff = NULL_TREE;
4453
4454 const offset_int maxobjsize = tree_to_shwi (max_object_size ());
4455
4456 /* The array or string constant bounds in bytes. Initially set
4457 to [-MAXOBJSIZE - 1, MAXOBJSIZE] until a tighter bound is
4458 determined. */
4459 offset_int arrbounds[2] = { -maxobjsize - 1, maxobjsize };
4460
4461 /* The minimum and maximum intermediate offset. For a reference
4462 to be valid, not only does the final offset/subscript must be
4463 in bounds but all intermediate offsets should be as well.
4464 GCC may be able to deal gracefully with such out-of-bounds
4465 offsets so the checking is only enbaled at -Warray-bounds=2
4466 where it may help detect bugs in uses of the intermediate
4467 offsets that could otherwise not be detectable. */
4468 offset_int ioff = wi::to_offset (fold_convert (ptrdiff_type_node, cstoff));
4469 offset_int extrema[2] = { 0, wi::abs (ioff) };
4470
4471 /* The range of the byte offset into the reference. */
4472 offset_int offrange[2] = { 0, 0 };
4473
4474 const value_range *vr = NULL;
4475
4476 /* Determine the offsets and increment OFFRANGE for the bounds of each.
4477 The loop computes the the range of the final offset for expressions
4478 such as (A + i0 + ... + iN)[CSTOFF] where i0 through iN are SSA_NAMEs
4479 in some range. */
4480 while (TREE_CODE (arg) == SSA_NAME)
4481 {
4482 gimple *def = SSA_NAME_DEF_STMT (arg);
4483 if (!is_gimple_assign (def))
4484 break;
4485
4486 tree_code code = gimple_assign_rhs_code (def);
4487 if (code == POINTER_PLUS_EXPR)
4488 {
4489 arg = gimple_assign_rhs1 (def);
4490 varoff = gimple_assign_rhs2 (def);
4491 }
4492 else if (code == ASSERT_EXPR)
4493 {
4494 arg = TREE_OPERAND (gimple_assign_rhs1 (def), 0);
4495 continue;
4496 }
4497 else
4498 return;
4499
4500 /* VAROFF should always be a SSA_NAME here (and not even
4501 INTEGER_CST) but there's no point in taking chances. */
4502 if (TREE_CODE (varoff) != SSA_NAME)
4503 break;
4504
4505 vr = get_value_range (varoff);
4506 if (!vr || vr->undefined_p () || vr->varying_p ())
4507 break;
4508
4509 if (!vr->constant_p ())
4510 break;
4511
4512 if (vr->kind () == VR_RANGE)
4513 {
4514 if (tree_int_cst_lt (vr->min (), vr->max ()))
4515 {
4516 offset_int min
4517 = wi::to_offset (fold_convert (ptrdiff_type_node, vr->min ()));
4518 offset_int max
4519 = wi::to_offset (fold_convert (ptrdiff_type_node, vr->max ()));
4520 if (min < max)
4521 {
4522 offrange[0] += min;
4523 offrange[1] += max;
4524 }
4525 else
4526 {
4527 offrange[0] += max;
4528 offrange[1] += min;
4529 }
4530 }
4531 else
4532 {
4533 /* Conservatively add [-MAXOBJSIZE -1, MAXOBJSIZE]
4534 to OFFRANGE. */
4535 offrange[0] += arrbounds[0];
4536 offrange[1] += arrbounds[1];
4537 }
4538 }
4539 else
4540 {
4541 /* For an anti-range, analogously to the above, conservatively
4542 add [-MAXOBJSIZE -1, MAXOBJSIZE] to OFFRANGE. */
4543 offrange[0] += arrbounds[0];
4544 offrange[1] += arrbounds[1];
4545 }
4546
4547 /* Keep track of the minimum and maximum offset. */
4548 if (offrange[1] < 0 && offrange[1] < extrema[0])
4549 extrema[0] = offrange[1];
4550 if (offrange[0] > 0 && offrange[0] > extrema[1])
4551 extrema[1] = offrange[0];
4552
4553 if (offrange[0] < arrbounds[0])
4554 offrange[0] = arrbounds[0];
4555
4556 if (offrange[1] > arrbounds[1])
4557 offrange[1] = arrbounds[1];
4558 }
4559
4560 if (TREE_CODE (arg) == ADDR_EXPR)
4561 {
4562 arg = TREE_OPERAND (arg, 0);
4563 if (TREE_CODE (arg) != STRING_CST
4564 && TREE_CODE (arg) != VAR_DECL)
4565 return;
4566 }
4567 else
4568 return;
4569
4570 /* The type of the object being referred to. It can be an array,
4571 string literal, or a non-array type when the MEM_REF represents
4572 a reference/subscript via a pointer to an object that is not
4573 an element of an array. References to members of structs and
4574 unions are excluded because MEM_REF doesn't make it possible
4575 to identify the member where the reference originated.
4576 Incomplete types are excluded as well because their size is
4577 not known. */
4578 tree reftype = TREE_TYPE (arg);
4579 if (POINTER_TYPE_P (reftype)
4580 || !COMPLETE_TYPE_P (reftype)
4581 || TREE_CODE (TYPE_SIZE_UNIT (reftype)) != INTEGER_CST
4582 || RECORD_OR_UNION_TYPE_P (reftype))
4583 return;
4584
4585 offset_int eltsize;
4586 if (TREE_CODE (reftype) == ARRAY_TYPE)
4587 {
4588 eltsize = wi::to_offset (TYPE_SIZE_UNIT (TREE_TYPE (reftype)));
4589
4590 if (tree dom = TYPE_DOMAIN (reftype))
4591 {
4592 tree bnds[] = { TYPE_MIN_VALUE (dom), TYPE_MAX_VALUE (dom) };
4593 if (array_at_struct_end_p (arg)
4594 || !bnds[0] || !bnds[1])
4595 {
4596 arrbounds[0] = 0;
4597 arrbounds[1] = wi::lrshift (maxobjsize, wi::floor_log2 (eltsize));
4598 }
4599 else
4600 {
4601 arrbounds[0] = wi::to_offset (bnds[0]) * eltsize;
4602 arrbounds[1] = (wi::to_offset (bnds[1]) + 1) * eltsize;
4603 }
4604 }
4605 else
4606 {
4607 arrbounds[0] = 0;
4608 arrbounds[1] = wi::lrshift (maxobjsize, wi::floor_log2 (eltsize));
4609 }
4610
4611 if (TREE_CODE (ref) == MEM_REF)
4612 {
4613 /* For MEM_REF determine a tighter bound of the non-array
4614 element type. */
4615 tree eltype = TREE_TYPE (reftype);
4616 while (TREE_CODE (eltype) == ARRAY_TYPE)
4617 eltype = TREE_TYPE (eltype);
4618 eltsize = wi::to_offset (TYPE_SIZE_UNIT (eltype));
4619 }
4620 }
4621 else
4622 {
4623 eltsize = 1;
4624 arrbounds[0] = 0;
4625 arrbounds[1] = wi::to_offset (TYPE_SIZE_UNIT (reftype));
4626 }
4627
4628 offrange[0] += ioff;
4629 offrange[1] += ioff;
4630
4631 /* Compute the more permissive upper bound when IGNORE_OFF_BY_ONE
4632 is set (when taking the address of the one-past-last element
4633 of an array) but always use the stricter bound in diagnostics. */
4634 offset_int ubound = arrbounds[1];
4635 if (ignore_off_by_one)
4636 ubound += 1;
4637
4638 if (offrange[0] >= ubound || offrange[1] < arrbounds[0])
4639 {
4640 /* Treat a reference to a non-array object as one to an array
4641 of a single element. */
4642 if (TREE_CODE (reftype) != ARRAY_TYPE)
4643 reftype = build_array_type_nelts (reftype, 1);
4644
4645 if (TREE_CODE (ref) == MEM_REF)
4646 {
4647 /* Extract the element type out of MEM_REF and use its size
4648 to compute the index to print in the diagnostic; arrays
4649 in MEM_REF don't mean anything. */
4650 tree type = TREE_TYPE (ref);
4651 while (TREE_CODE (type) == ARRAY_TYPE)
4652 type = TREE_TYPE (type);
4653 tree size = TYPE_SIZE_UNIT (type);
4654 offrange[0] = offrange[0] / wi::to_offset (size);
4655 offrange[1] = offrange[1] / wi::to_offset (size);
4656 }
4657 else
4658 {
4659 /* For anything other than MEM_REF, compute the index to
4660 print in the diagnostic as the offset over element size. */
4661 offrange[0] = offrange[0] / eltsize;
4662 offrange[1] = offrange[1] / eltsize;
4663 }
4664
4665 bool warned;
4666 if (offrange[0] == offrange[1])
4667 warned = warning_at (location, OPT_Warray_bounds,
4668 "array subscript %wi is outside array bounds "
4669 "of %qT",
4670 offrange[0].to_shwi (), reftype);
4671 else
4672 warned = warning_at (location, OPT_Warray_bounds,
4673 "array subscript [%wi, %wi] is outside "
4674 "array bounds of %qT",
4675 offrange[0].to_shwi (),
4676 offrange[1].to_shwi (), reftype);
4677 if (warned && DECL_P (arg))
4678 inform (DECL_SOURCE_LOCATION (arg), "while referencing %qD", arg);
4679
4680 TREE_NO_WARNING (ref) = 1;
4681 return;
4682 }
4683
4684 if (warn_array_bounds < 2)
4685 return;
4686
4687 /* At level 2 check also intermediate offsets. */
4688 int i = 0;
4689 if (extrema[i] < -arrbounds[1] || extrema[i = 1] > ubound)
4690 {
4691 HOST_WIDE_INT tmpidx = extrema[i].to_shwi () / eltsize.to_shwi ();
4692
4693 warning_at (location, OPT_Warray_bounds,
4694 "intermediate array offset %wi is outside array bounds "
4695 "of %qT",
4696 tmpidx, reftype);
4697 TREE_NO_WARNING (ref) = 1;
4698 }
4699 }
4700
4701 /* Searches if the expr T, located at LOCATION computes
4702 address of an ARRAY_REF, and call check_array_ref on it. */
4703
4704 void
4705 vrp_prop::search_for_addr_array (tree t, location_t location)
4706 {
4707 /* Check each ARRAY_REF and MEM_REF in the reference chain. */
4708 do
4709 {
4710 if (TREE_CODE (t) == ARRAY_REF)
4711 check_array_ref (location, t, true /*ignore_off_by_one*/);
4712 else if (TREE_CODE (t) == MEM_REF)
4713 check_mem_ref (location, t, true /*ignore_off_by_one*/);
4714
4715 t = TREE_OPERAND (t, 0);
4716 }
4717 while (handled_component_p (t) || TREE_CODE (t) == MEM_REF);
4718
4719 if (TREE_CODE (t) != MEM_REF
4720 || TREE_CODE (TREE_OPERAND (t, 0)) != ADDR_EXPR
4721 || TREE_NO_WARNING (t))
4722 return;
4723
4724 tree tem = TREE_OPERAND (TREE_OPERAND (t, 0), 0);
4725 tree low_bound, up_bound, el_sz;
4726 if (TREE_CODE (TREE_TYPE (tem)) != ARRAY_TYPE
4727 || TREE_CODE (TREE_TYPE (TREE_TYPE (tem))) == ARRAY_TYPE
4728 || !TYPE_DOMAIN (TREE_TYPE (tem)))
4729 return;
4730
4731 low_bound = TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
4732 up_bound = TYPE_MAX_VALUE (TYPE_DOMAIN (TREE_TYPE (tem)));
4733 el_sz = TYPE_SIZE_UNIT (TREE_TYPE (TREE_TYPE (tem)));
4734 if (!low_bound
4735 || TREE_CODE (low_bound) != INTEGER_CST
4736 || !up_bound
4737 || TREE_CODE (up_bound) != INTEGER_CST
4738 || !el_sz
4739 || TREE_CODE (el_sz) != INTEGER_CST)
4740 return;
4741
4742 offset_int idx;
4743 if (!mem_ref_offset (t).is_constant (&idx))
4744 return;
4745
4746 bool warned = false;
4747 idx = wi::sdiv_trunc (idx, wi::to_offset (el_sz));
4748 if (idx < 0)
4749 {
4750 if (dump_file && (dump_flags & TDF_DETAILS))
4751 {
4752 fprintf (dump_file, "Array bound warning for ");
4753 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
4754 fprintf (dump_file, "\n");
4755 }
4756 warned = warning_at (location, OPT_Warray_bounds,
4757 "array subscript %wi is below "
4758 "array bounds of %qT",
4759 idx.to_shwi (), TREE_TYPE (tem));
4760 }
4761 else if (idx > (wi::to_offset (up_bound)
4762 - wi::to_offset (low_bound) + 1))
4763 {
4764 if (dump_file && (dump_flags & TDF_DETAILS))
4765 {
4766 fprintf (dump_file, "Array bound warning for ");
4767 dump_generic_expr (MSG_NOTE, TDF_SLIM, t);
4768 fprintf (dump_file, "\n");
4769 }
4770 warned = warning_at (location, OPT_Warray_bounds,
4771 "array subscript %wu is above "
4772 "array bounds of %qT",
4773 idx.to_uhwi (), TREE_TYPE (tem));
4774 }
4775
4776 if (warned)
4777 {
4778 if (DECL_P (t))
4779 inform (DECL_SOURCE_LOCATION (t), "while referencing %qD", t);
4780
4781 TREE_NO_WARNING (t) = 1;
4782 }
4783 }
4784
4785 /* walk_tree() callback that checks if *TP is
4786 an ARRAY_REF inside an ADDR_EXPR (in which an array
4787 subscript one outside the valid range is allowed). Call
4788 check_array_ref for each ARRAY_REF found. The location is
4789 passed in DATA. */
4790
4791 static tree
4792 check_array_bounds (tree *tp, int *walk_subtree, void *data)
4793 {
4794 tree t = *tp;
4795 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
4796 location_t location;
4797
4798 if (EXPR_HAS_LOCATION (t))
4799 location = EXPR_LOCATION (t);
4800 else
4801 location = gimple_location (wi->stmt);
4802
4803 *walk_subtree = TRUE;
4804
4805 vrp_prop *vrp_prop = (class vrp_prop *)wi->info;
4806 if (TREE_CODE (t) == ARRAY_REF)
4807 vrp_prop->check_array_ref (location, t, false /*ignore_off_by_one*/);
4808 else if (TREE_CODE (t) == MEM_REF)
4809 vrp_prop->check_mem_ref (location, t, false /*ignore_off_by_one*/);
4810 else if (TREE_CODE (t) == ADDR_EXPR)
4811 {
4812 vrp_prop->search_for_addr_array (t, location);
4813 *walk_subtree = FALSE;
4814 }
4815
4816 return NULL_TREE;
4817 }
4818
4819 /* A dom_walker subclass for use by vrp_prop::check_all_array_refs,
4820 to walk over all statements of all reachable BBs and call
4821 check_array_bounds on them. */
4822
4823 class check_array_bounds_dom_walker : public dom_walker
4824 {
4825 public:
4826 check_array_bounds_dom_walker (vrp_prop *prop)
4827 : dom_walker (CDI_DOMINATORS,
4828 /* Discover non-executable edges, preserving EDGE_EXECUTABLE
4829 flags, so that we can merge in information on
4830 non-executable edges from vrp_folder . */
4831 REACHABLE_BLOCKS_PRESERVING_FLAGS),
4832 m_prop (prop) {}
4833 ~check_array_bounds_dom_walker () {}
4834
4835 edge before_dom_children (basic_block) FINAL OVERRIDE;
4836
4837 private:
4838 vrp_prop *m_prop;
4839 };
4840
4841 /* Implementation of dom_walker::before_dom_children.
4842
4843 Walk over all statements of BB and call check_array_bounds on them,
4844 and determine if there's a unique successor edge. */
4845
4846 edge
4847 check_array_bounds_dom_walker::before_dom_children (basic_block bb)
4848 {
4849 gimple_stmt_iterator si;
4850 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4851 {
4852 gimple *stmt = gsi_stmt (si);
4853 struct walk_stmt_info wi;
4854 if (!gimple_has_location (stmt)
4855 || is_gimple_debug (stmt))
4856 continue;
4857
4858 memset (&wi, 0, sizeof (wi));
4859
4860 wi.info = m_prop;
4861
4862 walk_gimple_op (stmt, check_array_bounds, &wi);
4863 }
4864
4865 /* Determine if there's a unique successor edge, and if so, return
4866 that back to dom_walker, ensuring that we don't visit blocks that
4867 became unreachable during the VRP propagation
4868 (PR tree-optimization/83312). */
4869 return find_taken_edge (bb, NULL_TREE);
4870 }
4871
4872 /* Walk over all statements of all reachable BBs and call check_array_bounds
4873 on them. */
4874
4875 void
4876 vrp_prop::check_all_array_refs ()
4877 {
4878 check_array_bounds_dom_walker w (this);
4879 w.walk (ENTRY_BLOCK_PTR_FOR_FN (cfun));
4880 }
4881
4882 /* Return true if all imm uses of VAR are either in STMT, or
4883 feed (optionally through a chain of single imm uses) GIMPLE_COND
4884 in basic block COND_BB. */
4885
4886 static bool
4887 all_imm_uses_in_stmt_or_feed_cond (tree var, gimple *stmt, basic_block cond_bb)
4888 {
4889 use_operand_p use_p, use2_p;
4890 imm_use_iterator iter;
4891
4892 FOR_EACH_IMM_USE_FAST (use_p, iter, var)
4893 if (USE_STMT (use_p) != stmt)
4894 {
4895 gimple *use_stmt = USE_STMT (use_p), *use_stmt2;
4896 if (is_gimple_debug (use_stmt))
4897 continue;
4898 while (is_gimple_assign (use_stmt)
4899 && TREE_CODE (gimple_assign_lhs (use_stmt)) == SSA_NAME
4900 && single_imm_use (gimple_assign_lhs (use_stmt),
4901 &use2_p, &use_stmt2))
4902 use_stmt = use_stmt2;
4903 if (gimple_code (use_stmt) != GIMPLE_COND
4904 || gimple_bb (use_stmt) != cond_bb)
4905 return false;
4906 }
4907 return true;
4908 }
4909
4910 /* Handle
4911 _4 = x_3 & 31;
4912 if (_4 != 0)
4913 goto <bb 6>;
4914 else
4915 goto <bb 7>;
4916 <bb 6>:
4917 __builtin_unreachable ();
4918 <bb 7>:
4919 x_5 = ASSERT_EXPR <x_3, ...>;
4920 If x_3 has no other immediate uses (checked by caller),
4921 var is the x_3 var from ASSERT_EXPR, we can clear low 5 bits
4922 from the non-zero bitmask. */
4923
4924 void
4925 maybe_set_nonzero_bits (edge e, tree var)
4926 {
4927 basic_block cond_bb = e->src;
4928 gimple *stmt = last_stmt (cond_bb);
4929 tree cst;
4930
4931 if (stmt == NULL
4932 || gimple_code (stmt) != GIMPLE_COND
4933 || gimple_cond_code (stmt) != ((e->flags & EDGE_TRUE_VALUE)
4934 ? EQ_EXPR : NE_EXPR)
4935 || TREE_CODE (gimple_cond_lhs (stmt)) != SSA_NAME
4936 || !integer_zerop (gimple_cond_rhs (stmt)))
4937 return;
4938
4939 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (stmt));
4940 if (!is_gimple_assign (stmt)
4941 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR
4942 || TREE_CODE (gimple_assign_rhs2 (stmt)) != INTEGER_CST)
4943 return;
4944 if (gimple_assign_rhs1 (stmt) != var)
4945 {
4946 gimple *stmt2;
4947
4948 if (TREE_CODE (gimple_assign_rhs1 (stmt)) != SSA_NAME)
4949 return;
4950 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
4951 if (!gimple_assign_cast_p (stmt2)
4952 || gimple_assign_rhs1 (stmt2) != var
4953 || !CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt2))
4954 || (TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))
4955 != TYPE_PRECISION (TREE_TYPE (var))))
4956 return;
4957 }
4958 cst = gimple_assign_rhs2 (stmt);
4959 set_nonzero_bits (var, wi::bit_and_not (get_nonzero_bits (var),
4960 wi::to_wide (cst)));
4961 }
4962
4963 /* Convert range assertion expressions into the implied copies and
4964 copy propagate away the copies. Doing the trivial copy propagation
4965 here avoids the need to run the full copy propagation pass after
4966 VRP.
4967
4968 FIXME, this will eventually lead to copy propagation removing the
4969 names that had useful range information attached to them. For
4970 instance, if we had the assertion N_i = ASSERT_EXPR <N_j, N_j > 3>,
4971 then N_i will have the range [3, +INF].
4972
4973 However, by converting the assertion into the implied copy
4974 operation N_i = N_j, we will then copy-propagate N_j into the uses
4975 of N_i and lose the range information. We may want to hold on to
4976 ASSERT_EXPRs a little while longer as the ranges could be used in
4977 things like jump threading.
4978
4979 The problem with keeping ASSERT_EXPRs around is that passes after
4980 VRP need to handle them appropriately.
4981
4982 Another approach would be to make the range information a first
4983 class property of the SSA_NAME so that it can be queried from
4984 any pass. This is made somewhat more complex by the need for
4985 multiple ranges to be associated with one SSA_NAME. */
4986
4987 static void
4988 remove_range_assertions (void)
4989 {
4990 basic_block bb;
4991 gimple_stmt_iterator si;
4992 /* 1 if looking at ASSERT_EXPRs immediately at the beginning of
4993 a basic block preceeded by GIMPLE_COND branching to it and
4994 __builtin_trap, -1 if not yet checked, 0 otherwise. */
4995 int is_unreachable;
4996
4997 /* Note that the BSI iterator bump happens at the bottom of the
4998 loop and no bump is necessary if we're removing the statement
4999 referenced by the current BSI. */
5000 FOR_EACH_BB_FN (bb, cfun)
5001 for (si = gsi_after_labels (bb), is_unreachable = -1; !gsi_end_p (si);)
5002 {
5003 gimple *stmt = gsi_stmt (si);
5004
5005 if (is_gimple_assign (stmt)
5006 && gimple_assign_rhs_code (stmt) == ASSERT_EXPR)
5007 {
5008 tree lhs = gimple_assign_lhs (stmt);
5009 tree rhs = gimple_assign_rhs1 (stmt);
5010 tree var;
5011
5012 var = ASSERT_EXPR_VAR (rhs);
5013
5014 if (TREE_CODE (var) == SSA_NAME
5015 && !POINTER_TYPE_P (TREE_TYPE (lhs))
5016 && SSA_NAME_RANGE_INFO (lhs))
5017 {
5018 if (is_unreachable == -1)
5019 {
5020 is_unreachable = 0;
5021 if (single_pred_p (bb)
5022 && assert_unreachable_fallthru_edge_p
5023 (single_pred_edge (bb)))
5024 is_unreachable = 1;
5025 }
5026 /* Handle
5027 if (x_7 >= 10 && x_7 < 20)
5028 __builtin_unreachable ();
5029 x_8 = ASSERT_EXPR <x_7, ...>;
5030 if the only uses of x_7 are in the ASSERT_EXPR and
5031 in the condition. In that case, we can copy the
5032 range info from x_8 computed in this pass also
5033 for x_7. */
5034 if (is_unreachable
5035 && all_imm_uses_in_stmt_or_feed_cond (var, stmt,
5036 single_pred (bb)))
5037 {
5038 set_range_info (var, SSA_NAME_RANGE_TYPE (lhs),
5039 SSA_NAME_RANGE_INFO (lhs)->get_min (),
5040 SSA_NAME_RANGE_INFO (lhs)->get_max ());
5041 maybe_set_nonzero_bits (single_pred_edge (bb), var);
5042 }
5043 }
5044
5045 /* Propagate the RHS into every use of the LHS. For SSA names
5046 also propagate abnormals as it merely restores the original
5047 IL in this case (an replace_uses_by would assert). */
5048 if (TREE_CODE (var) == SSA_NAME)
5049 {
5050 imm_use_iterator iter;
5051 use_operand_p use_p;
5052 gimple *use_stmt;
5053 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
5054 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
5055 SET_USE (use_p, var);
5056 }
5057 else
5058 replace_uses_by (lhs, var);
5059
5060 /* And finally, remove the copy, it is not needed. */
5061 gsi_remove (&si, true);
5062 release_defs (stmt);
5063 }
5064 else
5065 {
5066 if (!is_gimple_debug (gsi_stmt (si)))
5067 is_unreachable = 0;
5068 gsi_next (&si);
5069 }
5070 }
5071 }
5072
5073 /* Return true if STMT is interesting for VRP. */
5074
5075 bool
5076 stmt_interesting_for_vrp (gimple *stmt)
5077 {
5078 if (gimple_code (stmt) == GIMPLE_PHI)
5079 {
5080 tree res = gimple_phi_result (stmt);
5081 return (!virtual_operand_p (res)
5082 && (INTEGRAL_TYPE_P (TREE_TYPE (res))
5083 || POINTER_TYPE_P (TREE_TYPE (res))));
5084 }
5085 else if (is_gimple_assign (stmt) || is_gimple_call (stmt))
5086 {
5087 tree lhs = gimple_get_lhs (stmt);
5088
5089 /* In general, assignments with virtual operands are not useful
5090 for deriving ranges, with the obvious exception of calls to
5091 builtin functions. */
5092 if (lhs && TREE_CODE (lhs) == SSA_NAME
5093 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
5094 || POINTER_TYPE_P (TREE_TYPE (lhs)))
5095 && (is_gimple_call (stmt)
5096 || !gimple_vuse (stmt)))
5097 return true;
5098 else if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
5099 switch (gimple_call_internal_fn (stmt))
5100 {
5101 case IFN_ADD_OVERFLOW:
5102 case IFN_SUB_OVERFLOW:
5103 case IFN_MUL_OVERFLOW:
5104 case IFN_ATOMIC_COMPARE_EXCHANGE:
5105 /* These internal calls return _Complex integer type,
5106 but are interesting to VRP nevertheless. */
5107 if (lhs && TREE_CODE (lhs) == SSA_NAME)
5108 return true;
5109 break;
5110 default:
5111 break;
5112 }
5113 }
5114 else if (gimple_code (stmt) == GIMPLE_COND
5115 || gimple_code (stmt) == GIMPLE_SWITCH)
5116 return true;
5117
5118 return false;
5119 }
5120
5121 /* Initialization required by ssa_propagate engine. */
5122
5123 void
5124 vrp_prop::vrp_initialize ()
5125 {
5126 basic_block bb;
5127
5128 FOR_EACH_BB_FN (bb, cfun)
5129 {
5130 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
5131 gsi_next (&si))
5132 {
5133 gphi *phi = si.phi ();
5134 if (!stmt_interesting_for_vrp (phi))
5135 {
5136 tree lhs = PHI_RESULT (phi);
5137 set_value_range_to_varying (get_value_range (lhs));
5138 prop_set_simulate_again (phi, false);
5139 }
5140 else
5141 prop_set_simulate_again (phi, true);
5142 }
5143
5144 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
5145 gsi_next (&si))
5146 {
5147 gimple *stmt = gsi_stmt (si);
5148
5149 /* If the statement is a control insn, then we do not
5150 want to avoid simulating the statement once. Failure
5151 to do so means that those edges will never get added. */
5152 if (stmt_ends_bb_p (stmt))
5153 prop_set_simulate_again (stmt, true);
5154 else if (!stmt_interesting_for_vrp (stmt))
5155 {
5156 set_defs_to_varying (stmt);
5157 prop_set_simulate_again (stmt, false);
5158 }
5159 else
5160 prop_set_simulate_again (stmt, true);
5161 }
5162 }
5163 }
5164
5165 /* Searches the case label vector VEC for the index *IDX of the CASE_LABEL
5166 that includes the value VAL. The search is restricted to the range
5167 [START_IDX, n - 1] where n is the size of VEC.
5168
5169 If there is a CASE_LABEL for VAL, its index is placed in IDX and true is
5170 returned.
5171
5172 If there is no CASE_LABEL for VAL and there is one that is larger than VAL,
5173 it is placed in IDX and false is returned.
5174
5175 If VAL is larger than any CASE_LABEL, n is placed on IDX and false is
5176 returned. */
5177
5178 bool
5179 find_case_label_index (gswitch *stmt, size_t start_idx, tree val, size_t *idx)
5180 {
5181 size_t n = gimple_switch_num_labels (stmt);
5182 size_t low, high;
5183
5184 /* Find case label for minimum of the value range or the next one.
5185 At each iteration we are searching in [low, high - 1]. */
5186
5187 for (low = start_idx, high = n; high != low; )
5188 {
5189 tree t;
5190 int cmp;
5191 /* Note that i != high, so we never ask for n. */
5192 size_t i = (high + low) / 2;
5193 t = gimple_switch_label (stmt, i);
5194
5195 /* Cache the result of comparing CASE_LOW and val. */
5196 cmp = tree_int_cst_compare (CASE_LOW (t), val);
5197
5198 if (cmp == 0)
5199 {
5200 /* Ranges cannot be empty. */
5201 *idx = i;
5202 return true;
5203 }
5204 else if (cmp > 0)
5205 high = i;
5206 else
5207 {
5208 low = i + 1;
5209 if (CASE_HIGH (t) != NULL
5210 && tree_int_cst_compare (CASE_HIGH (t), val) >= 0)
5211 {
5212 *idx = i;
5213 return true;
5214 }
5215 }
5216 }
5217
5218 *idx = high;
5219 return false;
5220 }
5221
5222 /* Searches the case label vector VEC for the range of CASE_LABELs that is used
5223 for values between MIN and MAX. The first index is placed in MIN_IDX. The
5224 last index is placed in MAX_IDX. If the range of CASE_LABELs is empty
5225 then MAX_IDX < MIN_IDX.
5226 Returns true if the default label is not needed. */
5227
5228 bool
5229 find_case_label_range (gswitch *stmt, tree min, tree max, size_t *min_idx,
5230 size_t *max_idx)
5231 {
5232 size_t i, j;
5233 bool min_take_default = !find_case_label_index (stmt, 1, min, &i);
5234 bool max_take_default = !find_case_label_index (stmt, i, max, &j);
5235
5236 if (i == j
5237 && min_take_default
5238 && max_take_default)
5239 {
5240 /* Only the default case label reached.
5241 Return an empty range. */
5242 *min_idx = 1;
5243 *max_idx = 0;
5244 return false;
5245 }
5246 else
5247 {
5248 bool take_default = min_take_default || max_take_default;
5249 tree low, high;
5250 size_t k;
5251
5252 if (max_take_default)
5253 j--;
5254
5255 /* If the case label range is continuous, we do not need
5256 the default case label. Verify that. */
5257 high = CASE_LOW (gimple_switch_label (stmt, i));
5258 if (CASE_HIGH (gimple_switch_label (stmt, i)))
5259 high = CASE_HIGH (gimple_switch_label (stmt, i));
5260 for (k = i + 1; k <= j; ++k)
5261 {
5262 low = CASE_LOW (gimple_switch_label (stmt, k));
5263 if (!integer_onep (int_const_binop (MINUS_EXPR, low, high)))
5264 {
5265 take_default = true;
5266 break;
5267 }
5268 high = low;
5269 if (CASE_HIGH (gimple_switch_label (stmt, k)))
5270 high = CASE_HIGH (gimple_switch_label (stmt, k));
5271 }
5272
5273 *min_idx = i;
5274 *max_idx = j;
5275 return !take_default;
5276 }
5277 }
5278
5279 /* Evaluate statement STMT. If the statement produces a useful range,
5280 return SSA_PROP_INTERESTING and record the SSA name with the
5281 interesting range into *OUTPUT_P.
5282
5283 If STMT is a conditional branch and we can determine its truth
5284 value, the taken edge is recorded in *TAKEN_EDGE_P.
5285
5286 If STMT produces a varying value, return SSA_PROP_VARYING. */
5287
5288 enum ssa_prop_result
5289 vrp_prop::visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
5290 {
5291 tree lhs = gimple_get_lhs (stmt);
5292 value_range vr;
5293 extract_range_from_stmt (stmt, taken_edge_p, output_p, &vr);
5294
5295 if (*output_p)
5296 {
5297 if (update_value_range (*output_p, &vr))
5298 {
5299 if (dump_file && (dump_flags & TDF_DETAILS))
5300 {
5301 fprintf (dump_file, "Found new range for ");
5302 print_generic_expr (dump_file, *output_p);
5303 fprintf (dump_file, ": ");
5304 dump_value_range (dump_file, &vr);
5305 fprintf (dump_file, "\n");
5306 }
5307
5308 if (vr.varying_p ())
5309 return SSA_PROP_VARYING;
5310
5311 return SSA_PROP_INTERESTING;
5312 }
5313 return SSA_PROP_NOT_INTERESTING;
5314 }
5315
5316 if (is_gimple_call (stmt) && gimple_call_internal_p (stmt))
5317 switch (gimple_call_internal_fn (stmt))
5318 {
5319 case IFN_ADD_OVERFLOW:
5320 case IFN_SUB_OVERFLOW:
5321 case IFN_MUL_OVERFLOW:
5322 case IFN_ATOMIC_COMPARE_EXCHANGE:
5323 /* These internal calls return _Complex integer type,
5324 which VRP does not track, but the immediate uses
5325 thereof might be interesting. */
5326 if (lhs && TREE_CODE (lhs) == SSA_NAME)
5327 {
5328 imm_use_iterator iter;
5329 use_operand_p use_p;
5330 enum ssa_prop_result res = SSA_PROP_VARYING;
5331
5332 set_value_range_to_varying (get_value_range (lhs));
5333
5334 FOR_EACH_IMM_USE_FAST (use_p, iter, lhs)
5335 {
5336 gimple *use_stmt = USE_STMT (use_p);
5337 if (!is_gimple_assign (use_stmt))
5338 continue;
5339 enum tree_code rhs_code = gimple_assign_rhs_code (use_stmt);
5340 if (rhs_code != REALPART_EXPR && rhs_code != IMAGPART_EXPR)
5341 continue;
5342 tree rhs1 = gimple_assign_rhs1 (use_stmt);
5343 tree use_lhs = gimple_assign_lhs (use_stmt);
5344 if (TREE_CODE (rhs1) != rhs_code
5345 || TREE_OPERAND (rhs1, 0) != lhs
5346 || TREE_CODE (use_lhs) != SSA_NAME
5347 || !stmt_interesting_for_vrp (use_stmt)
5348 || (!INTEGRAL_TYPE_P (TREE_TYPE (use_lhs))
5349 || !TYPE_MIN_VALUE (TREE_TYPE (use_lhs))
5350 || !TYPE_MAX_VALUE (TREE_TYPE (use_lhs))))
5351 continue;
5352
5353 /* If there is a change in the value range for any of the
5354 REALPART_EXPR/IMAGPART_EXPR immediate uses, return
5355 SSA_PROP_INTERESTING. If there are any REALPART_EXPR
5356 or IMAGPART_EXPR immediate uses, but none of them have
5357 a change in their value ranges, return
5358 SSA_PROP_NOT_INTERESTING. If there are no
5359 {REAL,IMAG}PART_EXPR uses at all,
5360 return SSA_PROP_VARYING. */
5361 value_range new_vr;
5362 extract_range_basic (&new_vr, use_stmt);
5363 const value_range *old_vr = get_value_range (use_lhs);
5364 if (*old_vr != new_vr)
5365 res = SSA_PROP_INTERESTING;
5366 else
5367 res = SSA_PROP_NOT_INTERESTING;
5368 new_vr.equiv_clear ();
5369 if (res == SSA_PROP_INTERESTING)
5370 {
5371 *output_p = lhs;
5372 return res;
5373 }
5374 }
5375
5376 return res;
5377 }
5378 break;
5379 default:
5380 break;
5381 }
5382
5383 /* All other statements produce nothing of interest for VRP, so mark
5384 their outputs varying and prevent further simulation. */
5385 set_defs_to_varying (stmt);
5386
5387 return (*taken_edge_p) ? SSA_PROP_INTERESTING : SSA_PROP_VARYING;
5388 }
5389
5390 /* Union the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
5391 { VR1TYPE, VR0MIN, VR0MAX } and store the result
5392 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
5393 possible such range. The resulting range is not canonicalized. */
5394
5395 static void
5396 union_ranges (enum value_range_kind *vr0type,
5397 tree *vr0min, tree *vr0max,
5398 enum value_range_kind vr1type,
5399 tree vr1min, tree vr1max)
5400 {
5401 bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
5402 bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
5403
5404 /* [] is vr0, () is vr1 in the following classification comments. */
5405 if (mineq && maxeq)
5406 {
5407 /* [( )] */
5408 if (*vr0type == vr1type)
5409 /* Nothing to do for equal ranges. */
5410 ;
5411 else if ((*vr0type == VR_RANGE
5412 && vr1type == VR_ANTI_RANGE)
5413 || (*vr0type == VR_ANTI_RANGE
5414 && vr1type == VR_RANGE))
5415 {
5416 /* For anti-range with range union the result is varying. */
5417 goto give_up;
5418 }
5419 else
5420 gcc_unreachable ();
5421 }
5422 else if (operand_less_p (*vr0max, vr1min) == 1
5423 || operand_less_p (vr1max, *vr0min) == 1)
5424 {
5425 /* [ ] ( ) or ( ) [ ]
5426 If the ranges have an empty intersection, result of the union
5427 operation is the anti-range or if both are anti-ranges
5428 it covers all. */
5429 if (*vr0type == VR_ANTI_RANGE
5430 && vr1type == VR_ANTI_RANGE)
5431 goto give_up;
5432 else if (*vr0type == VR_ANTI_RANGE
5433 && vr1type == VR_RANGE)
5434 ;
5435 else if (*vr0type == VR_RANGE
5436 && vr1type == VR_ANTI_RANGE)
5437 {
5438 *vr0type = vr1type;
5439 *vr0min = vr1min;
5440 *vr0max = vr1max;
5441 }
5442 else if (*vr0type == VR_RANGE
5443 && vr1type == VR_RANGE)
5444 {
5445 /* The result is the convex hull of both ranges. */
5446 if (operand_less_p (*vr0max, vr1min) == 1)
5447 {
5448 /* If the result can be an anti-range, create one. */
5449 if (TREE_CODE (*vr0max) == INTEGER_CST
5450 && TREE_CODE (vr1min) == INTEGER_CST
5451 && vrp_val_is_min (*vr0min)
5452 && vrp_val_is_max (vr1max))
5453 {
5454 tree min = int_const_binop (PLUS_EXPR,
5455 *vr0max,
5456 build_int_cst (TREE_TYPE (*vr0max), 1));
5457 tree max = int_const_binop (MINUS_EXPR,
5458 vr1min,
5459 build_int_cst (TREE_TYPE (vr1min), 1));
5460 if (!operand_less_p (max, min))
5461 {
5462 *vr0type = VR_ANTI_RANGE;
5463 *vr0min = min;
5464 *vr0max = max;
5465 }
5466 else
5467 *vr0max = vr1max;
5468 }
5469 else
5470 *vr0max = vr1max;
5471 }
5472 else
5473 {
5474 /* If the result can be an anti-range, create one. */
5475 if (TREE_CODE (vr1max) == INTEGER_CST
5476 && TREE_CODE (*vr0min) == INTEGER_CST
5477 && vrp_val_is_min (vr1min)
5478 && vrp_val_is_max (*vr0max))
5479 {
5480 tree min = int_const_binop (PLUS_EXPR,
5481 vr1max,
5482 build_int_cst (TREE_TYPE (vr1max), 1));
5483 tree max = int_const_binop (MINUS_EXPR,
5484 *vr0min,
5485 build_int_cst (TREE_TYPE (*vr0min), 1));
5486 if (!operand_less_p (max, min))
5487 {
5488 *vr0type = VR_ANTI_RANGE;
5489 *vr0min = min;
5490 *vr0max = max;
5491 }
5492 else
5493 *vr0min = vr1min;
5494 }
5495 else
5496 *vr0min = vr1min;
5497 }
5498 }
5499 else
5500 gcc_unreachable ();
5501 }
5502 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
5503 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
5504 {
5505 /* [ ( ) ] or [( ) ] or [ ( )] */
5506 if (*vr0type == VR_RANGE
5507 && vr1type == VR_RANGE)
5508 ;
5509 else if (*vr0type == VR_ANTI_RANGE
5510 && vr1type == VR_ANTI_RANGE)
5511 {
5512 *vr0type = vr1type;
5513 *vr0min = vr1min;
5514 *vr0max = vr1max;
5515 }
5516 else if (*vr0type == VR_ANTI_RANGE
5517 && vr1type == VR_RANGE)
5518 {
5519 /* Arbitrarily choose the right or left gap. */
5520 if (!mineq && TREE_CODE (vr1min) == INTEGER_CST)
5521 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
5522 build_int_cst (TREE_TYPE (vr1min), 1));
5523 else if (!maxeq && TREE_CODE (vr1max) == INTEGER_CST)
5524 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
5525 build_int_cst (TREE_TYPE (vr1max), 1));
5526 else
5527 goto give_up;
5528 }
5529 else if (*vr0type == VR_RANGE
5530 && vr1type == VR_ANTI_RANGE)
5531 /* The result covers everything. */
5532 goto give_up;
5533 else
5534 gcc_unreachable ();
5535 }
5536 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
5537 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
5538 {
5539 /* ( [ ] ) or ([ ] ) or ( [ ]) */
5540 if (*vr0type == VR_RANGE
5541 && vr1type == VR_RANGE)
5542 {
5543 *vr0type = vr1type;
5544 *vr0min = vr1min;
5545 *vr0max = vr1max;
5546 }
5547 else if (*vr0type == VR_ANTI_RANGE
5548 && vr1type == VR_ANTI_RANGE)
5549 ;
5550 else if (*vr0type == VR_RANGE
5551 && vr1type == VR_ANTI_RANGE)
5552 {
5553 *vr0type = VR_ANTI_RANGE;
5554 if (!mineq && TREE_CODE (*vr0min) == INTEGER_CST)
5555 {
5556 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
5557 build_int_cst (TREE_TYPE (*vr0min), 1));
5558 *vr0min = vr1min;
5559 }
5560 else if (!maxeq && TREE_CODE (*vr0max) == INTEGER_CST)
5561 {
5562 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
5563 build_int_cst (TREE_TYPE (*vr0max), 1));
5564 *vr0max = vr1max;
5565 }
5566 else
5567 goto give_up;
5568 }
5569 else if (*vr0type == VR_ANTI_RANGE
5570 && vr1type == VR_RANGE)
5571 /* The result covers everything. */
5572 goto give_up;
5573 else
5574 gcc_unreachable ();
5575 }
5576 else if ((operand_less_p (vr1min, *vr0max) == 1
5577 || operand_equal_p (vr1min, *vr0max, 0))
5578 && operand_less_p (*vr0min, vr1min) == 1
5579 && operand_less_p (*vr0max, vr1max) == 1)
5580 {
5581 /* [ ( ] ) or [ ]( ) */
5582 if (*vr0type == VR_RANGE
5583 && vr1type == VR_RANGE)
5584 *vr0max = vr1max;
5585 else if (*vr0type == VR_ANTI_RANGE
5586 && vr1type == VR_ANTI_RANGE)
5587 *vr0min = vr1min;
5588 else if (*vr0type == VR_ANTI_RANGE
5589 && vr1type == VR_RANGE)
5590 {
5591 if (TREE_CODE (vr1min) == INTEGER_CST)
5592 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
5593 build_int_cst (TREE_TYPE (vr1min), 1));
5594 else
5595 goto give_up;
5596 }
5597 else if (*vr0type == VR_RANGE
5598 && vr1type == VR_ANTI_RANGE)
5599 {
5600 if (TREE_CODE (*vr0max) == INTEGER_CST)
5601 {
5602 *vr0type = vr1type;
5603 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
5604 build_int_cst (TREE_TYPE (*vr0max), 1));
5605 *vr0max = vr1max;
5606 }
5607 else
5608 goto give_up;
5609 }
5610 else
5611 gcc_unreachable ();
5612 }
5613 else if ((operand_less_p (*vr0min, vr1max) == 1
5614 || operand_equal_p (*vr0min, vr1max, 0))
5615 && operand_less_p (vr1min, *vr0min) == 1
5616 && operand_less_p (vr1max, *vr0max) == 1)
5617 {
5618 /* ( [ ) ] or ( )[ ] */
5619 if (*vr0type == VR_RANGE
5620 && vr1type == VR_RANGE)
5621 *vr0min = vr1min;
5622 else if (*vr0type == VR_ANTI_RANGE
5623 && vr1type == VR_ANTI_RANGE)
5624 *vr0max = vr1max;
5625 else if (*vr0type == VR_ANTI_RANGE
5626 && vr1type == VR_RANGE)
5627 {
5628 if (TREE_CODE (vr1max) == INTEGER_CST)
5629 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
5630 build_int_cst (TREE_TYPE (vr1max), 1));
5631 else
5632 goto give_up;
5633 }
5634 else if (*vr0type == VR_RANGE
5635 && vr1type == VR_ANTI_RANGE)
5636 {
5637 if (TREE_CODE (*vr0min) == INTEGER_CST)
5638 {
5639 *vr0type = vr1type;
5640 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
5641 build_int_cst (TREE_TYPE (*vr0min), 1));
5642 *vr0min = vr1min;
5643 }
5644 else
5645 goto give_up;
5646 }
5647 else
5648 gcc_unreachable ();
5649 }
5650 else
5651 goto give_up;
5652
5653 return;
5654
5655 give_up:
5656 *vr0type = VR_VARYING;
5657 *vr0min = NULL_TREE;
5658 *vr0max = NULL_TREE;
5659 }
5660
5661 /* Intersect the two value-ranges { *VR0TYPE, *VR0MIN, *VR0MAX } and
5662 { VR1TYPE, VR0MIN, VR0MAX } and store the result
5663 in { *VR0TYPE, *VR0MIN, *VR0MAX }. This may not be the smallest
5664 possible such range. The resulting range is not canonicalized. */
5665
5666 static void
5667 intersect_ranges (enum value_range_kind *vr0type,
5668 tree *vr0min, tree *vr0max,
5669 enum value_range_kind vr1type,
5670 tree vr1min, tree vr1max)
5671 {
5672 bool mineq = vrp_operand_equal_p (*vr0min, vr1min);
5673 bool maxeq = vrp_operand_equal_p (*vr0max, vr1max);
5674
5675 /* [] is vr0, () is vr1 in the following classification comments. */
5676 if (mineq && maxeq)
5677 {
5678 /* [( )] */
5679 if (*vr0type == vr1type)
5680 /* Nothing to do for equal ranges. */
5681 ;
5682 else if ((*vr0type == VR_RANGE
5683 && vr1type == VR_ANTI_RANGE)
5684 || (*vr0type == VR_ANTI_RANGE
5685 && vr1type == VR_RANGE))
5686 {
5687 /* For anti-range with range intersection the result is empty. */
5688 *vr0type = VR_UNDEFINED;
5689 *vr0min = NULL_TREE;
5690 *vr0max = NULL_TREE;
5691 }
5692 else
5693 gcc_unreachable ();
5694 }
5695 else if (operand_less_p (*vr0max, vr1min) == 1
5696 || operand_less_p (vr1max, *vr0min) == 1)
5697 {
5698 /* [ ] ( ) or ( ) [ ]
5699 If the ranges have an empty intersection, the result of the
5700 intersect operation is the range for intersecting an
5701 anti-range with a range or empty when intersecting two ranges. */
5702 if (*vr0type == VR_RANGE
5703 && vr1type == VR_ANTI_RANGE)
5704 ;
5705 else if (*vr0type == VR_ANTI_RANGE
5706 && vr1type == VR_RANGE)
5707 {
5708 *vr0type = vr1type;
5709 *vr0min = vr1min;
5710 *vr0max = vr1max;
5711 }
5712 else if (*vr0type == VR_RANGE
5713 && vr1type == VR_RANGE)
5714 {
5715 *vr0type = VR_UNDEFINED;
5716 *vr0min = NULL_TREE;
5717 *vr0max = NULL_TREE;
5718 }
5719 else if (*vr0type == VR_ANTI_RANGE
5720 && vr1type == VR_ANTI_RANGE)
5721 {
5722 /* If the anti-ranges are adjacent to each other merge them. */
5723 if (TREE_CODE (*vr0max) == INTEGER_CST
5724 && TREE_CODE (vr1min) == INTEGER_CST
5725 && operand_less_p (*vr0max, vr1min) == 1
5726 && integer_onep (int_const_binop (MINUS_EXPR,
5727 vr1min, *vr0max)))
5728 *vr0max = vr1max;
5729 else if (TREE_CODE (vr1max) == INTEGER_CST
5730 && TREE_CODE (*vr0min) == INTEGER_CST
5731 && operand_less_p (vr1max, *vr0min) == 1
5732 && integer_onep (int_const_binop (MINUS_EXPR,
5733 *vr0min, vr1max)))
5734 *vr0min = vr1min;
5735 /* Else arbitrarily take VR0. */
5736 }
5737 }
5738 else if ((maxeq || operand_less_p (vr1max, *vr0max) == 1)
5739 && (mineq || operand_less_p (*vr0min, vr1min) == 1))
5740 {
5741 /* [ ( ) ] or [( ) ] or [ ( )] */
5742 if (*vr0type == VR_RANGE
5743 && vr1type == VR_RANGE)
5744 {
5745 /* If both are ranges the result is the inner one. */
5746 *vr0type = vr1type;
5747 *vr0min = vr1min;
5748 *vr0max = vr1max;
5749 }
5750 else if (*vr0type == VR_RANGE
5751 && vr1type == VR_ANTI_RANGE)
5752 {
5753 /* Choose the right gap if the left one is empty. */
5754 if (mineq)
5755 {
5756 if (TREE_CODE (vr1max) != INTEGER_CST)
5757 *vr0min = vr1max;
5758 else if (TYPE_PRECISION (TREE_TYPE (vr1max)) == 1
5759 && !TYPE_UNSIGNED (TREE_TYPE (vr1max)))
5760 *vr0min
5761 = int_const_binop (MINUS_EXPR, vr1max,
5762 build_int_cst (TREE_TYPE (vr1max), -1));
5763 else
5764 *vr0min
5765 = int_const_binop (PLUS_EXPR, vr1max,
5766 build_int_cst (TREE_TYPE (vr1max), 1));
5767 }
5768 /* Choose the left gap if the right one is empty. */
5769 else if (maxeq)
5770 {
5771 if (TREE_CODE (vr1min) != INTEGER_CST)
5772 *vr0max = vr1min;
5773 else if (TYPE_PRECISION (TREE_TYPE (vr1min)) == 1
5774 && !TYPE_UNSIGNED (TREE_TYPE (vr1min)))
5775 *vr0max
5776 = int_const_binop (PLUS_EXPR, vr1min,
5777 build_int_cst (TREE_TYPE (vr1min), -1));
5778 else
5779 *vr0max
5780 = int_const_binop (MINUS_EXPR, vr1min,
5781 build_int_cst (TREE_TYPE (vr1min), 1));
5782 }
5783 /* Choose the anti-range if the range is effectively varying. */
5784 else if (vrp_val_is_min (*vr0min)
5785 && vrp_val_is_max (*vr0max))
5786 {
5787 *vr0type = vr1type;
5788 *vr0min = vr1min;
5789 *vr0max = vr1max;
5790 }
5791 /* Else choose the range. */
5792 }
5793 else if (*vr0type == VR_ANTI_RANGE
5794 && vr1type == VR_ANTI_RANGE)
5795 /* If both are anti-ranges the result is the outer one. */
5796 ;
5797 else if (*vr0type == VR_ANTI_RANGE
5798 && vr1type == VR_RANGE)
5799 {
5800 /* The intersection is empty. */
5801 *vr0type = VR_UNDEFINED;
5802 *vr0min = NULL_TREE;
5803 *vr0max = NULL_TREE;
5804 }
5805 else
5806 gcc_unreachable ();
5807 }
5808 else if ((maxeq || operand_less_p (*vr0max, vr1max) == 1)
5809 && (mineq || operand_less_p (vr1min, *vr0min) == 1))
5810 {
5811 /* ( [ ] ) or ([ ] ) or ( [ ]) */
5812 if (*vr0type == VR_RANGE
5813 && vr1type == VR_RANGE)
5814 /* Choose the inner range. */
5815 ;
5816 else if (*vr0type == VR_ANTI_RANGE
5817 && vr1type == VR_RANGE)
5818 {
5819 /* Choose the right gap if the left is empty. */
5820 if (mineq)
5821 {
5822 *vr0type = VR_RANGE;
5823 if (TREE_CODE (*vr0max) != INTEGER_CST)
5824 *vr0min = *vr0max;
5825 else if (TYPE_PRECISION (TREE_TYPE (*vr0max)) == 1
5826 && !TYPE_UNSIGNED (TREE_TYPE (*vr0max)))
5827 *vr0min
5828 = int_const_binop (MINUS_EXPR, *vr0max,
5829 build_int_cst (TREE_TYPE (*vr0max), -1));
5830 else
5831 *vr0min
5832 = int_const_binop (PLUS_EXPR, *vr0max,
5833 build_int_cst (TREE_TYPE (*vr0max), 1));
5834 *vr0max = vr1max;
5835 }
5836 /* Choose the left gap if the right is empty. */
5837 else if (maxeq)
5838 {
5839 *vr0type = VR_RANGE;
5840 if (TREE_CODE (*vr0min) != INTEGER_CST)
5841 *vr0max = *vr0min;
5842 else if (TYPE_PRECISION (TREE_TYPE (*vr0min)) == 1
5843 && !TYPE_UNSIGNED (TREE_TYPE (*vr0min)))
5844 *vr0max
5845 = int_const_binop (PLUS_EXPR, *vr0min,
5846 build_int_cst (TREE_TYPE (*vr0min), -1));
5847 else
5848 *vr0max
5849 = int_const_binop (MINUS_EXPR, *vr0min,
5850 build_int_cst (TREE_TYPE (*vr0min), 1));
5851 *vr0min = vr1min;
5852 }
5853 /* Choose the anti-range if the range is effectively varying. */
5854 else if (vrp_val_is_min (vr1min)
5855 && vrp_val_is_max (vr1max))
5856 ;
5857 /* Choose the anti-range if it is ~[0,0], that range is special
5858 enough to special case when vr1's range is relatively wide.
5859 At least for types bigger than int - this covers pointers
5860 and arguments to functions like ctz. */
5861 else if (*vr0min == *vr0max
5862 && integer_zerop (*vr0min)
5863 && ((TYPE_PRECISION (TREE_TYPE (*vr0min))
5864 >= TYPE_PRECISION (integer_type_node))
5865 || POINTER_TYPE_P (TREE_TYPE (*vr0min)))
5866 && TREE_CODE (vr1max) == INTEGER_CST
5867 && TREE_CODE (vr1min) == INTEGER_CST
5868 && (wi::clz (wi::to_wide (vr1max) - wi::to_wide (vr1min))
5869 < TYPE_PRECISION (TREE_TYPE (*vr0min)) / 2))
5870 ;
5871 /* Else choose the range. */
5872 else
5873 {
5874 *vr0type = vr1type;
5875 *vr0min = vr1min;
5876 *vr0max = vr1max;
5877 }
5878 }
5879 else if (*vr0type == VR_ANTI_RANGE
5880 && vr1type == VR_ANTI_RANGE)
5881 {
5882 /* If both are anti-ranges the result is the outer one. */
5883 *vr0type = vr1type;
5884 *vr0min = vr1min;
5885 *vr0max = vr1max;
5886 }
5887 else if (vr1type == VR_ANTI_RANGE
5888 && *vr0type == VR_RANGE)
5889 {
5890 /* The intersection is empty. */
5891 *vr0type = VR_UNDEFINED;
5892 *vr0min = NULL_TREE;
5893 *vr0max = NULL_TREE;
5894 }
5895 else
5896 gcc_unreachable ();
5897 }
5898 else if ((operand_less_p (vr1min, *vr0max) == 1
5899 || operand_equal_p (vr1min, *vr0max, 0))
5900 && operand_less_p (*vr0min, vr1min) == 1)
5901 {
5902 /* [ ( ] ) or [ ]( ) */
5903 if (*vr0type == VR_ANTI_RANGE
5904 && vr1type == VR_ANTI_RANGE)
5905 *vr0max = vr1max;
5906 else if (*vr0type == VR_RANGE
5907 && vr1type == VR_RANGE)
5908 *vr0min = vr1min;
5909 else if (*vr0type == VR_RANGE
5910 && vr1type == VR_ANTI_RANGE)
5911 {
5912 if (TREE_CODE (vr1min) == INTEGER_CST)
5913 *vr0max = int_const_binop (MINUS_EXPR, vr1min,
5914 build_int_cst (TREE_TYPE (vr1min), 1));
5915 else
5916 *vr0max = vr1min;
5917 }
5918 else if (*vr0type == VR_ANTI_RANGE
5919 && vr1type == VR_RANGE)
5920 {
5921 *vr0type = VR_RANGE;
5922 if (TREE_CODE (*vr0max) == INTEGER_CST)
5923 *vr0min = int_const_binop (PLUS_EXPR, *vr0max,
5924 build_int_cst (TREE_TYPE (*vr0max), 1));
5925 else
5926 *vr0min = *vr0max;
5927 *vr0max = vr1max;
5928 }
5929 else
5930 gcc_unreachable ();
5931 }
5932 else if ((operand_less_p (*vr0min, vr1max) == 1
5933 || operand_equal_p (*vr0min, vr1max, 0))
5934 && operand_less_p (vr1min, *vr0min) == 1)
5935 {
5936 /* ( [ ) ] or ( )[ ] */
5937 if (*vr0type == VR_ANTI_RANGE
5938 && vr1type == VR_ANTI_RANGE)
5939 *vr0min = vr1min;
5940 else if (*vr0type == VR_RANGE
5941 && vr1type == VR_RANGE)
5942 *vr0max = vr1max;
5943 else if (*vr0type == VR_RANGE
5944 && vr1type == VR_ANTI_RANGE)
5945 {
5946 if (TREE_CODE (vr1max) == INTEGER_CST)
5947 *vr0min = int_const_binop (PLUS_EXPR, vr1max,
5948 build_int_cst (TREE_TYPE (vr1max), 1));
5949 else
5950 *vr0min = vr1max;
5951 }
5952 else if (*vr0type == VR_ANTI_RANGE
5953 && vr1type == VR_RANGE)
5954 {
5955 *vr0type = VR_RANGE;
5956 if (TREE_CODE (*vr0min) == INTEGER_CST)
5957 *vr0max = int_const_binop (MINUS_EXPR, *vr0min,
5958 build_int_cst (TREE_TYPE (*vr0min), 1));
5959 else
5960 *vr0max = *vr0min;
5961 *vr0min = vr1min;
5962 }
5963 else
5964 gcc_unreachable ();
5965 }
5966
5967 /* As a fallback simply use { *VRTYPE, *VR0MIN, *VR0MAX } as
5968 result for the intersection. That's always a conservative
5969 correct estimate unless VR1 is a constant singleton range
5970 in which case we choose that. */
5971 if (vr1type == VR_RANGE
5972 && is_gimple_min_invariant (vr1min)
5973 && vrp_operand_equal_p (vr1min, vr1max))
5974 {
5975 *vr0type = vr1type;
5976 *vr0min = vr1min;
5977 *vr0max = vr1max;
5978 }
5979 }
5980
5981
5982 /* Intersect the two value-ranges *VR0 and *VR1 and store the result
5983 in *VR0. This may not be the smallest possible such range. */
5984
5985 void
5986 value_range::intersect_helper (value_range *vr0, const value_range *vr1)
5987 {
5988 /* If either range is VR_VARYING the other one wins. */
5989 if (vr1->varying_p ())
5990 return;
5991 if (vr0->varying_p ())
5992 {
5993 vr0->deep_copy (vr1);
5994 return;
5995 }
5996
5997 /* When either range is VR_UNDEFINED the resulting range is
5998 VR_UNDEFINED, too. */
5999 if (vr0->undefined_p ())
6000 return;
6001 if (vr1->undefined_p ())
6002 {
6003 set_value_range_to_undefined (vr0);
6004 return;
6005 }
6006
6007 /* Save the original vr0 so we can return it as conservative intersection
6008 result when our worker turns things to varying. */
6009 value_range saved (*vr0);
6010
6011 value_range_kind vr0type = vr0->kind ();
6012 tree vr0min = vr0->min ();
6013 tree vr0max = vr0->max ();
6014 intersect_ranges (&vr0type, &vr0min, &vr0max,
6015 vr1->kind (), vr1->min (), vr1->max ());
6016 /* Make sure to canonicalize the result though as the inversion of a
6017 VR_RANGE can still be a VR_RANGE. */
6018 vr0->set_and_canonicalize (vr0type, vr0min, vr0max, vr0->m_equiv);
6019 /* If that failed, use the saved original VR0. */
6020 if (vr0->varying_p ())
6021 {
6022 *vr0 = saved;
6023 return;
6024 }
6025 /* If the result is VR_UNDEFINED there is no need to mess with
6026 the equivalencies. */
6027 if (vr0->undefined_p ())
6028 return;
6029
6030 /* The resulting set of equivalences for range intersection is the union of
6031 the two sets. */
6032 if (vr0->m_equiv && vr1->m_equiv && vr0->m_equiv != vr1->m_equiv)
6033 bitmap_ior_into (vr0->m_equiv, vr1->m_equiv);
6034 else if (vr1->m_equiv && !vr0->m_equiv)
6035 {
6036 /* All equivalence bitmaps are allocated from the same obstack. So
6037 we can use the obstack associated with VR to allocate vr0->equiv. */
6038 vr0->m_equiv = BITMAP_ALLOC (vr1->m_equiv->obstack);
6039 bitmap_copy (m_equiv, vr1->m_equiv);
6040 }
6041 }
6042
6043 void
6044 value_range::intersect (const value_range *other)
6045 {
6046 if (dump_file && (dump_flags & TDF_DETAILS))
6047 {
6048 fprintf (dump_file, "Intersecting\n ");
6049 dump_value_range (dump_file, this);
6050 fprintf (dump_file, "\nand\n ");
6051 dump_value_range (dump_file, other);
6052 fprintf (dump_file, "\n");
6053 }
6054 intersect_helper (this, other);
6055 if (dump_file && (dump_flags & TDF_DETAILS))
6056 {
6057 fprintf (dump_file, "to\n ");
6058 dump_value_range (dump_file, this);
6059 fprintf (dump_file, "\n");
6060 }
6061 }
6062
6063 /* Meet operation for value ranges. Given two value ranges VR0 and
6064 VR1, store in VR0 a range that contains both VR0 and VR1. This
6065 may not be the smallest possible such range. */
6066
6067 void
6068 value_range::union_helper (value_range *vr0, const value_range *vr1)
6069 {
6070 if (vr1->undefined_p ())
6071 {
6072 /* VR0 already has the resulting range. */
6073 return;
6074 }
6075
6076 if (vr0->undefined_p ())
6077 {
6078 vr0->deep_copy (vr1);
6079 return;
6080 }
6081
6082 if (vr0->varying_p ())
6083 {
6084 /* Nothing to do. VR0 already has the resulting range. */
6085 return;
6086 }
6087
6088 if (vr1->varying_p ())
6089 {
6090 set_value_range_to_varying (vr0);
6091 return;
6092 }
6093
6094 value_range saved (*vr0);
6095 value_range_kind vr0type = vr0->kind ();
6096 tree vr0min = vr0->min ();
6097 tree vr0max = vr0->max ();
6098 union_ranges (&vr0type, &vr0min, &vr0max,
6099 vr1->kind (), vr1->min (), vr1->max ());
6100 *vr0 = value_range (vr0type, vr0min, vr0max);
6101 if (vr0->varying_p ())
6102 {
6103 /* Failed to find an efficient meet. Before giving up and setting
6104 the result to VARYING, see if we can at least derive a useful
6105 anti-range. */
6106 if (range_includes_zero_p (&saved) == 0
6107 && range_includes_zero_p (vr1) == 0)
6108 {
6109 set_value_range_to_nonnull (vr0, saved.type ());
6110
6111 /* Since this meet operation did not result from the meeting of
6112 two equivalent names, VR0 cannot have any equivalences. */
6113 if (vr0->m_equiv)
6114 bitmap_clear (vr0->m_equiv);
6115 return;
6116 }
6117
6118 set_value_range_to_varying (vr0);
6119 return;
6120 }
6121 vr0->set_and_canonicalize (vr0->kind (), vr0->min (), vr0->max (),
6122 vr0->equiv ());
6123 if (vr0->varying_p ())
6124 return;
6125
6126 /* The resulting set of equivalences is always the intersection of
6127 the two sets. */
6128 if (vr0->m_equiv && vr1->m_equiv && vr0->m_equiv != vr1->m_equiv)
6129 bitmap_and_into (vr0->m_equiv, vr1->m_equiv);
6130 else if (vr0->m_equiv && !vr1->m_equiv)
6131 bitmap_clear (vr0->m_equiv);
6132 }
6133
6134 void
6135 value_range::union_ (const value_range *other)
6136 {
6137 if (dump_file && (dump_flags & TDF_DETAILS))
6138 {
6139 fprintf (dump_file, "Meeting\n ");
6140 dump_value_range (dump_file, this);
6141 fprintf (dump_file, "\nand\n ");
6142 dump_value_range (dump_file, other);
6143 fprintf (dump_file, "\n");
6144 }
6145 union_helper (this, other);
6146 if (dump_file && (dump_flags & TDF_DETAILS))
6147 {
6148 fprintf (dump_file, "to\n ");
6149 dump_value_range (dump_file, this);
6150 fprintf (dump_file, "\n");
6151 }
6152 }
6153
6154 /* Visit all arguments for PHI node PHI that flow through executable
6155 edges. If a valid value range can be derived from all the incoming
6156 value ranges, set a new range for the LHS of PHI. */
6157
6158 enum ssa_prop_result
6159 vrp_prop::visit_phi (gphi *phi)
6160 {
6161 tree lhs = PHI_RESULT (phi);
6162 value_range vr_result;
6163 extract_range_from_phi_node (phi, &vr_result);
6164 if (update_value_range (lhs, &vr_result))
6165 {
6166 if (dump_file && (dump_flags & TDF_DETAILS))
6167 {
6168 fprintf (dump_file, "Found new range for ");
6169 print_generic_expr (dump_file, lhs);
6170 fprintf (dump_file, ": ");
6171 dump_value_range (dump_file, &vr_result);
6172 fprintf (dump_file, "\n");
6173 }
6174
6175 if (vr_result.varying_p ())
6176 return SSA_PROP_VARYING;
6177
6178 return SSA_PROP_INTERESTING;
6179 }
6180
6181 /* Nothing changed, don't add outgoing edges. */
6182 return SSA_PROP_NOT_INTERESTING;
6183 }
6184
6185 class vrp_folder : public substitute_and_fold_engine
6186 {
6187 public:
6188 tree get_value (tree) FINAL OVERRIDE;
6189 bool fold_stmt (gimple_stmt_iterator *) FINAL OVERRIDE;
6190 bool fold_predicate_in (gimple_stmt_iterator *);
6191
6192 class vr_values *vr_values;
6193
6194 /* Delegators. */
6195 tree vrp_evaluate_conditional (tree_code code, tree op0,
6196 tree op1, gimple *stmt)
6197 { return vr_values->vrp_evaluate_conditional (code, op0, op1, stmt); }
6198 bool simplify_stmt_using_ranges (gimple_stmt_iterator *gsi)
6199 { return vr_values->simplify_stmt_using_ranges (gsi); }
6200 tree op_with_constant_singleton_value_range (tree op)
6201 { return vr_values->op_with_constant_singleton_value_range (op); }
6202 };
6203
6204 /* If the statement pointed by SI has a predicate whose value can be
6205 computed using the value range information computed by VRP, compute
6206 its value and return true. Otherwise, return false. */
6207
6208 bool
6209 vrp_folder::fold_predicate_in (gimple_stmt_iterator *si)
6210 {
6211 bool assignment_p = false;
6212 tree val;
6213 gimple *stmt = gsi_stmt (*si);
6214
6215 if (is_gimple_assign (stmt)
6216 && TREE_CODE_CLASS (gimple_assign_rhs_code (stmt)) == tcc_comparison)
6217 {
6218 assignment_p = true;
6219 val = vrp_evaluate_conditional (gimple_assign_rhs_code (stmt),
6220 gimple_assign_rhs1 (stmt),
6221 gimple_assign_rhs2 (stmt),
6222 stmt);
6223 }
6224 else if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
6225 val = vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
6226 gimple_cond_lhs (cond_stmt),
6227 gimple_cond_rhs (cond_stmt),
6228 stmt);
6229 else
6230 return false;
6231
6232 if (val)
6233 {
6234 if (assignment_p)
6235 val = fold_convert (gimple_expr_type (stmt), val);
6236
6237 if (dump_file)
6238 {
6239 fprintf (dump_file, "Folding predicate ");
6240 print_gimple_expr (dump_file, stmt, 0);
6241 fprintf (dump_file, " to ");
6242 print_generic_expr (dump_file, val);
6243 fprintf (dump_file, "\n");
6244 }
6245
6246 if (is_gimple_assign (stmt))
6247 gimple_assign_set_rhs_from_tree (si, val);
6248 else
6249 {
6250 gcc_assert (gimple_code (stmt) == GIMPLE_COND);
6251 gcond *cond_stmt = as_a <gcond *> (stmt);
6252 if (integer_zerop (val))
6253 gimple_cond_make_false (cond_stmt);
6254 else if (integer_onep (val))
6255 gimple_cond_make_true (cond_stmt);
6256 else
6257 gcc_unreachable ();
6258 }
6259
6260 return true;
6261 }
6262
6263 return false;
6264 }
6265
6266 /* Callback for substitute_and_fold folding the stmt at *SI. */
6267
6268 bool
6269 vrp_folder::fold_stmt (gimple_stmt_iterator *si)
6270 {
6271 if (fold_predicate_in (si))
6272 return true;
6273
6274 return simplify_stmt_using_ranges (si);
6275 }
6276
6277 /* If OP has a value range with a single constant value return that,
6278 otherwise return NULL_TREE. This returns OP itself if OP is a
6279 constant.
6280
6281 Implemented as a pure wrapper right now, but this will change. */
6282
6283 tree
6284 vrp_folder::get_value (tree op)
6285 {
6286 return op_with_constant_singleton_value_range (op);
6287 }
6288
6289 /* Return the LHS of any ASSERT_EXPR where OP appears as the first
6290 argument to the ASSERT_EXPR and in which the ASSERT_EXPR dominates
6291 BB. If no such ASSERT_EXPR is found, return OP. */
6292
6293 static tree
6294 lhs_of_dominating_assert (tree op, basic_block bb, gimple *stmt)
6295 {
6296 imm_use_iterator imm_iter;
6297 gimple *use_stmt;
6298 use_operand_p use_p;
6299
6300 if (TREE_CODE (op) == SSA_NAME)
6301 {
6302 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, op)
6303 {
6304 use_stmt = USE_STMT (use_p);
6305 if (use_stmt != stmt
6306 && gimple_assign_single_p (use_stmt)
6307 && TREE_CODE (gimple_assign_rhs1 (use_stmt)) == ASSERT_EXPR
6308 && TREE_OPERAND (gimple_assign_rhs1 (use_stmt), 0) == op
6309 && dominated_by_p (CDI_DOMINATORS, bb, gimple_bb (use_stmt)))
6310 return gimple_assign_lhs (use_stmt);
6311 }
6312 }
6313 return op;
6314 }
6315
6316 /* A hack. */
6317 static class vr_values *x_vr_values;
6318
6319 /* A trivial wrapper so that we can present the generic jump threading
6320 code with a simple API for simplifying statements. STMT is the
6321 statement we want to simplify, WITHIN_STMT provides the location
6322 for any overflow warnings. */
6323
6324 static tree
6325 simplify_stmt_for_jump_threading (gimple *stmt, gimple *within_stmt,
6326 class avail_exprs_stack *avail_exprs_stack ATTRIBUTE_UNUSED,
6327 basic_block bb)
6328 {
6329 /* First see if the conditional is in the hash table. */
6330 tree cached_lhs = avail_exprs_stack->lookup_avail_expr (stmt, false, true);
6331 if (cached_lhs && is_gimple_min_invariant (cached_lhs))
6332 return cached_lhs;
6333
6334 vr_values *vr_values = x_vr_values;
6335 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
6336 {
6337 tree op0 = gimple_cond_lhs (cond_stmt);
6338 op0 = lhs_of_dominating_assert (op0, bb, stmt);
6339
6340 tree op1 = gimple_cond_rhs (cond_stmt);
6341 op1 = lhs_of_dominating_assert (op1, bb, stmt);
6342
6343 return vr_values->vrp_evaluate_conditional (gimple_cond_code (cond_stmt),
6344 op0, op1, within_stmt);
6345 }
6346
6347 /* We simplify a switch statement by trying to determine which case label
6348 will be taken. If we are successful then we return the corresponding
6349 CASE_LABEL_EXPR. */
6350 if (gswitch *switch_stmt = dyn_cast <gswitch *> (stmt))
6351 {
6352 tree op = gimple_switch_index (switch_stmt);
6353 if (TREE_CODE (op) != SSA_NAME)
6354 return NULL_TREE;
6355
6356 op = lhs_of_dominating_assert (op, bb, stmt);
6357
6358 const value_range *vr = vr_values->get_value_range (op);
6359 if (vr->undefined_p ()
6360 || vr->varying_p ()
6361 || vr->symbolic_p ())
6362 return NULL_TREE;
6363
6364 if (vr->kind () == VR_RANGE)
6365 {
6366 size_t i, j;
6367 /* Get the range of labels that contain a part of the operand's
6368 value range. */
6369 find_case_label_range (switch_stmt, vr->min (), vr->max (), &i, &j);
6370
6371 /* Is there only one such label? */
6372 if (i == j)
6373 {
6374 tree label = gimple_switch_label (switch_stmt, i);
6375
6376 /* The i'th label will be taken only if the value range of the
6377 operand is entirely within the bounds of this label. */
6378 if (CASE_HIGH (label) != NULL_TREE
6379 ? (tree_int_cst_compare (CASE_LOW (label), vr->min ()) <= 0
6380 && tree_int_cst_compare (CASE_HIGH (label),
6381 vr->max ()) >= 0)
6382 : (tree_int_cst_equal (CASE_LOW (label), vr->min ())
6383 && tree_int_cst_equal (vr->min (), vr->max ())))
6384 return label;
6385 }
6386
6387 /* If there are no such labels then the default label will be
6388 taken. */
6389 if (i > j)
6390 return gimple_switch_label (switch_stmt, 0);
6391 }
6392
6393 if (vr->kind () == VR_ANTI_RANGE)
6394 {
6395 unsigned n = gimple_switch_num_labels (switch_stmt);
6396 tree min_label = gimple_switch_label (switch_stmt, 1);
6397 tree max_label = gimple_switch_label (switch_stmt, n - 1);
6398
6399 /* The default label will be taken only if the anti-range of the
6400 operand is entirely outside the bounds of all the (non-default)
6401 case labels. */
6402 if (tree_int_cst_compare (vr->min (), CASE_LOW (min_label)) <= 0
6403 && (CASE_HIGH (max_label) != NULL_TREE
6404 ? tree_int_cst_compare (vr->max (),
6405 CASE_HIGH (max_label)) >= 0
6406 : tree_int_cst_compare (vr->max (),
6407 CASE_LOW (max_label)) >= 0))
6408 return gimple_switch_label (switch_stmt, 0);
6409 }
6410
6411 return NULL_TREE;
6412 }
6413
6414 if (gassign *assign_stmt = dyn_cast <gassign *> (stmt))
6415 {
6416 tree lhs = gimple_assign_lhs (assign_stmt);
6417 if (TREE_CODE (lhs) == SSA_NAME
6418 && (INTEGRAL_TYPE_P (TREE_TYPE (lhs))
6419 || POINTER_TYPE_P (TREE_TYPE (lhs)))
6420 && stmt_interesting_for_vrp (stmt))
6421 {
6422 edge dummy_e;
6423 tree dummy_tree;
6424 value_range new_vr;
6425 vr_values->extract_range_from_stmt (stmt, &dummy_e,
6426 &dummy_tree, &new_vr);
6427 tree singleton;
6428 if (new_vr.singleton_p (&singleton))
6429 return singleton;
6430 }
6431 }
6432
6433 return NULL_TREE;
6434 }
6435
6436 class vrp_dom_walker : public dom_walker
6437 {
6438 public:
6439 vrp_dom_walker (cdi_direction direction,
6440 class const_and_copies *const_and_copies,
6441 class avail_exprs_stack *avail_exprs_stack)
6442 : dom_walker (direction, REACHABLE_BLOCKS),
6443 m_const_and_copies (const_and_copies),
6444 m_avail_exprs_stack (avail_exprs_stack),
6445 m_dummy_cond (NULL) {}
6446
6447 virtual edge before_dom_children (basic_block);
6448 virtual void after_dom_children (basic_block);
6449
6450 class vr_values *vr_values;
6451
6452 private:
6453 class const_and_copies *m_const_and_copies;
6454 class avail_exprs_stack *m_avail_exprs_stack;
6455
6456 gcond *m_dummy_cond;
6457
6458 };
6459
6460 /* Called before processing dominator children of BB. We want to look
6461 at ASSERT_EXPRs and record information from them in the appropriate
6462 tables.
6463
6464 We could look at other statements here. It's not seen as likely
6465 to significantly increase the jump threads we discover. */
6466
6467 edge
6468 vrp_dom_walker::before_dom_children (basic_block bb)
6469 {
6470 gimple_stmt_iterator gsi;
6471
6472 m_avail_exprs_stack->push_marker ();
6473 m_const_and_copies->push_marker ();
6474 for (gsi = gsi_start_nondebug_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
6475 {
6476 gimple *stmt = gsi_stmt (gsi);
6477 if (gimple_assign_single_p (stmt)
6478 && TREE_CODE (gimple_assign_rhs1 (stmt)) == ASSERT_EXPR)
6479 {
6480 tree rhs1 = gimple_assign_rhs1 (stmt);
6481 tree cond = TREE_OPERAND (rhs1, 1);
6482 tree inverted = invert_truthvalue (cond);
6483 vec<cond_equivalence> p;
6484 p.create (3);
6485 record_conditions (&p, cond, inverted);
6486 for (unsigned int i = 0; i < p.length (); i++)
6487 m_avail_exprs_stack->record_cond (&p[i]);
6488
6489 tree lhs = gimple_assign_lhs (stmt);
6490 m_const_and_copies->record_const_or_copy (lhs,
6491 TREE_OPERAND (rhs1, 0));
6492 p.release ();
6493 continue;
6494 }
6495 break;
6496 }
6497 return NULL;
6498 }
6499
6500 /* Called after processing dominator children of BB. This is where we
6501 actually call into the threader. */
6502 void
6503 vrp_dom_walker::after_dom_children (basic_block bb)
6504 {
6505 if (!m_dummy_cond)
6506 m_dummy_cond = gimple_build_cond (NE_EXPR,
6507 integer_zero_node, integer_zero_node,
6508 NULL, NULL);
6509
6510 x_vr_values = vr_values;
6511 thread_outgoing_edges (bb, m_dummy_cond, m_const_and_copies,
6512 m_avail_exprs_stack, NULL,
6513 simplify_stmt_for_jump_threading);
6514 x_vr_values = NULL;
6515
6516 m_avail_exprs_stack->pop_to_marker ();
6517 m_const_and_copies->pop_to_marker ();
6518 }
6519
6520 /* Blocks which have more than one predecessor and more than
6521 one successor present jump threading opportunities, i.e.,
6522 when the block is reached from a specific predecessor, we
6523 may be able to determine which of the outgoing edges will
6524 be traversed. When this optimization applies, we are able
6525 to avoid conditionals at runtime and we may expose secondary
6526 optimization opportunities.
6527
6528 This routine is effectively a driver for the generic jump
6529 threading code. It basically just presents the generic code
6530 with edges that may be suitable for jump threading.
6531
6532 Unlike DOM, we do not iterate VRP if jump threading was successful.
6533 While iterating may expose new opportunities for VRP, it is expected
6534 those opportunities would be very limited and the compile time cost
6535 to expose those opportunities would be significant.
6536
6537 As jump threading opportunities are discovered, they are registered
6538 for later realization. */
6539
6540 static void
6541 identify_jump_threads (class vr_values *vr_values)
6542 {
6543 /* Ugh. When substituting values earlier in this pass we can
6544 wipe the dominance information. So rebuild the dominator
6545 information as we need it within the jump threading code. */
6546 calculate_dominance_info (CDI_DOMINATORS);
6547
6548 /* We do not allow VRP information to be used for jump threading
6549 across a back edge in the CFG. Otherwise it becomes too
6550 difficult to avoid eliminating loop exit tests. Of course
6551 EDGE_DFS_BACK is not accurate at this time so we have to
6552 recompute it. */
6553 mark_dfs_back_edges ();
6554
6555 /* Allocate our unwinder stack to unwind any temporary equivalences
6556 that might be recorded. */
6557 const_and_copies *equiv_stack = new const_and_copies ();
6558
6559 hash_table<expr_elt_hasher> *avail_exprs
6560 = new hash_table<expr_elt_hasher> (1024);
6561 avail_exprs_stack *avail_exprs_stack
6562 = new class avail_exprs_stack (avail_exprs);
6563
6564 vrp_dom_walker walker (CDI_DOMINATORS, equiv_stack, avail_exprs_stack);
6565 walker.vr_values = vr_values;
6566 walker.walk (cfun->cfg->x_entry_block_ptr);
6567
6568 /* We do not actually update the CFG or SSA graphs at this point as
6569 ASSERT_EXPRs are still in the IL and cfg cleanup code does not yet
6570 handle ASSERT_EXPRs gracefully. */
6571 delete equiv_stack;
6572 delete avail_exprs;
6573 delete avail_exprs_stack;
6574 }
6575
6576 /* Traverse all the blocks folding conditionals with known ranges. */
6577
6578 void
6579 vrp_prop::vrp_finalize (bool warn_array_bounds_p)
6580 {
6581 size_t i;
6582
6583 /* We have completed propagating through the lattice. */
6584 vr_values.set_lattice_propagation_complete ();
6585
6586 if (dump_file)
6587 {
6588 fprintf (dump_file, "\nValue ranges after VRP:\n\n");
6589 vr_values.dump_all_value_ranges (dump_file);
6590 fprintf (dump_file, "\n");
6591 }
6592
6593 /* Set value range to non pointer SSA_NAMEs. */
6594 for (i = 0; i < num_ssa_names; i++)
6595 {
6596 tree name = ssa_name (i);
6597 if (!name)
6598 continue;
6599
6600 const value_range *vr = get_value_range (name);
6601 if (!name || !vr->constant_p ())
6602 continue;
6603
6604 if (POINTER_TYPE_P (TREE_TYPE (name))
6605 && range_includes_zero_p (vr) == 0)
6606 set_ptr_nonnull (name);
6607 else if (!POINTER_TYPE_P (TREE_TYPE (name)))
6608 set_range_info (name, vr->kind (),
6609 wi::to_wide (vr->min ()),
6610 wi::to_wide (vr->max ()));
6611 }
6612
6613 /* If we're checking array refs, we want to merge information on
6614 the executability of each edge between vrp_folder and the
6615 check_array_bounds_dom_walker: each can clear the
6616 EDGE_EXECUTABLE flag on edges, in different ways.
6617
6618 Hence, if we're going to call check_all_array_refs, set
6619 the flag on every edge now, rather than in
6620 check_array_bounds_dom_walker's ctor; vrp_folder may clear
6621 it from some edges. */
6622 if (warn_array_bounds && warn_array_bounds_p)
6623 set_all_edges_as_executable (cfun);
6624
6625 class vrp_folder vrp_folder;
6626 vrp_folder.vr_values = &vr_values;
6627 vrp_folder.substitute_and_fold ();
6628
6629 if (warn_array_bounds && warn_array_bounds_p)
6630 check_all_array_refs ();
6631 }
6632
6633 /* Main entry point to VRP (Value Range Propagation). This pass is
6634 loosely based on J. R. C. Patterson, ``Accurate Static Branch
6635 Prediction by Value Range Propagation,'' in SIGPLAN Conference on
6636 Programming Language Design and Implementation, pp. 67-78, 1995.
6637 Also available at http://citeseer.ist.psu.edu/patterson95accurate.html
6638
6639 This is essentially an SSA-CCP pass modified to deal with ranges
6640 instead of constants.
6641
6642 While propagating ranges, we may find that two or more SSA name
6643 have equivalent, though distinct ranges. For instance,
6644
6645 1 x_9 = p_3->a;
6646 2 p_4 = ASSERT_EXPR <p_3, p_3 != 0>
6647 3 if (p_4 == q_2)
6648 4 p_5 = ASSERT_EXPR <p_4, p_4 == q_2>;
6649 5 endif
6650 6 if (q_2)
6651
6652 In the code above, pointer p_5 has range [q_2, q_2], but from the
6653 code we can also determine that p_5 cannot be NULL and, if q_2 had
6654 a non-varying range, p_5's range should also be compatible with it.
6655
6656 These equivalences are created by two expressions: ASSERT_EXPR and
6657 copy operations. Since p_5 is an assertion on p_4, and p_4 was the
6658 result of another assertion, then we can use the fact that p_5 and
6659 p_4 are equivalent when evaluating p_5's range.
6660
6661 Together with value ranges, we also propagate these equivalences
6662 between names so that we can take advantage of information from
6663 multiple ranges when doing final replacement. Note that this
6664 equivalency relation is transitive but not symmetric.
6665
6666 In the example above, p_5 is equivalent to p_4, q_2 and p_3, but we
6667 cannot assert that q_2 is equivalent to p_5 because q_2 may be used
6668 in contexts where that assertion does not hold (e.g., in line 6).
6669
6670 TODO, the main difference between this pass and Patterson's is that
6671 we do not propagate edge probabilities. We only compute whether
6672 edges can be taken or not. That is, instead of having a spectrum
6673 of jump probabilities between 0 and 1, we only deal with 0, 1 and
6674 DON'T KNOW. In the future, it may be worthwhile to propagate
6675 probabilities to aid branch prediction. */
6676
6677 static unsigned int
6678 execute_vrp (bool warn_array_bounds_p)
6679 {
6680
6681 loop_optimizer_init (LOOPS_NORMAL | LOOPS_HAVE_RECORDED_EXITS);
6682 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
6683 scev_initialize ();
6684
6685 /* ??? This ends up using stale EDGE_DFS_BACK for liveness computation.
6686 Inserting assertions may split edges which will invalidate
6687 EDGE_DFS_BACK. */
6688 insert_range_assertions ();
6689
6690 threadedge_initialize_values ();
6691
6692 /* For visiting PHI nodes we need EDGE_DFS_BACK computed. */
6693 mark_dfs_back_edges ();
6694
6695 class vrp_prop vrp_prop;
6696 vrp_prop.vrp_initialize ();
6697 vrp_prop.ssa_propagate ();
6698 vrp_prop.vrp_finalize (warn_array_bounds_p);
6699
6700 /* We must identify jump threading opportunities before we release
6701 the datastructures built by VRP. */
6702 identify_jump_threads (&vrp_prop.vr_values);
6703
6704 /* A comparison of an SSA_NAME against a constant where the SSA_NAME
6705 was set by a type conversion can often be rewritten to use the
6706 RHS of the type conversion.
6707
6708 However, doing so inhibits jump threading through the comparison.
6709 So that transformation is not performed until after jump threading
6710 is complete. */
6711 basic_block bb;
6712 FOR_EACH_BB_FN (bb, cfun)
6713 {
6714 gimple *last = last_stmt (bb);
6715 if (last && gimple_code (last) == GIMPLE_COND)
6716 vrp_prop.vr_values.simplify_cond_using_ranges_2 (as_a <gcond *> (last));
6717 }
6718
6719 free_numbers_of_iterations_estimates (cfun);
6720
6721 /* ASSERT_EXPRs must be removed before finalizing jump threads
6722 as finalizing jump threads calls the CFG cleanup code which
6723 does not properly handle ASSERT_EXPRs. */
6724 remove_range_assertions ();
6725
6726 /* If we exposed any new variables, go ahead and put them into
6727 SSA form now, before we handle jump threading. This simplifies
6728 interactions between rewriting of _DECL nodes into SSA form
6729 and rewriting SSA_NAME nodes into SSA form after block
6730 duplication and CFG manipulation. */
6731 update_ssa (TODO_update_ssa);
6732
6733 /* We identified all the jump threading opportunities earlier, but could
6734 not transform the CFG at that time. This routine transforms the
6735 CFG and arranges for the dominator tree to be rebuilt if necessary.
6736
6737 Note the SSA graph update will occur during the normal TODO
6738 processing by the pass manager. */
6739 thread_through_all_blocks (false);
6740
6741 vrp_prop.vr_values.cleanup_edges_and_switches ();
6742 threadedge_finalize_values ();
6743
6744 scev_finalize ();
6745 loop_optimizer_finalize ();
6746 return 0;
6747 }
6748
6749 namespace {
6750
6751 const pass_data pass_data_vrp =
6752 {
6753 GIMPLE_PASS, /* type */
6754 "vrp", /* name */
6755 OPTGROUP_NONE, /* optinfo_flags */
6756 TV_TREE_VRP, /* tv_id */
6757 PROP_ssa, /* properties_required */
6758 0, /* properties_provided */
6759 0, /* properties_destroyed */
6760 0, /* todo_flags_start */
6761 ( TODO_cleanup_cfg | TODO_update_ssa ), /* todo_flags_finish */
6762 };
6763
6764 class pass_vrp : public gimple_opt_pass
6765 {
6766 public:
6767 pass_vrp (gcc::context *ctxt)
6768 : gimple_opt_pass (pass_data_vrp, ctxt), warn_array_bounds_p (false)
6769 {}
6770
6771 /* opt_pass methods: */
6772 opt_pass * clone () { return new pass_vrp (m_ctxt); }
6773 void set_pass_param (unsigned int n, bool param)
6774 {
6775 gcc_assert (n == 0);
6776 warn_array_bounds_p = param;
6777 }
6778 virtual bool gate (function *) { return flag_tree_vrp != 0; }
6779 virtual unsigned int execute (function *)
6780 { return execute_vrp (warn_array_bounds_p); }
6781
6782 private:
6783 bool warn_array_bounds_p;
6784 }; // class pass_vrp
6785
6786 } // anon namespace
6787
6788 gimple_opt_pass *
6789 make_pass_vrp (gcc::context *ctxt)
6790 {
6791 return new pass_vrp (ctxt);
6792 }
6793
6794
6795 /* Worker for determine_value_range. */
6796
6797 static void
6798 determine_value_range_1 (value_range *vr, tree expr)
6799 {
6800 if (BINARY_CLASS_P (expr))
6801 {
6802 value_range vr0, vr1;
6803 determine_value_range_1 (&vr0, TREE_OPERAND (expr, 0));
6804 determine_value_range_1 (&vr1, TREE_OPERAND (expr, 1));
6805 extract_range_from_binary_expr_1 (vr, TREE_CODE (expr), TREE_TYPE (expr),
6806 &vr0, &vr1);
6807 }
6808 else if (UNARY_CLASS_P (expr))
6809 {
6810 value_range vr0;
6811 determine_value_range_1 (&vr0, TREE_OPERAND (expr, 0));
6812 extract_range_from_unary_expr (vr, TREE_CODE (expr), TREE_TYPE (expr),
6813 &vr0, TREE_TYPE (TREE_OPERAND (expr, 0)));
6814 }
6815 else if (TREE_CODE (expr) == INTEGER_CST)
6816 set_value_range_to_value (vr, expr, NULL);
6817 else
6818 {
6819 value_range_kind kind;
6820 wide_int min, max;
6821 /* For SSA names try to extract range info computed by VRP. Otherwise
6822 fall back to varying. */
6823 if (TREE_CODE (expr) == SSA_NAME
6824 && INTEGRAL_TYPE_P (TREE_TYPE (expr))
6825 && (kind = get_range_info (expr, &min, &max)) != VR_VARYING)
6826 set_value_range (vr, kind, wide_int_to_tree (TREE_TYPE (expr), min),
6827 wide_int_to_tree (TREE_TYPE (expr), max), NULL);
6828 else
6829 set_value_range_to_varying (vr);
6830 }
6831 }
6832
6833 /* Compute a value-range for EXPR and set it in *MIN and *MAX. Return
6834 the determined range type. */
6835
6836 value_range_kind
6837 determine_value_range (tree expr, wide_int *min, wide_int *max)
6838 {
6839 value_range vr;
6840 determine_value_range_1 (&vr, expr);
6841 if (vr.constant_p ())
6842 {
6843 *min = wi::to_wide (vr.min ());
6844 *max = wi::to_wide (vr.max ());
6845 return vr.kind ();
6846 }
6847
6848 return VR_VARYING;
6849 }